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Abstract Recently, no-go theorems for the existence of
solitonic solutions in Einstein–Maxwell-scalar (EMS) mod-
els have been established (Herdeiro and Oliveira in Class
Quantum Gravity 36(10):105015, 2019). Here we discuss
how these theorems can be circumvented by a specific class
of non-minimal coupling functions between a real, canoni-
cal scalar field and the electromagnetic field. When the non-
minimal coupling function diverges in a specific way near the
location of a point charge, it regularises all physical quanti-
ties yielding an everywhere regular, localised lump of energy.
Such solutions are possible even in flat spacetime Maxwell-
scalar models, wherein the model is fully integrable in the
spherical sector, and exact solutions can be obtained, yielding
an explicit mechanism to de-singularise the Coulomb field.
Considering their gravitational backreaction, the correspond-
ing (numerical) EMS solitons provide a simple example of
self-gravitating, localised energy lumps.

1 Introduction

Einstein-Maxwell-scalar (EMS) models, described by the
action

S = 1

4π

∫
d4x

√−g
(
R

4
− f (φ)

4
FμνF

μν − 1

2
∂μφ∂μφ

)
, (1)

wherein the real scalar field φ has a canonical kinetic term and
it is non-minimally coupled to the Maxwell field strength F ,
via some function f (φ), emerge naturally in physics (R is the
Ricci scalar). Well known contexts are Kaluza–Klein models
[2–6] and supergravity/string theory [7]. In these cases the
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non-minimal coupling is provided by an exponential function
of the sort f (φ) ∼ e−αφ , where α is a constant. But more
general classes of coupling functions have been considered,
for instance, in the context of cosmology [8,9].

Another interesting class of coupling functions emerged
recently in the quest for models that deviate from general
relativity only in the strong gravity regime. If f (φ) obeys
some simple properties, the EMS model accommodates the
phenomenon of spontaneous scalarisation of asymptotically
flat charged black holes [10]. This means that even though
the electrovacuum Reissner–Nordström (RN) black hole is
a solution of the EMS model, for sufficiently high charge
to mass ratio this black hole becomes unstable: it becomes
energetically favourable for the RN black hole to scalarise.
A new family of scalarised black holes bifurcates from the
RN family, which contains the end states of this dynamical
scalarisation mechanism – see also [11–21].

The existence of such a class of EMS models, that allow
spontaneous scalarisation of charged black holes, and accom-
modates two distinct families of black holes, the bald RN and
the “hairy” scalarised BHs, raised the question if solitons can
also be found in EMS models, as this is often the case in the-
ories that accommodate both bald and hairy BHs. Building
on this question, in [1] a set of theorems were established
showing that, under various assumptions, no such solitonic
solutions exist, similarly to the case of vacuum and elec-
trovacuum. The purpose of this paper is to show that drop-
ping one of the assumptions considered in [1], namely that
the coupling function is everywhere finite, it becomes pos-
sible to circumvent the aforementioned theorems and obtain
solitonic solutions, including in the flat spacetime (Maxwell-
scalar theory) limit. In the latter case, moreover, the solitons
can be, in some examples, obtained in closed form. They
yield pedagogical illustrations of how new physics could de-
singularise the Coulomb solution at the level of an effective
field theory. In the self-gravitating case, the solutions are
obtained numerically, although we cannot exclude that some
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carefully designed coupling functions exist where they will
have a closed analytic form.

This paper is organised as follows. In Sect. 2 we discuss
the flat spacetime analysis, i.e. the Maxwell-scalar model in
Minkowski spacetime. We show that the model is integrable
and how the Coulomb singularity can be regularised by a
divergent coupling in a class of explicit examples. In Sect. 3
we consider the self-gravitating solitons, corresponding to
the solutions discussed in flat spacetime in Sect. 2. Conclu-
sions are presented in Sect. 4.

2 Flat spacetime Maxwell-scalar models

2.1 A physical motivation

An awkward feature of classical electromagnetism is that
the energy E of the Coulomb field of a point charge Q is
divergent:

E ∼
∫ +∞

0

Q2

r2 dr = ∞. (2)

Quantum considerations naturally introduce an ultraviolet
cut-off to the validity of the classical Coulomb solution,
regularising this integral. Quantum Electrodynamics (QED),
however, is itself incomplete as a quantum field theory, due to
the Landau pole [22]. But it yields the important lesson that
the coupling constant g, which determines the strength of the
electromagnetic interaction in the Maxwell Lagrangian

L = − 1

4g2 FμνF
μν, (3)

runs with the energy scale.
Whatever fundamental theory turns out to complete QED,

it may admit a covariant effective field theory description
that captures the dynamics of the coupling. Then, g would
emerge as a spacetime function with some dynamics. In a
simple model, g would be a real scalar field with a standard
kinetic term. Allowing a more general dynamics, one takes g
as being an arbitrary function of the scalar field, keeping the
latter with a standard kinetic term. This suggests considering
the naive covariant effective field theory

S = 1

4π

∫
d4x

√−g
(

− f (φ)

4
FμνF

μν − 1

2
∂μφ∂μφ

)
, (4)

where φ is a real scalar field, F = d A is the covariant descrip-
tion of the electromagnetic dynamics and the background
is Minkowski spacetime. The function f (φ) specifies the
dynamics of the gauge coupling. This model ignores higher
order corrections in F , so it is certainly incomplete. Nonethe-
less one may take the aforementioned reasoning as a motiva-

tion to consider this class of simple models. Can the Coulomb
field of a point charge be de-singularised in this context?

2.2 An integrable model

The naive model (4), which is the decoupling limit of the
EMS model (1) wherein back reaction is neglected, is inte-
grable in the spherical sector. Taking the following ansatz for
the fields in spherical coordinates in Minkowski spacetime
(t, r, θ, ϕ):

φ = φ(r), A = V (r)dt, (5)

the Maxwell equations yield a first integral:

V (r) =
∫

Q

r2 f (φ)
dr, (6)

where Q is interpreted as the electric charge. Using this first
integral, the Klein-Gordon equation reads

r2 d

dr

(
r2 dφ

dr

)
− Q2

2

d

dφ

(
1

f (φ)

)
= 0, (7)

which, introducing the coordinate x ≡ 1/r , yields another
first integral

(
dφ

dx

)2

− Q2

f (φ)
= E . (8)

It is a simple application of the virial theorem, or a Derrick-
type scaling theorem [23], to show that solutions must have
E = 0. For instance, this can be seen from the condition [24]

∫
d3xTi j = 0, (9)

that holds for time-independent, finite energy field configura-
tion in Minkowski spacetime, where i, j are spatial indices in
Cartesian coordinates. Relation (9) is a simple consequence
of energy–momentum conservation and can be interpreted as
the balancing of the total stresses in an extended object. There
are regions where matter is in tension and regions where it
is in compression, for any static balanced soliton. Thus, the
problem of finding solutions is reduced to solving, from (8),

x(φ) = 1

Q

∫ √
f (φ)dφ, (10)

and then inverting x(φ) → φ(x) → φ(r). Fixing the cou-
pling function f (φ) one can obtain φ(r) and, from (6), the
electrostatic potential, both as line integrals. Due to the two
first integrals the system is fully integrable.
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2.3 Everywhere regular solutions

To assess if the solutions have finite energy one must consider
the energy–momentum of the model,

4πTμν = f (φ)

(
FμαF

α
ν − 1

4
gμνFαβF

αβ

)

+∂μφ∂νφ − 1

2
gμν∂αφ∂αφ. (11)

This yields the energy density ρ, after using (8):

ρ = T00 = Q2

4πr4 f (φ)
. (12)

and the total energy, E , obtained by integrating the energy
density on a spacelike slice �

E =
∫

�

ρ d3x =
∫ +∞

0

Q2

r2 f (φ)
dr. (13)

In order to obtain regular solutions at the origin we assume
the scalar field admits a power series expansion near the ori-
gin:

φ = φ0 +
∑
p=N

φpr
p, (14)

We do not constrain the constant coefficient φ0, which may
or may not vanish. Apart from φ0, let φN , where N ∈ N � 1
be the first non-vanishing coefficient in this expansion. Then,
from (8),

(−NrN+1φN + . . . )2 = Q2

f (φ)
. (15)

Thus, as r → 0,

f (φ) ∼ Q2

N 2φ2
N

1

r2N+2 . (16)

Regularity of the scalar field at the origin then requires the
coupling to diverge as ∼ 1/r2N+2. From (12) this implies
that the energy density is finite therein and from (6),

V (r) = V (0) + N 2φ2
N

(2N + 1)Q
r2N+1 + . . . , (17)

close to the origin. Thus, all physical quantities are finite close
to the origin, for this class of behaviours of the coupling.

2.4 A class of examples

There is still, of course, some freedom in choosing the cou-
pling function, within the class with the correct divergent
behaviour at the origin. Let us consider examples.

2.4.1 A simple coupling yielding regular solutions

As an explicit example, consider

f (φ) = 1

(1 − αφ)4 , (18)

where α is a non-zero constant. Then (10) immediately
yields, taking the integration constant such that φ → 0 as
r → ∞:

φ(r) = Q

Qα + r
. (19)

One observes that φ(r) is regular and smooth as r → 0,
φ(r) � 1/α − r/(Qα2); thus we expect, from (16), that the
coupling to diverge as 1/r4. Asymptotically, on the other
hand, φ(r) � Q/r . Thus the scalar “charge” coincides with
the electric charge. Plugging (19) into (18) yields:

f (r) =
(

1 + αQ

r

)4

. (20)

The coupling diverges as 1/r4 at the origin, as anticipated.
This divergence precisely cancels the divergence of the
Maxwell field at the origin, c f. (12), making it finite and
non-zero. In fact, the energy density, from (12), is

ρ = Q2

4π(Qα + r)4 . (21)

It follows that the total energy (13) is

E = Q

3α
. (22)

Now, using (6) we obtain for the electrostatic potential:

V (r) = − r Q

(Qα + r)2 − α2Q3

3(Qα + r)3 . (23)

All the quantities (21), (22), (23) manifestly reduce to the
usual Coulombic ones upon taking α → 0. In such case (19)
reduces to the profile of a scalar charge Q at the origin. The
expressions make manifest how α regularises the solution.

2.4.2 A family of couplings yielding regular solutions

As further examples, with slightly different features, we gen-
eralise the coupling (18) as

f (φ) = 1

(1 − αφ)n
, (24)

where n is an integer. Using this coupling, Eq. (10) gives

1

r
= 1

Q

∫
(1 − αφ)−n/2dφ, (25)

which has a different indefinite integral for n 	= 2 and n = 2.
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For n 	= 2, imposing φ(r → ∞) = 0 to fix the integration
constant, one obtains

φ(r) = 1

α
− 1

α

[
1 + αQ(n − 2)

2r

] 2
2−n

, (26)

which reduces to (18) for n = 4. For regular solutions at the
origin we require limr→0 φ to be finite. This implies n > 2,
in which case

lim
r→0

φ(r) = 1

α
− 1

α

(
2r

αQ(n − 2)

) 2
n−2

, (27)

which is finite, as required. For n = 3 we see that the second
term goes as r2; but for n > 4, the second term has a non-
integer power. In the former case we anticipate, from (16),
that the coupling diverges as 1/r6. In the latter case, φ is
not analytic at the origin. It will, nonetheless yield a regular
solution, when analysing the usual physical quantities.

The coupling f (φ) as a function of r then reads:

f (r) =
[

1 + αQ

2r
(n − 2)

] 2n
n−2

, (28)

which diverges as ∼ 1/r
2n
n−2 at the origin, for n > 2, but

respects the condition limr→∞ f (r) = 1. We confirm, in
particular, the 1/r6 divergence, for n = 3 and a divergence
with (generically) a non-integer inverse power for n � 5.
The electric field Eμ = −∂μV (r) has only one non-zero
component which reads, from (6)

Er (r) = − Q

r2 f
= − Q

r2

[
1 + αQ

2r
(n − 2)

]− 2n
n−2

, (29)

which behaves as r
4

n−2 near the origin, and it is thus regular
for n > 2.

The total energy now reads

E = 2Q

(n + 2)α
. (30)

Thus, the family of cases with n > 2 illustrate how regular
solutions can be obtained, with a different analytic behaviour
of the scalar field near the origin (the cases n = 3 and n = 4)
and non-analytic behaviour (n > 4).

With n = 2, following a similar reasoning one obtains

φ(r) = 1

α

(
1 − e−αQ/r ), (31)

which is a regular solution at r = 0 with limr→0 φ(r) = 1/α.
The coupling function f (φ) becomes

f (r) = e2αQ/r , (32)

which, as before, also diverges at r = 0 but respects
limr→∞ f (r) = 1. Observe, however, it does not diverge as
an inverse power of r , which was the conclusion in Sect. 2.3.

This is because, again, φ in this case does not admit a power
series expansion near the origin. This illustrates yet a differ-
ent example of divergent coupling that yields regular solu-
tions.

The electric field is now

Er (r) = − Q

r2 f
= − Q

r2 e
−2αQ/r , (33)

and the total energy is

E = Q

2α
. (34)

In these considerations αQ was assumed to be positive.
Otherwise the total energy (30)–(34) would be negative,
which would violate the weak energy condition. Interestingly
enough, despite the seemingly different solution for n = 2,
the total energy E is a smooth function of the power n, as
(34) coincides with setting n = 2 in (30).

2.5 Dilatonic coupling: a spherically symmetric solution

As mentioned in the Introduction, a dilatonic coupling

f (φ) = e−αφ, (35)

where α is a constant, emerges in relevant scenarios. Let us
thus briefly mention the existence of a spherically symmetric,
exact solution for this coupling.

Considering (35) in (10), and taking the integration con-
stant so that the scalar field vanishes asymptotically we
immediately get

φ = − 2

α
log

[
1 + αQ

2r

]
. (36)

Thus, the coupling, as a function of r is

f (φ) = e−αφ =
[

1 + αQ

2r

]2

. (37)

Thus, the coupling diverges at the origin and, if αQ > 0 it is
regular elsewhere. Moreover, using now (6) we get

V (r) = − 2Q

αQ + 2r
. (38)

One finds the following small-r expansion of the solution

φ(r) = 2

α

(
log r − log

αQ

2

)
+ O(r),

V (r) = − 2

α
+ 4r

α2Q
+ O(r2) ; (39)
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thus, the scalar field diverges at the origin. Asymptotically,
on the other hand, both fields are well behaved

φ(r) = −Q

r
+ α

4

Q2

r2 + O
(

1

r3

)
,

V (r) = −Q

r
+ α

2

Q2

r2 + O
(

1

r3

)
. (40)

The energy density of this solution diverges at the origin:

ρ = −T t
t = Q2

πr2(αQ + 2r)2 ; (41)

the total mass, however, is finite

M = 4π

∫ ∞

0
drr2ρ = 2Q

α
. (42)

This solution is interesting in that it shows a divergent cou-
pling can source a finite mass configuration which, nonethe-
less, is not fully regular, as the scalar field and the energy
density diverge at the origin.

3 The gravitating solitons

The above flat spacetime solutions can be made to self-
gravitate by coupling (4) to Einstein’s general relativity. For
the case of the regular solutions described in the previous
section, this yields, perhaps, the simplest models of charged
soliton.

One now considers the EMS model (1), where c = G = 1.
In addition to the ansatz (5) we consider the metric form

ds2 = −e−2δ(r)N (r)dt2 + dr2

N (r)
+ r2(dθ2 + sin2 θdϕ2) ,

where N (r) ≡ 1 − 2m(r)

r
, (43)

andm(r) is the Misner–Sharp mass; r is thus the areal radius,
a geometrically meaningful coordinate.

The ansatz (5) and (43) yield the following effective
Lagrangian:

Leff = e−δm′ − r2

2
e−δNφ′2 + r2

2
f (φ)eδV ′2. (44)

As in the flat spacetime case, the equation of the electric
potential possesses a first integral, which generalises (6), and
reads

V ′ = e−δ Q

r2 f (φ)
, (45)

where again the integration constant Q is the electric charge,
which we shall assume to be strictly positive, without any loss

of generality. Using this integral, the remaining equations of
motion become1

m′ = r2

2
Nφ′2 + Q2

2r2 S(φ), (46)

δ′ + rφ′2 = 0, (47)

(e−δr2Nφ′)′ − e−δ

2r2

dS(φ)

dφ
Q2 = 0 , (48)

where we have defined

S(φ) ≡ 1

f (φ)
. (49)

The smooth of a spacetime configurations can be assessed
by analysing the Ricci scalar

R = N

r
(3rδ′ − 4)

+ 2

r2

[
1 + N (r2δ′′ − (1 − rδ′)2)

]
− N ′′, (50)

and the Kretschmann scalar

K = 4

r4 (1 − N )2 + 2

r2

[
N ′2 + (N ′ − 2Nδ′)2

]

+
[
N ′′ − 3δ′N ′ + 2N (δ′2 − δ′′)

]2
. (51)

3.1 Asymptotic expansions

3.1.1 Near the origin

A small r analysis of the field equations confirms the con-
clusion observed in the flat space analysis: for a scalar
field admitting a power series expansion near the origin
φ = φ0 + φ1r + . . . and φ1 	= 0, if the coupling diverges as
1/r4, finite energy, everywhere regular solutions are possi-
ble. To see this, we again start by assuming the existence of
a power series expansion of solutions, with the scalar field
approaching a finite nonzero value

φ(r) → φ0 as r → 0, (52)

where φ0 is arbitrary. Then, the equations of motion, together
with the assumption of regularity, impose, for the nth deriva-
tive of S(φ) computed at the origin, denoted S(n)(φ0),

S(φ0) = S(1)(φ0) = S(2)(φ0) = S(3)(φ0) = 0,

whereas S(4)(φ0) > 0. (53)

This implies the advertised behaviour: the coupling function
f (φ) diverges as 1/r4 as r → 0. This behaviour cancels the
divergence associated with the presence of an electric charge,
providing a smooth configuration as r → 0.

1 There is an extra equation, which is a constraint and can be derived
from (46)–(48).
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The small r expansion of the matter functions reads

φ(r) = φ0 − 2
√

6r

Q
√
S(4)(φ0)

+ φ2r
2 + . . . ,

V (r) = − 8e−δ0

Q3S(4)(φ0)
r3 + . . . , (54)

while for the metric functions we find

m(r) = 8

Q2

1

S(4)(φ0)
r3 − 2

√
6φ2

Q
√
S(4)(φ0)

r4 + . . . ,

δ(r) = δ0 − 12r2

Q2S(4)(φ0)
+ . . . , (55)

where φ2 and δ0 are constants that are fixed by the numerics
when integrating the field equations from the origin to infinity
and requiring the correct asymptotic behaviour. With this
expansion, both the Kretschmann curvature scalar and Ricci
scalar are finite as r → 0, taking the form

K ≡ Rμναβ R
μναβ

= 3840

Q4[S(4)(φ0)]2
− 2560

√
6φ2

Q3[S(4)(φ0)]3/2
r + . . . , (56)

and

R = 48

Q2S(4)(φ0)
− 16

√
6φ2

Q(S(4)(φ0))1/2
r + . . . (57)

The small r expansion of S(φ) reads

S(φ) = 24

Q4S(4)(φ0)
r4 − 8

√
6φ2

Q3
√
S(4)(φ0)

r5 + . . . , (58)

which implies the following generic approximate form of
the coupling function

S(φ) = 1

f (φ)
∼ (φ − φ0)

4 as r → 0 . (59)

Of course, we could have assumed that in the scalar field
expansion φ1 = 0 and the power series starts at a higher order
term. This would impact in the way the coupling diverges at
the origin, similarly to the flat spacetime analysis of Sect. 2.3.
For concreteness, here we focus on the case with φ1 	= 0. This
case corresponds, in the non-back-reacting case, to having
N = 1 in Eq. (14). Choosing φ1 = 0 in the latter would imply
a different behaviour for the divergence of f (φ), implied
by the Eq. (16). In the back-reacting case this would cor-
respond to having S(4)(φ0) = 0. Non-trivial solutions with
such behaviour should exist, as well.

3.1.2 Near infinity

A large r analysis of the field equations, on the other hand,
imposing

f (φ) → 1 as r → ∞, (60)

yields the following approximate solutions:

m(r) = M − Q2 + Q2
s

2r
+ . . . ,

φ(r) = Qs

r
+ . . . , (61)

V (r) = 
 − Q

r
+ . . . , δ(r) = Q2

s

2r2 + . . . (62)

Here M is the ADM mass and Q is the electric charge;
 is the
electrostatic potential at infinity and Qs is the scalar ’charge’
which in general needs not equal the electric charge (it did in
the flat spacetime illustration above). In fact, the equations
of motion possess again two first integrals implying that the
gravi tating solutions satisfy the following relation

M2 + Q2
s = Q2. (63)

This last equation, in particular, shows manifestly the curved
background breaks the equality between Q and Qs .

Interestingly, one can show that there is a Smarr relation
in terms of these asymptotic quantities, which is not affected
by the scalar field,

M = 
Q. (64)

Moreover, a first law of thermodynamics can be obtained in
the form

dM = 
dQ . (65)

We emphasise the absence of a scalar field contribution in
these relations.

3.2 The full solutions

The gravitating version of the exact solution in Minkowski
spacetime described in Sect. 2.4.1, with coupling (18), and
whose asymptotic limits have been described in Sect. 3.1,
can be constructed numerically. The set of four ordinary dif-
ferential equations obtained from the above setup was solved
numerically by using a standard Runge–Kutta ordinary dif-
ferential equation solver and appropriate boundary condi-
tions. Fixing α, gravitating solitons exist for arbitrary large
values of Q. The profile of a typical solution is shown in
Fig. 1. As one can see, the profiles of the various func-
tions, and in particular that of the Kretschmann scalar K ,
are smooth as r → 0. In Fig. 2 we show the ADM mass vs.
electric charge diagram for families of solutions with differ-
ent values of α. One can see that for all families, the solutions
trivialise as α → 0. Moreover, a smaller α implies that the
same value of the electric charge can support a more massive
soliton. Obviously, the solutions also trivialise as Q → 0.
The electric charge supports the soliton. This is also mani-
fest from the following virial identity that can be derived for
these solutions:
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Fig. 1 Profiles of an illustrative gravitating soliton with the coupling
(18)
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Fig. 2 ADM vs. electric charge for families of gravitating solitons
with different values of α. The straight lines are obtained from the per-
turbative solutions, whereas the dots represent the numerical solutions

∫ ∞

0
dr e−δφ′2 =

∫ ∞

0
dr

e−δ

r2

Q2

f (φ)
. (66)

For Q = 0 the right hand side vanishes, and so must the left
hand side, which implies φ′ = 0 and hence no non-trivial
scalar profile exists.

Self-gravitating solitons with the coupling (24) and n = 3
where also obtained. They follow the same pattern as the
n = 3 case, which is therefore illustrative.

3.3 Perturbative solutions

The existence of a flat spacetime solution, whose total
mass-energy is proportional to 1/α, suggests that the self-
gravitating solitons may be expressed as a perturbative series
in 1/α. Let us indeed show that the numerical solutions of
the previous subsection can be approximated by such pertur-
bative solutions. This approximation, as we will show and as
one may anticipate, is accurate for sufficiently large α.

The perturbative solutions are obtained by performing a
power series expansion for all relevant functions

m(r) =
∑
k�1

(
1

α

)k

mk(r) ,

δ(r) =
∑
k�1

(
1

α

)k

δk(r), (67)

φ(r) =
∑
k�1

(
1

α

)k

φk(r),

V (r) =
∑
k�1

(
1

α

)k

Vk(r) . (68)

As for the numerical solutions of the previous subsection,
we focus on the quartic coupling function (18). Solving iter-
atively the field equations order by order in 1/α, we arrive at
the following expressions2

m1(r) = 0 = m3(r), m2(r) = qr3

3(q + r)3 ,

m4(r) = −qr4(10q2 + qr + r2)

90(q + r)6 ,

δ1(r) = 0 = δ3(r), δ2(r) = q2(q + 3r)

6(q + r)3 ,

δ4(r) = q2(q4 + 6q3r + 15q2r2 + 100qr3 − 30r4)

540(q + r)6 ,

φ1(r) = q

q + r
, φ2 = 0, φ3(r) = q(2q − r)r2

18(q + r)4 ,

V1(r) = r3

3(q + r)3 , V2(r) = 0,

V3(r) = −r3(5q3 + 25q2r + 6qr2 + r3)

90(q + r)6 , (69)

where q is a free parameter, whose physical significance
becomes transparent by computing the far field asymptotics
of the electric potential. One finds it is related to the electric
charge measured at infinity Q, as

Q = q

α
. (70)

The perturbative solution yields the following ADM mass
and scalar charge, valid to fourth order in perturbation theory:

M = Q

3α

(
1 − 1

30α2 + 1

1080α4

)
,

Qs =
(

1 − 1

18α2 + 7

3240α4

)
Q. (71)

2 We have computed the solution up to eighth order and no obvious
pattern could be found. Here we display only the first few terms for
each function.
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Observe that the first terms in (71) reproduce the flat space-
time limit, Eq. (22) and the fact that the electric and scalar
charge coincide in that limit.

In Fig. 2 the perturbative solutions (71) are compared with
the numerical solutions. One can observe that the former pro-
vide a good approximation for large values of α; for instance,
for α = 10 the relative difference between the numerical
result for M(Q) and the theory one is around 10−4. How-
ever, the differences start to increase for smaller α. This is
illustrated by the results for α = 0.2 in Fig. 2.

Finally let us mention that a similar solution has been
derived for the self-gravitating solitons with the coupling
(24) and n = 3. In this case one finds, e.g.

M = 2Q

5α

(
1 − 2

45α2 + 22

14625α4

)
+ . . . (72)

4 Discussion

Recently, a set of theorems were shown [1] establishing that
the model (1) does not allow self-gravitating solitons. One of
the observations therein is that if the coupling would diverge
the theorems could, potentially, be circumvented. The pur-
pose of this paper was to provide the mechanism how this
can happen providing a simple construction of flat spacetime
and gravitating solitons.

Preliminary analysis shows the solitons we have described
herein are stable against spherical perturbations. If this is the
case for generic perturbations, these solitons can be used for
dynamical studies in many setups, as, for instance, boson
stars [25,26]. Moreover, this construction reveals how to de-
singularise the Coulomb field in a classical field theory, with-
out resorting to non-linear electrodynamics, as in the Born-
Infeld model [27], or invoking a manifestly extended object,
such as in the Dirac model of the electron as a spherical
membrane [28].

Finally, let us remark that there is a well known sim-
ilarity between the EMS model and the extended scalar–
tensor-Gauss–Bonnet model, where black hole scalarisation
was first pointed out in [29–31]. Very recently, a family of
particle-like solutions in the latter model were discussed [32].
These particle like solutions are also supported by a diver-
gent coupling making them the counterparts of the solutions
described herein. But in the cases reported in [32] the scalar
field also diverges at the origin, in contrast with our fully
regular solutions.
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