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Abstract
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remained unconsidered. Therefore, this paper presents the extension of the higher-
dimensional function theory to the case of arbitrary bounded domains in R

n . On this
way, discrete Stokes’ formula, discrete Borel–Pompeiu formula, as well as discrete
Hardy spaces for general bounded domains are constructed. Finally, several discrete
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1 Introduction

Construction of discrete analogues to the classical theory of monogenic functions has
been an area of active research during last decades. The motivation for this construc-
tion has also evolved over the time: while initially the principal interest consisted
in developing numerical methods based on integral representation formulae, see for
example papers [9,11,12] and references therein, later, the growing importance of dis-
crete modelling in various practical fields, e.g. [23], led to a genuine and native interest
in discrete structures in the hypercomplex setting, see [2,7,10] and references therein.

The main advantage of discrete modelling lies in the fact that certain properties
of a continuous problem are exactly replicated on the discrete level and they are not
just an approximation as in conventional numerical schemes, e.g. factorisation of the
discrete Laplace operator by pair of discrete Cauchy–Riemann operators. Therefore,
it is not surprising that studies of discrete function theory and other related theories in
different settings have been presented by many authors. Thus, to keep the presentation
short and being completely aware of such classical topic as theory of discrete analytic
functions [20], we will focus only on works relevant to the paper and related to the
hypercomplex community, especially in higher dimensions.

As it has been mentioned, originally, discrete function theories have been related
to numerical schemes for solving boundary value problems. For example, works [12,
13,16,17] presented the version of discrete function theory originating from the ideas
of the discrete potential theory developed by Ryaben’kii [22]. This, although mostly
two-dimensional, version of a discrete function theory has been later extended to
the case of rectangular lattices in [14,15,18,19], allowing more flexibility in solving
boundary value problems ofmathematical physics in bounded domains. An alternative
branch of research in discrete function theory is related to discrete Clifford analysis,
which is a higher-dimensional version of discrete function theory. This line of research
is generally associated with a more abstract algebraic point of view on the discrete
function theory, typically based onWeyl calculus and itsmodifications, see for example
[2,3,7,8]. One of the advantages of such more abstract approach is the possibility of
constructing boundary value theory for discrete monogenic functions, which has been
introduced in recent years, see e.g. [4,5].

The boundary value theory of discrete monogenic functions provides tools to define
discrete counterparts of Hardy spaces, Plemelj-Sokhotzki formulae, as well as to study
discreteHilbert problems. In general, this theory is basedon explicit calculations of dis-
crete Fourier symbols of boundary operators. Original works [4,5] have been focusing
on the idealised case, although being practically important, of the half-space. Natu-
rally, the question of extension of this theory to the case of bounded domains and more
complicated geometries appears. First ideas of extending the boundary value theory of
discrete monogenic functions for bounded domain in R

3 have been presented in [6].
The focus of this work was on introduction of discrete Stokes, Borel–Pompeiu, and
Cauchy formulae for bounded domains, as well as first steps towards characterisation
of boundary values of discrete monogenic functions via their boundary values have
been presented. The results of [6] indicate that consideration of arbitrary bounded
domains in higher dimensions requires a more “delicate”approach to the definition of
the geometrical setting, as well as to the construction of boundary operators. Thus, in
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this paper, we present the necessary tools for extending the results in [6] to arbitrary
bounded domains in R

n . We consider constructions of discrete spaces and operators
in interior and exterior settings. Moreover, explicit calculations of Fourier symbols
along boundary layers are provided, which allow definitions of discrete Riesz kernels
for arbitrary discrete bounded domains. Finally, to show the applicability of our theory
several discrete Hilbert problems in bounded domains are considered.

2 Preliminaries and Notations

2.1 Geometrical Setting and Basic Operators

Let us consider n-dimensional Euclidean space Rn with the basis unit vectors ek , k =
1, 2, . . . , n and points x = (x1, x2, . . . , xn). For h > 0 we introduce the unbounded
uniform lattice hZn in the classical way, that is,

hZn := {x ∈ R
n | x = (m1h, m2h, . . . , mnh), m j ∈ Z, j = 1, 2, . . . , n

}
.

LetΩ ⊂ R
n be a bounded, simply connected domainwith piecewise smooth boundary

∂Ω . We introduce the discrete domain Ωh associated to Ω as follows

Ωh := Ω ∩ hZn,⇔ Ωh := {mh = (m1h, m2h, . . . , mnh) | mh ∈ Ω ∩ hZn} .

Now, for fixing notations, we introduce the following definition:

Definition 1 For a given discrete domain Ωh , the following objects are introduced:

(i) a discrete complementary domain to Ωh : Ωc
h := hZn\Ωh;

(ii) the discrete interior of Ωh , denoted by int(Ωh), is the set of all points mh ∈ Ωh

such that at least one of its immediate neighbour points (m + e j )h, (m − e j )h
for some j = 1, . . . , n, also belongs to Ωh , i.e.

int(Ωh) := {mh ∈ Ωh | ∃ j : (m + e j )h ∈ Ωh ∨ (m − e j )h ∈ Ωh
} ;

(iii) the discrete exterior of Ωh , denoted by Ωext
h , is defined symmetrically as the

interior of the complementary domain Ωc
h .

As the next step, the following definition provides a first classification of boundary
points of a discrete domain Ωh and of its exterior Ωext

h on the discrete lattice hZn :

Definition 2 Let Ωh be a discrete domain hZn with the lattice constant h > 0. We say
that

(i) a point mh ∈ Ωh is a point of the interior boundary layer γ +
h , if at least one of

its neighbour points does not belong to Ωh , i.e.

γ +
h := {mh ∈ Ωh | ∃ j : (m + e j )h /∈ Ωh ∨ (m − e j )h /∈ Ωh

} ;
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(ii) a point mh is a point of the middle boundary layer γ ∗
h , if its neighbourhood

contains points belonging to Ωh , as well as points belonging to Ωext
h , i.e.

γ ∗
h := {mh | ∃ j : (m ± e j )h ∈ Ωh ∧ (m ∓ e j )h ∈ Ωext

h

} ;

(iii) a point mh ∈ Ωext
h is a point of the exterior boundary layer γ −

h , if at least one
of its neighbour points does not belong to Ωext

h , i.e.

γ −
h := {mh ∈ Ωext

h | ∃ j : (m + e j )h /∈ Ωext
h ∨ (m − e j )h /∈ Ωext

h

}
.

Remark 1 We would like to remark, that alternatively, middle and exterior boundary
layers can be defined solely by using the definition of interior boundary layer. In
this case, the middle boundary layer γ ∗

h of Ωh is defined as the interior boundary of
Ωc

h = hZn\Ωh , and the exterior boundary layer γ −
h is the interior boundary of the

Ωext
h = int(Ωc

h).

Notice that the middle layer lies “in between”the domain Ωh and its associated
exterior domainΩext

h , and, in fact, is the “true”boundary of the domain.As an example,
consider the classical case ofΩh := hZn+ = {(m1h, . . . , mnh) ∈ hZn|mn > 0}. Then
the exterior domain is

Ωext
h := hZn− = {(m1h, . . . , mnh) ∈ hZn|mn < 0},

and we have

γ +
h = {(m1h, . . . , mnh) ∈ hZn|mn = 1

}
(also, 1-layer),

γ ∗
h = {(m1h, . . . , mnh) ∈ hZn|mn = 0

}
(also, 0-layer),

γ −
h = {(m1h, . . . , mnh) ∈ hZn|mn = −1

}
(also, -1-layer).

As the next step, we define the classical forward and backward differences ∂
± j
h as

∂
+ j
h f (mh) := h−1( f (mh + e j h) − f (mh)),

∂
− j
h f (mh) := h−1( f (mh) − f (mh − e j h)),

for discrete functions f (mh) with mh ∈ hZn . Let us now introduce the characteristic
functions for the discrete domains Ωh and Ωext

h in the classical way

χΩh (mh) :=
{
1, mh ∈ Ωh,

0, overwise,
χΩext

h
(mh) :=

{
1, mh ∈ Ωext

h ,

0, overwise.

Naturally, given a domain Ωh the forward and backward derivatives of the charac-
teristic function χΩh vanish everywhere except on the points of its interior and of its
middle boundaries. Likewise, the characteristic function of the exterior domain χΩext

h
has forward and backward derivatives which vanish everywhere except on the points
of the middle and of the exterior boundaries.
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For the upcomingdiscussion onboundary generators and discrete trace operators for
bounded domains, we need further classify discrete boundary layers in order to address
the direction in which the boundary is approached. Thus, we start with analysing the
interior boundary γ +

h layer, and we say that mh ∈ γ +
h is relevant in the j-direction

whenever ∂± j
h χΩh (mh) �= 0.Thepoints for relevant directions are defined analogously

for the middle and exterior boundary layers. This classification suggests splitting of
the layers of the discrete boundaries into two parts γ

(·)
h, j;0 and γ

(·)
h, j;1 in each relevant

direction j to the forward and backward difference operators, where (·) = {+, ∗,−}.
The splitting is illustrated as follows:

· · · · · · ·
Ωh︷ ︸︸ ︷◦ ◦ ◦ ◦ ◦ · · · · · · · j-direction

· · · · · − ∗ + ◦ ◦ ◦ + ∗ − · · · · · j-direction

γ +
h, j;1

γ ∗
h, j;1

γ −
h, j;1γ −

h, j;0

γ ∗
h, j;0

γ +
h, j;0

Now, the three-layer boundary introduced in Definition 2 can be characterised by help
of backward and forward difference operators acting on the characteristic functions
χΩh and χΩext

h
as the following lemma states:

Lemma 1 The parts of the three-layer boundary γh, namely γ +
h , γ ∗

h and γ −
h , are given

by:

– for the interior boundary layer γ +
h it holds:

∂
− j
h χΩh (mh) =

{
1/h, mh ∈ γ +

h, j;0,
0, otherwise,

∂
+ j
h χΩh (mh) =

{−1/h, mh ∈ γ +
h, j;1,

0, otherwise;

– for the middle boundary layer γ ∗
h it holds:

∂
+ j
h χΩh (mh) =

{
1/h, mh ∈ γ ∗

h, j;0,
0, otherwise,

∂
− j
h χΩh (mh) =

{−1/h, mh ∈ γ ∗
h, j;1,

0, otherwise;

– for the exterior boundary layer γ −
h it holds:

∂
− j
h χΩext

h
(mh) =

{
1/h, mh ∈ γ −

h, j;1,
0, otherwise,
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∂
+ j
h χΩh (mh) =

{−1/h, mh ∈ γ −
h, j;0,

0, otherwise.

In the sequel we will work with functions defined on discrete lattices. More-
over, we need to introduce a convergence condition for the series appearing in the
upcoming sections, which is for a discrete function f implies belonging to the space
l p(Ωh,Cn), 1 ≤ p < ∞.

Since our aim is to introduce a discrete Dirac operator factorising the star-
Laplacian Δh , we follow the ideas from [2,10], and we split each basis element
ek, k = 1, 2, . . . , n, into two basis elements e+

k and e−
k , k = 1, 2, . . . , n, i.e.,

ek = e+
k + e−

k , corresponding to the forward and backward directions. Among dif-
ferent possibilities to chose such a basis, see for example [3,9,12], we choose the one
satisfying the following relations:

⎧
⎪⎨

⎪⎩

e−
j e−

k + e−
k e−

j = 0,
e+

j e+
k + e+

k e+
j = 0,

e+
j e−

k + e−
k e+

j = −δ jk,

where δ jk is the Kronecker delta. When allowing for complex coefficients, the basis
elements {e1, e2, . . . , en} generate the complexified Clifford algebraCn = C⊗RR0,n .
In the sequel, we consider functions defined on Ωh ⊂ hZn and taking values in Cn .
As usual, all important properties such as, l p-summability (1 ≤ p < ∞), are defined
component-wisely.

By help of the finite difference operator and the splitting of basis elements, the
discrete Dirac operator D+− : l p(Ωh,Cn) → l p(Ωh,Cn) and its adjoint operator
D−+ : l p(Ωh,Cn) → l p(Ωh,Cn) are defined by

D+−
h :=

n∑

j=1

e+
j ∂

+ j
h + e−

j ∂
− j
h , D−+

h :=
n∑

j=1

e+
j ∂

− j
h + e−

j ∂
+ j
h .

Therefore, the following factorisation of the star-Laplacian holds

(D+−
h )2 = (D−+

h )2 = −Δh, with Δh :=
n∑

j=1

∂
+ j
h ∂

− j
h .

2.2 Discrete Fundamental Solution

In the sequel we will need the discrete fundamental solution of the discrete Dirac
operator defined as follows:
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Definition 3 The function E−+
h : hZn → Cn is called a discrete fundamental solution

of D−+
h if it satisfies

D−+
h E−+

h (mh) = δh(mh) =
{

h−n, for mh = 0,

0, for mh �= 0,

for all grid points (mh) of hZn .

While there are several ways to construct a discrete fundamental solution, in this
paper, we follow the classical approach based on the discrete Fourier transform of
u ∈ l p (hZn,Cn) , 1 ≤ p < +∞, defined as follows

ξ �→ Fhu(ξ) =

⎧
⎪⎨

⎪⎩

∑

m∈Zn
ei〈mh,ξ〉u(mh)hn, ξ ∈ [−π

h , π
h

]n
,

0, otherwise,

where 〈mh, ξ 〉 = h
∑n

j=1 m jξ j . The inverse transform is given by F−1
h = RhF ,

where F is the (standard) continuous Fourier transform

x �→ F f (x) = 1

(2π)n

∫

Rn
e−i〈x,ξ〉 f (ξ)dξ,

applied to a function f with supp( f ) ∈ [−π
h , π

h

]n , andwhere Rh denotes its restriction
to the lattice hZn .

Additionallywe recall the known symbols for the forward and backward differences
∂

± j
h , namely ξ D± j = ∓h−1

(
1 − e∓ihξ j

)
, as well as the symbol for the star-Laplacian,

i.e., Fh(Δhu)(ξ) = d2Fhu(ξ), where

d2 = 4

h2

n∑

j=1

sin2
(

ξ j h

2

)
.

Therefore, we have Fh(D−+
h u)(ξ) =

(∑n
j=1 e+

j ξ D− j + e−
j ξ D+ j

)
Fhu(ξ) so that D−+

has symbol ξ̃− =∑n
j=1 e+

j ξ D− j +e−
j ξ D+ j . Thus, the fundamental solution E−+ is given

by

E−+
h = RhF

(
ξ̃−
d2

)
=

n∑

j=1

e+
j RhF

(
ξ D− j

d2

)

+ e−
j RhF

(
ξ D+ j

d2

)

. (1)
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Remark 2 Considering that the symbol of the discrete operator D+−
h is given by ξ̃+ =∑n

j=1 e+
j ξ D+ j + e−

j ξ D− j , its fundamental solution E+−
h can be calculated as follows

E+−
h = RhF

(
ξ̃+
d2

)
=

n∑

j=1

e+
j RhF

(
ξ D+ j

d2

)

+ e−
j RhF

(
ξ D− j

d2

)

.

Finally, for the results related to convergence analysis we will need the following
fundamental lemma [4]:

Lemma 2 Let E be the fundamental solution to the continuous Dirac operator in R
n.

For any point mh ∈ hZn, with m �= 0, there exists a constant C independent on h,
such that

|E−+
h (mh) − E(mh)| ≤ C

h

|mh|n .

We recall the following lemma without proof:

Lemma 3 [4] The fundamental solution E−+ satisfies:

(i) D−+
h E−+

h (mh) = δh(mh), mh ∈ hZn;
(ii) E−+

h ∈ l p(Zn,Cn), for p > 3
2 .

3 Discrete Stokes, Borel–Pompeiu and Cauchy Formulae

3.1 Discrete Stokes’ Formula for Bounded Domains

In this section we present the discrete Stokes’ formula for bounded domains in hZn .
The discrete Stokes’ formula will be used as a basis for introducing the discrete Borel–
Pompeiu formula in Sect. 3.2. At first, we present a generic Stokes’ formula in hZn

and after that, we specify the generic formula by presenting formulae for a bounded
domain and its exterior domain. To keep the presentation short, the proof of the discrete
Stokes’ formula is omitted.

Theorem 1 (See [4], Theorem 2.10) We have

∑

mh∈hZn

[
(gD−+

h )(mh) f (mh) + g(mh)
(
D+−

h f (mh)
)]

hn = 0, ∀ mh ∈ hZn (2)

for all functions f , g such that the series converge.

Wewish to specify the generic Stokes’ formulae for a bounded domain and its exterior
domain (we recall, the interior of its complementary domain and, hence, an unbounded
domain). For that effect, we consider the auxiliar characteristic functions, χΩh and
χΩext

h
.
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Theorem 2 (See also [6]) The discrete Stokes’ formula for an arbitrary domain Ωh ⊂
hZn is given by

∑

mh∈hZn

[
(gD−+

h )(mh) f (mh) + g(mh)(D+−
h f )(mh)

]
χΩh (mh)hn

= −
∑

mh∈hZn

n∑

j=1

[(
∂

j,−
h χΩh

)
((m + e j )h)g(mh)e+

j f ((m + e j )h)

+
(
∂

j,+
h χΩh

)
(mh)g((m + e j )h)e−

j f (mh)
]

hn

for all discrete functions f and g such that the series converge, and where χΩh denotes
the characteristic function of the domain.

Proof We present the general layout of the proof. By replacing g by gχΩh in (2), and
the use of the Leibniz rule (see [6])

∂
j,+

h (gχΩh )(mh) =
(
∂

j,+
h g(mh)

)
χΩh (mh) + g((m + e j )h)

(
∂

j,+
h χΩh (mh)

)
,

∂
j,−

h (gχΩh )(mh) =
(
∂

j,−
h g(mh)

)
χΩh (mh) + g((m − e j )h)

(
∂

j,−
h χΩh (mh)

)
,

we obtain directly that (recall that χΩh is a real-valued function)

0 =
∑

mh∈hZn

[
((gχΩh )D−+

h )(mh) f (mh) + g(mh)χΩh (mh)(D+−
h f )(mh)

]
hn

=
∑

mh∈hZn

[
((gD−+

h )(mh) f (mh) + g(mh)(D+−
h f )(mh)

]
χΩh (mh)hn

+
∑

mh∈hZn

n∑

j=1

[(
∂

j,−
h χΩh

)
(mh)g((m − e j )h)e+

j f (mh)

+
(
∂

j,+
h χΩh

)
(mh)g((m + e j )h)e−

j f (mh)
]

hn

=
∑

mh∈hZn

[
((gD−+

h )(mh) f (mh) + g(mh)(D+−
h f )(mh)

]
χΩh (mh)hn

+
∑

mh∈hZn

n∑

j=1

[(
∂

j,−
h χΩh

)
((m + e j )h)g(mh)e+

j f ((m + e j )h)

+
(
∂

j,+
h χΩh

)
(mh)g((m + e j )h)e−

j f (mh)
]

hn .

��
The backward and forward derivatives ofχΩh are known at the points of the interior and
middle boundaries, and vanish otherwise (see Lemma 1). Furthermore, the relations

mh − ei h ∈ γ +
h,i;1 ⇔ mh ∈ γ ∗

h,i;1, mh ∈ γ +
h,i;0 ⇔ mh − ei h ∈ γ ∗

h,i;0,
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allow us to express these sums in terms of points of the middle boundary γ ∗
h alone.

Hence, we obtain the discrete Stokes’ formula for an arbitrary domain Ωh .

Theorem 3 Let Ω ⊂ R
n be an arbitrary simply connected and bounded domain, and

let Ωh ⊂ hZn be its discrete version with lattice constant h. Then it holds

∑

mh∈hZn

[
(gD−+

h )(mh) f (mh) + g(mh)(D+−
h f )(mh)

]
χΩh (mh)hn

=
n∑

i=1

⎛

⎜
⎝−

∑

mh∈γ ∗
h,i;0

[
g(mh)e+

i f (mh + ei h) + g(mh + ei h)e−
i f (mh)

]
hn−1

+
∑

mh∈γ ∗
h,i;1

[
g(mh − ei h)e+

i f (mh) + g(mh)e−
i f (mh − ei h)

]
hn−1

⎞

⎟
⎠

for all discrete functions f and g such that the series converge, and where χΩh is the
characteristic function of the discrete domain.

Similar considerations with respect to the exterior domain Ωext
h = int(Ωc

h) lead to
the following formula.

Theorem 4 Let Ωext
h be the discrete exterior domain associated to Ωh (as defined in

Theorem 3). Then it holds

∑

mh∈hZn

[
(gD−+

h )(mh) f (mh) + g(mh)(D+−
h f )(mh)

]
χΩext

h
(mh)hn

=
n∑

i=1

⎛

⎜
⎝

∑

mh∈γ ∗
h,i;0

[
g(mh − ei h)e+

i f (mh) + g(mh)e−
i f (mh − ei h)

]
hn−1

−
∑

mh∈γ ∗
h,i;1

[
g(mh)e+

i f (mh + ei h) + g(mh + ei h)e−
i f (mh)

]
hn−1

⎞

⎟
⎠

for all discrete functions f and g such that the series converge, and where χΩext
h

is
the characteristic function of the discrete domain.

As in the previous case, both the interior boundary of Ωext
h (which corresponds to

the exterior boundary γ −
h of Ωh) and its middle boundary γ ∗

h are involved, because
the following relations hold

mh ∈ γ −
h,i;0 ⇔ mh + ei h ∈ γ ∗

h,i;0, mh + ei h ∈ γ −
h,i;1 ⇔ mh ∈ γ ∗

h,i;1.
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3.2 Borel–Pompeiu and Cauchy Formulae for Bounded Domains

By help of the discrete Stokes’ formula introduced in Sect. 3.1 the discrete Borel–
Pompeiu and Cauchy formulae can be established. We reinforce that, although all
formulas are written in terms of the middle boundary γ ∗

h , they, in fact, depend on the
double boundary γh = γ +

h ∪γ ∗
h (or γh = γ ∗

h ∪γ −
h in the case of the exterior domain).

We have the following theorem:

Theorem 5 Given an arbitrary simply connected domain Ω ⊂ R
n, let Ωh be its

associated discrete domain with the lattice constant h, and let Ωext
h be its associated

exterior domain. Then the discrete Borel–Pompeiu formula for Ωh is given by

∑

rh∈hZn

E−+
h

(
(r − m)h

)
(D+−

h f )(rh)χΩh (rh)hn

+
n∑

i=1

⎛

⎜
⎝−

∑

rh∈γ ∗
h,i;0

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

+
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f (rh − ei h)
]

hn−1

⎞

⎟
⎠ =

{
0, if mh /∈ Ωh ∪ γ ∗

h ,

− f (mh), if mh ∈ Ωh ∪ γ ∗
h ,

for any discrete function f such that the series converge, and where E−+
h is the discrete

fundamental solution to operator D−+
h and χΩh is the characteristic function of the

discrete domain.
Furthermore, the discrete Borel–Pompeiu formula for its associated exterior

domain Ωext
h is given by

∑

rh∈hZn

[
E−+

h ((r − m)h) (D+−
h f )(rh)

]
χΩext

h
(rh)hn

+
n∑

i=1

⎛

⎜
⎝−

∑

rh∈γ ∗
h,i;0

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f
(
(r − ei )h

)]
hn−1

+
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

⎞

⎟
⎠ =

{
0, if mh /∈ Ωext

h ∪ γ ∗
h ,

− f (mh), if mh ∈ Ωext
h ∪ γ ∗

h ,
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for any discrete function f such that the series converge, and where χΩext
h

is the
characteristic function of the exterior discrete domain.

Proof The proof of this theorem is essentially based on the use of the discrete Stokes’s
formula (2). We substitute g by E−+

h (· − mh) in the discrete Stokes’s. Considering
that mh ∈ Ωh and using the known properties of the discrete fundamental solu-
tion

[
E−+

h

(
(· − m)h

)
D−+

h

]
(rh) = 0, r �= m and

[
E−+

h

(
(· − m)h

)
D−+

h

]
(rh) =

h−n, r = m, the discrete Borel–Pompeiu formula follows immediately. ��
Similar to the continuous case, the discrete Cauchy formula can be obtained

immediately from the discrete Borel–Pompeiu formula if a function f is a discrete
left-monogenic function. Thus, we have the following theorem:

Theorem 6 Let f be a discrete left monogenic function with respect to operator D+−
h ,

and let E−+
h be the discrete fundamental solution to operator D−+

h . Then the (interior
and exterior) discrete Cauchy formulae for an arbitrary domain Ωh ⊂ hZn are given
by

n∑

i=1

⎛

⎜
⎝−

∑

rh∈γ ∗
h,i;0

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

+
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f (rh − ei h)
]

hn−1

⎞

⎟
⎠ =

{
0, if mh /∈ Ωh ∪ γ ∗

h ,

− f (mh), if mh ∈ Ωh ∪ γ ∗
h ,

and

n∑

i=1

⎛

⎜
⎝−

∑

rh∈γ ∗
h,i;0

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f
(
(r − ei )h

)]
hn−1

+
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

⎞

⎟
⎠ =

{
0, if mh /∈ Ωext

h ∪ γ ∗
h ,

− f (mh), if mh ∈ Ωext
h ∪ γ ∗

h ,

which hold for any discrete function f such that the series converge.

The discrete (interior and exterior) Cauchy transforms are a direct consequence of
Theorem 6, and they are introduced by the following definition:
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Definition 4 Let us consider discrete bounded domain Ωh , with the lattice constant
h > 0. Then for a discrete l p-function f , 1 ≤ p < +∞, defined on the boundary
layers γ +

h and γ ∗
h the discrete interior Cauchy transform is defined by

C+[ f ](mh) =
n∑

i=1

⎛

⎜
⎝

∑

mh∈γ ∗
h,i;0

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

−
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f (rh − ei h)
]

hn−1

⎞

⎟
⎠ . (3)

Likewise, if the discrete l p-function f , 1 ≤ p < +∞, is defined on the boundary
layers γ ∗

h and γ −
h then its discrete exterior Cauchy transform is defined by

C−[ f ](mh) =
n∑

i=1

⎛

⎜
⎝
∑

rh∈γ ∗
h,i;0

[
E−+

h

(
(r − ei − m)h

)
e+

i f (rh)

+ E−+
h

(
(r − m)h

)
e−

i f
(
(r − ei )h

)]
hn−1

−
∑

rh∈γ ∗
h,i;1

[
E−+

h

(
(r − m)h

)
e+

i f
(
(r + ei )h

)

+ E−+
h

(
(r + ei − m)h

)
e−

i f (rh)
]

hn−1

⎞

⎟
⎠ . (4)

These formulae hold for any discrete function f such that the series converge.

Both formulae (3) and (4) can be written as

C±[ f ](mh) :=
∑

rh∈Rn
h

n∑

j=1

(
e∓ j∂

± j
h χ(·)(rh)

)
f
(
(r ± e j )h

)

× E−+
h ((r − m)h) hn,

(5)

whereas χ(·) denotes the correspondent characteristic function at the domain Ω or its
associated exterior domain Ωext .

The discrete Cauchy formula, similar to the continuous case, states clearly the
dependence of a discrete left-monogenic function on its boundary values.Wefinish this
section by the theorem stating important properties of the discrete Cauchy transform:
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Theorem 7 Let us consider a discrete bounded domain Ωh and its associated discrete
exterior domain Ωext

h , together with the three boundary layers γ +
h , γ ∗

h , and γ −
h .

Moreover, let us introduce the sets Γ +
h := γ +

h ∪ γ ∗
h and Γ −

h := γ ∗
h ∪ γ −

h . Then the
discrete Cauchy transforms (5) satisfy the following properties:

(i) The interior and exterior Cauchy transforms have the following mapping prop-
erties:

C+ : l p(Γ +
h ,Cn−1) → lq(Ωh,Cn), 1 ≤ p, q ≤ ∞,

C− : l p(Γ −
h ,Cn−1) → lq(Ωext

h ,Cn), 1 ≤ p < ∞,
3

2
< q < ∞.

(ii) D+−
h C+[ f ](mh) = 0, ∀ mh ∈ Ωh\γ +

h .
(iii) D+−

h C−[ f ](mh) = 0, ∀ mh ∈ Ωext
h \γ −

h .

Proof The proof of this theorem is straightforward. The first property is proved by
a direct application of Hölder’s inequality and using the properties of the discrete
fundamental solution. Applying the discrete operator D+−

h to the discrete Cauchy
transform, and considering the properties:

∂
+ j
h

(
E−+

h ((· − m)h)
) = −(∂

− j
h E−+)(· − m),

∂
− j
h

(
E−+

h ((· − m)h)
) = −(∂

+ j
h E−+)(· − m),

the second property is proved. The proof of the third property is analogue to the second.
��

4 Boundary Values of Discrete Monogenic Functions and Relations to
Discrete Riemann–Hilbert Problems

To keep the presentation short, we will present only the operator form of equations
in all upcoming discussions. The discrete Cauchy formula presented in Theorem 6
provides an additional condition specifying if a function given on the discrete boundary
Γ +

h = γ +
h ∪ γ ∗

h or Γ −
h = γ −

h ∪ γ ∗
h represents boundary values of a discrete left-

monogenic function in Ωh or Ωext
h , correspondingly. Therefore, we have two sets of

conditions:

C+ f (mh) =
{

f (mh), for all mh ∈ Ωh,

0, otherwise,
(6)

for the interior domain, and

C− f (mh) =
{

f (mh), for all mh ∈ Ωext
h ,

0, otherwise,
(7)

for the exterior domain.
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In the sequel, we will sometimes need explicitly the n-th component of elements
in R

n or in Z
n , or, more generally, n-th component of an arbitrary element of n-

dimensional space. In these cases we will use such notations as ξ = (ξ , ξn) ∈ R
n ,

m = (m, mn) ∈ Z
n etc. By help of these notations, n-dimensional elements can be

represented as a sum of (n − 1)-dimensional part ξ and n-th component ξn .
Next, we want to introduce discrete Plemelj (or Hardy) projections, which require

at first definition of discrete Riesz kernels (convolution kernels). To defining properly
the discrete Riesz kernels, behaviour of the discrete fundamental solution E−+

h on
boundary layers needs to be studied, as it has been done in [4] for the case of a
half-space. Recalling that the discrete fundamental solution is given by (1),

E−+
h (mh) = RhF

(
ξ̃−
d2

)
= 1

(2π)n

∫

[− π
h , π

h

]n
e−ih〈m,ξ〉 ξ̃−

d2 dξ,

where ξ̃− := ∑n
j=1

(
e+

j
1−eihξ j

h + e−
j

e−ihξ j −1
h

)
, we need to study the Fourier sym-

bols on the boundary layer. Thus we apply the (n − 1)-dimensional discrete Fourier
transform to the discrete fundamental solution:

F (n−1)
h E−+

h (η, mnh)

=
∑

mh∈hZn−1

e−ih〈m,η〉
[

1

(2π)n

∫

[− π
h , π

h

]n
e−ih〈m,ξ〉 ξ̃−

d2 dξ

]

= 1

(2π)n−1

∫

[− π
h , π

h

]n−1

∑

mh∈hZn−1

e−ih〈m,η−ξ 〉
[

1

2π

∫ π
h

− π
h

e−ihmnξn
ξ̃−
d2 dξn

︸ ︷︷ ︸
(I )

]
dξ .

Under the above introduced convention, we can represent the integral (I ) as follows

(I ) = 1

2π

∫ π
h

− π
h

e−ihmnξn
ξ̃−
d2 dξn = 1

2π

∫ π
h

− π
h

e−ihmnξn
ξ̃− + ξ̃−,n

d2 + 4
h2

sin2
(

hξn
2

)dξn

= 1

2π

∫ π
2

− π
2

e−i2tmn
ξ̃− + e+

j
1−e2i t

h + e−
j

e−2i t −1
h

d2 + 4
h2

sin2 (t)

h

2
dt

= 1

4π
hξ̃−

∫ π
2

− π
2

e−i2tmn

d2 + 4
h2

sin2 (t)
dt

+ 1

4π

∫ π
2

− π
2

e−i2tmn
e+

j (1 − e2i t ) + e−
j (e−2i t − 1)

d2 + 4
h2

sin2 (t)
dt
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= 1

4π
hξ̃−

∫ π
2

− π
2

e−i2tmn

d2 + 4
h2

sin2 (t)
dt + 1

4π
(e+

j − e−
j )

∫ π
2

− π
2

e−i2tmn

d2 + 4
h2

sin2 (t)
dt

− 1

4π
e+

j

∫ π
2

− π
2

e−i2t(mn−1)

d2 + 4
h2

sin2 (t)
dt + 1

4π
e−

j

∫ π
2

− π
2

e−i2t(mn+1)

d2 + 4
h2

sin2 (t)
dt,

where the change of variable t = hξn
2 has been used. We concentrate our attention on

the first of these integrals. Since we consider the general case of bounded domains in
Ωh ⊂ hZn , the exact position of boundaries depends on a specific discrete domainΩh ,
and therefore, we have to keep construction general to cover all possible situations.
Thus, we need to distinguish several cases for mn , which will be denoted as k for
shortening:

– Case of k = 0 has been considered in [4], therefore we do not discuss it here.
– For |k| ≥ 1 we obtain

∫ π
2

− π
2

e−i2tk 1

d2 + 4
h2

sin2 (t)
dt = h2

∫ π
2

− π
2

e−i2tk

h2d2 + 4 sin2 (t)
dt

= h2

2

∫

|z|=1

z−2k

h2d2 − (z − z)2
dz

i z

= h2

2i

∫

|z|=1

dz

z2k+1

[
h2d2 −

(
z − 1

z

)2]

= h2

2i

∫

|z|=1

dz

z2k+1

[
h2d2 −

(
z − 1

z

)2]

= −h2

2i

∫

|z|=1

dz

z2k−1
[(

z2 − 1
)2 − h2d2z2

] .

Further, if k ≥ 1, then the polynomial in the denominator has 5 distinct zeros,
namely

{
z0 = 0 of multiplicity 2k − 1;
z±,± = ± hd

2 ± 1
2

√
h2d2 + 4 each of multiplicity 1.

Of these, z+,+, z−,− lie outside the circle |z| = 1 while z+,−, z−,+ lie inside the
circle |z| = 1. Therefore, we have

∫ π
2

− π
2

e−i2tk 1

d2 + 4
h2

sin2 (t)
dt = −h2

2i

∫ π
2

− π
2

dz

z2k−1
[(

z2 − 1
)2 − h2d2z2

]

= −πh2 [Res(z0) + Res(z+,−) + Res(z−,+)
]
,
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where the first term is computed by the Faà di Bruno’s formula

Res(z0) =
∂2k−2

z

[
1

z4−(2+h2d2)z2+1

]∣∣∣
z0=0

(2k − 2)!
=

∑

m2+2m4=k−1

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2 ,

and

Res(z+,−) =
(

hd

2
− 1

2

√
h2d2 + 4

)1−2k

⎡

⎢⎢
⎣

1

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)

⎤

⎥⎥
⎦ ,

Res(z−,+) =
(

−hd

2
+ 1

2

√
h2d2 + 4

)1−2k

⎡

⎢⎢
⎣

1

hd
√

h2d2 + 4

(
−hd +

√
h2d2 + 4

)

⎤

⎥⎥
⎦

= (−1)1−2k+1
(

hd

2
− 1

2

√
h2d2 + 4

)1−2k

⎡

⎢⎢
⎣

1

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)

⎤

⎥⎥
⎦

= Res(z+,−).

This leads to

∫ π
2

− π
2

e−i2tk 1

d2 + 4
h2

sin2 (t)
dt

= −πh2
∑

m2+2m4=k−1

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2

− 22kπh2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2k
.

Finally, if k ≤ −1, then z+,−, z−,+ are the only poles (of order 1), and, therefore,
we obtain
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∫ π
2

− π
2

e−i2tk 1

d2 + 4
h2

sin2 (t)
dt = −2πh2Res(z+,−)

= − 22kπh2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2k
.

To finalise our computations, we denote by

I (k) = 1

4π

∫ π
2

− π
2

e−i2tk

d2 + 4
h2

sin2 (t)
dt,

and we remark that the coefficients of e+
j and of e−

j are given, respectively, by

I (mn) − I (mn − 1), I (mn + 1) − I (mn).

Again, we remark that the case when mn = 0 is done already in [4]. Hence, we now
look into this difference when k < 0,

I (k) − I (k − 1)

= − 22k−2h2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2k

+ 22k−4h2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−2

= 22k−4h2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−2

⎡

⎢⎢⎢
⎣
1 − 22

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2

⎤

⎥⎥⎥
⎦

= 22k−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−1
.

For k > 1 this termmust be added to difference coming from the pole z0 = 0.Hereby,
we have to distinguish between the cases where k is even and k is odd. In the case of
k odd we get

I (k) − I (k − 1)

=
∑

m2+2m4=k−1

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2

−
∑

m2+2m4=k−2

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2
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+ 22k−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−1

=
∑

m2+2m4=k−2

(−1)m4

(
m2 + m4 + 1

m2 + 1

)
(2 + h2d2)m2+1

−
∑

m2+2m4=k−2

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2 + (−1)(k−1)/2

+ 22k−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−1

=
∑

m2+2m4=k−2

(−1)m4 (2 + h2d2)m2

(
m2 + m4

m2

)[
(m2 + m4 + 1)h2d2) + k − 1

m2 + 1

]

+(−1)(k−1)/2 + 22k−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−1 ,

while in the case of k even, the term (−1)(k−1)/2 will be missing, i.e.

I (k) − I (k − 1)

=
∑

m2+2m4=k−2

(−1)m4(2 + h2d2)m2

(
m2 + m4

m2

)[
m2 + m4 + 1)h2d2) + k − 1

m2 + 1

]

+ 22k−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2k−1 .

Consequently we get for the Fourier multiplier (I ) in the case of mn < 0:

(I ) = − 1

4π
hξ̃−

22mn πh2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn

+e+
j

1

4π

22mn−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn−1

+e−
j

1

4π

22mn−1h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn+1 ,

while in the case of mn > 0, mn even, we have
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(I ) = − 1

4π
hξ̃

⎛

⎜⎜⎜
⎝

πh2
∑

m2+2m4=mn−1

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2

− 22mn πh2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn

⎞

⎟⎟⎟
⎠

+e+
j

⎛

⎜⎜⎜
⎝

∑

m2+2m4=mn−2

(−1)m4 (2 + h2d2)m2

(
m2 + m4

m2

)[
(m2 + m4 + 1)h2d2) + mn − 1

m2 + 1

]

+ 22mn−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn−1 + 22mn−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn−1

⎞

⎟⎟⎟
⎠

+e−
j

1

4π

⎛

⎜⎜⎜
⎝

22mn−1h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn+1

+
∑

m2+2m4=mn−1

(−1)m4 (2 + h2d2)m2

(
m2 + m4

m2

)[
((m2 + m4 + 1)h2d2) + mn − 1

m2 + 1

]

+ 22mn−1h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn+1 + (−1)(k−1)/2

⎞

⎟⎟⎟
⎠

,

while in the case of mn > 0, mn odd, we have

(I ) = − 1

4π
hξ̃

⎛

⎜⎜⎜
⎝

πh2
∑

m2+2m4=mn−1

(−1)m4

(
m2 + m4

m2

)
(2 + h2d2)m2

− 22mn πh2

hd
√

h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn

⎞

⎟⎟⎟
⎠

+e+
j

1

4π

⎛

⎜⎜⎜
⎝

∑

m2+2m4=mn−2

(−1)m4 (2 + h2d2)m2

(
m2 + m4

m2

)

[
(m2 + m4 + 1)h2d2) + mn − 1

m2 + 1

]



Discrete Hardy Spaces for Bounded Domains in R
n Page 21 of 32     4 

+ 22mn−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn−1

+ 22mn−3h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn−1 + (−1)(k−1)/2

⎞

⎟⎟⎟
⎠

+e−
j

1

4π

⎛

⎜⎜⎜
⎝

22mn−1h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn+1

+
∑

m2+2m4=mn−1

(−1)m4 (2 + h2d2)m2

(
m2 + m4

m2

)[
(m2 + m4 + 1)h2d2) + mn − 1

m2 + 1

]

+ 22mn−1h2

√
h2d2 + 4

(
hd −

√
h2d2 + 4

)2mn+1

⎞

⎟⎟⎟
⎠

.

Now we are ready to introduce discrete version of the classical Plemelj-Sokhotski
formulae. For this we have to establish the corresponding Riesz kernels. Here in the
discrete case we will use the possibility to defined it via the corresponding Fourier
symbols on three boundary layers. For the general case of bounded domains in R

n

which is considered in this paper we can do it directly via the above calculated symbols
over the boundary layers γ −

h , γ ∗
h , and γ +

h . This approach is similar to the continu-
ous case of calculating Fourier transform along arbitrary curves, see for example [1]
and references therein. But while it is extremely useful for concrete calculations and
implementations for the theoretical part a more generic approach makes it easier to
present. Hereby, we will follow the standard one in the continuous case where the
convolution kernels of the Riesz operators are determined from their Fourier symbols
over the real line and then mapped to the corresponding curve. This results in the
discrete Riesz kernels given by

G+
i := Φ−1F (n−1)

h

⎡

⎣
ξ̃−,i

d

hd −
√
4 + h2d2

2

⎤

⎦ ,

H+
i := Φ−1F (n−1)

h

⎡

⎣
ξ̃−,i

d

⎛

⎝e+
i

hd −
√
4 + h2d2

2
+ e−

i
2

hd −
√
4 + h2d2

⎞

⎠

⎤

⎦ ,

H−
i := Φ−1F (n−1)

h

⎡

⎣
ξ̃−,i

d

⎛

⎝e+
i

2

hd −
√
4 + h2d2

+ e−
i

hd −
√
4 − h2d2

2

⎞

⎠

⎤

⎦ ,
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where F (n−1)
h denotes the (n − 1)-dimensional Fourier transform which treats the

coefficient mi h, associated with the discretisation in ei direction, as constant, while
the term ξ̃−,i

omits the basis elements e+
i , e−

i , i.e. ξ̃− = ∑n
j=1, j �=i e+

j ξ D− j + e−
j ξ D+ j ,

and Φ denotes a mapping of individual boundary parts to the real line. Considering
that in the discrete setting any geometry is a composition of hypercubes, the mappings
Φ is, in fact, a composition of rotations and translations of the uniform lattice.

Using the convolution kernels introduced above, a pair of operators can be defined:

H+ f (mh) :=
n∑

i=1

⎡

⎢
⎣
∑

rh∈γ +
i

H+
i (rh − mh) f (rh)

⎤

⎥
⎦ hn−1,

for mh ∈ γ +
h , and

H− f (mh) :=
n∑

i=1

⎡

⎢
⎣
∑

rh∈γ −
i

H−
i (rh − mh) f (rh)

⎤

⎥
⎦ hn−1,

formh ∈ γ −
h . It can be easily checked, that both operators fulfil the condition (H+)2 =

(H−)2 = I . Furthermore, conditions (6)–(7) can be reformulated using the operators
H+ and H− as follows

f (mh) = H+ f (mh), for mh ∈ γ +
h ,

f (mh) = H− f (mh), for mh ∈ γ −
h .

Thus, we can now introduce discrete Hardy space as follows:

Definition 5 The space of discrete functions f ∈ l p(γ +
h ,Cn) whose discrete (n − 1)-

dimensional Fourier transform fulfils f = H+ f on γ +
h is called the interior discrete

Hardy space, and it is denoted by h+
p (γ +

h ). Analogously, the space of discrete functions

f ∈ l p(γ −
h ,Cn) whose discrete (n − 1)-dimensional Fourier transform fulfils f =

H− f on γ −
h is called the exterior discrete Hardy space, and it is denoted by h−

p (γ −
h ).

Finally, by using the operators H+ and H−, we can introduce the Plemelj (or Hardy)
projectors

P+ := 1

2
(I + H+) and P− := 1

2
(I + H−) .

Moreover, based on the last definition, it is clear that f ∈ h+
p (γ +

h ) is equivalent to

P+ f = f ,while f ∈ h−
p (γ −

h )means P− f = f . Likewise we define the complemen-

tary projectors Q± := 1
2 (I − H±) and we say that f ∈ h±

p (γ ∓
h ) iff Q± f = f .
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Remark 3 We remark that the relation

h±
p (γ +

h ) = h∓
p (γ −

h )

holds for the dual discrete Hardy spaces w.r.t. the associated domain Ωext
h .

The next step is to introduce the so-called discrete extension and trace operators,
which have been introduced in [5] in the context of discrete Riemann–Hilbert problems
over the half space. The role of an extension operator is to recover the function values
on the discrete boundary layer γ ∗

h from its values on γ +
h , in the case of an interior

discrete Riemann–Hilbert problem, and on γ −
h in the case of the exterior problem,

respectively. We formally introduce the extension operators as follows:

Definition 6 The interior extension operator, denoted asA+, is an operator extending
a function given on the interior boundary layer γ +

h to the middle boundary layer γ ∗
h ,

i.e. it is a mapping A+ : l p(γ +
h ) → l p(γ ∗

h ) given by

A+[ f ](mh) :=
n∑

i=1

⎡

⎢
⎣
∑

rh∈γ +
i

A+
i (rh − mh) f (rh)

⎤

⎥
⎦ hn−1,

A+
i := Φ−1F (n−1)

h

⎡

⎣
ξ D

d

⎛

⎝ 2
√
4 + h2d2 − hd

⎞

⎠

⎤

⎦

withmh ∈ γ ∗. Similarly, the exterior extension operator, denoted asA−, is an operator
extending a function given on the exterior boundary layer γ −

h to the middle boundary
layer γ ∗

h , i.e. it is a mapping A− : l p(γ −
h ) → l p(γ ∗

h ), which is given by

A−[ f ](mh) :=
n∑

i=1

⎡

⎢
⎣
∑

rh∈γ −
i

A−
i (rh − mh) f (rh)

⎤

⎥
⎦ hn−1,

A−
i := Φ−1F (n−1)

h

⎡

⎣

⎛

⎝

√
4 + h2d2 + hd

√
4 + h2d2 − hd

⎞

⎠

⎤

⎦

with mh ∈ γ ∗.

As for the interior and exterior trace operators (see [5] in the context of the half space),
they play the role of recovering the values of a discrete left-monogenic function on the
boundary layerγ ∗

h from its values on the boundary layersγ +
h andγ −

h , and this bymeans
ofA+ andA−, respectively. The definition of the extension operators is kept identical
to the one presented in [5], because the extension procedure is identical and the use of
the extension operators is controlled only by normal vectors given on different parts
of a boundary of the discrete domain Ωh . Therefore, the principal difference to the
case of a half-space will only become evident in the upcoming constructions.
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Now, we can introduce the interior and exterior trace operators. For this let us recall
that mh ∈ γ ±

h,i;0 or mh ∈ γ ±
h,i;1 if ∂

± j
h χΩh (mh) �= 0 in the corresponding points (c.f.

Lemma 1). The collection of these points will be characterized by the characteristic
functions χγ ±

h,i
.

Definition 7 Let γ
(·)
h,i , i = 1, . . . , n denote the components of the three-layer dis-

crete boundary with (·) = {+, ∗,−} corresponding to the i-direction, then the trace
operators are introduced as follows:

(i) the interior trace operator acting on the i-component of the boundary in the

i-direction
(
χγ +

h
tr+
)

i
: l p(Ωh) → l p(γ +

h,i ) × l p(γ ∗
h,i ):

(
χγ +

h
tr+
)

i
[ f ] := (e−

i A+[−e+
i f +

i ], e+
i f +

i ),

for functions f ∈ l p(Ωh) where f +
i := f |γ +

h,i
. Based on this, we define the trace

operator tr+ : l p(Ωh) → l p(γ +
h ) × l p(γ ∗

h ) as:

tr+[ f ] :=
n∑

i=1

(
χγ +

h
tr+
)

i
[ f ].

(ii) the exterior trace operator acting on the i-component of the boundary in the

i-direction
(
χγ −

h
tr−
)

i
: l p(Ωext

h ) → l p(γ −
h,i ) × l p(γ ∗

h,i ) is defined by

(
χγ −

h
tr−
)

i
[ f ] := (e+

i A−[ f −
i ], e−

i f −
i ),

for functions f ∈ l p(Ωext
h ) with f −

i := f |γ −
h,i
. In a similar way, we define the

trace operator tr− : l p(Ωh) → l p(γ −
h ) × l p(γ ∗

h ) as:

tr−[ f ] :=
n∑

i=1

(
χγ −

h
tr−
)

i
[ f ].

The interior and exterior trace operators allowus to generate boundary data,which then
can bemonogenically extended by the Cauchy transform into interior or exterior of the
discrete domain Ωh . Moreover, as it is expected, a discrete version of the projection
properties of the trace operator of the discrete Cauchy transform is obtained. Thus, we
have the following corollary:

Corollary 1 The following two properties hold:

(i) if f ∈ l p(Ωh), then C+tr+
[
C+tr+( f )

] = C+tr+( f );
(ii) if f ∈ l p(Ωext

h ), then C−tr−
[
C−tr−( f )

] = C−tr−( f ).
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As the next step, we introduce interior and exterior boundary generators, which are
a speciality of the discrete setting. The interior and exterior boundary generators act
similar to the trace operators, but they act on functions which are given either on the
interior boundary layer γ +

h or on the exterior boundary layer γ −
h , respectively. Thus,

we have the following definition:

Definition 8 The boundary generators in the i-direction (i = 1, . . . , n) are introduced
as follows:

(1) the interior boundary generator in the i-direction
(
χγ +

h
G+
)

i
: l p(γ +

h,i ) →
l p(γ +

h,i ) × l p(γ ∗
h,i ):

(
χγ +

h
G+)

i
[g] := (e−

i A+[−e+
i gi ], e+

i gi )

for functions g ∈ l p(γ +
h ) with gi := g|γ +

h,i
. Then, the interior generator operator

G+ : l p(γ +
h ) → l p(γ +

h ) × l p(γ ∗
h ) is defined by:

G+[g] :=
n∑

i=1

(
χγ +

h
G+)

i
[g].

(2) the exterior boundary generator in the i-direction
(
χγ −

h
G−
)

i
: l p(γ −

h,i ) →
l p(γ −

h,i ) × l p(γ ∗
h,i ):

(
χγ −

h
G−)

i
[g] := (e+

i A−[gi ], e−
i gi )

for a discrete function g ∈ l p(γ −
h ) with gi := g|γ −

h,i
. Then, the exterior generator

operator G− : l p(γ −
h ) → l p(γ −

h ) × l p(γ ∗
h ) is given by:

G−[g] :=
n∑

i=1

(
χγ −

h
G−)

i
[g].

By the help of the above construction, the discrete Hardy projections can be charac-
terised now as follows:

Lemma 4 The discrete Hardy projections for the interior of a bounded discrete domain
Ωh and its exterior can be characterised by the following relations:

(i) P+ f (mh) = C+G+[ f |γ +
h

](mh), for all mh ∈ γ +
h ;

(ii) P− f (mh) = C−G−[ f |γ −
h

](mh), for all mh ∈ γ −
h .

Proof At first, we construct the proof for the interior case, while the exterior case
can be proved analogously via a correct interchanging of interior and exterior setting-
related objects. Let us consider a function f := C+tr+[g], where g ∈ l p(Ωh). The
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function f + = f |γ +
h
(the restriction of f to the interior boundary layer) satisfies the

relation e+
i g+

i = e+
i f +

i , where g+
i = g|γ +

h,i
in all directions i . Applying the boundary

generator
(
χγ +

h
G+
)

i
to f +

i we obtain

(
χγ +

h
G+)

i
[ f +

i ] = (e−
i A+[−e+

i f +
i ], e+

i f +
i ) =

(
χγ +

h
G+)

i
[g+

i ] =
(
χγ +

h
tr+
)

i
[g],

for i = 1, . . . , n. Therefore,

C+G+[ f |γ +
h

] = C+tr+[g] = C+tr+
[
C+tr+[g]] = [C+tr+

]2 [g],

implying that C+G+ is a projector. Thus, we can identify

C+tr+[g] = C+G+[ f |γ +
h

] = P+[ f ].

The same proof holds for the exterior case. ��

4.1 Classic Hilbert Problems for Discrete Monogenic Functions

In this section, we consider the classic Hilbert problems of reconstructing a discrete
monogenic function in the interior of domain Ωh from its boundary data:
Problem I. Given g ∈ l p(γ ∗

h ), find f : Ωh → Cn such that

{
D+−

h f (mh) = 0, for mh ∈ Ωh,

f (rh) = g(rh), for rh ∈ γ +
h .

(8)

The solution of this problem is given by the following theorem:

Theorem 8 The discrete boundary value problem (8) has a unique solution iff the
boundary data g is in h+

p (γ +
h ), and the solution is given by

f (mh) = C+G+[g](mh), mh ∈ Ωh .

Proof The condition g ∈ h+
p (γ +

h ) comes naturally, since if a function g does not belong

to h+
p (γ +

h ), then no discretemonogenic function f exists satisfying the given boundary

condition on γ +
h . Thus, g ∈ h+

p (γ +
h ) is a necessary condition for the existence of a

solution to problem (8).
Next step of the proof is to show that a solution exists in the case of g ∈ h+

p (γ +
h ).

Applying boundary generator to g and by using properties of the discrete Cauchy
transform,we get that f = C+G+[g] is a discretemonogenic function inΩh satisfying
boundary conditions f (rh) = g(rh) for rh ∈ γ +

h . The uniqueness of solution is
guaranteed by the discrete maximum principle, see [4] for the details. ��
Analogously we get similar result for the exterior Hilbert problem:
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Corollary 2 The discrete exterior Hilbert boundary value problem has a unique solu-
tion iff the boundary data g is in h−

p (γ −
h ), and the solution is given by

f (mh) = C−G−[g](mh), mh ∈ Ωext
h .

Discrete Hilbert boundary value problems with jump relations, similar to the one
presented in [5], can also be formulated for discrete bounded domains. Formulation
of jump problems requires a notion of normal vectors for each part of a boundary
layer γ ∗

h , and the direction of these normal vectors depends on if the boundary layer
is passed from interior to exterior, or the opposite. Taking into account that in the
discrete setting we have as normal vectors −e±

i in the case of γh,i;0 and e±
i in the case

of γh,i;1 we can use the usual decomposition in terms of the coordinate directions. We
start with the classical jump problem for discrete monogenic functions:
Problem II. Given g ∈ l p(γ ∗

h ), find f : hZn → Cn such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+−
h f (mh) = 0, for mh ∈ hZn\γ ∗

h ,
n∑

i=1

(
χγh,i;0(rh)(e+

i f+(rh) − e−
i f−(rh))

+χγh,i;1(rh)(−e+
i f+(rh) + e−

i f−(rh))
)

=
n∑

i=1

(
χγh,i;0(rh)ei g(rh) − χγh,i;1(rh)ei g(rh)

)
, for rh ∈ γ ∗

h .

(9)

Solvability of this problem is stated by the following theorem:

Theorem 9 The discrete boundary value problem (9) has a unique solution for arbi-
trary boundary data g ∈ l p(γ ∗

h with 1 ≤ p < n, and the solution is given by

f (mh) =
{

C+G+[g+](mh), mh ∈ Ωh,

C−G−[g−](mh), mh ∈ Ωext
h .

where

g+ =
n∑

i=1

(χγh,i;0 − χγh,i;1)e
−
i (g1

i + e−
i g3

i ),

g− =
n∑

i=1

(χγh,i;0 − χγh,i;1)e
+
i (g1

i − g4
i + e+

i g2
i ),

with g1
i , g2

i , g3
i , g4

i being the component functions with respect to the decomposition
Cn = Cn−1 + e+

i Cn−1 + e−
i Cn−1 + e+

i e−
i Cn−1.

Proof First of all, let us remark that we can always decompose a Clifford-valued
function g = g1

i + e+
i g2

i + e−
i g3

i + e+
i e−

i g4
i with respect to any basis elements e+

i
and e−

i . Obviously, the component functions g1
i , g2

i , g3
i , g4

i depend on the particular
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choice of i . Furthermore, since all ei are invertible our boundary data can be written
as

n∑

i=1

(
χγh,i;0ei g − χγh,i;1ei g

)

=
n∑

i=1

(
χγh,i;0(e

+
i (g1

i + e−
i g3

i ) + e−
i (g1

i + e+
i g2

i − g4
i ))

−χγh,i;1(e
+
i (g1

i + e−
i g3

i ) + e−
i (g1

i + e+
i g2

i − g4
i ))
)

=:
n∑

i=1

(
(χγh,i;0 − χγh,i;1)e

−
i g+

i + (χγh,i;0 − χγh,i;1)e
+
i g−

i

)
.

Let us remark while in the last line it looks like we only have a difference but due to
the property of the characteristic functions it is in fact only a fixing of the signal over
the corresponding points.

From the above relation we get for the first component of the upper and lower trace
of f in the i-direction the decomposition

χγh,i; j e
−
i f + = χγh,i; j e

−
i g+

i , χγh,i; j e
+
i f − = −χγh,i; j e

+
i g−

i

for j = 0, 1. This means that in the direction i the traces of f +, f − coincide with(
χγh; j G

+)
i
(g+

i ) and
(
χγh; j G

−)
i
(g−

i ) for the parts of the boundary with j = 0, 1,
respectively. Summing up over i and j this allows us to consider the function:

f (mh) =
{

C+G+[g+](mh), mh ∈ Ωh,

C−G−[−g−](mh), mh ∈ Ωext
h .

which satisfies the discrete boundary value problem under consideration. ��
Next we consider the boundary value problem relating values on boundary layers γ +

h
and γ −

h , which is unique for the discrete setting due to three-layer structure of the
discrete boundary:
Problem III. Given g ∈ l p(γ ∗

h ), find f : Rn
h → Cn such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D+−
h f (mh) = 0, for mh ∈ hZn\γ ∗

h ,
n∑

i=1

(
χγ ∗

h,i;0e−
i A+

i f − χγ ∗
h,i;0e+

i A−
i f − χγ ∗

h,i;1e−
i A+

i f + χγ ∗
h,i;1e+

i A−
i f
)

=
n∑

i=1

χγ ∗
h,i;0g − χγ ∗

h,i;1g, on γ ∗
h .

(10)

We have the following theorem:
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Theorem 10 The discrete boundary value problem (10) has a unique solution for
arbitrary boundary data g ∈ l p(γ ∗

h ) with 1 ≤ p < n, and the solution is given by

f (mh) =
{

C+ [g+, g++] (mh), mh ∈ Ωh,

C− [g−, g−−] (mh), mh ∈ Ωext
h ,

with

g+ =
n∑

i=1

(
χγ ∗

h,i;0e+
i ei g − χγ ∗

h,i;1e+
i ei g

)
,

g++ =
n∑

i=1

(
χγ +

h,i;0
e−

i (A+
i )−1(ei g) − χγ +

h,i;1
e−

i (A+
i )−1(ei g)

)
,

g− =
n∑

i=1

(
χγ ∗

h,i;0e−
i ei g − χγ ∗

h,i;1e−
i ei g

)
,

g−− =
n∑

i=1

(
χγ −

h,i;0
e+

i (A−
i )−1(ei g) − χγ −

h,i;1
e+

i (A−
i )−1(ei g)

)
.

Proof Let us take a closer look at the boundary condition

χγ ∗
h,i;0e−

i A+
i f − χγ ∗

h,i;0e+
i A−

i f = χγ ∗
h,i;0g.

Because of e2i = −1, this boundary condition can be rewritten as follows

χγ ∗
h,i;0e−

i A+
i f − χγ ∗

h,i;0e+
i A−

i f = χγh,i;0(−e2i g) = χγh,i;0(e
+
i (−ei g) + e−

i (−ei g)).

Since the operators A±
i are invertible, we immediately get

χγ −
h,i;0

e+
i f = χγ −

h,i;0
e+

i (A−
i )−1(ei g) and χγ +

h,i;0
e−

i f = χγ +
h,i;0

e−
i (A+

i )−1(ei g).

Finally, application of the Cauchy transform leads to the claim of the theorem. ��

It is important to remark, that formulation of Problem III is possible only for a
fixed h (although it can be arbitrary small), and for h → 0 it reduces to Problem II,
as expected.

Finally, we consider a more general problem:
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Problem IV. Given g ∈ l p(γ ∗
h ) and a constant κ ∈ Cn with a right inverse κ−1

r , find
f : hZn → Cn such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D+−
h f (mh) = 0, for mh ∈ hZn\γ ∗

h ,
n∑

i=1

(
χγ ∗

h,i;0e−
i A+

i f − χγ ∗
h,i;0e+

i A−
i f κ − χγ ∗

h,i;1e−
i A+

i f + χγ ∗
h,i;1e+

i A−
i f κ

)

=
n∑

i=1

χγ ∗
h,i;0g − χγ ∗

h,i;1g, on γ ∗
h .

(11)

Problem (11) is a particular case of a general Riemann–Hilbert problem, see for exam-
ple [21] for details. Considering Theorem 10, the solvability of Problem IV can be
easily obtained, and it is provided by the following theorem:

Theorem 11 The discrete boundary value problem (11) has a unique solution for
arbitrary boundary data g ∈ l p(γ ∗

h ) with 1 ≤ p < n, and a constant κ ∈ Cn with a
right inverse κ−1

r , and the solution is given by

f (mh) =
{

C+ [g+, g++] (mh), mh ∈ Ωh,

C− [g−, g−−κ
]
(mh), mh ∈ Ωext

h ,

with

g+ =
n∑

i=1

(
χγ ∗

h,i;0e+
i ei g − χγ ∗

h,i;1e+
i ei g

)
,

g++ =
n∑

i=1

(
χγ +

h,i;0
e−

i (A+
i )−1(ei g) − χγ +

h,i;1
e−

i (A+
i )−1(ei g)

)
,

g− =
n∑

i=1

(
χγ ∗

h,i;0e−
i ei g − χγ ∗

h,i;1e−
i ei g

)
,

g−− =
n∑

i=1

(
χγ −

h,i;0
e+

i (A−
i )−1(ei g) − χγ −

h,i;1
e+

i (A−
i )−1(ei g)

)
.

5 Summary

In this paper we have presented the extension of the boundary value theory of dis-
crete monogenic functions to arbitrary bounded domains in R

n . Especially, all the
constructions on the discrete level are provided for more general types of domain,
than considered in previous works, i.e. cuboids. Moreover, a general characterisation
of discrete geometry in higher-dimensional case has been shown allowing compact
presentations of discrete Stokes’, Borel–Pompeiu, and Cauchy formulae. By help of
explicit calculations of the discrete Fourier transform on boundary layers, general
formulae for discrete Riesz kernels could be obtained. Finally, the discrete operators
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introduced in this paper have been used to discuss solvability of several discreteHilbert
problems.
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