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bCentro de Matemática, Universidade do Minho,

4710-057, Braga, Portugal

E-mail: herdeiro@ua.pt, jmiguel.oliveira@ua.pt

Abstract: Electromagnetic duality is discussed in the context of Einstein-Maxwell-scalar

(EMS) models including axionic-type couplings. This family of models introduces two non-

minimal coupling functions f(φ) and g(φ), depending on a real scalar field φ. Interpreting

the scalar field as a medium, one naturally defines constitutive relations as in relativistic

non-linear electrodynamics. Requiring these constitutive relations to be invariant under the

SO(2) electromagnetic duality rotations of Maxwell’s theory, defines 1-parameter, closed

duality orbits in the space of EMS models, connecting different electromagnetic fields in

“dual” models with different coupling functions, but leaving both the scalar field and the

spacetime geometry invariant. This mapping works as a solution generating technique,

extending any given solution of a specific model to a (different) solution for any of the

dual models along the whole duality orbit. We illustrate this technique by considering the

duality orbits seeded by specific EMS models wherein solitonic and black hole solutions are

known. For dilatonic models, specific rotations are equivalent to S-duality.

Keywords: Classical Theories of Gravity, Duality in Gauge Field Theories

ArXiv ePrint: 2005.05354

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2020)130

mailto:herdeiro@ua.pt
mailto:jmiguel.oliveira@ua.pt
https://arxiv.org/abs/2005.05354
https://doi.org/10.1007/JHEP07(2020)130


J
H
E
P
0
7
(
2
0
2
0
)
1
3
0

Contents

1 Introduction 1

2 Electromagnetic duality in the EMS model 3

2.1 Fields and equations of motion 3

2.2 Constitutive relations 4

2.3 Duality map 5

3 Examples of duality orbits 7

3.1 Closed form solution for a scalarised electric charge in flat spacetime 7

3.2 Closed form Maxwell-scalar solitons in flat spacetime 9

3.3 Closed form dilatonic solution in flat spacetime 10

3.4 The GMGHS black hole 11

3.5 Other models with scalarised and axionic black holes 12

4 Conclusions 13

1 Introduction

The parallelism between the laws that rule the electric and magnetic fields (E,B), in the

absence of sources, is transparent from Maxwell’s equations. In vacuum, these equations

are invariant under electromagnetic duality :

E + iB −→ eiβ(E + iB) , (1.1)

which amounts to an SO(2) rotation by an angle β. Two real β-independent quantities,

quadratic in the electromagnetic fields, can be formed, namely:

1

2
(E + iB) · (E + iB)∗ =

1

2
(E2 + B2) ,

1

2i
(E + iB)× (E + iB)∗ = −E×B . (1.2)

This shows that, despite the change in the fields, electromagnetic duality preserves the

electromagnetic energy and momentum densities.

Concrete formulations of electromagnetic duality appeared in the wake of Maxwell’s

equations. In 1893, Heaviside observed these equations are invariant under the discrete

transformation (E,B)→ (−B,E) [1], which corresponds to (1.1) for β = π/2. This invari-

ance was generalised to the continuous transformation (1.1) by Larmor [2]. It was studied

in the context of general relativity by Rainich [3] and revisited by Misner and Wheeler in

their attempt to understand classical physics as geometry, wherein the terminology duality

rotation was introduced [4]. In its relativistic formulation, (1.1) can be expressed as

F −→ cosβF + sinβF̃ , (1.3)
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where F denotes the Maxwell 2-form and F̃ denotes its Hodge dual. This formulation

makes clear that duality rotations remain a symmetry of Maxwell’s equations in curved

spacetime: the covariant theory remains self-dual.

Electromagnetic duality rotations are not ordinary rotations in 3-space. They define

an equivalence class of electromagnetic fields; that is, there are different (E,B) solutions

to Maxwell’s equations which have the same energy and momentum density. However,

they are only an invariance of Maxwell’s equations in vacuum. For instance, applying (1.3)

with β = π/2 to the electric field of a static, point electric charge Q, in standard spherical

coordinates in flat spacetime (t, r, θ, ϕ), leads to

F =
Q

r2
dt ∧ dr −→ F̃ = −Q sin θdθ ∧ dϕ , (1.4)

which is the field of a static, magnetic monopole, with magnetic charge Q. Thus, preserving

the duality in the presence of electric charges requires magnetic monopoles. From a different

reasoning, Dirac noted that the existence of magnetic monopoles could explain electric

charge quantisation [5]. Up to now, however, magnetic monopoles have no observational

support, and thus electromagnetic duality is an unbroken symmetry in vacuum only. This

example illustrates how the β = π/2 rotation, corresponding to the discrete symmetry

observed by Heaviside, exchanges electric and magnetic fields.

It is interesting to consider how duality rotations are affected if one generalises

Maxwell’s theory, modifying its equations of motion. Gibbons and Rasheed considered

the case of relativistic non-linear electrodynamics [6]. They obtained the conditions under

which a theory of non-linear electrodynamics, possibly coupled to gravity, has invariant

equations of motion under duality rotations, and observed this is the case for Born-Infeld

theory [7]. This is a rather exceptional theory, see e.g. [8], which naturally appears as the

effective field theory describing open string excitations in string theory [9]. In this context,

a low energy effective field theory is an Einstein-Maxwell-dilaton-axion model, where the

dilaton is a scalar field and the axion a pseudo-scalar field. In [6] it was shown this model

is still self-dual under electromagnetic duality rotations as long as the axion and dilaton

mix in an appropriate way under this transformation. Thus, electromagnetic duality maps

solutions of the Einstein-Maxwell-dilaton-axion equations to different solutions of the same

model — see also [10–12].

There is, however, a broader notion of duality. Instead of considering self-dual models,

which are left invariant (at least at the level of the equations of motion), by some trans-

formation, we can consider dual theories : two different models related by a non-trivial

duality map. Considering dual theories has been particularly rewarding when the mapping

is a strong-weak coupling one. This allows relating a model in the weak coupling regime,

wherein perturbative computations are possible, to a technically more challenging strongly

coupled model, potentially extracting non-trivial information from the latter. Famous ex-

amples include the Sine-Gordon–Thirring duality [13], S-duality in string theory [14] and,

of course, AdS-CFT [15]. The duality map, moreover, can be used at the level of specific

solutions, as a means to obtain a solution of one of the models from a known solution of

the dual model. In fact, it is often a non-trivial and useful solution generating technique.
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In this paper we shall consider a family of models for which electromagnetic duality

provides a simple realisation of “dual theories”. Then, we shall use this mapping as a

solution generating technique. The family is the Einstein-Maxwell-scalar (EMS) class of

models, whose action reads

S =
1

4π

∫
d4x
√
−g
(
R

4
− f(φ)

4
FµνF

µν +
g(φ)

4
FµνF̃

µν − 1

2
∂µφ∂

µφ

)
, (1.5)

where Fµν , F̃µν denote the components of F, F̃, φ is a scalar field, R is the Ricci scalar of

the metric g and f(φ) and g(φ) denote unspecified coupling functions. In the following we

shall denote a solution of (1.5), for a specific choice of f(φ), g(φ) as

[g,A, φ; f(φ), g(φ)] , (1.6)

where F = dA.

Many interesting special cases of the family of models (1.5) have been considered in the

literature. For instance, in string theory, supergravity and Kaluza-Klein theory one often

finds dilatonic couplings, f(φ) ∼ eaφ; the axion coupling, g(φ) ∼ φ, is motivated by the

Peccei-Quinn proposal to solve the strong CP problem [16]; recent work on spontaneous

scalarisation motivates couplings obeying df/dφ(φ = 0) = 0, starting with [17].

We shall establish an electromagnetic duality transformation defined by an angle β,

Dβ , that maps any solution (1.6) of a certain EMS model (1.5) to a different solution of a

different (dual) model, within the same family,

[g,A, φ; f(φ), g(φ)]
Dβ−→ [g,A′, φ; fβ(φ), gβ(φ)] . (1.7)

The rotation angle β parameterises orbits in the space of EMS models, that we shall call

duality orbits. This space is spanned by the functions f, g. The orbits are closed and relate

dual models. On the one hand, the electromagnetic variables and the couplings f, g are

affected by the mapping, transforming from the original A and f(φ), g(φ) to a new A′

and fβ(φ), gβ(φ), all of which depend on β. On the other hand, the metric and the scalar

field shall remain invariant along the whole duality orbit. In particular, we shall consider

the duality orbits passing through some EMS models recently studied, wherein black hole

solutions [17–21] and solitonic solutions [22] (see also [23, 24]) have been found

This paper is organised as follows. In section 2, we present our formulation of the elec-

tromagnetic duality for the EMS model, establishing the map between different solutions

in models with different coupling functions, preserving the metric and the scalar field. This

defines the duality orbits. In section 3 we present some examples wherein this duality is

applied, using explicitly known solutions of illustrative EMS models, to the obtain duality

orbits. Conclusions and remarks are presented in section 4.

2 Electromagnetic duality in the EMS model

2.1 Fields and equations of motion

Consider the EMS family of models described by the action (1.5). We shall be inter-

ested in stationary asymptotically flat spacetimes, with associated asymptotically timelike
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Killing vector field kµ. The scalar field can be regarded as endowing spacetime with a

medium, making the electric permittivity and the magnetic permeability spacetime depen-

dent. Then, one uses the standard formalism for electrodynamics in a medium, definin-

ing the electric intensity, magnetic induction, electric induction and magnetic intensity

4-covectors as, respectively:1

Eµ = kνFµν , (2.1)

Bµ =
1

2
εµαβνF

αβkν = kνF̃µν , (2.2)

Dµ = kνGµν(φ) , (2.3)

Hµ =
1

2
εµαβνG

αβ(φ)kν = kνG̃µν , (2.4)

where

Gµν(φ) ≡ − ∂L
∂Fµν

= f(φ)Fµν − g(φ)F̃µν , (2.5)

and L is the Lagrangian density. The matter equations of motion obtained from (1.5) read:

∇[µEν] = 0, (2.6)

∇[µHν] = 0, (2.7)

∇µ
(
Dµ

V

)
= 0, (2.8)

∇µ
(
Bµ

V

)
= 0, (2.9)

�2φ =
1

4

df(φ)

dφ
FµνF

µν − 1

4

dg(φ)

dφ
F̃µνF

µν , (2.10)

where V = −kµkµ is the norm of the Killing vector field.

2.2 Constitutive relations

For electrodynamics in a medium, the constitutive relations specify how the electric and

magnetic inductions relate to the electric and magnetic intensities. From relations (2.3)

and (2.4), the fields Eµ and Hµ are related to Dµ and Bµ fields through the following

constitutive relations:2 (
E

H

)
=

1

f

(
1 g

g f2 + g2

)(
D

B

)
= M

(
D

B

)
. (2.11)

M shall be called the constitutive matrix. For f = 1 and g = 0, M becomes the identity

matrix, and we recover standard vacuum electrodynamics, with E = D and H = B (recall

we use units with c = 1). In general, however, E,H depend on both D,B. This is

typically the case in non-linear materials and non-linear optics. Thus, one may envisage

the non-minimally coupled scalar field as endowing spacetime with a non-linear material

environment.
1The fields D and H here correspond to the fields E′ and B′ in [24].
2These relations can be interpreted as a generalisation of the relations in the Einstein-Maxwell-Dilaton-

Axion model of [6] as can be seen if we replace f = e−φ and g = a. The sign differences are simply a

consequence of the field definitions.
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2.3 Duality map

We are interested in finding a duality transformation Dβ that keeps equations (2.6)–(2.10)

invariant in an appropriate sense. We consider duality SO(2) rotations, by an angle β,

acting on both the intensities and the inductions in the same way, namely [6]3(
E

H

)
Dβ−→

(
E′

H ′

)
= S

(
E

H

)
, (2.12)(

D

B

)
Dβ−→

(
D′

B′

)
= S

(
D

B

)
, (2.13)

where

S =

(
cosβ sinβ

− sinβ cosβ

)
, (2.14)

or, equivalently,

Fµν
Dβ−→ F ′µν = cosβ Fµν + sinβ G̃µν , (2.15)

Gµν
Dβ−→ G′µν = cosβ Gµν + sinβ F̃µν . (2.16)

Comparing (2.15) with (1.3) one observes this is the standard duality rotation of Maxwell’s

theory. From (2.11), it follows that the constitutive matrix becomes

M
Dβ−→M ′ = SMS−1 , (2.17)

which reads, explicitly

M ′=
1

f

(
f2 sin2β+(g sinβ+cosβ)2 g cos(2β)+(f2+g2−1)sin(2β)/2

g cos(2β)+(f2+g2−1)sin(2β)/2 f2 cos2β+(g cosβ−sinβ)2

)
. (2.18)

Thus, the duality rotation with an arbitrary angle β yields this new constitutive matrix.

The duality orbit of models is defined as the continuous sequence of EMS models (1.5)

where the coupling functions are

(f(φ), g(φ))
Dβ−→ (fβ(φ), gβ(φ)) , (2.19)

such that

M ′ =
1

fβ

(
1 gβ
gβ f

2
β + g2β

)
. (2.20)

3In a medium, the field E is dual to H while D is dual to B. This is because the dual fields share the

same equation of motion, so a linear combination of them will still respect the same equation. For example,

∇[µE
′
ν] = cos β∇[µEν] + sinβ∇[µHν] = 0.
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That is, the constitutive relations have the same functional form in terms of the coupling

functions, along the whole duality orbit. Comparing (2.18) with (2.20) yields

fβ =
f

f2 sin2 β + (g sinβ + cosβ)2
, (2.21)

gβ =
1

2

2g cos(2β) + (f2 + g2 − 1) sin(2β)

f2 sin2 β + (g sinβ + cosβ)2
. (2.22)

The orbit of dual theories is therefore the 1-parameter family of actions

Sβ =
1

4π

∫
d4x
√
−g
(
R

4
− 1

4
fβ(φ)F ′µνF

′µν +
1

4
gβ(φ)F ′µνF̃

′µν − 1

2
∂µφ∂

µφ

)
, (2.23)

where S0 equals the original action (1.5) and (g,A′, φ), where F′ = dA′, are taken as the

independent fields in a variational principle. The tensor G′µν is found, as before, by the

variation of the Lagrangian density in (2.23), Lβ , with respect to F′:

G′µν(φ) ≡ −
∂Lβ
∂F ′µν

= fβ(φ)F ′µν − 1

4
gβ(φ)F̃ ′µν . (2.24)

From the discussion above, it follows that if

[g,A, φ; f(φ), g(φ)] , (2.25)

is a solution of (1.5), then

[g,A′, φ; fβ(φ), gβ(φ)] (2.26)

is a solution of the Maxwell equations obtained from (2.23). It remains to check the scalar

and Einstein equations are also obeyed for the model (2.23).

The scalar equation of motion derived from (2.23) is

�2φ =
1

4

dfβ
dφ

F ′µνF
′µν − 1

4

dgβ
dφ

F̃ ′µνF
′µν . (2.27)

Using the identities F ′µνF
′µν = 2(B′2 − E′2)/V and F̃ ′µνF

′µν = −4E′ · B′/V and then

reverting back to the original fields, it follows (2.27) reduces to the original equation of

motion (2.10) for the scalar field, which is obeyed, since (2.25) is a solution of (1.5) by

assumption.

It is also straightforward to check that the Einstein equations of (1.5) and (2.23) are

the same. The energy-momentum tensor of the model (2.23), T ′µν is obtained from the

action by differentiating with respect to the metric, which is unchanged by the duality

rotation. Then, the functional form of the energy-momentum tensor is the same as that of

the model (1.5), Tµν , and they are mapped simply replacing (A, f, g)→ (A′, fβ , gβ). One

can then show that

T ′µν = fβ

(
F ′µαF

′α
ν −

1

4
gµνF

′
στF

′στ
)

+ ∂µφ∂νφ−
1

2
gµν∂αφ∂

αφ

= f

(
FµαF

α
ν −

1

4
gµνFστF

στ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ

+
f2 sinβ(g sinβ + cosβ)

f2 sin2 β + (g sinβ + cosβ)2

(
FµαF̃

α
ν + FναF̃

α
µ −

1

2
gµνFστ F̃

στ

)
, (2.28)
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Figure 1. Duality orbits in the space of EMS models, for different values of the fiducial EMS

model (f, g). The self-dual model, Maxwell’s theory, is the black dot at (1, 0).

by a straightforward application of the transformations. The last term of this equation

vanishes because for any 2-form we have that FµαF̃
α
ν = 1

4gµνFαβF̃
αβ . Then, as expected,

T ′µν = f

(
FµαF

α
ν −

1

4
gµνFστF

στ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ = Tµν . (2.29)

We have thus established the duality orbit of solutions (1.7), under (2.15) and (2.19), the

latter explicitly given by (2.21)–(2.22).

A represention of the duality orbits is obtained as follows. Consider a two dimensional

space parameterised by (x, y) = (fβ , gβ) as an illustration of the space of EMS models. It

is simple to check that the duality orbits defined by (2.21)–(2.22) obey:

(fβ −A)2 + g2β = A2 − 1 , where A ≡ 1 + f2 + g2

2f
. (2.30)

Thus, they are circles, passing through the fiducial EMS model (f0, g0) = (f, g). The radius

of the circles vanishes at the self-dual model (f0, g0) = (1, 0), that is, Maxwell’s theory.

This is illustrated in figure 1.

3 Examples of duality orbits

3.1 Closed form solution for a scalarised electric charge in flat spacetime

Our first example is a scalarised electric charge solution found in [17], for the model (1.5)

in flat spacetime and with coupling functions

f(φ) =
1

1− φ2
, g(φ) = 0 . (3.1)

– 7 –
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The scalar field and electric potential are radial functions

φ(r) = ζ sin

(
Q

r

)
, V (r) =

Q

r
+ ζ2

[
1

4
sin

(
2Q

r

)
− Q

2r

]
, (3.2)

from which the electric intensity and induction have only the radial component:

Er =
Q

r2

[
1− ζ2 sin2

(
Q

r

)]
, Dr = f(φ)Er =

Q

r2
, (3.3)

whereas the magnetic induction and intensity vanish

B = 0 = H . (3.4)

Observe that whereas the electric intensity is sensitive to the scalar field, the electric

induction has the standard Coulombian form, and it is the same as when ζ = 0.

The duality orbit that goes through the model (3.1) has:

fβ =
1− φ2

1− 2 cos2 βφ2 + cos2 βφ4
, gβ =

φ2(2− φ2) sinβ cosβ

1− 2 cos2 βφ2 + cos2 βφ4
. (3.5)

Along this sequence of dual models, the seed (3.2)–(3.4) is mapped, generically, to dyonic

solutions. For an arbitrary β, the fields along this orbit are:

E′r =
Q

r2

[
1− ζ2 sin2

(
Q

r

)]
cosβ , D′r =

Q

r2
cosβ , (3.6)

B′r = −Q
r2

sinβ , H ′r = −Q
r2

[
1− ζ2 sin2

(
Q

r

)]
sinβ . (3.7)

Again, one observes the Coulombic form of the electric and magnetic induction fields, with

electric and magnetic charges, respectively, Qβ ≡ Q cosβ and Pβ ≡ Q sinβ, such that

Q2
β + P 2

β ≡ Q2 = constant , (3.8)

along the whole duality orbit.

Within this orbit there is, however, a pure magnetic solution at β = π/2, wherein the

coupling functions are

fπ/2(φ) =
1

f(φ)
= 1− φ2 , gπ/2(φ) = 0 , (3.9)

the electric intensity and induction vanish

E′ = 0 = D′ , (3.10)

and the magnetic induction and intensity are only radial functions:

B′r = −Q
r2
, H ′r = fπ/2(φ)Br = −Q

r2

[
1− ζ2 sin2

(
Q

r

)]
. (3.11)

We thus found a pure magnetic solution for the model with couplings (3.9). The original

electric charge Q becomes the magnetic charge just as in the Maxwell theory example (1.4).

– 8 –
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For β = π we would get the original purely electric solution but with opposite charge sign

while for β = 3π/2 we get the pure magnetic solution once again with opposite charge sign.

For any β value between these, we get a dyon whose magnetic and electric charges relative

contributions depend on how close β is to the values mentioned above. There is a full orbit

of solutions that can be obtained from the original solution.

Let us close this example with two observations. First, this formalism unveils the fact

that although the original solution has a non-Coulombian electric intensity, the electric

induction is Coulombian. The same holds along the whole duality orbit. Second, at

β = π/2 the f(φ) coupling function is mapped into its inverse, whereas g(φ) remains

zero. This is a generic feature starting with arbitrary f(φ) and vanishing g(φ), as can be

appreciated from (2.21)–(2.22):

fβ
β=π/2

=
f

f2 + g2
g=0
=

1

f
, (3.12)

gβ
β=π/2

= − g

f2 + g2
g=0
= 0 . (3.13)

Since f(φ) defines the coupling strength of the Maxwell field, this particular value of the

map is an example of a strong ↔ weak coupling duality, with an electric ↔ magnetic

mapping, reminscent of the Montonen-Olive duality [25].

3.2 Closed form Maxwell-scalar solitons in flat spacetime

Our second example uses a seed configuration found in [22]. It describes a purely electric,

static, spherically symmetric soliton solution of (1.5) in flat spacetime, with

f(φ) =
1

(1− αφ)4
, g(φ) = 0 . (3.14)

The scalar field reads

φ =
Q

αQ+ r
, (3.15)

the electric intensity and induction have again only a radial component

Er =
Qr2

(r + αQ)4
, Dr = f(φ)Er =

Q

r2
, (3.16)

whereas the magnetic induction and intensity again vanish

B = 0 = H . (3.17)

The f(φ) coupling (3.14) diverges at the origin r = 0; but all physical quantities are regular,

such as the energy density and the electric intensity. Indeed, this solution was interpreted

in [22] as a de-singularisation of the Coulomb solution of Maxwell’s theory. Nonetheless,

the electric induction D is again Coulombian and diverges at the origin.

The duality orbit that goes through the model (3.14), has:

fβ =
(1− αφ)4

sin2 β + cos2 β(1− αφ)8
, gβ =

[1− (1− αφ)8] sinβ cosβ

sin2 β + cos2 β(1− αφ)8
. (3.18)
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Once more, the duality map will generate dyonic solutions from the seed (3.15)–(3.17).

The fields for this orbit are:

E′r =
Qr2

(r + αQ)4
cosβ , D′r =

Q

r2
cosβ , (3.19)

B′r = −Q
r2

sinβ , H ′r = − Qr2

(r + αQ)4
sinβ . (3.20)

A pure magnetic solution is obtained β = π/2. The dual model at this β value has couplings

fπ/2(φ) =
1

f(φ)
= (1− αφ)4 , gπ/2(φ) = 0 , (3.21)

and the dual configuration has vanishing electric intensity and induction

E′ = 0 = D′ , (3.22)

and a spherical magnetic induction and intensity

B′r = −Q
r2
, H ′r = fπ/2(φ)B′r = − Qr2

(r + αQ)4
. (3.23)

The magnetic induction of the dual solution B′r is Coulombic and diverges at r = 0 while

H′ is regular. All physical quantities are regular, including the energy density, making this

a regular magnetic soliton.

A remark is in order, concerning the no-go theorems in [24] for strictly stationary

solitons. It was shown in [24] that, as long as the couplings f(φ) and g(φ) do not diverge,

there are no solitonic solutions. However, a regular solitonic solution with a diverging

f(φ) can be duality rotated into a solution of a model wherein the new coupling does not

diverge. In this example, the new non-minimal coupling (3.21) actually vanishes instead of

diverging, when the original coupling f(φ) diverges. This solution circumvents the soliton

no-go theorem by being in the duality orbit of a solution with divergent coupling.

3.3 Closed form dilatonic solution in flat spacetime

As yet another example, consider the spherically symmetric solution discussed in [22] for a

dilatonic coupling, f = e−αφ, in flat spacetime. The scalar field and electric potential read

φ = − 2

α
ln

(
1 +

αQ

2r

)
, V (r) = − 2Q

αQ+ 2r
, (3.24)

whereas the electric intensity and induction fields are

Er =
4Q

(αQ+ 2r)2
, Dr = f(φ)Er =

Q

r2
. (3.25)

The magnetic induction and intensity are trivial

B = 0 = H . (3.26)
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In this case, the duality orbit that goes through this model, has:

fβ =
1

eαφ cos2 β + e−αφ sin2 β
, gβ = − sin 2β sinhαφ

eαφ cos2 β + e−αφ sin2 β
. (3.27)

The fields obtained from the seed solution are, along the duality orbit,

E′r =
4Q

(αQ+ 2r)2
cosβ , D′r =

Q

r2
cosβ , (3.28)

B′r = −Q
r2

sinβ , H ′r = − 4Q

(αQ+ 2r)2
sinβ . (3.29)

The reasoning is the same and we can see there is, once again, a magnetic solution for

β = π/2 with trivial electric intensity and induction.

3.4 The GMGHS black hole

We now consider a curved spacetime generalisation of the example in the last subsection.

This is the well known dilatonic electrically charged, spherically symmetric black hole (in

four spacetime dimensions), obtained in the model (1.5) with

f(φ) = e−2φ , g(φ) = 0 . (3.30)

It was first discussed by Gibbons and Maeda in [26] and later by Garfinkle, Horowitz and

Strominger [27]. We shall call it the GMGHS black hole. The metric reads

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
1− r−

r

)
(dθ2 + sin2 θdϕ2) , (3.31)

where M is the black hole mass, Q is the electric charge, r− = e2φ∞Q2/M and φ∞ is the

asymptotic value of the scalar field. The scalar field and the gauge potential read

e2φ = e2φ∞
(

1− r−
r

)
, A = −Q

r
e2φ∞dt , (3.32)

whereas the electric intensity and induction are

Er =
Q

r2
e2φ∞ , Dr = f(φ)Er =

Q

r(r − r−)
, (3.33)

and the magnetic induction and intensity vanish:

B = 0 = H . (3.34)

We remark that D does not have a Coulombic form, unlike the above cases. This is

because the radial coordinate in (3.31) is not the areal radius. Using the areal radius

r∗ = r
√

1− r−/r, the Coulombic form Dr = Q/r∗2 is recovered.

The duality orbit that goes through this model, has the form (3.27) with α = 2. The

fields obtained along the duality orbit, seeded by the GMGHS solution are

E′r =
Q

r2
e2φ∞ cosβ , D′r =

Q

r(r − r−)
cosβ , (3.35)

B′r = − Q

r(r − r−)
sinβ , H ′r = −Q

r2
e2φ∞ sinβ . (3.36)
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Once again for β = π/2 we obtain a purely magnetic configuration in the dual model with

fπ/2(φ) =
1

f(φ)
= e2φ , g(φ) = 0 . (3.37)

The magnetic induction and intensity are now non-trivial:

B′r = − Q

r(r − r−)
, H ′r = fπ/2(φ)B′r = −Q

r2
e2φ∞ , (3.38)

whereas the electric intensity and induction are trivial

E′ = 0 = D′ . (3.39)

This magnetic dilatonic black hole configuration was first obtained by Garfinkle, Horowitz

and Strominger in [27], wherein the electric configuration was actually obtained by this

duality rotation. The electromagnetic duality transformation of the EMS model reduces,

for this specific choice of β, to this simple example of S-duality in low energy string theory,

amounting to the change φ→ −φ, which in this context is the dilaton field.

We can just as easily find a dyon black hole for any other angle β, but in this case g(φ)

becomes generically non-vanishing. As a concrete example take β = π/4. Then, the model

along the duality orbit has fβ = 1/ cosh 2φ, gβ = − tanh 2φ and its action is, explictly:

Sπ
4

=
1

4π

∫
d4x
√
−g
(
R

4
− 1

4 cosh 2φ
F ′µνF

′µν − tanh 2φ

4
F ′µνF̃

′µν − 1

2
∂µφ∂

µφ

)
. (3.40)

This model admits a dyonic black hole solution with the GMGHS geometry and scalar

field, (3.31) and (3.32), and the electromagnetic field (3.35)–(3.36) with β = π/4, which in

covariant form reads:

F = −Q
′

r2
e2φ∞dt ∧ dr +Q′ sin θdθ ∧ dϕ ⇔ A = −Q

′

r
e2φ∞dt−Q′ cos θdϕ , (3.41)

where Q′ = Q/
√

2. Comparing with (1.4) one can confirm this describes an electric

plus magnetic charge, a dyon. As far as we are aware, such closed form solution within

model (3.40) has not been discussed previously in the literature. Moreover, one can com-

pute other exact, closed form solutions of this model, e.g. rotating charged black holes.

3.5 Other models with scalarised and axionic black holes

Having understood the duality orbits, let us mention a set of other EMS models (1.5)

wherein numerical black hole solutions have been constructed in the literature and whose

duality orbits can be constructed. Examples include the following coupling functions:

1. Exponential coupling: fαE(φ) = e−αφ
2
, g(φ) = 0;

2. Power-law coupling: fαP (φ) = 1− αφ2, g(φ) = 0;

3. Fractional coupling: fαF (φ) = 1
1+αφ2

, g(φ) = 0;

4. Higher power-law coupling: fαHP (φ) = 1− αφ4, g(φ) = 0;
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5. Axionic coupling: f(φ) = 1, gαA = αφ.

6. Axionic-type coupling: f(φ) = 1, gαAT = αφ2.

In all cases α is a coupling constant. Couplings 1-3 were discussed in [17–19] in the

context of EMS models allowing spontaneous scalarisation of charged black holes (see also,

e.g. [28–42]); all these coupling functions have the same behaviour for small values of

αφ2. Coupling 4 was discussed in [21]; it does not allow spontaneous scalarisations but it

exhibits an interesting two-branch space of solutions with scalar hair, co-existing with the

standard Reissner-Nordström black hole, in a trinity of non-uniqueness. Black holes with

coupling 5 were first discussed in [43] and revisited recently in [20], wherein coupling 6 was

also discussed, again in the context of spontaneous scalarisation of charged black holes.

Various solutions for flat spacetime with coupling 5 were also found and discussed in [44]

and [45]. See also, e.g., [46] for other forms of the scalar coupling f(φ), in the context of

holography.

We shall not analyse the duality orbits for all these models in detail, but let us make

some comments at the rotation point β = π/2. One can see the duality relates different

couplings through the relations (3.12)–(3.13). For instance, we get the following identities:

fαEπ/2 = f−αE , (3.42)

fαPπ/2 = f−αF , (3.43)

fαFπ/2 = f−αP . (3.44)

Thus, the exponential squared coupling enjoys a type of S-duality symmetry analogous to

that of the dilatonic model of section 3.4, via (3.42), whereas the power law and fractional

couplings are along the same duality orbit, and can be mapped into each other by also

changing the sign of the coupling constant α. At β = π/2, moreover, the purely electric

solutions of models 1-4, as before, become purely magnetic, with:

E′ = H = 0 , (3.45)

B′ = −D = −fE (3.46)

These results are in agreement with the Bekenstein type identities found in [19], where

both f,φφ and φf,φ must have the opposite sign of FµνF
µν for solutions with a scalar profile

to exist. For purely electric (F 2 < 0) or magnetic (F 2 > 0) solutions, these conditions

imply a different sign for the coupling constant α for the couplings mentioned above.

4 Conclusions

Understanding the symmetries of any physical theory is always of great importance. Elec-

tromagnetic duality is a symmetry of the vacuum Maxwell equations which has led to

important insights and generalisations in classical and quantum field theory, as well as in

relativistic gravity. In this paper we have considered EMS models described by the ac-

tion (1.5) for which, in general, electromagnetic duality rotations are not a symmetry of
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a specific model, but define an orbit in the space of EMS models, which encompasses all

possible choices for the coupling functions f(φ) and g(φ). This orbit is a one parameter

closed orbit. There can be fixed points of the duality action, which are self-dual theories.

In our analysis, the only such point corresponds to Maxwell’s theory, which, in our setup

has f = 1 and g = 0. For this self-dual theory, the orbit shrinks down to a point.

For self-dual theories, electromagnetic duality relates different solutions of the same

theory. For non-self dual theories, electromagnetic duality relates different solutions of

different theories. In either case, electromagnetic duality is a useful solution generating

technique. In the case considered herein, the duality map generically relates models with

different coupling functions and electromagnetic fields, leaving the scalar field and back-

ground geometry unchanged.

To illustrate how the duality orbits can be used as a solution generating technique

we have considered some simple electrically charged solitonic and black hole solutions,

obtaining the corresponding dyons along the duality orbit and, in particular, pure magnetic

configurations that emerge at the particular rotation corresponding to β = π/2. In these

examples, the models had a vanishing coupling g(φ); but since F̃µνF
µν = 0 for these purely

electric, spherically symmetric solutions, these are also solutions for any g(φ) coupling

one may choose. A different orbit of solutions exists for each possible g(φ). We have

also obtained a new dyonic black hole solution of the model (3.40), which illustrates the

usefulness of this technique.

As a direction of further research, it could be instructive to use this approach for a two

field model, inspired by the dilaton-axion model in [6], but with general couplings instead

of the typical dilaton-axion couplings.
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