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Abstract
The Higgs boson couplings to bottom and top quarks have been measured and agree well with the
Standard Model predictions. Decays to lighter quarks and gluons, however, remain elusive.
Observing these decays is essential to complete the picture of the Higgs boson interactions. In this
work, we present the perspectives for the 14 TeV LHC to observe the Higgs boson decay to gluon
jets assembling convolutional neural networks, trained to recognize abstract jet images constructed
embodying particle flow information, and boosted decision trees with kinetic information from
Higgs-strahlung ZH→ ℓ+ℓ−+ gg events. We show that this approach might be able to observe
Higgs to gluon decays with a significance of around 2.4σ improving significantly previous
prospects based on cut-and-count analysis. An upper bound of BR(H→ gg)≤1.74×BRSM

(H→ gg) at 95% confidence level after 3000 fb−1 of data is obtained using these machine learning
techniques.

1. Introduction

The Standard Model (SM) Higgs boson established the spontaneous electroweak symmetry breaking
(EWSB) mechanism as the one responsible for giving the particles their masses at the same time that it
preserves the gauge symmetry of the SM interactions [1–5]. The immediate consequence of the EWSB
mechanism is that the Higgs boson interactions scale with the particles massesm as m

v , where v∼ 246 GeV is
the vacuum expectation value of the Higgs field. Thus, interactions with heavier particles are likely to be
observed first and that expectation has been fulfilled in the LHC where Higgs bosons H interacting with
W, Z, b, τ and t have already been observed [6].

The couplings to heavy particles also permit the observation of 1-loop induced interactions of the Higgs
boson to photons, gluons and Z γ through couplings to top quarks and weak gauge bosons in the loop. In the
case of photons, despite its tiny branching ratio, a narrow peak in the photons invariant masses on the top of
a smooth monotonically decreasing background spectrum makes the observation possible in the gluon
fusion production mode [6].

On the other hand, the coupling to gluons can just be inferred from the initial state gluon fusion into
Higgs bosons [7–9]. Contrary to photons pairs, the gluons pair decay is completely buried beneath a huge
background of jet pairs from leading order QCD interactions turning its observation practically impossible
in the gluon fusion channel. This motivates the search for untagged jets in Higgs decays, H→ gg and
H→ qq̄, q= u, d, s, and also b and c-jets, in cleaner production channels, for example, in the Higgs-strahlung
process pp→VH, V =W,Z. Such analyses have been carried out in references [10–12] and the prospects for
the observation of the Higgs decay to light jets were found to be rather difficult, just an 1σ sensitivity after an
integrated luminosity of 3000 fb−1 and an upper bound of BR(H→ jj)< 4×BRSM(H→ gg), at 95% CL,
according to reference [10]. The authors of that work, however, suggest that a multivariate analysis might
improve the sensitivity of the LHC searches compared to their standard cut-and-count analysis.

The Higgs decay to light jets is dominated by gluon decays. Even though H→ gg is 1-loop induced, the
Yukawa couplings of the Higgs with u, d and s quarks are suppressed and contribute too little to H→ jj
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compared to the gluonic component. It is very important to confirm both the Higgs coupling to light quarks
and to gluons. Despite the gluon coupling to Higgs can be inferred from inclusive gluon fusion processes,
observing gluon pairs at the final states is necessary. First of all, it is known that even inclusive production
rates very close to the SM can still hide new physics contributions [13]. These potential new physics
contributions can be disentangled by measuring the final state kinematic distributions of the final state
particles, thus it might be essential to measure the coupling directly at the decay of the Higgs boson. This
way, observing H→ gg directly makes it is easier to pin down the coupling strength and compare it with the
SM expectation in the search for new particles running in the Hgg loop.

There are many new physics scenarios that might contribute to the Higgs-gluon and Higgs-photon
couplings at 1-loop, mainly those models that predict strongly interacting particles with SM electroweak
charge as vector-like quark models [14], squarks from supersymmetric extensions of the SM [15], and
technicolor [16]. Models that affect the Higgs-gluon coupling but not the Higgs-photon coupling are less
common but exist as, for example, scalar color octets [17] which, being electrically neutral, do not contribute
to the Higgs-photon 1-loop coupling, but can couple to the Higgs boson as, for example,H†HTr(S∗S), where
S= λaSa, with λa the Gell–Mann matrices, is an scalar color octet and electroweak singlet, and H is the
SU(2)L Higgs doublet. On the other hand, new physics scenarios might impact H→ γγ exclusively but not
H→ gg, like vector-like leptons [18], extended scalar sectors like the two-Higgs doublet models [19] and new
W bosons from left-right models [20]. In this later case, confirming that H→ gg coincides with the SM
expectation but H→ γγ provides valuable clues about the new interactions.

Another important motivation of being able to identifyH→ gg is having another Higgs channel available
for searches. The branching ratio of the Higgs decay to gluons amounts to around 8%, forty times larger than
the branching ratio into photons. While gg→H→ gg remains hopeless at the LHC due the overwhelming
QCD background, processes like Higgs-strahlung pp→VH, V =Z,W, weak boson fusion pp→Hjj and
double Higgs production gg→HH might benefit much with the new channel as source a of additional
events. Of course, extracting information from this Higgs to light jets channel cannot be accomplished
without an efficient way to identify them as yields of a Higgs boson decay. For this task, using multivariate
tools is mandatory.

Following the suggestion of reference [10], we use machine learning (ML) techniques in order to improve
the prospects to observe gluon jet pairs from Higgs boson decays in the Higgs-strahlung process
pp→ Z(→ ℓ+ℓ−)H(→ gg), ℓ= e,µ at the 14 TeV LHC. Concerning the channel ZH→ ℓ+ℓ− + gg, the
prospects of observation from reference [10] are even dimmer compared to the untagged jets case based on
the combination of ZH andWH channels, reaching 0.25σ in the absence of systematic uncertainties. Our
results can be improved by combining the one and two-lepton categories from ZH andWH channels just like
in the previous works of references [10–12] but, in the present study, it complicates the application of the ML
techniques mainly due the increasing of signal and background categories for classification. In principle, this
is not a major difficulty once the algorithms that we are going to use can handle this situation, however, the
number of backgrounds increases considerably. Anyways, we will show that using just the two-lepton
category is enough to considerably improve the prospects of the LHC to observe Higgs to gluon jets
compared to previous, non-ML based analysis.

The discerning power of Convolutional Neural Networks (CNN) has been demonstrated in several
studies where the separation of jet types is essential, especially in the gluon/quark-initiated jet separation and
heavy quark tagging [21–31]. Many of these investigations were performed using the classic jet image, that is
it, a mapping of the energy deposits of jet constituents in cells of the ϕ× η plane covered by the hadronic
calorimeter (HCAL). In reference [32], however, an ingenious manner to embody the particle flow
information in the images was proposed—representing leptons, photons and hadrons as geometrical figures
whose sizes reflect their transverse energy deposits in the various segments of the detector. Including these
extra pieces of information improves significantly the classification accuracy of the CNNs. Such an
improvement showed itself essential in the present task of discerning jets from high pT Higgs bosons from
the SM backgrounds in ℓ+ℓ− + jj events compared to the standard jet images approach.

The backgrounds to Z(→ ℓ+ℓ−)H(→ gg) involve t̄t and Z+jets events, among other subdominant
sources, which far exceed the number of signal events at the LHC. Even after classifying QCD and non-QCD
events with great accuracy with the help of the jet images, a large number of backgrounds still pollute the
signals precluding a statistically significant observation of light jet decays. Instead of relying just on CNNs
and jet image information, kinematic information from particles of the Higgs decays into leptons and jets
can be used to further separate signals from backgrounds. The CNN information can be taken together with
other available information in an ensemble of ML algorithms. In reference [33], stacking algorithms were
shown to be very useful to classify Higgs bosons events at the LHC. We employed the same idea in this work
with very good results, improving upon the previous results of reference [10].
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Table 1. Cross sections, in fb, for each signal and background process after successive selection criteria of equations (2)–(7).

Process cross section (fb)
Basic Selection
equation (2)

equation
(3)

equation
(4)

equation
(5)

equation
(6)

equation
(7)

qq̄→ ZH,Z→ ℓ+ℓ−,H→ gg 3.87× 10−1 1.59× 10−1 2.99× 10−2 1.63× 10−2 1.57× 10−2 1.48× 10−2

gg→ ZH,Z→ ℓ+ℓ−,H→ gg 1.17× 10−1 3.51× 10−2 1.54× 10−2 5.70× 10−3 5.20× 10−3 4.70× 10−3

qq̄→ ZH,Z→ ℓ+ℓ−,H→ bb̄ 1.25× 101 5.31 9.79× 10−1 4.84× 10−1 4.69× 10−1 4.28× 10−1

gg→ ZH,Z→ ℓ+ℓ−,H→ bb̄ 3.45 1.044 4.18× 10−1 1.42× 10−1 1.29× 10−1 1.09× 10−1

qq̄→ ZH,Z→ ℓ+ℓ−,H→ c̄c 1.24 5.28× 10−1 1.10× 10−1 6.14× 10−2 5.95× 10−2 5.49× 10−2

gg→ ZH,Z→ ℓ+ℓ−,H→ c̄c 3.66× 10−1 1.10× 10−1 5.01× 10−2 1.83× 10−2 1.67× 10−2 1.46× 10−2

Z+ j( jj)→ ℓ+ℓ− + j( jj) 2.12× 105 8.83× 104 7.85× 103 1.02× 103 9× 102 8.02× 102

ZZ→ ℓ+ℓ− + jj 1.31× 102 5.31× 101 5.07 1.09 1.02 9.21× 10−1

WZ→ ℓ+ℓ− + jj 1.44× 102 6.41× 101 7.54 1.05 9.79× 10−1 8.83× 10−1

t̄t→ ℓ+ℓ− + νℓν̄ℓ + bb̄ 7.52× 103 1.48× 103 2.12× 102 3.77× 101 1.54× 101 3.41

Our paper is organized as follows, in section 2 we describe the signal and backgrounds simulations and
cuts employed to define a signal region; section 3 is dedicated to explain how we construct the jet images that
feed the CNN model; section 4 then contains the details of the construction of the CNN model and its
training methodology. The performance of the ML algorithms are discussed in section 5, while section 6
presents our results. The conclusions can be found in section 7.

2. Signal and backgrounds in the ZH→ ℓ+ℓ− + jj channel

The most promising production mechanism for the identification of a hadronic decaying Higgs is the
associated production with a gauge boson (W or Z) decaying to both charged leptons and neutrinos, while
the Higgs boson can be detected using the reconstructed invariant mass of the hadronic products. Including
W bosons in the decay chain increases the number of signal events but it also makes the separation from
huge backgrounds like t̄t andW+jets more challenging. We choose to allow just the leptonic Z decays to
facilitate the identification of our signals. The Higgs branching ratio to gluons is∼360 times larger than the
three light quarks u, d, s combined for a 125 GeV Higgs boson. We thus perform simulations of the following
signal processes

qq̄, gg→ Z(→ ℓ+ℓ−)H(→ gg), ℓ= e,µ . (1)

The gg→ ZH contributes to up to 20% to the total rate of ZH production. All the events for qq̄→ ZH
were generated using MadGraph [34] at the leading order, with the Higgs effective coupling model and
NN23NLO PDFs [35]. For the gg→ ZH process with quark loops, we used the Madspin module [36] to
generate the decays of the Z boson into a pair of leptons and H into our light jets (H→ gg) signal as well the
H→ bb̄ and H→ c̄c backgrounds. We apply overall rescaling QCD K-factors to the signal and background
processes to match the total NNLO QCD and NLO EW cross section results taken from the Higgs cross
section working group [37].

We generated 450 000 signal events and around 2 million background events distributed amongst the
background classes. All the events were showered and hadronized using PYTHIA8 [38]. Hadronized events
were then passed to DELPHES3 [39] to simulate detector effects. In order to build jet substructures for image
classification and also to facilitate the vetoing of background jets, we search for the fat-jets reconstructed with
radius of R= 1.5 and pmin

T = 75 GeV. In addition we turn on the computation of N-subjettiness variables
using optimized (one-pass) anti-kt with β= 1. The backgrounds considered comprise the following
irreducible and reducible ones: (1) Zj( jj)→ ℓ+ℓ− + j( jj) up to two extra jets with the MLMmatching
scheme [40], (2) ZZ→ ℓ+ℓ− + jj, (3)WZ→ ℓ+ℓ− + jj, (4) t̄t→ ℓ+ℓ− + νℓν̄ℓ + jj, (5)Wj( jj)→ ℓ+ℓ− + jets
where the second lepton comes from jet misreconstruction. These backgrounds are efficiently suppressed by
the cuts of equation (3)–(7) below and can be safely neglected. We also included the decays of (6) H→ bb̄
and (7) H→ c̄c in the Higgs-strahlung qq̄,gg→ ZH processes to take into account the mistagging event
contamination. There are six background classes in total effectively.

In order to stay safely away from infrared and colinear divergences, we apply the basic cuts of
equation (2) at the generation level

pℓT > 20 GeV, pj,bT > 30 GeV,

|ηj,b|< 3.0, |ηℓ|< 2.7,

∆Rjj,bb,ℓℓ > 0.01 . (2)
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Beside the basic cuts we also imposed the following cuts, inspired in reference [10], to further eliminate
backgrounds and select boosted Higgs bosons

at least two same-flavour opposite-charge leptons with:

|ηℓ|< 2.5, pℓT > 30 GeV, (3)

at least one central jet with:

|ηj|< 2.0, pjT > 150 GeV, (4)

|Mj −mH|< 20 GeV, (5)

Mℓℓ > 80 GeV, pℓℓT = (pℓ1T + pℓ2T )> 100 GeV, (6)

̸̸ ET < 40 GeV, (7)

whereMj is the invariant mass of the leading fat-jet,mH = 125 GeV is the Higgs mass,Mℓℓ is the mass of the

two leading charged leptons, pℓ1T and pℓ2T are the transverse momentum of the leading and the subleading
leptons, respectively, and ̸̸ET is the missing transverse energy of the event. In table 1, we show the cut flow of
the cross sections for each signal and background channel for these selections and the basic selection of
equation (2). The Higgs mass window of equation (5) is very efficient in eliminating backgrounds without a
Higgs boson while equation (7) is effective to veto t̄t events that contain neutrinos. Requiring a very hard
leading jet, equation (4), helps to decrease the backgrounds of weak bosons with extra jets. The cut on the
mass of the leptons pair,Mℓℓ, helps to eliminate backgrounds where the leptons are not produced from a Z
boson decay. All these kinematic variables are used to feed a BDT algorithm as we are going to discuss in
section 5. The BDT is able to find even more efficient cut criteria that will help to separate signals and
backgrounds events further.

We see that these cuts reduce the Z+jets and t̄t backgrounds of more than∼2 orders of magnitude,
however, they are still 4 orders of magnitude larger than the signals. At this level of cuts only around 50 signal
events are surviving after 3000 fb−1. Hardening cuts will not make a better job, so we need a better plan to
select the signal events. This strategy must focus mainly in the most dangerous backgrounds of Z+jets and t̄t.
We discuss next the selection tool that we are going to use to raise the prospects to identify gluon decays of
the Higgs boson.

3. Construction of abstract images—embodying information to boost the
discrimination power

The use of computer vision and jet-images [21, 23] have proved their places among the most powerful and
efficient techniques for classifying data according to different hypothesis [22, 24–30, 41]. Although the use of
jet-images is a very well established framework, in some cases the information contained in jet-images is not
enough to deep convolutional neural networks to make reliable predictions. Cases where either the
differences between signal and background are very subtle or the signal in question occur in a much smaller
rate than the background events (i.e. rare events) might be difficult to disentangle. Different approaches to
increase the amount of information contained in a jet-image have been proposed [26, 31, 42]. These methods
employ a hybrid use of high-level features (i.e. kinematic observables) together with the information
recovered from each detector section (electromagnetic calorimeter (ECAL), hadronic calorimeter (HCAL),
Muon chambers, tracking system) encoded as image channels, greatly improving the amount of information,
which subsequently increase the discriminant power of the algorithms. However, this improvement comes at
the price of drastically increase of the model complexity which leads to overfitting and/or a slow training
phase for the NN. A simpler approach was proposed in reference [32] to tackle this problem using abstract
shapes as a method to encode the information from the particles detected in each event.

After the event generation, reconstruction and selection, we can construct the so called abstract images by
following the guidelines of the reference [32]. Delphes uses a particle-flow algorithm [39] which produces
two collections of 4-vectors—particle-flow tracks and particle-flow towers—that serve later as input for
reconstructing high resolution jets and missing transverse energy. In order to construct the abstract images,
we use the information stored in the particle-flow tracks. These tracks outputs from the Delphes
particle-flow algorithm are stored in the EFlowTrack array which are used to construct the objects displayed
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Figure 1. Left panel: abstract image for a signal event. Right panel: abstract image for a t̄t event. Charged particles (red circles),
neutral hadrons (blue hexagons) and photons (green squares) are displayed in the η (horizontal axis) versus ϕ (vertical axis) plane.

Table 2. The number of simulated and synthetic images for each event class. The last column shows the total number of images adding
the simulated and synthetic data. The number of synthetic data were generated in order to get a more balanced number of instances
across the classes. The larger number of ℓ+ℓ−bb̄ and c̄c instances do not represent an issue for the training of the algorithms.

Process Simulated Synthetic Total

ZH→ ℓ+ℓ− + gg 35 280 0 35 280
ZH→ ℓ+ℓ− + bb̄ 63 341 422 63 763
ZH→ ℓ+ℓ− + c̄c 79 977 0 79 977
Z+ j( jj)→ ℓ+ℓ− + j( jj) 10 158 25 222 35 380
ZZ→ ℓ+ℓ− + jj 6673 26 837 33 510
WZ→ ℓ+ℓ− + jj 5822 27 769 33 591
t̄t→ ℓ+ℓ− + νℓν̄ℓ + bb̄ 1129 29 797 30 926
total 202 380 110 047 312 427

as red circles in figure 1. EFlowPhoton and EFlowNeutralHadrons store the photon and neutral hadrons
output, respectively, which, by their turn, are used to construct the objects displayed as as green squares and
blue hexagons, respectively, in figure 1. All the shapes are centered at the η×ϕ coordinates of the object
(charged particles, photons or neutral hadrons) and their radius are proportional to the logarithm of their
transverse momentum. In figure 1 we can see an abstract image produced from an event for the signal
ZH→ ℓ+ℓ− + jj and the t̄t background.

The abstract image data set consists of 8-bit/color RGBA jet images of resolution 224× 224 pixels. We
refer to this original data set as simulated images. After applying the selection criteria of table 1, we get a very
imbalanced data set which is reflected in the relative number of simulated images of each class displayed in
table 2. The low number of samples for some of the background channels are due to the selection criteria that
we imposed, which drastically reduces the number of selected events and consequently the number of images
even after the simulation of∼2.5 millions of signal and background collision events at the LHC. It is
important to point out that without demanding hard cuts it would be virtually impossible to identify the
signals even with a very powerful ML classifier. From table 1, we see that the signal to background ratio is of
order 10−6 before cuts.

In order to balance the dataset across the classes and make sure that the CNN model will not overfit
towards the classes with more instances, we can either use class weights to overcome this issue or generate
more images “artificially” (data augmentation) for the classes where we have fewer samples. Actually, we
augmented all the classes but the signal and the ZH→ ℓ−ℓ+ + c̄c classes which are those ones with the larger
number of simulated images in our analysis. We refer to this artificially augmented data set as synthetic
images. Although the class weighting is the less computationally expensive and straightforward approach,
transforming the images to create new ones is a well tested approach commonly used in image recognition
tasks where collecting large image datasets is infeasible. Moreover, it is important to emphasize that, as long
as the test set contains only simulated images, the train set can be populated with anything that can help to
control overfitting and improve the performance of the algorithm on the test set.
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We thus should emphasize that we generate the artificial images only for the training phase. For the
evaluation/test phase we used simulated images strictly. The synthetic images are generated according to the
following data augmentation scheme:

• randomly select an image sample from the class we want to augment,
• resize and crop the image,
• rotate the image in a range of−30 to 30 degrees,
• horizontally flip,
• apply random noise.

Each transformation has an uniform probability to be applied in a selected image, i.e. for a random
selected original image, we generate a new artificial image by randomly selecting one of the 5
transformations listed above. In order to generate more artificial images without take the risk of
over-saturate the data set with just copied images, we allow the selected images to have two or more
transformations applied in the same image, with the caveat that each new transformation has a 50% chance
to be applied. For example, for a given selected image, we have 100% chance of one of the 5 transformations
be applied, a second transformation has 50% chance of applied in the same image, a third transformation
has 25% chance, a fourth transformation will have 12.5% chance of be applied, and so on. We also ensure
that the transformations are not applied two times consecutively in the same image, so that if an image has
first an horizontal flip, the next transformation will not be flipped horizontally again.

4. CNN architecture and training methodology

In this section, we describe in detail our training methodology. We tested several procedures and strategies to
achieve robust and reliable results paying special attention in estimating the uncertainty of our results which
will be provided in the next section. Some of these methods reflect the state-of-art in machine learning and
our work serve as a good test in a particle physics application as well.

We want to classify whether a given abstract image belongs to one of the 7 classes: the signal class ZH(jj),
and the background classes ZZ,WZ,Z+ j( jj),ZH(bb̄),ZH(c̄c), t̄t. For this task we choose the Residual
Network (ResNet) as the base architecture. ResNets were first proposed in reference [43] and consist of a
deep neural network (DNN) built as blocks of convolutional layers together with short cut connections (or
skip layers) that help the ResNet to avoid problems associated with DNN, in particular, the well known
gradient vanishing/exploding problem [44]. In our analysis, we tested the discriminant power of the ResNet
with an increasing number of layers: ResNet-18, ResNet-34, ResNet-50, and ResNet-101, using the abstract
images data set described in the section 3. The deeper configurations, ResNet-50 and ResNet-121, presented
a final accuracy larger than 90% while the shallower configurations, ResNet-18 and ResNet-34, reached the
65%–70% mark in the test set. The shallower configurations could be trained in less time than the deeper
ones. The time to train and tune a ResNet-121 is, by its turn, much larger than ResNet-50 and, taking in
consideration the training time, classification accuracy and signal significance, we chose ResNet-50.

The ResNet-50 consists of 50 convolutional (Conv2D) layers, in between each Conv2D layer we have a
series of batch normalizations, average pooling and rectified activations (ReLU). For our task, we replace the
last fully connected layers of the ResNet-50, responsible for the classification, with the following sequence of
layers:

• an adaptive concatenate pooling layer (AdaptiveConcatPool2d),
• a flatten layer,
• a block with batch normalization, dropout, linear, and ReLU layers,
• a dense linear layer with 7 units as outputs, each unit corresponding to a class and a softmax activation
function.

The AdaptiveConcatPool2d layer uses adaptive average pooling and adaptive max pooling and
concatenates them both. Such procedure provides the model with the information of both methods and
improves the overall performance of the CNN. We also make use of the label smoothing methodology [45] as
well as the MixUp [46] training method, more details about these two techniques are presented in the
Appendices B and C.

One important aspect of the training of DNN models, and yet often not given the due attention, is the
choice of the batch size. The use of large batch sizes helps the optimization algorithms to avoid overfitting
[47–49] acting as a regularizer. However, the batch size is ultimately bounded by the amount of memory
available in hardware. One way to work around this limitation is the use of mixed precision training [50],
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this method uses half-precision floating point numbers, without losing model accuracy or having to modify
hyper-parameters. This nearly halves memory requirements and, on recent GPUs, speeds up arithmetic
calculations.

The learning rate and weight decay are other two key hyperparameters to train DNNs. A good choice of
these two parameters can greatly improve the model performance, in our particular case it means a high
accuracy classification and good signal significance, and reduce drastically the training time. Instead of using
a fixed value for the learning rate we opted to use the so called Cyclical Learning Rates (CLR) [48]. To use
CLR, one must specify minimum and maximum learning rate boundaries and a step size. The step size is the
number of iterations used for each step and a cycle consists of two such steps—one in which the learning rate
increases and the other in which it decreases [48].

Following the guidelines from reference [51], we perform a scan over a selected range of values for
learning rates and weight decays. According to reference [51], the best initial values for learning rates are the
ones who give the steeper gradient towards the minimum loss value, which in our case, was found to be
∼3.0× 10−5 for the learning rate and 1.0× 10−5 for the weight decay, and for the maximum learning rate
value we just multiply the initial value by 10. The particular architecture of the dense layers of the ResNet-50
and the hyperparameters were found using a genetic algorithm. This genetic algorithm is capable to find the
best combination of hyperparameters and neural networks modules (a.k.a. layers) which maximize the
significance of our signal.

From the 312k images displayed in table 2, 187k (60%) were used to train and test the CNN. All the
synthetic images are used in this stage of the analysis. These 187k images were randomly split in 80% to train
and 20% to test the CNN algorithm.

We trained our model in a 3-stage scheme: in the first stage, we trained the ResNet-50 all the way from
the beginning to the end within 50 epochs without the use of transfer learning. At the end of the 50 epochs,
we save the weights and bias of the trained model. Next, in the second stage, we loaded these weights from
the previous trained model and ”freeze” all layers up to the last 3 ones, so that during this training phase the
backpropagation only takes effect on the parameters of the last 3 layers (this methodology is what we call
transfer learning), we then trained these last 3 layers for 25 epochs. In the last stage, we loaded the weights
and bias saved from the stage two and ''freeze'' all layers up to the last layer (the classification layer or
header) and trained for 15 epochs. This 3-stage training scheme helps us to find the most stable results while
gradually increasing the performance of our model. In order to complete the training, an NVIDIA GTX 1070
GPU took 24 hours approximately. Running the tuning of hyperparameters with the genetic algorithm takes
an amount of time three times larger.

The CNN architecture, training methodology and all the state-of-art techniques employed, such as mixed
precision training and MixUP, as well as the tuning of the hyperparameters were all done using Pytorch [52]
and the Fast.AI [53] framework. The Fast.AI framework enabled us to easily implement all the techniques
described above and made possible to modify all the aspects from the ResNet-50 with very few lines of codes.

5. Performance of the classifiers

5.1. Classification with ResNet-50
The performance of our training framework of the CNN with abstract jet images can be evaluated on the
basis of signal efficiency and background rejection factors as shown at the left panel of figure 2 for each one
of the seven event classes. The more rectangular is the Receiving-Operator-Characteristic (ROC) curve, the
more efficient is the background rejection for a fixed signal acceptance. A simple figure to evaluate how good
is the signal-background separation is the area under the ROC curve, AUC. The closer AUC is to one, the
better we should expect the backgrounds can be cleaned up for a giving signal efficiency. In order to construct
the ROC curves, we impose cuts on the CNN scores of the classes displayed at the right panel of figure 2 and
compute the number of events left for the signal versus a chosen background for which we want to obtain the
ROC curve. The ideal separation is having the CNN score distribution of backgrounds concentrated at the
left and the signal at the right in such a way that a cut on the scores eliminates more backgrounds than signal
events. The range of the CNN scores seen at the right panel of figure 2, roughly from−6 to+6, is a feature of
the particular loss function used to train the ResNet, see appendix B for more details.

From the ROC curve shown in figure 2, we can choose the point with the highest signal significance
which depends on the integrated luminosity and also on the effect of systematic uncertainties which are often
disregarded in machine learning studies. The Asimov estimate of significance [54], a well-established
approach to evaluate likelihood-based tests of new physics taking into account the systematic uncertainty on
the background normalization, can then be used for a more careful estimate of the signal significance at the
training and testing phases of construction of the classifier. The formula of the Asimov signal significance is
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Figure 2. Left panel: ROC curves for the signal and backgrounds classes. Right panel: CNN scores for the signal and backgrounds
classes. The star marker shows the cut selection that we impose to achieve the best Asimov significance given by this method.

given by

ZA =

[
2

(
(s+ b) ln

[
(s+ b)(b+σ2

b)

b2 +(s+ b)σ2
b

]
− b2

σ2
b

ln

[
1+

σ2
bs

b(b+σ2
b)

])]1/2
, (8)

where, for a given integrated luminosity, s is the number of signal events, b is the number of background
events, and the uncertainty associated with the number of background events is given by σb.

In figure 3, upper panel, we estimate the Asimov significance for 3000 fb−1 with a fixed 5% systematic
uncertainty, σb/b. The shaded blue band corresponds to a± 1σ error band computed by propagating the
statistical Poisson uncertainty of the background and signal counts [55]. Our signal significance estimates
therefore take statistical and systematic errors into account, even though in a simplified manner. As one can
see, the ResNet-50, although gives an AUC of 0.91 for our signal, does not show promising prospects in terms
of statistical significance due mainly to the large remaining number of events from the Z+jets and t̄t
backgrounds. On the other hand, ZZ, ZW, ZH(bb̄) and ZH(c̄c) backgrounds are efficiently reduced by using
abstract jet images.

The number of signal and background events can be found in the table at the right panel of figure 3.
Selecting events with scores larger than 4.2 gives the best signal significance at the expense of around two
surviving signal events against more than 130 background events corresponding to a very small significance
of 0.14σ. Looking at the lower panel of figure 2 we can easily understand the cut on the CNN score, it is a
very hard cut to eliminate the backgrounds, relaxing it allows just too much backgrounds to increase the
significance. The CNN actually does an excellent job in reducing the number of backgrounds but it is just not
enough to give an useful signal significance to constrain the gluon jet decays.

5.2. Classification with ResNet-50 and BDTs
In spite of the fact that the CNN was not able to deliver a good signal significance, the classification scores of
the signal and backgrounds can be used as a new feature to compose the data representation for some other
ML classifier. In order to further separate the signal samples from the backgrounds, we chose to stack the
scores obtained from the CNN along with kinematic variables to construct another data representation to be
classified by a boosted decision trees (BDT) algorithm. This type of ensemble has already been used to
improve the classification power of particle physics analyses [33, 56].

The representation of the data used to train the decision trees algorithm comprises the following
variables:

• two leptons invariantmass,Mℓℓ; two jets invariantmass,Mjj; the invariantmass of the reconstructed leading
jet, Mj; the invariant mass of the leading jet and the two leading leptons, Mjℓℓ; the missing energy of the
event ̸ET,

8
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Figure 3. Upper panel: Asimov estimated significance for 3000 fb−1, the best significance achieved by the ResNet-50 is around
0.14σ. Lower panel: the number of signal and backgrounds events after imposing a CNN score cut of 4.2 in order to select the
signal region. The last row displays the signal significance on the test set. The systematic error for these results is 0.33% as in
reference [10].

• transverse momenta: pℓℓT ,pj1T ,p
j2
T ,p

b1
T ,p

b2
T ,p

ℓ1
T ,p

ℓ2
T ,

• angular distributions: the separation between the leading leptons pair and the leading jet, ∆Rℓℓ,j1 =√
(∆ϕℓℓ,j1)

2 +(∆ηℓℓ,j1)
2; the separation in the azimuthal angle of the leading leptons, ∆ϕℓ,ℓ; the cosine

of the angle between the transverse momentum of the leading leptons pair and the leading lepton,
cos(∆ϕℓℓ,ℓ1); and between the leading leptons pair and the leading jet, cos(∆ϕℓℓ,j1),

• the b-tag of the event, this is 1 for events with at least one b-tagged jet, and 0 for events with no b-jets
identified by Delphes

• the score provided by the CNN model trained in the previous step described in section 4 for each one of
the 7 classes.
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Figure 4. Left panel: ROC curves for the signal and backgrounds classes. Right panel: BDT scores for the signal and backgrounds
classes. The star marker shows the cut selection that we impose to achieve the best Asimov significance given by this method.

For the BDT training and testing, we used the remaining 125k (40%) events out of the original 312k
events displayed in table 2. Note that this is an independent data set not seen before by the CNN model. For
each one of these events, we build a jet image and assign a CNN score with the ResNet-50 model trained in
the previous step described in section 4. We randomly split this data set as 80% for training and 20% for
testing. We do not use synthetic images for the BDT train/test stage, just simulated ones. After constructing
our new data set with the kinematic variables and CNN scores of each channel we can now turn our
attention into the selection process of our ensemble classifier. A plethora of multivariate classification models
are available right out of box in the scikit-learn [57] packages. Boosted decision tress are well-established
classifiers and can provide very accurate predictions for classification tasks where the data set contains
multiple classes.

BDTs, as any other ML algorithm, should be tuned in order to achieve a good classification performance.
A first approach is to use ''brute force'' to tune the hyperparameters by using a grid search but the number
of combinations and the computational time to test each one of them increases exponentially. More efficient
ways beyond grid search are random sampling or using Gaussian process algorithms to learn the best
hyperparameters. Another way to tackle this problem is to use genetic/evolutionary algorithms, as in
reference [58]. To do so, we make use of the Python Evolutionary Algorithm toolkit DEAP [59], in
conjunction with the scikit-learn library. Such implementation cannot only provide the models with the
highest accuracy, but also modify the “fitness” function of the evolutionary algorithm to search the best
hyperparameters combination which returns the highest Asimov significance values.

In our analysis, we found that a multi-class AdaBoost classifier [60] with 700 base estimators, a
maximum tree depth of 5 and a learning rate of 1.0, keeping other hyperparameters as default options,
presented the higher Asimov significance. Just like in the case of the CNN, we found that adjusting the
hyperparameters to get a high accuracy does not guarantee the higher signal significance.

In figure 4, we show, at the left panel, the ROC curves after the BDT classification. Remember that the
CNN classification was very efficient to suppress all the backgrounds, except for Z+jets and t̄t backgrounds,
but at the expense of cutting out too many signal events. Moreover, Z+jets and the contaminants ZH(bb̄)
and t̄t amounted to around 140 events resulting in a very small significance. The BDT found another
solution instead, reducing ZZ andWZ by 50% but completely eliminating the Z+jets and reducing t̄t by 85%
at the same time it keeps a much larger number of signal events. Comparing the ROC curves of figures 2 and
4, we clearly see that the AUC of the Z+jets increases very much. At the right panel of figure 4, we show the
BDT scores of the event classes. The cut on the BDT score is also very hard but and the signal region is
defined for a BDT score larger than 0.32. The star markers show the point of cut and the corresponding
signal efficiency and background rejection.
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Figure 5. Upper panel: Asimov estimated significance for 3000 fb−1, the best significance achieved by the BDT classifier is around
2.4σ. Lower panel: the number of signal and background events after imposing a cut on the BDT score of 0.32. The last row
displays the signal significance on the test set. The systematic error for these results is 0.33% as in reference [10].

In figure 5, we show, at the upper panel, the Asimov significance with its corresponding± 1σ error band.
The increase of the mean Asimov significance, 2.40σ, assuming a 0.33% systematic error, is quite
pronounced compared to the CNN classification. Without any systematics, the signal significance is the
same, 2.40σ and it barely changes even for a few percent systematic uncertainty due the s/b ratio of 0.76. The
sensitivity to systematics is considerably reduced compared to the cut-and-count analysis as shown in the
next section. This is a consequence of including systematics at the tuning phase of the BDT algorithm—the
genetic algorithm is able, in this way, to find a configuration where the signal significance and the s/b ratio
are optimized together. This result greatly improves over the cut-and-count analysis of reference [10], where
a 0.25σ significance is achieved for the ZH→ ℓ+ℓ− + gg channel with a signal-to-background ratio of order
10−4.

The much better result for BDT could raise doubts whether the CNN classification is necessary after all.
To confirm that the CNN scores are playing any role in helping the BDT to separate the signals, we
performed a feature importance analysis of the BDT features and found that indeed the CNN scores are the
most important features for the BDT classification followed byMℓℓ,∆ϕℓℓ and the missing transverse energy
of the event. At the lower panel of figure 5, we show the number of events for each class after the cut on the
BDT scores. The number of signal events jumps to around 15 events and the backgrounds by half compared
to the CNN case. The Z+jets, t̄t and the ZH contaminants are completely washed away, leaving just ZZ and
WZ events in the backgrounds.

We want to point out an important bonus in using ML algorithms to separate the signals from
backgrounds in this process—the ZH(bb̄) and ZH(c̄c) events are suppressed with hard cuts on the score
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Table 3. Flavor tagging efficiencies and the fraction of SM Higgs decay channels used to compute χ2 of equation (12). Taken from
reference [10].

Flavor tagging efficiencies
εai b-quark c-quark j= g
b-tag 70% 20% 1.25%
c-tag 13% 19% 0.50%
un-tag j ′j ′ 17% 61% 98.25%
Fraction of Higgs decay channels
eai bb̄ c̄c jj
bb-tag 99.6% 0.4% 0%
cc-tag 90.4% 9.6% 0%
un-tag j ′ 16% 10% 74%

outputs of the classifiers. This makes the statistical analysis simpler and less prone to tagging efficiencies as
we are going to show in the next section.

6. Signal significance and constraints on the light jet higgs branching ratio

With the results obtained in our ML analysis, we are able now to constrain the branching ratio of the Higgs
boson into light jets. To do so, we closely follow the statistical analysis presented in reference [10]. It is
important to highlight the differences between our analysis and the one performed in reference [10]. First of
all, and more importantly, we consider the two-lepton category only, while in that work, the one+two-lepton
categories are considered once they also takeWH into account in the analysis. Second, we include the signal
contaminants ZH(bb̄) and ZH(c̄c) in the background category from the beginning. In reference [10], these
categories are considered only in the statistical analysis to constrain the light jets branching ratio multiplying
the gluons signal by suitable tagging and mistagging factors and, in this way, being able to discount for the bb̄
and c̄c contamination. We, however, are able to increase the purity of the signal by eliminating the b-jet and
c-jet Higgs decays using our ensemble classifier as discussed in the previous section. After a hard cut on the
BDT score, the number of bottom and charm jet contaminants is negligibly small, and only ZZ and ZW
background events survive as discussed in the previous section.

This efficient clearing up from ZH(bb̄) and ZH(c̄c) background events allows to place a direct upper
bound on the Higgs to gluon jets branching ratio at the 95% confidence level (CL)

µj =
BR(H→ gg)

BRSM(H→ gg)
≤ 1+

√
χ2
95%

Sj
= 1.74 (1.75)[1.78] (9)

BR(H→ gg)≤ 1.74(1.75)[1.78]×BRSM(H→ gg) , (10)

where Sj is the mean signal significance obtained after the BDT classification computed with the simple
significance metrics Sj =

s√
b+σ2

b

= 2.7(2.6)[2.5], where s= 9.3 and b= 12.3, from the table at the right panel

of figure 5 assuming σb/b= 0(5%)[10%] uncertainties in the background normalization. Note that these
estimates might fluctuate in the blue band in figure 5. We use this simple significance metrics for a fair
comparison with the results of reference [10] and because the results do not differ much compared with the
Asimov formula.

We can also follow the steps of reference [10] to combine the signal strength obtained in our light jet
analysis with other estimates taking into account tagging and mistagging factors that consider mixing among
the jet classes. In this case, our analysis should be interpreted as a bound on untagged jets, that is it, jets that
are not tagged as b or c-jets. In this case, we define the signal strength for a decay channel H→ ii as

µi =
BR(H→ ii)

BRSM(H→ ii)
, (11)

where we consider ii= bb̄, c̄c, and jj= gg. Assuming each decay channel is statistically independent and
following Gaussian statistics, we can get goodness of fit using the same chi-square function that we used in
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Figure 6. Contours in µc−µj plane, for statistics only (left panel) and including systematic uncertainties (right panel) for the
ℓ+ℓ− + j ′j ′ channel, respectively, where j ′ is a jet that could not be tagged as b or c-jet. The green and yellow regions are the
68.3% and 95% CL regions, respectively, given by the ML based analysis (combined BDT+ ResNet-50 predictions), while the
green and yellow dashed lines are the corresponding regions from the cut based analysis [10].

equation (10) above

χ2 =
∑

a=j,c,b

(Na −NSM
a )2

σ2
a

=
∑

a=j,c,b
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∑
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2
aiBRiN

prod
sig −

∑
i=j,c,b ϵ

2
aiBR

SM
i Nprod

sig )2

(
√

Nbkg)2

=
∑

a=j,c,b
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∑

i=j,c,b eai µi − 1)2

(1/Sa)2
, eai =

ϵ2aiBRi∑
k=j,c,b ϵ

2
akBRk

(12)

where Sa is the significance from each category identified by experiments, εai are the tagging and mistagging
factors, eai = ε are the fractions of the Higgs decay channel i where both jets are tagged as a given in table 3,
and Nprod

sig is the number of signal events produced in the ZH associated production.
For the significance without systematic errors, we take (Sb,Sc,Sj) = (7.5, 1.35, 2.7), while for the

significance with 1% of systematic errors we have (Sb,Sc,Sj) = (7.5, 1.35, 2.7); in this case, the significances
for b and c channels barely change. This level of systematic uncertainties seems to be adequate in view of the
estimates of reference [10]. The b-channel significance Sb = 7.5 comes from table 12 in the ATLAS MC study
[61] for the category “Two-lepton”, while c-channel significance Sc = 1.35 comes from figure 2(a) of
reference [11] and computed in reference [10]. Contrary to Sb, Sc includes contributions fromWH events
then our estimate of the following signal strengths are approximated. The fully correlated signal strengths
using only the ℓ+ℓ− + jj channel are plotted in figure 6.

We obtained the following 95% CL upper bound limit for the Higgs branching ratio into untagged jets
with 0% and 1% systematic errors, in parenthesis, for 3000 fb−1

BR(H→ j ′j ′)⩽ 3.06(3.10)×BRSM(H→ gg). (13)

The bound for BR(H→ c̄c) can also be obtained from equation (12). Actually, the contour plot in the
µj ×µc plane can be readily obtained as shown in figure 6 which displays the cut-based contours from
reference [10] as dashed lines and our results as shaded areas. We see that the constraints get considerably
tighter for µj but not for µc which is expected once we are taking exactly the same significances for bb̄ and c̄c
signals as in the cut-based analysis.

The signal-to-background ratio achievable after our classification is also significantly raised compared to
cut-based analysis. This is important in order to get reliable significance estimates. The main sources of
systematics are the total rates and the shapes of the kinematic distributions which can be affected by many
features of the simulations, both for signals and backgrounds. The signal and background cross sections are
impacted by missing higher order calculations. The inclusion of QCD K-factors is essential to better estimate
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Table 4. Projected Asimov significance of equation (8) for integrated luminosities of 100, 300, 1000 and 3000 fb−1 at the 14 TeV LHC for
the given systematic uncertainty after the BDT classification. In the last column we show the naive combination of both LHC experiments
for an integrated luminosity of 3 ab−1. The uncertainties in the significance reflect the variation of the blue bands of figure 5.

Systematics 100 fb−1 300 fb−1 1000 fb−1 3000 fb−1 ATLAS+CMS combined(3 ab−1)

0.33% 0.44± 0.16 0.76± 0.26 1.38± 0.48 2.40± 0.94 3.38± 1.33
1% 0.44± 0.16 0.76± 0.26 1.38± 0.48 2.40± 0.93 3.38± 1.33
5% 0.44± 0.16 0.76± 0.26 1.37± 0.54 2.35± 1.00 3.32± 1.00
10% 0.44± 0.16 0.75± 0.30 1.35± 0.58 2.23± 1.08 3.15± 1.07
50% 0.41± 0.20 0.65± 0.32 0.92± 0.44 1.10± 0.60 1.56± 0.59

these corrections. The factorization/renormalization scales impact both the total rates and also the shape of
the distributions though. The simulation of hadronization and detector effects are also sources of systematic
uncertainties. All these uncertainties should be taken into account in obtaining the output score of the ML
algorithms that are used to perform the ultimate separation cut between the signal and background classes.
Doing this analysis is however very demanding from the computational point of view once it is necessary to
generate synthetic data for each variation of those parameters.

Nevertheless, we can include systematics effects in the background yields in a simplified manner as we
did in equation (8). Although this is a limited account of systematic uncertainties, it is computationally
feasible. It is also useful once our signal-to-background ratio is not too large. A good example about how
several sources of systematic uncertainties can be taken into account in phenomenological studies using an
ensemble of algorithms to boost the statistical significance of the signal can be found in reference [56].

In the left panel of figure 6 we show the case with no systematic uncertainties included, and the right
panel shows how the bounds degrade once systematics in the background rates are taken into account. Even
assuming a rather small systematics of 0.33%, the cut-based bounds loosens compared to the statistics
dominance case. On the other hand, the ML results do not change for this level of systematics once the
s/b ratio is much larger than that achieved with cut-and-count only. This is a preliminary indication that our
results are more robust against systematic uncertainties.

In order to give an idea of the impact of systematic uncertainties, we compute the signal significance with
our ML analysis with various levels of uncertainty and integrated luminosity. The results are shown in
table 4. First of all, we see that the results are rather robust against systematics levels up to 10%. Second,
1000 fb−1 should be enough to reach an 1σ significance, but only at the end of the HL-LHC run we should
be able to probe Higgs to gluons in the ZH→ ℓ+ℓ− + gg channel. Finally, in the last column we show the
naive (added in quadrature) combination of data of both the LHC experiments after 3 ab−1. Taking into
account the statistical Poissonian uncertainty in the number of signal and background events and the
systematics in the background yields, the LHC may reach a 3σ evidence for pp→ ZH→ ℓ+ℓ− + gg.

A caveat about these results is due. As we can observe in the right panel of figure 4 and the upper panel of
figure 5, a hard cut on the BDT output score is necessary to avoid backgrounds and achieve the maximum
significance. We are thus probing the tail of the BDT score. Relaxing the cut to 0.3 adds statistics but at the
price of a reduction of significance to an∼1σ level. Moreover, systematic uncertainties on the shape of the
features distributions might also change the tail of the output scores of the ML algorithms. As we discussed,
evaluating the impact of these uncertainties is very computationally consuming.

In order to improve from the results reported in this work,WH events can be used in combination to
ZH, as in reference [10]. From the multivariate side of the analysis many other approaches can be employed:
other kinds of jet taggers can be tested, different ensembles, meta-classifiers as new types of BDT and neural
networks, and even a shape analysis of the output scores. In particular, a very promising direction can be
attempted. This is the joint optimization of cuts, ML hyperparameters and jet finder parameters to construct
jet images and boost the separation power of the meta-classifier, the BDT. This is, again, very time
consuming. For each cut strategy, new jets should constructed and their images, then their output scores and
the other kinematic features must feed the meta-classifier in order to have a final output score that is used to
perform the final cut to separate the signals from the backgrounds. Previous applications of these joint
optimizations are very encouraging [62–65].

7. Conclusions

Completing the SM picture in all its colors, shapes and nuances demands observing and studying all its
predicted interactions. The LHC is confirming that the Higgs boson couplings scale with the mass of the SM
particles. This makes it easier to probe the Higgs couplings to bottom and top quarks, the heavy gauge bosons
and the tau lepton but it turns the observation of interactions to the light quarks, especially up, down and
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strange quarks, and also the lighter leptons, much more challenging. Previous attempts to probe the Higgs
coupling to light jets, that is it, to gluons and u, d and s quarks, based on standard cut-and-count strategies,
have shown how difficult is to select the jets coming from the Higgs decay apart from the SM backgrounds.

In this work, we used machine learning tools to make the classification of signal and background jets
more efficient. We found that analyzing ℓ+ℓ− + jj events at the 14 TeV LHC, the decays from boosted ZH
production can be used to put stronger constraints on the branching ratio of H→ gg than those of
reference [10]. These boosted events generate fat jets whose substructure can be ''seen'' by convolutional
neural networks after subtle transformations which make the jet images more discernible. We employed
several state-of-art ML techniques to improve the performance of the CNN algorithm in obtaining the
highest signal significance possible. In spite of its power, the CNNs were not able to separate signal from
backgrounds at the level we need, however, the output scores assigned by the CNNs to each event class is by
themselves a very distinctive feature that can be combined with kinematic information of the particles of the
event to train another ML algorithm—this is an ensemble learning.

Following this insight, we trained a boosted decision trees algorithm using the CNNs outputs and
kinematic information of the events to further cleaning of Higgs to gluon jets signals. We achieved a
statistical significance for the signal class almost an order of magnitude larger compared to the
cut-and-count analysis [10], reaching 2.4σ in the statistics dominance scenario after 3000 fb−1. Assuming a
rather optimistic systematic uncertainty on the background rate of just 0.33%, the cut analysis presents even
more difficult prospects of 0.1σ for the channel ZH→ ℓ+ℓ− + gg alone, according to reference [10]. Our
results, on the other hand, are much more robust against systematic uncertainties in the background rates,
with 2.4σ, an order of magnitude improvement over the cut analysis. By the way, even a 10% systematics on
the backgrounds normalization should not change these results considerably. Naively combining the data
from both CMS and ATLAS and taking into account the variation in the ML performance in our cross
validation, the LHC may find evidence at the 3σ level for light jet decays of the Higgs boson.

Moreover, the ML algorithm was able to eliminate the Z(H→ bb̄) and Z(H→ c̄c) contaminants allowing
us to derive the following 95% CL bound directly on the light jets branching ratio instead of a bound on the
untagged jet class as in reference [10]

BR(H→ gg)≤ 1.74(1.78)×BRSM(H→ gg) ,

assuming a 0(10)% systematic uncertainty on the background normalization.
Combining the significance reached in this analysis with the ones in the search for H→ bb̄ and H→ c̄c

taking into account mixing of tagged and mistagged jet classes, it is possible to put bounds on the
BR(H→ j ′j ′), where j ′ is a jet that could be not associated to a b ot c-jet, it is an ''untagged'' jet. Following
closely the analysis of reference [10], we found

BR(H→ j′j′)≤ 3.06(3.10)×BRSM(H→ gg) ,

for 0(1)% of systematics, which improves the results obtained exclusively with a dedicated cut-and-count
analysis.

The results presented in this work can be improved in several ways. For example, events fromWH can be
included in the analysis. Many other ML algorithms can also be tested, including other types and levels of
ensembles. Tuning ML hyperparameters and kinematic cuts jointly also has the potential to greatly improve
the signal significance as demonstrated in references [62–65]. More kinematic features can also be
incorporated in the data representation seeking to strengthen the correlations of the classes. We believe,
however, that any significant improvement will come from the machine learning side of the analysis.
Discovering the SM Higgs to light jets can only be possible for a future collider, unless new physics intervenes
to enhance these couplings. In this case, a dedicate study can benefit from our results and analyses.

Acknowledgments

AA thanks Conselho Nacional de Desenvolvimento Científico (CNPq) for its financial support, grant
307265/2017-0. FFF is partially supported by the China Postdoctoral Science Foundation project
Y8Y2411B11 and the project From Higgs Phenomenology to the Unification of Fundamental Interactions
PTDC/FIS-PAR/31000/2017 grant BPD-32 (19661/2019). FFF thanks Prof. C. Herdeiro and Prof. A. P.
Morais for the hospitality during his stay at Aveiro university. AA would like to thank Tilman Plehn, Gregor
Kasieczka, Juan Gonzales-Fraile and Anja Butter and for helpful discussions in the early stages of this project.

15



Mach. Learn.: Sci. Technol. 1 (2020) 045025 A Alves and Felipe F Freitas

Appendix A. Glossary of terms

We present here a minimal glossary of machine learning and data science terms to help the reader to capture
the key ideas of the work concerning the construction of the algorithms. Several books and texts can be
further explored to a proper understanding of the many details contained in this work. We, particularly,
recommend the following ones of references [66–71] to an introduction to ML for physicists, and the
following ones [72–74] for ML experts that wish to acquire the basics of particle physics phenomenology.

True positive
rate (tpr ≡εS):

ratio of true positive count and total signal events. The true positive counts arethe number of signal
events correctly identified by the algorithm. It also corresponds to the usual notion of signal accept-
ance.

False positive
rate (fpr ≡εB):

ratio of false positive counts and total number of background events. The false positive counts are
the background events, predicted as signal events by the algorithm. It also corresponds to the usual
notion of background rejection.

Receiver oper-
ating char-
acteristic
(ROC):

plot of tpr as a function of fpr for each value of the classifier threshold between 0 to 1.

Area under
the curve
(AUC):

area under the ROC curve and a typical measure of the algorithm performance.

Accuracy: ratio of the correctly identified signal and background events versus total number of signal and back-
ground events.

Learning
curve:

curve with shows the performance of the algorithm with iterative runs i.e. behaviour of the loss
function with iterations.

Batch: data is divided into small sets, called batches, to save time and computation efforts.
Hidden Lay-
ers:

intermediate layers between the input and output layers.

Loss function: the function which the algorithm searches to minimise.
Epochs: The period between initialisation of the search for the minimum and when the batches pass the NN.

Basically, number of epochs is an iteration counter of how many times complete data set is explored
by the algorithm, such that learning parameters are optimized.

Dropout: mechanism to avoid the model overfitting, whereby the NN could drop few of the units (neurons) at
the time of training.

Pretraining: Quick pre-run with smaller number of epochs and steeper loss functions. The longer training is
initialised by the pretraining hyperparameters.

Classifier
output:

set of predictions for test sample. Our analysis is a binary classification problem, so with the pre-
viously decided (user-decided) classification threshold, the events will either belong to signal or
background class.

Appendix B. Label smoothing cross entropy

The last layer of our ResNet model is a fully-connected layer with a size being equal to the number of classes,
denoted by c, to output the predicted confidence scores. Given an abstract image from our data set, denote by
zi, the predicted score for class i. These scores can be normalized by the softmax operator to obtain predicted
probabilities. Denote by q the output of the softmax operator q= softmax(z), the probability for class i, qi,
can be computed by:

qi =
exp(zi)∑c
j=1 exp(zj)

, (B1)

where qi > 0 and
∑c

i=1 qi = 1, so q is a valid probability distribution.
On the other hand, assume the true label of this image is y, we can construct a truth probability

distribution to be pi = 1 if i= y and 0 otherwise. During training, we minimize the negative cross entropy
loss

ℓ(p,q) =−
c∑

i=1

qi logpi (B2)

to update model parameters in order to make these two probability distributions similar to each other. In
particular, by the way how p is constructed, we know that ℓ(p,q) =− logpy =−zy + log

(∑c
i=1 exp(zi)

)
. The

optimal solution is z∗y →∞ while keeping others small enough. In other words, it encourages the output
scores dramatically distinctive which potentially leads to overfitting. The idea of label smoothing was first
proposed to train Inception-v2 [45]. It changes the construction of the true probability to
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Figure B1.Mixup result for a given signal (ZH→ ℓ+ℓ− + gg) and background (t̄t) abstract images. The images are combined
according to the value λ= 0.8, that is it, in the image shown we have a new image that corresponds to 80% of the signal image
and 20% of the background image.

qi =

{
1− ε if i= y,

ε/(c− 1) otherwise,
(B3)

where ε is a small constant. Now the optimal solution becomes

z∗i =

{
log((c− 1)(1− ε)/ε)+α if i= y,

α otherwise,
(B4)

where α can be an arbitrary real number. This encourages a finite output from the fully-connected layer and
can generalize better.

Appendix C. MixUp

Themixup training [46] consists of, during the training phase, randomly sample two images (xi,yi) and
(xj,yj) from our data set. Then we form a new image by a weighted linear interpolation of these two:

x̂ = λxi +(1−λ)xj, (C5)

ŷ = λyi +(1−λ)yj, (C6)

where λ∈ [0, 1]. Therefore,mixup extends the training distribution by incorporating the prior knowledge
that linear interpolations of feature vectors should lead to linear interpolations of the associated targets. We
show an example in figure B1.
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