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Massive bosons in the vicinity of Kerr–Newman black holes can form pure bound states
when their phase angular velocity fulills the synchronisation condition, i.e. at the thresh-

old of superradiance. The presence of these stationary clouds at the linear level is inti-

mately linked to the existence of Kerr black holes with synchronised hair at the non-linear
level. These configurations are very similar to the atomic orbitals of the electron in a

hydrogen atom. They can be labeled by four quantum numbers: n, the number of nodes
in the radial direction; `, the orbital angular momentum; j, the total angular momentum;

and mj , the azimuthal total angular momentum. These synchronised configurations are

solely allowed for particular values of the black holes mass, angular momentum and elec-
tric charge. Such quantization results in an existence surface in the three-dimensional

parameter space of Kerr–Newman black holes. The phenomenology of stationary scalar

clouds has been widely addressed over the last years. However, there is a gap in the liter-
ature concerning their vector cousins. Following the separability of the Proca equation in
Kerr(–Newman) spacetime, this work explores and compares scalar and vector stationary

clouds around Kerr and Kerr–Newman black holes, extending previous research.
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PACS numbers:

1. Introduction

Energy extraction from Kerr black holes was first devised in 1969 by Penrose,1 who

conceived a gedankenexperiment whereby a particle disintegrates within the ergo–

region of a Kerr black hole into two other particles in such a way that the black hole

loses energy. In general, the efficiency of the Penrose process is low: the extracted

energy is at most about a fifth of the infalling energy for particles decaying close to

the event horizon of extremal Kerr black holes.2,3 More importantly, the minimum

relative velocity between the two end-products of the decay must be greater than
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half the speed of light for energy to be extracted. The Penrose process is thus

unlikely to occur and be relevant in conceivable astrophysical scenarios.

In 1971, Zel’Dovich showed that low–frequency electromagnetic waves scattered

off a rotating conducting cylinder are amplified, later suggesting that, under partic-

ular circumstances, this enhancement occurs for any wave impinging on a rotating

object.4,5 Misner conjectured that Kerr black holes would not be an exception.6

This rather odd proposal opened the door to black–hole superradiance,7 which may

be thought as the wave–analogue of the Penrose process.

For Kerr black holes, superradiance is triggered when the phase angular velocity

ω of a boson state satisfies

ω

mj
< ΩH ≡

a

r2
+ + a2

, (1)

where mj is the boson’s azimuthal total angular momentum and ΩH and r+ =

M+
√
M2 − a2 are, respectively, the black hole’s horizon angular velocity and event

horizon (Boyer-Lindquist) radial coordinate, written in terms of the black hole’s

ADM mass M and total angular momentum J = Ma. When the bosons are massive,

they remain trapped in the vicinity of the black hole – as if they were enclosed by a

reflective cavity. When Eq. (1) is fulfilled, bosons extract energy from the black hole

and, as a result, the trapped boson states grow exponentially with time, creating

superradiant instabilities.8 These arise even when the bosons’ backreaction on the

geometry is negligible – a fairly good approximation for a plethora of astrophysical

systems –, which means that superradiance is a linear phenomenon, although it

persists at full non–linear level.9

From a dynamical viewpoint, energy extraction from the black hole stalls as

soon as Eq. (1) saturates, i.e.

ω

mj
= ΩH . (2)

The endpoint is a classical boson condensate – colloquially referred to as cloud or

hair – which is stationary with respect to the slowed-down black hole.10–12 These

equilibrium configurations are solutions of Einstein’s gravity minimally coupled to

complex massive bosons, first unveiled for scalar bosons13 and then extended to vec-

tor bosons.14 Kerr black holes with synchronised hair evade well-known uniqueness

theorems15 – which state that asymptotically-flat stationary black holes in scalar–

or vector–(electro–)vacuum general relativity are necessarily Kerr(–Newman) black

holes16–18 – and defy the no-hair conjecture – acoording to which the gravitational

collapse in the presence of any type of matter-energy must give birth to a Kerr(–

Newman) black hole19,20 .

These hairy black holes reduce to synchronised bound states between Kerr black

holes and (scalar or vector) bosons at the linear level. These states exist at the

threshold of superradiance and are commonly known as stationary clouds. They

are very similar to the atomic orbitals of the electron in a hydrogen atom in the

sense that they are regular on and outside the event horizon, decay exponentially
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at spatial infinity and can be labeled by four quantum numbers: n, the number of

nodes in the radial direction; `, the orbital angular momentum; j, the total angular

momentum; and mj , the projection of the total angular momentum along the black

hole’s axis of symmetry.

These synchronised bound states were first found for massive scalar bosons

around extremal (a = M) Kerr black holes21 and later around rapidly-rotating

black holes.22 While the phenomenology of stationary scalar clouds has been widely

addressed in the literature over the last years,23–40 little is known about the phys-

ical properties of their vector cousins.25 This discrepancy makes sense under the

view that, as opposed to the Klein-Gordon equation,41,42 the decoupling and sep-

aration of the Proca equation in Kerr spacetime was solely achieved very recently

via the Lunin–Frolov–Krtouš–Kubizňák (LFKK) ansatz.43 Following this break-

through, which extends to the Kerr–NUT–(A)dS family of spacetimes, the proper-

ties of massive vector bosons started to be further explored in a number of space-

times,44–49 most notably the Kerr spacetime.

The main goal of this paper is to apply the LFKK ansatz to characterize and

compare stationary scalar and vector clouds around Kerr(–Newman) black holes,

complementing some results presented in Refs. 24 and 49.

The paper is organised as follows. Section 2 reviews some key features of Kerr–

Newman spacetime. Section 3 introduces the Klein–Gordon and Proca equtions

and the corresponding ansätze for their separability and presents the separated

equations. Section 4 covers a comparative analysis of stationary scalar and vector

clouds around Kerr and Kerr–Newman black holes. An overview of the work is

sketched in Section 5, together with some closing remarks.

2. Kerr–Newman geometry

The Kerr–Newman solution is the most general black–hole solution to the Einstein–

Maxwell equations for an asymptotically–flat, stationary and axisymmetric space-

time with a connected event horizon. It describes a black hole with mass M , an-

gular momentum J and electric charge Q (as measured from spatial infinity). A

Kerr-Newman black hole is said to be sub-extremal if a2 +Q2 < M2 and extremal

if a2 + Q2 = M2, where a = J/M is the specific angular momentum. In Boyer–

Lindquist coordinates (t, r, θ, ϕ), the solution reads

g = Σ

(
−∆

Ξ
dt2 +

dr2

∆
+ dθ2

)
+

Ξ

Σ
sin2 θ(dϕ− Ωdt)2 ,

A− Qr

Σ
(dt− a sin2 θdϕ) , (3)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 +Q2 ,

Ξ = (r2 + a2)2 −∆a2 sin2 θ , Ω =
(2Mr −Q2)a

Ξ
. (4)
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The line element has a curvature singularity at Σ = 0 and coordinate singularities

at ∆ = 0 when a2 + Q2 ≤ M2, which solves for r = r± ≡ M ±
√
M2 − a2 −Q2.

The hypersurface r = r+ (r = r−) is the outer (inner) horizon.

Being stationary and axisymmetric, the Kerr-Newman spacetime does not de-

pend explicitly on t nor on ϕ. The two linearly independent Killing vectors asso-

ciated with these two isometries are ξ = ∂t and η = ∂ϕ, respectively. The Killing

vector ξ is null on the hypersurface r = rE ≡M +
√
M2 −Q2 − a2 cos2 θ, known as

stationary limit surface or ergosphere. This hypersurface is timelike except in the

points in which η = 0, where it coincides with the outer horizon and becomes null.

ξ is timelike outside the ergosphere and spacelike in the spacetime region between

the outer horizon and the ergosphere (r+ < r < rE). The points where η = 0 define

the axis of symmetry.

The dragging potential Ω is constant on r = r+, where it has the value

ΩH ≡
a

r2
+ + a2

. (5)

ΩH is thus the angular velocity of the outer horizon. The Killing vector χ = ξ+ΩHη

is null on the hypersurface r = r+ and is timelike outside it. Observers moving along

curves of constant r and θ with angular velocity ΩH follow the integral curves of χ

and thus rotate rigidly with the black hole.

The Kerr–Newman solution admits a principal tensor, i.e. a non-degenerate

closed conformal Killing–Yano 2–form h which obeys the equationsa

∇h = g ∧ ξ , ξ =
1

3
∇ · h . (6)

This reads

h = r(dt− a sin2 θdϕ) ∧ dr − a cos θ
[
adr − (r2 + a2)dϕ

]
∧ d cos θ . (7)

The Hodge dual of h is a Killing–Yano tensor f = ?h, whose square is the Killing

tensor

K = −f · f = h · h− 1

2
gh2 , (8)

which relates to the Killing vectors by η = K · ξ.

3. Equations of motion

The dynamics of massive scalar (Φ) and vector (A) bosons in curved spacetimes is

ruled by similar equations:

(�− µ2
s )Φ = 0 , (9)

(�− µ2
v)A = 0 , (10)

aThe dot (·) denotes contraction of two subsequent tensors with respect to their two neighbor

indices.
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where � ≡ ∇a∇a is the D’Alembert operator and µs/µv stands for the mass of the

scalar/vector boson. Equation (9) is the Klein–Gordon equation, whereas Eq. (10)

is the Proca equation. The Proca equation is nothing but a set of four Klein–Gordon

equations, supplemented by the Lorenz condition

∇ ·A = 0 , (11)

which is automatically satisfied thanks to the non-vanishing mass µv.

It has long been known that the Klein-Gordon equation in Kerr–Newman space-

time allows a multiplicative separation of variables of the form50,51

Φ(t, r, θ, φ) = e−iωtRs(r)Qs(θ, φ) , Qs(θ, φ) = Ss(θ)e
+imjφ , (12)

where ω and mj are the eigenvalues of iξ and −iη, respectively. This ansatz re-

duces Eq. (9) to two linear differential equations in the coordinates r and θ. These

equations take the form

d

dr

[
∆

dRs

dr

]
+

[
K2
r

∆
− (µ2

sr
2 + a2ω2 − 2mjaω + λs)

]
Rs = 0 , (13)

1

sin θ

d

dθ

[
sin θ

dSs

dθ

]
−

[
m2
j

sin2 θ
− ν2 cos2 θ − λs

]
Ss = 0 , (14)

where Kr = (r2 + a2)ω − amj and ν2 ≡ a2(ω2 − µ2
s ) is the degree of spheroidicity.

Equations (13)–(14) are only coupled via the boson mass µs, the Killing eigenvalues

{ω,mj}, the black-hole parameters {M,a,Q} and the separation constant λs. When

ν = 0 (i.e. when the degree of spheroidicity vanishes), Eq. (14) reduces to the

associated Legendre equation and the separation constant becomes λs = j(j + 1),

j ∈ N0. The canonical solutions are the associated Legendre polynomials of degree j

and order m. The angular dependence of Φ is thus described by the scalar spherical

harmonics of degree j and order m when either a = 0 or ω2 = µ2
s . In general,

however, it is given by scalar spheroidal harmonics. When ν � 1, the separation

constant can be written as a series expansion around ν = 0,

λs =

+∞∑
k=0

f (k)
s ν2k, with f (0)

s = `(`+ 1), f (1)
s = h(`+ 1)− h(`)− 1, . . . ,

where h(`) ≡ 2`(`2 −m2)/(4`2 − 1). Series expansions for large and real ν and for

large and pure imaginary ν are also known.52 For generic degree of spheroidicity,

Mathematica built-in function SpheroidalEigenvalue, for instance, retrieves

high-precision results.

The Proca equation, on the other hand, was believed not to separate in the

Kerr–Newman spacetime. Until recently, the Hartle–Thorne formalism for slowly–

rotating spacetimes53 was the only available (semi–)analytical technique to study

massive vector bosons in Kerr spacetime.54,55 However, a new ansatz by Lunin for

the separability of Maxwell’s equations in the Myers-Perry-(A)dS family of space-

times56 was further developed by Frolov–Krtouš–Kubizňák,57,58 who realised that
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the separability does extend to the Proca equation (and the Lorenz condition) in the

Kerr–NUT–(A)dS family.43 The LFKK ansatz relies on the existence of hidden sym-

metries and allows Eq. (9) to be separated into ordinary differential equations. This

novel approach has already been applied to separate the torsion-modified Proca

equation (known as Troca equation) in the Chong-Cvetič-Lü-Pope spacetime of

D = 5 minimal gauged supergravity45 and to study the superradiant instability of

massive vector bosons in the Kerr–Newman and Kerr–Sen spacetimes.48

The LFKK ansatz for A takes the strikingly simple form

A = P ·∇Z , (15)

where P is the polarisation tensor and Z is a complex scalar function. P is covari-

antly defined in terms of the metric g and the principal tensor h as

P ·
(
g +

i

λv
h

)
= 1 , (16)

where λv is a complex constant and 1 is the 4–dimensional identity matrix. Given

the ansatz in Eq. (15), the Proca equation and the Lorenz condition allow a multi-

plicative separation of variables for Z,

Z(t, r, θ, φ) = e−iωtRv(r)Qv(θ, φ) , Qv(θ, φ) = Sv(θ)e+imjφ , (17)

where, as before, ω and mj are the eigenvalues of iξ and −iη, respectively. The

separated equations in Kerr–Newman spacetime areb

qr
d

dr

[
∆

qr

dRv

dr

]
+

[
K2
r

∆
+

2λ2
v − qr
qr

σλv − qrµ2
v

]
Rv = 0 , (18)

qθ
sin θ

d

dθ

[
sin θ

qθ

dSv

dθ

]
−
[
K2
θ

sin2 θ
+

2λ2
v − qθ
qθ

σλv − qθµ2
v

]
Sv = 0 , (19)

where

qr = r2 + λ2
v , qθ = λ2

v − a2 cos2 θ ,

σ = a(mj − aω)/λ2
v + ω , Kθ = mj − aω sin2 θ . (20)

Just like Eqs. (13)–(14), Eqs. (18)–(19) are only coupled via the boson mass µv,

the Killing eigenvalues {ω,mj}, the black-hole parameters {M,a,Q} and the com-

plex constant λv. The latter may be loosely interpreted as a separation constantc.

Equation (18) shares two singular points with Eq. (13), r = r±, and features addi-

tional poles at r = ±iλv. When a = 0, Eq. (18) reduces to the associated Legendre

equation provided that λE
v (λE

v − 1) = j(j + 1), which solves for λE
v,− = −j and

λE
v,+ = j+ 1, where the superscript ‘E’ refers to the electric–type states. Indeed, an

bThe explicit form of the polarisation tensor P in the Kerr(–Newman) spacetime can be found
written in Boyer–Lindquist coordinates in Ref. 49.
cIn Ref. 43, the authors first perform the separation of the Lorenz condition. This yields the
separated equations, but with an additional constant, which is the actual separation constant.

When separating the Proca equation, however, the new constant is fixed in terms of the boson

mass µv and the complex constant λv. That is why λv can be referred to as a separation constant.
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asymptotic analysis of Eq. (18) reveals that the angular dependence of the leading-

order form of the spatial part of A is described by the electric–type ‘pure-orbital’

vector spherical harmonics in flat space.59,60 More concretely, λE
v,∓ correspond to

the j = ` ± 1 electric–type states and can be written as a series expansion around

Mµv = 0,46

λE
v,± =

+∞∑
k=0

f
(k)
v,±(Mµv)k , (21)

where

f
(0)
v,+ = j + 1 , f

(0)
v,− = −j

f
(1)
v,+ = − mja

j(j + 1)M
, f

(1)
v,− =

mja

jM
, . . .

The magnetic–type states with j = ` = |mj | can be recovered by taking the limits44

lim
Mµv→0

λM
v = 0 , lim

Mµv→0

µva

λM
v

= mj ± 1 , (22)

where the superscript ‘M’ refers to states with j = |mj |. Unluckily, no series expan-

sion of λM
v around Mµv = 0 is known. In the marginally-bound limit (ω2 = µ2

v),

however, the separation constant takes the value

lim
ω2→µ2

v

λM
v =

2a

mj + 1− aω +
√

(mj + 1− aω)2 + 4aω
, (23)

which vanishes in the Schwarzschild limit.

A potential caveat concerning the use of the LFKK ansatz is the fact that it

might not capture all magnetic–type states. To the best of the authors’ knowledge,

only electric–type states and magnetic–type states with j = |mj | have so far been

reported.43,44,46

4. Stationary scalar and vector clouds

Quasi–bound states have frequencies whose real part is smaller than the boson mass

µ, Re(ω) < µ. Also, they behave as purely ingoing waves in the outer horizon’s

vicinity and decay exponentially at spatial infinity (as measured by a comoving

observer), i.e.

R|y→−∞ ∼ e
−i(ω−mjΩH)y , R|y→+∞ ∼ y

−1e−
√
µ2−ω2y , (24)

where the subscripts ‘s’ and ‘v’ were (and will hereafter be) omitted to avoid clutter

and y is the tortoise coordinate, defined by

y(r) = r +
r2
+

r+ − r−
log(r − r+)−

r2
−

r+ − r−
log(r − r−) . (25)

These states can be labelled by four ‘quantum’ numbers: n ∈ N0, the number of

nodes in the radial direction; `, the orbital angular momentum; j, the total angu-

lar momentum; and mj , the projection of the total angular momentum along the
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black hole’s axis of symmetry, which defines the number of nodes in the azimuthal

direction. In general, only n and mj are legitimate ‘quantum’ numbers in the sense

that they describe values of conserved quantities. Both orbital and total angular

momenta are not conserved in rotating spacetimes. However, it is still convenient

to use ` and j to label scalar (j = `) and vector (j = ` − 1, `, ` + 1) states, always

bearing in mind that they are only physically meaningful in Minkowski spacetime.

When the (phase angular velocity of the) boson and the (horizon angular velocity

of the) black hole synchronise, the oscillatory behavior close to the outer horizon

vanishes and the resulting radial profiles become similar to those of the atomic

orbitals of the electron in a hydrogen atom. In the following, synchronised scalar

and vector states will be labelled with |n, j,mj〉 and |n, `, j,mj〉, respectively.

These synchronised states are only supported by Kerr–Newman black holes in a

particular domain of the 3–parameter space described by the dimensionless quan-

tities {Mµ, aµ,Qµ} or, equivalentlyd, {r+µ, aµ,Qµ} – the latter is the gauge used

in this work. A simple direct–integration shooting method61 suffices to scan the

parameter space in search of synchronised (scalar and vector) states. To impose the

desired behavior close to the outer horizon R is written as a series expansion around

r = r+,

R|r→r+ ∼
+∞∑
k=0

c(k)(r − r+)k , (26)

where c(0) = 1 and the coefficients {c(k)}k>0 are obtained by solving either Eq. (13)

or (18) order by order. The coefficients depend on the boson mass µ, the Killing

eigenvalues {ω,mj}, the black-hole parameters {r+, a,Q} and the corresponding

separation constant. Fixing {`, j,mj} and the black-hole parameters {r+µ,Qµ}, for

instance, Eq. (13) or (18) is then integrated from r = r+(1 + δ+), with δ+ � 1, to

r = r∞, where r∞ stands for the numerical value of the radial coordinate at spatial

infinity.

Numerical solutions with the appropriate boundary conditions at spatial infin-

ity are found via the shooting method. They only exist for discrete values of the

specific angular momentum a, each corresponding to a different node number n.

In other words, bound states between Kerr–Newman black holes and synchronised

states are thus restricted to closed surfaces in the 3-parameter space spanned by

{Mµ, aµ,Qµ}. Fixing Qµ, for instance, these surfaces reduce to line segments in

the 2-parameter space spanned by {Mµ, aµ} or, alternatively, {Mµ,ΩH/µ}. These

are commonly known as existence lines. This paper’s main goal is to determine and

compare the existence lines of synchronised scalar and vector states around Kerr

and Kerr–Newman black holes. The defining features of these lines will be outlined,

without loss of generality, for the Kerr spacetime (Qµ = 0). This is also particularly

convenient for the reader to compare the results presented herein with those already

dEquations (13) and (18) can be written in terms of the black-hole parameters {r+, a,Q} using

∆(r+) = 0.
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reported in the literature.13,14,24,49 The subtleties introduced by a non-vanishing

electric charge will then be briefly addressed.

4.1. Kerr black holes

When the black hole’s gravitational radius, RG = M , is much smaller than the

boson’s reduced Compton wavelength, λC = µ−1, the frequency spectra of scalar

and vector quasi–bound states in Kerr spacetime can be written in the form46,62,63

ω
(s)
|n,j,mj〉 = µ

(
1− α2

2n2
− α4

8n4
+
g(n, j, j)

n3
α4 +

h(j, j)

n3

mja

M
α5 + . . .

)
, (27)

ω
(v)
|n,`,j,mj〉 = µ

(
1− α2

2n2
− α4

8n4
+
g(n, `, j)

n3
α4 +

h(`, j)

n3

mja

M
α5 + . . .

)
, (28)

where α = Mµ � 1 is the so–called gravitational fine–structure constant, n ≡
n+ `+ 1 (n ∈ N) may be referred to as principal quantum number and

g(n, `, j) = − 4(6`j + 3`+ 3j + 2)

(`+ j)(`+ j + 1)(`+ j + 2)
+

2

n+ `+ 1
,

h(`, j) =
16

(`+ j)(`+ j + 1)(`+ j + 2)
.

Note that ω
(v)
|n,j,j,mj〉 = ω

(s)
|n,j,mj〉, which suggests that the magnetic–type vector

states are somehow equivalent to the scalar states with the same total angular

momentum. However, it is worth pointing out that, as opposed to the frequencies of

the electric–type states, computed analytically via matched asymptotic expansions,

Eq. (28) with j = ` is nothing but a conjecture. Nevertheless, all approximations

are fairly accurate when α . 0.2, even for near-extremal Kerr black holes.63

The instability rates of the quasi–bound states are proportional to the factor

sign w, where w ≡ (ω −mjΩH), i.e. the states: grow exponentially with time when

sign w = −1, thus being unstable; decay exponentially with time when sign w =

+1, thus being stable; and are stationary (infinitely long–lived) when w = 0. The

unstable states are superradiant, while the stable states are non-superradiant. The

stationary states, which are synchronised with the black hole, exist precisely at the

threshold of superradiance. Their existence lines will be presented for fixed values

of Qµ in the (Mµ,ΩH/µ)-plane, in which the existence domain of Kerr(–Newman)

black holes is shaded light gray. Note that the contour lines for which

ω
(s)
|n,j,mj〉 = mjΩH , (29)

ω
(v)
|n,`,j,mj〉 = mjΩH (30)

constitute an analytical approximation to the existence lines of scalar and vector

states, respectively. A comparision between analytical and numerical existence lines

of some vector states can be found in Ref. 49. Overall, the agreement is excellent,

except when j = mj and ` < j.
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When Qµ = 0, the existence lines cover the entire range of the specific angular

momentum a, with the endings matching the Schwarzschild (a = 0) and extremal

(a = M) limits. The former (latter) coincides with the minimum (maximum) allowed

value for the gravitational fine–structure constant α = Mµ.

For a given mj , the fundamental state does not possess any node in the radial

direction and always has its total angular momentum completely aligned with the

black hole’s axis of symmetry (j = mj). |0,mj ,mj〉 thus represents fundamental

scalar states. The fundamental vector states are those which cumulatively have the

smallest possible orbital angular momentum, which corresponds to the electric–type

states |0,mj − 1,mj ,mj〉. The existence lines for the fundamental scalar and vector

states with mj = 1, 2, 3 are shown in Figure 1, where the markers pinpoint extreme

(a = M) scalar states obtained by solving analytically Eq. (13) in terms of confluent

hypergeometric functions.21 These particular existence lines represent the threshold

between Kerr black holes which are stable against all states with a given mj and the

ones which are unstable against at least one such state. Fundamental vector states

always lie to the left with respect to the scalar state with the same mj . The ΩH–

interval of the vector states are greater than that of the corresponding scalar cousins

– e.g. it is approximately ten times greater for |0, 0, 1, 1〉 than for |0, 1, 1〉. Put it

differently, for a given boson mass µ, Kerr black holes with sufficiently small horizon

angular velocity may support vector, but not scalar states. These properties are a

natural manifestation of the difference in strength of the superradiant instability,

which is stronger for massive vector bosons.8

Excited states, on the other hand, must lie to the right with respect to the

corresponding fundamental states in the (Mµ,ΩH/µ)–plane. For example, fixing

{n, j,mj}, existence lines migrate towards greater and greater horizon angular veloc-

ities as ` increases. This behavior is illustrated in Figure 2. The impact of the orbital

angular momentum on the existence lines is particularly relevant for near–extremal

Kerr black holes. In the Schwarzschild limit, the lines converge to (M,ΩH) = (0, µ),

which amounts to saying that Schwarzschild black holes do not admit synchronised

(scalar nor vector) bound states.13 Figure 2 also shows the energy ordering of vector

states with fixed j: the electric-type states |n, j + 1, j,mj〉 are more energetic than

the magnetic-type states |n, j, j,mj〉 and the latter more energetic than the electric-

type states |n, j − 1, j,mj〉. This hierarchy matches the one found in the frequency

spectrum of vector quasi–bound states.46

A similar rationale holds true when fixing {`, j,mj} and varying n, as shown in

Figure 3 for the states |n, 1, 1〉 and |n, 0, 1, 1〉, n = 0, 1, 2. The node number n plays

a role somehow akin to that played by the orbital angular momentum `. Large–n

states require larger minimum horizon angular velocities for stationary equilibrium.

Vector states are still less energetic than their scalar cousins. The radial profile of

the states marked with bullets in Figure 3 is depicted in Figure 4. These states

exist for Kerr black holes with r+µ = 0.5 and have n+ 1 extrema. However, while

the extrema of scalar states decrease towards spatial infinity, those of vector states

increase. Vector states thus have wider spatial distributions.
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Kerr black holes

Fig. 1. Existence lines of the first fundamental scalar and vector states with j = mj in the

(Mµ,ΩH/µ)–plane. The gray solid line refers to extremal (a = M) Kerr black holes. The markers
pinpoint extreme (a = M) scalar states found analytically.21 The vector states are less energetic

than the corresponding scalar states, as they correspond to lower values of ΩH.
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Fig. 2. Existence lines of the scalar states |0, `, 1〉, ` = 1, 2, 3 and vector states |0, `, 1, 1〉, ` = 0, 1, 2

in the (Mµ,ΩH/µ)–plane. The gray solid line refers to extremal (a = M) Kerr black holes. The
` = 0 vector states are the least energetic, as they correspond to lower values of ΩH. The energy

increases with `.
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Kerr black holes

Fig. 3. Existence lines of the scalar states |n, 1, 1〉 and vector states |n, 0, 1, 1〉, n = 0, 1, 2 in the

(Mµ,ΩH/µ)–plane. The gray solid line refers to extremal (a = M) Kerr black holes. The n = 0
states are the least energetic, as they correspond to lower values of ΩH. The energy increases with

n. The plot markers are states with r+µ = 0.5, whose radial profiles are shown in Figure 4.
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Fig. 4. Radial profiles of the states marked in Figure 3 (bottom panel), characterized by µr+ =

0.5. The radial functions are normalised so that R(r+) = 1.

The numerical solutions found using the direct–integration shooting method

can be integrated from r = r+(1 − δ+) to r = r−(1 + δ−), with δ− � 1. Since the
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appropriate boundary conditions at both the outer horizon and spatial infinity are

already imposed, there is no freedom left to set the desired behavior at the inner

horizon. The latter rotates with an angular velocity different from ΩH and therefore

synchronisation is not possible there. The radial profiles of the states |0, 1, 1〉 and

|0, 0, 1, 1〉 marked in Figure 3 is shown in Figure 5 in the black hole’s interior.

They exhibit oscillatory character close to r = r−. This suggests that Kerr black

holes with synchronised hair do not possess a smooth Cauchy horizon, but rather a

curvature singularity at r = r−.64
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0.0
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1.5
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-8 -6 -4 -2 0

-0.5

0.0

0.5

Fig. 5. Radial profiles of the states |0, 1, 1〉 (left panel) and |0, 0, 1, 1〉 (right panel) marked in
Figure 3 inside the Kerr black hole, characterized by r+µ = 0.5. The radial functions are normalised

so that R(r+) = 1.

4.2. Kerr–Newman black holes

The state of affairs does not change much when looking at synchronised states

around Kerr–Newman black holes. The existence lines obtained when fixing the

additional parameter Qµ coincide with those found for Kerr black holes (Qµ = 0)

in the (Mµ,ΩH/µ)–plane. However, each point on the line now represents a black

hole with non-vanishing specific electric charge Q/M . Moving towards greater hori-

zon angular velocities, the specific angular momentum a/M decreases, whereas

the specific electric charge Q/M increases. The black holes close to the line

Mµ = 0 may be described as slowly-rotating extremal (Q = M) Reissner-

Nordström black holes. Figure 6 shows where Kerr–Newman black holes with

a/M ∈ {0.50, 0.80, 0.90, 0.95, 0.99} lie on the existence line of the scalar state |0, 1, 1〉
for different values of Qµ. Similar trends are found for vector states.
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Fig. 6. Existence lines of the scalar states |0, 1, 1〉 in the (Mµ,ΩH/µ)–plane for Kerr–Newman

black holes with different normalised charges Qµ. The gray solid line refers to extremal (a = M)

Kerr black holes. The specific electric charge is presented for black holes with different specific
angular momenta.

5. Conclusion

This paper aimed at providing a comparative analysis of stationary scalar and vector

clouds around Kerr and Kerr–Newman black holes. The key physical property of

these bound states is a solidary rotation of the cloud with the black hole. These

configurations are akin to the atomic orbitals of an electron in a hydrogen atom and

can similarly be described in terms of {n, `, j,mj}. This set of quantum numbers

label the existence lines of synchronised states in the parameter space of Kerr–

Newman black holes and are continuously connected Kerr–Newman black holes

with synchronised hair, solutions of Einstein–Maxwell theory minimally coupled to

complex massive.

In general, vector bound states have greater energies than their scalar cousins

and also occur for Kerr–Newman black holes in a wider domain of the normalised

horizon angular velocity. The fundamental states match in both cases the most

unstable quasi–bound state and are characterized by j = mj , n = 0 and the least

possible value for the orbital angular momentum `. The latter two have similar

impact on the cloud’s energy for fixed {j,mj}. Additionally, states with vanishing

orbital angular momentum (` = 0) are exclusive of vector bosons and are linked to

a non–vanishing intrinsic angular momentum.

The motivation behind a new glance at stationary clouds around Kerr–Newman

black holes follows from the recent separation of the Proca equation in the Kerr–

NUT–(A)dS family of spacetimes. It would be of interest to apply the newfound

ansatz to find synchronised states in other spacetimes and to construct stationary
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clouds in the time domain.
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