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Abstract

We study a generalization of the Skill VRP that incorporates time windows aspects,

precedence and synchronization constraints. Specifically, we are given a logistic network

where nodes correspond to customers, and where each customer requires a set of (partially

ordered) operations. A set of technicians is available to perform such operations, and each

technician is qualified to execute only a subset of them, depending on his skill. By referring

to a specific context such as Health Care, customers are patients while technicians are

caregivers. In a Field Service context, instead, customers are usually referred to as clients

while technicians as field technicians. The innovative aspect is that some operations may

require a special device, which must be transported at the customer site and must be present

at the customer location together with a technician qualified to use it. Given technician

dependent traveling costs, we address the problem of defining the tours for the technicians

and for the special device, while respecting the skill compatibility between customers and

technicians, and the time windows, precedence and synchronization constraints.

We propose a Mixed Integer Linear Programming (MILP) model for the generalized

Skill VRP, and present some lower bounding techniques based on the proposed formulation.

Preliminary computational experiments show that some lower bounding techniques may

rapidly produce good lower bounds, thanks to quite effective valid inequalities. The returned

percentage optimality gaps, estimated also thanks to a simple matheuristic, are in fact quite

small for several scenarios of medium to large size, by encouraging the use of the proposed

lower bounding techniques both as building blocks for designing exact approaches, and also

as valuable tools to evaluate the efficacy of more sophisticated heuristic approaches to the

problem.

Keywords: skill VRP; special device; precedence; synchronization; MILP model; lower bound-

ing techniques.
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1 Introduction

Resource constrained routing and scheduling problems are very relevant in theory and prac-

tice, and thus they have attracted considerable attention by the scientific literature. In these

problems, customers have specific requests that can be met by specialized resources, like tech-

nicians, vehicles and devices. In addition, the travel and the delivery of products or services to

the customer locations have to be designed. The resources are usually classified as renewable

(e.g. vehicles), non-renewable (e.g. spare parts), or doubly constrained (e.g. electric energy).

According to a recent review paper [27], the most popular problems in this field are the Skill

VRP and the Technician Routing and Scheduling Problem. The Skill VRP has been introduced

in [4] and further investigated in [5]. There, technicians with given skills must perform routes

to serve customers, each requiring a set of skills to be served. The aim is to minimize the

total routing costs while satisfying the constraints related to the required levels of skill. An

extension to the Skill VRP has been studied in [32]. Another generalization has been proposed

in [28], where the service of each customer requires one or more resources (e.g. technicians and

equipment). There, the resources of each type are limited, and each of them must be assigned

to a single route.

The Technician Routing and Scheduling Problem, introduced in [29], can be seen as another

generalization of the Skill VRP dealing with multiple resources. Specifically, each technician

has a set of skills and may in addition carry a set of tools and spare parts, while each customer

requires a subset of them. Tools are renewable resources, whereas spare parts are non-renewable.

The goal is to design minimum duration routes for the technicians so that each customer request

is served by one technician with the required skills, tools and spare parts. Also in this case the

resources of each type are limited, and each of them is carried out by a single technician. Variants

to the Technician Routing and Scheduling Problem will be discussed in the section devoted to

the literature overview. Interestingly, one of these problems has been the object of a recent

challenge facilitated by VeRoLog, the EURO Working Group on Vehicle Routing and Logistics

Optimization ([14]). Specifically, special tools for measuring milk quality have to be delivered

to customers, at their request, over a multiple day time horizon. After the measurement, the

tools have to be picked up again. The scheduling of these deliveries along the time horizon,

and the routing for the planned deliveries and pickups, are the key decisions to address. The

studied problem is indeed a simplification of a richer version faced by the service provider.

In fact, as outlined in [23], the real problem includes also the scheduling and the routing of

some inspectors, who should visit the customers while the measuring tools are present. Such

inspectors are different than the technicians in charge of transporting the measuring tools, since

they must possess specific qualifications. The need of technicians with different levels of skill,

and the simultaneous presence of qualified technicians and devices, with the treatment of the

underlying synchronization issues, would make the problem an even greater challenge to address.

The aim of this paper is to investigate in this direction of research, by addressing the

management of technicians with different levels of qualification, and the simultaneous presence

of a special device and of a properly qualified technician at some customer locations. Such

aspects make the problem particularly significant in application contexts such as Home Care and

Field Service. The relevance of considering special devices in Home Care is well described in [1],
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where the authors present a case study to evaluate hospital readmission rates and mortality in

elderly patients with chronic obstructive pulmonary disease. The treatment provided at home to

such patients requires in fact to consider two types of materials: consumable materials, i.e. non-

renewable (e.g. oxygen replenishment), and specialized equipment, i.e. renewable (e.g. Doppler

ultrasonograph and electrocardiograph). See also [31] for the description of a dimensioning

problem in Home Care where the importance of managing devices is well outlined.

More in detail, with respect to the kernel Skill VRP problem presented in [4] and in [5],

here multiple visits per customer are allowed, i.e. more than one technician may visit a cus-

tomer in order to operate his required services, although each operation must be performed by

a single technician. Furthermore, the generalization considers precedence constraints among

the operations, time windows at the customers, and maximum workday duration constraints,

which are not addressed in [4] and in [5]. Finally, the handling of a special device, which is

required to perform some special operations, and which must be present at the customer loca-

tion together with a technician qualified to use it, to the best of our knowledge constitutes an

original contribution to the literature on Resource constrained routing and scheduling problems.

The special device is moved by the technicians during their own tours, independently of their

qualifications, and therefore non standard synchronization between the movement of the special

device and the tours of the technicians must be imposed, giving rise to a peculiar tour for the

special device, defined as a composition of some technician tour fragments. The resulting Skill

VRP generalization appears thus to be relevant from an operational perspective, and it may

constitute a basic block for interesting multiple day planning extensions.

The plan of the paper is the following. Section 2 proposes an overview of papers dealing

with some of the characteristics of the generalized Skill VRP. Section 3 describes the studied

problem, while Section 4 presents the Mixed Integer Linear Programming (MILP) model pro-

posed for its mathematical formulation. Some simple, but computationally quite effective, valid

inequalities to enhance the Linear Programming (LP) relaxation of the MILP model are pre-

sented in Section 5. Finally, Section 6 presents some lower bounding techniques, based on the

proposed MILP formulation, and the results of computational experiments, showing that some

lower bounding techniques, when enhanced via the proposed valid inequalities, may rapidly

produce good lower bounds. The returned percentage optimality gaps, estimated also thanks

to simple matheuristics, are in fact quite small for several scenarios of medium to large size,

by encouraging the use of the proposed lower bounding techniques both as building blocks for

designing exact approaches for the generalized Skill VRP, and also as valuable tools to evaluate

the efficacy of more sophisticated heuristic approaches to the problem. Section 7 concludes the

paper.

2 The literature

To the best of our knowledge, in the literature of Resource constrained routing and schedul-

ing problems no paper has dealt with skill, precedence, synchronization and time windows

aspects simultaneously with the management of a special device, which must be present at the

customer location together with the technician in charge to use it. Rather, skill, precedence,

synchronization and time windows constraints have been addressed, with different emphasis also
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depending on the considered application context. Also, delivery and pickup at the customer

locations of renewable resources, such as tools and devices, and of non-renewable resources,

such as spare parts, have been addressed, by disregarding however their synchronization with

the visits of the technicians who are qualified to use them. Therefore, after listing recent reviews

dealing with some of these issues in the Health Care application area, hereafter we shall provide

a short overview of papers addressing some of these characteristics in the context of Resource

constrained routing and scheduling problems.

Some Health Care reviews.

Cissé et al. [11] detail a comprehensive overview of recent models to Home Health Care rout-

ing and scheduling problems (HHCRSP). The authors analyze the existing literature according

to the way the constraints and the objective function are formulated, provide an overview of

methods developed to solve HHCRSP, and discuss future research directions.

Fikar and Hirsch [19] review relevant problem settings for HHCRSP. They consider single-

period and multi-period Home Health Care problems and analyze objective functions, con-

straints and solution methods addressed in the literature.

Paraskevopoulos et al. [27] put in evidence that there exist several interesting variants of

HHCRSP, the Skill VRP and the Technician Routing and Scheduling problems being the most

prominent. The authors also show that maintenance activities and Home Health Care are the

main areas where routing and scheduling of resources are crucial not only in terms of customer

satisfaction, but also in terms of operational efficiency.

Time windows and preferences.

Cheng and Rich [10] consider the nurse rostering and routing problem. They propose a MILP

formulation for the problem together with a heuristic approach. In particular, time windows

are considered. A differentiation is made by considering full-time and part-time nurses, having

different costs. Lunch breaks in different times and with different durations are addressed as

well.

Berthels and Fahle [2] combine nurse rostering with vehicle routing aspects. They describe

the software PARPAP developed for solving the considered problem. In particular, they use a

Linear Programming model, constraint programming techniques and metaheuristics. The paper

considers time intervals, preferences and other additional constraints as soft constraints.

Nickel et al. [26] consider scheduling and routing in Home Health Care over a weekly time

horizon. Hard time windows are present. A two-stage solution approach is proposed which

is based on a constraint programming heuristic and an adaptive large neighborhood search in

order to improve the initial solution.

In a more general VRP setting, time windows are also addressed in [15]. There, a stochastic

variant of the VRP with time windows is considered, where travel times are assumed to be

stochastic, and some restrictions are placed on the probability of violation of time window

constraints.

Precedence and synchronization.
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Bredstrom and Ronnqvist [3] present a set partitioning model for the combined vehicle rout-

ing and scheduling problem with time windows and additional temporal constraints. The tempo-

ral constraints allow one to impose pairwise synchronization and pairwise temporal precedence

between customer visits, independently of the vehicles. The authors propose an optimization

based heuristic to solve real size instances.

Korsah et al. [24] address the problem of optimally assigning and scheduling a set of spatially

distributed tasks to a fleet of vehicles working together to achieve a high-level goal, in domains

where tasks may be related by precedence or synchronization constraints and might have a choice

of locations at which they can be performed. Such problems may arise, for example, in disaster

preparedness planning, transportation of people, and delivery of supplies. The authors present a

novel mathematical model and describe how to solve it to optimality within a Branch-and-Price

framework.

Rasmussen et al. [30] address scheduling and routing in Home Health Care, by considering

time windows, soft preference constraints and temporal dependencies between the start times

of the visits.

In the context of Home Health Care services, synchronization together with time window

constraints are also treated in [16], [20] and [21]. In [16], a constructive heuristic is presented

together with an iterated local search metaheuristic, whereas in [21] a general variable neigh-

borhood search approach is provided. [20] extends the results in [21] by proposing variable

neighborhood search approaches to coordinate multiple Health Care structures and multiple

specialties handled by them.

In the same application context, we mention also [12] where some visits may require the

presence of two staff members simultaneously, thus requiring visit synchronization. Hard and

soft time windows are also taken into account together with multiple visits at some patient

locations. A MILP model and a memetic algorithm featuring two specific crossover operators

are proposed to solve the problem.

For a survey of vehicle routing problems with multiple synchronization constraints, related to

spatial, temporal and load aspects, we refer to Drexl [13]. There, the authors present a classifi-

cation of different types of synchronization, i.e. task synchronization, operation synchronization,

movement synchronization, load synchronization and resource synchronization. Moreover, they

comprehensively review the pertinent literature with respect to the application settings as well

as with respect to successful solution approaches, both at an exact and at a heuristic level,

by emphasizing that this kind of VRP problems are of practical relevance in many application

areas, and they considerably complicate the use of standard VRP solution techniques.

Skills of staff.

Eveborn et al. [17] describes the LAPS CARE system, developed and used in Sweden for the

daily planning of Home Care activities, by taking into account the skills of the staff members.

The problem is formulated in terms of a set partitioning model, and solved via a repeated

matching algorithm.

In a more general VRP setting, Cappanera, Gouveia and Scutellà [4] introduce the Skill

VRP, where a set of tours, each one operated by a skilled technician, must be designed in

such a way that each service requirement, asking for particular skills, is fulfilled by exactly
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one technician [4, 5]. Various MILP models and related valid inequalities are proposed in [4].

Specifically, (i) the models are based on multicommodity flow variables and constraints, (ii)
increasing levels of variable disaggregation allow one to strengthen the associated LP bounds,

and (iii) the models strongly exploit skill information at the nodes of the logistics network,

which is the key aspect differentiating the proposed models from more classical VRP models.

In [5], the authors formulate three MILP models, again characterized by an increasing level

of variable disaggregation, and test them on a large suite of randomly generated instances. In

particular, it is shown that the behavior of one of such models can be improved further by a

cutting plane approach, so allowing to address large scale instances arising in challenging real

application contexts.

Skill requirements and related constraints, in the context of assignment, routing and schedul-

ing in Home Care, are also addressed in [6, 7, 9, 35]. See [8] for skill aspects in Home Care

under uncertain patient demands.

Pickup and delivery of renewable and non-renewable resources.

In [29], each technician has a set of skills and may carry a set of tools and spare parts to the

customers, each requiring a subset of these resources. Tools are renewable resources, whereas

spare parts are non-renewable since they are consumed when the technician serves a request.

The technicians start their tour from a depot with a set of spare parts and tools, and they also

have the option to replenish their tools and spare parts at any time at the depot. The goal is to

design minimum duration routes for the technicians so that each customer request is served by

one technician, with the required skill, tools, and spare parts, within a given time window. The

authors developed a parallel adaptive large neighborhood search algorithm, where a shared pool

of promising solutions is maintained. A post-optimization procedure based on a set covering

model is then used. Computational experiments on instances with up to 100 service requests

are reported.

By considering a Home Health Care context, [25] studies the problem of delivering drugs

and medical devices from the company’s pharmacy to the patients, and special drugs from the

hospital to the patients. Moreover, the pickup of biological samples and unused drugs and

medical devices from the patients to the depot or to a medical lab is addressed. Each patient

must be visited by one vehicle within a given time window, and vehicles are capacitated. Two

MILP models are proposed together with a genetic algorithm and a tabu search method.

Always considering the Home Health Care setting, [33] addresses the case where a set of

patient requests have to be accomplished by two types of caregivers in a one-day planning

horizon. The first category of caregivers is responsible for primary tasks and to collect biological

samples. These caregivers start their routes at a depot and end their working day at the initial

depot right after the delivery of the collected samples at a laboratory. The perishability for

transferring the biological samples to the laboratory is taken into account. Subsequently, the

second category of caregivers performs synchronized services, that can be simultaneous or must

respect precedence constraints, within a predetermined time window. In contrast to the first

category, such caregivers do not visit the laboratory. The goal is to minimize the transportation

cost and the idle time of the caregivers. Simulated annealing and tabu search algorithms are

applied in two phases, i.e. to schedule primary tasks in the first phase, and to synchronize
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services in the subsequent phase.

Finally, the already mentioned problem in [23] concerns a cattle company, that must regu-

larly measure the milk quality at a number of farms, over a multiple day time horizon, by means

of special measuring tools. Such tools have therefore to be delivered to the customers at their

request. After a given number of days elapsed since delivery, the tools have to be picked up

again. Tools are characterized by kind, size and availability. Each request involves only tools

of the same kind. Vehicles transporting them are capacitated and the distance they can travel

in one day is limited to a given maximum value. During the day, vehicles can visit the depot

several times and load/unload tools. On each day, tools unloaded by one vehicle at the depot

are not available to other vehicles. But, at the end of a day, the tools still on board of a vehicle

are unloaded and made available to vehicles for the next day. Moreover, tools can be picked up

at a customer and delivered at another customer during the same day.

It has to be decided on which day to serve each delivery request and, consequently, on which

day to pick up the delivered tools. Furthermore, for each day in the planning horizon it has to

be decided how to combine deliveries and pickups in the vehicle routes. The goal is to serve all

the requests at a minimum cost. [23] provides a description of the solution methods proposed

by the winners of the second and of the third place at the VeRoLog Solver Challenge 2016-

2017. Specifically, the approach of the second ranked competitor involves sequences of low level

heuristics, each of them having a transition probability to move to another low level heuristic.

The third ranked method, instead, decomposes the problem into two independent subproblems,

which are solved using a genetic algorithm, a deterministic routing algorithm, and a variable

neighborhood descent algorithm to further improve the routes found by the deterministic routing

algorithm.

Table 1 summarizes the different characteristics for the pickup and delivery of renewable

and non-renewable resources literature.

Table 1: Home Health Care context (HHC), skilled technicians (ST), renewable resources

(RR), non-renewable resources (NR), pickup resources (PR), replenish at depot (RD), time-

windows (TW), capacitated vehicles (CV), precedence (P), synchronization (S).

Reference year HHC ST RR NR PR RD TW CV P S

Pillac et al. [29] 2013
√ √ √ √ √

Liu et al. [25] 2013
√ √ √ √ √ √

Shahnejat-Bushehri et al. [33] 2019
√ √ √ √ √ √

Kheiri et al. [23] 2019
√ √ √ √ √

3 The generalized Skill VRP

Let G = (Nd, A) be a directed logistic network, with arc set A and node set Nd = N ∪ {d},
where N is the set of the n customers and d is the depot node.

A set Oj is associated with each node j ∈ N , indicating the set of the daily services or

operations required by customer j. For example, in a Health Care context the required opera-

tions may include assistance with respect to personal needs such as getting out of bed, bathing,

dressing, as well as medical services such as drug administration, blood test and ECG test.
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A partial ordering relation < is assumed to be associated with Oj for each j, which specifies

(partial) precedence relationships for the operations at j. Specifically, if o1 and o2 belong to Oj

for some j, o1 < o2 means that the operation o1 must be accomplished before the operation o2

is started in order to satisfy the requirements of node j. In a Health Care context, for example,

dosing medicine must be performed before medication and blood test must be performed before

a meal. A time window [ajo, bjo] is associated with each customer and operation, indicating the

time interval in which the operation o at customer j must start, j ∈ N and o ∈ Oj . Hereafter

O will denote the set of the available services or operations, i.e. O =
⋃

j∈N Oj .

In addition to the normal services, just requiring the presence of a qualified technician, in

our study we consider the situation in which a special device, say s, is needed for some of the

operations. Let Os denote the subset of the operations needing such a special device. For

example, to perform a blood test a centrifuge for blood stabilization is required, while a ECG

machine must be available for the ECG test. An operation in Os can be performed by the

assigned technician only if the special device is present when the operation is started, and the

device must remain at the customer’s home for the entire duration of the operation. W.l.o.g.

we shall assume that each customer may require at most one operation in Os.

Let T be the set of the available technicians, and let St denote the skill or ability of technician

t, expressed as the set of the operations that t is habilitated to perform. The skills constrain how

the customer requirements can be operated: an operation o required by a customer j, i.e. o ∈ Oj ,

can be operated only by a technician t possessing the corresponding skill, i.e. o ∈ St. Moreover,

t can perform multiple operations at j. Concerning the transportation of the special device,

we assume that its transportation is in charge of the technicians in T : different technicians

may move s, during their own tours, to and from the location of the customers needing the

special service; eventually, s can be transported via locations of customers do not requiring s, if

this strategy can be useful for improving the overall service. Notice however that a technician

visiting a customer has in any case to perform an operation at the customer site. By extending

this strategy, the special device could be transported through sites other than the customer

locations, like parkings and break centers, if present in the logistics network.

Given nonnegative technician dependent travelling costs ct
ij , for each (i, j) ∈ A and tech-

nician t ∈ T , we study the problem of defining a set of tours for the technicians, each one

starting and ending at the depot d, in such a way that the set of the operations required by

each customer j, i.e. Oj , is fulfilled by qualified technicians (i.e. the skill constraints are sat-

isfied), by respecting the time window constraints and the partial ordering relation associated

with Oj . This problem will be referred to as G-Skill VRP. The precedence constraints among

the customer operations are imposed as follows: given the nonnegative travelling times τij , for

each (i, j) ∈ A, and given the operation duration δt
o, for each operation o and technician t, then

if o1 and o2 belong to Oj , and o1 < o2, the completion time of the technician having in care

the operation o1 at node j must be less than or equal to the starting time of the technician

having in care the operation o2 at node j. Indeed, more general precedence constraints are

considered in this paper, that include synchronization among operations as their special case.

Such constraints will be better specified next. Constraints on the maximum workday duration

of the technicians are considered as well. Precisely, the working time of technician t can not

exceed his workday duration Dt, t ∈ T . The objective function, to be minimized, is the overall
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travelling cost.

Next we summarize the introduced notation:

Nd = N ∪ {d} set of nodes, N is the set of the n customers and d is the depot node;

A set of arcs;

O set of the available services or operations;

Oj subset of the daily services or operations required by customer j ∈ N ;

Os subset of the operations needing a special device;

T set of the available technicians;

St subset of the operations that technician t ∈ T is habilitated to perform;

[ajo, bjo] time window associated with customer j ∈ N and operation o ∈ O;

ct
ij travelling cost for (i, j) ∈ A and technician t ∈ T ;

τij travelling time along (i, j) ∈ A;

δt
o duration of operation o ∈ O when performed by technician t ∈ T ;

Dt workday duration of technician t ∈ T .

As outlined before, a specificity of the addressed problem, which makes it particularly chal-

lenging but also very complex, is the management of a special device, which is required for some

of the operations. The special device is moved by the technicians during their own tours, and

therefore non standard synchronization between the movement of the special device and the

tours of the technicians must be imposed, giving rise to a peculiar tour for the special device,

defined as a composition of some technician tour fragments. This is illustrated in Figures 1

and 2. The example refers to 5 customers and 4 operations, where O1 = {3}, O2 = {2, 4},
O3 = {1, 3, 4}, O4 = {1} and O5 = {1, 2, 3, 4}. Each customer is represented by a circled node

of the logistic network, and the required operations by smaller, internal, nodes, see Figure 1

(this modelling issue will be better explained in the next section). Operation 1 requires the

special device. By assuming to have 3 technicians, who are qualified to perform the sets of

operations S1 = {1, 2, 4}, S2 = {1, 2} and S3 = {1, 2, 3, 4}, respectively, a set of possible tours

is depicted in Figure 2 (a).

d 1
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d 1
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3
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3

2
3

1
4

1

(a) Depot node and customers; (b) operations required by each customer.

Figure 1: Nodes of the network.

The three technicians have also in charge the movement of the special device, which is needed

to perform operation 1. The route of the special device, resulting from the composition of the

routes of the technicians moving it, is outlined in red in Figure 2 (b).
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(a) Routes of the technicians; (b) route of the special device.

Figure 2: Routes of the technicians and of the special device.

4 The MILP model

Hereafter we shall present a MILP formulation to G-Skill VRP. Firstly we shall define

the enlarged network used to better capture and model the peculiar problem characteristics.

Then the various groups of constraints characterizing the MILP model, which is defined on the

enlarged network, will be presented and commented, together with the objective function. The

overall model will be reported in the appendix.

4.1 The enlarged network

The problem is formulated on an enlarged network EG = (EVd, EA), which is derived

from the original logistic network G = (Nd, A) as follows. For each customer j ∈ N and each

operation o ∈ Oj to be performed at node j, we introduce a customer/operation node v = 〈j, o〉
in the enlarged network. For each customer j ∈ N , we also introduce two fictitious nodes,

〈j, sin〉 and 〈j, sout〉. The two fictitious operations sin and sout associated with each customer j,

which are added to Oj , are used in order to establish the entrance to and the leaving from the

customer location of the special device, as better specified next, and they are also included in

the operation set St of each technician t, since each technician can transport the special device.

The aim is to be able to capture, within the model, the entrance and then the leaving of the

special device at a customer location, so allowing its synchronization with the movements of

the technicians in charge of its transportation and, eventually, with the technician who needs

to use it.

Based on these modelling issues, we define the set EV = {v = 〈j, o〉| j ∈ N, o ∈ Oj} ∪
{〈j, sin〉, 〈j, sout〉| j ∈ N}, and the set EVd = EV ∪ {〈d, od〉}. The latter includes the depot

node d and a fictitious operation od ∈ Od such that od ∈ St for all technicians t. The fictitious

operation od is introduced in order to habilitate each technician to visit d.

Concerning the set of arcs in the enlarged network, EA contains the arcs {(u, v), u =
〈i, o1〉, v = 〈j, o2〉| i, j ∈ Nd, o1 ∈ Oi\{sin}, o2 ∈ Oj\{sout}, (i, j) ∈ A, i 6= j} ∪ {(u, v), u =
〈j, o1〉, v = 〈j, o2〉| j ∈ N, o1, o2 ∈ Oj\{sin, sout}, o1 6= o2} ∪ {(u, v)| u = 〈j, sin〉, v = 〈j, o〉, j ∈
N, o ∈ Oj\{sin}} ∪ {(u, v)|u = 〈j, o〉, v = 〈j, sout〉, j ∈ N, o ∈ Oj\{sout}}. Notice that,

according to the stated definitions, a complete subgraph is present in the enlarged network

for each customer j, linking together all the operations required at j, except for the fictitious
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operations sin and sout. Hereafter the arcs involving the nodes sin and sout will be also referred

to as special arcs. The special arcs (u, v), with v = 〈j, sin〉, are used only by the (unique)

technician transporting the special device to customer j, if this movement is planned. In other

words the special device, if required at j or moving along the network through node j, arrives at

j exclusively via a special arc entering 〈j, sin〉, and leaves j via a special arc outgoing 〈j, sout〉.
The technicians do not transporting the special device, instead, do not use the special arcs.

In other words, fictitious nodes of type 〈j, sin〉 and 〈j, sout〉 are visited only by a technician

transporting the special device.

The enlarged network is represented in Figure 3 (a). There, the little brown nodes represent

the fictitious nodes 〈j, sin〉 and 〈j, sout〉 at each customer j. The tours of the technicians for the

example depicted in Figure 2 (a) and the tour of the special device, depicted in Figure 2 (b), are

represented, in terms of the enlarged network, in Figure 3 (b). The figure shows that the tour

of the special device, depicted in red, is defined as the composition of the special arcs visited

by the technicians, plus suitable movements inside the customer nodes.
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(a) The enlarged network; (b) with the synchronized routes.

Figure 3: Synchronization of the routes.

In the enlarged network, the travelling time associated with an arc (u, v), u = 〈i, o1〉, v =
〈j, o2〉, with (i, j) ∈ A (and so i 6= j), is the travelling time along (i, j) in the original logistic

network, i.e. τij . Notice that this holds also for the special arcs. On the other hand, the travelling

time associated with any arc (u, v) such that u = 〈j, o1〉 and v = 〈j, o2〉 for some customer j,

i.e. with the arcs linking operation nodes related to a given customer, is zero. Moreover, each

node v = 〈j, o〉 in the enlarged network inherits the service times associated with the operation

o corresponding to the node, which depend on technician t, and were previously defined as δt
o,

whereas the service time for the special node 〈d, od〉 and the fictitious nodes 〈j, sin〉 and 〈j, sout〉
is zero. Concerning the travelling costs in the enlarged network, which are dependent on the

technicians, they are set as follows: ct
uv = ct

ij for (u, v) such that u = 〈i, o1〉, v = 〈j, o2〉, and

(i, j) ∈ A (so, i 6= j). This holds true also for the special arcs. Otherwise, i.e. (u, v) is such that

u = 〈j, o1〉 and v = 〈j, o2〉 for some customer j, then ct
uv = 0 for all t.

Next we introduce the decision variables and the groups of constraints.

4.2 Groups of constraints and objective function

Regarding the formulation, recall that each customer j ∈ N requires a set Oj ⊆ O of

operations to be performed, where O = ∪j∈NOj will be used to denote the set of all the
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required operations. Recall also that an operation o ∈ Oj can be performed only by a qualified

technician, i.e. by a technician t ∈ T such that o ∈ St, where St ⊆ O is the set of operations

t can perform. Furthermore, at most one operation o ∈ Oj may require the special device, i.e.

o ∈ (Oj ∩ Os).
Always regarding the formulation, given an arc (u, v) in the enlarged network, with u =

〈i, o1〉 and v = 〈j, o2〉, define Tuv = {t ∈ T : o1 ∈ Oi ∩ St, o2 ∈ Oj ∩ St} as the subset of the

technicians who can perform both o1 and o2, and so can move along (u, v). Also define EAt as

the subset of arcs where technician t ∈ T can move along, that is the subset of arcs (u, v) ∈ EA,

with u = 〈i, o1〉 and v = 〈j, o2〉, such that both o1 and o2 belong to St.

Assignment of operations to technicians. We start by introducing the group of binary variables

modelling the assignment of the operations to the technicians. For each node v = 〈j, o〉 ∈ EV
and t ∈ T such that o ∈ Oj ∩ St, let:

zt
v =

{
1 if technician t visits node v = 〈j, o〉 to perform the operation o at customer j

0 otherwise.

Any operation of a customer, except the fictitious ones, must be performed by exactly one

technician; therefore the assignment variables must satisfy:∑
t∈T |o∈St

zt
v = 1 v = 〈j, o〉 ∈ EV, o 6= sin, sout (4.1)

On the other hand, the special nodes (j, sin) and (j, sout) are visited by a technician only

if the special device is required at j, or if j has just to be traversed to move the special device

along the network. Therefore:∑
t∈T

zt
v ≤ 1 v = 〈j, sin〉 ∈ EV or v = 〈j, sout〉 ∈ EV (4.2)

Routing of the technicians. Now we introduce the group of the binary variables modelling the

routing of the technicians. For each (u, v) ∈ EA and t ∈ Tuv:

xt
uv =

{
1 if (u, v) belongs to the tour of technician t

0 otherwise.

The routing variables must satisfy constraints (4.3) – (4.7). With a little abuse of the

notation, hereafter the node 〈d, od〉 will be simply denoted as d.∑
(u,v)∈EAt

xt
uv = zt

v v = 〈j, o〉 ∈ EV, t ∈ T, o ∈ St (4.3)

∑
(u,v)∈EAt

xt
uv =

∑
(v,u)∈EAt

xt
vu v = 〈j, o〉 ∈ EV, t ∈ T, o ∈ St (4.4)

∑
(d,v)∈EAt

xt
dv = 1 t ∈ T (4.5)

∑
(v,d)∈EAt

xt
vd = 1 t ∈ T (4.6)

xt
uv ∈ {0, 1} (u, v) ∈ EA, t ∈ Tuv (4.7)
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Constraints (4.3) guarantee that, if an operation o in Oj is assigned to technician t, then t

must visit node v = 〈j, o〉. Notice that this includes also the special nodes 〈j, sin〉 and 〈j, sout〉.
Constraints (4.4) state that, if technician t enters a node v, then t must leave v. Notice that

a technician may perform more operations at the same customer j, by moving among nodes of

form (j, o), for different operations o ∈ Oj , with travelling time zero, according to the definition

of the enlarged network. Moreover, a technician may perform more operations at the same

customer j by moving to different customers and then coming back to j. Therefore, multiple

visits of a customer by the same technician are allowed.

Constraints (4.5) and (4.6) ensure that every technician leaving the depot to perform the

assigned operations, then enters the depot after operating. Moreover, to model the case of

technicians who are not assigned any operations, and therefore must remain at the depot, we

assume that a fictitious arc (d, d), connecting the depot to itself, and having travelling time

zero, belongs to the set EAt for each t. In constraints (4.5)-(4.6), the routing variable xt
dd will

be set to 1 in case of inactivity of technician t, and to 0 otherwise. Constraints (4.7) define the

variable domain.

Technician temporal constraints. In order to prevent subtours, that is tours which are dis-

connected from the depot, the proposed model uses temporal flow variables and standard flow

conservation constraints, plus linking constraints to relate the flow variables to the routing

variables. The temporal flow variables are used also to impose precedence and synchronization

constraints among the customer operations, as better clarified next. Let us discuss the temporal

flow variables and the related constraints in more detail.

Let yt
uv, with (u, v) ∈ EA and t ∈ Tuv, be a flow variable that specifies the cumulative time

spent by technician t after traversing the arc (u, v), if (u, v) belongs to the tour of technician

t. This cumulative time is defined as the sum of the travelling times associated with the arcs

of the subpath from the depot to v, plus the durations of the operations performed by t at the

nodes of this subpath, except the one operated at node v. Therefore, yt
uv indicates the arrival

time of t at v, if v is visited by t.

The temporal flow variables are defined in terms of the technician assignment variables zt
v

and of the technician routing variables xt
uv:

∑
(d,v)∈EAt

yt
dv =

∑
(d,v)∈EAt

τdvx
t
dv t ∈ T (4.8)

∑
(v,u)∈EAt

yt
vu =

∑
(u,v)∈EAt

yt
uv + δt

oz
t
v +

∑
(v,u)∈EAt

τvux
t
vu v = 〈j, o〉 ∈ EV, t ∈ T (4.9)

yt
uv ≤ Dtxt

uv t ∈ T, (u, v) ∈ EAt (4.10)

yt
uv ≥ 0 t ∈ T, (u, v) ∈ EAt (4.11)

Constraints (4.8) take into account that at the depot node d the duration of an operation

is zero and therefore the cumulative time of the first visited customer, if any, accounts only for

the duration of the travelling from the depot node to the customer node. The flow conservation

constraints (4.9) define the total time accumulated by a technician t after the service at a

customer node v as the cumulative time from the depot to v plus the duration of the operation
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at v plus the travelling time along the arc of the subpath leaving node v, if v belongs to the

tour of t. Constraints (4.10) and (4.11) state that the cumulative time spent by technician t

can be positive only on the arcs belonging to the tour of technician t. Constraints (4.10) play

also another role into the model. In fact, they state that the total time of technician t in any

point of his tour can not exceed Dt, i.e. the workday duration associated with t.

Notice that, in order to allow some waiting time along the technicians route, equalities (4.9)

could be replaced by the inequalities∑
(v,u)∈EAt

yt
vu ≥

∑
(u,v)∈EAt

yt
uv + δt

oz
t
v +

∑
(v,u)∈EAt

τvux
t
vu v = 〈j, o〉 ∈ EV, t ∈ T.

Precedences and synchronization. By using the temporal flow variables, the precedence con-

straints among the customer operations can be modelled as follows:∑
(u,v1)∈EAt

yt
uv1

+ δt
o1
zt

v1
≤

∑
(u,v2)∈EAr

yr
uv2

+Dt(1− zr
v2

) (4.12)

v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV |o1 < o2, t, r ∈ T : o1 ∈ St, o2 ∈ Sr

Constraints (4.12) state that, for each customer j, if the operation o1 must preceed o2, and

if technicians t and r have been selected, respectively, to operate o1 and o2 at node j, then the

cumulative time of t at v1 plus the time spent by t for operating o1 must be less than or equal to

the cumulative time of r at node v2. Notice that r = t is allowed, so modelling the case where

the precedence relationship involves operations of j assigned to the same technician.

Indeed, the precedence constraints (4.12) can be generalized as follows. Let gj min
o1o2 be the

minimum time that must elapse between the end of the operation o1 and the beginning of the

operation o2 at customer j ∈ N , while gj max
o1o2 be the maximum allowed time between the end of

the operation o1 and the beginning of the operation o2, with o1, o2 ∈ Oj . Then, we can impose

that the gap between the completion time of operation o1 at j and the beginning time of o2 at j

must lay between gj min
o1o2 and gj max

o1o2 , for each customer j and any pair of operations o1, o2 ∈ Oj :

gj min
o1o2 − (Dt + gj min

o1o2 )(2− zr
v2 − z

t
v1) ≤∑

(u,v2)∈EAr

yr
uv2 − (

∑
(u,v1)∈EAt

yt
uv1 + δt

o1z
t
v1) ≤ (4.13)

gj max
o1o2 +Dr(2− zt

v1 − z
r
v2)

v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV | t, r ∈ T : o1 ∈ St, o2 ∈ Sr

Notice that, depending on the setting of gj min
o1o2 and of gj max

o1o2 , constraints (4.13) can be used

to synchronize the operations o1 and o2 at node j. In case no synchronization is required, gj min
o1o2

can be set to a very negative value while gj max
o1o2 can be set to a very large value.
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Time windows. Concerning the time windows constraints, stating that the operation o at

customer j must be started in the time interval [ajo, bjo], for j ∈ N and o ∈ Oj (o 6= sin, sout),

they can be expressed as:

ajo(
∑

(u,v)∈EAt

xt
uv) ≤

∑
(u,v)∈EAt

yt
uv ≤ bjo(

∑
(u,v)∈EAt

xt
uv) v = 〈j, o〉 ∈ EV (o 6= sin, sout), t ∈ T

(4.14)

Routing of the special device. Now, let us model the handling of the special device within

the enlarged network. As previously outlined, the modelling idea is that the special device can

arrive at customer j only through the node 〈j, sin〉, thanks to a technician. Then, if the special

device is required at j, it is transported directly to the requiring node 〈j, o〉, with o ∈ Oj ∩Os,

and, from there, after the completion of operation o, to the outgoing node 〈j, sout〉, to leave

customer j. Notice that the technician operating o at j may be different than the technician

who have transported the special device at j. Also the technician who is in charge of moving

the special device out of j may be different. Otherwise, i.e. the special device is not required at

j, i.e. j is just used to move the device elsewhere, then the device moves directly from 〈j, sin〉
to 〈j, sout〉, to leave customer j. Also in this scenario the arrival and the leaving of the special

device to/from j are in charge of a technician (possibly two different technicians).

In order to model the movement of the special device, let us denote by EAs the set of the arcs

along which the special device can move. This set contains: the arcs of form (〈i, sout〉, 〈j, sin〉)
for each pair of different customers i and j such that an arc (i, j) exists in the original logistic

network, modelling the movement of the special device from customer i to customer j; the

arcs of form (〈j, sin〉, 〈j, sout〉), modelling the case where the special device is not required at

j, but just traverses j; the arcs of form (〈j, sin〉, 〈j, o〉) and (〈j, o〉, 〈j, sout〉), modelling the case

where the special device is required at j to perform the special operation o, with o ∈ Oj ∩ Os;

and finally the arcs of form (d, 〈j, sin〉) and (〈j, sout〉, d), modeling the leaving of the special

device from the depot, and its coming back to the depot at the end of the working day. By

extending the previous definition, all these arcs will be also referred to as special arcs. Then,

let us introduce the following routing variables:

ws
uv =

{
1 if (u, v) belongs to the tour of device s, for (u, v) ∈ EAs

0 otherwise.

∑
(u,v)∈EAs

ws
uv = 1 v = 〈j, sin〉 ∈ EV,Oj ∩ Os 6= ∅ (4.15)

∑
(v,u)∈EAs

ws
vu = 1 v = 〈j, sout〉 ∈ EV,Oj ∩ Os 6= ∅ (4.16)

ws
〈j,sin〉,〈j,o〉 = ws

〈j,o〉,〈j,sout〉 = 1 j ∈ N, o ∈ Oj ∩ Os (4.17)∑
(u,v)∈EAs

ws
uv ≤ 1 v = 〈j, sin〉 ∈ EV,Oj ∩ Os = ∅ (4.18)

∑
(v,u)∈EAs

ws
vu ≤ 1 v = 〈j, sout〉 ∈ EV,Oj ∩ Os = ∅ (4.19)
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ws
(〈j,sin〉,〈j,sout〉) ≥

∑
(u,〈j,sin〉)∈EAs

ws
(u,〈j,sin〉) j ∈ N,Oj ∩ Os = ∅ (4.20)

∑
(d,u)∈EAs

ws
du = 1 (4.21)

ws
〈j,sin〉,〈j,o〉 = ws

〈j,o〉,〈j,sout〉 j ∈ N, o ∈ Oj ∩ Os (4.22)∑
(u,v)∈EAs

ws
uv =

∑
(v,u)∈EAs

ws
vu v = 〈j, sin〉 ∈ EV or v = 〈j, sout〉 ∈ EV (4.23)

∑
(u,d)∈EAs

ws
ud = 1 (4.24)

∑
t∈T

xt
uv = ws

uv (u, v) ∈ EAs, u = 〈i, sout〉, v = 〈j, sin〉, i 6= j

(4.25)∑
t∈T

xt
(d,〈j,sin〉) = ws

(d,〈j,sin〉) (d, 〈j, sin〉) ∈ EAs (4.26)

∑
t∈T

xt
(〈j,sout〉,d) = ws

(〈j,sout〉,d) (〈j, sout), d〉 ∈ EAs (4.27)

ws
uv ∈ {0, 1} (u, v) ∈ EAs (4.28)

Constraints (4.15)-(4.24) are the routing constraints for the special device. In particular,

constraints (4.15)-(4.17) guarantee the presence of the special device at each customer requiring

it, whereas constraints (4.18)-(4.20) address the possible movement of the special device through

the location of a customer does not requiring it. Constraints (4.21) and (4.24) consider the

movement of the special device from and to the depot node, while (4.22) and (4.23) are the

classical flow conservation constraints for the special device routing.

Constraints (4.25), (4.26) and (4.27), instead, ensure that the special device can move be-

tween different customers, and from/to a customer and the depot, if and only if a technician

moves along the corresponding special arcs during his tour, by transporting the device. The

tour of the special device, at the original logistic network level, is thus the composition of some

technician tour fragments, related to those technicians having in charge the transportation of

the special device. The enlarged network, instead, allows one a deeper view of the technicians

and of the special device tours, by showing their behavior inside the customer nodes.

Precedence and synchronization for the special device. Here we introduce the temporal vari-

ables and constraints related to the special device. Hereafter Ds will denote the daily availability

of the special device.

The temporal variables for the special device, ys
uv, are defined only for the special arcs

linking different customers in the tour of the special device, and for the special arcs of this tour

linking customers to the depot. They are defined as a function of the temporal variables of the

technicians according to the following observations, which are based on the previously stated

assumption that the special device is moved along the network by means of technicians: (a) the

arrival time of the special device at customer j coincides with the arrival time at node 〈j, sin〉 of

the (unique) technician visiting 〈j, sin〉 (recall, in fact, that the special device enters customer j

only via the node 〈j, sin〉); (b) the leaving time of the special device out of customer j coincides
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with the arrival time at node 〈j, sout〉 of the (unique) technician visiting 〈j, sout〉 (recall, in fact,

that the special device leaves customer j only via the node 〈j, sout〉). These modelling tools

allow one to synchronize the arrival and the leaving time of the special device at customer j,

and also to synchronize such times with the time of the technician in charge to use the special

device at j, if j requires the special device. Formally:∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 =

∑
t∈T

∑
(u,〈j,sin〉)∈EAs

yt
u〈j,sin〉 j ∈ N (4.29)

∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 ≤

∑
(u,〈j,o〉)∈EAt

yt
u〈j,o〉 +Ds(1− zt

〈j,o〉) (4.30)

j ∈ N, t ∈ T, o ∈ Oj ∩ Os ∩ St∑
(u,〈j,o〉)∈EAt

yt
u〈j,o〉 + δt

oz
t
〈j,o〉 ≤

∑
r∈T

∑
(u,〈j,sout〉)∈EAr

yr
u〈j,sout〉 (4.31)

j ∈ N, t ∈ T, o ∈ Oj ∩ Os ∩ St∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 ≤

∑
r∈T

∑
(u,〈j,sout〉)∈EAr

yr
u〈j,sout〉 j ∈ N,Oj ∩ Os = ∅ (4.32)

ys
uv ≤ Dsws

uv (u, v) ∈ EAs (4.33)

ys
uv ≥ 0 (u, v) ∈ EAs (4.34)

Constraints (4.29) state that the arrival time of the special device at customer j coincides

with the arrival time of the (unique) technician transporting the device to j, i.e. visiting 〈j, sin〉.
Constraints (4.30) impose that the special device must arrive at customer j, requiring it, before

the arrival of the technician who will use the special device at j, while (4.31) state that the use

of the special device at j must be ended before the time when a technician will move the device

out of j. Concerning the customers do not requiring the special device, i.e. those customer

locations who may be used just to transport the device along the network, (4.32) state that the

arrival time of the technician transporting the device at a customer must precede the leaving

time of the one who will move out the device. Finally, constraints (4.33) guarantee that the

total time of the special device tour can not exceed Ds and that the temporal variables for the

special device may be positive only along the arcs used to transport it.

Objective function. The objective function, to be minimized, defines the overall routing cost:

∑
(u,v)∈EA

∑
t∈Tuv

ct
uvx

t
uv (4.35)

The overall model is reported in the appendix.

5 Valid inequalities

In order to enhance the LP relaxation of the proposed formulation, the following valid

inequalities, defined on the enlarged network, have been proposed. These inequalities, although

quite simple, proved to be very effective from a computational perspective, as shown in the

section devoted to the computational results.
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Depot cut constraints. These inequalities state that, if a visit is assigned to a technician t, then

t must leave the depot node. Equivalently, the routing variable xt
dd, modelling the inactivity of

t through the fictitious link (d, d), must be set to 0.

xt
dd ≤ 1− zt

v v = 〈j, o〉 ∈ EV, t ∈ T, o ∈ St (5.1)

See Figure 4 for a graphical explanation.

(j,o)

Customer j

d

Depot d

Technician t

Figure 4: Depot cut constraints

2-3 cycle cut constraints. The 2 cycle cut constraints state that, if two operations of a certain

customer j, other than the fictitious ones sin and sout, are assigned to a technician t, and thus

the corresponding nodes in the enlarged network belong to his tour, then no cycle can exist in

the tour of t comprising such nodes. Analogous inequalities can be stated by considering the

case of three operations of customer j assigned to the same technician, leading to 3 cycle cut

constraints.

xt
v1v2 + xt

v2v1 ≤ 1, v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV (o1, o2 6= sin, sout), t ∈ T, o1, o2 ∈ St, (5.2)

xt
v1v2 + xt

v2v1+ xt
v3v2 + xt

v2v3 + xt
v1v3 + xt

v3v1 ≤ 2 (5.3)

v1 = 〈j, o1〉, v2 = 〈j, o2〉, v3 = 〈j, o3〉 ∈ EV (o1, o2, o3 6= sin, sout), t ∈ T, o1, o2, o3 ∈ St.

These valid inequalities are illustrated in Figure 5.

2-3 aggregated cycle cut constraints. As only one technician operates each required operation,

the 2-3 cycle cut constraints can be aggregated by technicians as follows:

∑
t∈T :o1,o2∈St

(xt
v1v2 + xt

v2v1) ≤ 1, v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV (o1, o2 6= sin, sout), (5.4)

∑
t∈T :o1,o2,o3∈St

(xt
v1v2 + xt

v2v1+ xt
v3v2 + xt

v2v3 + xt
v1v3 + xt

v3v1) ≤ 2 (5.5)

v1 = 〈j, o1〉, v2 = 〈j, o2〉, v3 = 〈j, o3〉 ∈ EV (o1, o2, o3 6= sin, sout).
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(j,o1)

(j,o2)

Customer j

(j,o3)

(j,o2)

Customer j

(j,o1)

At most one arc At most two arcs

Figure 5: 2-3 cycle cut constraints

Aggregated inter-customers cycle cut constraints. They state that, given two customers i and

j, if a technician t has to perform both an operation of i and an operation of j, then t can move

either from i to j or from j to i. That is, cycles involving the corresponding nodes in the enlarged

network are forbidden. Clearly, such valid inequalities can be generalized by considering more

than two customers at a time.

∑
t∈T,o1,o2∈St

(xt
v1v2 + xt

v2v1) ≤ 1 v1 = 〈j, o1〉, v2 = 〈i, o2〉 ∈ EV, i 6= j (5.6)

6 Computational experiments

In this section we report computational experiments performed to access the quality of the

bounds obtained for G-Skill VRP. All the computational tests were performed using a processor

Intel(R) Core(TM) i7-4750HQ CPU @ 2.00 GHz with 8GB of RAM and using the software

Xpress 8.5 (Xpress Release 2018 with Xpress-Optimizer 33.01.05 and Xpress-Mosel 4.8.4) [18].

In Section 6.1 we provide details on the generation of the instances. In Section 6.2 we describe

the procedures we applied to the models to obtain bounds to the problem. In Section 6.3 we

report the computational results obtained for the generated instances, and discuss the main

achievements that can be derived based on these results.

6.1 Instance description

We experimented two different sets of instances. The first set, comprising 60 instances of

medium to large size, has been generated starting from the Euclidean-distance data sets tc that

were proposed and used by Gouveia in [22] for the first time, and utilized since then in several

computational testings. The name tc of the data sets refers to a central position of the depot in

a grid. The second set, instead, is composed of 9 very large instances, and it has been generated

starting from the TRSP instances used in Pillac et al.’s experimentation [29], which in turn are

based on the Solomon benchmark [34]. We want to emphasize that the Technician Routing and
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Scheduling Problem, investigated in [29], is different than G-Skill VRP. Therefore, Pillac et al.’s

instances have been adapted to face with the specific characteristics of G-Skill VRP.

6.1.1 tc-based instances

We generated a total of 60 instances with |N | = 20 customers, |O| = 6 available operations

and |T | = 3 technicians. Two of the technicians are skilled for 4 operations, while the third

one is skilled for all the operations. Each technician is able to perform the special operation,

i.e. operation 1, that requires the special device, and the working day duration is 480 minutes

(8 hours) for all the technicians. Each customer requires 1 or 3 operations and the 20% of the

customers require that their operations start in a given time window, either morning (first half

of the working day duration) or afternoon (second half of the working day duration). Notice

that, since in several application contexts the service delivered at the customer locations may be

variable or uncertain, as remarked in [27], it may be reasonable to consider large time windows,

such as morning and afternoon, rather than hard time windows, since these could be rarely

satisfied in practice.

The 60 instances are divided into four sets of 15 instances each. Sets of instances have

different percentages of the number of operations required per customer. Specifically, we have

the following sets: (i) set 70-30 in which 70% of the customers (14 customers) require one

operation and 30% of the customers (6 customers) require 3 operations, summing up to 32

operations, (ii) set 60-40 in which 60% of the customers require one operation and 40% of the

customers require 3 operations (for a total of 36 operations), (iii) set 50-50 in which 50% of the

customers require one operation and 50% of the customers require 3 operations (for a total of

40 operations), (iv) set 40-60 in which 40% of the customers require one operation and 60% of

the customers require 3 operations (for a total of 44 operations).

We used five Euclidean data sets from [22], namely tc1, tc2, tc3, tc4 and tc5. For each one

of the five Euclidean data sets, three different seeds (identified by the numbers 0, 1 and 2) were

used to randomly assign operations to customers and technicians. The name of each generated

instance reports the name of the original data set used (tc1, tc2, tc3, tc4 or tc5), the set it

belongs to (70-30, 60-40, 50-50 or 40-60), and the random seed (0, 1 or 2). As an example,

instance tc1-70-30-0 refers to the instance generated from the original instance tc1, belonging

to the set 70-30, using the first seed (zero).

The service time δt
o of each one of the |O| = 6 available operations ranges from 10 to 30

minutes. The operation that requires the use of the special device, i.e. operation 1, has a service

time of 10 minutes.

The travel time τij between customer i and customer j is set to 0.3cij where cij is the

Euclidean distance value from the data sets tc for nodes i and j. Also the traveling costs ct
ij ,

which depend on the technicians, are defined using the values cij of the Euclidean data sets.

Specifically, two technicians have the same travelling cost, which is equal to cij , for each pair of

customers i and j, whereas the third technician, who is the most skilled among the technicians,

has a travelling cost that is two times the cost of the other ones, i.e. 2cij , for each pair of

customers i and j.

As for the precedence constraints, we consider two cases: (i) one type of precedence con-
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straints in which operation 2 must be performed before operation 3 at each customer requiring

them, i.e. 2 < 3, and (ii) two types of precedence constraints in which operation 5 must always

be performed before operation 6 in addition to the precedence constraint between operations 2

and 3, i.e. 2 < 3 and 5 < 6.

6.1.2 TRSP -based instances

We selected 9 TRSP instances from [29] which involve 100 customers and 25 technicians.

In such instances, each technician has a skill and a set of tools and spare parts he can manage.

On the other hand, each customer requires a skill and a set of tools and spare parts.

In order to adapt this different scenario to the G-Skill VRP context, we disregarded spare

parts and interpreted tools as operations, i.e. each of the tools required by a customer in the

original instance becomes an operation in our instance. Consequently, if a customer i requires

a skill k and a tool o in the original TRSP instance, then i becomes a customer requiring skill

k and operation o in the corresponding G-Skill VRP instance, and he can be served only by a

technician having skill k and possessing o in his tool set. As an example, if i requires skill k and

needs tools o1 and o2 in the original TRSP instance, in the corresponding G-Skill VRP instance

i becomes a customer requiring two operations, i.e. o1 and o2, both with skill k. The total

number of operations in the G-Skill VRP instance is thus the total number of tool requirements

in the original TRSP instance. Notice that the concept of skill has been generalized with respect

to the one presented in Section 3, and the models have been adapted accordingly. In Section

3, skills correspond to operations, and a technician t can perform an operation o at a certain

customer if and only if o belongs to set of operations t can perform. In the TRSP instances,

instead, skills do not correspond to operations. A technician t can operate operation o requiring

skill k at a customer if and only if t has skill k (according to the definition of skill in [29]), and

its set of operations (i.e. his set of tools in the original TRSP instance) includes o.

One tool, i.e. tool 1, has then been selected to define the special operation, that is the

operation which requires the special device. Recall that no special device is managed in [29].

The size of the TRSP -based instances is summarized in Table 2. The name of each instance

is exactly the one as the original instance and it consists of three fields that identify respectively

how requests at customers are generated, the length of the planning horizon (1 day in our case),

and the instance number. In regards to the first field, requests can be randomly generated

(R), organized in clusters (C), or generated combining both (RC). In addition to the instance

name, columns in Table 2 report respectively the number of customers (|N |), the total number of

operations required by overall customers, and the number of technicians (|T |). Notice that, since

we disregarded spare parts, we removed all the customers requiring only spare parts. Similarly,

technicians only managing spare parts have been disregarded. Despite of some customer and

technician removals, the obtained TRSP -based instances are really very large, with a total

number of operations ranging from 86 to 120.

Service times for the operations and workday durations for the technicians, which are not

provided in the original instances, are defined as for the tc-based instances. In particular, the

working day duration is 480 minutes (8 hours) for all the technicians and service times range

in {10, 15, 20}. Technician costs depend on distance and skill. Specifically, we assume that for
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Table 2: Size of TRSP -based instances.

Instance |N |
∑

j |Oj | |T |

C101 65 95 20

C102 77 120 22

C103 65 89 22

R101 56 87 21

R102 68 101 20

R103 63 95 21

RC101 59 86 23

RC102 64 98 21

RC103 68 103 17

each technician who is able to perform no more than three operations, the cost of arc (i, j) is

exactly the distance between customer i and customer j, whereas for each technician who is

able to perform more than three operations the cost of an arc is twice the distance.

Concerning time windows, which are not provided in the original instances, we still consider

large time windows, i.e. a morning or an afternoon time window. Differently from what happens

in the tc-based instances, where only the 20% of the customers has an associated time window, in

the TRSP -instance we associated with each customer a morning or an afternoon time window,

thus making the instances even more challenging. Finally, no precedence constraints are given.

6.2 Solving procedures

In this section, we describe how different variants of the MILP model (4.1)–(4.35) and several

procedures have been used to provide lower and upper bounds to the G-Skill VRP. Specifically,

we tested four models and three procedures as described in the following.

The first model, referred to as the plain model (p for short) is just the complete model whose

feasible set is described by constraints (4.1)–(4.34). The second model, referred to as model with

cuts (c for short) is the plain model enhanced with several valid inequalities. Namely, the depot

cuts (5.1), the 2-3 aggregated cycle cuts (5.4)–(5.5) and the aggregated inter-customers cycle

cuts (5.6). The third model, referred to as the relax model (r for short), is a relaxation of the

plain model in which the special device is neglected. The relax model is thus defined by a subset

of the constraints that characterize the plain model, namely constraints (4.1)–(4.14). Finally,

the fourth model consists in the relax model equipped with the same valid inequalities used in

model c, namely (5.1), (5.4)–(5.5), (5.6). This model is referred to as relax model with cuts (x

for short). For each of these models, the solver is used to obtain the solution value of the linear

programming relaxation and the values of the best lower and upper bounds returned by the

Branch and Bound procedure within an a priori fixed maximum amount of computational time.

Specifically, for each model m with m in {p, c, r, x}, LPm represents the linear programming

relaxation solution value, LBm the best lower bound value and UBm represents the best upper
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bound solution value. At this regard, notice that UBr and UBx are not necessarily upper

bounds to G-Skill VRP. The name of the four alternative models and the constraints describing

them are briefly recalled in Table 3.

Table 3: Model names and constraints describing them.

Constraints No Cuts Cuts (5.1),(5.4),(5.5),(5.6)

(4.1)–(4.34) p c

(4.1)–(4.14) r x

Preliminary computational results have shown that the relax model is more efficient than the

plain model. A possible explanation of why this happens is that by eliminating the complicating

constraints related to the special device every single subproblem in the Branch and Bound tree

becomes easier to solve. As a result, more nodes of the enumeration tree are explored and

this allows to find better lower bounds. Motivated by these preliminary tests, we defined two

procedures aiming at improving the lower bound values. In the first procedure, referred to as

p1, the lower bound value obtained by model x is used as a lower bound value to model c, thus

implementing a warm start for model c. As before, LBp1 and UBp1 represent, respectively, the

best lower and upper bound values returned by procedure p1.

In the second procedure, referred to as p2, as in the first procedure the lower bound value

obtained by model x is used as a lower bound constraint, and in addition we dynamically add

violated constraints from the sets (4.15)–(4.34) to the relax model. As before, LBp2 and UBp2

represent, respectively, the best lower and upper bound values returned by procedure p2. Notice

that UBp2 is not necessarily an upper bound to G-Skill VRP.

While the two procedures above described aim at improving the lower bound value, in some

cases returning an upper bound as a collateral effect, the third procedure is a matheuristic, based

on the LP solution of model c, that assigns all the nodes requiring the special operation os to one

technician at a time, in an exhaustive way. Its aim is to rapidly estimate the quality of the lower

bounding techniques proposed in this paper, thanks to its computational efficiency. Specifically,

the LP solution of model c is used to rank the technicians according to the (possibly fractional)

number of nodes of type v = 〈j, os〉 assigned to them in the LP solution, by considering a

nonincreasing order. The first technician according to this ordering, say ts, is selected, and

all the nodes of type v = 〈j, os〉 are assigned to him. Therefore, the corresponding assignment

variables zts

〈j,os〉 are set to one within model c, and the plain model so simplified is used to generate

a feasible solution with a time limit of 1800 seconds. Then, the next technician according to the

considered ordering is selected, all the nodes of type v = 〈j, os〉 are assigned to him, and again the

simplified model c is solved to get a feasible solution, by iterating until all the technicians have

been considered, and halving the time limit for the simplified model c solution at each iteration.

The resulting matheuristic, referred to as h for short, returns the best feasible solution found

among the performed iterations. Its pseudocode is reported in Algorithm 1. By extending the

previous notation, UBh will denote the value of the solution returned by h, since it provides an

upper bound to G-Skill VRP. Notice that the best lower bound value obtained by solving the

simplified versions of model c along the heuristic iterations is not necessarily a lower bound to
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G-Skill VRP.

Algorithm 1 The matheuristic for G-Skill VRP.

1: TL := EmptyList(); \\ list of technicians

2: SL := EmptyList(); \\ list of feasible solutions

3: α := 1800; \\ set time limit (seconds)

4: z = argminLPc; \\ solve the LP of model c and get the solution

5: for all t ∈ T do

6: if St ∩ Os 6= ∅ \\ technician t can perform the special operation then

7: TL.Insert(t);

8: `t :=
∑

v=〈j,o〉:j∈N, o∈Oj∩St∩Os

zt
v

9: end if

10: end for

11: TL.Sort(by nonincreasing `t);

12: while TL.IsNotEmpty() do

13: ts := TL.Pop(); \\ extract the first item from TL

14: for all v = 〈j, o〉, j ∈ N, o ∈ Oj ∩ Sts ∩ Os do

15: Set zts
v = 1 in model c;

16: end for

17: sol := Solve(c, α); \\ solve model c with time limit α

18: SL.Insert(sol);

19: α := α/2;

20: end while

21: return(SL.BestItem()); \\ return the best solution from SL

In the next section, detailed results relative to the four models, namely, p, c, r and x, and

to the three procedures, namely p1, p2 and h, are presented and discussed separately for the

two sets of G-Skill VRP instances.

6.3 Computational results for tc-based instances

We start the section with a set of tables that compare pairs of models and/or procedures.

Specifically, in Table 4 we compare models p and c, while in Table 5 we compare models r and

x. These two tables allow to evaluate the impact of adding valid inequalities on the quality

of the lower bounds obtained. Summary information on optimality gaps and computational

times for models p, c, r and x is reported in Table 6. Then, after a discussion about the

two procedures, p1 and p2, which exploit the relax model with the aim of providing enhanced

lower bounds, a lower bound comparison is proposed in Table 7 by reporting for each model,

and separately for each set of instances, the average relative gap of the corresponding lower

bound with respect to the best lower bound achieved. Information on the best lower and upper

bounds obtained via the proposed models and procedures is finally summarized in Table 8, also

considering the matheuristic approach h. Additional summary information is given also via a

graphical representation.
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Computational results obtained when two types of precedence constraints are considered

exhibit the same trend of the results obtained with one type of precedence constraint and are

thus not reported.

Tables 4 and 5 report the same type of information. Specifically, the first column identifies

the instance. Then, for each considered model or procedure, identified by a character in the

subscript, columns LP display the value of the linear programming relaxation, columns LB

display the best lower bound value obtained within the time limit imposed, columns UB display

the best upper bound value obtained within the time limit imposed and columns gap display

the corresponding optimality gap between the lower and the upper bound found, i.e., gapm =
100 × (UBm − LBm)/LBm where the character m identifies the model or the procedure used.

Additionally, in some tables, columns “time” report the computational time in seconds used to

obtain the displayed values. A time limit of 10800 seconds was imposed.1 This is the time used

when the column “time” is omitted.

Comparison of the plain model with the model with cuts. Table 4 reports results that allow

the comparison of the plain model with the model with cuts. The best results obtained within a

time limit of three hours of computations are reported. As indicated before, for each of the two

models, either p or c, the gap measures the relative distance between lower and upper bounds

obtained with that specific model.

The direct comparison between columns LPp and LPc as well as between columns LBp and

LBc highlights that the valid inequalities are largely effective in improving the lower bounds.

Furthermore, valid inequalities allow to reduce the gap remarkably and they usually allow to

increase the number of instances for which a feasible solution is found. Specifically, from Table 4

we get that, on the set 70-30, the average gap computed on all the instances for which a feasible

solution is found decreases from 62.6% obtained with model p to 26.7% obtained with model c.

In addition, the introduction of cuts allows to close the optimality gap for 4 instances over 15 and

to determine a feasible solution for every instance. On the set 60-40, the average gap decreases

from 119.7% (model p) to 25.8% (model c). In addition, model c allows to find a solution also

on the 5 instances on which model p fails, thus determining a solution for all the instances in

the set. The gaps decrease remarkably also on instances 50-50 (from 256.2% to 19.6%) and

on instances 40-60 (from 255.6% to 66.2). However, on these two sets the introduction of cuts

might on some instances prevent the solver from finding a feasible solution. This is probably

due to the fact that on the most difficult instances in the test bed the introduction of all the

cuts from scratch slows down the solver.

Comparison of the relax model with the relax model with cuts. Table 5 reports results that

allow the comparison of the relax model with the relax model with cuts in terms of linear

programming relaxation value, best lower bound value and best solution value obtained within

a time limit of three hours of computation. Both the models neglect the constraints involving

the special device and thus, as observed, their upper bound does not necessarily correspond to

a feasible solution to the original problem.

1In the Branch and Bound process, the solver stops only after a Branch and Bound node has been completely

explored; therefore, sometimes the computational time can be bigger than the established time limit.
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Noticeably, we observe that both the relax model with cuts and the relax model are able to

obtain a solution for all the instances. The lower and upper bound values obtained with the

relax model with cuts are significantly better than those obtained with the relax model. Further,

Table 5 shows that the relax model with cuts is able to close the optimality gap for many

instances (36 out of 60 for the one precedence constraint, and indeed the same 36 instances

out of 60 for the two precedence constraints). Contrarily, the relax model is able to close the

optimality gap only for three instances over 60 (all of them belonging to the 70-30 set). Thus,

embedding the model with cuts, also in this case allows to speed up the solver. Overall, the

introduction of cuts makes it possible to significantly reduce the optimality gap. On the 70-30,

the average gap reduces from 17.2% when model r is used to 3.6% when model x is used. The

same figures show that the gap decreases from 26.1% to 2.0% on the 60-40, from 51.3% to 3.1%

on the 50-50, and from 111.7% to 5.8% on the 40-60.

When comparing the computational results of Table 5 with the corresponding results dis-

played in Table 4, we conclude that the presence of the special device makes the problem much

harder to solve. In particular, the average computational time of model x halved in comparison

with that required by model c.

Table 6 summarizes the average results for each of the four sets of instances, by reporting

the average optimality gap and the average computational time obtained with models p, c, r

and x. The average time of model p is not reported since the time limit was always reached.

Comparison of procedures p1 and p2. We also compared the two procedures using the value of

the relax model with cuts as a lower bound cut and then adding the special device constraints,

either statically (in procedure p1) or dynamically (in procedure p2). The comparisons are done in

terms of the best lower bound value and the best upper bound value obtained within a time limit

of three hours of computation. Note that the upper bound values obtained with procedure p2 are

not necessarily upper bound values to G-Skill VRP problem since the maximum computational

time can be reached before all the constraints have been added. As a case study, we considered

only the instances for which the optimality gap has been closed by the relax model with cuts.

As already said, this happens for 36 out of 60 instances.

We report that, noticeably, interesting results were achieved by procedure p1, which was

able to certify the optimality of the bounds provided by model x for 7 out of 36 instances.

In addition, it allowed to reduce the gap obtained by model x on three instances, namely,

tc2-70-30-2, tc4-70-30-1, and tc2-50-50-2.

Comparison of the best lower and upper bounds. To better compare the lower bounds com-

puted by means of models p, c, r and x, for each model, and separately for each set of instances,

we determined the best lower bound achieved by all the suggested models and procedures, and

calculated the average relative gap, over the 15 instances of each set, of the obtained lower

bounds with respect to the best lower bound. This is reported in Table 7. Specifically, the

quality of both the lower bound given by the linear programming relaxation, i.e. LP, and the

best lower bound obtained by each model, i.e. LB, within the given maximum computational

time are reported.
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Finally, Table 8 reports results that allow the comparison of the best values determined

by the proposed models and procedures within the time limit of three hours of computation,

also considering the upper bounds obtained by the matheuristic h. Precisely, column bestLB

reports the best lower bound achieved by all the proposed models and procedures, while column

bestUB is the value of the best feasible solution found, also considering the heuristic h. The

specific model or procedure allowing to obtain the best lower bound (bestLBm) and the best

upper bound (bestUBm) is also reported for each instance. To get more information on the

behavior of the heuristic, columns UBh report the values of the feasible solutions obtained by

h, while columns timeh indicate the required computational times. The results displayed in

Table 8 show that the proposed models and procedures allow to close the gap for 6 instances

in the first two sets, and for one instance in the third set. Furthermore, the gaps are often

quite small for the first three sets of instances, whereas they may be quite large for the last set,

comprising the more difficult instances of this first test bed.

We conclude the discussion on the tc-based instances with a global overview of the results

obtained. Specifically, Figures 6, 7, 8, and 9, respectively for the instances 70-30, 60-40, 50-50

and 40-60, compare the lower bounds obtained by the four alternative models, namely p, c,

r, and x, and the best upper bound, i.e. bestUB, against the best lower bound obtained, i.e.

bestLB. That is, the percentage gap between the four lower bounds and bestLB is reported, as

well as the percentage gap between bestUB and bestLB. The figures support a series of main

observations:

� the best lower bound is almost always given by the model which disregards the special

device constraints, i.e. x, once enhanced with cuts; in several cases, this model is also able

to close the optimality gap;

� the proposed valid inequalities, defined on the enlarged network, are quite effective in

improving the quality of the lower bounds;

� the difficulty of obtaining good bounds seems to increase with the total number of op-

erations considered, thus making the 40-60 instances the most challenging in this data

set;

� on some instances to determine a good upper bound seems to be critical.

Some of the proposed lower bounding techniques appear thus to be a valuable tool to com-

pute good lower bounds to G-Skill VRP. In several cases, in fact, especially when the total

number of operations is not very large, the associated optimality gaps, evaluated also via a

simple matheuristic approach, are quite small, showing the efficacy of the presented models and

techniques.

6.4 Computational results for TRSP -based instances

We tested models p, c and x, as well as procedures p1 and p2, to provide lower bounds to

the TRSP -based instances. Due to the complexity and the very large size of these instances, no

one of such models returned an upper bound as a collateral effect. Moreover, the matheuristic
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Table 4: Plain model (p) vs model with cuts (c).

Instances LPp LBp UBp gapp LPc LBc UBc gapc

tc1-70-30-0 367.8 438.4 832 89.8 421.5 487.2 782 60.5

tc1-70-30-1 365.9 529.6 733 38.4 380.2 603.9 715 18.4

tc1-70-30-2 381.2 491.2 591 20.3 411.2 561.0 561 0.0

tc2-70-30-0 371.4 495.0 1018 105.7 428.2 533.1 871 63.4

tc2-70-30-1 374.2 477.0 905 89.7 400.7 565.2 641 13.4

tc2-70-30-2 389.4 561.3 639 13.8 429.7 626.0 626 0.0

tc3-70-30-0 340.6 495.4 882 78.0 373.3 589.6 738 25.2

tc3-70-30-1 322.8 485.0 859 77.1 388.6 517.7 822 58.8

tc3-70-30-2 353.7 496.6 664 33.7 417.1 552.3 624 13.0

tc4-70-30-0 411.5 543.0 - - 456.6 681.1 1042 53.0

tc4-70-30-1 430.9 591.9 734 24.0 496.4 659.0 659 0.0

tc4-70-30-2 462.1 597.6 962 61.0 510.8 689.0 689 0.0

tc5-70-30-0 347.7 531.5 783 47.3 409.1 603.9 704 16.6

tc5-70-30-1 364.4 491.7 1056 114.8 405.1 601.4 854 42.0

tc5-70-30-2 351.1 480.0 878 82.9 407.2 560.0 762 36.1

tc1-60-40-0 359.3 504.8 848 68.0 405.9 566.0 785 38.7

tc1-60-40-1 360.4 494.8 - - 421.2 573.6 823 43.5

tc1-60-40-2 348.9 535.1 - - 398.4 613.9 829 35.0

tc2-60-40-0 396.1 522.1 - - 451.8 599.5 705 17.6

tc2-60-40-1 374.9 480.2 1161 141.8 409.8 558.2 886 58.7

tc2-60-40-2 371.9 555.6 881 58.6 411.2 635.8 654 2.9

tc3-60-40-0 311.3 455.2 1082 137.7 370.3 544.3 795 46.1

tc3-60-40-1 301.9 448.6 1117 149.0 349.9 511.3 639 25.0

tc3-60-40-2 319.5 483.2 910 88.3 377.2 547.8 741 35.3

tc4-60-40-0 406.3 597.3 1834 207.0 475.4 706.9 762 7.8

tc4-60-40-1 461.4 597.1 1151 92.8 508.3 662.4 820 23.8

tc4-60-40-2 398.4 522.1 - - 467.9 650.8 728 11.9

tc5-60-40-0 334.8 504.8 - - 394.3 611.2 695 13.7

tc5-60-40-1 311.9 473.4 731 54.4 393.3 558.7 689 23.3

tc5-60-40-2 350.9 475.3 1424 199.6 405.7 623.1 651 4.5

tc1-50-50-0 347.8 517.8 - - 399.6 578.2 - -

tc1-50-50-1 355.3 481.0 - - 408.7 561.4 - -

tc1-50-50-2 375.8 503.7 - - 423.2 629.6 734 16.6

tc2-50-50-0 387.2 521.1 - - 433.4 608.7 - -

tc2-50-50-1 391.0 518.0 - - 430.4 591.6 - -

tc2-50-50-2 320.3 469.9 1887 301.6 382.6 646.1 800 23.8

tc3-50-50-0 344.6 481.8 - - 390.9 570.7 - -

tc3-50-50-1 319.5 449.9 - - 385.2 596.0 799 34.1

tc3-50-50-2 350.7 491.2 - - 387.2 608.4 - -

tc4-50-50-0 391.4 568.4 - - 441.9 691.8 - -

tc4-50-50-1 399.7 555.1 1607 189.5 455.3 660.5 758 14.8

tc4-50-50-2 389.8 526.5 1746 231.6 452.5 645.6 702 8.7

tc5-50-50-0 328.3 462.9 - - 376.4 597.5 - -

tc5-50-50-1 356.3 508.0 2042 302.0 408.4 620.2 - -

tc5-50-50-2 337.1 470.9 - - 419.2 621.4 - -

- tc1-40-60-0 333.5 463.6 1573 239.3 385.3 625.2 1039 66.2

tc1-40-60-1 320.7 477.8 - - 378.1 587.3 - -

tc1-40-60-2 306.7 508.7 - - 347.2 676.6 - -

tc2-40-60-0 353.7 489.6 - - 405.5 641.6 - -

tc2-40-60-1 388.5 478.0 - - 422.4 593.8 - -

tc2-40-60-2 322.3 516.4 - - 357.8 657.2 - -

tc3-40-60-0 313.2 467.3 1715 267.0 364.7 616.2 - -

tc3-40-60-1 307.6 451.6 - - 384.1 571.8 - -

tc3-40-60-2 335.6 442.1 - - 370.7 608.3 - -

tc4-40-60-0 343.6 480.2 - - 396.5 694.3 - -

tc4-40-60-1 370.5 517.6 1866 260.5 440.4 660.6 - -

tc4-40-60-2 386.6 513.7 - - 432.7 671.6 - -

tc5-40-60-0 313.1 464.1 - - 401.9 660.6 - -

tc5-40-60-1 343.7 462.8 - - 410.9 617.8 - -

tc5-40-60-2 328.4 484.4 - - 366.2 607.3 - -
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Table 5: Relax model (r) vs relax model with cuts (x).

Instances LPr LBr UBr gapr timer LPx LBx UBx gapx timex

tc1-70-30-0 357.0 498.9 596 19.5 10805 415.7 562.0 562 0.0 8026

tc1-70-30-1 303.1 516.7 659 27.5 10802 338.4 637.0 637 0.0 254

tc1-70-30-2 307.9 533.1 558 4.7 10802 380.1 558.0 558 0.0 34

tc2-70-30-0 335.1 520.2 729 40.1 10804 390.0 546.0 673 23.3 10817

tc2-70-30-1 335.8 541.1 572 5.7 10805 386.9 572.0 572 0.0 92

tc2-70-30-2 297.7 624.0 624 0.0 8267 344.4 624.0 624 0.0 26

tc3-70-30-0 299.4 510.2 730 43.1 10802 345.4 623.9 676 8.4 10871

tc3-70-30-1 288.2 505.5 662 31.0 10802 367.5 572.3 636 11.1 11032

tc3-70-30-2 336.5 503.9 603 19.7 10808 394.6 595.0 595 0.0 37

tc4-70-30-0 369.7 648.7 814 25.5 10801 428.6 719.9 797 10.7 10808

tc4-70-30-1 369.5 654.0 654 0.0 2185 482.3 654.0 654 0.0 20

tc4-70-30-2 450.0 633.0 691 9.2 11899 487.7 689.0 689 0.0 75

tc5-70-30-0 309.0 612.0 612 0.0 5289 362.4 612.0 612 0.0 53

tc5-70-30-1 333.1 588.9 682 15.8 10802 399.1 676.0 676 0.0 4867

tc5-70-30-2 314.8 535.4 623 16.4 10803 390.7 619.0 619 0.0 521

tc1-60-40-0 309.0 549.9 648 17.8 10807 374.0 598.4 638 6.6 10809

tc1-60-40-1 305.7 522.9 655 25.3 10806 361.4 583.0 583 0.0 114

tc1-60-40-2 308.5 556.6 764 37.3 10814 362.3 625.2 655 4.8 11334

tc2-60-40-0 337.6 539.9 698 29.3 10802 401.9 642.0 642 0.0 889

tc2-60-40-1 335.0 517.8 646 24.8 10808 387.2 599.0 599 0.0 447

tc2-60-40-2 304.2 616.5 654 6.1 10809 351.3 654.0 654 0.0 156

tc3-60-40-0 288.3 548.9 728 32.6 10802 344.3 671.0 671 0.0 2936

tc3-60-40-1 263.8 445.3 603 35.4 10802 326.4 540.0 588 8.9 10811

tc3-60-40-2 292.6 514.6 706 37.2 10812 361.7 592.6 651 9.9 11161

tc4-60-40-0 386.4 661.3 749 13.3 10807 445.4 743.0 743 0.0 122

tc4-60-40-1 398.3 623.8 786 26.0 10843 490.0 706.0 706 0.0 2535

tc4-60-40-2 350.4 574.5 735 27.9 10807 436.1 681.0 681 0.0 192

tc5-60-40-0 289.0 591.9 658 11.2 10802 361.2 651.0 651 0.0 167

tc5-60-40-1 266.0 527.9 630 19.3 10806 376.6 605.0 605 0.0 495

tc5-60-40-2 307.3 494.7 730 47.6 10803 366.3 644.0 644 0.0 182

tc1-50-50-0 302.7 523.0 849 62.3 10807 351.2 608.8 625 2.7 10804

tc1-50-50-1 269.6 496.0 760 53.2 10844 346.4 606.0 606 0.0 2988

tc1-50-50-2 269.4 543.1 753 38.6 10802 333.7 643.0 643 0.0 88

tc2-50-50-0 345.3 546.0 684 25.3 10809 398.9 645.0 645 0.0 1587

tc2-50-50-1 339.4 525.3 749 42.6 10817 379.9 645.0 645 0.0 1302

tc2-50-50-2 295.5 597.3 718 20.2 10803 353.1 668.0 668 0.0 127

tc3-50-50-0 298.8 484.3 996 105.7 10806 353.3 629.4 662 5.2 10803

tc3-50-50-1 286.2 484.1 720 48.7 10811 356.8 638.9 664 3.9 10812

tc3-50-50-2 317.9 538.8 818 51.8 10806 358.9 638.5 732 14.6 10823

tc4-50-50-0 331.0 600.5 884 47.2 10818 398.3 761.0 761 0.0 960

tc4-50-50-1 327.9 538.9 852 58.1 10806 412.5 683.4 703 2.9 10806

tc4-50-50-2 330.0 559.9 744 32.9 10802 434.7 653.0 653 0.0 119

tc5-50-50-0 293.9 551.6 877 59.0 11447 354.6 649.4 708 9.0 10809

tc5-50-50-1 326.9 521.8 816 56.4 10944 381.2 682.0 682 0.0 4084

tc5-50-50-2 313.8 495.1 831 67.8 10801 389.1 683.4 740 8.3 10804

tc1-40-60-0 282.4 532.0 860 61.7 10802 333.1 652.4 750 15.0 10953

tc1-40-60-1 258.3 493.9 790 60.0 10844 330.9 598.3 669 11.8 10801

tc1-40-60-2 219.5 496.1 1058 113.3 10807 299.9 721.3 769 6.6 10801

tc2-40-60-0 323.6 511.3 1184 131.6 10804 372.0 679.0 679 0.0 479

tc2-40-60-1 324.3 508.6 775 52.4 10802 363.8 650.0 650 0.0 3843

tc2-40-60-2 257.6 558.2 1113 99.4 10803 307.4 734.7 802 9.2 10803

tc3-40-60-0 258.5 460.8 971 110.7 10809 308.5 691.0 691 0.0 5920

tc3-40-60-1 277.5 481.4 791 64.3 10811 354.8 605.8 662 9.3 10801

tc3-40-60-2 281.7 466.0 1266 171.7 10824 324.8 679.8 691 1.6 10803

tc4-40-60-0 289.4 526.9 947 79.7 10802 362.1 709.0 709 0.0 38

tc4-40-60-1 306.0 525.2 938 78.6 10807 374.1 698.0 698 0.0 1654

tc4-40-60-2 319.2 541.1 1171 116.4 10811 395.3 746.4 760 1.8 10802

tc5-40-60-0 258.6 461.0 1344 191.5 10815 349.9 725.0 725 0.0 1824

tc5-40-60-1 277.9 485.4 1457 200.2 10810 348.8 653.2 780 19.4 10812

tc5-40-60-2 265.1 475.3 1161 144.3 10801 338.8 685.6 766 11.7 10815

Table 6: Comparing average gaps and computational times.

Instances avg(gapp) avg(gapc) avg(timec) avg(gapr) avg(timer) avg(gapx) avg(timex)

70-30 62.6 26.7 8288 17.2 9765 3.6 3835

60-40 119.7 25.8 10800 26.1 10800 2.0 3490

50-50 256.2 19.6 10800 51.3 10800 3.1 5794

40-60 255.6 66.2 10800 111.7 10800 5.8 7410
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Table 7: Comparing lower bounds with respect to the best lower bound.

Instances gapLPp gapLBp gapLPc gapLBc gapLPr gapLBr gapLPx gapLBx

70-30 39.07 16.72 31.44 4.77 45.87 9.06 36.02 0.11

60-40 43.26 19.67 34.51 5.95 50.29 13.12 39.72 0.00

50-50 45.08 23.41 36.94 6.19 52.71 18.56 43.01 0.05

40-60 50.30 29.28 42.45 7.14 58.77 26.24 49.32 0.00

Table 8: Best lower and upper bounds and related optimality gaps, also considering matheuristic h.

Instances UBh timeh bestLB bestLBm bestUB bestUBm gap

tc1-70-30-0 567 3848 562.0 x 567 h 0.9

tc1-70-30-1 648 177 637.0 x 648 h 1.7

tc1-70-30-2 586 36 561.0 c 561 c 0.0

tc2-70-30-0 712 5404 546.0 x 712 h 30.4

tc2-70-30-1 586 80 572.0 x 586 h 2.4

tc2-70-30-2 629 26 626.0 c 626 c 0.0

tc3-70-30-0 706 5405 623.9 x 706 h 13.2

tc3-70-30-1 622 1479 572.3 x 622 h 8.7

tc3-70-30-2 603 57 595.0 x 603 h 1.3

tc4-70-30-0 770 4456 719.9 x 770 h 7.0

tc4-70-30-1 678 37 659.0 c 659 c 0.0

tc4-70-30-2 689 26 689.0 c, x 689 c, h 0.0

tc5-70-30-0 676 300 612.0 r, x 676 h 10.5

tc5-70-30-1 679 1192 676.0 x 679 h 0.4

tc5-70-30-2 628 406 619.0 x 628 h 1.5

tc1-60-40-0 648 3160 598.4 x 648 h 8.3

tc1-60-40-1 633 446 583.0 x 633 h 8.6

tc1-60-40-2 651 1186 625.2 x 651 h 4.1

tc2-60-40-0 661 230 642.0 x 661 h 3.0

tc2-60-40-1 608 298 599.0 x 608 h 1.5

tc2-60-40-2 654 116 654.0 x 654 c, h 0.0

tc3-60-40-0 689 1471 671.0 x 689 h 2.7

tc3-60-40-1 583 455 540.0 x 583 h 8.0

tc3-60-40-2 654 5402 592.6 x 654 h 10.4

tc4-60-40-0 746 107 743.0 x 746 h 0.4

tc4-60-40-1 727 411 706.0 x 727 h 3.0

tc4-60-40-2 687 406 681.0 x 687 h 0.9

tc5-60-40-0 657 289 651.0 x 657 h 0.9

tc5-60-40-1 612 781 605.0 x 612 h 1.2

tc5-60-40-2 644 162 644.0 x 644 h 0.0

tc1-50-50-0 686 5404 608.8 x 686 h 12.7

tc1-50-50-1 673 3630 606.0 x 673 h 11.1

tc1-50-50-2 672 235 643.0 x 672 h 4.5

tc2-50-50-0 659 531 645.0 x 659 h 2.2

tc2-50-50-1 693 3018 645.0 x 693 h 7.4

tc2-50-50-2 673 95 668.0 x 673 h 0.7

tc3-50-50-0 767 5404 629.4 x 767 h 21.9

tc3-50-50-1 670 4360 638.9 x 670 h 4.9

tc3-50-50-2 991 6301 638.5 x 991 h 55.2

tc4-50-50-0 970 5405 761.0 x 970 h 27.5

tc4-50-50-1 716 3299 683.4 x 716 h 4.8

tc4-50-50-2 711 3955 653.0 x 702 c 7.5

tc5-50-50-0 829 5451 649.4 x 829 h 27.7

tc5-50-50-1 696 1400 682.0 x 696 h 2.1

tc5-50-50-2 748 5403 683.4 x 748 h 9.5

tc1-40-60-0 996 6301 652.4 x 996 h 52.7

tc1-40-60-1 713 5403 598.3 x 713 h 19.2

tc1-40-60-2 957 6308 721.3 x 957 h 32.7

tc2-40-60-0 681 4594 679.0 x 681 h 0.3

tc2-40-60-1 688 5076 650.0 x 688 h 5.8

tc2-40-60-2 1326 6302 734.7 x 1326 h 80.5

tc3-40-60-0 807 5441 691.0 x 807 h 16.8

tc3-40-60-1 738 5405 605.8 x 738 h 21.8

tc3-40-60-2 738 5404 679.8 x 738 h 8.6

tc4-40-60-0 710 2088 709.0 x 710 h 0.1

tc4-40-60-1 710 719 698.0 x 710 h 1.7

tc4-40-60-2 870 5410 746.4 x 870 h 16.6

tc5-40-60-0 1072 6315 725.0 x 1072 h 47.9

tc5-40-60-1 946 6302 653.2 x 946 h 44.8

tc5-40-60-2 780 5407 685.6 x 780 h 13.8
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Figure 6: 70-30 instances: LB of each model and bestUB are compared against bestLB.

-35,00

-30,00

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

5,00

10,00

15,00

LB_p LB_c LB_r LB_x UB

Figure 7: 60-40 instances: LB of each model and bestUB are compared against bestLB.

h failed in computing feasible solutions. We thus generalized h, in an attempt to determine

upper bounds also for this second set of instances.

The idea is to handle the huge size of the TRSP -based instances by decomposition, i.e.

partitioning the set of the customers of each instance into three subsets: i) a subset named

special, which includes all of the customers requiring the special device, thus extending the

philosophy of matheuristic h, where all the special operations are dealt together; ii) a subset

named morning, which is composed of customers with a morning time window; and iii) a

subset called afternoon, comprising customers with an afternoon time window. A generalized

bin packing problem is solved for each subset of customers, in order to determine a subset of

technicians able to serve them. Three smaller and independent G-Skill VRP subproblems are

thus derived, for the special, the morning and the afternoon customer subsets, respectively. The

three subproblems are then solved in cascade by model c, along the lines of matheuristic h, by

setting a time limit of 2000 seconds for each subproblem. A solution to the overall TRSP -based

instance is then obtained by combining the solutions found for the three subproblems.
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Figure 8: 50-50 instances: LB of each model and bestUB are compared against bestLB.
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Figure 9: 40-60 instances: LB of each model and bestUB are compared against bestLB.

Figure 10 shows, for each instance, the quality (relative gap) of the lower bounds provided

by models p and c with respect to the best lower bound that for this set of instances is always

given by procedure p1. On this set of instances, procedure p2 is in fact dominated by procedure

p1 and thus the relative results are not reported. Similarly, we do not report the results of

model x, since they are enhanced by p1. Figure 10, for each model, reports both the quality of

the lower bound given by the linear programming relaxation (LP) and the quality of the best

lower bound returned when the time limit is reached (LB). The time limit has been fixed to 3

hours; further computational results obtained with a time limit of six hours demonstrated that

there is no substantial improvement when the time limit is extended. The results shown allow

to make some interesting observations. First, as for the tc-based instances, the introduction of

cuts (model c vs model p) drastically increases the quality of the lower bounds. Specifically,

comparing LBp and LBc, we observe that the introduction of valid inequalities makes it possible

to reduce the gap of 27.3% on average. Besides, their introduction seems to be even more crucial

than for the tc-based instances. In fact, if we consider model p, we observe that there are
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instances for which the lower bound obtained after three hours of computation is the same as

the initial lower bound given by linear programming (see instances C102 and R103 when model

p is used), and in general, the improvement between LPp and LBp is still limited. Second, the

difficulty in solving the instances does not seem to depend on how the requests are generated

(R, C or RC), i.e. quite similar trends are observed on each instance of this set. Unfortunately,

the quality of the solutions provided by the matheuristic we proposed is not acceptable. The

matheuristic fails in one case over 9 instances and for the remaining ones the average relative

gap between the upper bound and the best lower bound is about 164 %. Only a few subproblems

(special, morning, afternoon) are solved to optimality and the average computational time on

the 8 instances is 4316.35 seconds. This result comes at no surprise since several attempts made

to extend the matheuristic used for the tc-based instances revealed that the TRSP -instances are

really challenging to solve. Thus, the results obtained stimulate future research in the direction

of improving the upper bounds.
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Figure 10: Comparing LP and LB of models p and c to bestLB provided by procedure p1.

7 Conclusions

We have studied a generalization of the Skill VRP problem, named G-Skill VRP, where

multiple visits per customer are allowed in addition to consider precedence constraints among

the operations, time windows at the customers, and maximum workday duration constraints.

Furthermore, the handling of a special device, which is required to perform some special op-

erations, and which must be present at the customer location together with the technician in

charge to use it, constitutes an original and relevant contribution to the literature on VRPs.

The resulting Skill VRP generalization appears thus to be very relevant from an operational

perspective, and it may constitute a basic block for interesting multi-day planning extensions.

We have proposed and empirically investigated some models and procedures to G-Skill VRP,

with the aim of determining good bounds to the problem in an efficient way. The results of a

wide computational experimentation show that some of the proposed techniques appear to be a

valuable tool to compute good lower bounds to G-Skill VRP. In several cases, in fact, especially
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when the total number of operations is not so large, the associated optimality gaps, evaluated

also via a simple matheuristic approach, are indeed rather small.

We plan to extend the study of G-Skill VRP by proposing more sophisticated heuristic

approaches to the problem, to be evaluated also thanks to the presented models and techniques.

8 Appendix: the overall MILP model

Objective function.

min
∑

(u,v)∈EA

∑
t∈Tuv

ct
uvx

t
uv (8.1)

Assignment of operations to technicians.∑
t∈T |o∈St

zt
v = 1 v = 〈j, o〉 ∈ EV, o 6= sin, sout (8.2)

∑
t∈T

zt
v ≤ 1 v = 〈j, sin〉 ∈ EV or v = 〈j, sout〉 ∈ EV (8.3)

Routing of the technicians.∑
(u,v)∈EAt

xt
uv = zt

v v = 〈j, o〉 ∈ EV, t ∈ T, o ∈ St (8.4)

∑
(u,v)∈EAt

xt
uv =

∑
(v,u)∈EAt

xt
vu v = 〈j, o〉 ∈ EV, t ∈ T, o ∈ St (8.5)

∑
(d,v)∈EAt

xt
dv = 1 t ∈ T (8.6)

∑
(v,d)∈EAt

xt
vd = 1 t ∈ T (8.7)

xt
uv ∈ {0, 1} (u, v) ∈ EA, t ∈ Tuv (8.8)

Technician temporal constraints.∑
(d,v)∈EAt

yt
dv =

∑
(d,v)∈EAt

τdvx
t
dv t ∈ T (8.9)

∑
(v,u)∈EAt

yt
vu =

∑
(u,v)∈EAt

yt
uv + δt

oz
t
v +

∑
(v,u)∈EAt

τvux
t
vu v = 〈j, o〉 ∈ EV, t ∈ T (8.10)

yt
uv ≤ Dtxt

uv, t ∈ T, (u, v) ∈ EAt (8.11)

yt
uv ≥ 0 t ∈ T, (u, v) ∈ EAt (8.12)

Precedence and synchronization constraints.∑
(u,v1)∈EAt

yt
uv1 + δt

o1z
t
v1 ≤

∑
(u,v2)∈EAr

yr
uv2 +Dt(1− zr

v2) (8.13)

v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV |o1 < o2, t, r ∈ T : o1 ∈ St, o2 ∈ Sr

gj min
o1o2 − (Dt + gj min

o1o2 )(2− zr
v2 − z

t
v1) ≤∑

(u,v2)∈EAr

yr
uv2 − (

∑
(u,v1)∈EAt

yt
uv1 + δt

o1z
t
v1) ≤ (8.14)

gj max
o1o2 +Dr(2− zt

v1 − z
r
v2)

v1 = 〈j, o1〉, v2 = 〈j, o2〉 ∈ EV | t, r ∈ T : o1 ∈ St, o2 ∈ Sr
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Time windows constraints.

ajo(
∑

(u,v)∈EAt

xt
uv) ≤

∑
(u,v)∈EAt

yt
uv ≤ bjo(

∑
(u,v)∈EAt

xt
uv), v = 〈j, o〉 ∈ EV (o 6= sin, sout), t ∈ T

(8.15)

Routing of the special device.∑
(u,v)∈EAs

ws
uv = 1 v = 〈j, sin〉 ∈ EV,Oj ∩ Os 6= ∅ (8.16)

∑
(v,u)∈EAs

ws
vu = 1 v = 〈j, sout〉 ∈ EV,Oj ∩ Os 6= ∅ (8.17)

ws
〈j,sin〉,〈j,o〉 = ws

〈j,o〉,〈j,sout〉 = 1 j ∈ N, o ∈ Oj ∩ Os (8.18)∑
(u,v)∈EAs

ws
uv ≤ 1 v = 〈j, sin〉 ∈ EV,Oj ∩ Os = ∅ (8.19)

∑
(v,u)∈EAs

ws
vu ≤ 1 v = 〈j, sout〉 ∈ EV,Oj ∩ Os = ∅ (8.20)

ws
(〈j,sin〉,〈j,sout〉) ≥

∑
(u,〈j,sin〉)∈EAs

ws
(u,〈j,sin〉) j ∈ N,Oj ∩ Os = ∅ (8.21)

∑
(d,u)∈EAs

ws
du = 1 (8.22)

ws
〈j,sin〉,〈j,o〉 = ws

〈j,o〉,〈j,sout〉 j ∈ N, o ∈ Oj ∩ Os (8.23)∑
(u,v)∈EAs

ws
uv =

∑
(v,u)∈EAs

ws
vu v = 〈j, sin〉 ∈ EV or v = 〈j, sout〉 ∈ EV (8.24)

∑
(u,d)∈EAs

ws
ud = 1 (8.25)

∑
t∈T

xt
uv = ws

uv (u, v) ∈ EAs, u = 〈i, sout〉, v = 〈j, sin〉, i 6= j

(8.26)∑
t∈T

xt
(d,〈j,sin〉) = ws

(d,〈j,sin〉) (d, 〈j, sin〉) ∈ EAs (8.27)

∑
t∈T

xt
(〈j,sout〉,d) = ws

(〈j,sout〉,d) (〈j, sout〉, d) ∈ EAs (8.28)

ws
uv ∈ {0, 1} (u, v) ∈ EAs (8.29)

Technician and special device synchronization constraints.∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 =

∑
t∈T

∑
(u,〈j,sin〉)∈EAs

yt
u〈j,sin〉 j ∈ N (8.30)

∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 ≤

∑
(u,〈j,o〉)∈EAt

yt
u〈j,o〉 +Ds(1− zt

〈j,o〉) (8.31)

j ∈ N, t ∈ T, o ∈ Oj ∩ Os ∩ St∑
(u,〈j,o〉)∈EAt

yt
u〈j,o〉 + δt

oz
t
〈j,o〉 ≤

∑
r∈T

∑
(u,〈j,sout〉)∈EAr

yr
u〈j,sout〉 (8.32)

j ∈ N, t ∈ T, o ∈ Oj ∩ Os ∩ St
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∑
(u,〈j,sin〉)∈EAs

ys
u〈j,sin〉 ≤

∑
r∈T

∑
(u,〈j,sout〉)∈EAr

yr
u〈j,sout〉 j ∈ N,Oj ∩ Os = ∅ (8.33)

ys
uv ≤ Dsws

uv (u, v) ∈ EAs (8.34)

ys
uv ≥ 0 (u, v) ∈ EAs (8.35)
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skill-based routing problems. EURO Journal on Transportation and Logistics, 2(1):29–55,

2013.
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