
J
H
E
P
0
4
(
2
0
2
0
)
1
8
0

Published for SISSA by Springer

Received: February 17, 2020

Revised: March 31, 2020

Accepted: April 5, 2020

Published: April 28, 2020

Spinning black holes in shift-symmetric Horndeski

theory

Jorge F.M. Delgado, Carlos A.R. Herdeiro and Eugen Radu
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Abstract: We construct spinning black holes (BHs) in shift-symmetric Horndeski theory.

This is an Einstein-scalar-Gauss-Bonnet model wherein the (real) scalar field couples lin-

early to the Gauss-Bonnet curvature squared combination. The BH solutions constructed

are stationary, axially symmetric and asymptotically flat. They possess a non-trivial scalar

field outside their regular event horizon; thus they have scalar hair. The scalar “charge”

is not, however, an independent macroscopic degree of freedom. It is proportional to the

Hawking temperature, as in the static limit, wherein the BHs reduce to the spherical

solutions found by Sotirou and Zhou. The spinning BHs herein are found by solving non-

perturbatively the field equations, numerically. We present an overview of the parameter

space of the solutions together with a study of their basic geometric and phenomenological

properties. These solutions are compared with the spinning BHs in the Einstein-dilaton-

Gauss-Bonnet model and the Kerr BH of vacuum General Relativity. As for the former,

and in contrast with the latter, there is a minimal BH size and small violations of the

Kerr bound. Phenomenological differences with respect to either the former or the latter,

however, are small for illustrative observables, being of the order of a few percent, at most.
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1 Introduction

Scalar-tensor theories of gravity have attracted much attention since the pioneering exam-

ple of Brans-Dicke theory [1]. The physical relevance of such models could be tested, in

particular, in strong gravity systems, namely black holes (BHs). On the one hand, as it

turns out, the BH solutions in Brans-Dicke theory, as well as in a large class of models where

the scalar field is non-minimally coupled to the Ricci scalar, are the same as in General

Relativity (GR) [2, 3]. On the other hand, BHs in extended scalar-tensor models, namely

those with higher curvature corrections are, generically, different from those of GR [4].
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Within the class of scalar-tensor theories that possess higher curvature corrections,

those including a real scalar field, φ, with a canonical kinetic term, non-minimally coupled

to the Gauss-Bonnet (GB) quadratic curvature invariant,

R2
GB ≡ RαβµνRαβµν − 4RµνR

µν +R2 , (1.1)

have attracted considerable interest. This is the class of Einstein-scalar-GB (EsGB) models

described by the action

S =

∫
d4x
√
−g
[
R− 1

2
∂µφ∂

µφ+ αf(φ)R2
GB

]
, (1.2)

where α is a dimensionful coupling constant and f(φ) is a dimensionless coupling function.

In these models, the GB term becomes dynamical in four spacetime dimensions, and the

equations of motion remain second order, which is typically not the case when higher

curvature corrections are included in the action. Moreover, the GB term as a higher order

correction is suggested from string theory [5].

The status of BHs in the family of models (1.2) depends on the properties of f(φ); its

choice determines if φ = 0 is a consistent truncation of the equations of motion. There

are two generic cases. Following the classification in [6] for a cousin model, we call models

where φ = 0 is not a consistent truncation of the equations of motion class I or dilatonic-

type. In this class of EsGB models φ ≡ 0 does not solve the field equations. Thus the

Schwarzschild/Kerr BH is not a solution. In terms of the coupling function, this class of

models obeys (from the scalar field equation (2.6) below)

f,φ(0) ≡ df(φ)

dφ

∣∣∣
φ=0
6= 0 . (1.3)

A representative example of coupling for this class is the standard dilatonic coupling,

f(φ) = eγφ, which emerges in Kaluza-Klein theory, string theory and supergravity. In this

case φ is often referred to as the dilaton field. BHs in the Einstein-dilaton-GB model were

constructed in [7–9], where they were shown to have a qualitatively novel feature: a minimal

BH size, determined by the coupling constant α. Some of these BHs are perturbatively

stable [10] and aspects of their phenomenology has been considered in e.g. [11–13].

Models where φ = 0 is a consistent truncation are called class II or scalarised-type.

In this case φ ≡ 0 solves the field equations and thus Schwarzschild and Kerr BHs are

solutions of the full model. This demands that

f,φ(0) ≡ df(φ)

dφ

∣∣∣
φ=0

= 0 . (1.4)

This condition holds, for instance, if one requires the model to be Z2-invariant under

φ → −φ. The Schwarzschild/Kerr BH solution is not, in general, unique. These EsGB

models may contain a second set of BH solutions, with a nontrivial scalar field profile —

the scalarised BHs. Such second set of BH solutions may, or may not, continuously connect

with GR BHs. Models within this class have been recenly under scrutiny in relation to BH

spontaneous scalarisation — see e.g. [14–18]. Two reference examples of coupling functions
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in this case are f1(φ) = γφ2 and f2(φ) = eγφ
2
. Although f1 is the linearisation of f2 (the

constant term is irrelevant here) these two models have qualitatively different properties.

Namely, the spherical scalarised BHs with the former coupling function are unstable against

perturbations; but the ones with the latter coupling function can be stable [19].

In this paper we are interested in a model of class I, the linear coupling or shift

symmetric model. The coupling function is

f(φ) = φ , (1.5)

which implies the existence of a shift symmetry: the equations of motion are invariant

under the transformation

φ→ φ+ φ0 , (1.6)

with φ0 an arbitrary constant. This invariance results from the fact that in four spacetime

dimensions the GB term alone is a total divergence. BHs in the model (1.2) with (1.6)

have been first discussed by Sotiriou and Zhou (SZ) [20, 21]. This model falls within

the Horndeski class [22, 23], for which a no-scalar-hair theorem had been established [24].

However, the SZ solution circumvents this theorem, since one of the assumptions (finitness

of a certain current) is violated [25]. The SZ solution has a minimal size, such as the BHs in

Einstein-dilaton-GB. In fact, the model (1.2) with (1.6) can be seen as a linearisation of the

Einstein-dilaton-GB model, and thus one expects similar properties for the BH solutions

of both models. However, as pointed out above, models with a certain coupling function

and its linearisation may have different properties. It has also been argued that the SZ

could emerge dynamically in a gravitational collapse scenario [26].

The goal of this paper is to construct and study the basic physical properties of the

spinning generalisation of the SZ solution, which, up to now, have not been considered.

Astrophysical BHs have angular momentum. Thus, considering spinning BHs is funda-

mental to assess the physical plausibility of any BH model. This is, however, technically

more challenging than for spherical BHs, in particular in the presence of higher curvature

corrections, such as the GB invariant, as described below.

This paper is organised as follows. In section 2 we briefly discuss the equations of

motion and some relevant properties of the model. In section 3 we provide a short review

of the spherical SZ solutions, as a warm up for the spinning case. In section 4 we intro-

duce the framework for the construction of spinning BHs, discussing the ansatz, boundary

conditions, the physical quantities of interest and the numerical procedure. In section 5 we

describe the spinning BH solutions, its domain of existence, and the behaviour of different

physical quantities. In section 6 we present conclusions and remarks. Two appendices give

some technical details on the construction of perturbative and extremal solutions.

2 The model

We consider a general EsGB model with the action (1.2). We use units such that c =

1 = 16πG. Observe that the coupling constant has physical dimension [α] ∼ [L]2, where

– 3 –
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L represents “length”. Varying the action (1.2) with respect to the metric tensor gµν , we

obtain the Einstein field equations

Eµν ≡ Rµν −
1

2
gµνR−

1

2
Tµν = 0 . (2.1)

The effective energy-momentum tensor has two distinct components,

Tµν = T (s)
µν − 2αT (GB)

µν . (2.2)

The first one is due to the scalar kinetic term in (1.2)

T (s)
µν = ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ ; (2.3)

the second one is due to the scalar-GB term in (1.2), and reads

T (GB)
µν = Pµγνα∇α∇γf(φ) , (2.4)

where we have defined

Pαβµν ≡ −
1

4
εαβρσR

ρσγδεµνγδ (2.5)

= Rαβµν + gανRβµ − gαµRβν + gβµRαν − gβνRαµ +
1

2
(gαµgβν − gανgβµ)R .

Here, εαβρσ is the Levi-Civita tensor. The equation for the scalar field is

�φ+ α
df(φ)

dφ
R2

GB = 0 . (2.6)

As pointed out in the introduction, the GB term is a total divergence:

R2
GB = ∇µPµ , (2.7)

where the vector Pµ takes a particularly simple form [27] for a spacetime possessing a

Killing vector ∂/∂t (t is the time coordinate),

Pµ = 4P αµt
ν Γνtα . (2.8)

Thus the transformation (1.6) does not change the equations of the model. Moreover, (2.7)

implies that the equation for the scalar field (2.6) can be written as

∇µJµ = 0 , with Jµ = ∂µφ+ αPµ . (2.9)

As we shall see, a consequence of this relation is that the scalar ‘charge’ (as read off from

the asymptotically leading monopolar mode) is just the Hawking temperature of BH [28].

In this work we shall be interested in stationary, axially symmetric solutions. They

possess two asymptotically measured global charges: the mass M and the angular momen-

tum J . There is also a scalar charge Qs, but it is not an independent quantity; it depends

on the BH mass and angular momentum. Thus the scalar hair is of secondary type [4].

– 4 –
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Also, note that the shift symmetry (1.6) is broken by imposing φ(∞) = 0. Horizon quan-

tities of physical interest, on the other hand, include the Hawking temperature TH , the

horizon area AH and the entropy S, whose concrete expressions are given below.

Since the equations of the model are invariant under the transformation

r → λr , α→ λα , (2.10)

where λ > 0 is an arbitrary constant, the most meaningful physical quantities must be

invariant under (2.10). Considering how the various global quantities transform under this

scaling (e.g. M → λM , J → λ2J , etc.) we normalise the various quantities w.r.t. the mass

of the solutions. In this way, we define the reduced angular momentum j, horizon area aH ,

entropy s and Hawking temperature tH as

j ≡ J

M2
, aH ≡

AH
16πM2

, s ≡ S

4πM2
, tH ≡ 8πTHM . (2.11)

Alternatively, one can define dimensionless reduced variables w.r.t. the coupling constant

α (we recall that [α] ∼ [L]2).

3 Spherically symmetric black holes

Before discussing the case of spinning BHs, it is of interest to review the construction

and basic properties of the static, spherically symmetric BHs, the SZ solutions [20, 21].

As we shall see, they contain valuable information, and share some key properties with

their rotating counterparts, being easier to study since they are found by solving a set of

ordinary differential equations. Moreover, a perturbative exact solution is available in the

static case, which is discussed in appendix A.1.

3.1 The equations and boundary conditions

The spherical BHs of (1.2) with (1.6) can be found using Schwarzschild-like coordinates,

with a metric ansatz containing two unknown functions,

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2dΩ2

2 , with N(r) ≡ 1− 2m(r)

r
, (3.1)

where r and t are the radial and time coordinate, respectively, dΩ2
2 is the metric on the

unit round S2 and m(r) is the Misner-Sharp mass [29], which obeys m(r)→M as r →∞.

The scalar field φ is a function of r only. The Schwarzschild BH corresponds to φ = 0,

m(r) = rH/2 =constant, σ(r) = 1. One can easily verify that for α 6= 0 this is not a

solution of the model in this work.

The advantage of this metric gauge choice is the simple form of the Einstein equa-

tions (2.1), which yield the generic relations

m′ = −r
2

4
T tt ,

σ′

σ
=

r

4N
(T rr − T tt ) . (3.2)

For the considered EsGB model, the diagonal components of the effective energy-

momentum tensor contain second derivatives of the metric functions N, σ. However, one

– 5 –
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can find a suitable combination of the field equations such that the functions m,σ still

solve first order equations. These equations are[
1 + 2α(1− 3N)

φ′

r

]
m′ −

{
N

8
r2φ′2 + α(1−N)

[
(1− 3N)

φ′

r
+ 2Nφ′′

]}
= 0 , (3.3)

σ′

σ

[
1 + 2α(1− 3N)

φ′

r

]
− 1

4r

[
r2φ′2 + 8α(1−N)φ′′

]
= 0 . (3.4)

The Einstein equations contain also a second order equation which provides a constraint,

being a linear combination of (3.3) and (3.4) together with their first derivatives.

The scalar field φ is a solution of a 2nd order equation in terms of N and φ′ only

φ′′
[
1+

2α

r
(1−7N)φ′− 24α2

r4

[
2(1−N)2 +r2N(1−3N)φ′2

]
+

8α3Nφ′

r5

[
24(1−N)2 (3.5)

+r2{1+3N(2−5N)}φ′2
]]

+
1

r

[(
1+

1

N

)
φ′+

2α

r3N

[
6(1−N)2 +r2(1−N−12N2)φ′2

−1

8
r4N2φ′4

]
− 8α2φ′

r4

[
6(1+N2)−r2φ′2(1+21N2)−N

(
12−10r2φ′2 +

1

8
r4φ′4

)]
+

8α3

r3
(1−3N)2(1−5N)φ′4

]
= 0 .

This approach leads to a good accuracy of the numerical results, and can easily be gener-

alized for an arbitrary coupling function f(φ).

The approximate form of the solutions valid for large-r reads

N(r) = 1−2M

r
+
Q2
s

4r2
+. . . , σ(r) = 1− Q

2
s

8r2
+. . . , φ(r) = −Qs

r
−QsM

r2
+. . . , (3.6)

in terms of mass M and a scalar “charge” Qs. Close to the event horizon, located at

r = rH , the solutions possess an approximate expression as a power series in r − rH , with

N(r) = N1(r − rH) + . . . , σ(r) = σH + σ1(r − rH) + . . . ,

φ(r) = φH + φ1(r − rH) + φ2(r − rH)2 + . . . , (3.7)

where

N1 =
1

2αφ1 + rH
, σ1 =

(16αφ2 + φ2
1r

2
H)σH

4(2αφ1 + rH)
, (3.8)

while φ2 is a complicated function of φ1, rH and α. The Hawking temperature, horizon

area and entropy of the solutions, as computed from the formalism in the next section, are

given by

TH =
N1σH

4π
, AH = 4πr2

H , S = πr2
H + 4παφH . (3.9)

The field equations imply that the first derivative of the scalar field, φ1, is a solution of the

quadratic equation

φ2
1 +

rH
2α
φ1 +

6

r2
H

= 0 , (3.10)

– 6 –
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which implies the following condition for the existence of a real root

α

r2
H

<
1

4
√

6
' 0.10206 . (3.11)

This requirement translates into the following coordinate independent condition between

the horizon size and the coupling constant α

AH > 16π
√

6α . (3.12)

We remark that AH = 4πr2
H for the metric ansatz employed here. Thus, for a theory with

a given value of the input parameter α > 0, the BHs are not smoothly connected with the

Minkowski vacuum. There is minimal horizon size and a mass gap [20, 21], just as for BHs

in the Einstein-dilaton-GB model [7–9].

3.2 The solutions

The parameter space of solutions can be scanned by starting with the Schwarzschild BH

(α = 0) and increasing the value of α for fixed rH . When appropriately scaled, they

form a line, starting from the smooth GR limit and ending at a critical solution where

the condition (3.12) is violated, and where the maximal value of the ratio α/M2 (around

0.32534) is achived. Once the critical configuration is reached, the solutions cease to exist

in the parameter space. Physically this means that the EsGB BHs have a minimal size

and mass, for given α. A possible interpretation is that the GB term provides a repulsive

contribution, becoming overwhelming for sufficiently small BHs, thus preventing the ex-

istence of an event horizon. The full set of static solutions will be shown below in figure 3

(the blue dotted line with j = 0) as a function of the dimensionless parameter α/M2.

As discussed in appendix A.1, a simple perturbative solution can be found as a power

series in the parameter

β ≡ α

r2
H

=
4πα

AH
. (3.13)

The results in appendix A.1 imply the following expressions

aH =
AH

16πM2
= 1− 98

5
β2 +

146378

1925
β4 − 42468831605804

13266878625
β6 + . . . , (3.14)

tH = 8πTHM = 1 +
146

15
β2 +

1410898

17325
β4 +

72356439488

57432375
β6 + . . . , (3.15)

s =
S

4πM2
= 1 +

146

15
β2 − 13451026

51975
β4 +

25584053312

57432375
β6 + . . . ,

q =
Qs
M

= 8β − 1184

15
β3 − 4614784

17325
β5 + . . . ,

φ(rH) =
22

3
β +

40516

675
β3 − 7057522938136377682

119373478599375
β7 + . . . .

Interestingly, all corrections to the reduced temperature tH are positive. That is, for the

same mass, the shift symmetric Hordenski BH is ‘hotter’. For the other quantities, no clear

generic pattern emerges.
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We have found that the perturbative solution provides a very good approximation

to the numerical results. This follows from the smallness of the parameter β. In fact,

condition (3.11) implies βmax ' 0.102062. As such, the contribution of the higher order

terms in β quickly becomes irrelevant.

4 Spinning black holes: the framework

4.1 Ansatz and boundary conditions

To obtain stationary and axi-symmetric BH spacetimes, possessing two commuting Killing

vector fields, ξ and η, we use a coordinate system adapted to these symmetries. Then

ξ = ∂t, η = ∂ϕ, and we consider a metric ansatz which has been employed in the past for

the study of Kerr BHs with scalar hair [30]. In terms of the spheroidal coordinates r, θ

and ϕ (with t the time coordinate), the metric line element reads:

ds2 = −e2F0Ndt2 +e2F1

(
dr2

N
+ r2dθ2

)
+e2F2r2 sin2 θ(dϕ−Wdt)2 , N ≡ 1− rH

r
, (4.1)

where the metric functions Fi,W , as well as the scalar field φ, depend on r, θ only and

rH > 0 is an input parameter again describing the location of the event horizon. The

coordinates θ, ϕ and t possess the usual range, while rH 6 r < ∞. The vacuum Kerr

BH can be written in this form, the corresponding expressions of F0, F1, F2 and W being

displayed in appendix A of [31].

Finding BH solutions with this ansatz requires defining boundary behaviours. We have

made the following choices. For the solutions to approach at spatial infinity (r → ∞) a

Minkowski spacetime we require

lim
r→∞

Fi = lim
r→∞

W = lim
r→∞

φ = 0 . (4.2)

Since the scalar field is massless, one can construct an approximate solution of the field

equations compatible with these asymptotics as a power series in 1/r. The leading order

terms of such an expansion are:

F0(r, θ) =
ct
r

+ . . . , F1(r, θ) = −ct
r

+ . . . , F2(r, θ) = −ct
r

+ . . . ,

W (r, θ) =
cϕ
r3

+ . . . , φ(r, θ) =
Qs
r

+ . . . , (4.3)

where ct, cϕ and Qs are constant parameters to be fixed by the numerics.

Axial symmetry, together with regularity at the axis impose the following boundary

conditions on the symmetry axis, i.e. at θ = 0, π:

∂θFi = ∂θW = ∂θφ = 0 . (4.4)

As before, an approximate expansion of the solution compatible with these boundary con-

ditions can be constructed; as an illustration, at θ = 0 one finds

Fa(r, θ) = Fa0(r) + θ2Fa2(r) +O(θ4) , (4.5)

– 8 –
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where Fa = {F0, F1, F2,W ;φ}. The essential data, which is fixed by the numerics, is

encoded in the functions Fa0 = {Fi0,W0, φ0}. Moreover, the absence of conical singularities

implies also that F1 = F2 on the symmetry axis. Focusing on BHs with parity reflection

symmetry, we need to consider the solutions only for 0 6 θ 6 π/2. Then, the functions

Fi, W and φ satisfy the following boundary conditions on the equatorial plane (θ = π/2)

∂θFi
∣∣
θ=π/2

= ∂θW
∣∣
θ=π/2

= ∂θφ
∣∣
θ=π/2

= 0 . (4.6)

For the metric ansatz (4.1), the event horizon is located at a surface with constant

radial variable, r = rH > 0. By introducing a new radial coordinate

x =
√
r2 − r2

H , (4.7)

the horizon boundary conditions and numerical treatment of the problem simplify. These

boundary conditions are

∂xFi
∣∣
x=0

= ∂xφ
∣∣
x=0

= 0 , W
∣∣
x=0

= ΩH , (4.8)

where ΩH is the horizon angular velocity, and the Killing vector χ = ξ+ΩHη is orthogonal

and null on the horizon. These conditions are consistent with the near horizon solution

Fa(r, θ) = Fa0(θ) + x2Fa2(θ) +O(x4) , (4.9)

where the essential functions are Fi0 (also F0

∣∣
rH

= F1

∣∣
rH

).

4.2 Quantities of interest and a Smarr relation

Many quantities of interest are encoded in the metric functions at the horizon or at infinity.

Considering first horizon quantities. The Hawking temperature is TH = κ/(2π), where κ

is the surface gravity defined as κ2 = −1
2(∇aχb)(∇aχb)|rH , and the event horizon area AH .

These are computed as

TH =
1

4πrH
eF0(rH ,θ)−F1(rH ,θ) , AH = 2πr2

H

∫ π

0
dθ sin θ eF1(rH ,θ)+F2(rH ,θ) . (4.10)

The horizon angular velocity ΩH is fixed by the horizon value of the metric function W ,

ΩH = −gϕt
gtt

∣∣∣∣
rH

= W

∣∣∣∣
rH

. (4.11)

The total (ADM) mass M and angular momentum J of the BHs are read off from the

asymptotics of gtt and gϕt,

gtt = −1 +
2GM

r
+ . . . , gϕt = −2GJ

r
sin2 θ + . . . . (4.12)

These global quantities can be split into the horizon and bulk contributions — see, e.g., [32].

These are, respectively MH and JH , computed as a Komar integrals on the horizon, and
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Mφ and Jφ, computed as volume integrals of the appropriate effective energy-momentum

tensor components:

M = MH +Mφ , Mφ ≡ −2

∫
Σ
dSµ

(
T µ
ν ξν − 1

2
Tξµ

)
, (4.13)

J = JH + Jφ , Jφ ≡
∫

Σ
dSµ

(
Tµν η

ν − 1

2
Tηµ

)
, (4.14)

where Σ is a spacelike surface, bounded by the 2-sphere at infinity S2
∞ and the spatial

section of the horizon H. Mφ and Jφ encode the contribution of the effective “matter”

distribution to the total mass and angular momentum. For Kerr BHs, M = MH and

J = JH ; this is not so for EsGB BHs. Moreover, since T
t(φ)
t − 1

2T
(φ) = T

t(φ)
ϕ = 0, only

the GB part of the effective energy-momentum tensor (2.2) contributes to the energy and

angular momentum “matter” densities.

The solutions can be shown to obey the Smarr-type law

M + 2ΩHJ +Ms = 2THS , (4.15)

where S is the entropy as computed from Wald’s formula [33],

S = SE + SsGB , SE =
AH
4
, SsGB =

α

2

∫
H
d2x
√
hφR , (4.16)

and R is the Ricci scalar of the induced horizon metric h. In the Smarr-type law, Ms is a

contribution of the scalar field

Ms =
1

2

∫
Σ
d3x
√
−g∂µφ∂µφ , (4.17)

which can also be expressed as an integral of φR2
GB term.

Also, by integrating (2.9) over an hypersurface bounded by the event horizon and the

sphere at infinity one can prove the following interesting relation

Qs = 16παTH . (4.18)

This proportionality between the scalar charge and the Hawking temperature is a unique

feature of the shift symmetric EsGB model, see the discussion in [28].

The EsGB BHs satisfy also the first law

dM = THdS + ΩHdJ . (4.19)

4.3 The numerical approach

In our approach, the field equations reduce to a set of five coupled non-linear elliptic partial

differential equations for the functions Fa = (F0, F1, F2,W ;φ), which are found by plugging

the ansatz (4.1) together with φ = φ(r, θ) into the field eqs. (2.1), (2.6). They consist

of the Klein-Gordon equation (2.6) together with suitable combinations of the Einstein

equations (2.1) {Err + Eθθ = 0; Eϕϕ = 0; Ett = 0; Etϕ = 0}. The explicit form of the

equations solved in practice is too complicated to display here; each equation containing
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around 250 independent terms. Also, the remaining equations Erθ = 0 and Err − Eθθ = 0

are not solved directly, they yielding two constraints which are monitored in numerics.

Typically they are satisfied at the level of the overall numerical accuracy. We remark that

one can verify that the remaining equations vanish identically, Eϕr = Etr = Eϕθ = Etθ = 0,

the circularity condition being satisfied. We emphasise this is an exact result, for our

framework, not a numerical approximation. As such, the employed ansatz is consistent, a

fact which is not a priori guaranteed (see [34] for a discussion in an Einstein-scalar field

model which leads to a non-circular metric form).

Our numerical treatment can be summarised as follows. We restrict the domain of

integration to the region outside the horizon. Then, the first step is to introduce the new

radial variable x̄ = x/(1+x) which maps the semi-infinite region [0,∞) to the finite region

[0, 1], where x is given by (4.7) and r is the radial variable in the line element (4.1). Next,

the equations for Fa are discretised on a grid in x̄ and θ. Most of the results in this

work have been found for an equidistant grid with 300 × 40 points. The grid covers the

integration region 0 6 x̄ 6 1 and 0 6 θ 6 π/2.

The equations for Fa have been solved subject to the boundary conditions introduced

above. All numerical calculations are performed by using a professional package [35, 36],

which employs a Newton-Raphson method. This code uses the finite difference method,

providing also an error estimate for each unknown function. For the solutions in this work,

the maximal numerical error for the functions is estimated to be on the order of 10−3. The

Smarr relation (4.15) provides a further test of the numerical accuracy, leading to error

estimates of the same order.

In our numerical scheme, there are three input parameters: i) the event horizon radius

rH ; ii) the event horizon angular velocity ΩH in the metric ansatz (4.1) and iii) the coupling

constant α in the action (1.2). The quantities of interest are computed from the numerical

output. For example, the mass M , and the angular momentum J are extracted from the

asymptotic expressions (4.12), while the Hawking temperature, the entropy and the horizon

area are obtained from the event horizon data.

The results reported in this work are obtained from around twenty thousand solution

points. For all these BHs we have monitored the Ricci and the Kretschmann scalars, and,

at the level of the numerical accuracy, we have not observed any sign of a singular behaviour

on and outside the horizon (see, however, the discussion below on the limiting solutions).

5 Spinning black holes: numerical results

5.1 General properties and limiting behaviour

In an approach based on the Newton-Raphson method a good initial guess for the profile of

the various functions is an essential condition for a successful implementation. The spinning

solutions in this work can be constructed by using two different routes. In the first approach,

one uses the profile of a Kerr BH with given rH ,ΩH as an initial guess for EsGB solutions1

1We mention that, similar to the static limit, the scalar field equation (2.6) possesses a nontrivial solution

in a fixed Kerr background, which inherits most of the basic properties of the backreacting generalization.
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with a small value of the ratio α/r2
H . The iterations converge and, repeating the procedure,

one obtains in this way solutions with large α. In the second approach, one starts instead

with spherically symmetric solutions of EsGB, either obtained numerically or from the

perturbative expansion. These can also be studied within the ansatz (4.1), with W = 0,

Fi being functions of r only and with F1 = F2. Then, starting with an EsGB spherical BH

with a given rH and α 6= 0, rotation is introduced by introducing and slowly increasing ΩH .

For all solutions we have found, the metric functions Fa, together with their first and

second derivatives with respect to both r and θ have smooth profiles. This leads to finite

curvature invariants on the full domain of integration, in particular at the event horizon.

The shape of the metric functions F0, F1, F2 and W is similar to those in the α = 0 case.

The maximal deviation from the Einstein gravity profiles (with the same input parameters

rH ,ΩH) is near the horizon. At the same time, the scalar field may possess a complicated

angular dependence, in particular for fast spinning configurations.

The profile functions of a typical solution are exhibited in figure 1. The insets show

the same curves for Kerr with the same rH , ΩH , for comparison. The Ricci and the

Kretschmann scalars, R and K ≡ RαβµνRαβµν , together with the components T tt and T tϕ of

the effective energy-momentum tensor are shown in figure 2. In these plots, the correspond-

ing functions are shown in terms of the (inverse) radial variable r for three different values

of the angular coordinate θ. One observes, for instance, that gtt becomes positive along

the equator, near the horizon, thus manifesting the existence of an ergo-region (see next

subsection). One also notices that both R and K stay finite everywhere, in particular at

the horizon. From the components of the effective energy-momentum tensor one observes,

in particular, that −T tt < 0 for a region in the vicinity of the symmetry axis, manifesting

a breakdown of the weak energy condition for the effective energy-momentum tensor.

Returning to the construction of the solutions, we have noticed the existence of a

critical set of input parameters for which the numerical process fails to converge. Neither

a singular behaviour nor a deterioration of the numerical accuracy in the vicinity of this

set was observed. An explanation for this behaviour, similar to that justifying the critical

configurations found in the static case, is based on the analysis of the field equations in

the vicinity of the event horizon. After some algebra, one finds that the second order term

φ2(θ) in the expansion of the scalar field φ(x, θ) = φ0(θ) + φ2(θ)x2 + . . . is a solution of a

quadratic equation,

aφ2
2 + bφ2 + c = 0 , (5.1)

where the coefficients a, b, c depend on the values of Fi,W and their derivatives at the

horizon. Then, a real solution to the above equation exists only if ∆ = b2 − 4ac > 0.

In practice, we have monitored this discriminant and observed that the numerical process

fails to converge2 when ∆ takes small values close to zero at θ = 0, π. As in the spherically

symmetric case, we have found no evidence for the emergence of a secondary branch of

solutions in the vicinity of the critical solutions.

In particular, the scalar charge-Hawking temperature relation (4.18) holds also in this case, while the scalar

field appears to diverge as the extremal Kerr limit is approached.
2The values of a, b, c becomes very large as the value of the reduced temperature decreases, which

complicates their accurate extraction and the evaluation of ∆ in the vicinity of the extremal set.
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Figure 1. Profile functions of a typical solution with rH = 1.38, ΩH = 0.2, α = 0.4, vs. 1− rH/r,
which compactifies the exterior region, for three different polar angles θ. The insets show the

corresponding functions for a Kerr BH with the same rH ,ΩH . The behaviour is qualitatively

similar for both cases, with small quantitative differences.

A different limiting behaviour is found when varying the value of the horizon velocity

ΩH for fixed (rH , α). As for the vacuum Kerr family, following this method one finds two

branches of solutions, which join for a maximal value of ΩH . The first branch emerges

from the corresponding static configuration. The second branch, on the other hand, ends,

as for α = 0, at extremal configurations. These have vanishing Hawking temperature

and nonvanishing global charges, horizon area and entropy. We must emphasise, however,

that only near extremal solutions, as opposed ot exactly extremal BHs, can be constructed
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Figure 2. The Ricci R and Kretschmann K scalars and the components T t
t and T t

ϕ of the effective

energy-momentum tensor, vs. 1− rH/r, for three different polar angles θ and the same solution as

in figure 1. The inset of the bottom left panel shows the existence of a region of negative energy

densities around the axis. The inset of the top left panel shows a zoom of the θ = 0 curve.

within the framework proposed in this work. As such, the results for the extremal solutions

reported here result from extrapolating the data found in the near-extremal case. Moreover,

unlike the extremal vacuum Kerr BH which yields a perfectly regular geometry [52], the

extremal EsGB solutions appear to not be regular, with the Ricci scalar tending to diverge

at the poles of the horizon. A partial understanding of this behaviour is given in appendix B,

based on a perturbative construction of the near-horizon configurations.

5.2 The domain of existence

Let us now address the domain of existence of the EsGB solutions. There are two fun-

damental scales, the coupling constant α, and the BH mass of the solutions M . In what

follows we display various quantities of interest as a function of the dimensionless coupling

constant α/M2. This parameter measures the impact of non-GR features, due to the GB

contribution. The analysis is also performed in terms of the dimensionless angular momen-

tum j = J/M2. This parameter measures the impact of non-staticity. The link between

these two quantities is provided by the figure 3, where we plot the domain of existence

(shaded blue region) in a j vs. α/M2 plot. Therein, all data points which were found

numerically are also explicitly shown. The blue shaded region is the extrapolation of these
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Figure 3. Domain of existence of EsGB spinning BHs in a j vs. α/M2 diagram. Here and in

figure 4, all quantities are normalised w.r.t. the mass of the solutions. The domain is obtained

by extrapolating into the continuum over twenty thousand numerical points. Each such point

corresponds to an individual BH solution, and is represented in this plot as a small orange circle.

points into the continuum. The figure shows that the domain of existence is delimited by:

• the set of static BHs (j = 0, blue dotted line);

• the set of extremal BHs (black dotted line);

• the set of critical solutions (green line);

• the set of GR solutions — the Kerr/Schwarzschild BHs (α/M2 = 0, red line).

Two comments on figure 3. First, the Kerr bound j 6 1 is violated for spinning EsGB

BHs in a small region of the domain of existence close the extremal set. However, this

violation is rather small, with j(max) ∼ 1.013 for all (accurate enough) solutions studied

so far. Second, along j fixed lines, the critical solution is attained at a smaller α/M2 as j

is increased. A possible interpretation is that both the GB contribution and the spin are

repulsive effects. Thus, in the presence of rotation, BHs cease to exist for a smaller GB

contribution.

In figure 4 (left panels) the reduced horizon area aH ∼ AH/M
2, entropy s ∼ S/M2

and temperature tH ∼ THM of all solutions are shown as functions of the dimensionless

coupling constant α/M2. A complementary picture is found when exhibiting the same data

as a function of the reduced angular momentum j — figure 4 (right panels).

Let us comment on some features resulting from figure 4. For fixed j, the BH area

decreases as α/M2 increases; but the corresponding reduced BH entropy increases. This

provides a clear example how BH entropy deviates from the Hawking-Bekenstein formula in

this modified gravity: when the GB contribution becomes larger, the BH becomes smaller

but it carries more entropy (for fixed j). On the other hand, fixing the EsGB dimensionless

coupling constant α/M2, both the reduced area and the reduced entropy decrease as j
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Figure 4. Domain of existence of spinning EsGB BHs in a reduced horizon area (top panels),

entropy (middle panels) and Hawking temperature (bottom panels) vs. the dimensioness coupling

α/M2 (left panels) or angular momentum j (right panels).

increases. Thus, for any fixed EsGB model, spin reduces the size and the entropy of BHs.

The BH temperature, on the other hand, increases with α/M2 for fixed j and decreases

with j for fixed α/M2.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
0

5.3 Other properties

5.3.1 Ergoregion and horizon properties

All spinning EsGB BHs have an ergoregion, defined as the domain in which the norm of

ξ = ∂t becomes positive outside the horizon. This region is bounded by the event horizon

and by the surface where

gtt = −e2F0N +W 2e2F2r2 sin2 θ = 0 . (5.2)

For the Kerr BH, this surface has a spherical topology and touches the horizon at the poles.

As discussed in [37], the ergoregion can be more complicated for other models, notably for

BHs with synchronised scalar hair, with the possible existence of an additional S1 × S1

ergo-surface (ergo-torus) — see also [38]. We have found that this is not the case for EsGB

BHs, where all solutions are Kerr-like in the sense they possess a single topologically S2

ergosurface.

Let us now consider the horizon geometry. Similarly to the GR Kerr solution, EsGB

BHs have an event horizon of spherical topology. The metric of a spatial cross-section of

the horizon is

dΣ2 = hijdx
idxj = r2

H

[
e2F1(rH ,θ)dθ2 + e2F2(rH ,θ) sin2 θdϕ2

]
. (5.3)

Geometrically, however, the horizon is a squashed, rather than round, sphere. This is shown

by computing the horizon circumference along the equator, Le, and along the poles, Lp:

Le = 2πrHe
F2(rH ,π/2) , Lp = 2rH

∫ π

0
dθeF1(rH ,θ) . (5.4)

The ratio of these two circumferences define the sphericity [39]

s ≡ Le
Lp

. (5.5)

In figure 5 (left panel) the sphericity is shown as a function of the dimensionless coupling

constant α/M2. An interesting feature there is that s can exceed the maximal GR value

for a set of EsGB solutions close to extremality. Roughly, the EsGB can become more

oblate than Kerr. Also, as expected, the squashing of the horizon produced by the rotation

is such that s is always larger than unity. That is, the solutions are always deformes

towards oblatness, rather than prolatness.

Another physical quantity of interest is the horizon linear velocity vH [39–41]. vH
measures how fast the null geodesics generators of the horizon rotate relatively to a static

observer at spatial infinity. It is defined as the product between the perimetral radius of the

circumference located at the equator, Re ≡ Le/2π, and the horizon angular velocity ΩH ,

vH =
Le
2π

ΩH . (5.6)

As seen in figure 5 (right panel), all studied EGBs solutions have vH < 1, just like for Kerr,

and despite the (small) violations of the Kerr bound. Thus, the null geodesics generators

of the horizon rotate relatively to the asymptotic observer at subluminal speeds.
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Figure 5. The sphericity s (left panel), and the horizon linear velocity vH (right panel) vs. α/M2

for the full set of EsGB BHs.

Further insight into the horizon geometry is obtained by considering the isometric

embedding of the spatial sections of the horizon in an Euclidean 3-space E3. A well-known

feature of the Kerr horizon geometry is that for a dimensionless spin j >
√

3/2 ≡ j(S)

(dubbed Smarr point) the Gaussian curvature of the horizon becomes negative in a vicinity

of the poles [42]. In this regime, an isometric embedding of the Kerr horizon geometry in E3

is no longer possible. As expected, this feature also occurs also for the solutions in this work,

even though the position of the Smarr point now depends on the value of the dimensionless

coupling constant α/M2. Following [39, 40], the collection of Smarr points as α/M2 is

varied is dubbed the Smarr line. Figure 5 displays also the position of the Smarr line as a

function of α/M2. One observes that, as for the Kerr limit, an isometric embedding of the

horizon geometry in E3 is possible only up to a maximal value of s and vH . Also, notice

that both the sphericity s and vH are not constant along the Smarr line and slighly larger

values of both these quantities are allowed for embeddable BHs when α/M2 is increased.

5.3.2 Orbital frequency at the ISCO and light rings

A phenomenologically relevant aspect of any BH concerns the angular frequency at both the

innermost stable circular orbit (ISCO) and the light ring (LR). The former is associated to

a cut-off frequency of the emitted synchrotron radiation generated from accelerated charges

in accretion disks. The latter is related to the real part of the frequency of BH quasi-normal

modes [43]. The LRs are also key in determining the BH shadow [44].

Following a standard method, one finds that the angular frequency of a test particle

with energy, E, and angular momentum, L, on the equatorial plane, θ = π/2, is,

ω =
ϕ̇

ṫ
= W − e2(F0−F2)L

r2(L W − E)

(
1− rH

r

)
. (5.7)

The radial coordinate, r, of such particle obeys the equation,

ṙ2 = V (r) ≡ e−2F1

(
1− rH

r

)[
−ε− e−2F2

L2

r2
+
e−2F0(E − L W )

1− rH
r

]
, (5.8)
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Figure 6. Ratio between the angular frequency at the ISCO between EsGB BHs and Kerr BHs

for co-rotating orbits (left panel) and counter-rotating orbits (right panel).

where the ‘dot’ denotes derivative with respect to an affine parameter. ε is a constant with

ε = 0 for massless test particles and ε = −1 for the massive test particles. The former are

relevant for the LRs and the latter for the ISCO.

In the case of massive test particles, circular orbits require that both the potential V (r)

and its derivative vanish, V (r) = V ′(r) = 0. This yields two algebraic equations for E and

L, which can be solved analytically. These have two distinct pairs of solutions, (E+, L+)

and (E−, L−), corresponding, respectively, to co-rotating and counter-rotating orbits. It is

then possible to assess the stability of the circular orbits by computing the second derivative

of the potential. The ISCO will correspond to the orbit in which the test particle has energy

and angular momentum that solves V (r) = V ′(r) = 0 and the radial coordinate that solves

V ′′(r) = 0. Having obtained the energy, angular momentum and radial coordinate of the

ISCO, the corresponding angular frequency is computed using (5.7).

In figure 6, we present the ratio between the angular frequency at the ISCO be-

tween EsGB BHs and Kerr BHs, for both co-rotating, ∆ωco
ISCO and counter-rotating orbits,

∆ωcounter
ISCO , fixing j, as a function of the reduced coupling constant, α/M2:

∆ωco
ISCO(j, α/M2) =

ωco
ISCO(j, α/M2)

ωco
ISCO(j, α/M2 = 0)

, ∆ωcounter
ISCO (j, α/M2) =

ωcounter
ISCO (j, α/M2)

ωcounter
ISCO (j, α/M2 = 0)

.

(5.9)

Several illustrative values of j are exhibited.

For both the co-rotating and counter-rotating cases, by definition, the ratio converges

to unity in the Kerr limit. For all fixed j and for both co and counter-rotating orbits, the

ratio diverges away, monotonically, from unity as α/M2 increases. How the ratio goes away

from unity depends, however, on j and on the direction of the orbital motion.

For j = 0 the distinction between co and counter rotating orbits is meaningless. The

ratio grows away from unity as α/M2 increases — solid blue line in figure 6. Naively, this

is related to the fact that the static BH size decreases with increasing α/M2, making the

ISCO also decrease and hence its frequency increase. Introducing j raises the degeneracy

between co and counter rotating orbits. For co-rotating (counter-rotating) orbits and small

j 6= 0, the ratio is always larger (smaller) than that for the static BHs (j = 0) — dotted lines
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Figure 7. Reduced horizon angular velocity difference between EsGB BHs and Kerr BHs in a δωH

vs. j plot. For small j the difference is positive, meaning that EsGB BHs spin faster. But for large

j the difference is negative, meaning that EsGB BHs spin slower.

in figure 6 (left and right panels). One may interpret these behaviours as a consequence

of frame dragging, which enhances (damps) motion along co-rotating (counter-rotating)

orbits. In the counter-rotating case this trend remains for large j — dashed lines in

figure 6 (right panel). In the co-rotating case, however, an unexpected behaviour emerges.

For sufficiently large j the ratio stops being enhanced with respect to the static case, and

eventually becomes suppressed with respect to it — dashed lines in figure 6 (left panel).

A possible explanation for this unexpected behaviour is found by studying the angular

velocity of the horizon, ΩH . This quantity is a better measure of dragging effects than the

spacetime angular momentum. Indeed, the fact that a BH has a large j does not imply

that it has a large horizon angular velocity.3 Let us then consider the reduced horizon

angular velocity, ωH ≡ ΩHM , and its difference beween EsGB and Kerr BHs with the

same j, defined as:

δωH(j, α/M2) ≡ ωH(j, α/M2)− ωH(j, α/M2 = 0) . (5.10)

This quantity is plotted against the reduced angular momentum j in figure 7. One observes

that, for small enough fixed j, the EsGB BHs have larger ωH than Kerr ones. This support

the thesis that dragging effects are stronger and should enhance the angular frequency at

the ISCO. However, after a given spin j, the EsGB BHs have smaller ωH than Kerr BHs.

That is, albeit having a larger spacetime angular momentum, large j EsGB BHs spin more

slowly, and thus source weaker frame dragging, than Kerr BHs. Qualitatively, at least, this

provides an explanation for the behaviour observed in figure 6 (left panel).

Quantitatively, for co-rotating orbits, the maximal deviation from Kerr is ∆ωco
ISCO ∼

8% and occurs for j ∼ 0.5 and the maximal value of α/M2. For counter-rotating orbits,

on the other hand, the ratio is maximised, for any α/M2, by the static case.

In the case of massless particles, a similar analysis can be done. Now, solving V (r) =

0, we obtain an algebraic equation for the impact parameter, bp = L/E, which yields

3The relation between the two quantities should be determined by a moment of inertia. See [54] for an

attempt to introduce this notion in BH physics.
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Figure 8. Ratio between the angular frequency at the LR between EsGB BHs and Kerr BHs, for

co-rotating orbits (left panel) and counter-rotating orbits (right panel).

two distinct solutions b+p and b−p corresponding to co-rotating and counter-rotating orbits,

respectively. Using this result, and solving V ′(r) = 0, yields the radial coordinate of the

LR. Having computed the impact parameter and the radial coordinate of the LRs, one can

again compute their angular frequency, using (5.7).

Figure 8 shows the ratio between the angular frequency at the LR of EsGB BHs

and Kerr BHs, for both co-rotating and counter-rotating orbits, ∆ωcounter
LR , defined in an

analogous way to (5.9), with different values of spin, j, as a function of the reduced coupling

constant, α/M2. The overall behaviour is very similar to the one discussed above for the

ISCO frequency. The main difference for the LR case is that the maximal deviation for

both types of orbits is smaller than the corresponding orbits at the ISCO.

6 Conclusions and remarks

In this work we have constructed the spinning generalisations of the static BHs in the shift

symmetric Hordenski model. This is a family of asymptotically flat, stationary, axially

symmetric BHs, that are non-singular on and outside an event horizon. The domain of

existence of these solutions is naturally described by two dimensionless parameters: the

dimensionless coupling constant of the model, α/M2, and the dimensioness spin of the BHs,

j = J/M2. Then, the domain of existence is bounded by four special limiting behaviours:

the GR limit (when α = 0), the static limit (when j = 0), the extremal limit, when the

surface gravity of the solutions vanishes, and a critical set of solutions for which a horizon

ceases to exist. This last boundary has an important implication. For non-zero α it means

there is minimum mass (and hence) size for BHs. Thus there is a mass gap with respect

to the Minkowski vacuum, which is also a solution of the theory.

This non-GR property also occurs for the Einstein-dilaton-GB model discussed e.g.

in [8, 9]. Other properties of the BHs we have constructed and analysed in this paper also

parallel the solutions found in the Einstein-dilaton-GB model. This similarity of properties

was antecipated by the observation made in the introduction: the linearisation of the action
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of Einstein-dilaton-GB model

S =

∫
d4x
√
−g
[
R− 1

2
∂µφ∂

µφ+ αeφR2
GB

]
, (6.1)

reduces to (1.2) in the limit of small φ, i.e. eφ ' 1 + φ, by virtue of (2.7). Since the scalar

field takes rather small values for typical Einstein-dilaton-GB BHs, the shift symmetric

EsGB BHs with the same input parameters provide a reasonable approximation — see,

for instance, the bottom left panel of figure 1 for the scalar field magnitude of a typical

solution. Thus, the domain of existence of the Einstein-dilaton-GB and EsGB BHs are

indeed quite similar, as confirmed by the results in this work.

Yet, there are both qualitative and quantitative differences between the two models. An

intriguing property of the model we have focused on, that does not occur for the Einstein-

dilaton-GB model, is the scalar charge-temperature relation (4.18). In fact, also the Smarr

law is different in both models. Quantitatively, the correspondence between the two models

holds only for small enough values of α/M2 and j. For example, the critical value of the

ratio α/M2 is 0.3253 for the spherically symmetric solutions in this work (being fixed by an

algebraic condition between the horizon size and the coupling constant α, eq. (3.12)) and

0.1728 for Einstein-dilaton-GB BHs (in which case the generalization of (3.12) includes,

as well, a dependence on the value of the scalar field at the horizon, see e.g. ref. [7]).

Moreover, a specific feature of the Einstein-dilaton-GB model is the occurrance, near the

critical configuration of a small secondary branch of BH solutions [45–47]. Along this

branch, the mass increases with decreasing horizon radius. This secondary branch appears

to be absent in the EsGB case.

Finally, let us remark that the way the SZ solutions circumvent the no-scalar-hair

theorem also applies to the model herein [24]. This occurs by violating the assumption

that the current associated to the shift-symmetry should be finite at the horizon. For the

static SZ BHs this current diverges on the horizon. This, however, does not induce any

physical pathologies. We have checked that this current (squared) diverges at the horizon

also in the spinning BHs reported in this work.
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A Perturbative solutions

A.1 Spherically symmetric black holes

The Schwarzschild BH is not a solution of the model (1.2) with (1.6), since R2
GB 6= 0.

Nonetheless, one can construct a perturbative solution around it, as a power series in β

defined in (3.13). Therefore, we consider a generic expansion4

N(r) =
(

1− rH
r

)∑
k>0

βkhk(r) , σ(r) =
∑
k>0

βkσk(r) , φ(r) =
∑
k>1

βkφk(r) . (A.1)

The horizon is still located at r = rH . Then, one solves the EsGB equations order by order

in β.

The choice (A.1) leads to a particularly simple structure of the equations for the

functions {hk(r), σk(r), φk(r)}, which can easily be solved to an arbitrary order. We have

done it up to k = 12. These functions are polynomials in x = rH/r, the expression of the

first few terms being

h0(r) = 1, h1(r) = 0, h2(r) = −49

5
x− 29

5
x2 − 19

5
x3 +

203

15
x4 +

218

15
x5 +

46

3
x6,

σ1(r) = 0, σ2(r) = −
(

2x2 +
8x3

3
+ 7x4 +

32x5

5
+ 6x6

)
, (A.2)

φ1(r) = 4x+ 2x2 +
4x3

3
, φ2(r) = 0,

φ3(r) = − 4

15
x+

292

15
x2 +

1052

45
x3 +

22

5
x4 − 476

75
x5 − 656

45
x6 +

20

3
x7 +

58

5
x8 +

424

27
x9 .

Unfortunately, no general pattern can be found and the coefficients of the terms in the

polynomial expressions of {hk(r), σk(r), φk(r)} become increasingly complicated, with

higher powers of x = rH/r.

The corresponding expression of the mass function m(r) follows directly from (A.1)

(we recall that N = 1 − 2m(r)/r). While m(r) is strictly positive, its derivative becomes

negative in a region close to the event horizon, the lowest order term being

m′ =
(
x2 + x3 + 13x4 + x5 + x6 − 23x7

)
2β2 + . . . . (A.3)

Thus, for any β, one finds m′ < 0 for rH 6 r 6 1.1049rH . This implies the existence of

negative effective energy densities (i.e. ρ(eff) = −T tt < 0) in the model, a feature confirmed

by numerics.

4Note that φ1(r) is a nodeless function, corresponding to the solution of the scalar field eq. (2.6) in a

fixed Schwarzschild background. Moreover, one can show analytically that the scalar field remains nodeless

even with a non-perturbative approach.
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We also display the expression of the first few terms for several quantities of interest

M = M (0)

(
1 +

49

5
β2 +

408253

3850
β4 +

75242913669527

26533757250
β6

)
+ . . . , (A.4)

TH = T
(0)
H

(
1− 1

15
β2 − 118549

4950
β4 − 35399108806973

26533757250
β6

)
+ . . . ,

S = S(0)

(
1 +

88

3
β2 +

162064

675
β4 +

955514545484

156080925
β6

)
+ . . . ,

Qs = rH

(
4β − 4

15
β3 − 237098

2475
β5 − 70798217613946

13266878625
β7

)
+ . . . ,

with M (0) = rH
2 , S(0) = πr2

H , T
(0)
H = 1

4πrH
the corresponding quantities for the

Schwarzschild solution. One can easily verify that the perturbative expansion satisfies,

order by order, the Smarr relation and the 1st law.

A.2 Slowly rotating black holes

The equations of motion possess a simple solution for the case of slowly rotating BH

solutions. The latter have been investigated in other gravity theories (see e.g. [48–50]) and

usually give an idea about some properties of the non-perturbative (in the spin parameter)

configurations.

To consider slowly rotating BHs we assume a metric of the following form

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2

[
dθ2 + sin2 θ(dϕ−W (r)dt)2

]
, (A.5)

with a small W (r), such that, to first order in W , the above line element takes the (more)

familiar form

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
− 2r2 sin2 θW (r)dϕdt . (A.6)

The limit W (r) = 0 corresponds to the static EsGB BHs discussed above. Then it is

straightforward to prove that, for small rotation, the EsGB equations possess the following

first integral {
r3
[
r − 4αN(r)φ′(r)

]W ′
σ

}′
= 0 . (A.7)

The constant of integration is proportional to J — the angular momentum. In the absence

of a closed form general expression for the EsGB BHs, the best one can do it to replace

in (A.7) the corresponding form of the perturbative solution in β = α/r2
H derived above,

and integrate for W (r). Then a general expression of the form

W (r) =
2J

r3

∑
k>0

wk(r)β
2k , (A.8)

emerges. All functions wk(r) above can be expressed as polynomials in x = rH/r; here we

display the first two functions only,

w0(r) = 1 , w1(r) = −
(

6

5
x2 +

28

3
x3 + 3x4 +

12

5
x5 − 10

3
x6

)
. (A.9)
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This approach holds for the first order in W , thus for an infinitesimally small angular

momentum. Then, physical quantities such as the mass and event horizon area do not

change as compared to the static case. On the other hand, the BH acquires a non-trivial

angular momentum horizon angular velocity, with leading terms

ΩH =
2J

r3
H

(
1− 63

5
β2 − 206249189

1351350
β4

)
. (A.10)

The corresponding expression of the reduced horizon angular velocity ωH is also of interest,

with

ωH = ΩHM =
J

r2
H

(
1− 14

5
β2 − 16415506

96525
β4

)
, (A.11)

a relation which can also be expressed in terms of the dimensionless parameters j = J/M2

and α/M2 as

ωH =
j

4

[
1 +

21

20

( α

M2

)2
+

11390263

3931200

( α

M2

)4
]
. (A.12)

Therefore, to these orders in perturbation theory, the reduced horizon angular velocity

increases as compared to a similar (slowly rotating) Kerr BH with the same mass M

and angular momentum J , a prediction which agrees with our numerical results (see also

figure 7).

B The attractors and the issue of extremal solutions

The numerical results suggest that, unlike the extremal Kerr solution, the extremal EsGB

solutions are not regular. Evidence for this conjecture is obtained as follows. Instead of solv-

ing the full bulk equations searching for extremal solutions, one tackles the construction of

the corresponding near-horizon configurations. In this case, one has to solve a co-dimension

one problem (the radial dependence being factorized), whose solutions are easier to study.

Since this problem was already considered in a more general context [51] (see also the

corresponding Einstein-dilaton-GB computation in [8]), in what follows we shall review

the basic results only. The idea to consider a construction of the near-horizon limit of the

extremal rotating BH as a power series in α. The background solution is taken to be the

vacuum near horizon extremal Kerr (NHEK) solution in pure Einstein gravity [52]. As we

shall see, the α2-corrections to this solution are singular and destroy its smoothness.

Following the usual ansatz in the literature (see e.g. [53]) we consider the following line

element

ds2 = v1(θ)

(
−r2dt2 +

dr2

r2
+ β2dθ2

)
+ v2(θ) sin2 θ (dφ+Krdt)2 , (B.1)

where 0 6 r <∞, 0 6 θ 6 π, and β, K are real parameters, while the scalar field depends

on θ only,

φ = φ(θ) . (B.2)

Also, it is convenient to define

cos θ = u , (B.3)
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such that the line element (B.1) becomes

ds2 = v1(u)

(
−r2dt2 +

dr2

r2
+ β2 du2

1− u2

)
+ v2(u)(1− u2) (dφ+Krdt)2 . (B.4)

The functions v1(u), v2(u) together with the constants K,β satisfy a complicated set

of ordinary differential equations which result from the EsGB equations. These equations

(with α 6= 0) appear to possess no analytical solutions. An approximate solution can

be constructed, however, by considering an expansion5 in α around the Einstein gravity

solution, with

v1(u) = v10(u)+α2v12(u)+ . . . , v2(u) = v20(u)+α2v22(u)+ . . . , φ(u) = φ0 +αφ1(u)+ . . . ,

(B.5)

and

K = K0 + α2K2 + . . . , β = β0 + α2β2 + . . . . (B.6)

The lowest order terms in the above expansion corresponds to the Einstein gravity solu-

tion [52]

K0 = β0 = 1 , v10(u) =
J

16π
(1 + u2) , v20(u) =

J

4π

1

(1 + u2)
, (B.7)

while φ0 can be set to zero without any loss of generality.

In the next step, we find the expression of φ1(u) by solving the eq. (2.6) in the NHEK

background (B.7)

d

du

(
(1− u2)

dφ1(u)

du

)
+
J(1 + u2)

16π
L

(NHEK)
GB = 0 , (B.8)

L
(NHEK)
GB being the GB invariant evaluated for the NHEK geometry,

L
(NHEK)
GB = −12288π2(−1 + 15u2 − 15u4 + u6)

J2(1 + u2)6
. (B.9)

The general solution of the equation (B.8) reads

φ1(u) = s0 + s1 log

(
1 + u

1− u

)
+

32π

J

[
2(1− 4u2 − u4)

(1 + u2)3
+ log

(
1 + u2

1− u2

)]
, (B.10)

with s0, s1 arbitrary constants. One can set s0 = 0 without any loss of generality. For

any choice of s1 the function φ1(u) necessarily diverges at u = 1 and/or u = −1. In our

approach, we take

s1 =
32π

J
, (B.11)

such that φ1(u) is divergent at u = 1 only.

In the next step, we solve for the corrections to the geometry as encoded in the functions

v12(u) and v22(u). Since the equations for these functions are sourced by a divergent scalar

5More rigorously, this expansion is in the dimensionless parameter α/J .
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field φ1(u), one expects them to be divergent as well. This is indeed confirmed by our

results, and one finds

v12(u) =
π

J

(
F1(u)−32(4+u(3+4u))arctanu−64(1−u2) log(1+u2) (B.12)

−β2
J2

24π2
(2+2u2 +3u

√
1−u2 arccosu)−128(1−u)2 log(1−u)−64

√
2u
√

1−u2

+
969√

2
u
√

1−u2 arctan

√
2u√

1−u2
−192

√
2u
√

1−u2 arctanh

√
1−u2

√
2

+uz1 +(1+(u−4)u)z2−u
√

1−u2z3

)
,

where z1, z2, z3 are arbitrary constants and we define

F1(u) =
1

105(1 + u2)5

(
88054 + 26880u+ 759219u2 + 161280u3 + 1133035u4 + 376320u5

+1617566u6 + 430080u7 + 1109548u8 + 241920u9 + 377967u10 + 53760u11 + 49331u12

)
.

A very similar expression is found for v22(u), with

v22(u) =
8π

J(1 + u2)2

(
F2(u)− 16(4− u(3− 4u)) arctanu− 32(1 + u)2 log(1 + u2)

+β2
J2

48π2

(
−5(1 + u2) +

6u arccosu√
1− u2

)
− 64(1− u)2 log(1− u) + 64

√
2

u√
1− u2

+
969√

2

u√
1− u2

arctan

√
2u√

1− u2
+

192
√

2u√
1− u2

arctanh

√
1− u2

√
2

−1

2
uz1 +

1

2
(1 + 4u+ u2)z2 −

u√
1− u2

z3

)
, (B.13)

with

F2(u) =
1

105(1 + u2)5

(
40667− 20160u+ 4707u2 − 114240u3 + 515365u4 − 255360u5

+474470u6 − 282240u7 + 372733u8 − 154560u9 + 174351u10 − 33600u11 + 35035u12

)
.

Then, with the above expressions, one can prove the existence of a singularity at the

poles of the horizon, with the Ricci scalar diverging at θ = 0 (i.e. u = 1)

R = −32768π3α2

J3(u− 1)
+

49152π3α2

J3
+O(u− 1) . (B.14)

Finally, let us mention that the above perturbative result does not exclude the existence

of regular solutions for α large enough. Thus we have also attempted to solve the field

equations of the model within a nonperturbative approach, by solving a boundary value

problem. The imposed boundary conditions assure the regularity of the configurations at

u = ±1. However, no such solutions could be found.
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