
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2019

Miguel Oliveira
Inocêncio

Co-processador da Transformada para o Codificador
de V́ıdeo AV1

Transform Co-Processor for AV1 Video Coding
Standard

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2019

Miguel Oliveira
Inocêncio

Co-processador da Transformada para o Codificador
de V́ıdeo AV1

Transform Co-Processor for AV1 Video Coding
Standard

Dissertação de Mestrado apresentada à Universidade de Aveiro, para
obtenção do grau de Mestre em Engenharia Eletrónica e de Telecomu-
nicações, sob orientação cient́ıfica do Professor Doutor António Navarro,
Professor auxiliar do Departamento de Eletrónica, Telecomunicações e In-
formática da Universidade de Aveiro, com colaboração do Professor Luciano
Agostini e do Video Technology Research Group - ViTech - da Universidade
Federal de Pelotas - UFPel.

o júri / the jury

presidente / president Prof. Dr. Armando José Formoso de Pinho
Professor Associado com Agregação da Universidade de Aveiro

vogais / examiners committee Prof. Dr. Pedro António Amado Assunção
Professor Coordenador, Escola Superior de Tecnologia e Gestão de Leiria do Insti-

tuto Politécnico de Leiria (Arguente Principal)

Prof. Dr. António José Nunes Navarro Rodrigues
Professor Auxiliar da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

À minha faḿılia por todo o apoio que deram ao longo destes 5 longos anos.
A todos os amigos e companheiros por terem feito parte destes 5 curtos
anos.
Ao João, Edgar, Correia, Kevin, Diogo e à República de que vamos sempre
fazer parte.
Ao Lúıs, Simão, Soares, Santos e ao segundo piso da Biblioteca, que con-
hecemos melhor que ninguém.
À Universidade de Aveiro, Instituto de Telecomunicações e membros do-
centes, por todo o conhecimento que me foi transmitido, e infraestruturas
para o aplicar.
Ao Video Technology Research Group da Universidade Federal de Pelotas
por todo o aux́ılio prestado durante esta dissertação.

Palavras-Chave Compressão de V́ıdeo, AV1, Transformadas, DCT, FPGA

Resumo Esta dissertação apresenta o estudo efetuado sob o formato de compressão
de v́ıdeo AV1. A investigação realizada resultou em dados estat́ısticos refer-
entes a diversas opções de codificação, tais como o kernel da transformada
mais utilizado, os tamanhos de vetores utilizados, o número de bits utilizado
nas aproximações de cossenos, entre outros. Com os resultados obtidos,
foram implementadas medidas de otimização no codificador de referência,
obtendo-se uma melhoria de 3% no tempo total de codificação, com uma
redução de 81% na utilização de memória dedicada às aproximações do
cosseno.

O algoritmo implementado em software foi de seguida descrito em VHDL,
tendo sido obtidas duas soluções. A primeira permite um elevado grau de
paralelização, obtendo todos os diferentes tamanhos de vetores transfor-
mados em 22 ciclos de relógio, sendo capaz de codificar v́ıdeo FHD a 30
imagens por segundo, com uma frequência de operação de 187 MHz. A
segunda minimiza a utilização de lógica, a custo de não permitir o cálculo
de vários tamanhos de vetores simultaneamente. Esta última solução foi
sintetizada e testada numa placa Nexys 4, ocupando 79.93% da área total
da FPGA e 50 mW de potência consumida. No kit de hardware no qual foi
implementada, esta arquitetura é capaz de processar v́ıdeo HD a 30 imagens
por segundo.

Keywords Video Coding, AV1, Transform Coding, DCT, FPGA

Abstract This dissertation presents a study made of the video coding standard AV1.
The research provides statistical results referring to various encoding op-
tions, such as the most commonly used Transform kernel, vector sizes, the
number of bits used in cosine approximations, amongst others. With the
gathered results, optimization measures were implemented on the reference
encoder, achieving a 3% decrease in the total encoding time, with 81%
reduction in the memory used to store cosine coefficients.

The algorithm implemented in software was then described in VHDL, ob-
taining two implementable architectures. The first allows a high degree of
parallelization, obtaining all transformed vector sizes within 22 clock cycles,
being able to maintain FHD video at 30 frames per second, at an operating
frequency of 187 MHz. The second minimizes the amount of logic, although
it does not allow the calculation of multiple vector sizes in parallel. This
implementation was synthesized and tested on a Nexys 4 board, occupying
79.93% of total FPGA area and 50 mW consumption. On the hardware kit
on which it was implemented, this architecture is able to process HD video
at 30 frames per second.

Contents

List of Figures iv

List of Tables v

Acronyms viii

Glossary ix

Nomenclature xi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Scope . 3

1.3 Outline . 4

References . 5

2 Video Compression Systems 7

2.1 Basic Principles . 7

2.1.1 Human Visual System . 7

2.1.2 Redundancy Exploitation . 10

2.1.3 Basic Video Compression/Decompression System 13

2.2 AV1 . 17

2.2.1 History and Development . 17

2.2.2 Encoding Tools . 19

2.2.3 Performance Analysis . 22

References . 26

3 Video Coding Transforms 27

3.1 Introduction . 27

3.2 Background . 27

3.2.1 Basis Vector/Image Interpretation . 27

3.3 Transformation Kernels . 30

3.3.1 Discrete Fourier Transform (DFT) . 30

3.3.2 Discrete Walsh-Hadamard Transform (WHT) 30

3.3.3 Discrete Cosine Transform (DCT) . 31

3.3.4 Discrete Sine Transform (DST) . 33

3.3.5 Asymmetric Discrete Sine Transform (ADST) 34

3.4 Libaom’s Integer Transformations . 34

3.4.1 Functioning and Implementation . 34

3.4.2 Performance and Statistics Analysis 40

i

References . 50

4 Developed Architectures 51
4.1 Software Implementations . 51

4.1.1 Matrix Multiplication Implementation 51
4.1.2 Alternative Butterfly Implementation 53

4.2 Hardware Implementations . 56
4.2.1 Individual 1D DCTs Design . 57
4.2.2 Interdependent 1D DCTs Design . 63
4.2.3 Microblaze Integration . 68

References . 74

5 Conclusions and Future Work 75

Annexes 77
A aomenc Configuration Options . 78
B DCT8 1 VHDL Description . 81
C DCT8 2 VHDL Description . 83

ii

List of Figures

1.1 AV1 logo . 3

2.1 Representation of the retina . 8

2.2 Example of the effect of added noise on figure 9

2.3 Autocorrelation of image 2.2a, with horizontal shifts. 10

2.4 Cross-correlation between the first and following nine frames of the Stefan
sequence. 11

2.5 Representation of chroma subsampling ((a) - 4:4:4; (b) - 4:2:2; (c) - 4:2:0). . . 12

2.6 Simplified Basic Encoder Model. 13

2.7 Directional Intra-prediction example. 14

2.8 Inter-prediction example. 14

2.9 Demonstration of Zig-Zag Scan. 15

2.10 Simplified Basic Decoder Model. 16

2.11 Processing of 4× 4 residue block from transformation to restoring. 17

2.12 Alliance for Open Media current members . 18

2.13 Description of the recursive partitioning scheme of AV1. 20

2.14 AV1 bitrate savings . 22

3.1 Sequences generated in the first step of Table 3.1for the DFT and different
DCTs. Filled dots correspond to the original sequence ((a) - DFT ; (b)) -
DCT-I ; (c)) - DCT-II ; (d)) - DCT-III ; (e)) - DCT-IV). 32

3.2 Flowchart of the Transform Stage on libaom. 35

3.3 Graphical aid for Figures 3.5 and 3.6. 37

3.4 Description of the Identity transforms in libaom. 38

3.5 Block diagram of libaom’s Integer DCT. 38

3.6 Block diagram of libaom’s Integer ADST. 39

3.7 Average encoding and transform time per resolution, on different quality ob-
jectives . 42

3.8 Average distribution of used kernels, for all resolutions, according to the quality
threshold. 43

3.9 Average distribution of vector sizes, for all resolutions, according to the quality
threshold. 43

3.10 Use of square blocks, same kernel for rows and columns, and symmetric kernels,
according to the quality threshold. 44

3.11 Different number of bits used on the cosine approximations, throughout differ-
ent quality sets. 44

3.12 Description of the test for comparing impact of number of bits in cosine ap-
proximations. 45

iii

3.13 Obtained quality for each of the quality objectives, and comparison with dif-
ferent cosine bits approximation. 46

3.14 Detail of Parkjoy encodes, through different quality objectives (cq-level =

(a) - 60; (b) - 25; (c) - 5). 47
3.15 Quantizer distribution on different quality objectives. 48

4.1 Obtained quality with original vs alternative DCT implementation. 55
4.2 Encoding time with original vs alternative DCT implementation. 56
4.3 Comparison between software and hardware implementation of multiplication,

sum and re-scaling. 58
4.4 1D DCT4 hardware implementation. 59
4.5 Simplified 1D DCT8 hardware implementation, with inclusion of DCT4. . . 60
4.6 First version of the complete DCT wrapper. 61
4.7 Timing diagram for a test run on the first DCT wrapper. 62
4.8 Exemplification of the individual kernel’s division for the second implementation. 64
4.9 Flow of dataIn according to the selected vector size. 65
4.10 Simplified architecture of the second version of the full DCT wrapper. 66
4.11 Timing diagram for a test run on the second DCT wrapper. 67
4.12 Nexys 4 hardware kit. 69
4.13 Simplified description of DCT Wrapper with AXI4-Lite interface. 71
4.14 Block design generated by Vivado for integration of DCT Wrapper with Mi-

croblaze. 72

iv

List of Tables

2.1 BD-rate of VP9 and H.264 codecs, when compared to AV1 (negative corre-
sponds to bitrate savings) . 23

2.2 Encoding times of different video encoders, and improvements on AV1 23

3.1 Similarity between the processes of the DFT and the DCT. 31
3.2 Sequences used for testing. 40

4.1 Comparison of execution time between aomenc’s DCT and the matrix multi-
plication implementation. 53

4.2 aomenc encoding time with original vs implemented DCT. 53
4.3 Comparison of execution time between aomenc’s DCT and the alternative

butterfly implementation. 55
4.4 Necessary frequency of operation to obtain real-time encoding at 30 frames per

second. 63
4.5 First developed architecture’s utilization in number of LUTs and Registers. . 64
4.6 Second developed architecture’s utilization in number of LUTs and Registers. 68
4.7 Timing results for the Microblaze integration design. 72
4.8 Maximum frame rate for a given resolution, considering fixed square transfor-

mation blocks, on the Nexys 4 implementation. 73

v

vi

Acronyms

ADST Asymetric Discrete Sine Transform

AOM Alliance for Open Media

ASIC Application Specific Integrated Circuit

AV1 AOM Video 1

CABAC Context Adaptative Binary Arithmetic Coding

CMOS Complementary metal–oxide–semiconductor

Codec Encoder-Decoder

CPU Central Processing Unit

CRT Cathode Ray Television

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

fps Frames per Second

GPU Graphical Processing Unit

HEVC High Efficiency Video Coding

IC Integrated Circuit

JVT Joint Video Team

LUT Look Up Table

MCU Microcontroller

MM Matrix Multiplication

MPEG Motion Picture Experts Group

vii

MSE Mean Square Error

PSNR Peak Signal to Noise Ratio

QP Quantization Parameter

RISC Reduced Instruction Set Computer

SDK Software Development Kit

TV Television

UART Universal asynchronous receiver/transmitter

UHD Ultra-High-Definition

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (HDL)

VLC Variable Length Codes

VLSI Very Large Scale Integration

WGN White Gaussian Noise

WHT Walsh-Hadamard Transform

WNS Worst Negative Slack

viii

Glossary

Bjontegaard-Delta rate (BD-rate) Objective quality metric, that evaluates the bitrate
savings according to the obtained PSNR

Codec Encoder-Decoder. Also referred to the method of compressing and decompressing a
video sequence

Floorplaning Synthesis and Implementation of an hardware design onto an FPGA, through
the planning of logic gates and input/output attribution

Generic Parametric variable that allows for the easy parametrization of a design in VHDL

H.264/AVC Previous state of the art video codec from Joint Video Team (JVT), released
in 2007. As to the writing of this work, it is the most used video compression algorithm

Interlaced scanning Technique used by televisions for broadcasting and displaying, where
only odd or even numbered lines of a frame are transmitted/displayed at a time, alter-
nately

JPEG Still image compression format, developed by the Joint Photographic Experts Group
(JPEG)

libaom Reference software for AV1, released by Google in June 2018

Pixel Picture Element

Progressive scanning Technique used by more recent screens, where each frame is dis-
played as a whole, from top to bottom, and left to right

RGB Color space based on the addition of Red, Green and Blue components for complex
color representation

VP8/VP9 Open-format video codecs developed by Google, released in 2008 and 2013, re-
spectively

ix

x

Nomenclature

b Bit

B Byte (8 bits)

dxe Round to the nearest integer, greater than x

bxc Round to the nearest integer, lower than x

max X Largest value of matrix X

min X Smallest value of matrix X

bxe Round to the nearest integer

x << K Shift x, k bits to the left

x >> K Shift x, k bits to the right

~x Nth dimension vector

X Matrix

~X Input vector ~x in the Transform domain

~x
∗

Restored version of vector ~x

xi

xii

CHAPTER 1

Introduction

1.1 Background and Motivation

Since the spark of television research in 1887, a tremendous investment has been put into
increasing the quality of images, cameras and screens that display them [1].

In the early years of mechanical Television (TV), this desire was pursued by making
changes to the Nipkow disks 1, up to the decline of the mechanical TV, around the 1930’s.
The consequential rise of all-electronic TVs started with the capture of images with the same
cathode tubes put into Cathode Ray Televisions (CRTs), with broadcasts of the live analog
recordings, since there were no available methods of storing images, up to 1955, with the
development of the open-reel magnetic tape [2].

The evolution of Complementary metal–oxide–semiconductor (CMOS) technologies, how-
ever, led to the downfall of cathode ray tubes, and to the rise of image capture to a digital
sensor, that allowed better image captures and lower demands in terms of physical storage
space. However, with the desire for higher fidelity video, the quantity of information captured
also increased. Whether by increasing the sensor resolution, color bit depth or frame rate,
the captured video sequences have increased its size throughout the years. For instance, for
a video of 640 × 360 (now considered as a low resolution), at 30 Frames per Second (fps),
considering each captured color (considering a RGB color space) is represented with 8 bits,
there is approximately 166 Million bits per second (Mbps) of captured information. This
means that a short 5 minute video would occupy more than 6 Giga Bytes (GB) of memory.
This aspect gets more severe once higher resolutions are considered. For newer standards such
as 4K Ultra-High-Definition (UHD) (3840× 2160) or 8K UHD (7680× 4320), under the same
conditions, a ten minute video would occupy 448 GB and 1792 GB of raw data, respectively.

Furthermore, video consumption got massively adopted on the average consumer level,
and continues to grow, both in the average number of watched hours by users and in the
resolutions of the video, making the bandwidth dedicated to the visualization of video footage
the highest between all other application. With the development of higher video sizes, increase
of the average number of connected devices per user and overall market expansion through
the number of consumers, this margin will continue to grow. In fact, according to Cisco, by
2022, up to 82% of global IP traffic will be dedicated to video [3, Trends 1 & 4].

This problem has led to the introduction of a new requirement: Video Compression 2,
which aims at reducing the size of a video sequence, while still maintaining its playback capa-
bilities. This process is done by the Codec, which takes advantage of redundant information

1Scanning disks used in mechanical televisions
2Also called Video Coding.

1

present on the raw data to reduce the size of the video, without heavily modifying the original
picture or its quality.

The first form of video compression, Interlaced scanning, dates from 1940, and was purely
analog. This solution was introduced with the intent of reducing the flickering effects of old
CRTs, without increasing the required bandwidth. And even though this technique has been
in use for over seventy years, it has proven to be so efficient that most TV channels today
still use interlaced broadcasting.

However, analog television is now obsolete, as well as CRTs. The massive developments in
Integrated Circuit (IC) fabrication led to the rise of the current digital era. Therefore, most
screens (be it televisions, monitors or cellphones) use digital, Progressive scanning. As such,
the use of analog compression techniques was not applicable. Accordingly, the evolution
of digital video led to the development of digital compression techniques, such as the one
presented in this work.

Being purely digital, these methodologies rely on computers and other processors to an-
alyze data and apply the compression algorithms, making them very demanding processes
from a computational standpoint. As expected, a high compression ratio is only obtainable
by a high complexity algorithm, which also increases with the size of the video (more data
leads to more analysis). Since in the early days of digital video, the used resolutions were
lower than the ones used in the present days, the compression algorithms used were not very
demanding. However as the pursuit for higher quality video continued, so did the necessity
for better compression ratios, and therefore the computational needs also increased. Such
complex softwares lead to a high power consumption from the processor executing it, making
such implementations unsuitable for portable, battery limited applications, such as cellphones
or laptops. Besides this huge factor, such softwares tend to be very slow, specially when a
real time compression or decompression is desired.

To amend for these factors, and to increase the reachability of high quality video to as many
users as possible, these applications needed to have a viable solution that did not compromise
its usability. Accordingly, a new approach has been implemented on the most recent codecs.
Besides the optimization of pure software compression/decompression solutions, there has
been a great focus on the development of specialized hardware for such codecs. This solution
could redress many of the previously presented problems, making them viable on mobile
implementations, as well as other specialized appliances, since such co-processors usually
present a better performance than generic CPUs. This tendency has already been verified
on the implementation choices on recent smartphones [4, p. 14], as well as recent Nvidia
Graphical Processing Unit (GPU) lineups [5].

Due to the differences between a certain compression algorithm and its predecessors, either
through the changes to the bitstream or functioning principles, each time a new codec is re-
leased, there is a need to backup its development with a new set of hardware implementations.
This makes the improvement of video compression techniques a continuous effort, in many
engineering branches, as the technology needs to keep up with the demands of consumers, in
a variety of applications.

Due to the broad access to video, and its influence in a variety of markets (besides video
consumption itself), big companies have made investments on the improvement of video
quality, and respective compression algorithms. These investments have provoked somewhat
of a ”Codec War”. Since 2010, several video compression algorithms have been deployed,
and quickly replaced by a newer version, which presents better compression gains, at a lower
quality degradation, such as the replace of VP8 (released in 2008) with VP9 (2013).

2

1.2 Scope

AOM Video 1 (AV1) is the most recently released3 video codec. It was developed as
a Joint Development Foundation [6] project, under the name of Alliance for Open Media
(AOM) 4. This codec took the same objective as its main predecessor, VP9, which was to be
an open source, royalty free alternative to Motion Picture Experts Group (MPEG)’s state of
the art video codec, High Efficiency Video Coding (HEVC).

Figure 1.1: AV1 logo [7].

Upon release, VP9 rivaled HEVC’s performance. However, soon after, the market de-
manded higher compression performances, giving origin to the consortium of enterprises that
now represent AOM, and to the development of AV1, in 2015. The first release of this coding
format was made in March 2018, with the first release of its reference software, libaom, being
made three months later, in June 2018.

Besides its main objectives, AV1 was also developed with the intent of being easily im-
plementable in hardware. Therefore, various design choices were made to make the algorithm
low memory consuming, and highly parallelizable.

The desired compression performance was obtained at the cost of a highly complex algo-
rithm (and reference software), that severely outperforms VP9, at the cost of much higher
compression times [8].

Taken these factors, there is a high demand for dedicated hardware architectures, that can
speed up the compression/decompression times and reach real-time usability on live-streaming
applications, such as video-conferencing, live-content visualization, etc.

With this work, it is intended to perform a general study of the released software, and
try to improve its performance. Due to the overall complexity of the topic, the focus relies
on one of its composing blocks, the Transformation Stage. This is expected to be achieved
through the simplification of the provided software, as well as the development of fast hard-
ware architectures.

3Currently, there are other codecs being developed, without official bitstream release
4Further explained in Chapter 2

3

1.3 Outline

This dissertation is divided into five distinct Chapters. The current gives the reader a
general overview of the video coding environment, as well as presenting this work’s objectives.

Chapter 2 starts by conferring the basic principles behind the compression of video,
through the explanation of the characteristics exploited in encoders, as well as the coding
tools implemented in both these and in decoders. Towards the end of the chapter, AV1 is
described in higher detail.

In Chapter 3 the theoretical basis for the focus of this work is discussed, i.e., the Transform
Coding. The final sections of this Chapter present the functioning behind AV1 ’s Transform
stage, as well as data referring to encoding options.

With the foundations presented in the previous Chapters, in the fourth there are presented
the software and hardware implementations of the designed Transform stages, as well as
corresponding results.

This work finishes with Chapter 5, where some final considerations are carried out, as well
as suggestions for future work.

4

References

[1] Mark Schubin. “What Sparked Video Research in 1877? The Overlooked Role of the
Siemens Artificial Eye [Scanning Our Past]”. Proceedings of the IEEE 105.3 (Mar. 2017),
568–576. issn: 0018-9219, 1558-2256. doi: 10.1109/JPROC.2017.2652998.

[2] Marco Jacobs and Jonah Probell. “A Brief History of Video Coding”.

[3] Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper.
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html.

[4] Scientiamobile. Mobile Overview Report April – June 2018.

[5] Video Encode and Decode GPU Support Matrix. https://developer.nvidia.com/video-
encode-decode-gpu-support-matrix. Nov. 2016.

[6] Joint Development Foundation. http://www.jointdevelopment.org/.

[7] aomedia. Home. https://aomedia.org/.

[8] Dan Grois, Tung Nguyen, and Detlev Marpe. “Performance Comparison of AV1, JEM,
VP9, and HEVC Encoders”. Applications of Digital Image Processing XL. Ed. by An-
drew G. Tescher. San Diego, United States: SPIE, Feb. 2018, 120. isbn: 978-1-5106-
1249-5 978-1-5106-1250-1. doi: 10.1117/12.2283428.

5

https://doi.org/10.1109/JPROC.2017.2652998
https://doi.org/10.1117/12.2283428

6

CHAPTER 2

Video Compression Systems

2.1 Basic Principles

Video Compression Systems have been in development for approximately forty years, with
the first video codec, H.120, being released in 1984. It was composed of basic operations,
which did not correlate to good compression performances. This has lead to a quick downfall
of its usage, being replaced by H.261 standard in 1988.

However, the building blocks on which later standards were based are the same as in
the first generations, i.e., the strategies implemented on newer standards exploit the same
redundancies as previous, less efficient, codecs.

By redundancies, it is meant disposable or predictable information to the playback of an
image sequence. This concept is the key of video compression. Throughout the years, the
enhancement of video codecs was based on the improvement of the algorithms which can
reliably represent a video, while maintaining the least of the original information. In other
words, the video sequence is analyzed for predictable/identifiable characteristics (e.g. the
movement of a subject or the edge of an object), identifies strategies of predicting nearby
pixel values through that information and removes the disposable. This process is mentioned
as redundancy removal.

This way, to have a better understanding of the tools behind video codecs, the mentioned
redundancies are presented, as well as its origins. Most of such are due to the way humans
perceive vision, being this the first topic of this Chapter.

2.1.1 Human Visual System

Most of the compressed/decompressed video nowadays is directed to content visualization
by consumers, with the exception of some network-driven image processing applications, such
as automatic video surveillance. Therefore, the compression of video sequences has the intent
of making changes to the original data, without serious impact to the users’ perception. This
process is mentioned as the removal of the Psychovisual redundancy [2]. Therefore, a basic
understanding of the visual system can clarify many of the design choices made in video
compression applications, and why their use does not present much impact on the quality of
the image, while greatly reducing its memory usage.

The image perception starts in the human eye. Its different constituents accomplish
different tasks, from focusing, to aperture control. Although their importance to the overall
functioning of the eye, the part that matters most to the focus of this work is the innermost
membrane, the retina, represented in figure 2.1.

7

Figure 2.1: Representation of the retina [3].

Once the desired image is properly focused by the lens, an inverse version of it is shone on
the aforementioned membrane, which is covered by two types of light sensitive cells, the cones
and rods, which transform the observable image into a series of pulses, that get subsequently
processed.

The cones are highly sensitive to color, being responsible for the photonic or bright-light
vision. There are three different types, corresponding to the wavelength they are susceptible
to. These are the S, M and L cones, being sensitive to, approximately, the blue, green and
red light, respectively, making a somewhat similar capture to the RGB color system.

On the other side, rods are not stimulated by bright light, being more active on low
illumination levels. This aspect makes them responsible for giving a rough overview of the
field of view. This is called as scotopic or dim-light vision. These cells are more broadly
spread across the retina comparing to the cones, which is also observable in the number of
cells (approximately 6 million cones, to 100 million rods).

From this, it is already observable that the human visual system is more sensitive to
differences on the luminosity, than to the color of an object [4], which is a starting point for
compressing video, as will be shown later in this Chapter. However, many other opportunities
come from the processing of the nerve signals, and the psychovisual perception that follows.

Although more sensitive to luminance, there is a threshold to which the difference between
two objects — ∆I — cannot be discerned. This relation is mentioned as contrast sensitivity
function, which is roughly approximated with the Weber’s Law

∆I

I
≈ constant (2.1)

Analyzing this equation, it is possible to conclude that the darker an object is, the lower
the difference in luminance needs to be to distinguish another object. Also, darker images
tend to be more susceptible to compression artifacts.

Besides the luminance values, the spatial and temporal frequencies also represent an im-
portant role in the perception of such errors.

The Figure 2.2 gives an example of the dependency with spatial frequency. The first,
2.2a, represents the original image, which got corrupted with White Gaussian Noise (WGN),
represented in Figure 2.2b. As it is observable, these artifacts are less noticeable on the highly
detailed areas (branches and leafs of the tree) than in the smooth ones (sky in the top right

8

corner). The effect of Weber’s law is also observed if we analyze the effect that the white
noise as in the bright sun area, when compared to the darker areas.

(a)

(b)

Figure 2.2: Example of the effect of added noise on figure ((a) - Original Image [5]; (b) -
Image with added WGN).

Temporal frequency dependency, although more challenging to exemplify, is easily un-
derstandable. On a sequence of frames with fast movements, either from the camera or the
subject, the human eye does not have the ability to track details or other artifacts, while in
slow moving scenes, it can easily identify errors.

These are some of the fragilities of the human visual system that get exploited during
the compression of video. However, other redundancies, inherent from the captured images
themselves contribute to the reduction of the video size, as will be described in the following
sections.

9

2.1.2 Redundancy Exploitation

Even though there are countless observable subjects and sceneries, it is unfair to think
of a frame as a random sequence of pixels. Objects tend to represent clusters of pixels with
roughly the same values, moving objects follow predictable directions, etc. Such characteris-
tics represent redundancies that can be explored during the compression of said sequence.

2.1.2.1 Spatial Redundancy

Spatial redundancy comes from the similarity between neighboring pixels, on one frame.
This aspect is easily verified through the autocorrelation of an image, as will be shown in the
following example.

Taking Figure 2.2a and calculating its autocorrelation with various horizontal shifts, gives
origin to the graph in graph in Figure 2.3.

Figure 2.3: Autocorrelation of image 2.2a, with horizontal shifts.

As it is observable, for shorter shifts, the normalized autocorrelation is very close to one,
since most of the de-correlation comes for mismatching edges. Although this relation varies
depending on the image, it is safe to assume that it is very similar for the majority of the
cases.

Such study gives a promising opportunity for compression, since it means that most pixels
can be predicted from its neighbors. This aspect as lead to what is now known as differential
or predictive coding.

On a video compression system, the spatial redundancy is considered in the
intra-prediction block, which calculates pixels, or pixel blocks, through its surrounds.

10

2.1.2.2 Temporal Redundancy

As expected, a series of consecutive frames on the same subject, tend to be very similar
between each other, especially if considered the 30 or 60fps desired nowadays.

Making a similar analysis to what was made in Section 2.1.2.1, a series of frames of
the Stefan sequence [6] was considered, and the cross correlation between the first and the
following nine was calculated, giving origin to the graph in Figure 2.4.

Figure 2.4: Cross-correlation between the first and following nine frames of the Stefan se-
quence.

Similarly to what happened in the previous example, the cross correlation between con-
secutive frames is very high. Even though for faster moving scenes this relation might not be
as pronounced, its application on video coding greatly contributes to the compression verified
in the latest codecs.

The codec takes advantage of this redundancy in the inter-prediction stage, which is
composed by the Motion Estimation (ME) and Motion Compensation (MC) blocks. On this
stage, blocks of pixels in nearby frames are analyzed for movement, predicting its position for
following frames.

2.1.2.3 Psychovisual Redundancy

The redundancies presented in Section 2.1.1 are explored in various stages throughout the
video encoder.

The first measure is the chroma subsampling, which takes advantage of the lower percep-
tion to color, discarding some of the chroma samples, depending on the subsampling chosen.

Typically, a pixel value is represented in one luminance and two chrominance values, on
the YCbCr color space. The subsampling is defined in through the relation of luminance to
chroma samples, being the most common the 4:4:4, 4:2:2 and 4:2:0 standards, represented in

11

Figure 2.5. In the first one, no chroma samples are discarded, which means that for each four
luminance (Y) samples, there are an equal number of Cb and Cr samples. Correspondingly,
in the second standard, for each four Y samples, only half of each color components are
maintained. The last example, although its misleading term, means that only one in four
chroma samples are kept.

Y Cb/Cr

(a)

Y Cb/Cr

(b)

Y Cb/Cr

(c)

Figure 2.5: Representation of chroma subsampling ((a) - 4:4:4; (b) - 4:2:2; (c) - 4:2:0).

From the reduced sensitivity to details (or areas with high spatial frequency), the com-
pression is explored in the Transform (T) and Quantization (Q) blocks. In the first stage,
blocks of pixels are evaluated in their frequency components. These are then evaluated in
the second stage, where the least significant ones get discarded. In the decoder, the image
is reconstructed with the maintained coefficients, without much impact to the image quality.
This process is further explained throughout the work.

On the Quantization block, some work was also developed to account for Weber’s law,
where the quantization depends on the average luminance value of the block. This concept
was first introduced in ”Efficiency of a Model Human Image Code” [7], and since then,
experimented in various codecs, such as HEVC [8].

2.1.2.4 Coding Redundancy

Coding redundancy is directed to the method of representing information in the digital
domain, i.e., the bits themselves, and how they are organized.

It is known that symbol probability plays a major role in information compression, across
a wide variety of branches, and video is no exception. Taking this into account, codecs take

12

advantage of coding redundancy in the Entropy Encoder stage.

2.1.3 Basic Video Compression/Decompression System

From the basic principles of the previously mentioned blocks, it is possible to integrate
them into two complete compression — Encoder — and decompression — Decoder — mod-
ules.

2.1.3.1 Encoder Model

The encoder’s objective is to compress a video sequence, turning it into a readable encoded
bitstream. To do this, the previously presented strategies get implemented on a system based
on the schematic of Figure 2.6.

Input
Frame

- T Q
Entropy
Coding

Reference
Frames

Intra
Coding

Inter
Coding

+ T−1 Q−1Reconstructed
Frame

Control Unit

Control
Signal

Feedback
Loop

Forward
Path

Figure 2.6: Simplified Basic Encoder Model.

The encoding process starts with the Input Frame, which can be of two types. I Frames
are encoded using only the information present in themselves, i.e., using only Intra Predic-
tion/Coding, while P Frames may use predictive coding from previously encoded frames 1.

1Most video codecs allow the encoding sequence to be different from the temporal sequence. This allows
the currently encoding frame to use reference frames displayed after itself.

13

The input gets split into blocks, which get fed into the two main blocks of a video encoder:
the Intra and Inter Prediction blocks.

The Intra Coding block, as mentioned previously, deals with the spatial redundancy, by
predicting the current block from the pixels above and to the left of its upper and left edges.
The prediction may be done with various algorithms, ranging from calculating the average
from the reference pixels, to replicating these according to a certain direction. One such
example is presented in Figure 2.7, where pixels B through H get spread across a 4× 4 block,
diagonally.

A B C D E F G HI

J

K

L

M

Figure 2.7: Directional Intra-prediction example.

Into the Inter Coding block, go two inputs. The currently encoding block, as well as a
bank of previously encoded frames, named Reference Frames. Firstly, the frames inside the
buffer get searched for blocks resembling the former input. Once found, this process generates
a motion vector, corresponding to the difference between the position of the block found in
the reference frame, and the position of the currently encoding block, as shown in Figure 2.8.

Reference Frame

Present Frame

Motion Vector

Figure 2.8: Inter-prediction example.

In most codecs, the motion vector has a precision below one pixel. This means that the
matching block, from the reference frame, may be interpolated from existing pixels. This
process is known as sub-pixel interpolation, which calculates virtual values between existing
pixels.

After the prediction stage, the chosen output between the two processes, i.e., the predicted
block, gets subtracted by the current one, giving origin to the residue. This corresponds to
the pixel value differences between the original and predicted blocks. Lower residues indicate
more efficient prediction stages.

14

The next stage, the Forward Transform, is the focus of this work. It takes the residue
blocks, which may not be the same size of the prediction blocks, and evaluates them according
to its spatial frequencies. Its output corresponds to a series of coefficients, that are related to
the similarity — or correlation — between the input block and a series of basis images. This
process is further explained in Chapter 3.

On the Quantization stage, the coefficients calculated in T get scaled according to a
Quantization Matrix. This stage takes advantage of the eye’s lower perception to details, and
scales the higher frequency coefficients by a higher value, than the lower, more significant ones.
In most of the transformed blocks, this leads to only a few low frequency components being
maintained, while the others get nullified, since they are not relevant to the reconstruction
of the image. Therefore, this stage is the the one that presents the higher loss, although the
previously presented also introduce errors. In most of the encoding processes, this stage has
the most direct impact on the obtained quality.

The wipe out of the least significant coefficients is particularly efficient when paired with
the last stage before the output, the Entropy Encoder. On this block, Q’s output blocks get
run sequentially via a zig-zag scan, which first passes through the lower frequency coefficients,
followed by the higher frequency ones, as demonstrated by Figure 2.9.

Horizontal Frequency (u)

V
er

ti
ca

l
F

re
q
u

en
cy

(v
)

Figure 2.9: Demonstration of Zig-Zag Scan.

In most of the cases, this causes that the non-zero coefficients get read first, followed by
a sequence of zeros. Such sequence benefits heavily of being encoded with Variable Length
Codes (VLC), such as Huffman Tree Codes or Context Adaptative Binary Arithmetic Coding
(CABAC). Off all the processes, this is the one that does not introduce further distortion into
the encoded sequence, which is the reason it does not get included in the feedback loop.

The intent of this loop is to get an exact same copy of the frame reconstructed in the
decoder. This reconstructed frame gets used as the reference for intra-prediction, or gets put
into the reference frame buffer to be used in a later inter-prediction process.

The output of the encoder is the quantized coefficients, as well as the necessary information
to recreate the encoded blocks, such as the type of prediction used, the transformation kernel
[see p.28], quantization matrix, et al. These encoding parameters are the choices made by
the Control Unit, which although represented by a block in Figure 2.6, may not be a local
process, independent from all others.

15

Since H.264, most video codecs standardize the decoding process, specifically the allowed
tools for reconstructing the video, and how to use them. This means that the encoding
process is widely adaptable to the compression objectives, as long as the final product is a
bitstream following the norms set on the codec’s standard [9]. Therefore, the definition of
a Control Unit is ambiguous in this context, since such unit can simply represent a set of
parameters to be used throughout the encoding process2, or an algorithm that can change
between the different capabilities of the codec, in order to achieve an objective, such as a
specific distortion rate, or not surpass a maximum bit rate. As expected, different objectives
may lead to majorly different results, both in the output video, as well as in the used tools.

2.1.3.2 Decoder Model

As expected, the decoder (Figure 2.10) does the backwards operation of the encoder on
Figure 2.6. It starts by analyzing the bitstream, separating the control information from the
encoded and quantized coefficients.

Entropy
Decoding

Q−1 T−1 +
Reconstructed

Frame

Reference
Frames

Inter
Coding

Intra
Coding

Control Unit

Control
Signal

Forward
Path

Figure 2.10: Simplified Basic Decoder Model.

Having the encoding choices performed by the encoder, the decoder returns the coding
redundancy to the quantized coefficients, on the Entropy Decoding stage. This corresponds to
a translation from the varying length code used in codification, back into the raw coefficients.

The Inverse Quantization rescales the maintained coefficients, resulting from the previous
Quantization stage. With this, it is meant that the same quantization matrix used when
dividing the transformed coefficients, in the encoder, is now multiplied by the quantized
parameters. It must be kept in mind that this operation does not output an exact copy of

2One such example would be lossless compression modes, which use very a concise conditions on each
stage, in order to get the least distortion.

16

the transformation coefficients, as a lot of information is permanently lost in Q. This process
can be seen in Figure 2.11.

Input
Residue

6

-3

5

6

0

9

8

8

8

7

-2

5

7

7

6

-1

Transformed
Coefficients

1

0

-1

19

-3

3

8

-1

-7

1

-2

-3

0

8

-4

-3

÷

Quantized
Coefficients

0

0

-1

19

-1

1

3

-1

-1

0

0

-1

0

1

-1

-1

Quantization
Matrix

4

3

2

1

5

4

3

2

7

6

6

3

9

8

7

6

Restored
Coefficients

0

0

-2

19

-5

4

9

-2

-7

0

0

-3

0

8

-7

-6

×

Restored
Residue

5

-5

5

5

1

9

9

10

10

7

-4

2

6

9

7

0

T

Q

Q−1T−1

Figure 2.11: Processing of 4× 4 residue block from transformation to restoring.

As can also be seen in this Figure, the Inverse Transform converts the coefficients back into
spatial coordinates, therefore getting the restored residue. To obtain the final approximation
of the block being decoded, this residue must be added to the same predicted block from the
encoder. To do so, the Intra or Inter Prediction stages act according to the choices made in
the encoding process, as to regenerate this block.

In the decoder, the Control Unit represents the process that organizes the different stages,
according to the choices done in the encoding stage.

2.2 AV1

As the focus of this work, in the following sections, AV1 is discussed concerning its most
relevant aspects, starting with its development process.

2.2.1 History and Development

The development of this codec started as a need to improve the bandwidth reduction of
VP9. Therefore, the presentation of AV1 starts by explaining the guidelines of its predecessor.

VP9 started with project Webm, created by On2, which got acquired by Google in 2010.
This project had the objective of developing the first3 open-source, royalty-free video codec.

3VP8 got openly released after the acquisition of the company, after closing the development process.

17

This got support from major video content producers, such as YouTube, Netflix and Twitch,
since it represented large savings in licensing payments, from the use of MPEG’s standards,
which got aggravated from the difficult patenting terms of HEVC [12]. After release in 2013,
VP9 got adopted as YouTube’s default video codec for video’s above 420p, as well as other
web-video consumption services, including Facebook.

In 2014, Google started working on the next generation of open-source video codecs, VP10.
However, due to the large interest from other companies which already used the previous
standard, in 2015, the Alliance for Open Media was created, and the the development made for
this standard got inserted into AV1. Alongside Google, twelve other companies started AOM,
including two which also had open video encoder projects, which also majorly contributed
to the fast development of AV1 : Cisco’s Thor and Mozilla’s Daala. As the time of writing,
42 companies are official members of AOM, englobing a wide range of markets, from video
streaming services, to hardware producers.

Figure 2.12: Alliance for Open Media current members [13].

By 2016, AV1 started, with the objective of reaching 30% bitrate decrease, in comparison
to VP9. After the bitstream freeze in March 2018 and deployment of libaom soon later, this
first objective was fulfilled. However, the compression performance did not atone for the very

18

high operation times of the reference software. This left a large margin for improvement,
which quickly got explored with the development of other compression and decompression al-
gorithms by the AOM members, such as dav1d, rav1e, SVT-AV1, among others. This parallel
development gave origin to a competition among the corresponding teams, that benefited the
adoption of the standard, since it brought a wide range of possibilities.

With the improvements verified on both encoders and decoders, AV1 got progressively
more adoption from the industry, getting support from most web browsers, as well as uploads
of AV1 encoded videos to streaming platforms [14].

Besides the advances in software solutions, shortly after the bitstream freeze, IC devel-
opment companies started to develop hardware solutions. The focus started in hardware
decoders for implementation in mobile devices, but some encoder solutions also have been
announced. Although some claims of throughput up to 8k 60fps have been made, third party
performance tests still remain to be published [15, 16, 17, 18, 19].

2.2.2 Encoding Tools

Although the focus of this work revolves around the Transform stage, in this section, AV1
is presented on its most relevant aspects. Some analogies are also made with VP9 ’s tools, as
to justify the performance and complexity increases obtained with the most recent generation.

2.2.2.1 Partitioning

At the start of the encoding process, an input frame is divided into superblocks. These
constitute the starting point of the compression of an image.

These blocks may be of 128 × 128 pixels, or 64 × 64. However, doing operations with
such sizes would add complexity, as well as it would not prove to be efficient. Therefore,
the superblock can be partitioned into various prediction blocks. These can range between
128 × 128 to 4 × 4, including rectangular blocks, with 2 : 1 or 4 : 1 ratios. The division of
these blocks can be done recursively, where a square block divided into 4 square blocks can
originate progressively smaller blocks, according to the schematic in Figure 2.13.

VP9 also included a recursive partitioning scheme, but the maximum block size is 64×64,
and each block could only be divided with the ×4 or 2 : 1 ratios.

2.2.2.2 Intra-prediction

In Figure 2.7, it is presented one of the possible angles from the directional prediction
mode of Intra coding. However, in AV1, this stage includes other prediction options, some
being revised from previous generations, while others have never been implemented before.

On the directional mode, AV1 improves massively from VP9, going from 8 directions to
56. This allows for better maintenance of details, especially on bigger blocks.

As to the non-directional predictors, VP9 includes two different modes. In DC, the pixels
within a block would get replicated as the average of its references. True Motion (TM) would
calculate each pixel as the sum of the one above by the one to the left, and subtract the upper-
left diagonal, i.e., y(i,j) = y(i,j−1) + y(i−1,j) − y(i−1,j−1). In comparison, AV1 ’s Smooth modes
are similar to the previous DC, but it has the possibility of calculating the weighted average

19

×
4

d
iv

is
io

n

T division

N
o

d
iv

is
io

n

2:1
division

4:
1

div
isi

on

Figure 2.13: Description of the recursive partitioning scheme of AV1.

of the reference pixels, as well as using just one set of references, horizontal or vertical. TM
mode gave place to Paeth, which makes various calculations similar to TM, then considering
the most fitted prediction. An hardware architecture for this intra-predictor has already been
implemented in ”A High Throughput Hardware Architecture Targeting the AV1 Paeth Intra
Predictor” [21].

Pallet mode also got revised and included in AV1. This mode is paired with other pre-
diction techniques, limiting the pixel values to a set of possible colors. Pallet as well as
Intra-block copy are especially designed for artificial video, such as video game footage, since
these kind of videos contained a limited set of colors textures. Intra-block copy allows for the
replication of a intra-predicted block, similarly to the process in inter prediction.

Finally, AV1 introduces two new intra prediction modes that have not been implemented
in previous generations. These are Chroma from Luma and Recursive-filter Intra Prediction.
The first is easily understandable through its name. The chroma component of a block is
calculated through the corresponding luminance values (see ”Predicting Chroma from Luma
in AV1” [22]). As to the later, it sub-divides a prediction block, and calculates each set of
pixels using different filters.

2.2.2.3 Inter-prediction

This block got major innovations, as well as improvements to previous generations. Re-
garding the standard techniques, AV1 improves in the number of motion vector estimation
filters, going from two to four, as well as in the number of sub-pixel filters. While VP9 allowed
for three reference frames, the newer inter predictor allows to choose up to seven per frame,
in a set of eight reference frames. This highly increases the necessary memory for encoding

20

and decoding, but allows for finer motion estimation.
As to innovations, AV1 introduces Warped motion, which allows to shape the reference

block on a trapezodial manner, Global motion, to easily shift an entire frame, as to deal with
camera movements, and Wedge mode which allows to use different prediction schemes in the
same block, among others.

Some works have already been published with advances to this stage, as well as hardware
implementations [23, 24].

2.2.2.4 Transform

AV1 follows the innovations made in VP9, adding more transformation kernels. Besides
the regularly implemented Discrete Cosine Transform (DCT), the transformation blocks may
now be transformed using Identity kernels or Asymetric Discrete Sine Transform (ADST)
kernels, which can be implemented in two directions. These different options can be used
independently in the columns and rows, giving origin to 16 different options of block trans-
formations. This aspect is further explained in Chapter 3.

As to transform sizes, AV1 allows for extra flexibility, not fixing any of the block dimen-
sions to a certain value. This way, the block size can vary between 4×4 and 64×64, including
rectangular blocks of 2 : 1 and 4 : 1 ratios.

2.2.2.5 Quantization

Although the simplest stage from the encoding/decoding process, AV1 developed this
stage by allowing a wider set of quantization matrixes to be used within the same frame, as
well as updating the choosing criteria. While in VP9 the Quantization Parameter (QP) 4

would be calculated considering the chroma components as one, now both channels (Cb and
Cr) are considered independently.

Since AV1 was targeted at web applications, one other innovation was added to this stage,
which is an offset to the quantization matrixes. This is particularly effective on applications
where a specific target bitrate is to be achieved.

2.2.2.6 In-loop Filtering

Although not represented in Figures 2.6 and 2.10, recent codecs include some kind of
filtering to reduce compression artifacts. In VP9 there was included a Deblocking Filter, which
filtered the entire image, as to reduce the edging artifacts from prediction. AV1 maintains
this filter, reducing the necessary memory to implement it.

Besides the revision of the old filter, many others are added, such as the Constrained
Directional Enhancement Filter, that filters the image directly on the prediction blocks’ edges,
with the same objective of the Deblocking filter. Some further explanation of these filters may
be found in ”Film Grain Synthesis for AV1 Video Codec” [25] and ”The Av1 Constrained
Directional Enhancement Filter (Cdef)” [26].

4Parameter that indicates the quantization matrix to use (higher values indicate more severe quantization).

21

2.2.3 Performance Analysis

AV1 ’s decoding specification has not changed since the release of the standard and freeze
of the bitstream. However, this is not verified on the implementations of the standard. Even
libaom, which is intended to serve as a guideline for future implementations, has been severely
improved since its release in June 2018.

The comparison of AV1 throughout these developing months has been divided in two
major categories: Quality and Timing. The first depends on the standard itself, and on how
the encoding tools are able to compress the video, while maintaining its playback capabili-
ties. Therefore, if the encoding objectives are maintained throughout the development of the
encoders/decoders, this parameter should not vary. However, the same cannot be said of the
Timing Performance, since as more efficient tools get released, it is expected that the time
to encode/decode a video gets reduced, as to reach real-time usability.

According to Moscow State University [27], AV1 achieved its objective of highly reducing
the necessary bitrate. On this test, five 1080p sequences have been encoded using different
implementations of H.264/AVC, H.265/HEVC, VP9 and AV1. The different softwares have
been configured on a similar manner, as to encode the sequences with similar quality, and
the average bitrate per codec was compared relatively to H.264. The results are presented in
Figure 2.14.

A
v
e
ra

g
e

R
e
la

ti
v
e

B
it

ra
te

H.264

100%

H.265

70%

VP9

68%

AV1

53%

Figure 2.14: AV1 bitrate savings [27].

These results may vary greatly with the performed tests, as the encoding tools may prove
to be more adequate to certain types of videos. On a different test, performed by Facebook
[28], AV1 presents a higher performance than the one presented previously, as seen in Table
2.1. Here, videos of various resolutions were encoded with VP9 and H.264 with equivalent
parameters, and the obtained bitstreams are compared to AV1, according to Bjontegaard-
Delta rate (BD-rate).

As it may be seen, as the resolution increases, so do the bitrate savings. This leads
to believe that if the same test were to be performed with 4K and 8K sequences, higher
performances would be verified.

22

Table 2.1: BD-rate of VP9 and H.264 codecs, when compared to AV1 (negative corresponds
to bitrate savings) [28].

Codec
Resolutions

360p 480p 720p 1080p Average

VP9 -29.5% -32.5% -32.3% -35.9% -32.5%

H.264 -43.4% -49.3% -51.2% -57.9% -50.3%

As to the encoding times, in two articles from Streaming Media [29, 30], it is possible to
see the improvements made on libaom. In Table 2.2 there are presented the encoding times of
a 5 second clip, shortly after the reference software was released, August 2018, and in March
2019, under the same conditions. Besides the performance of libaom, software for H.264/AVC,
H.265/HEVC and VP9 is also evaluated.

Table 2.2: Encoding times of different video encoders, and improvements on AV1 [29, 30].

Codec
Encoding Time (s)

2018 2019

AV1 226 080 736

H.265 289

VP9 226

H.264 18

From these results, it is possible to conclude that AV1 is a promising codec. When
quality and compression gains are considered, it is already verifiable that the codec presents
better performances than its predecessors, in some cases even beating its objective of 30%
improvement over VP9. However, when considering the timing issues, the results do not
prove as optimistic. As the time of writing, the encoding solutions are still far away from a
real-time usability. Although, as better software and hardware solutions get developed, this
objective may be achieved in the near future.

23

References

[1] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Fourth edition.
New York, NY: Pearson, 2018. isbn: 978-0-13-335672-4.

[2] Yun Qing Shi and Huifang Sun. Image and Video Compression for Multimedia En-
gineering: Fundamentals, Algorithms, and Standards. 2. ed. Image Processing Series.
Boca Raton, Fla.: CRC Press, 2008. isbn: 978-0-8493-7364-0.

[3] Helga Kolb. Simple Anatomy of the Retina.
https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-
retina/.

[4] Kathy Mullen. “The Contrast Sensitivity of Human Color Vision to Red-Green and
Blue-Yellow Chromatic Gratings”. The Journal of physiology 359 (Mar. 1985), 381–
400. doi: 10.1113/jphysiol.1985.sp015591.

[5] Freepik. https://www.freepik.com.

[6] YUV Sequences. http://trace.eas.asu.edu/yuv/.

[7] Andrew Watson. “Efficiency of a Model Human Image Code”. Journal of the Optical
Society of America. A, Optics and image science 4 (Jan. 1988), 2401–17. doi: 10.1364/
JOSAA.4.002401.

[8] Kais Rouis and Chaker Larabi. “Perceptual Video Content Analysis and Application to
HEVC Quantization Refinement”. Nov. 2018, 1–6. doi: 10.1109/EUVIP.2018.8611749.

[9] AV1 Bitstream & Decoding Process Specification. https://aomediacodec.github.io/av1-
spec/av1-spec.pdf. 2019.

[10] Luciano Agostini. Desenvolvimento de Arquiteturas de Alto Desempenho Dedicadas à
Compressão de Vı́deo Segundo o Padrão H.264/AVC. 2007.

[11] Debargha Mukherjee. AllThingsRTC 2019 - Opening Keynote - Past, Present and Fu-
ture of AV1. June 2019.

[12] Streaming Media. HEVC Advance Patent Pool Creates Confusion, Lacks Transparency.
July 2015.

[13] aomedia. Home. https://aomedia.org/.

[14] Nathan Egge. “Latest Technical and Business Progress with AV1”. NAB Streaming
Summit (Apr. 2019), 59.

[15] Allegro DVT Introduces the Industry First Real-Time AV1 Video
Encoder Hardware IP for 4K/UHD Video Encoding Applications.
http://www.allegrodvt.com/allegro-dvt-introduces-the-industry-first-real-time-

24

https://doi.org/10.1113/jphysiol.1985.sp015591
https://doi.org/10.1364/JOSAA.4.002401
https://doi.org/10.1364/JOSAA.4.002401
https://doi.org/10.1109/EUVIP.2018.8611749

av1-video-encoder-hardware-ip-for-4kuhd-video-encoding-applications/. Apr.
2019.

[16] NGCodec Announces AV1 Support and a 2X Performance
Improvement in Broadcast Quality Live Video Encoding.
https://ngcodec.com/press-releases/2019-1-7-ngcodec-announces-av1-support-and-a-
2x-performance-improvement-in-broadcast-quality-live-video-encoding.

[17] Anton Shilov. Realtek Demonstrates RTD2893: A Platform for 8K Ultra HD TVs.
https://www.anandtech.com/show/14560/realtek-demonstrates-rtd2893-a-platform-
for-8k-ultrahd-tvs.

[18] Realtek Launches Worldwide First 4K UHD Set-Top Box SoC (RTD1311),
Integrating AV1 Video Decoder and Multiple CAS Functions - REALTEK.
https://www.realtek.com/en/press-room/news-releases/item/realtek-launches-
worldwide-first-4k-uhd-set-top-box-soc-rtd1311-integrating-av1-video-decoder-and-
multiple-cas-functions.

[19] Socionext Implements AV1 Encoder on FPGA over Cloud Service.
http://socionextus.com/pressreleases/socionext-implements-av1-encoder-over-cloud-
service/. June 2018.

[20] Yue Chen et al. “An Overview of Core Coding Tools in the AV1 Video Codec”. 2018
Picture Coding Symposium (PCS). San Francisco, CA: IEEE, June 2018, 41–45. isbn:
978-1-5386-4160-6. doi: 10.1109/PCS.2018.8456249.

[21] M. Corrêa et al. “A High Throughput Hardware Architecture Targeting the AV1 Paeth
Intra Predictor”. 2019 IEEE 10th Latin American Symposium on Circuits Systems
(LASCAS). Feb. 2019, 93–96. doi: 10.1109/LASCAS.2019.8667544.

[22] L. Trudeau, N. Egge, and D. Barr. “Predicting Chroma from Luma in AV1”. 2018 Data
Compression Conference. Mar. 2018, 374–382. doi: 10.1109/DCC.2018.00046.

[23] Z. Deng and I. Moccagatta. “Hardware-Friendly Inter Prediction Techniques for AV1
Video Coding”. 2017 IEEE International Conference on Image Processing (ICIP). Sept.
2017, 948–952. doi: 10.1109/ICIP.2017.8296421.

[24] R. Domanski et al. “High-Throughput Multifilter Interpolation Architecture for AV1
Motion Compensation”. IEEE Transactions on Circuits and Systems II: Express Briefs
66.5 (May 2019), 883–887. issn: 1549-7747. doi: 10.1109/TCSII.2019.2909705.

[25] A. Norkin and N. Birkbeck. “Film Grain Synthesis for AV1 Video Codec”. 2018 Data
Compression Conference. Mar. 2018, 3–12. doi: 10.1109/DCC.2018.00008.

[26] S. Midtskogen and J. Valin. “The Av1 Constrained Directional Enhancement Filter
(Cdef)”. 2018 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). Apr. 2018, 1193–1197. doi: 10.1109/ICASSP.2018.8462021.

25

https://doi.org/10.1109/PCS.2018.8456249
https://doi.org/10.1109/LASCAS.2019.8667544
https://doi.org/10.1109/DCC.2018.00046
https://doi.org/10.1109/ICIP.2017.8296421
https://doi.org/10.1109/TCSII.2019.2909705
https://doi.org/10.1109/DCC.2018.00008
https://doi.org/10.1109/ICASSP.2018.8462021

[27] Dmitriy Vatolin et al. MSU Codec Com-
parison 2018 Part IV: FullHD Content, High Quality Use Case.
https://www.compression.ru/video/codec comparison/hevc 2018/pdf/MSU HEVC AV1
comparison 2018 P4 HQ encoders.pdf. 2019.

[28] Facebook Engineering. AV1 Beats X264 and Libvpx-Vp9
in Practical Use Case. https://engineering.fb.com/video-
engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/. Apr.
2018.

[29] Streaming Media Magazine. AV1: A First Look.
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=127133. Aug.
2018.

[30] Good News: AV1 Encoding Times Drop to Near-Reasonable Levels.
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=130284. Mar.
2019.

26

CHAPTER 3

Video Coding Transforms

3.1 Introduction

As mentioned previously, the basic principle behind the compression of video, is the re-
duction of inter-pixel/inter-symbol correlation. The various integral blocks of a video com-
pression system try to accomplish this objective through different strategies. The Intra-frame
and Inter-frame Prediction exploit spatial and temporal correlation, respectively. Through
the subtraction of the input by its prediction, and the attainment of the residue, the next
compression stage is made in the Transform block, which is the focus of this work.

The technique implemented by this process relies on the energy compaction in the fre-
quency domain to reduce the correlation within a frame block, i.e. the input of the Transform
block is evaluated on its main frequencies — the transform coefficients — on a spatial domain,
similarly to the process executed on a Fourier Transform. Once each block is quantized on
these coefficients, the compression is made with the removal of the least significant ones, on
the Quantization stage.

The objective of this chapter is to explain the theoretical basis behind said Transforma-
tions, as well as to introduce the most commonly used ones. Later, libaom’s Transform stage
is presented, as well as some benchmarks of its performance.

3.2 Background

3.2.1 Basis Vector/Image Interpretation

A useful interpretation, and a good starting point to the study of this process, is to see
it as the decomposition of an N length input, ~g as a set of orthogonal basis vectors (in 1D
transforms) or images/matrices (in 2D transforms). The transformation outputs , Gi, can be
seen as the weights of each basis vector/image, ~ei, that summed return the restored input, g

∗
,

i.e.

~g
∗

=

N−1∑
i=0

Gi~ei (3.1)

which means that the coefficients are related to the amount of correlation between the input
and each basis component, and can be obtained with the inner product of the input and each

27

basis vector.

Gi = ~ei
T~g (3.2)

Since each input vector will have different correlation values between the various basis
vectors, this operation accomplishes two main objectives:

• De-correlation of the input values

• Signaling of the most important basis vectors.

Considering a 2D image, G(x, y), and its corresponding transformed coefficients, G(u, v),
where (x, y) are the pixel coordinates, and (u, v) are the corresponding coordinates in the
transform domain, we can obtain an analogous version of Equation 3.2 as

G(u, v) =

M−1∑
x=0

N−1∑
y=0

G(x, y)f(x, y, u, v) (3.3)

Similarly, we can re-obtain the restored original picture

G
∗

(x, y) =

M−1∑
u=0

N−1∑
v=0

G(u, v)i(x, y, u, v) (3.4)

where f(x, y, u, v) and i(x, y, u, v) are the forward and inverse transformation kernels. To
better explain the concept of these, first it is needed to introduce the two following concepts.

3.2.1.1 Separability

A useful characteristic of 2D Video Coding Transforms is its ability to be independently
calculated between rows and columns. This means that given a 2D block as input, the
transform coefficients can be calculated first with the horizontal transform, and then with the
vertical transform, or vice-versa.

This aspect is applicable if the following conditions are applied

f(x, y, u, v) = f1(x, u)f2(y, v) (3.5)

i(x, y, u, v) = i1(x, u)i2(y, v) (3.6)

This means that the Equation 3.3 is reconstructed as 2 independent and sequential oper-
ations

Gtemp(x, v) =
N−1∑
y=0

G(x, y)f2(y, v) (3.7)

G(u, v) =
M−1∑
x=0

Gtemp(x, v)f1(x, u) (3.8)

On AV1, due to the various implemented transformation kernels, this aspect is severely
explored, since the only way of implementing the combination of different 1D kernels, is to
calculate them independently. This aspect is further explained with the following concept.

28

3.2.1.2 Symmetry

Taking Equation 3.5, a transformation kernel is said to be symmetric if

f1(y, v) = f2(x, u) (3.9)

This characteristic is particularly useful because it makes the forward and inverse trans-
formations expressible as matrix multiplications. Therefore, the equations 3.3 and 3.4 are
represented, respectively, as

G = F TGF (3.10)

G
∗

= ITGI (3.11)

where F and I are the forward and inverse transform matrices. This aspect is only possible
for square matrix, i.e., input blocks with the same height and width.

This concept is not exploited in AV1, since the use of different 1D transformation kernels,
and rectangular block sizes (M 6= N) make the 2D transform asymmetric, and therefore, not
executable as matrix multiplication. Consequently, the block transformation is made as 2
separate 1D operations, as shown previously.
•

Looking now at equation 3.4, we can interpret the inverse transformation kernel as a set
of basis images, dependent of the (u, v) pair. By this, it is meant

G
∗

(x, y) =
M−1∑
u=0

N−1∑
v=0

G(u, v)Iu,v (3.12)

where

Iu,v =


i(0, 0, u, v) i(0, 1, u, v) . . . i(0,M − 1, u, v)

i(1, 0, u, v) i(1, 1, u, v) . . . i(1,M − 1, u, v)
...

...
. . .

...

i(N − 1, 0, u, v) i(N − 1, 1, u, v) . . . i(N − 1,M − 1, u, v)

 (3.13)

Therefore, the forward and inverse transformation process can be seen as the deconstruc-
tion and reconstruction of an input block into a set of M ·N basis images, dependent of the
used transformation kernel, respectively. As expressed in Equations 3.5 and 3.6, this analogy
can be made on a 1D space .

Given a general comprehension of the theoretical principles behind the Transform block,
now the most common transformation kernels are introduced, with focus on the AV1 video
codec.

29

3.3 Transformation Kernels

3.3.1 Discrete Fourier Transform (DFT)

Although it is not implemented in video coding, it is widely used in digital signal process-
ing, and many of the used transformation kernels are approximations of this function.

It has it is roots on the Fourier Transform, whose forward and inverse transformations
are expressed in Equations 3.14 and 3.15, respectively.

G(u, v) =

∫ ∞
−∞

∫ ∞
−∞

G(x, y)e−j2π(ux+vy)dx dy (3.14)

G
∗

(x, y) =

∫ ∞
−∞

∫ ∞
−∞
G(u, v)ej2π(ux+vy)du dv (3.15)

Once considered a finite number of points, the previous equations become

G(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

G(x, y)e−j2π(
ux
M

+ vy
N) (3.16)

G
∗

(x, y) =

M−1∑
u=0

N−1∑
v=0

G(u, v)ej2π(
ux
M

+ vy
N) (3.17)

which correspond to replacing the kernels in equations 3.3 and 3.4 with

f(x, y, u, v) =
1

MN
e−j2π(

ux
M

+ vy
N) (3.18)

i(x, y, u, v) = ej2π(
ux
M

+ vy
N) (3.19)

The position of the multiplication factor, 1/MN, is irrelevant, and in some works is divided
into two terms in the forward and inverse kernels, 1/M and 1/N, or even 1/

√
MN.

Because of the use of complex numbers, this operation tends require a high computational
effort, whence its disuse in video coding.

3.3.2 Discrete Walsh-Hadamard Transform (WHT)

This transformation replaces the sum of sines and cosines of the DFT, alternating positive
and negative 1’s, depending on the binary representation of the inputs.

Considering the inputs of the transform to be represented with K bits, where K − 1 is
the most significant bit (bK−1), the forward and inverse kernels are represented as

f(x, y, u, v) = i(x, y, u, v) =
1√
MN

(−1)
∑K−1

i=0 bbi(x)pi(u)+bi(y)pi(v)c (3.20)

where

30

p0(u) = bK−1(u)

p1(u) = bK−1(u) + bK−2(u)

... (3.21)

pK−1(u) = b1(u) + b0(u)

3.3.3 Discrete Cosine Transform (DCT)

The most commonly used transform, the DCT, was published by N. Ahmed et al. in 1974
[3]. Since then, it has been adopted in a wide range of applications, being the only transform
used in the first generations of video codecs, as well as in still image compression, being the
basis of the JPEG standard.

It is frequently compared to the DFT, due to the similarity of their operation. However,
as the name implies, the DCT relies on the cosine function to create its basis images, which is
a periodic and symmetrically even function. Therefore, as mentioned by A. V. Oppenheim [4],
”Just as the DFT involves an implicit assumption of periodicity, the DCT involves implicit
assumptions of both periodicity and even symmetry”. This is easily observable once considered
the equivalent process of both algorithms. Taking an L-point sequence, g(n), the calculation
of the DFT and DCT of such sequence is equivalent to the processes presented at Table 3.1.

Table 3.1: Similarity between the processes of the DFT and the DCT.

Step DFT DCT

1
Repeat g(n) every L points, orig-
inating g̃L(n)

Concatenate g(n) with a flipped
version of itself, creating a 2L
sequence, g2L(n), and repeat it,
giving origin to g̃2L(n)

2
Calculate the Fourier expansion
of g̃L

Calculate the Fourier expansion
of g̃2L

3
Keep the first L coefficients and
set all others to 0

Keep the first L coefficients, and
set all others to 0

The main reason behind the heavy adoption of the DCT is its great energy compaction
on the lower frequencies, where most of the energy in a picture is packed. If the output of
the first step of Table 3.1 is observed, this aspect is more easily understood. In Figure 3.1, a
4 point sequence, corresponding to the filled points, gets replicated throughout the discrete
time axis, according to the corresponding transform.

Due to the back-to-head repetition seen in Figure 3.1a, there is a disruption every L
points, which gives origin to high frequency components in the Discrete Fourier Transform.
Therefore, the more continuous behavior obtained with the back-to-back repetition of the
DCT creates higher significance low frequency coefficients. However, there are many ways of
creating a periodic and symmetric sequence from a finite number of points. This factor has led
to the implementation of different versions of the DCT, which differ in minor details between
themselves. These differences are consequence of the way the symmetry is obtained, which
can be observed in Figures 3.1b to 3.1e. The represented implementations are referred to as

31

DCT-I to DCT-IV, but other possibilities exist. Their definition depends on the overlapping
of points when repeating each sequence.

n

(a)

n

(b)

n

(c)

n

(d)

n

(e)

Figure 3.1: Sequences generated in the first step of Table 3.1for the DFT and different DCTs.
Filled dots correspond to the original sequence ((a) - DFT ; (b)) - DCT-I ; (c)) - DCT-II ; (d))
- DCT-III ; (e)) - DCT-IV).

Since the DCT in AV1 is implemented in one dimension, the description of the following
kernels is also made in 1D. Therefore, the dimension of the transform, L, is referring either
to the blocks’ width or height, depending if the operation is made to the rows or columns,
respectively (M or N , previously).

DCT-I The sequence created with first version of the DCT has overlapping points at n =
k(L− 1), k = 0, 1, 2, ..., making the overall period of the final sequence 2L− 2.

f(x, u) =
2

L− 1
α(x) cos

Å
πxu

L− 1

ã
(3.22)

where

α(x) =

®
1
2 , x = 0 ∨ x = N − 1

1, 1 ≤ x ≤ N − 2
(3.23)

32

The inverse transform becomes

i(x, u) = α(u) cos

Å
xuπ

L− 1

ã
(3.24)

DCT-II Usually referred to as ”the DCT”, it is by far the most implemented version, being
the only one mentioned in many of the studied works.

As seen in Figure 3.1c, this version has no overlap on the created sequence, making the
period 2L, and the points of symmetry kL− 1

2 .

f(x, u) = i(x, u) = β(u) cos

Å
(2x+ 1)uπ

2L

ã
(3.25)

β(u) =

{»
1
L , u = 0»
2
L , 1 ≤ u ≤ N − 1

(3.26)

DCT-III Named the inverse of DCT-II, due to the switch of the transform and pixel
coordinates.

f(x, u) = i(x, u) = β(u) cos

Å
(2u+ 1)xπ

2L

ã
(3.27)

β(u) =

{»
1
L , u = 0»
2
L , 1 ≤ u ≤ N − 1

(3.28)

DCT-IV Is the basis of the Modified Discrete Cosine Function (MDCT), where the input
blocks overlap.

f(x, u) = i(x, u) =

…
2

L
cos

Å
(2u+ 1)(2x+ 1)π

4L

ã
(3.29)

3.3.4 Discrete Sine Transform (DST)

Similarly to the DCT, there is also the possibility to represent a finite sequence as a
sum of discrete sine functions, giving origin to the DST. Contrarily to the former presented
transform, this variant uses sinusoidal functions to generate its basis images, which gives
origin to odd symmetric sequences.

In the same way as its even counterpart, there are various different ways off accomplish-
ing such symmetry, which also gives origin to eight different variations of this Transform.
However, due to its misuse over the DCT, only the DST-II is presented.

f(x, u) = i(x, u) =

…
2

L+ 1
sin

Å
(j + 1)(u+ 1)π

L+ 1

ã
(3.30)

Equivalently to what happens with the DFT, the odd symmetry of this function gives
origin to discontinuities, which are undesirable when coding video blocks, since they lead to
less significant low frequency coefficients, and therefore higher quantization errors.

33

3.3.5 Asymmetric Discrete Sine Transform (ADST)

The symmetric behavior of previous transforms lead to better performance on evenly
spread residue blocks, i.e. when the pixel values post-subtraction (and before transformation)
have roughly the same value across the whole block.

However, due to the directional spatial prediction, the residue on one boundary of the
block may differ from the others, since the chosen direction for prediction may prove more
efficient on one section of the block. This leads to worse energy compression, when using
transforms like the DCT or WHT.

In order to address this problem, VP9 introduced a new transform called Asymmetric
Discrete Sine Transform (ADST), which corresponds to an alternative implementation of the
DST with the addition of frequency and phase shifts.

This enhancement provides the developer with a high degree of liberty, since the basis
images can be adapted with the variation of the shifts. On AV1, there is only one ADST
implementation per block size. However this transformation can be done in two directions, i.
e., the input vector can be transformed front-to-back and vice-versa. AOMedia named these
transforms ADST and Flip-ADST, according to the direction of the input vector.

3.4 Libaom ’s Integer Transformations

In battery driven applications, computing power plays an important role. Consequently,
any approach that leads to lower computational costs, without compromising the image qual-
ity, tends to get incorporated into a video codec.

When considering the Transform Stage, a widely adopted approach is the use of integer
transforms. The objective of such operations is to maintain the features of floating point
implementations, but severely reducing the complexity, decreasing the necessary operations
to arithmetic additions and integer multiplications. In many cases, the latter are implemented
with bitwise shifts and additions.

From the transforms presented throughout section 3.3, there have been several methods
of developing integer counterparts. Most of the fast implementations are based in either
Fast Fourier Transform algorithms or in the Walsh-Hadamard Transform [10, 11]. Since the
objective of this work was to develop a Transform Co-processor for libaom, the focus of this
section resolves around these kernels.

3.4.1 Functioning and Implementation

The first analysis of this section was made through the study of the transformation stage
of the reference software. Its main workflow is represented in Figure 3.2.

This stage is controlled by a configuration set, which is chosen according to the desired
encoding objectives. These parameters control the transformation block’s width and height
(size col and size row 1, respectively), the transformation kernels to use in the rows and
columns, the precision to use in the sine and/or cosine coefficient approximations, as well as

1Each number does not correspond to the number of elements in columns and rows, but rather to the
number of rows and columns.

34

C
o
lu

m
n

T
ra

n
sf

o
rm

R
o
w

T
ra

n
sf

o
rm

i c - Current
column index

i r - Current
Row index

Test Output

Condition Set

Input Block

Get Column i c

i c=0

ud flip

T

0

lr flip

Store coefficients

0

i c ==

(size col - 1)

Get Row i r

i r=0

true

T

Store coefficients

i r ==

(size row - 1)

End

true

Flip Input
Vertically

1

Flip Coefficients
Horizontally

1

i c+=1

false

i r+=1

false

Figure 3.2: Flowchart of the Transform Stage on libaom.

35

other parameters for overflow control. Associated to the transformation kernel chosen, the
variables ud flip and lr flip are also set. The first one is set to 1 if the block’s columns are
to be transformed with the Flip-ADST kernel. If such choice is applied to the rows, the second
variable is, likewise, set to 1. These variables control if the input rows are flipped vertically,
and/or if the coefficients resulting from the column transformation are flipped horizontally 2.

The choosing of these parameters will not be addressed in this work, since AV1 allows
for a great deal of maneuverability to the designer, as to adjust each encoder/decoder pair
to the desired application. In this regard, libaom allows for a high number of configuration
options, that dramatically change the parameters chosen in the transformation stage, as well
as in the rest of the system.

Throughout the represented process, many of the operations are done with sequential,
iterative processes, e.g., the input vector selection or the flipping operations. Such operations
would greatly benefit of a hardware implementation, since they are easily parallelizable, as
the objectives of AV1 suggested. However, on this work, the focus relies of the T block, i.e.,
the transformation kernel itself.

Independently of the chosen transform, the operation is done sequently, in various stages.
In each of these, the corresponding intermediary coefficients get calculated as function of
two of the previous calculated coefficients. These, in most of the stages, are multiplied by
a specific integer approximation of a cosine/sine value. Such approximations, as mentioned
previously, depend on the number of bits on which they are represented.

The arrays on which the calculated cosine and sine values are stored, cospi and sinpi,
respectively, are bi-dimensional. The first dimension, K, has 7 positions, corresponding to
10 to 16 bits approximations. The second dimension, n, has 64 positions for cospi and
5 for sinpi, representing the first quadrant of the trigonometric circle. Each position is
calculated according to Equations 3.31 and 3.32, where n represents the position in the array,
and K corresponds to the number of bits. Therefore, cospi[K][0] corresponds to cos(0),
cospi[K][63] is cos(63π/128), and the following positions can also be associated to a certain
angle.

cospi[K][n] =
⌊
2K cos

(nπ
128

)⌉
(3.31)

sinpi[K][n] = 2K
õ

2

3

√
2 sin

(nπ
9

)§
(3.32)

The sinpi array is only used in the shortest length of the ADST, which is the reason it
only has five positions. All other versions of this kernel use cospi to get the desired value.

Most of the intermediary coefficients inside each stage are calculated with the function
half_btf, which performs the operation represented in Equation 3.33. This function takes
the two previously calculated coefficients (in0,1), two values from the previously introduced
approximations arrays (w0,1), as well as the number of bits used to represent these (K), and
maps the result from the multiplications and sum of the first inputs to the desired number of
bits.

half btf(w0, in0, w1, in1, K) “= ú
w0 · in0 + w1 · in1 + 2K−1

2K

ü
(3.33)

2Here, the notation of horizontally or vertically is set considering a matrix input block. In the 1D transform
implemented in libaom, this just means that what would be the last coefficient is now the first, and so on.

36

Although the code implementation is sequential, the 8 length transformation kernels are
represented in Figures 3.5 and 3.6 as parallel block diagrams, with the diverse stages in
series. While AV1 accepts transform block sizes varying between 4 and 64, the method of
transformation is similar between the different sizes.

Both pictures start with the input vector components, i.e., x0 to x7. The following sum’s
represent the addition of the two pointing values, in case the that the arrow guiding these
does not present any further coefficient. If such is verified, the operation to be realized is the
one presented in Equation 3.33. The value near each arrow is referred to the equivalent cospi
position, that multiplies by the result coming from the arrow’s origin. Figure 3.3 presents a
visual aid for the following schematics.

Both DCT and ADST are implemented using the method firstly described in 1977 by Wen-
Hsiung Chen et. al, in ”A Fast Computational Algorithm for the Discrete Cosine Transform”
[12]. This approach consists of sequential butterfly rotations, which correspond to the various
rotations obtained with the additions and subtractions of nodes of opposite ends. These
operations are easily parallelizable, making this approach widely used in most hardware DCT
implementations to this day ([13, 14, 15, 16]).

The identity transforms, IDTX, are the simplest of the ones implemented in libaom, since
they consist of a scale factor, which varies throughout the transform sizes. On the 4 and 16
length transforms, the scaling factor includes a 12-bit integer approximation of the square
root of 2, which is calculated through

N√2 =
ö
212
√

2
£

= 5793 (3.34)

Being so, the input also suffers an additional mapping, similar to the operation in Equation
3.33. These operations are demonstrated in Figure 3.4.

With the forward transformations explained and represented graphically, it is easily under-
standable that the corresponding inverses correspond to the backwards operation in Figures
3.4, 3.5 and 3.6. With this, it is meant that only the direction of the arrows change, and the
corresponding procedure is done right-to-left, i.e., the output’s position, y, is now the input.

A

B

A

B

A

B

+

+

+

α

β

C

C

C

C = A+B

C = A−B

C = half btf(A, cospiα, B,−cospiβ, bits)

Figure 3.3: Graphical aid for Figures 3.5 and 3.6.

37

xk

⌊
N√2+211

212

⌋
yk IDTX4

xk 2 yk IDTX8

xk

⌊
2N√2+211

212

⌋
yk IDTX16

xk 4 yk IDTX32

Figure 3.4: Description of the Identity transforms in libaom.

x0

x1

x2

x3

x4

x5

x6

x7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

π/4

π/4π/4

π/4

+

+

+

+

+

+

+

+

π/4

π/4π/4

π/4
3π/8

π/8π/8

3π/8

+

+

+

+

+

+

+

+

7π/16

π/16

3π/16
5π/16 5π/16

3π/16

π /1
6

7π/16

y0

y1

y2

y3

y4

y5

y6

y7

Figure 3.5: Block diagram of libaom’s Integer DCT.

38

x0

x1

x2

x3

x4

x5

x6

x7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

π/4

π/4π/4

π/4

π/4

π/4π/4

π/4

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

π/8

3π/83π/8

π/8
3π/8

π/8π/8

3π/8

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

π/32

15π/3215π
/32

π/32
5π/32

11π/3211π
/32

5π/32
9π/32

7π/327π/3
2

9π/32
13π/32

3π/323π/3
2

13π/32

y0

y1

y2

y3

y4

y5

y6

y7

Figure 3.6: Block diagram of libaom’s Integer ADST.

39

3.4.2 Performance and Statistics Analysis

From the obtained understanding of the tools and characteristics of the Transform stage,
various tests were performed in order to gather information on what were the most commonly
used options, and their corresponding impact on encoding performance.

With these tests, it was intended to get to know:

• the time spent per encode in the Transform stage;

• used kernels and vector sizes;

• bits used on cosine approximation.

In order to achieve this, libaom was modified in order to retrieve these statistics, with-
out impacting the encoding performance. As an additional measure, the timing tests were
performed independently from the others, in order to get an accurate result of the encoding
performance, since the writing of the transformation options would cause a major impact to
the overall duration of the encode.

The tests were performed on different sequences with various resolutions and encoding
difficulties. These were obtained in Xiph’s data set [17], and are presented in Table 3.2.

Table 3.2: Sequences used for testing.

Resolution
Sequence Name

Label Height Width

CIF 288 352

Waterfall

Flower

Bridge Close

HD 720 1280

Ducks take off

Parkrun

Shields

FHD 1080 1920

Parkjoy

Dinner

Factory

UHD 2160 3840

Into tree

Old Town Cross

Crowd Run

As mentioned previously in Section 2.1.3.1, the definition of the encoding objectives greatly
impacts the performance of the encoder, both in terms of compression gain, and obtained video
quality. These objectives are typically defined according to a certain performance or quality
metric. AV1 reference encoder, aomenc, provides four different metrics, corresponding to
constant or constrained quality (q and cq) and constant or varying bitrate (cbr and vbr).
These options allow for the easy adaptation of each encode to the corresponding use case.
For instance, for a network application, a certain bit rate objective, or range, is more adequate

40

than the definition of a certain quality, since in this case the obtained bit rate may depend
on the scene.

For the performed tests, the variation of used tools and performance was evaluated by
varying the desired objective on a constant quality mode, which is controlled through a
subjective parameter, cq-level. This may vary between 0 and 63, corresponding the latter
to the lowest quality encode. Three different quality parameters were tested, 60, 25, and 5,
corresponding to a Low, Medium and High quality sets, respectively.

Besides the quality objectives, the encoder was also configured to use the highest comput-
ing power, cpu-used=8, as well as a single pass encode, passes=1. These options were set
in order to get the lowest encoding times, since their impact on the obtained quality did not
justify the added complexity.

The resulting command for configuring aomenc for the developed tests, encoding the first
10 frames of each video, becomes

./aomenc <INPUT-FILE> -h <HEIGHT> -w <WIDTH> -o <OUTPUT-FILE> --limit=10 -p 1 --

cpu-used=8 --i420 --q-hist=64 --end-usage=q --cq-level=<CQ-LEVEL>

The results presented in the following sections are derived from the test encodes, which
were performed on a Ryzen 7 2700, clocked at 3.9GHz.

3.4.2.1 Timing Analysis

On the performed AV1 timing analysis, the main aspect to evaluate was the impact of
the Transform stage on the total encoding time, for different quality thresholds.

For a certain resolution, it is expected that the time spent on this stage remains approx-
imately constant, regardless of the desired quality. Therefore, the higher the total encoding
time, the least impact the Transform stage would have.

These results were verified in the performed tests, and are represented in Figure 3.7.
In this Figure, each tall bar corresponds to the average time spent by encoded video, in

each of the resolutions, varying the desired quality. The corresponding smaller bar represents
the percentage of time spent during transformation, also expressed numerically by the number
on top of each bar.

As anticipated, the desired quality of each encode plays an important role in the necessary
total time, majorly considering the Low to Medium quality objectives, since the latter, in
average, spends double the time of the former. However, once considered the High quality
set, the encoder takes 14% more time to encode the same sequence on a Medium quality
objective.

Although these results represent an interesting analysis from a performance standpoint,
for the focus of this work, the most relevant analysis comes from the percentage of time spent
during the Transform stage. As expected, this time stays roughly the same, independently of
the quality objective. However its impact to the total encoding time decreases as the quality
increases. On average, the encode spends 17.3% on the transformation.

This aspect leads to conclude that there is a necessity to develop fast and efficient archi-
tectures for the Transform block, since it corresponds to a relevant percentage of the total
encode time, regardless of the quality. And although lower quality encodes could benefit more
of such improvements when comparing to higher qualities, both cases would gain, since such
architecture could be used on a high variety of encoders.

41

Figure 3.7: Average encoding and transform time per resolution, on different quality objec-
tives (dark colours represent total encoding time, while lighter are the respective time spent
on Transform stage).

3.4.2.2 Configuration Set Analysis

This analysis is divided in different segments, dedicated to each of the transform options
analyzed. Some of which, although not entirely relevant for the aim of this work, may prove
useful for the implementation of different architectures.

On the distribution of used kernels verified in Figure 3.8, the most relevant aspect is the
clear dominance of the DCT among the others. However, as quality increases, the distribution
slightly starts to spread out.

A contrary behavior is verified on the transform vector size. As seen in Figure 3.9,
as quality increases, the smaller vector sizes (namely the 4 length vector), get used more
frequently. This is easily understandable, as smaller blocks present lower losses during the
Quantization stage.

Although AV1 supports asymmetric transform blocks, in Figure 3.10, it is possible to
verify that the encoder, in most of the block transformations, does not take advantage of
such, using square blocks, as well as the same kernel for both directions. This behavior
remains similar throughout the different resolutions.

This aspect may prove as a starting point for improving the Transform stage, since, as
mentioned previously, symmetric transforms may be implemented with Matrix Multiplication
(MM). Therefore, using fast MM architectures for symmetric blocks, and complementing
with the algorithm implemented in libaom for asymmetric blocks, the transform time may
decrease.

The final analyzed transform option is the number of bits used in the cosine representation.
In Figure 3.11, the distribution is represented for the different quality objectives.

Various conclusions can be derived from this data. Firstly, as expected, as quality in-
creases, as well as the number of bits for cosine representation, as seen by the increase of the

42

Figure 3.8: Average distribution of used kernels, for all resolutions, according to the quality
threshold.

Figure 3.9: Average distribution of vector sizes, for all resolutions, according to the quality
threshold.

percentage on the 13 bit representation.
However, most representations hardly get used, since most of the transformations use 13,

12, 10 and, very infrequently, 11 bits, without using any of the higher representations (on the
performed tests).

Analyzing this information, it may be thought that the number of bits used in the cosine
contributes for the overall quality of the compressed sequence. In the following section, this
hypothesis is tested.

43

Figure 3.10: Use of square blocks, same kernel for rows and columns, and symmetric kernels,
according to the quality threshold.

Figure 3.11: Different number of bits used on the cosine approximations, throughout different
quality sets.

3.4.2.3 Quality Analysis

In this test, besides evaluating the obtained quality for each tested cq-level, the impact
of the number of bits in cosine representation also was measured.

To evaluate the impact of the number of bits used in the cosine approximations, aomenc
was modified to force either 10 or 16 bits throughout the encoding operation, for both forward
(T) and inverse transformations (T−1). Aomdec (reference decoder) was not modified, since

44

it acts according to the specified Bitstream Decoding Format [18]. Nonetheless, it uses 12 bit
representation, regardless of the choices made in the decoder.

From the gathered reconstructed sequences, G
∗

, the Peak Signal to Noise Ratio (PSNR)

of each one was calculated, according to Equation 3.35.

PSNR = 10 log10

Å
2552

MSE

ã
(3.35)

MSE corresponds to the Mean Squared Error of the reconstructed video. Considering a
single M ×N monochrome frame, this error is given by Equation 3.36.

MSE =
1

MN

M−1∑
x=0

N−1∑
y=0

Å
Gx,y −Gx,y

∗

ã2
(3.36)

However, since the test revolves around a sequence of K reconstructed frames, with three
chroma channels per bit, c, MSE becomes

MSE =
1

3KMN

K−1∑
k=0

M−1∑
x=0

N−1∑
y=0

3−1∑
c=0

Å
Gk,x,y,c −Gk,x,y,c

∗

ã2
(3.37)

The workflow of the performed test is represented in Figure 3.12.

Input
Sequence

g

Regular
Encoder

10 bit
Encoder

16 bit
Encoder

Decoder
Regular

Reconstructed

10 bit
Reconstructed

16 bit
Reconstructed

Calculate
PSNR

Figure 3.12: Description of the test for comparing impact of number of bits in cosine approx-
imations.

The average results from all resolutions, for each of the quality objectives is represented
in Figure 3.13.

As expected, as cq-level increases, so does the obtained quality. Also, considering the
encoding time differences verified in Section 3.4.2.1, the smaller PSNR gap between Medium
and High qualities was also expected. However, the difference between these two parameters
depends on the encoded video, as shown in Figure 3.14, where the difference between Medium
and High encodes is 2dB.

The differences between obtained PSNRs can be easily explained through analysis of the
Quantization stage in each quality objective. Looking at the distribution of the Quantizer

45

Figure 3.13: Obtained quality for each of the quality objectives, and comparison with different
cosine bits approximation.

throughout the different cq-level’s (Figure 3.15), it is possible to verify that this stage deeply
adapts to the desired quality objective, increasing QP for lower qualities.

However, the differences in the used QP’s do not justify the increased encoding time
throughout the different quality objectives, since the Quantization stage’s complexity should
not vary too much depending on the desired quality, similarly to what happens on the Trans-
form stage. The time difference is mainly caused in the higher complexity blocks, the Inter
and Intra Prediction stages, as the encoder adapts the processes in these blocks depending
on the desired quality. For instance, there is no need for the encoder to make a exceptionally
precise prediction, when most of the transform coefficients are discarded.

Considering now the obtained quality for each of the three different encodes (Regular, 10
bit and 16 bit), it is possible to observe that the number of bits on cosine approximation
does not contribute to the obtained quality, regardless of the desired objective, contrary to
what was verified in Figure 3.11. Accordingly, it would be safe to assume that the cosine
approximations could be fixed on a certain number of bits, without major impact to the
video quality.

This factor presents a major point for exploring faster Transform block architectures. The
architectures in Figures 3.5 and 3.6 are highly dependent on the half btf function (equation
3.33), which is adaptable to the number of bits used for cosine, in each block transformation.
However, with the use of a fixed number of bits, this function could be simplified, since the
multiplications and divisions performed in it could be implemented with a fixed number of
shifts and additions.

46

(a)

(b)

(c)

Figure 3.14: Detail of Parkjoy encodes, through different quality objectives (cq-level = (a)
- 60; (b) - 25; (c) - 5).

47

Figure 3.15: Quantizer distribution on different quality objectives.

48

References

[1] Yun Qing Shi and Huifang Sun. Image and Video Compression for Multimedia En-
gineering: Fundamentals, Algorithms, and Standards. 2. ed. Image Processing Series.
Boca Raton, Fla.: CRC Press, 2008. isbn: 978-0-8493-7364-0.

[2] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Fourth edition.
New York, NY: Pearson, 2018. isbn: 978-0-13-335672-4.

[3] N. Ahmed, T. Natarajan, and K. R. Rao. “Discrete Cosine Transform”. IEEE Trans-
actions on Computers C-23.1 (Jan. 1974), 90–93. issn: 0018-9340. doi: 10.1109/T-
C.1974.223784.

[4] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing. 2nd ed. Upper Saddler River, NJ: Prentice Hall, 1998. isbn: 978-0-13-754920-
7.

[5] Discrete Cosine Transform - MATLAB Dct.
https://www.mathworks.com/help/signal/ref/dct.html.

[6] William K. Pratt. Digital Image Processing: PIKS Inside. 3. ed. A Wiley-Interscience
Publication. New York: Wiley, 2001. isbn: 978-0-471-37407-7.

[7] Jingning Han, Yaowu Xu, and Debargha Mukherjee. “A Butterfly Structured Design of
the Hybrid Transform Coding Scheme”. 2013 Picture Coding Symposium (PCS). San
Jose, CA, USA: IEEE, Dec. 2013, 17–20. isbn: 978-1-4799-0294-1 978-1-4799-0292-7.
doi: 10.1109/PCS.2013.6737672.

[8] Benny Bing. Next-Generation Video Coding and Streaming. Hoboken: Wiley, 2015. isbn:
978-1-119-13332-2 978-1-119-13333-9.

[9] Soo-Chang Pei and Jian-Juin Ding. “The Integer Transforms Analogous to Discrete
Trigonometric Transforms”. IEEE Transactions on Signal Processing 48.12 (Dec. 2000),
3345–3364. issn: 1053-587X. doi: 10.1109/78.886998.

[10] S. Wolter et al. “Parallel Architectures for 8*8 Discrete Cosine Transforms”. [Proceed-
ings] 1992 IEEE International Symposium on Circuits and Systems. Vol. 1. San Diego,
CA, USA: IEEE, 1992, 149–152. isbn: 978-0-7803-0593-9. doi: 10.1109/ISCAS.1992.
229992.

[11] Yonghong Zeng et al. “Integer DCTs and Fast Algorithms”. IEEE Trans. Signal Process.
49.11 (Nov./2001), 2774–2782. issn: 1053587X. doi: 10.1109/78.960425.

[12] Wen-Hsiung Chen, C. Smith, and S. Fralick. “A Fast Computational Algorithm for the
Discrete Cosine Transform”. IEEE Transactions on Communications 25.9 (Sept. 1977),
1004–1009. issn: 0090-6778. doi: 10.1109/TCOM.1977.1093941.

49

https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/PCS.2013.6737672
https://doi.org/10.1109/78.886998
https://doi.org/10.1109/ISCAS.1992.229992
https://doi.org/10.1109/ISCAS.1992.229992
https://doi.org/10.1109/78.960425
https://doi.org/10.1109/TCOM.1977.1093941

[13] Sun Song and Qi Haibing. “A Pipelining Hardware Implementation of H.264 Based
on FPGA”. 2010 International Conference on Intelligent Computation Technology and
Automation. Vol. 1. May 2010, 299–302. doi: 10.1109/ICICTA.2010.401.

[14] Pankaj Kumar Srivastava and Prof. Anil Kumar Jakkani. “FPGA Implementation of
Pipelined 8×8 2-D DCT and IDCT Structure for H.264 Protocol”. 2018 3rd Interna-
tional Conference for Convergence in Technology (I2CT). Apr. 2018, 1–6. doi: 10.

1109/I2CT.2018.8529352.

[15] G Ravi Teja et al. “Verilog Implementation of Fully Pipelined and Multiplierless 2D
DCT/IDCT JPEG Architecture”. 2015 Online International Conference on Green Engi-
neering and Technologies (IC-GET). Nov. 2015, 1–5. doi: 10.1109/GET.2015.7453819.

[16] P Subramanian and A Sagar Chaitanya Reddy. “VLSI Implementation of Fully
Pipelined Multiplierless 2D DCT/IDCT Architecture for JPEG”. IEEE 10th
INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.
Oct. 2010, 401–404. doi: 10.1109/ICOSP.2010.5657181.

[17] Xiph.Org :: Test Media. https://media.xiph.org/.

[18] AV1 Bitstream & Decoding Process Specification. https://aomediacodec.github.io/av1-
spec/av1-spec.pdf. 2019.

50

https://doi.org/10.1109/ICICTA.2010.401
https://doi.org/10.1109/I2CT.2018.8529352
https://doi.org/10.1109/I2CT.2018.8529352
https://doi.org/10.1109/GET.2015.7453819
https://doi.org/10.1109/ICOSP.2010.5657181

CHAPTER 4

Developed Architectures

4.1 Software Implementations

The previous chapter presented some characteristics of the current state of libaom’s Trans-
form stage which might compromise its performance, the most relevant being the unnecessary
flexibility in the representation of cosine approximations.

In order to undertake these opportunities, and improve the overall encoder performance,
new architectures for the studied stage were developed. The first approach was to study
possible simplifications of the reference software, through the development and testing of
alternative approaches for the provided functions.

The developed implementations tackled the forward DCT, as it was the kernel that would
have the highest impact on encoder performance. As the IDCT is shared between encoder
and decoder, and due to the added complexity, no changes were done to this block, as it acts
with accordance with the established standard, as mentioned previously.

All the developed architectures and corresponding tests were written in C programming
language, as to maintain the simple integration into libaom.

4.1.1 Matrix Multiplication Implementation

The first test was the application of the simplest integer DCT, done by the multiplication
of the input vector by a scaled up version of the transform matrix, F, firstly shown in Equation
3.25.

The original transform matrix is shown in Equation 4.1.

Fx,u = β(u) cos

Å
(2x+ 1)uπ

2L

ã
, 0 ≤ u, x < L

⇓

F =

…
2

L



»
1
2

»
1
2 . . .

»
1
2

cos
(
π
2L

)
cos
(
3π
2L

)
. . . cos

Ä
(2(L−1)+1)π

2L

ä
...

...
. . .

...

cos
Ä
(L−1)π

2L

ä
cos
Ä
3(L−1)π

2L

ä
. . . cos

Ä
(2(L−1)+1)(L−1)π

2L

ä


(4.1)

As mentioned previously, the floating point coefficients bring a number of disadvantages
on a hardware implementation, from increased calculation overheads, to encoder/decoder
mismatches.

51

In order to address these problems, a scale and rounding operation was performed, as
shown in Equation 4.2, where K represents the number of bits of the scaled coefficients.

bFKe =
ö
2KF
£

(4.2)

However, due to the rectangular block sizes allowed in AV1, the factor
√

2/L is not consid-
ered in the kernels themselves. Instead, the transformed outputs get scaled at a later stage.
This way, the implemented transform matrix is

bFKe =

ú
2K
…
L

2
F

•
=

2K



»
1
2

»
1
2 . . .

»
1
2

cos
(
π
2L

)
cos
(
3π
2L

)
. . . cos

Ä
(2(L−1)+1)π

2L

ä
...

...
. . .

...

cos
Ä
(L−1)π

2L

ä
cos
Ä
3(L−1)π

2L

ä
. . . cos

Ä
(2(L−1)+1)(L−1)π

2L

ä



(4.3)

This way, the transformed outputs are calculated through

~G = [bFKe~g] >> K (4.4)

For an L length vector, the calculation of the transformed vector implies L2 additions and
L2 multiplications, which leads to the main disadvantage of such implementation. For larger
vectors, this operation becomes too demanding in terms of memory and complexity.

One other negative aspect of such implementation is that, due to the variation of the
transform matrix’s coefficients, the obtained error in the rounding and scaling operation also
varies with the vector size. The quantization1 error, ∆K , can be calculated as

∆K =
max

(»
L
2 F
)
−min

(»
L
2 F
)

2K
(4.5)

As it was proven in the previous Chapter that the number of bits in the cosine represen-
tation would not greatly impact the quality of the video, the developed architectures used 8
bits for the scaling operation, as to decrease the overhead of the implemented multiplications
and shifts. The impact of this choice was evaluated at a later stage.

To evaluate the performance of this first implementation, a test was performed to measure
and compare the elapsed time for both the described architecture, and the corresponding
equivalent from aomenc. This test injected a fixed sequence of 1 million input vectors into
each of the DCT ’s, measuring the elapsed cpu time in the operation. The results are in Table
4.1.

From these it is easily observable why the encoder’s implemented transforms follow the
butterfly scheme. Although from sizes 4 to 32 the proposed implementation is faster than
the current version of libaom, the largest transform is slower. This factor, added to the
error variation from the scaling operation makes this implementation quite damaging for the
overall encoder performance, especially on a constant quality objective, as shown in Table 4.2.

1Here, quantization refers to the scaling and rounding operation, and not to the the Q stage in an encoder.

52

Table 4.1: Comparison of execution time between aomenc’s DCT and the matrix multiplica-
tion implementation.

Vector Size
Execution Time (ms)

aomenc’s MM

4 75 36 (−52%)

8 179 66 (−63%)

16 405 174 (−57%)

32 1039 686 (−33%)

64 3288 3590 (+9%)

Here, there are presented the timing results of an encoding test, where one encode was made
with the standard aomenc, the other had the DCT s implemented as the proposed matrix
multiplications. The test encoded the first 15 frames of the Parkrun HD sequence, with two
different quality objectives. After compression, the encoded video was decoded with aomdec,
calculating the PSNR of the output video.

Table 4.2: aomenc encoding time with original vs implemented DCT.

cq-level Measure
Execution Time (ms)

Original MM

60

Total time (s) 466.5 530.8

Trans. time (s) 45.0 104.2

PSNR (dB) 32.39 32.38

5

Total time (s) 814.1 835.3

Trans. time (s) 60.4 98.4

PSNR (dB) 34.88 34.86

As it is observable, to maintain a similar encoding quality, the encoder spends up to 13.8%
more time per encode, making such architecture unreliable for implementation on aomenc.

Taking this into account, a new approach was employed, using the same butterfly scheme
as libaom’s transforms.

4.1.2 Alternative Butterfly Implementation

AV1 ’s reference Transform stage follows the aforementioned architecture for the DCT, in
addition to expanding its use into the ADST. In this scheme publishing paper [1], the authors
gave good reasons for the heavy adoption of this implementation, claiming that ”The number
of computational steps has been shown to be less than 1/6 of the conventional DCT algorithm
employing a 2-sided FFT”.

This is achieved through a pipelined implementation of the previously shown matrix multi-
plication, where each stage is calculated as function of the previously calculated intermediary

53

coefficients, as shown in Figures 3.5 and 3.6. Besides the reduction of complexity, this imple-
mentation also uses a fixed bank of cosine coefficients (corresponding to cospi in libaom),
limited between cos (π/2) < α ≤ cos(0), i.e., 0 < α ≤ 1 1. This way, the quantization error
produced by the rounding and scaling operation is constant for all vector sizes.

To improve upon the reference DCT, the developed architecture implemented a similar
approach to the previous MM architecture, using 8 bits for the scaling of the cosine approx-
imations. These values, cosApr, were generated using the same method as cospi, i.e.

cosApr =

õ
28 · cos

Å
kπ

128

ã§
, 0 ≤ k ≤ 63 (4.6)

Comparing the quantization step to the worst case for libaom’s DCT, with 10 bits

∆10 =
1− 0

210
≈ 0.98 · 10−3 (4.7)

∆8 =
1− 0

28
≈ 3.9 · 10−3 (4.8)

then it is possible to calculate the Mean Squared Quantization Error through Equation 4.9

MSEKq =
∆2
K

12
⇓

MSE10q ≈ 79.5 · 10−9

MSE8q ≈ 1271.6 · 10−9 = 16 ·MSE10q

(4.9)

Although this value might seem discouraging, most of the error introduced in this stage is
irrelevant once considered the error created by the encoder’s Quantization block. With that
said, the impact of this approximation might compromise the encoder on higher quality (i.e.,
lower Quantizer) objectives.

The implemented DCT also deviates from the reference software in the multiplication
of the cosine coefficients. The latter version calculated most of the intermediary functions
with the half btf function (Equation 3.33), which, because the additional 2(K−1), performs
a rounding (bxe) operation, as shown in Equation 4.10

half btf(w0, in0, w1, in1, K) ≡ (w0 · in0 + w1 · in1 + (1 << (K − 1))) >> (K)

⇓õ
w0 · in0 + w1 · in1

2K

§ (4.10)

On the implemented architecture, the rescaling did not include the additional factor, and
was made just with the right shifting (x >> K) by 8 bits, corresponding to the flooring
operation (bxc).

The constructed DCT architecture underwent the first test as the previous implementa-
tion, giving origin to the results from Table 4.3.

As shown, the developed architecture is, on average, 60% faster for all vector sizes. This
is due to the removal of the memory accessing overheads imposed by the access to the cospi

array, as well the simplification of the performed operations.

1Zero is excluded from the set, as matrix F will not have any null element, for any L

54

Table 4.3: Comparison of execution time between aomenc’s DCT and the alternative butterfly
implementation.

Vector Size
Execution Time (ms)

aomenc’s Alternative butterfly

4 75 37 (−51%)

8 179 66 (−63%)

16 405 149 (−63%)

32 1039 355 (−65%)

64 3288 1362 (−58%)

However, the reliability of this implementation depends on whether the encoder can main-
tain the desired quality with the increased error introduced by the quantization of the cosine
approximations. To verify this factor, the tests presented in Section 3.4.2 were repeated, once
with the original encoder, and other with the encoder with the described alternative version
of the DCT. The obtained quality and timing results are presented in Figures 4.1 and 4.2,
respectively. In the latter, the dotted lines correspond to total time with the original encoder.
The percentage above each bar represent the time difference taken by the alternative encoder,
relative to the original.

Figure 4.1: Obtained quality with original vs alternative DCT implementation.

As shown, with the performed changes, the encoding time was, in average, reduced by
2.9% for all quality objectives, while maintaining the output PSNR, making this a suitable
DCT implementation for an AV1 encoder. Although the performance improvement is rather
diminishing once considered the full encoding cycle, it is a step toward a possible realtime
encoding implementation.

However, the full impact of the applied changes is most noticeable on a hardware im-

55

Figure 4.2: Encoding time with original vs alternative DCT implementation.

plementation. With the reduction of the cosine approximations, the memory used in the
developed DCT s is highly reduced. Considering Mcospi as the number of bytes (B) used for
storing the original cosine approximation vector,

Mcospi =
64 · (10 + 11 + 12 + 13 + 14 + 15 + 16)

8
= 728B (4.11)

On the other hand, with the new implementation, only 64B would be needed to store these
approximations, corresponding to an 81% reduction.

Nonetheless, both libaom’s version and the developed could heavily benefit from paral-
lelization, as is described in the following section.

4.2 Hardware Implementations

On the subject of hardware development, Field-Programmable Gate Arrays (FPGAs) have
gained massive popularity within developers. Their ease of use, added to the applicability in
certain designs as caused them to gain massive popularity for both prototyping and product
implementation, since they present relatively smaller times-to-market over other options.
However, as usual, they come with compromises, namely the increased cost over specialized
circuits, as well as the lower performances when compared to such [3].

Therefore, when it comes to hardware development, the best compromise would be to
maintain the applicability of FPGAs in the prototyping stage, and easily migrate the tested
designs into Application Specific Integrated Circuits (ASICs). This way, the first development
stage could be done on a massively adaptable platform, and once concluded, the design could
be implemented as a specialized design, without compromising its performance.

To achieve this, in recent years, there have been major developments in software platforms
that allow for the synthesis of FPGA designs as ASICs, such as Cadence’s Genus or Synopsys’

56

Design Compiler [4, 5]. These softwares have been implemented in a variety of branches, when
hardware development is necessary, namely, in video coding.

This way, for the development of this work, the chosen development platform was Xilinx ’s
Vivado, due to the wide availability of its FPGAs, as well as for the wide support from its
community. However, there should be kept in mind that to achieve the full performance of
the developed designs, a specialized hardware implementation is desired.

With an efficient algorithm for each of the supported vector sizes, the first objective was to
develop a hardware architecture to implement each of the 1D DCT s individually, and group
them on a single block at a later stage.

Two different architectures were developed. The first implements each of the DCT blocks
individually, while the latter uses sub-blocks of each DCT, in order to achieve the final result.
These architectures are explained in the following Sections.

With this approach, it was hopped to reach an architecture that englobed all the DCT
kernels, allowing to easily chose between each of them, depending on the desired choices made
in the beginning of the transform stage.

4.2.1 Individual 1D DCTs Design

The hardware implementations followed the same scheme as the corresponding software
counterparts. By this it is meant that the flow of the input towards the output is done in
individual and sequential stages. The main difference between these implementations is that
in hardware, all of the intermediary signals within each stage are calculated in parallel.

However, in order to achieve an efficient hardware implementation, some additional mea-
sures must be taken into consideration, mainly when considering the multiplication of signals
by the cosine coefficients and re-scaling.

Consider an hypothetical operation performed in the software version, where two inter-
mediary signals, x1 and x2, get multiplied by some constant, added, and finally rescaled. In
C, this operation is easily described in a single line of code, as shown in Figure 4.3. However,
to perform the same operation on an hardware descriptive language, some additional steps
must be taken. The seemingly simple operation done in software must be deconstructed in
various sequential steps, controlled by a clock signal. The operation shown in this Figure is
repeated throughout the various DCT implementations in hardware, making it the key to the
development of the parallel architectures.

Due to advances in VHDL compilers and supporting libraries, both multiplication, shifts
and additions are easily described, on a similar manner to a higher level language. Although
on previous generations there would be some added benefits of implementing a multiplication
by shifting and adding an input, as shown in Equation 4.12, the improvements done in most
recent years allow for similar architectures to be implemented, with less effort.

15 * x1 ≡ (x1<<3) + (x1<<2) + (x1<<1) + x1 (4.12)

Taking these measures into consideration, the development of the 1D transforms becomes
similar to all vector sizes. The software implementations are composed of alternating stages of
simple summing operations, with more complex multiplying, sum and shift cycles. Therefore,
the hardware counterparts are composed of three different blocks:

• Summing Stages where the inputs get added according to the previously shown butterfly
schemes;

57

H
a
rd

w
a
re

S
o
ft

w
a
re

x1 ×

a

x2 ×

b

Clock
Signal

Multiply

Sum

Shift

+ >>8 y

y = (a*x1 + b*x2)>>8;

Figure 4.3: Comparison between software and hardware implementation of multiplication,
sum and re-scaling.

• Multiplier Stages, which multiply the necessary inputs by the corresponding cosine co-
efficients;

• Shift Stages that rescale the coefficients.

Although these blocks are unique between transform sizes, and even within the same DCT,
the operations performed within are similar between all the vector sizes.

In order to ensure the correct pipelining of the Transform process, each stage is controlled
by an enable flag, en, which signals the start of the block’s process. Once it is concluded, the
block outputs an indicator, valOut, that acts as the enable for the following stage, creating a
daisy chain of stages. The last stage’s valOut acts as the indication of the conclusion of the
Transform operation.

All blocks are controlled by the same clock and reset signals. The first triggers the internal
processes on its ascending flank. The latter signals all internal registers to be put to 0 (its
initial stage).

A simplified version of DCT4’s hardware implementation is represented in Figure 4.4. In
here, the direction of the arrow represents if the corresponding signal is a input or output.
The numbering of the output coefficients is done accordingly to the software implementation.

To simplify the development of the hardware architectures, all signals and internal reg-
isters are represented, as this measure allows to easily interconnect the developed modules.
Nonetheless, all modules are configurable through the modification of a Generic parameter.

On a post-prototyping stage, to achieve an optimal utilization of resources, both inputs,

58

D
C

T
4

C
l
o
c
k

R
e
s
e
t

E
n
a
b
l
e

d
a
t
a
I
n
0

d
a
t
a
I
n
1

d
a
t
a
I
n
2

d
a
t
a
I
n
3

Stage 1: Sum

en

res

clk

valOut

Stage 2: Multiplier

en

res

clk

valOut

Stage 2: Sum

en

res

clk

valOut

Stage 2: Shift

en

res

clk

valOut

v
a
l
i
d
O
u
t

d
a
t
a
O
u
t
0

d
a
t
a
O
u
t
2

d
a
t
a
O
u
t
1

d
a
t
a
O
u
t
3

Figure 4.4: 1D DCT4 hardware implementation.

59

outputs and internal signals should be shortened to the minimum length.
As a final measure to simplify the development process, the kernels are implemented

using the smaller sizes as a constituting block. As shown in Wen-Hsiung Chen’s work [1],
all transform sizes greater than 4 englobe the same sequence of operations as the smaller
counterparts, on one subset of its intermediary coefficients. This way, each of the smaller
1D-DCT blocks may be inserted into the size immediately above it.

As an example, DCT8’s hardware implementation is represented in Figure 4.5. There,
it is observable that the architecture is similarly composed of the same blocks as the pre-
vious implementation. However, after the first summing stage, the first four intermediary
coefficients are input into DCT4.

D
C

T
8

C
l
o
c
k

R
e
s
e
t

E
n
a
b
l
e

d
a
t
a
I
n
0

d
a
t
a
I
n
1

d
a
t
a
I
n
2

d
a
t
a
I
n
3

d
a
t
a
I
n
4

d
a
t
a
I
n
5

d
a
t
a
I
n
6

d
a
t
a
I
n
7

Stage 1: Sum

en

res

clk

valOut

DCT4

en

res

clk

valOut

Stage 2:
Multiplier

en

res

clk

valOut

..
.

..
.

..
.

..
.

..
.

Stage 4:
Shift

en

res

clk

valOut

v
a
l
i
d
O
u
t

d
a
t
a
O
u
t
0

d
a
t
a
O
u
t
4

d
a
t
a
O
u
t
2

d
a
t
a
O
u
t
6

d
a
t
a
O
u
t
1

d
a
t
a
O
u
t
5

d
a
t
a
O
u
t
3

d
a
t
a
O
u
t
7

Figure 4.5: Simplified 1D DCT8 hardware implementation, with inclusion of DCT4.

60

In the same manner, DCT16 includes DCT8, which, as shown, also includes the four
input version. This approach causes the smaller blocks to be repeated throughout the var-
ious larger architectures, making this approach highly inefficient from the chip’s utilization
standpoint. However, it brings the possibility to calculate each of the five DCT sizes simulta-
neously, which is a highly desired characteristic on an encoder. As its objective is to encode
each frame in the most efficient manner, the encoder tests various options, as to find the best
for the current block. This behavior is present in the various stages, including the Transform.
Therefore, for an hardware encoder to be efficient, it must allow for the parallelization of
encoding options.

One such implementation was implemented, as described in Figure 4.6.

dataIn0

dataIn1

dataIn2

dataIn3

..
.

..
.

..
.

..
.

..
.

DCT4o0

..
.

DCT4o3

DCT4vo

dataIn7

..
.

DCT8o0

..
.

DCT8o7

DCT8vo

dataIn15

..
.

DCT16o0

..
.

DCT16o15

DCT16vo

dataIn31

..
.

DCT32o0

..
.

DCT32o31

DCT32vo

dataIn63

DCT64o0

..
.

DCT64o63

DCT64vo

Clock

Reset

Enable

Select
3

dataOut0

dataOut1

dataOut2

dataOut3
..

.

dataOut60

dataOut61

dataOut62

dataOut63

validOut

DCT4

c
l
k

r
e
s

e
n valOut

DCT8

c
l
k

r
e
s

e
n valOut

DCT16

c
l
k

r
e
s

e
n valOut

DCT32

c
l
k

r
e
s

e
n valOut

DCT64

c
l
k

r
e
s

e
n valOut

Output
Multiplexer

clk

res

en

sel

Figure 4.6: First version of the complete DCT wrapper.

Besides the previously shown 32 bit dataIn’s, Clock, Reset and Enable, this implemen-

61

tation adds an additional Select input.
As shown, this wrapper uses all the individual kernels independently, depending on the

Output Multiplexer to conduct the correct output, according to the selected DCT.
To validate this design, a VHDL test bench was built and simulated in Vivado. It generates

a vector of 32 bit integers, as well as the four control signals, injects them into the developed
architecture, and receives the outputs. In Figure 4.7 there is represented one of the timing
tests made, where the selected size was 8. It shows the internal signals for the full architecture,
as well as the selected block, DCT8.

In
p

u
t

W
ra

p
p

e
r

S
ig

n
a
ls

D
C

T
8

S
ig

n
a
ls

Clock

Select "001"

Reset

Enable

dataIn(0-63) [1,...,1]

DCT4vo

DCT8vo

DCT16vo

DCT32vo

DCT64vo

Stage1En

DCT4En

Stage2MEn

Stage2AEn

Stage2SEn

Stage3En

Stage4MEn

Stage4AEn

Stage4SEn

DCT4ValOut

validOut

validOut

dataOut(0-63) [0,0,...,0] [5,0,0,0,0,0,0,0,’-’,...,’-’]

Figure 4.7: Timing diagram for a test run on the first DCT wrapper.

From this test, it is observable that the desired functioning of the internal stages is
achieved. The input gets sequentially pipelined through the various stages, getting a valid
output 10 clock cycles after the enabling of the system. This behavior was also verified for
the other vector sizes, although the delay until getting the output varies from DCT to DCT,

62

between 6 clock cycles (DCT4) to 22 (DCT64).
Considering these results, it is possible to calculate the necessary frequency of operation,

in order for this architecture to maintain a given frame rate at a specific resolution.
To obtain the necessary number of transformation blocks to process each second, the

desired frame rate must be multiplied by the number of 4×4 blocks within a frame of a given
resolution (as to obtain the worst case scenario). Considering then that the presented results
are referring to 1D vectors of length L, the number of clock cycles to process a 2D L × L
block (N2D) is given by

N2D = 2 · (L ·N1D) (4.13)

The necessary frequency of operation for frequencies between HD and 8K at 30 fps is
represented in Table 4.4.

Table 4.4: Necessary frequency of operation to obtain real-time encoding at 30 frames per
second.

Resolution Frequency (MHz)

1280× 720 83

1920× 1080 187

3840× 2160 746

7680× 4320 2986

With these results, several illations can be retrieved. For lower resolutions, this imple-
mentation can easily provide operable frame rates, as most devices can easily operate at 83
MHz. However, the same cannot be said of the necessary 3 GHz for 8K video. These results
give an idea of the necessity to develop efficient architectures, that can take advantage of
high parallelization in hardware, if high resolutions are desired. In the same manner, such
architectures hardly could be implemented in FPGAs, since these usually present lower clock
speeds than ASICs.

Such architectures would need to process several input vectors at once, as to process
several transformation blocks simultaneously.

The developed hardware was then synthesized considering the Artix 7 FPGA family,
obtaining the utilization results from Table 4.5. These results are presented in number of
Look-Up-Tables and Registers, as presented by Vivado.

4.2.2 Interdependent 1D DCTs Design

This next version’s main objective was the reduction of necessary resources for FPGA
implementation. The strategy taken was to avoid the repetition of the internal DCT stages,
i.e., the final architecture should have a single instance of each of the previously shown internal
stages throughout the entire design.

To achieve this, each individual DCTX apart from DCT4 was divided in sections.
DCTX P1 is composed of the first stage of each individual kernel, corresponding to the
first summing/rotation. Correspondingly, DCTX P2 groups all the following stages, from

63

Table 4.5: First developed architecture’s utilization in number of LUTs and Registers.

DCT Size
Utilization

Slice LUTs Slice Registers

4 1125 636

8 2428 2087

16 7103 5702

32 19148 14257

64 45996 34146

Wrapper 75805 58370

multiplications, sums and shifts, apart from the steps taken by the smaller DCTX/2 im-
plementations. Figure 4.8 gives an exemplification of this sectioning, for the previous im-
plementation of DCT8. All bocks are controlled by the same clock and reset signals. For
simplification purposes, these signals wont be displayed in the following Figures.

D
C

T
8

P
2

D
C

T
8

P
1

Stage 1: Sum

enDCT8 P1en

res

clk

valOutDCT8 P1vo

DCT4

enDCT4En

res

clk

valOutDCT4vo

Stage 2:
Multiplier

en

res

clk

valOut

..
.

..
.

..
.

..
.

..
.

Stage 4:
Shift

en

res

clk

valOutDCT8 P2vo

D
C
T
8
P
1
i
n
0

D
C
T
8
P
1
o
0

D
C
T
8
P
1
i
n
1

D
C
T
8
P
1
o
1

D
C
T
8
P
1
i
n
2

D
C
T
8
P
1
o
2

D
C
T
8
P
1
i
n
3

D
C
T
8
P
1
o
3

D
C
T
8
P
1
i
n
4

D
C
T
8
P
2
o
4

D
C
T
8
P
1
i
n
5

D
C
T
8
P
2
o
5

D
C
T
8
P
1
i
n
6

D
C
T
8
P
2
o
6

D
C
T
8
P
1
i
n
7

D
C
T
8
P
2
o
7

Figure 4.8: Exemplification of the individual kernel’s division for the second implementation.

In Appendices B and C there are presented the implemented VHDL descriptions for both
DCT8 blocks. The following blocks follow the same architecture, varying on the multiplication

64

coefficients and number of stages.
It is important to note that DCT8 P2 inputs and en are hardwired to the bottom four

outputs and valOut of DCT8 P1, respectively. Similar connections are done throughout
the whole architecture, as each of the DCTX P2 stages will always process outputs from the
corresponding P1 stages. However, the latter may be injected with the systems dataIn’s, or
with intermediary coefficients from previous stages.

Depending on the selected size, the input data is injected into one of the P1 stages or
directly into DCT4. The interconnection of the internal blocks, and corresponding flow of
the intermediary coefficients is dealt by a arrangement of multiplexers, that differ from the
previous implementation. In this case, this block has a much higher input/output count, as it
must control which signals go into each stage, to generate the correct final coefficients as if the
dataIn’s passed through a single DCT block. Besides the coefficients, also the intermediary
enable signals are dependent of the central unit, since the interconnection of the valOut/en

pairs is dependent on the selected vector size.
A simplified version of the achieved architecture is represented in Figure 4.10, where no

clock or reset signals are represented. As mentioned previously, the system is composed of
a single instance of each of the intermediary stages. This makes the achieved architecture
similar to a single DCT64 block from the first version. In other words, the largest block from
the previous implementation had the same set of internal blocks as the newer Wrapper, but
instantiated in a different manner. In this case, since all the internal intermediary points are
accessible by the Coefficient Multiplexer, all the smaller transformations can be calculated
with a single kernel of size 64. Figure 4.9 demonstrates this behavior. Depending on the
selected vector size, the data is sequenced by different blocks, as shown by the different
colored lines. The dotted lines represent the enable signals which will be activated at some
point of the transformation process.

Coefficient Multiplexer

sel="000"

DCT4

sel="001"

DCT8

sel="010"

DCT16

sel="011"

DCT32

sel="100"

DCT64

DCT4

DCT8 P1

DCT8 P2DCT16 P1

DCT16 P2

DCT32 P1

DCT32 P2

DCT64 P1

DCT64 P2

Figure 4.9: Flow of dataIn according to the selected vector size.

65

Coefficient Multiplexer

dataIn0
..
.

dataIn63

Enable

Select

dataOut0

..
.

dataOut63

validOut

DCT4

DCT4en

D
C
T
4
I
n
[
0
-
3
]

t
O
u
t
[
0
-
3
]

DCT4vo

DCT8 P2

t
O
u
t
[
4
-
7
]

DCT82vo

DCT8 P1

D
C
T
8
P
1
e
n

D
C
T
8
P
1
o
[
0
-
3
]

D
C
T
8
P
1
I
n
[
0
-
7
]

DCT8 P1o

4-7

DCT8 P1vo

DCT16 P2 t
O
u
t
[
8
-
1
5
]

DCT162vo

DCT16 P1

D
C
T
1
6
P
1
e
n

D
C
T
1
6
P
1
o
[
0
-
7
]

D
C
T
1
6
P
1
I
n
[
0
-
1
5
]

DCT16 P1o

8-15

DCT16 P1vo

DCT32 P2

t
O
u
t
[
1
6
-
3
1
]

DCT322vo

DCT32 P1

D
C
T
3
2
P
1
e
n

D
C
T
3
2
P
1
o
[
0
-
1
5
]

D
C
T
3
2
P
1
I
n
[
0
-
3
1
]

DCT32 P1o

16-31

DCT32 P1vo

DCT64 P2

t
O
u
t
[
3
2
-
6
3
]

DCT642vo

DCT64 P1

D
C
T
6
4
P
1
e
n

D
C
T
6
4
P
1
o
[
0
-
3
1
]

D
C
T
6
4
P
1
I
n
[
0
-
6
3
]

DCT64 P1o

32-63

DCT64 P1vo

Figure 4.10: Simplified architecture of the second version of the full DCT wrapper.

66

This architecture was subjected to the same test bench as the previous version. In Figure
4.11 it is represented one of these tests, where 16 was the selected size. In this case, there are
no internal signals represented, only being shown the most relevant of the ones accessible by
the central multiplexer, for this case.

Clock

Select "010"

Reset

Enable

dataIn(0-63) [53,-155,...,20]

DCT4en

DCT8 P1en

DCT16 P1en

DCT32 P1en

DCT64 P1en

DCT4in(0-3) [0,...0] [151,-5,-134,-842]

DCT8 P1in(0-7) [0,...0] [77,-3,...,74]

DCT16 P1in(0-15) [0,...0] [53,-155,...,24]

DCT4vo

DCT8 P1vo

DCT8 P2vo

DCT16 P1vo

DCT16 P2vo

DCT4out(0-3) [0,...,0] [-600,-399,979,282]

DCT8 P1out(0-7) [0,...,0] [4,4,4,4,0,0,0,0]

DCT8 P2out(0-3) [0,...,0] [-4,-1,12,-4]

DCT16 P1out(0-15) [0,...,0] [77,-3,...,29]

DCT16 P2out(0-7) [0,...,0] [-316,245,...,16]

validOut

dataOut(0-63) [0,0,...,0] [-600,-316,...,16,’-’,...]

Figure 4.11: Timing diagram for a test run on the second DCT wrapper.

As it is observable, the central block handles the direction of intermediary coefficients and
enable signals between the internal blocks, according to the selected size. The final stage
taken by it is the re-organization of each of the P2 stages’ outputs.

Similarly to the previous architecture, the current was also synthesized considering an
Artix 7 FPGA, giving origin to the utilization results from Table 4.6.

67

Table 4.6: Second developed architecture’s utilization in number of LUTs and Registers.

Block
Utilization

Slice LUTs Slice Registers

DCT4 1077 507

DCT8 P1 709 257

DCT8 P2 1064 717

DCT16 P1 1285 513

DCT16 P2 3860 2150

DCT32 P1 3064 1025

DCT32 P2 9090 5624

DCT64 P1 6123 2049

DCT64 P2 22344 14000

Wrapper 50039 32352

As observable, this implementation occupies 66% of the area occupied by the former,
approximately corresponding to the occupation taken by DCT64. This makes the current
version more efficient from the utilization standpoint. However, it can only calculate one DCT
size at a time, as all blocks are interdependent. This makes such implementation undesirable
for an encoder, since no parallelization of transformation options is achieved and, therefore, to
obtain the five DCT outputs for a given input vector, the architecture would need to calculate
each size sequentially, bringing the total number of clock cycles to

NTotal = 6 + 10 + 14 + 18 + 22 = 70 (4.14)

while to obtain the same results with the previous implementation there would only be needed
22.

If real time encoding is not necessary, such implementation would be most suitable for
mobile applications, where size and consumed power are key requirements, as this version
would perform better than the previous implementation on both of these aspects.

4.2.3 Microblaze Integration

Considering the system presented on Figure 2.6 (page 13, Simplified Basic Encoder Model),
it would be safe to assume that, if it were to be implemented in hardware, the Control
Unit would be implemented on a generic CPU, controlling the surrounding blocks, e.g. the
developed DCT kernels. Such an architecture would allow for a complex software, such
as libaom, to be massively simplified, as most of the complex calculations would be run on
specialized co-processors, while leaving the system’s controlling and decision-making processes
to be run on a central unit.

In order to prove the applicability of the developed architectures in such system, the
designs were tested on a Digilent ’s Nexys 4 hardware kit, equipped with an Artix 7 FPGA,
XC7A100T-1CSG324C. This board is presented in Figure 4.12.

68

Figure 4.12: Nexys 4 hardware kit [6].

4.2.3.1 Hybrid Architecture Design

With the hardware chosen, the first step would be to synthesize the developed architectures
to the desired FPGA. This operation provides numerous relevant data, such as the percentage
of utilization, the estimated power drawn or some timing characteristics.

Referring to the first implementation of the DCT kernel, the Synthesis to the current
hardware is not possible, since the design occupies 119.57% of the available slice LUTs.
However, on a more capable kit, this design could be tested.

However, as the second implementation uses only 79.93%, and no other floorplaning errors
occurred, the Synthesis and Implementation were successful, and therefore, Vivado provides
the mentioned estimations. With an operating frequency of 100 MHz, the obtained power
draw is 50 mW. With the Worst Negative Slack (WNS), it is also possible to calculate the
system’s maximum operating frequency. This measure represents the lowest delay to meet
the design’s requirements, i.e., taking the system’s longest clock propagation path, if it were
increased by WNS, the timing constraints would still be met. Therefore, considering T as the
current operating clock’s period, an estimation of the maximum operating frequency may be
calculated by Equation 4.15.

fMax =
1

T −WNS
=

1

10 · 10−9 − 0.188 · 10−9
= 101.9MHz (4.15)

To consider a full libaom integration in the focus of this work, with the target hardware,
would be too demanding both in terms of complexity and achievability. Since a single block of
the encoder occupies most of the available resources, the integration of the following processes
would certainly need a highly capable hardware kit.

Nonetheless, a simpler architecture can still be implemented, as to test the applicability
of the developed architecture on a full encoding system. To do this, the encoder’s central unit
would need to be instantiated on the hardware kit on the shape of a Microcontroller (MCU),

69

alongside the developed kernels. The latter also needed to be adapted for the communications
between it and the MCU.

To accomplish this, Vivado provides a wide set of tools to easily achieve integration of
a design described in VHDL with a generic processor, efficiently obtaining a hybrid design
between the developed hardware and a software algorithm, easily developed in C, as an
example.

Therefore, two separate tasks were conducted. First was the preparation of the DCT
Wrapper, and finally the development of a complete system.

Taken the architecture from Figure 4.10, the first step was the creation of a custom block
with an AXI4 interface. This data-transfer protocol is heavily used in Xilinx ’s tools and
ARM ’s processors.

It is based on a generic Master-Slave interaction with two separate channels. The Address
channel includes the location of the register to read/write from, as well as the necessary
control signals. The Data channel transports the information coming from the Slave (read
cycle) or Master (write cycle).

Vivado allows for three different versions of AXI4 :

• AXI4 implements a highly customizable memory mapped interface, indicated for com-
plex applications;

• AXI4-Lite is a simplified version of the former, keeping the memory mapped commu-
nications;

• AXI4-Stream implements a streaming protocol, allowing a high throughput.

For the development of this work, the second protocol was chosen, as it allowed to prove the
efficiency of the developed design on a full system, while keeping a low complexity. However, if
a complete encoder were to be constructed, the stream configuration would be more adequate.
Since the Wrapper would need to process large amounts of coefficients each second, the
interface from which it received the input vectors would need to be able to provide the
necessary throughput.

The integration of the Wrapper with the interface constituted of connecting each of the
dataIns to one of the interface’s 32 bit writable registers. This way, all the inputs are
accessible by the controller when performing a writing operation. As to the outputs, the same
addresses were attributed to the corresponding dataOuts, allowing to read the calculated
coefficients. The enable, reset and Select signals were all connected to the same write
register, as these signals occupy 5 bits in total.

Besides the DCT kernel, three counters were implemented. Each of these were tasked
with counting the write, read and transformation clock cycles. The first two are controlled
by activating/deactivating bits from the control register, while the other is controlled by the
enable and validOut signals from the kernel. The output values are also accessible to the
microcontroller, making possible the monitoring of the whole cycle. And as the timers are
implemented in hardware, there are not as significant overheads as if the operations were
timed with a software counter.

Figure 4.13 shows a simplified version of the kernel’s integration with the AXI4 Interface.
DCT Timer’s output is concatenated with validOut since it does not need the full 32 bits.
The internal blocks are all driven with the same system clock.

70

AXI4 DCT Wrapper

DCT
Wrapper

dataIn0

..
.

dataIn63

en

res

Select

dataOut0

..
.

dataOut63

validOut

WReg0

..
.

WReg63

WReg64
3

Address
Decoder

dataIn

Address

Write/Read

dataOut

DCT
Timer

Stop

Start

countOut
31

Write
Timer

Start/Stop

countOut

Read
Timer

Start/Stop

countOut

Figure 4.13: Simplified description of DCT Wrapper with AXI4-Lite interface.

The additional structures raised the number of used Look Up Tables to 50461 (79.59% of
Artix 7) and Registers to 34686 (27.35%).

With this block, a separate design was created. To it was added a Microblaze microcon-
troller, which instantiates a Reduced Instruction Set Computer (RISC) soft core processor,
specialized for use with Xilinx ’s products [7].

Specifying the desired interfaces, Vivado automation routines handle most of the necessary
connections. To the Microblaze and DCT Wrapper, was also added a Universal asynchronous
receiver/transmitter (UART) connection for debugging purposes, giving origin to the block
design from Figure 4.14. The addition of the microcontroller and peripherals added 1512
LUTs and 1387 registers, bringing to a final 81.98% and 28.45% utilization, respectively.

4.2.3.2 Tests and Results

With the finalized design, some tests were developed in software, to be run on the Microb-
laze. The interaction between it and the DCT Wrapper is done with read and write routines
provided by Xilinx ’s Software Development Kit (SDK). These access the addresses attributed

71

Figure 4.14: Block design generated by Vivado for integration of DCT Wrapper with Microb-
laze.

to the peripherals during Vivado’s Implementation process.
The first test revolved around the verification of the calculated of coefficients. The pro-

cessor injected a sequence of input vectors into the co-processor, and compared the obtained
results with the software’s. This short test proved successful, as the hardware implementation
gave the same result as the software version for all vector sizes.

Being proven the correct calculation of the transformed coefficients, the final test was to
verify the timing performances of the system. For this, a small program was written, where a
vector with the same length as the desired DCT would be loaded into the co-processor, this
would be activated, and the same length transformed vector would be read back.

The most relevant result to measure was the number of clock cycles to calculate the
transformed coefficients, and verify the accordance with the VHDL test bench. The read and
write processes should only be seen as references, as they are highly dependent on the used
interface. This way, in Table 4.7 there are presented the separate timing results for the three
different processes measured, both in number of clock cycles, as well as the time duration at
the calculated maximum frequency.

Table 4.7: Timing results for the Microblaze integration design.

Size
Number of Clock Cycles(T@101.9MHz(ns))

Write Transform Read

4 510 (5005) 6 (59) 462 (4534)

8 902 (8852) 10 (98) 806 (7910)

16 1686 (1646) 14 (137) 1494 (14661)

32 3254 (31933) 18 (177) 2870 (28165)

64 6390 (62709) 22 (216) 5622 (55172)

Taking the transformation times, it is possible to calculate the hypothetical throughput of
the developed architecture on the current hardware. This is calculation is done with a similar
process as the one of Table 4.4, but in reverse. Given the maximum estimated frequency,
the maximum possible frame rate is estimated. In Table 4.8, these results are presented,
considering all square block sizes.

As seen, the constructed architecture, on the current hardware, is not capable of processing

72

Table 4.8: Maximum frame rate for a given resolution, considering fixed square transformation
blocks, on the Nexys 4 implementation.

Block Size
Resolution

1280× 720 1920× 1080 3840× 2160 7680× 4320

4× 4 37 16 4 1

8× 8 44 20 5 1

16× 16 63 28 7 2

32× 32 98 44 11 3

64× 64 161 71 18 4

high resolution video at usable frame rates. For HD video, it can maintain 30 fps for all block
sizes. However, on higher resolutions, this throughput cannot be maintained, in order to
obtain real time usability.

Other works capable of providing such performances have been published, mostly for the
HEVC standard (see references [8, 9, 10]). These results should justify the choices made by
the developers, since the proclaimed clock frequencies are obtained with Very Large Scale
Integration (VLSI) circuits, and FPGA implementations, when present, are only used for
validation purposes.

In addition, it should be kept in mind that the presented results represent a best case
scenario, since they do not take into consideration any other delays from the encoding process.

Nonetheless, the integration of the developed architecture with the Microblaze should
prove the applicability of the first on a full encoding system, even though the maximum
performance of the system is not known, as it could be achieved through synthesis to ASIC.

73

References

[1] Wen-Hsiung Chen, C. Smith, and S. Fralick. “A Fast Computational Algorithm for the
Discrete Cosine Transform”. IEEE Transactions on Communications 25.9 (Sept. 1977),
1004–1009. issn: 0090-6778. doi: 10.1109/TCOM.1977.1093941.

[2] Yun Qing Shi and Huifang Sun. Image and Video Compression for Multimedia En-
gineering: Fundamentals, Algorithms, and Standards. 2. ed. Image Processing Series.
Boca Raton, Fla.: CRC Press, 2008. isbn: 978-0-8493-7364-0.

[3] FPGA vs ASIC, What to Choose? https://anysilicon.com/fpga-vs-asic-choose/. Jan.
2016.

[4] Genus Synthesis Solution. https://www.cadence.com/content/cadence-
www/global/en US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-
solution.html.

[5] Design Compiler Graphical. https://www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/design-compiler-graphical.html.

[6] Nexys 4 Artix-7 FPGA Trainer Board (LIMITED TIME).
https://store.digilentinc.com/nexys-4-artix-7-fpga-trainer-board-limited-time-see-
nexys4-ddr/.

[7] MicroBlaze Processor Reference Guide.
https://www.xilinx.com/support/documentation/sw manuals/xilinx2019 1/ug984-
vivado-microblaze-ref.pdf. 2019.

[8] N. C. Vayalil, J. Haddrill, and Y. Kong. “An Efficient ASIC Design of Variable-Length
Discrete Cosine Transform for HEVC”. 2016 European Modelling Symposium (EMS).
Nov. 2016, 229–233. doi: 10.1109/EMS.2016.047.

[9] Pramod Kumar Meher et al. “Efficient Integer DCT Architectures for HEVC”. IEEE
Transactions on Circuits and Systems for Video Technology 24.1 (Jan. 2014), 168–178.
issn: 1558-2205. doi: 10.1109/TCSVT.2013.2276862.

[10] Mohamed Asan Basiri M. and Noor Mahammad Sk. “High Performance Integer DCT
Architectures for HEVC”. 2017 30th International Conference on VLSI Design and
2017 16th International Conference on Embedded Systems (VLSID). Jan. 2017, 121–
126. doi: 10.1109/VLSID.2017.68.

74

https://doi.org/10.1109/TCOM.1977.1093941
https://doi.org/10.1109/EMS.2016.047
https://doi.org/10.1109/TCSVT.2013.2276862
https://doi.org/10.1109/VLSID.2017.68

CHAPTER 5

Conclusions and Future Work

This work started with the objective of improving the performance of the recently released
video coding standard, AV1, by optimization of the reference software, libaom, and through
the development of hardware architectures for the Transform stage.

Thus, the reference software was analyzed on various aspects. Firstly, the internal func-
tioning of that stage was studied, being described the most relevant features, such as the
sequence of operations, internal data structures and implemented kernels.

In addition to these, statistical results were obtained, referring to the encoding choices
accomplished in the encoder. The analysis of this data showed relevant opportunities to
improve the performance of the reference encoder. From the number of bits used in the
cosine approximations, to the verified number of occurrences of symmetric kernel blocks,
there were found many starting points for the development of efficient software and hardware
architectures for AV1 ’s Transform stage.

In this work, the tackled measure was the reduction of the number of bits used by the
cosine approximations, as it was verified that these have a low impact on the obtained video
quality, while influencing the overall encoding performance. With the changes performed in
the reference software there was obtained a 3% reduction in the encoding time, as well as
81% lower memory usage in storing cosine approximations.

The algorithm was then described in hardware, achieving two different architectures. Al-
though both perform the transformation as desired, they provide different levels of flexibility,
as only the first provides some parallelization of encoding options. It was also shown that the
proposed hardware architecture could be fitted into a real-time encoder for FHD@30fps, if a
minimum operating frequency of 187 MHz were to be achieved with an ASIC implementation.

The second architecture was then implemented and tested on a Nexys 4 board, with
Microblaze integration. This test served as proof of concept for an eventual full encoder
implementation, as the connectivity between the developed co-processor and a control unit
was easily achieved and tested. However, the performance obtained with the tested kit is not
adequate for implementation on a real time encoder, leading to the aforementioned necessity
of ASIC implementations.

Taking these factors into consideration, it can be concluded that the original objectives
were partially achieved. Libaom’s Transform stage was improved with the software changes,
and two different hardware implementations were constructed for the DCT kernel.

Thus, the work started in this dissertation can be profoundly extended, in order to obtain
an efficient hardware architecture for AV1.

AV1 supports two other transformation kernels, being these the ADST and Identity. In
order to achieve a complete Transform co-processor, hardware implementations for both these
kernels should be implemented.

75

As to the developed architectures, the most immediate measure would be the shortening
of the internal signals, as well as the input and output coefficients. Although this measure
would bring some complexity to the interconnection of the internal blocks, it would reduce
the necessary footprint.

Other considerations would be the addition of smaller DCT blocks, such as DCT4, into
the final Wrapper. This would go according to two aspects. Foremost, as shown in the
encoding data, the most commonly used vector is the smallest, and lastly it is the quickest
to be calculated, meaning that while a bigger vector is being calculated, many iterations of
the smaller vectors could be run, sequentially or in parallel.

As to test the full impact of the developed hardware architectures on libaom, the hard-
ware architectures should be implemented on a fitting FPGA kit, with capabilities for high-
bandwidth communications between it and a CPU running the reference software, similarly
to the hybrid Microblaze architecture.

Finally, an ASIC implementation should be considered, since, in most cases, FPGA designs
tend to perform worse than specialized integrated circuits. Therefore, this design, as well as
others aiming to achieve real-time, 8K video encoding performances, should be considered as
ASIC implementations.

76

Annexes

77

A aomenc Configuration Options

Usage: ./aomenc <options> -o dst_filename src_filename

Options:

--help Show usage options and exit

-c <arg>, --cfg=<arg> Config file to use

-D, --debug Debug mode (makes output deterministic)

-o <arg>, --output=<arg> Output filename

--codec=<arg> Codec to use

-p <arg>, --passes=<arg> Number of passes (1/2)

--pass=<arg> Pass to execute (1/2)

--fpf=<arg> First pass statistics file name

--limit=<arg> Stop encoding after n input frames

--skip=<arg> Skip the first n input frames

--good Use Good Quality Deadline

-q, --quiet Do not print encode progress

-v, --verbose Show encoder parameters

--psnr Show PSNR in status line

--webm Output WebM (default when WebM IO is enabled)

--ivf Output IVF

--obu Output OBU

-P, --output-partitions Makes encoder output partitions. Requires IVF output!

--q-hist=<arg> Show quantizer histogram (n-buckets)

--rate-hist=<arg> Show rate histogram (n-buckets)

--disable-warnings Disable warnings about potentially incorrect encode

settings.

-y, --disable-warning-prompt Display warnings, but do not prompt user to continue.

--test-decode=<arg> Test encode/decode mismatch

off, fatal, warn

Encoder Global Options:

--yv12 Input file is YV12

--i420 Input file is I420 (default)

--i422 Input file is I422

--i444 Input file is I444

-u <arg>, --usage=<arg> Usage profile number to use

-t <arg>, --threads=<arg> Max number of threads to use

--profile=<arg> Bitstream profile number to use

-w <arg>, --width=<arg> Frame width

-h <arg>, --height=<arg> Frame height

--forced_max_frame_width Maximum frame width value to force

--forced_max_frame_height Maximum frame height value to force

--stereo-mode=<arg> Stereo 3D video format

mono, left-right, bottom-top, top-bottom, right-

left

--timebase=<arg> Output timestamp precision (fractional seconds)

--fps=<arg> Stream frame rate (rate/scale)

--global-error-resilient=< Enable global error resiliency features

-b <arg>, --bit-depth=<arg> Bit depth for codec (8 for version <=1, 10 or 12 for

78

version 2)

8, 10, 12

--lag-in-frames=<arg> Max number of frames to lag

--large-scale-tile=<arg> Large scale tile coding (0: off (default), 1: on

)

--monochrome Monochrome video (no chroma planes)

--full-still-picture-hdr Use full header for still picture

Rate Control Options:

--drop-frame=<arg> Temporal resampling threshold (buf %)

--resize-mode=<arg> Frame resize mode

--resize-denominator=<arg> Frame resize denominator

--resize-kf-denominator=<a Frame resize keyframe denominator

--superres-mode=<arg> Frame super-resolution mode

--superres-denominator=<ar Frame super-resolution denominator

--superres-kf-denominator= Frame super-resolution keyframe denominator

--superres-qthresh=<arg> Frame super-resolution qindex threshold

--superres-kf-qthresh=<arg Frame super-resolution keyframe qindex

threshold

--end-usage=<arg> Rate control mode

vbr, cbr, cq, q

--target-bitrate=<arg> Bitrate (kbps)

--min-q=<arg> Minimum (best) quantizer

--max-q=<arg> Maximum (worst) quantizer

--undershoot-pct=<arg> Datarate undershoot (min) target (%)

--overshoot-pct=<arg> Datarate overshoot (max) target (%)

--buf-sz=<arg> Client buffer size (ms)

--buf-initial-sz=<arg> Client initial buffer size (ms)

--buf-optimal-sz=<arg> Client optimal buffer size (ms)

Twopass Rate Control Options:

--bias-pct=<arg> CBR/VBR bias (0=CBR, 100=VBR)

--minsection-pct=<arg> GOP min bitrate (% of target)

--maxsection-pct=<arg> GOP max bitrate (% of target)

Keyframe Placement Options:

--enable-fwd-kf=<arg> Enable forward reference keyframes

--kf-min-dist=<arg> Minimum keyframe interval (frames)

--kf-max-dist=<arg> Maximum keyframe interval (frames)

--disable-kf Disable keyframe placement

AV1 Specific Options:

--cpu-used=<arg> CPU Used (0..8)

--dev-sf=<arg> Dev Speed (0..255)

--auto-alt-ref=<arg> Enable automatic alt reference frames

--sharpness=<arg> Loop filter sharpness (0..7)

--static-thresh=<arg> Motion detection threshold

--single-tile-decoding=<ar Single tile decoding (0: off (default), 1: on)

--tile-columns=<arg> Number of tile columns to use, log2

--tile-rows=<arg> Number of tile rows to use, log2 (set to 0 while

threads > 1)

--arnr-maxframes=<arg> AltRef max frames (0..15)

--arnr-strength=<arg> AltRef filter strength (0..6)

79

--tune=<arg> Distortion metric tuned with

psnr, ssim, cdef-dist, daala-dist

--cq-level=<arg> Constant/Constrained Quality level

--max-intra-rate=<arg> Max I-frame bitrate (pct)

--max-inter-rate=<arg> Max P-frame bitrate (pct)

--gf-cbr-boost=<arg> Boost for Golden Frame in CBR mode (pct)

--lossless=<arg> Lossless mode (0: false (default), 1: true)

--enable-cdef=<arg> Enable the constrained directional enhancement filter

(0: false, 1: true (default))

--enable-restoration=<arg> Enable the loop restoration filter (0: false,

1: true (default))

--disable-trellis-quant=<a Disable trellis optimization of quantized

coefficients (0: false (default) 1: true)

--enable-qm=<arg> Enable quantisation matrices (0: false (default), 1:

true)

--qm-min=<arg> Min quant matrix flatness (0..15), default is 8

--qm-max=<arg> Max quant matrix flatness (0..15), default is 15

--enable-dist-8x8=<arg> Enable dist-8x8 (0: false (default), 1: true)

--frame-parallel=<arg> Enable frame parallel decodability features (0:

false (default), 1: true)

--error-resilient=<arg> Enable error resilient features (0: false (

default), 1: true)

--aq-mode=<arg> Adaptive quantization mode (0: off (default), 1: variance

2: complexity, 3: cyclic refresh)

--deltaq-mode=<arg> Delta qindex mode (0: off (default), 1: deltaq 2:

deltaq + deltalf)

--frame-boost=<arg> Enable frame periodic boost (0: off (default), 1: on)

--noise-sensitivity=<arg> Noise sensitivity (frames to blur)

--tune-content=<arg> Tune content type

default, screen

--cdf-update-mode=<arg> CDF update mode for entropy coding (0: no CDF

update; 1: update CDF on all frames(default); 2: selectively update

CDF on some frames

--color-primaries=<arg> Color primaries (CICP) of input content:

bt709, unspecified, bt601, bt470m, bt470bg,

smpte240, film, bt2020, xyz, smpte431,

smpte432, ebu3213

--transfer-characteristics Transfer characteristics (CICP) of input

content:

unspecified, bt709, bt470m, bt470bg, bt601,

smpte240, lin, log100, log100sq10, iec61966,

bt1361, srgb, bt2020-10bit, bt2020-12bit,

smpte2084, hlg, smpte428

--matrix-coefficients=<arg Matrix coefficients (CICP) of input content:

identity, bt709, unspecified, fcc73, bt470bg,

bt601, smpte240, ycgco, bt2020ncl, bt2020cl,

smpte2085, chromncl, chromcl, ictcp

--chroma-sample-position=< The chroma sample position when chroma 4:2:0

is signaled:

unknown, vertical, colocated

--min-gf-interval=<arg> min gf/arf frame interval (default 0, indicating

in-built behavior)

--max-gf-interval=<arg> max gf/arf frame interval (default 0, indicating

80

in-built behavior)

--sb-size=<arg> Superblock size to use

dynamic, 64, 128

--num-tile-groups=<arg> Maximum number of tile groups, default is 1

--mtu-size=<arg> MTU size for a tile group, default is 0 (no MTU

targeting), overrides maximum number of tile groups

--timing-info=<arg> Signal timing info in the bitstream (model unly works

for no hidden frames, no super-res yet):

unspecified, constant, model

--film-grain-test=<arg> Film grain test vectors (0: none (default), 1:

test-1 2: test-2, ... 16: test-16)

--film-grain-table=<arg> Path to file containing film grain parameters

--enable-ref-frame-mvs=<ar Enable temporal mv prediction (default is 1)

-b <arg>, --bit-depth=<arg> Bit depth for codec (8 for version <=1, 10 or 12 for

version 2)

8, 10, 12

--input-bit-depth=<arg> Bit depth of input

--sframe-dist=<arg> S-Frame interval (frames)

--sframe-mode=<arg> S-Frame insertion mode (1..2)

--annexb=<arg> Save as Annex-B

Stream timebase (--timebase):

The desired precision of timestamps in the output, expressed

in fractional seconds. Default is 1/1000.

Included encoders:

av1 - AOMedia Project AV1 Encoder v0.1.0 (default)

Use --codec to switch to a non-default encoder.

B DCT8 1 VHDL Description

-- DCT8 Implementation for inetgration with aggregated architecture

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DCT8_1_I is

port(-- Data Inputs

dataIn0 : in integer;

dataIn1 : in integer;

dataIn2 : in integer;

dataIn3 : in integer;

dataIn4 : in integer;

dataIn5 : in integer;

dataIn6 : in integer;

81

dataIn7 : in integer;

-- Control Inputs

res : in std_logic;

en : in std_logic;

clk : in std_logic;

-- Data Outputs

dataOut0 : out integer;

dataOut1 : out integer;

dataOut2 : out integer;

dataOut3 : out integer;

dataOut4 : out integer;

dataOut5 : out integer;

dataOut6 : out integer;

dataOut7 : out integer;

-- Control Outputs

validOut : out std_logic

);

end DCT8_1_I;

architecture Behavioral of DCT8_1_I is

begin

stage1: process(clk, res, en)

begin

if(rising_edge(clk)) then

if(res = ’1’) then

dataOut0 <= 0;

dataOut1 <= 0;

dataOut2 <= 0;

dataOut3 <= 0;

dataOut4 <= 0;

dataOut5 <= 0;

dataOut6 <= 0;

dataOut7 <= 0;

validOut <= ’0’;

elsif(en = ’1’) then

dataOut0 <= dataIn0 + dataIn7;

dataOut1 <= dataIn1 + dataIn6;

dataOut2 <= dataIn2 + dataIn5;

dataOut3 <= dataIn3 + dataIn4;

dataOut4 <= dataIn3 - dataIn4;

dataOut5 <= dataIn2 - dataIn5;

dataOut6 <= dataIn1 - dataIn6;

dataOut7 <= dataIn0 - dataIn7;

validOut <= ’1’;

end if;

end if;

82

end process;

end Behavioral;

C DCT8 2 VHDL Description

-- DCT8 Stage 2 Implementation for integration with aggregated architecture

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DCT8_2_I is

port(-- Data Inputs

dataIn4 : in integer;

dataIn5 : in integer;

dataIn6 : in integer;

dataIn7 : in integer;

-- Control Inputs

res : in std_logic;

en : in std_logic;

clk : in std_logic;

-- Data Outputs

dataOut4 : out integer;

dataOut5 : out integer;

dataOut6 : out integer;

dataOut7 : out integer;

-- Control Outputs

validOut : out std_logic

);

end DCT8_2_I;

architecture Behavioral of DCT8_2_I is

signal s_stg2M5, s_stg2M6 : integer := 0;

signal s_stg2A5, s_stg2A6 : integer := 0;

signal s_stg2D5, s_stg2D6 : integer := 0;

signal s_stg34, s_stg35, s_stg36, s_stg37 : integer := 0;

signal s_stg4M41, s_stg4M42, s_stg4M51, s_stg4M52, s_stg4M61, s_stg4M62,

s_stg4M71, s_stg4M72 : integer := 0;

signal s_stg4A4, s_stg4A5, s_stg4A6, s_stg4A7 : integer := 0;

signal s_stage2MEn, s_stage2AEn, s_stage2DEn, s_stage3En, s_stage4MEn,

s_stage4AEn, s_valOut : std_logic := ’0’;

begin

stage2M: process(clk, res, en)

begin

83

if(rising_edge(clk)) then

if(res = ’1’) then

s_stg2M5 <= 0;

s_stg2M6 <= 0;

s_stage2AEn <= ’0’;

elsif(en = ’1’) then

s_stg2M5 <= dataIn5*185;

s_stg2M6 <= dataIn6*185;

s_stage2AEn <= ’1’;

end if;

end if;

end process;

stage2A: process(clk, res, s_stage2AEn)

begin

if(rising_edge(clk)) then

if(res = ’1’) then

s_stg2A5 <= 0;

s_stg2A6 <= 0;

s_stage2DEn <= ’0’;

elsif(s_stage2AEn = ’1’) then

s_stg2A5 <= s_stg2M6 - s_stg2M5;

s_stg2A6 <= s_stg2M6 + s_stg2M5;

s_stage2DEn <= ’1’;

end if;

end if;

end process;

stage2D: process(clk, res, s_stage2DEn)

begin

if(rising_edge(clk)) then

if(res = ’1’) then

s_stg2D5 <= 0;

s_stg2D6 <= 0;

s_stage3En <= ’0’;

elsif(s_stage2DEn = ’1’) then

s_stg2D5 <= to_integer(shift_right(to_signed(s_stg2A5,32)

,8));

s_stg2D6 <= to_integer(shift_right(to_signed(s_stg2A6,32)

,8));

s_stage3En <= ’1’;

end if;

end if;

end process;

stage3: process(clk, res, s_stage3En)

begin

84

if(rising_edge(clk)) then

if(res = ’1’) then

s_stg34 <= 0;

s_stg35 <= 0;

s_stg36 <= 0;

s_stg37 <= 0;

s_stage4MEn <= ’0’;

elsif(s_stage3En = ’1’) then

s_stg34 <= dataIn4 + s_stg2D5;

s_stg35 <= dataIn4 - s_stg2D5;

s_stg36 <= dataIn7 - s_stg2D6;

s_stg37 <= dataIn7 + s_stg2D6;

s_stage4MEn <= ’1’;

end if;

end if;

end process;

stage4M: process(clk, res, s_stage4MEn)

begin

if(rising_edge(clk)) then

if(res = ’1’) then

s_stg4M41 <= 0;

s_stg4M42 <= 0;

s_stg4M51 <= 0;

s_stg4M52 <= 0;

s_stg4M61 <= 0;

s_stg4M62 <= 0;

s_stg4M71 <= 0;

s_stg4M72 <= 0;

s_stage4AEn <= ’0’;

elsif(s_stage4MEn = ’1’) then

s_stg4M41 <= s_stg34*56;

s_stg4M42 <= s_stg34*252;

s_stg4M51 <= s_stg35*147;

s_stg4M52 <= s_stg35*216;

s_stg4M61 <= s_stg36*147;

s_stg4M62 <= s_stg36*216;

s_stg4M71 <= s_stg37*56;

s_stg4M72 <= s_stg37*252;

s_stage4AEn <= ’1’;

end if;

end if;

end process;

stage4A: process(clk, res, s_stage4AEn)

begin

if(rising_edge(clk)) then

85

if(res = ’1’) then

s_stg4A4 <= 0;

s_stg4A5 <= 0;

s_stg4A6 <= 0;

s_stg4A7 <= 0;

s_valOut <= ’0’;

elsif(s_stage4AEn = ’1’) then

s_stg4A4 <= s_stg4M41 + s_stg4M72;

s_stg4A5 <= s_stg4M52 + s_stg4M61;

s_stg4A6 <= s_stg4M62 - s_stg4M51;

s_stg4A7 <= s_stg4M71 - s_stg4M42;

s_valOut <= ’1’;

end if;

end if;

end process;

outReg: process(clk, res, s_valOut)

begin

if(rising_edge(clk)) then

if(res = ’1’) then

dataOut5 <= 0;

dataOut6 <= 0;

dataOut7 <= 0;

validOut <= ’0’;

elsif(s_valOut = ’1’) then

dataOut4 <= to_integer(shift_right(to_signed(s_stg4A4,32)

,8));

dataOut5 <= to_integer(shift_right(to_signed(s_stg4A5,32)

,8));

dataOut6 <= to_integer(shift_right(to_signed(s_stg4A6,32)

,8));

dataOut7 <= to_integer(shift_right(to_signed(s_stg4A7,32)

,8));

validOut <= ’1’;

end if;

end if;

end process;

end Behavioral;

86

	List of Figures
	List of Tables
	Acronyms
	Glossary
	Nomenclature
	Introduction
	Background and Motivation
	Scope
	Outline
	References

	Video Compression Systems
	Basic Principles
	Human Visual System
	Redundancy Exploitation
	Basic Video Compression/Decompression System

	AV1
	History and Development
	Encoding Tools
	Performance Analysis

	References

	Video Coding Transforms
	Introduction
	Background
	Basis Vector/Image Interpretation

	Transformation Kernels
	Discrete Fourier Transform (DFT)
	Discrete Walsh-Hadamard Transform (WHT)
	Discrete Cosine Transform (DCT)
	Discrete Sine Transform (DST)
	Asymmetric Discrete Sine Transform (ADST)

	Libaom's Integer Transformations
	Functioning and Implementation
	Performance and Statistics Analysis

	References

	Developed Architectures
	Software Implementations
	Matrix Multiplication Implementation
	Alternative Butterfly Implementation

	Hardware Implementations
	Individual 1D DCTs Design
	Interdependent 1D DCTs Design
	Microblaze Integration

	References

	Conclusions and Future Work
	Annexes
	aomenc Configuration Options
	DCT8_1 VHDL Description
	DCT8_2 VHDL Description

