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centivares a seguir o ensino superior e por te esforçares para garantir que
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profunda, Perfil de condução

resumo O crescimento sustentável das cidades criou a necessidade de decisões
melhor informadas, baseadas em tecnologias de informação e comunicação
para sentir a cidade e quantificar o seu pulso. Uma parte importante no
conceito de “cidades inteligentes” é a caracterização dos fluxos de tráfego.
O objetivo deste trabalho é caraterizar a mobilidade em duas cidades
diferentes: Porto e Aveiro. A estrutura e conteúdo dos respetivos datasets
é muito diferente, permitindo dois casos de estudo, com casos de uso
distintos relacionados com a análise de tráfego e a previsão.
Para o caso de uso do Porto, foi concedido acesso a sensores de tráfego
instalados na estrada e dados de rastreamento de autocarros. Para a
primeira fonte realizou-se um estudo e a pesquisa de padrões (por exemplo,
o comportamento dos dias da semana). Dados históricos dos contadores
de tráfego foram usados para prever fluxos futuros, usando métodos
estat́ısticos e de aprendizagem profunda.
Descobrimos que não era posśıvel encontrar uma relação clara entre
a velocidade (dos autocarros) e a intensidade do tráfego, no entanto,
quando a velocidade era alta, havia baixa intensidade e, quando havia alta
intensidade, a velocidade era baixa. Existem padrões diários e semanais nos
dados do fluxo de tráfego que permitem a previsão. Quando as anomalias
no tráfego ocorrem, os métodos para previsão de curto prazo têm um
desempenho melhor do que aqueles para previsão de longo prazo.
Para o caso de uso de Aveiro, o conjunto de dados inclui rastreamentos
de autocarros, que foram utilizados para caraterizar o comportamento
de condução, baseado na velocidade e aceleração. Esses dados foram
mapeados na cidade para encontrar áreas problemáticas. As visualizações
lado a lado ajudam na comparação do comportamento do tráfego em
peŕıodos selecionados. Foi observado que algumas estradas apresentam
frequentemente os mesmos problemas, independentemente do dia ou
da hora do dia. Em outras partes da cidade, os problemas podem ser
encontrados com mais frequência em peŕıodos espećıficos.
Os conjuntos de dados de Aveiro e Porto tinham amostras com diferentes
frequências (a cada segundo e a cada minuto, respectivamente). Confir-
mamos, com simulações, que a análise feita para Aveiro não era posśıvel
com a granularidade do conjunto de dados do Porto (dado que algumas
informações seriam perdidas).
A pipeline computacional para executar as análises de suporte foi total-
mente implementada, bem como as integrações necessárias para obter
programaticamente os dados das fontes de dados existentes. Foi desen-
volvida uma pipeline de previsão de tráfego para o Porto. Para a análise
do comportamento de condução, foi constrúıda uma web dashboard,
permitindo que os departamentos relevantes estudem posśıveis áreas
problemáticas na cidade de Aveiro.





keywords Smart Urban Mobility, Traffic flow, Forecasting, Deep Learning, Driving
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abstract The sustainable growth of cities created the need for better informed de-
cisions based on information and communication technologies to sense the
city and quantify its pulse. An important part in this concept of “smart
cities” is the characterization of the traffic flows.
In this work, we aim at characterizing the urban mobility in two different
cities, Porto and Aveiro. The structure and contents of the corresponding
datasets is very different, enabling two case studies, with distinct use cases
related to traffic analysis and forecasting.
For the Porto use case, we had access to road-mounted traffic sensors and
the buses tracking data. The first source was studied and was looked for
patterns (e.g.: weekdays behavior). Historic traffic counters data was used
to forecast future flows, using both statistical and deep learning methods.
We found that it was not possible to find a clear relationship between (buses)
speed and traffic intensity, however, when the speed was high, there was low
intensity, and when there was high intensity, the velocity was low. There
are daily and weekly patterns in the traffic flow data that enable forecast-
ing. When the anomalies in traffic do happen, the methods for short-term
forecasting perform better than those for long-term forecasting.
In the Aveiro use case, the dataset includes bus traces, that were used to
characterize the driving behavior, based on speed and acceleration. These
data were mapped into the city to find problematic areas. Side-by-side visu-
alizations help with the comparison of the traffic behavior in selected time
periods. We observed that some roads often present the same problems,
independently of the day or time of the day. In other parts of the city, the
problems can be found more often in specific periods.
The datasets for Aveiro and Porto were sampled with different frequency
(each second and each minute, respectively). We confirmed, with simula-
tions, that the analysis made for Aveiro was not possible with the granularity
of the Porto’s data set (as some information would be lost).
The computational pipeline to run the supporting analyses is fully imple-
mented, as well the required integrations to programmatically obtain the
data from the existing data sinks. For the driving behavior analysis, a web
dashboard is deployed, enabling the relevant departments to study potential
problematic areas in the city of Aveiro.
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Chapter 1

Introduction

This dissertation project studies the urban mobility in the cities of Porto and Aveiro and
was developed in the context of the research activities of S2MovingCity project.

1.1 Context and Motivation

Smart cities use information and communication technologies to enhance decision making
and, thus, trying to make cities better and more sustainable places to live. A smart city is
a city endowed by the ability to make smart management of the resources in a smart way.
The smart aspect comes from the ability to integrate sensing and analytics technologies to
support decision making and actuations. For example, smart management of electricity by
turning the lights on only when there are people nearby, smart management of water by
watering gardens only when the soil is not damp, etc.

Sensing and communication capabilities would be deployed across the city that can collect
data, transmit data, and perform actions. In this context emerged the concept of the Internet
of Things (IoT).

The smart management of urban mobility is one of the many goals that several cities
want to achieve. By taking advantage of the IoT, it is possible to collect urban mobility data,
process and analyze the data and propose actions to improve urban mobility. Some examples
are on-demand parking, responding to accidents in real-time, improving traffic flowing, etc.

The project S2MovingCity 1 aims to improve city management through the creation of
decision support systems. It relies on the creation of a communication infrastructure to
collect data from fixed stations, a vehicular network, and mobile collectors. The gathered
information will be processed and analyzed in order to expose behavior patterns and make
predictions.

Members of the Network Architectures and Protocols (NAP) 2 group from Institute of
Telecommunications (IT) 3 and members from Institute of Electronics and Informatics En-
gineering of Aveiro (IEETA) 4 are developing this project. Several works contribute to this
project, for example, Pereira et al. [2] created a decision support dashboard to help in the
management of traffic by the competent authorities. Ricardo et al. [3] created a tool that

1s2movingcity.av.it.pt
2www.it.pt/Groups/Index/36
3www.it.pt/ITSites/Index/3
4wiki.ieeta.pt
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builds smart bus schedules and estimates the bus time of arrival. Tavares et al. [4] create an
application that performs the estimation of bus arrival time.

This dissertation is focused on the study of smart urban mobility in two cities of Portugal:
Porto and Aveiro. This work aims study traffic flow and driving behavior. Identifying patterns
in traffic flow data, and predicting traffic flow data even when anomalous conditions happen,
can lead the responsible authorities to take measures when it is necessary. For example, if it is
detected an increase in traffic in a location, it might be beneficial to change the infrastructure,
like to change traffic signs, to allow a better flow. Identifying the locals’ or periods associated
with non-safe driving behavior can also lead to changes in the infrastructure.

1.2 Objectives

The main goal of this work is to study urban mobility by using traffic data obtained from
buses and traffic counters. The present dissertation has the following objectives:

• Study the bus tracking dataset and additional deployed sensors (traffic counters) in the
Oporto city to predict future traffic behavior,

• Use vehicle tracking data to characterize the driving behavior and look for safety pat-
terns,

• Integrate the analytic methods in friendly end user-tools.

Besides buses, there are several sensors spread across the city that allow us to have a
good picture of the evolution of traffic as time goes by. The first topic intends to study the
collected data to highlight traffic problems. Besides that, traffic behavior can foresee potential
problems, and help in the creation of alternative solutions to traffic.

The second topic aims at the creation of driving profiles, using as metrics the collected
data. The driving profiles should contemplate safe driving profiles and non-safe driving pro-
files. Create a distinct line between the driving profiles is the first step to identify the sources
that lead to non-safe driving. It is important to identify roads, zones, times of the day, etc.

The last topic is focused on the creation of a decision support tool for studying driving be-
havior in order to identify the causes that lead to non-safe driving. This topic is a complement
to the previous one.

1.3 Contributions

The work developed in this dissertation can be summarized as follows:

• Creation of a dataset for road segments from Porto,

• Creation of a dataset with maximum bus speed for road segments in Aveiro,

• Creation of a dataset with bus data, road segment, acceleration, travel distance and
behavior profile,

• Creation of a Fiware structure to receive and persist data

• Pipelines for preprocessing the data,
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• Pipeline to forecasting the traffic flow observed,

• Classification of driving profile (safe or non-safe),

• Tool for comparison and study of the driving behavior.

As a result of this work, two scientific papers are being prepared, entitled ”Using auto-
matic traffic counter data to forecast traffic behavior in Oporto” and ”Characterizing driving
patterns from bus tracking data”.

1.4 Dissertation Structure

This document is structured as follows:

• Chapter 1 - Introduction: Contains the dissertation motivation, context, objectives of
the developed work, and contributions.

• Chapter 2 - Background concepts: This chapter introduces key concepts of the developed
work. The key concepts are time-series, statistical methods for forecasting, and deep
learning methods for predicting.

• Chapter 3 - State of the art: It presents the state of the art about statistical methods
for forecasting the traffic flow, deep learning methods for predicting the traffic flow, and
driving behavior analysis methods based on speed and acceleration.

• Chapter 4 - Use cases: It presents the requirements defined, the data sources,and the
use cases.

• Chapter 5 - Forecasting the traffic flow: It describes the process to forecast traffic flow
observed.

• Chapter 6 - Driving behavior: It describes the process to study the driving behavior.

• Chapter 8 - Results: It presents the results obtained from the implemented solutions.

• Chapter 9 - Conclusions and future work: It discusses the main conclusions and proposes
future improvements.
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Chapter 2

Background concepts

In this chapter, we review the essential background concepts supporting the data analysis
methods used in this work. The first section contains a brief introduction to the type of data
found in urban mobility studies, the challenges associated, and the type of components that
characterize urban mobility data: time and space.

Since the data is very dependent on the component of time, and one of the main goals is
to forecast or predict future values, this chapter contains tree more sections for each one of
the key aspects: time-series, statistical methods for forecasting, and deep learning methods
for predicting.

The second section explains what is a time-series and how it can be studied. The third
section presents the statistical methods that can forecast future values. The statistical meth-
ods are very important in the early stages of this study. The fourth section explains the
machine learning methods used for predicting the traffic flow. The last section presents the
evaluation metrics used.

Note that, in this context, forecast and prediction are very similar. However, infer some-
thing is not necessarily about the future; for example, I may want to predict if an object is a
pencil or a pen, based on a set of features.

2.1 Urban Mobility Data

The urban mobility data used in this work refers to traffic data, which contains spatial
and temporal information that can be used to characterize mobility flows in the city.

2.1.1 Data sources for traffic description

The information about traffic can be from the infrastructure, like traffic flow sensors,
traffic speed sensors [5], pedestrian sensors, speed sensors, beacons, security cameras and
traffic lights, or can be from vehicles. In our case, the information comes from both and have
heterogeneous sources. In the literature, we also find information that comes from video [6].

In Porto, there is a network of buses that provide information about their speed, Global
Position System (GPS) coordinates, and heading every minute. Besides buses, it can also be
used on taxis [7], garbage trucks, etc. There are also traffic flow sensors that measure the
number of vehicles crossing a segment per time unit.
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Earlier this year, in Aveiro, a similar infrastructure to the Porto bus infrastructure began
to be built. In AveiroBus 1 buses it was connected On-Board Unit (OBU)s, and Data Col-
lecting Unit (DCU)s. Some Road Side Unit (RSU)s were also added at strategic points in the
city. The infrastructure in Aveiro was created by the NAP group of the IT of Aveiro.

Veniam 2 and AveiroBus provide information about the buses, such as GPS data and
speed. The traffic flow information was given by Porto Digital 3. Both datasets have two
key features, space and time. It is expected to observe patterns resulting from the evolution
of time, but that depends on the location. The gathered information can be processed using
historical methods, statistical methods, or machine learning methods. In some cases, even
just the visualization of the data can be useful.

Besides, we receive a General Transit Feed Specification (GTFS) that provides information
about the buses like routes, trips, stops, agency and calendar dates. However, this information
was given just about the network of Porto. For Aveiro, it was possible to get a similar type
of information using available online datasets.

GTFS represents public transport information through a set of text files organized in a
similar way to a relational database [8]. It is possible to obtain all the bus routes and the
planed places where buses can go. It is also possible to calculate, for a given street and in a
period, the number of buses that are expected to pass there. GTFS files have an expiration
date, usually just a few months.

The shapes.txt file contains GPS coordinates organized in a way that makes it possible to
discover the paths where buses go through, but it is not feasible to work with GPS coordinates.
To determine which street or segment the GPS coordinates belong, or which segment is
closest to a GPS position, it was decided to create a spatial database that allows performing
geographic and geometric queries. However, first we need to convert GPS coordinates into
geographic features.

The most significant difficulties arise from the characteristics of the datasets, namely the
bus speed dataset of Porto. Bus mobility patterns do not match the general traffic mobility
patterns. Buses do not represent the behavior of the remaining vehicles, as they have a pre-
established route. They make stops along their route, and given their dimensions, they may
be forced to travel at lower speeds, and they may sometimes have their own traffic lanes.

2.1.2 Geospatial data visualization

If we look at each of the nodes individually (one bus or one traffic flow sensor), we realize
that they can be represented through a time-series, where the sequence of values matters and
cannot be changed.

It is expected to observe patterns as a result of the evolution of time. There are two
types of patterns to consider: cyclic and seasonal. A seasonal pattern is a result of seasonal
factors and has a fixed frequency. In a cyclic pattern, there is not a fixed frequency, and the
patterns observed depend on factors that are not influenced by the calendar. Beyond helping
find patterns, time-series are very useful to predict future values [9].

To achieve the desired goals, it is necessary to simplify the problem. Working with ge-
ographic data can be more difficult than it seems. Some authors ignore their presence by
working with one geographical point [10] or two freeway locations [6]. However, other authors

1www.aveirobus.pt/
2www.veniam.com
3www.portodigital.pt
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suggest a solution to deal with geographical data. Qimei Cui et. al. makes the mapping
of geographical data into a grid [7]. A different approach is proposed by Yiming Xing et.
al. as they divide geographical data into road segments [11]. The approach of analyzing by
segments, bus lines, or regions of interest seems to be the best to follow.

Spatial data requires special attention in order to be manipulated. Geographic Information
System (GIS) is a framework that maps the world in a two-dimensional plane. In other words,
GIS deals with flat map projections. It allows to gather, store, analyse, and visualize spatial
data [12]. There are several GIS Softwares available, the two most popular being ArcGIS
[13] and QGIS [14]. Unlike ArcGIS, QGIS is a free software, open-source and cross-platform.
One advantage of using QGIS is the capability of importing and exporting geographic data in
different formats. QGIS has other features such as visualization, exploration, data processing,
etc. In addition to the key features, many others can be added by adding plugins [14].

With QGIS it is possible to convert the shapes.txt from the GTFS files in a shapefile.
The tables were also created automatically. The shapefile contains geographic features, rep-
resenting points, lines, or polygons.

PostGIS is a relational and spatial database based on PostgreSQL. Likewise QGIS, Post-
GIS is free, open-source and cross-platform. A spatial database stores data quite similarly
to normal databases, but also has spatial functions that support the creation of geometric
and geographic queries. Note that a spatial database allows the storage of non-spatial data.
Besides PostGIS, there are some similar alternatives based on Oracle, SQLite, MongoDB, etc
[15].

By doing segment analysis, instead of having an infinitude of points, we will have around
40000 segments. These can be grouped in the future, making it possible to analyze a larger
segment, a road or a route. Thus, we no longer have the spatial component to influence the
analysis, reducing in this way the complexity of the data.

OpenStreetMap (OSM) [16] is an open-source project that provides geographic data for
free, for people to use it as they want as long as they credit OSM and its contributors. OSM
counts with the contribution of a big community. OSM contains information about roads,
bus routes, trails, etc. Besides that, it also provides GTFS information and can help in its
construction [16].

There are several web applications, libraries, APIs, and other tools (Java, C/C++,
Python, and Javascript) that allow us to work with OSM data. Some of those can give
us, for example, the roads with information about the maximum speed. Such information
can be very useful if we want to study, for example, driving behavior, etc.

2.2 Time-series

A time-series is a discrete function whose value depends on time, as shown in Figure
2.1. Because of that, it is important to preserve the sequence of values. A time-series shows
the evolution over time of a certain value. For example, it can show the evolution of the
temperature through the day, month, year, etc. It is important to take into consideration the
metrics that we are working with. Some types of data are continuous values, like temperature
or speed; others can be counts like the traffic flow observed or the number of sold items.
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Figure 2.1: Time-series

2.2.1 Components of a time-series

A time-series can be decomposed in four components: trend (t), seasonality (s), cyclic (c)
and residual (r) [17]. The components are the result of the existing patterns in the time-series.
A time-series can be expressed as:

f(t) = t(t) + s(t) + c(t) + r(t) (2.1)

There are two types of models to decompose time-series: additive models and multiplica-
tive models. Equation (2.1) assumes that the model is additive. In a multiplicative model,
instead of adding components, we multiply them, making the model sensitive to zero val-
ues. If seasonal variation is constant over time we use the additive model. If the model is
multiplicative, the components increase or decrease over time [9].

If a time-series has an upward or downward evolution, then it has a trend. This evolution
can be linear or non-linear and can be obfuscated by seasonal fluctuations and noise [17].
The seasonal component depends on seasonal patterns. A seasonal pattern is a consequence
of seasonal factors and has a fixed frequency. For example, the school calendar can influence
more or less traffic nearby schools in specific times of the year. The cyclic component is related
to cyclic events that occur from time to time without being related to calendar events. In
a cyclic pattern, there is not a fixed frequency. When we eliminate these three components
from the data, it can remain some residual data, so we get the last component, the residual
component [9].

2.2.2 Measures of dependence between variables

One of the most popular ways to measure dependence between variables is by using
correlation. If a variable is very related to another, their relationship is strong, which means
that the correlation coefficient will be very close to 1. On the other hand, if they have nothing
in common, their relationship is weak, which means that the correlation coefficients will be
very close to 0.
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Pearson correlation

Pearson correlation is one of the many types of correlating variables. It is better used to
detect linear relationships, and assumes a Gaussian distribution of the data [18].

Correlation of time-series

Cross-correlation compares two time-series and tries to detect a correlation between fea-
tures with the same maximum and minimum values. Autocorrelation compares the same
time-series but at different times. This type of correlation can detect patterns or seasonality.
Normalized cross-correlation is similar to cross-correlation but can compare metrics with dif-
ferent value ranges. Normalized autocorrelation is the same as normalized cross-correlation,
but for autocorrelation [17, 19].

2.2.3 Stationarity

Stationarity in a time-series implies that, when it occurs a shift in time, the distribution
of the data is the same. When a time-series is nonstationary, that is because of the existence
of unit root. If the time-series is not stationary, then we must make it stationary. This is a
crucial step to forecast future values using statistical methods or make predictions using deep
learning methods.

To evaluate if a time-series is stationary or not, visualization techniques can be helpful;
however, it is not always enough. In this context emerge the Augmented Dickey-Fuller (ADF)
test [20].

Augmented Dickey-Fuller test

The ADF test is a statistical test, more precisely, a unit root test, that tests how strongly a
time-series can be characterized by a trend. If the time-series is not stationary, it is necessary
to apply differencing to make it stationary [20].

The differencing technique will subtract the previous lag to the actual lag. This type of
differencing is called first-order differencing. In some cases can even be necessary to apply
second-order differencing, which means to apply for the second time the first-order differencing
[17].

This test has a null hypothesis that assumes that the time-series can be represented by a
unit root. So, as null hypothesis is defined that the time-series is nonstationary. Therefore,
if the null hypothesis is rejected, it can be concluded that the time-series is stationary. The
hypothesis test is verified by the calculated p-value. If the p-value is lower than a threshold,
then the null hypothesis is rejected meaning that time-series is stationary [20]. Usually, the
threshold values used are 0.01 (for a confidence of 99%) or 0.05 (for a confidence of 95%).

2.2.4 Smoothing

Sometimes, time-series data can have several small fluctuations. Those small fluctuations
make the time-series difficult to study, and in some cases, even impossible to study. To
overcame these fluctuations, it was proposed several smoothing methods over the years. A
smoothing method aims to remove noise from data without changing the core features.
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The choice of the best smoothing method can be difficult. It can depend on the type of
analysis that we want to make and the type of results that we want to achieve. The best way
to choose a smoothing method is to apply it and then check what happens to the data.

There are several ways of smoothing data. For example, Moving Average (MA) smoothing
allows the removal of small variations between time steps. This type of smoothing is simple
and easy to calculate. It is necessary to define the window size that is going to be used
to calculate the MA process. To apply this type of smoothing, the time-series should be
stationary [20].

Some smoothing methods can be based on interpolation of points. It is possible to do
interpolation using a linear function, a cubic function, a spline function, etc.

Savitzky–Golay smoothing

The Savitzky–Golay smoothing [21], also known as Savgol smoothing, fits a set of points
without changing the signal tendency, applying locally a polynomial function. The number
of points that is applied is configurable and is called the window size. Usually it is preferred
polynomials of a lower degree, and the window size needs to be bigger than the polynomial
degree.

2.3 Statistical Methods

Time-series can enhance several types of studies. One of the most used is the forecasting
of future values. To perform forecasting it start to appear several methods; like historical
methods, and statistical methods. While historical are based only on what was observed
previously; statistical methods are based on the study of statistical features. This section
presents the statistical method used: seasonal AutoRegressive Integrated Moving Average
(ARIMA).

2.3.1 AutoRegressive Integrated Moving Average (ARIMA)

ARIMA [9] is a statistical model for analyzing time-series. There are two types of ARIMA
models: non-seasonal ARIMA (also know just as ARIMA) and seasonal ARIMA (also know
as Seasonal AutoRegressive Integrated Moving Average (SARIMA)).

The ARIMA model, expressed in equation 2.2, can be subdivided in three models: Au-
toRegressive (AR), Differencing (represented as I), and Moving Average (MA). For each one
of these partes there are a parametric component that can be studied: p, d, and q. [9]

ARIMA(p, d, q) = AR(p) + I(d) +MA(q) (2.2)

The parameter p referes to the order of the AR part of the model. The parameter d is
the degree of the first differencing involved. The parameter q referes to the order of the MA
part of the model.

2.3.2 AutoRegressive (AR) model

The AR model can be represented as AR(p). AR models are good at learning the trend
of time-series data [17]. If the order of the model is 1, then the model can be described as
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[22]:

Xt = φ1Xt−1 + εt (2.3)

The AR model is based on the concept that, if two observations are related to each
other, and one happens before the other, then they are correlated. A consequence of the
model is that, if an observation t depends on the previous observation t − 1, and if the
previous observation t− 1 also depends on a previous observation t− 2, then the observation
t also depends on the observation t − 2, and so on. The equation 2.4 expresses the previous
observation t− 1, if the order of the model is 1 [22].

Xt−1 = φ1Xt−2 + εt−1 (2.4)

The letter φ represents a coefficient that can correlate an observation with a previous
observation. φk means that the degree of the polynomial is k. In the case of equations 2.3
and 2.4, the degree of the polynomial is 1. The εt represents the white noise that can exist.

If the order of the model is p, then the equation is expressed as 2.5

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt (2.5)

As shown in equation 2.5, if we increase the order of the model, that means that an
observation is more dependent on the previous observations.

2.3.3 Moving Average (MA) model

The MA model is similar to the AR model, but it is focused on the white noise, using the
previous white noise to forecast the next observation. The MA model can be represented as
MA(q), being q the order of the model. When the order of the model is 1, the model can be
expressed as in equation 2.6 [22].

Xt = εt + θεt−1 (2.6)

If the order of the model is q, then we get an equation as in 2.7.

Xt = εt + θεt−1 + θ2εt−2 + ..+ θqεt−q (2.7)

2.3.4 Differentiation

There is a model based on the AR and the MA model called Autoregressive Moving
Average (ARMA). ARIMA adds an extra component to an ARMA process: the differencing
model. Differencing a time-series can be important, if the time-series is non-stationary, as
it was previously mentioned. Since the ARIMA model deals with differencing, verify if the
time-series is stationary or not becomes insignificant. The differencing model will eliminate
the trend and seasonality from the data, and focus on the remaining aspects of the data
[17, 22].

If the order of the model, represented as I(d), is 1, then it can be represented as:

∆Xt = Xt −Xt−1 = εt + θεt−1 (2.8)
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2.3.5 Seasonal ARIMA

The seasonal ARIMA can be represented as:

ARIMA(p, d, q)(P,D,Q)m (2.9)

In the seasonal ARIMA model, there are 2 parts to take into consideration. The first one
((p, d, q)) refers to the non-seasonal part of the model. The second one ((P,D,Q)m) it is for
the seasonal part of the model, where the parameter P is for the order of the seasonal AR
part of the model, and the same happens to the D and Q part. The parameter m is for the
number of periods per season. Usually, all these parameters assume values like 0, 1, or 2.
More complex models can assume other values, those values have always to belong to the set
of natural numbers N.

2.4 Machine learning

Machine learning is the ability of computers to learn using big volumes of data, and
without being programmed. There are three types of machine learning. The first one is
supervised learning, and it is characterized by having labeled data, feedback, and the goal is
making a prediction. The second one is unsupervised learning whose goal is to find hidden
patterns in the data. The third type is reinforcement learning and aims to learn a set of
actions. [23] Deep learning is a subset of machine learning and belongs to the supervised
learning algorithms. In this dissertation it will be used deep learning algorithms, designated
by Artificial Neural Network (ANN)s, to predict the traffic flow observed.

As the name suggests, ANNs [24] are inspired by the concept of neural networks present
in neurobiology. There are several types of ANNs, like FeedForward Neural Network (FFNN)
[25], Recurrent Neural Network (RNN) [25, 26], Convolutional Neural Network (CNN) [25, 26],
etc. In order to use ANNs to make predictions, it is necessary to train the network before.

A simple example of an ANN is a single neuron, also known as the perceptron. The
perceptron model can have several inputs where each input is multiplied by a weight. The
obtained values are summed and go through an activation function. We have also a bias term
that will make a shift to the activation function, and it will be produced an output. In this
example, we have one hidden layer with one activation function [27].

Usually, an ANN is formed by three types of layers, as represented in figure 2.2. The first
type of layer is the input layer, the second one comprises the hidden layers (one or more), and
the last one is the output layer. Each layer can have one or more neurons. In this case, the
first layer has four neurons, the second has five neurons, the third has five neurons, and the
last one has one neuron. The arrows represent the connections between neurons in different
layers. Each neuron is fully connected with the neurons of the next layer.

The input layer receives the data, transforms the data multiplying it by weights, and then
does the feed-forward propagation of the data to the next layer. The weights start at random
values in the input layer, and because of that, there will be different outputs for the same
inputs and network configurations [24].

The data can be propagated by several layers that belong to the hidden layers’ group. In
each layer, the neurons are multiplied by a weight. At the end of each step of the training
process, it will be made a prediction that it will be compared with the actual value using a
loss function. The loss function will produce a score that is important to adjust the weights
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Input Layer Output LayerHidden Layers

Figure 2.2: Example of an ANN.

of the hidden layers in the next epoch. The loss score increases as the difference between
the true value and the predicted value increases. The optimizer is responsible to make this
correction.

An epoch is a step in the training process. It is important that the dataset passes several
times through the network, because the network can not learn if there is only one epoch. If
the network does not learn, then we will have an underfitting of the data.

Underfitting is one of the problems that may occur. We can also have overfitting of the
data. Overfitting happens when the model can perfectly describe the data. It may sound good,
but it is not. The problem with overfitting is that the model is not generalized. Sometimes it
is necessary to make the dropout of some neurons, this is, some connections are “turned-off”
to ensure that it does not happen the overfitting of the model, as shown in figure 2.3 in the
third layer. In other words, there are not always fully connected layers (dense layers) as it is
presented in figure 2.2.

Activation functions should be non-linear, because they allow non-linear transformation
to the data, but this does not mean that they have to be complex. This is important because,
if the data is not linearly separable, then it will not be possible to separate it using linear
functions. Some common activation functions used are Rectified Linear Unit (ReLU), sigmoid,
hyperbolic tangent (tanh) and softmax. The first three functions are represented in figure 2.4.

Activation functions allow the separation of data classification in neural networks. The
ReLU [24] function is very popular in neural networks and is 0 if the values are negative, and
is the value otherwise. The function can give any value in R0

+, being a sparse function. The
sigmoid [24] function limits the output between 0 and 1. For values close to 0, the sigmoid
function will present very different values, for negative values, the sigmoid function tends to
0 and for positive values, the sigmoid function tends to 1. This function presents a small
dispersion of the data when compared with the ReLU function. The tanh [24] function curve
is similar to the sigmoid function, but the range of the values go from -1 to 1. Sigmoid
functions and tanh functions are very used in RNNs [17]. The softmax [24] function gives
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Input Layer Output LayerHidden Layers

Figure 2.3: Example of an ANN with dropout.
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the probability distribution, for that reason the values belong to the interval between 0 and
1; however, if we can have several distinct output values, the function will give very small
values. Sigmoid and tanh functions seem the best function to work with time-series.

The simplest type of neural network is the FFNN. As the name might suggest, in this
type of neural network the information goes forward through the network and does not make
any type of cycle in the hidden layers. Some types of networks perform cycles between hidden
layers or even in the same neuron. There is a special case of a FFNN called a Fully Connected
Network (FCN), which is basically a FFNN with dense layers.

RNNs are a type of neural network used to make predictions, being more suitable for
sequential data. The process is made by iterating over data and saving a state in memory.
The major difference between FFNN and RNNs is that RNNs can perform loops in the hidden
layers. There are several types of RNNs, being Long Short-Term Memory (LSTM)s [25] one
of the most used, especially for sequential data.

One of the most common problems associated with RNNs is the vanishing gradient prob-
lem. This problem is characterized by the incapability of changing the weight values as time
goes by, creating a vanishing effect. LSTMs were created to solve this problem. The network
can save information across many timesteps, to use it later [24]. The LSTM networks present
loops not only in the hidden layers but also in the neurons. A consequence of these loops is
that LSTMs become more complex computationally.

2.5 Evaluation Metrics

Evaluation metrics measure the models performance, being helpful to choose the best
model. It will be presented some of the metrics that can be used.

Mean Squared Error

Mean Squared Error (MSE) [9, 25] can be described as in equation 2.10. Yi represents the
observed value, and Ŷi represents the predicted value. MSE is given by the sum of the square
of the differences between the predicted values and the true values, and then it is divided by
the number of elements, represented by n.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (2.10)

The MSE value is always larger or equal to zero. If the predicted value and the true value
are equal, the error is zero. As the difference increases, the error increases. A good model
has a MSE close to zero.

Root Mean Squared Error

Root Mean Squared Error (RMSE) [25] is the square root of MSE, as shown in equation
2.11. If the value of MSE is lower than 1, then the value of RMSE is bigger than the MSE
value. Otherwise, the value of RMSE is lower than the value of MSE. Similar to MSE, RMSE
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value is always bigger or equal to zero, and a good model has a RMSE close to zero.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 =
√
MSE (2.11)

Mean Absolute Percentage Error

Equation 2.12 gives us the Mean Absolute Percentage Error (MAPE) [9] formula. Looking
for the sum part, MAPE divides the absolute error value between the predicted value and the
true value by the true value. This can have huge consequences because, if the true value is
zero, then we will get infinite. Since the traffic flow observed can have zero values, this metric
is not good. Besides that, all it takes is a small true value for the MAPE value to be huge.

MAPE =
1

n
(

n∑
i=1

|Yi − Ŷi|
Yi

) ∗ 100% (2.12)

Mean Absolute Error

Mean Absolute Error (MAE) [9] gives the average of the absolute error values, being
always bigger or equal to zero. MAE does not penalize big errors, as much as MSE [28].

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (2.13)

Explained variance

Explained variance measures the dispersion of the data. V ar represents variance. For a
good model, the obtained value should be close to 1.

ExplV ar = 1− V ar(Y − Ŷ )

V ar(Y )
(2.14)

Coefficient of determination

The coefficient of determination is also known by R2-Score and can be calculated as in
equation 2.15. MSEbaseline is similar to MSE, but instead of using the predicted value, it
uses the mean of the observed. A good model should have a score close to 1. The maximum
value of R2 − Score is one, and the minimum value is -∞. However, any value that is not
positive means that the model is worst than predicting the mean [28].

R2 − Score = 1− MSE

MSEbaseline
(2.15)

Akaike Information Criterion

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are two
evaluation metrics very used in statistical methods. They select the best model based on
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the log-likelihood and complexity of the model. AIC is based on frequentist probability and
penalizes complex models less [29].

AIC is expressed in equation 2.16. L̂ is the likelihood and p is the number of estimated
parameters [9].

AIC = 2p− 2 ln(L̂) (2.16)

Bayesian Information Criterion

BIC is based on Bayesian probabilities and penalizes the model with a bigger complexity.
A very complex model has fewer probabilities to be chosen. [29]

BIC can be obtained using AIC, as shown in equation 2.17. [9]

BIC = AIC + p(ln(n)− 2)

BIC = 2p− 2 ln(L̂) + p ∗ ln(n)− 2p

BIC = −2 ln(L̂) + p ∗ ln(n)

(2.17)

2.6 Summary

This chapter introduces the type of data used, the problems associated, present methods
to perform forecasting and prediction, and presents some evaluation metrics. These problems
are related to the components time and space. It is possible to simplify the space component
by using a solution based on road segments. To simplify the time component we use time-
series.

Once the data is ready, it is necessary to perform analysis to identify patterns and charac-
teristics associated with the data, decomposing the time-series can be very useful. The use of
cross-correlation allows the identification of similar time-series and the use of autocorrelation
allows the identification of similar time periods. If the data present to significant noise it can
be used smoothing techniques for a more focused study.

To forecast time-series data there are two types of methods that can be used. The first
type is the statistical one, and an example is the SARIMA model. SARIMA models are de-
terministic and computationally lightweight; however, they are very limited in the prediction
they can make. The second type is deep learning methods, and we can use FFNN or LSTM.
LSTM is very used with time-series data because it can save old information in the network
and use it when it is necessary. Deep learning methods are computationally heavier but allow
long-term forecasting.
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Chapter 3

State of the art

The work developed in this dissertation covers the process of dealing with temporal data,
GPS data, forecast and predict the traffic flow observed, detecting anomalies, classifying
driving behavior, and detecting problematic areas. For a more comprehensive study, this
chapter will present the state of the art on this area.

This work deals with several topics from different areas. The first section of this chapter
contains the related work associated with smart urban mobility. The second section presents
some works developed to forecasting urban mobility data. The third section presents some
works with the goal of classifying driving behavior. The last section presents a discussion
about the several mentioned works.

3.1 Smart Urban Mobility

Smart cities aim at offering to their citizens a more sustainable, optimized and safe city:
a place that can offer a better quality of life. Smart cities are urban spaces where data is
collected from sensors in order to better manage the resources and available services. For this
to be possible, the data will be processed and analyzed.

Traffic jams, lack of parking, air pollution, noise pollution, and road safety are common
problems in many cities and tend to get worse. For that reason, planning urban mobility
becomes necessary. In order to improve it, we can propose changes in the infrastructure, like
expanding the number of roads or lanes, but cities cannot always implement such changes.
Even if they can, it is not always enough. The best thing we can do is to improve how we use
the actual infrastructure. In this context, Intelligent Transportation Systems (ITS) emerge.
ITS aims to improve the mobility of people and cargo, safety, productivity, efficiency, and
decrease pollution in transportation [30].

The study of urban mobility data is essential in ITS. Urban mobility data can have
different sources, it can be from different types, and it can have different risk levels (sensitive
data, quasi sensitive data, and public data) [31]. Liu et al. [31] propose a framework to
manage smart city data with the described characteristics. It was necessary to perform data
anonymization and have different forms of storage, publish, and retrieve.

It is possible to estimate urban mobility indicators by using telecommunication data.
Vidovic et al. [32] estimate the number of trips, travel time, and distance time using voice
calls, text messaging, and internet access data.

Pagani et al. [33] performed a knowledge discover mechanism to extract features from
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car-sharing data services to calculate travel time, vehicle flow, identify congestion zones, etc.
They verify that cars have a lower speed during the day, and the fuel consumption is bigger
during the day.

Dontu et al. [34] used Weigh-in-Motion system data to estimate vehicle dimensions (vol-
ume and weight) and the type of vehicle. They used this information to estimate the level of
pollution. They verified that car consumption is bigger at lower speeds, which agree with the
conclusions made in [33].

To minimize traffic jams, reduce stress, and decrease pollutant emissions, the authors in
[35] proposed a method for optimizing traffic light green phase.

This chapter will be focused on how we can analysis the vehicular traffic in the city
of Porto and Aveiro, and the detection of patterns, anomalies and the forecasting of some
metrics. Urban mobility patterns and anomalies are the result of a set of individual choices.
Those choices are made taking into account the source and destination, the fastest route
versus the most economical route, etc. Sometimes it can be influenced by individual, social,
or cultural preferences.

3.2 Urban Mobility Forecasting

Several approaches have been proposed to address the forecasting of traffic flows, ranging
from historical methods to machine learning applications.

Historical Methods

Historical methods predict future values naively using just historical data. In Historical
Average Forecast (HAF) [6] only the previously observed patterns are taken into account. It
can be given more weight to recent events, in order to improve the model. Another way to
control the events that are considered is done by using a fixed moving window. This model
can be seen as a fitted ARIMA, like Billy Williams et. al. [6] mentioned. This happens
because one of the parameters of ARIMA can be recalculated for each time of the day as a
weighted average leading to become very similar to HAF.

Statistical Methods

The traffic flow forecast using statistical methods is not a new topic. It has been studied for
over 35 years. In 1984, Okutani et al. [36] published a paper about how they could use Kalman
filtering theory to predict traffic volume, even with minimal computational resources. In the
following, it will be presented some of the most recent statistical studies done on forecasting
traffic flow.

In 2003, Williams et al. [6] evaluated traffic flow data from two different locations aggre-
gated in 15 minutes intervals, and divided the data from each location into two groups: test
and validation. It then analyzed vehicles per hour and vehicles per hour per lane, comparing
the real results with the ones forecasted using SARIMA, Exponentially Weighted Histori-
cal Average (EWHA), and Deviation from Historical Average (DHA). The best results were
obtained with SARIMA.
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Clustering

Clustering techniques aim to group data into clusters with certain common features. The
final goal is to predict which cluster a certain point belongs.

In 2019, Liu et al.[5] developed an approach based on Temporal Clustering and Hierarchical
Attention (TCHA), to make short-term traffic speed predictions. Temporal Clustering is used
to obtained several clusters and group data with similar traffic patterns. The similarity is
calculated using the Pearson correlation function. The model uses two attention mechanisms,
one to capture spatial features, and another one to capture temporal relations. At each time
step, it is determined the most relevant features. The proposed method was compared with
a Historical Average (HA) model and a Gated Recurrent Unit (GRU) model. According to
the authors, the TCHA method could retain more temporal and spatial information.

Artificial Neural Networks

Machine Learning comprises several areas of study, including Deep Learning. The main
goal of Deep Learning is to extract patterns from data. Deep learning models are inspired by
the biological nervous systems and are called ANN [27]. An ANN can be composed of several
layers of neurons, whose information flows through the layers [27].

In 2018, Wu et al [37] developed a Deep Neural Networks (DNN) based traffic flow pre-
diction model that takes into account the spatial-temporal characteristics of the data. In the
beginning, the data goes through an attention model that will determine how correlated the
past data is with future data. Then, the data will be divided. The model is a mix of two
types of DNNs. For the spatial component, it is used a CNN. For the temporal component,
it is used an RNN. At the end of the network, the model used a regression method to link
both networks. This method takes into consideration the data from the last day, last week,
and future data.

In 2019, Guowen et al. [38] proposed a model using a five-layer GRU network, which is a
type of RNN with a gating mechanism to make a short-term traffic flow prediction. Due to
the bad results obtained when compared with CNN, they performed a spatio-temporal feature
selection using a Spatio-Temporal Feature Selection Algorithm (STFSA) before applying the
GRU model. The authors used Pearson correlation to make a spatial correlation analysis
and a temporal correlation analysis. The spatial correlation analysis allows the selection of
the best spatial points, and the temporal correlation analysis allows the selection of the best
periods.

Also in 2019, Bartlett et al. [10] investigated the influence of the use of short and long
term patterns to get a more accurate prediction, and developed a Dynamic Temporal Context
Neural Network (DTC) framework. The DTC model uses short and long term patterns as
features, and determines the most relevant through online learning. Online learning has some
issues associated, as time goes by, some long term patterns can be lost. However, this model
can dynamically determine the most relevant patterns for the regression GRU model used.
They achieve better results using both temporal patterns when compared with a GRU model.
One major limitation of this work is that they do not include spatial dependencies, only one
geographic point was analyzed.

Xiaolei Ma et, al. [39] proposed, in 2015, a LSTM neural network to capture nonlinear
traffic dynamics to make short-term traffic prediction. This type of network can determine
the optimal time lags, which can improve performance. Longer time lags lead to better
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performance. The ability to choose the optimal time lags can have a huge impact on the
accuracy of the model. The authors implement several other methods, like a Support Vector
Regression (SVR) [39]. The SVR can obtain accurate prediction results if the parameter
settings are well chosen. However, the LSTM neural network obtained better accuracy and
stability results.

3.3 Driving behaviour and safety

Mobility has a fundamental role in human life: in social interactions, it has economic
factors associated, cultural impacts, etc. In the last decades, it is notorious the significant
increase in mobility, and with that increase, it became necessary to study it. One of the most
discussed topics is driving safety.

There are many factors that can contribute to safe or unsafe driving behavior. Some of
those factors are related to the driver’s attitude towards driving such as speed, acceleration,
maneuver signaling, safety distance, the respect for traffic signs, etc [40]. However, many
other factors can influence safe driving, those factors are resumed in Table 1.

Table 3.1: Factors that influence safe driving

Types of factors Factors

Human
Age, genre, emotional state, fatigue, sleepiness, consumption of
alcohol, medication, and other substances [40].

Environment
Visibility, road grip, stability (influenced by the wind), road
condition, and vehicle condition [40].

For a complete study of the driving behavior and driving analysis, it would be required a
wider knowledge about the driver, the vehicle, the road, the weather conditions, etc. For ex-
ample, some of the studies found used mechanisms to detect drivers distraction [41]. Knowing
our dataset helps us focus on just the studies that use the same type of data that we have
access.

One of the ways of study driving behavior is through the study of speed and acceleration to
understand if the driver presents a safe or unsafe driving behavior. But, how can we describe
safe driving behavior? A conductor that has a safe driving behavior respects the maximum
limits of speed imposed, and does not make abrupt changes on the speed that leads to sudden
accelerations or decelerations.

Studies based on speed and acceleration usually are based on the G-G diagram [42]. The
G-G diagram gives the maximum acceleration that is possible to achieve for a given speed. It
takes into consideration the longitudinal and lateral accelerations. However, there are other
types of models.

Derbel et. al [42] propose a system to evaluate the driving risk. This system is based
on three types of factors. It is made a fusion of information about the driver, the vehicle,
and the environment. The fusion happens at two levels. The first level is related to the type
of factor and is made using Dempster-Shafer Theory [43]. The second level of fusion is a
global fusion and is based on a Fuzzy theory [44] to designate basic probability assignment
functions. The information about the driver that is considered relevant is the age and genre
of the driver, since statistical studies reveal that they influence the probability of having an
accident. They call vehicle information, the information about speed and acceleration, and
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use it as an indicator of the aggressiveness level. The environment information is based on
statistical studies about the place, the time of the day, and the day of the week [42]. The
vehicle factors are studied at two different levels. The first one is based on the Euclidean
acceleration norm [45] and the speed of the vehicle. The second one is based on the G-G
diagram, with lateral and longitudinal acceleration to identify danger left and right turns
[42].

Eboli et. all [46] based their study on speed, acceleration, and friction. Once again, the
starting point is the G-G diagram. This model is more ethical than the previous one, because
statistics can not define a person.

Equation 3.1 to 3.5 explains how the authors created the model, starting from the G-G
diagram. The starting point is from equations 3.1 to 3.3.

Equation 3.1 gives the acceleration modulus.

|~a| =
√
a2lat + a2lon (3.1)

Equation 3.2 is the second law of Newton, Fs is called by stimulated force, being m the
mass of the vehicle.

Fs = m ∗ |~a| (3.2)

Equation 3.3 presents the resistant force (is a frictional force), µ is the coefficient side
fiction and g is the gravitational weight. The side friction coefficient depends on the road
material and meteorological conditions.

Fr = w ∗ µ = m ∗ g ∗ µ (3.3)

Using the three equations they get the result presented in equation 3.4. In a safe driving
behavior, the Fs should be smaller than Fr.

Fs = Fr ⇔ m ∗ |~a| = m ∗ g ∗ µ⇔ |~a| = g ∗ µ⇔ a2lat + a2lon = (g ∗ µ)2 (3.4)

They divide the friction into two components and obtain the maximum friction coefficient
to consider a safe driving. Then they make the necessary substitutions and get the equation
3.5. Note that, they assume a dry pavement and rural road.

|~a| = g ∗ [0.198 ∗ (
v

100
)2 − 0.592 ∗ (

v

100
) + 0.569] (3.5)

Using this equation, the authors can draw the limits for acceleration given the speed, to
classify a driving behavior safe or unsafe. The work developed in chapter 6 is based on this
paper.

3.4 Discussion

The first section is focused on the study of smart urban mobility. This field is broad and
it was developed many studies over time. We will focus on two types of studies: the ones
related to traffic flow, and driving behavior.

This work will implement statistical and ANN models to predic the traffic flow. The
statistical models are more transparent and reproducible. ANNs are seen as ’black boxes’. In
some cases, statistical models can obtain similar results to ANNs. One of the advantages of
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using ANNs is because they can handle multi-dimensional data and are very adaptable, as
well as handling outliers, missing data or noisy data [47]. The statistical methods presented
are good to detect patterns related with time.

Working with ANNs can be difficult. It begins with finding the weights of the inputs. The
training process will update the model weights in each iteration; however, the optimization
algorithm used may not lead to the minimum error or loss, and can lead to overfitting. The
training process can last for days or even months. ANNs also require a lot of information and
great computational power.

Driving behavior studies can be very complex; however, we focus on the ones that use
the same type of information that we have access to. The model chosen is the one that only
depends on speed, acceleration, road material, and meteorological conditions. This model has
some limitations, namely, the limited geographical location. Using data from OSM is possible
to extend our analysis to all the city.
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Chapter 4

Use cases

This work considers mobility data available from two ”living labs”, in the cities of Aveiro
and Porto. The two datasets, with parts in common, are substantially different. The dif-
ferences in the datasets and the existence of some previous work, originated different op-
portunities for each case. This chapter describes the context and use cases for each case
study.

4.1 Forecasting use cases for Porto

Porto LivingLab is a project that aims to study urban dynamics and is deployed in Porto.
This project contemplates a multi-source sensing infrastructure, capturing information from
a vehicular network, weather sensors, environment sensors, and people flows sensors. This
data is characterized by having a spatio-temporal component. There is a common backend
infrastructure to ensure consistency in the data models used. Data sharing is achieved by
using different services like publish-subscribe middleware, RESTful API, etc. This project
has three monitoring platforms (SenseMyCity, UrbanSense, and BusNet), provides free Wi-Fi
service to public bus users, and allows the development of several research works [48].

Several works were developed in the NAP group related to this project. There are works
about content gathering and content dissemination strategies [49] using Porto’s bus network.
Some relevant developed works were mentioned in Section 1.1 and are related to the creation
of decision support dashboards, estimation of the bus time of arrival, etc.

4.1.1 Data sources and existing city infrastructure

We used three data sources from Porto. Veniam gives information about the buses, Por-
toDigital provides information about several sensors like traffic flow, air quality, noise level,
weather, and some other types of data; however, only the traffic flow was used. PortoDigital
also provides the GTFS information about the bus network of Porto.

Porto’s bus network is complex and has several bus lines, stops. Figure 4.1 contains part
of the network, including traffic flow sensors. The colored lines are the bus lines, the circles
on the top of those lines are the stops, the markers are the traffic flow sensors and the clusters
of markers are traffic flow sensors that were clustered because they were close.

The map was built with the information present in the GTFS files about the buses, and
the geographical information of the traffic flow sensors.
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Figure 4.1: Bus lines, stops and traffic flow sensors

4.1.2 Selected use cases

Managing urban mobility is a difficult task that has to be performed by city managers.
Sometimes, they can only identify problematic areas when the problems assume very big pro-
portions. Predict traffic problems before they happen, or in early stages is one of the main
goals. Since urban mobility data is complex, city managers would benefit from a computa-
tional system that was able to find patterns in traffic and predict traffic conditions.

This can be achieved by using the data from the buses, the traffic flow sensors, and the
GTFS data. From the buses we have information about their speed and GPS position, from
the traffic flow sensors we have the count of vehicles and the GPS position. Using the GTFS
data we can associate GPS positions to road segments.

The main use case for the data from Porto is to predict and analyze traffic conditions.
With this in mind, the following use cases were planned:

• Study the relationship between the buses speed and the traffic flow intensity,

• Analyze patterns in the traffic flow observed,

• Forecast traffic flow observed,

• Detect anomalies in traffic flow observed,

• Forecast traffic flow observed even in anomalous situations.

A good starting point is to explore if bus speed is correlated with the intensity of traffic
flow sensors and try to understand, for example, if an increase in traffic leads to lower bus
speed, and when/where there is more congestion. Detecting the congested roads could lead
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to changing bus routes in order to get to the destination faster (note that there are many
overlaps in the routes), or can highlight the need for adding more buses. Comparing temporal
snapshots is also useful, for example, comparing the same interval in different years, as well
as studying the impact of calendar related events. In this way, we can draw conclusions about
the evolution of traffic over time. Several events can be considered, such as the school season
versus school holidays, workweek versus weekend, holidays, etc. Using road segmentation, or
by examining an individual road or route can highlight individual patterns.

4.2 Driving behavior use cases for Aveiro

In Aveiro, there is a sensing infrastructure constituted by buses, environmental sensors
and weather sensors. This infrastructure was created by the NAP group to create a ”living
lab” for Aveiro.

4.2.1 Data sources and existing city infrastructure

In Aveiro, the project Aveiro STEAM City 1 aims the development of an urban platform
and services that enable the management of the city based on a 5G infrastructure [50].

In the beginning of the year, members of our group start to deploy sensors and collecting
units in some of the city buses. We already had some sensors and collecting devices in some
strategic points of the city. Figure 4.2 contain some of the installed sensors, like the Smart
Lamppost installed in Aveiro, and the ones that will be installed, etc.

Figure 4.2: Aveiro STEAM city sensors [1].

1https://www.it.pt/Projects/Index/4613
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4.2.2 Selected use cases

Increase road safety is one of the big concerns of city managers. To increase road safety
it is necessary to avoid accidents, mainly severe accidents. Sensitize drivers is the first step,
but accidents can be caused by circumstantial reasons. Understand the reasons that lead to
non-safe driving behavior plays a key role.

The main use case for the dataset for Aveiro is to analyze driving behavior. This use case
can be subdivided in the following ones:

• Classifying safe driving behavior versus unsafe driving behavior,

• Identify road segments and zones that can be problematic,

• Compare temporal snapshots:

– Compare different hours of the day of the same day,

– Compare different periods like earlier in the day, midday, and end of the day,

– Compare different days and different sets of days.

One of the most interesting applications is driving quality monitoring, such as hard accel-
eration and braking, speeding, degraded pavement detection, frequent braking locations, and
the most dangerous areas. In this work we will focus on the driving quality aspect.

4.3 Summary

The architectures, presented in this chapter, were separated because it was created two
different studies. One for the dataset from Porto and the other for the dataset from Aveiro.
These were motivated by the existence of different information for each one of the cities, which
made necessary the existence of different use cases.

Both datasets have bus information, being the network from Porto much richer in the
number of buses, and trips. However, the network from Aveiro has a smaller periodicity.
From Porto, we have also traffic flow information.

Both datasets have data from the infrastructure. This data makes it possible to perform
a more complete study. It is possible to analyze the bus data and the traffic flow data by
road segment, and it is possible to get the maximum speed for road segments.

The main uses cases can be resumed as predict traffic flow observed and studying driving
behavior.
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Chapter 5

Forecasting the Traffic Flow

We evaluated both statistical and machine leaning methods to forecast traffic flow, based
on previous observations. Such methods were explained in Sections 2.3 and 2.4.

It is possible to apply the statistical methods without doing any additional preprocessing
besides the one mention in section 5.1. However, the same can not be applied to deep learning
methods. Because of that, section 5.2 explains the need steps to predict the traffic flow. The
third section presents the pipeline elements, including the developed algorithms (statistical
and deep learning). The fourth section presents the process to forecast traffic flow using
SARIMA and the results obtained. Section 5.5 describes the process to predict using deep
learning methods, and the results. Section 5.6 contains the methods to detect anomalies and
predict traffic when an anomaly happens. Section 5.7 presents system implementation. The
last section presents the chapter summary.

5.1 Data set preparation

Chapter 2 mentioned that the data came from different sources, correspond to different
types of information, and, besides that, had different formats. For those reasons it was
necessary different pipelines for preprocessing the data.

Table 5.1 contains a resume of the data types, sources, and location. The data has 2
different sources, which can be subdivided into 3 types of data (bus speed data, traffic flow
data, and infrastructure data). In this chapter, it was only used data from Porto.

Table 5.1: Data sources

Data source Data type Data collection location

Veniam Bus data Porto

PortoDigital Traffic flow observed data Porto

PortoDigital GTFS data Porto

The different data will be used in different ways. The traffic flow data will be used to
make predictions of the future values of traffic flow observed. The data from the buses from
Porto will be used to attempt to establish a relationship with the traffic flow data. The
infrastructure data will give support to the previous tasks.

Table 5.2 contains the five weeks chosen to study the traffic flow. The first four weeks
were used to study the data, and to train and test the predicting modules. Note that, the last
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week was just used to observe anomalies, study them, and try to predict them since November
first is a holiday.

Table 5.2: Calendar for studying traffic flow.

October 2020
Week Mon. Tue. Wed. Thur. Fri. Sat. Sun.

1 30 1 2 3 4 5 6
2 7 8 9 10 11 12 13
3 14 15 16 17 18 19 20
4 21 22 23 24 25 26 27
5 28 29 30 31 1 2 3

5.1.1 Veniam data

Veniam gives us data about the buses in Porto with the fields present in table 5.3. The
most important fields are the speed, the GPS coordinates, and the timestamp when the data
was collected. Data from buses arrives every minute.

Table 5.3: Table node data from Veniam data source

Field Data type Description

id integer Identification of the database entry.

node id uuid Identification of the node.

location id integer Represents a vehicle or a collection of access points.

head double Heading, the direction in which the bus is traveling.

lon double Longitude of the bus.

lat double Latitude of the bus.

speed double The speed of the bus.

ts timestamp Timestamp when the data was collected.

write time timestamp Timestamp when the data was written.

A first look into the data reveals some problems; table 5.4 includes some descriptive statis-
tics. Those statistics summarize the central tendency and dispersion of the data, excluding
Not a Number (NaN) values. There are some missing data, and others have to be discarded,
as its values are unusual. Another problem is the imprecision of the GPS sensors, which can
result in inaccurate positions or speeds.

As can be seen from the histogram in figure 5.1a, which shows the bus speed values, there
are some very high values. If we remove the high values, and because they are rare events, and
most likely, outliers, they can be excluded without having a huge impact. By removing them
we obtain the histogram in figure 5.1b. Note that each graphic has a histogram with several
bars and the bin size of the bars is calculated automatically. The curve is the application
of a kernel density estimate function that gives the probability density at different values if
the variable was continuous. The speed histograms show that the majority of the values are
concentrated from 0 to 95, which means that the buses can reach speeds from 0 to 95 km/h.

Note that from the buses data, almost 50% of speed values are null, raising several ques-
tions as to why this happens. By comparing Veniam’s information with information from the
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Table 5.4: Statistics about speed data.

speed

count 3693883

mean 21.000

std 15.589

min 1

25% 8

50% 19

75% 31

max 255
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speed
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0.04

(a) Histogram of speed without a limit.
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0.04
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0.06

(b) Histogram of speed with a limit.

Figure 5.1: Histogram of speed

GTFS files, as can be seen in figure 5.2, it is possible to verify that the number of buses to
circulate obtained from Veniam datasets approximates the expected number. The graphic
was obtained after removing the null values. This may indicate that the null values obtained
may occur because the vehicle is parked at the bus station or the drivers are taking a break.
Note that, at the beginning of the graphic the number of buses given by Veniam is bigger
than the number of buses given by the GTFS information, which can happen due to existing
buses that arrive late to the station.

5.1.2 PortoDigital data

Table 5.5 contains the data available by PortoDigital regarding the traffic flow observed;
table 5.6 contains the descriptive statistics.

The traffic flow dataset has also its flaws. There are some missing data, it has imprecise
GPS sensors, and some of the values are abnormally high, as can be seen in histogram 5.3a.
Briefly, the intensity graphic shows that the majority of the values are concentrated from 0
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Figure 5.2: Comparison of the number of active buses (GTFS and Veniam information)

Table 5.5: Table TrafficF lowObserved from PortoDigital data source

Field Data type Description

id Integer Unique identifier.

type String Entity type (TrafficFlowObserved).

dateModified DateTime Last update timestamp of this entity.

dateObserved DateTime
Contains two separate attributes:
dateObservedFrom, dateObservedTo.

dateObservedFrom DateTime Observation period start date and time.

dateObservedTo DateTime Observation period end date and time.

intensity Integer
Total number of vehicles detected during the
observation period..

laneId Integer Lane identifier.

location GeoJSON geometry Location of this traffic flow observation.

to 200, which means that the count is 0 to 200 vehicles per 5 minutes interval. The maximum
value of intensity is 1386, as it was given in table 5.6, meaning that in 5 minutes there were
1386 vehicles, which gives an average of 4,62 vehicles per second.

The information about lanes is not trustworthy. In figure 5.4 there are four lanes; however,
there are six traffic flow sensors in the same GPS position and with lane number from one to
six. There is also some uncertainty as to whether a traffic flow sensor measures the intensity
along the lane or just on one traffic lane. Finally, the traffic flow data is even more sparse than
the bus speed data from Veniam, because it only sends the information every five minutes.

Figure 5.5 shows the GPS problems associated with the data. One of the traffic flow
sensors is on top of a building. However, this sensor has normal values, as shown in figure
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Table 5.6: Statistics about traffic flow observed data.

intensity

count 727220

mean 30.015

std 56.910

min 1

25% 6

50% 18

75% 39

max 1386
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(a) Histogram of intensity without a limit.
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0.04

(b) Histogram of intensity with a limit.

Figure 5.3: Histogram of intensity.

5.6. This sensor presents some outliers that can be discarded. The outliers correspond to
the six peaks in the graphic. These can be considered outliers because their values are much
higher than the previous values and the next values. The sensor in node CT4Z3, although
appearing to be well-positioned, has abnormal values; therefore, the sensor will not be used
in the data analysis.

The preprocessing task is explained with more detail in section 5.3. Briefly, we perform
a process of data reduction (select only the important data), data cleaning (remove missing
data, outliers and noise), and data transformation (normalize). Besides that, we also can
calculate the road segment of the sensor, if we need it.

5.1.3 GTFS Porto

The GTFS data available by PortoDigital was useful to solve the GPS problems associated
with data from Veniam and PortoDigital. This data had to be manipulated because some of
the segments were too big for our goals, and it was necessary to have small segments. Looking
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Figure 5.4: Zone with 4 lanes and 1 point that contains 6 traffic flow sensors.

Figure 5.5: Traffic flow sensors location

at the GTFS data, it is possible to see the complexity of the Porto bus network, as can be
observed in figure 5.7.

Figure 5.8 presents the structures of the given files. Note that there can be small struc-
ture modifications between GTFS files made by different entities. There is not a rigid fixed
structure. This information was valid from June 15, 2019 to January 1, 2020.

This information allows us to know the buses that are supposed to be active and associate
other sensors’ positions to road segments.

5.2 Preparatory traffic flow data analysis

The traffic flow is a specific type of data called count data. We selected a specific traffic
flow sensor to focus the study in one time-series. That sensor has an identification of CT1Z8.
As can be observed in figure 5.9, the traffic flow presents a high variability, which may hide
existing patterns in the data. The figure represents the first week of data, and the vertical
red lines symbolize the different days. By observing the figure, we can see patterns between
days, and also seasonality. Nevertheless, the excessive variability presented, which can be
categorized as noise, may be hiding other patterns and also making difficult to model the
behavior of the traffic flow.
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Figure 5.6: Comparison of the intensity of two traffic flow sensors

Figure 5.7: Visualization of the Porto bus network, defined by the GTFS dataset.

We try to study the traffic flow without using any more types of preprocessing; however,
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Figure 5.8: GTFS Porto - files structure.

the data was just too complex to analyze. One way to resolve this problem is to reduce
data frequency; however, we want to analyse as much information as available, to maintain
important features and characteristics of the data. Therefore, a preprocessing step was added
to the study, in order to smooth the data.

5.2.1 Time-series smoothing

The smoothing of a time series is important to remove extreme values, likely caused by
artifacts (section 2.2.4). As was observed in figure 5.6, there are several small fluctuations
that can be seen as noise. In order to perform the forecasting task, it was necessary to smooth
the data.

All the analyses related to traffic flow information are done after the smoothing has been
applied. Thus, we will get values that can be unrealistic; for example, we can have a count of
6.7 vehicles in the five-minute interval. Even not being realistic values, it is more important
to have a predicted value that is close with the real value, but its meaning is different, than
having a value that is realistic but is very distant from the real value.

Several smoothing methods were tested, being the Savgol smoothing the one that pre-

36



0 250 500 750 1000 1250 1500 1750 2000
Lags

0

20

40

60

80

100

120

140

In
te

ns
ity

Traffic flow observed
Traffic flow observed

Figure 5.9: Traffic flow observed.

sented the best results. The Savgol smoothing was the only one that was tested that preserved
the real behavior of the time-series.

The smoothing method was defined on the data from the first week of data. Then, the
method was tested between September 30 of 2019 and October 27 of 2019, evaluating the
effect of smoothing on the data.

In order to apply smoothing methods appropriately, it is necessary to verify the station-
arity of the time-series. It was verified that the time-series is stationary, since a significant
p-value was found (<0.001) in the ADF test.

Due to the intrinsic characteristics of the data, it is not intuitive which is the best smooth-
ing method to use. So, several methods were tested; however, Savgol smoothing was the one
that seems more suitable. In figure 5.10, some of the tested smoothing methods are repre-
sented.

Figure 5.10a contains the curve corresponding to the application of one-dimensional in-
terpolation smoothing using a linear function. It was also tested the application of a cubic
function, and using approximation methods (nearest, previous, and next) as functions of the
one-dimensional interpolation.

The Exponentially Weighted Moving Average (EWMA) smoothing method is in figure
5.10b. To evaluate which method better describes the data, several combinations of param-
eters were tested. Some of the parameters specify decay in terms of center of mass (com),
others in terms of the span, or half-life, etc.

Figure 5.10c presents the application of smoothing using rolling methods. Once more, it
was tested with multiple parameters. The orange curve is the result of the rolling mean of
the values, and the dotted green curve uses the euclidean distance.

The last figure, figure 5.10d, uses a spline function to smooth data. All the smoothing
applications presented in figure 5.10 have similar performance, indicating a clear behavior of

37



0 250 500 750 1000 1250 1500 1750 2000
Lags

0

20

40

60

80

100

120

140

In
te

ns
ity

1D interpolation smoothing
data
1-D interpolation - linear function

0 250 500 750 1000 1250 1500 1750 2000
Lags

0

20

40

60

80

100

120

140

In
te

ns
ity

EWMA smoothing
Data
EWMA (span=12)
EWMA (com=12)

(a) (b)

0 250 500 750 1000 1250 1500 1750 2000
Lags

0

50

100

150

200

In
te

ns
ity

Rolling smoothing
Data
Rolling mean (12)
Rolling eucledian (2)

0 250 500 750 1000 1250 1500 1750 2000
Lags

0

20

40

60

80

100

120

140

In
te

ns
ity

Spline smoothing
Data
Cubic Spline

(c) (d)

Figure 5.10: Application of the different smoothing methods to the traffic flow of the first
week of October (a) 1D interpolation (b) EWMA (c) rolling (d) spline.
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the data. Savgol was selected, since this method does not introduce discontinuities on the
time-series. Several parameters were tested, as exemplified on Figure 5.11. The one that
seems to better fit the data is the smoothing done with the parameters window size 41 and
polynomial order 3.
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Figure 5.11: Savgol smoothing applied to the traffic flow time-series (a) window size 21,
polynomial order 3 (b) window size 31, polynomial order 3 (c) window size 41, polynomial
order 3 (d) window size 51, polynomial order 3.

With the application of Savgol smoothing, the pointed peaks disappear. Figure 5.12
presents the application of Savgol smoothing to the four weeks that will be considered to
latter forecast the traffic flow. The first week corresponds to the first line, the second week
to the second line, and so on.

All studies related to the traffic flow observed in this chapter will consider that the data
was previously smoothed.
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Figure 5.12: Savgol smoothing traffic flow.
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5.2.2 Assessing Stationarity

Smoothing should not alter time-series characteristics. The stationarity was evaluated
before smoothing the time-series. As mentioned, the time-series is stationary (p<0.001, in
the ADF statistical test).

Table 5.7: Stationary test

ADF Statistic -9.429390

p-value 0.0000001

1% -3.431
5% -2.862Critical Values
10% -2.567

The ADF statistic value should be negative; if the value is negative, we will probably reject
the null hypothesis. Besides that, the ADF statistics value is lower than any of the critical
values, even the 1% value. This means that the statistics are maintained, giving credibility
to the statistical test.

5.2.3 Timeseries decomposition

Time-series decomposition is made based on the time-series frequency of patterns. Table
5.8 contains possible values of patterns frequency, since the data sampling frequency for the
traffic counters is 1 sample per 5 minutes. For example, if a pattern happens every day, we
would use a frequency of 288.

Time period Number of sample

5 minutes 5 minutes / 5 minutes = 1

1 hour 60 minutes / 5 minutes = 12

1 day 24 hours * 60 minutes / 5 minutes = 288

1 week 7 days * 24 hours * 60 minutes / 5 minutes = 2016

1 month (4 weeks) 4 weeks * 7 days * 24 hours * 60 minutes / 5 minutes = 8064

Table 5.8: Time periods and number of samples

Figure 5.13 presents the additive decomposition of the traffic flow time-series. Note that,
a multiplicative decomposition can not be used because the traffic flow can be zero, meaning
that the presence of a unique zero value would make it impossible using the multiplicative
decomposition.

Figure 5.13a shows that, using a frequency of 12, it is not possible to observe a pattern
in the seasonal component. The pattern appears in the trend component, meaning that a lot
of information about the seasonal component was not retained. Besides that, there are still
some patterns in the residual component.

In figure 5.13b it is possible to observe that the daily pattern is retained in the seasonal
component. However, the weekly pattern is not retained, and we can see that there is a
pattern that remains in the trend component. There is still significant information in the
residual component, but it is less significant than in figure 5.13a.
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Figure 5.13: Time-series additive decomposition (a) frequency = 12 (b) frequency = 288 (c)
frequency = 2016.
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In figure 5.13c with a frequency of 2016, the daily and the weekly patterns are retained
in the seasonal component. We have a trend component free of patterns, and in the residual
component, it remains some information being even less significant than in figure 5.13b. The
trend component does not have a linear growth, meaning that it is probably stationary. The
behavior of the trend supports the results of the ADF tests.

Note that, sometimes the seasonal decomposition model can not be able to separate the
noise from the trend, meaning that the trend can contain noise.

Auto-correlation and partial auto-correlation

Correlating the time-series with itself can help us to choose the best lags to use in the
deep learning models. Figure 5.14 contains the autocorrelation graphic for the first day (288
lags). Autocorrelation values belong to the interval between -1 and 1. In the figure, we
can see that lag 0 has the biggest autocorrelation value. This happens because the lag 0 is
compared with itself. The blue area presented in both images is the confidence interval that
is 95% by default. This confidence interval around the correlation value indicates a statistical
significance of the obtained correlation values.
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Figure 5.14: Auto correlation - 288 lags

If we look into figure 5.15, it is represented 2016 lags, that correspond to 7 days (a week).
In this figure it is possible to observe the seasonality that exists in the time-series. For each
one of the days, for 288 lags in 288 lags, there is a local maximum; because, by comparing 2
days, the maximum value for correlation happens for the 24-hour lag.

Figure 5.16 is the autocorrelation function for the four weeks of study. In this figure,
it is possible to observe that the local maximums decrease and then increase, reaching the
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Figure 5.15: Auto correlation - 2016 lags

maximum at each week. It is possible to observe the weekly seasonality.

At the beginning of each week, it is reached the maximum value for that week, due to the
comparison of the same week day (Monday in this case). If we started to compare in a different
week day, it would happen the same. This shows that there are a strong relation between
what is happening in the present week, with what has happened in the week before. The daily
patterns are observed by the consecutive peaks that have maximums at the same distance
(approximately), meaning that they happen at the same hour. The decreasing tendency of
the maximum values is due to the existence of less information to calculate the correlation as
time goes by.

The blue area increases as time goes by, and the maximum values of autocorrelation
decrease. This makes it more difficult for autocorrelation to be considered relevant over time,
and it means that the model assumes that the importance of a lag becomes less significant
over time.

An interesting aspect is the fact that, after every local maximum there is a local minimum
of negative proportions, and together they create a pattern. These local minimums happen
twelve hours later, and they mean that past values have a big negative correlation with the
future.

Figure 5.17 contains the parcial auto correlation graphic for the first day. Partial auto-
correlation removes correlations of closer lags and it will indicate the relation between the
lag and the observation. In figure 5.17, it is possible to observe a maximum at lag 240
(approximately).

If we expand the number of lags, we can see that the maximum happens at lag 400
(approximately), as it is represented in figure 5.18.
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Figure 5.16: Auto correlation - 8064 lags
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Figure 5.17: Parcial auto-correlation - 288 lags
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Figure 5.18: Parcial auto-correlation - 2016 lags

Cross-correlation

Correlating the time-series with another time-series can indicate if we can apply the same
methods and parameters to perform, for example, the prediction of future values. It was
performed the correlation of the traffic flow sensor with another that is close to this sensor.
The sensor had an identification of CT2Z8. Figure 5.19 presents the obtained result for the
first week. It was performed the correlation with the parameter unbiased as true. This means
that the autocovariance is adjusted. The visual effect is that, if the unbiased was false, we
would see a decrease in the local maximums, as we see in the autocorrelation plots.

Figure 5.20 presents the cross-correlation for four weeks. Once again, we can see the
weekly pattern effects on the correlation. Both sensors have nearby locations and are very
correlated since they present maximum values very close to 1. Through the observation of
these images, we can conclude that there is a very high probability that we can apply the
same models that work for the traffic flow that is being analyzed to similar ones.

5.2.4 Relationship between sensed traffic flow and bus speed data

There are two sources of data concerning traffic: the installed traffic flow meters (traffic
counters), and the bus tracking information. A question that was raised was to which degree
the information of the two series is related. This could inform additional decisions, such as
if the bus network can ”replace” the deployment of physical traffic counters. In order to
associate traffic flow data with the buses speed, we had to perform the steps in figure 5.21 to
determine the buses that could be counted by one sensor:
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Figure 5.19: Cross-correlation - 2016 lags
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Figure 5.20: Cross-correlation - 8064 lags
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Figure 5.21: Associating traffic flow data or bus speed data to road segments

GTFS files provided road segments by having polylines. Polylines are sets of linestrings,
for that reason they were split so we could obtain linestrings. Since some linestrings were too
long, we divide them to achieve smaller segments. By performing geometric and geographical
queries it was possible to associate sensors or buses to road segments.

As can be observed in figure 5.22, the left segment can have multiple points, in this case,
the segment has eight points (from A to H), so it can be subdivided into seven subsegments.
Through a combination of geometrical and geographical queries, it was possible to determine
the closest segment to a GPS position. It will be calculated the traffic flow sensor is closer
to subsegment GH than the others. This type of calculus is expensive. This selection is
represented in figure 5.22 on the right. Note that, this is just an example and does not
represent a real example neither a real subdivision.

H

FE

D
CB

A

G
H

FE

D
CB

A

G

Figure 5.22: Road segments, subdivision and traffic flow sensors

After this, it was decided to choose a traffic flow sensor in a popular bus segment. It was
made an algorithm to find the best combination. The first step was to count how many buses
go to each one of the segments. The second step ordered the segments, by decreasing order.
The final step was to find the first segment where was located a traffic flow sensor. The sensor
chosen was CT5Z5.
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Figure 5.23 contains the scatter matrix for the traffic flow observed, the bus speed, and
the number of buses. Note that the traffic flow observed data was smoothed before the
comparison; however, this process is explained in the following subsection. The scatter matrix
compares every pair of features. The diagonal is the feature compared with itself using a kernel
density estimation.
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Figure 5.23: Scatter matrix - Traffic flow observed, speed, and count

Despite any particular pattern was found, it is visible that when we have high speed, we
have low intensity. When we have high intensity, we have low speed. The majority of the
points are concentrated in the area of low intensity and low speed. There are not any points
in the area of high intensity and high speed.

Given the observed patterns, we try to find if could observe patterns analyzing the data
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quartiles. The data was divided by week, and then, by weekday. The results are presented in
image 5.24 and do not show relevant patterns.
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Figure 5.24: Traffic flow observed versus speed (a) week 0 (b) week 1 (c) week 2 (c) week 3

Several methods were tested, but the results were very limited. Besides that, even choosing
a segment by bus popularity presents some problems. There is an enormous quantity of null
values because most of the time there was not even one bus that went through the segment.

Buses behavior can not represent normal traffic behavior (namely cars). This might be
the main reason why a clear relationship between bus speed and traffic flow intensity was not
observed. Nevertheless, it was observed that when we have big values for speed, we have small
values for the intensity, and when we have big values for the intensity, we have small values
for speed. For this reason, the speed values will not be used in the traffic flow prediction.

5.3 Elements of the forecasting pipeline

5.3.1 Forecasting pipeline

Forecasting the traffic flow can be a difficult task. Before any manipulation of the data
begins, the data must be prepared. That analysis can involve visualizations, statistics, and
the study of the data types. All these three types of analysis were made as it was discussed
in previous chapters. It was developed a pipeline, as can be observed in figure 5.25.

Once we understand our data, we can begin to prepare it. Preprocess the data includes
data cleaning, data transformation, and data reduction.

Data cleaning aims to eliminate the problems related to missing data, noisy data, and
outliers. Since the traffic flow observed had few missing data, we could replace it by zeros,
and through smoothing, the impact of the missing data was not significant. Smoothing also
helped in the case of the existence of noise and outliers.

Data transformation is usually made to ensure that there are a maximum and minimum
defined. One of the ways of doing it is through normalization, scaling the data with a min-max
scaler from -1 to 1.

Data reduction can be made by aggregating data, performing a reduction in the data that
is studied, or through dimensionality reduction. In the case of traffic flow data, it was not
necessary to aggregate it. However, this study is focused on just one traffic flow observed
sensor. Relatively to dimensionality reduction, some of the original features were not used,
and it was performed a feature selection between time lags.

Feature selection is very important because it helps reducing overfitting, improves accu-
racy, and reduces training time.
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Figure 5.25: Forecasting pipeline

When the preprocessing phase is done, we can test and evaluate models. It is important
to choose metrics to help choose the best models. Once we choose it, we can decide if we want
to improve the results. For example, since it was noticed that the increase in the number of
neurons has an impact on the decrease of the error in deep learning methods, it was increased
the number of neurons beyond the initially foreseen. Subsection 5.6.5 presents these results
in a more detailed explanation.

The final phase is present the results that were obtained by the process. Note that, when
we scale data, we will have to make an inverse scale before evaluating the model.

The use of external features to predict traffic flow data can improve the model [51]. For
that reason, it will be studied the relationship between bus speed and traffic flow.

The characteristics of the machine where the tests where made are described in table
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5.9. Note that, it was used more machines with different characteristics; however, to get the
average running time, it was used just the times from the tests performed in this machine.
Since the number of tests was large, to avoid overheating problems, it was imposed a limit of
CPU usage at 600%. The computer had 8 cores, having a total capacity of 800%. Only one
of the five machines used had a GPU. For that reason, it was only used the CPU to train the
ANN models.

Table 5.9: Machine configurations

Operating System Ubuntu 18.04 LTS

Architecture x86 64

CPU op-mode(s) 32-bit, 64-bit

CPU(s) 8

Thread(s) per core 2

Core(s) per socket 4

Model name Intel(R) Core(TM) i7-7700 CPU @ %3.60GHz

Memory 8 GB

5.3.2 Features selection

A time-series can be expressed as a function of time (discussed in section 2.2). In deep
learning problems, we need to have input features and output features. A näıve approach
would be using the time as an input feature and the value as an output feature. However,
deep learning algorithms do not work in that way. At this stage arises a very important
question: “How can we transform a time-series to use it in a deep learning algorithm?”.

Time by itself is not useful to predict future values, and in a time-series, past occurrences
have an impact on future occurrences. Therefore, past occurrences will be the input features
and the actual occurrence will be the output feature, as represented in table 5.10.

Table 5.10: Time-series and lags

Features
Output feature Input features

t f(t) f(t-1) f(t-m)

0 f(0)

1 f(1) f(0)

... ... ... ...

n-2 f(n-2) f(n-2-1) f(n-2-m)

n-1 f(n-1) f(n-1-1) f(n-1-m)

Note that not all past occurrences influence future occurrences in the same way. That
is why we need to select which past occurrences will have the biggest impact. The past
occurrences are often called lags.

Knowing the characteristics of the data is important to choose the best lags, this is
denominated “expert knowledge”. Traffic flow patterns depend on seasonality patterns. A
combination of what happened in the last hour, a week before, or even a month before can
be useful.
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To avoid a biased opinion about which lags should be used, we can compare some lags with
a correlation matrix. A correlation matrix is obtained by calculating the correlation between
each pair of input features. For that reason, the correlation matrix is a square matrix in
which the upper triangle is symmetric to the lower triangle. In the diagonal, all values have
the maximum correlation value because it corresponds to the correlation of the feature with
itself.

The data needs to be transformed in order to create and use ANN models. It is necessary
to adapt the time-series into a set of input features and an output feature. In this specific
case, the features are the lags, so they need to be selected.

To choose the best lags to train the models, we performed feature selection. The lags to
perform feature selection are chosen based on the knowledge acquired from the study of the
dataset.

In figure 5.26, the diagonal presents the highest values because every lag is most correlated
with itself. The matrix is symmetric, being the diagonal the symmetrical axis, meaning that if
lag a has a certain value of correlation with lag b, then lag b has the same value of correlation
with lag a.
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Figure 5.26: Feature selection matrix of the traffic flow time lags
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We will focus on comparing the lag 0 with the remaining because we want to predict the
actual value. Lag 0 is most correlated with lag 2016, lag 4032, and lag 6048. Those lags
correspond to the previous values one week earlier, two weeks earlier and three weeks earlier,
and the correlation value is very close to 1 in all of them (0.97, 0.98, 0.97), meaning that they
are strongly correlated with lag 0.

The next lags that are very correlated with lag 0 are lag 12, lag 288, lag 2028, lag 4044,
and lag 6060. These lags correspond to the previous hour, the previous day, the previous
week plus an hour, the previous two weeks plus an hour, and the previous three weeks plus
an hour, and present values between 0.84 and 0.87.

Choosing the best lags, we should take into consideration multiple factors like, how much
time to predict, how much information we plan to use, and how correlated is the lag. To
predict one week of data, we cannot use the previous hour or day. To use less information,
we will just focus on the first two weeks. With this in mind, it was chosen the lags: 2016,
2028, 4032, and 4044.

5.3.3 Algorithm selection

We decided that it would be done the comparison between the use of statistical methods
and machine learning methods, namely deep learning methods. In terms of algorithms, for
the statistical methods, it was used SARIMA.

It was also done an attempt to use one other statistic method name Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) [19], however, the model was not better
than a mean model. The GARCH model was not adjusted to the traffic flow observed. One
of the possible explanations is that this type of model does not take into account the season-
ality of the data. One of the characteristics of GARCH models is that they deal within the
changes in the variance, and in the volatility, unlike ARIMA based methods.

Two types of ANNs were chosen to make the predictions: FFNN and LSTM. In both
types of networks, we have an input layer at the beginning and an output layer at the end.
However, the content of the hidden layers changes.

In the case of the FFNN, it were considered three versions. The first version is represented
in figure 5.27 and has one dense layer, which can be followed by dropout. The second version
is similar to the first, but is followed by an extra dense layer followed by dropout. The third
version is an extension of the second, having one more dense layer followed by dropout. The
dropout does not happen always, since it is configurable. Before the output layer, it was
necessary a flatten layer that flattens the data.

In the case of the LSTM, we have just a LSTM layer followed by dropout, as can be
observed in figure 5.28. The dropout is configurable.

5.4 Forecasting the traffic flow with SARIMA

Considering that the analysed time-series is seasonal, the SARIMA model has been used.
Statistical methods like SARIMA allow us to perform short term forecasting. SARIMA was
the first method being tested. All parameter values that were tested are summarized in table
5.11. There are 729 possible configurations.

One of the big advantages of using statistical methods like SARIMA is that SARIMA is a
deterministic method. This means that we can just run tests one time because the results are
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Figure 5.27: FFNN - Diagram

Input Layer LSTM Layer Dropout Layer Output Layer

Figure 5.28: LSTM - Diagram

Table 5.11: Configurations details of SARIMA

Configurations Values

p 0, 1, 2
d 0, 1, 2Order
q 0, 1, 2

P 0, 1, 2
D 0, 1, 2
Q 0, 1, 2

Seasonal Order

m 12

always the same. However, this type of model is more limited than a deep learning model,
since it only allows to perform short term forecast.

With SARIMA, we can just predict 12 steps that correspond to 1h, as can be observed in

55



table 5.8. It is not possible to predict more steps given the nature of the model and the data.
We tested other values for the m parameter, but the behavior of the curve being forecasted
was worst, or the model was too complex (when m was too big) that could not be calculated.
Because of that, it was defined that it would be used one model for each day of the week.

To forecast the traffic flow, we used 75% of the data for training and another 25% for
tests. For example, to predict the last Monday it was used the first three Mondays to train
SARIMA.

The best model for each day of the week was chosen based on the results of the first
forecasted hour. To forecast a hour it was necessary, on average, 3.583 seconds. Relatively to
the chosen evaluation metrics to choose the best model, initially it was used MSE. MSE is a
good metric for many cases, but this one was not one of them because it provided overfitting
of the model to the data. The models with the best MSE values for the first hour do not
always presented good forecastings for the remaining hours.

The goal was to forecast more than one hour given the limitation of the model, even if
that meant redoing the training task. Using an evaluation metric like BIC meant that the
model had bigger errors, but we could reuse the model. Tables 5.12 and 5.13 present the
results obtained when the chosen metric was MSE, versus BIC for the first forecasted hour.

Table 5.12: SARIMA results - Choosing the best model MSE

Configurations
Order Seasonal Order

Metrics
Day

p d q P D Q m MSE RMSE AIC BIC

Mon. 2 2 0 1 1 1 12 0.017 0.132 1970.081 1993.724

Tue. 1 0 0 2 1 1 12 0.138 0.371 3402.825 3426.414

Wed. 0 0 0 2 0 0 12 0.495 0.703 6758.493 6772.693

Thur. 0 0 0 1 2 0 12 0.312 0.559 7337.251 7346.689

Fri. 2 0 2 0 2 1 12 10.122 3.181 3566.309 3594.602

Sat. 1 1 1 2 1 0 12 10.006 3.163 1410.093 1433.676

Sun. 2 2 0 1 2 2 12 10.086 3.175 1573.185 1601.389

Table 5.13: SARIMA results - Choosing the best model BIC

Configurations
Order Seasonal Order

Metrics
Day

p d q P D Q m MSE RMSE AIC BIC

Mon. 2 1 2 0 0 2 12 6.908 2.628 1855.097 1888.198

Tue. 2 1 2 1 1 1 12 3.176 1.782 1893.512 1931.235

Wed. 2 1 2 0 0 2 12 3.726 1.930 1782.029 1815.130

Thur. 2 1 2 0 0 2 12 10.210 3.195 1906.963 1940.063

Fri. 2 1 2 0 0 2 12 77.296 8.791 2252.751 2285.851

Sat. 1 1 1 0 0 2 12 16.500 4.062 1214.998 1238.647

Sun. 1 1 1 0 0 2 12 7.799 2.792 1400.868 1424.517

Choosing BIC as a metric can increase a lot the error, even if we used other ways to
measure it, besides MSE or RMSE. However, as can be observed by comparing table 5.12

56



with table 5.13, the values of parameters are more consistent using BIC as an evaluation
metric. In table 5.12 none of the days share all the parameter values. In table 5.13 there
are only three combinations. One of them is for the weekend days, and another one is for
all days of the week except for Tuesday. Tuesday has different seasonal parameters than the
other days of the week, meaning that were observed different seasonal patterns for Tuesday.
Besides that, it is possible to observe that, for the entire week except for Tuesday, all seasonal
parameters have the same value.

Figure 5.29 shows the impact of the choice of the chosen evaluation metric for the first
twelve steps for Wednesday. The model chosen using BIC seems a lot worse than the model
chosen using MSE. The major impact is when we want to retrain the model without having
to calculate once more the best parameters.
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Figure 5.29: Choosing the best model using different evaluation metrics. (a) MSE (b) BIC.

To predict more than one hour, it was initially experimented to retrain the model using the
predicted values as true values; however, the model was not able to make good predictions, as
can be observed in figure 5.30. Using MSE, it was clear that the model was doing overfitting
and it was not able to adapt. Using BIC, the model would starts to tend to a specific value,
even on the second train. This confirms the limitations of statistical methods.

To achieve the goal of making predictions for a day, the only way that was possible was
to retrain the model using the true values. As can be observed in figure 5.31, both models
can make good predictions. The model chosen by using MSE does overfitting and presents a
delay of the forecasted values. This shows that, choosing BIC as an evaluation metric leads
to the choice of a good model, because the model does not make overfitting of the data for
the first hour.

To observe the impact of training from twelve in twelve steps versus smaller steps, it was
done the comparison with the divisors of twelve. Figure 5.32 contains the obtained values
for Monday using 1, 2, 3, 4, 6, and 12 steps. As can be observed, increasing the number of
steps leads to an increase in the error. One step forecasting is extremely precise. However,
one step forecasting only allows us to predict five minutes ahead. In conclusion, fewer steps
lead to predicted values with the smallest errors; however, the predicted time is decreased.

Figure 5.33 contains four subplots that analyze the data for the first hour of the forecasted
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Figure 5.30: Forecasting an entire day training with forecasted values (a) MSE (b) BIC.
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Figure 5.31: Forecasting an entire day, retraining with the true values. (a) MSE (b) BIC.
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Figure 5.32: Forecasting traffic flow observed with SARIMA using different steps and BIC as
an evaluation metric (a) 1 step (b) 2 steps (c) 3 steps (d) 4 steps (e) 6 steps (f) 12 steps.
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Monday. The first one is the standardized residuals that indicate how different are the ob-
served values from the true values over time. The histogram presented in the second subplot
is very close to the normal, indicating the presence of some white noise. The Normal Q-Q
plot, also known as the Quantile-Quantile plot, shows how closest is the data distribution
from the Gaussian distribution that is represented by the red line. Since the blue dots are
very close to the red line, then we can assume that there is a normal distribution of the data.
The correlogram is the autocorrelation plot for the first 10 lags.
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Figure 5.33: Plot Diagnostics of the traffic flow time-series

The presented work was specific for a traffic flow sensor. One of the goals was to forecast
the values of other sensors without having to repeat all the work. A direct application of
the model cannot be performed because we trained the model with the specific values of the
traffic flow in study. To reuse the developed work, we will train new models with the same
parameters but with the historic values of the traffic flow observed in study.

To evaluate if it was possible to apply models with the same parameters to other sen-
sors and get a good performance, we tested the performance for the traffic flow sensor that
presented high correlation values with sensor CT1Z8. The cross-correlation was previously
performed and the results are presented in subsection 8.1.4.

Figure 5.34 shows the result for two different days. In general, the models presented a good
performance, since the MSE is low and the curve is close to the real curve. By observation,
it is possible to verify that the model does not overfit the data.
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Figure 5.34: Application of the SARIMA models to another traffic flow sensor (CT2Z8) that
presented a high correlation with the sensor used to choose the model parameters (a) Monday
(b) Wednesday.

5.5 Predicting the traffic flow with deep learning

Using deep learning methods to predict future traffic flow values allow us to predict, for
example, one week of data. Deep learning methods are complex but achieve good results in
long term forecasting. This section will present the process to choose the best lags to perform
predictions, the results obtained using LSTMs and FFNN, and the impact of performing
dropout.

Prediction methods

In the previous section we explained the network details of the several ANNs developed
and tested. This section presents the results obtained by the LSTM networks and the several
types of FFNN. It compares both of them and presents the predicted values.

Despite being different types of ANNs, LSTMs and FFNNs share the same types of pa-
rameters, as it happens with several types of ANNs. Table 5.14 contains the possible config-
urations to be tested.

Table 5.14: Configuration details of Artificial Neural Networks.

Configurations Values for LSTM Values for FFNN

Batch size 1 1
Number of epochs 100 100

Neurons 1, 2, 4, 8, 16, 32 1, 2, 4, 8
Dropout 0, 0.1, 0.2 0, 0.1, 0.2

Model

Activation functions
sigmoid, tanh,
relu, softmax

sigmoid, tanh,
relu, softmax

Loss MAE, MSE MAE, MSE
Model Compile

Optimizer rmsprop, adam rmsprop, adam
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The first configuration is the batch size, that is the number of training samples that will
go through the network in one forward and backward passage. The number of epochs is
the number of times that the network will perform the learning part; for each one of them,
the entire training dataset goes through the network. The neurons parameter is the number
of neurons of the layers. The dropout is the percentage of dropout that is performed. The
activation functions are the functions that are used in the neurons at each layer to process the
information. The loss function is the function that the model will use to minimize the error.
At last, the optimizer is an adaptative learning rate algorithm and the use of optimizers will
help to reduce the losses. The evaluation metric chosen is the MSE.

Table 5.15 presents the number of possible configurations for LSTM, FFNN (with one,
two, or three layers) and the total for all the ANNs.

Table 5.15: Number of combinations of the configurations of Artificial Neural Networks.

Model Configuration Combinations

LSTM 288

FFNN 192 (1 layer) + 768 (2 layers) + 3072 (3 layers) = 4032

Total 4320

LSTM

LSTM neural networks are mostly used to predict sequential future values; however, they
can be useful to predict other types of values. Table 5.16 presents the best configuration
parameters for the LSTM neural network. The first column is an identification of the model
(M stands for model) to compare the several best models with the results presented in table
5.17. It was chosen to verify the difference in the results when it was used 1, 2, 4, or 8 neurons.
The second column is the number of neurons (N stands for neurons). After it was verified
an improvement related to the number of neurons in the LSTM networks, it was also tested
with 16 and 32 neurons.

Table 5.16: The best tested configurations for the LSTM neural network

M N Activation Function Dropout Loss Optimizer

1 1 tanh 0.1 MAE adam

2 2 tanh 0.1 MSE adam

3 4 tanh 0.1 MSE rmsprop

4 8 tanh 0.1 MSE rmsprop

5 16 sigmoid 0.0 MAE adam

6 32 sigmoid 0.0 MAE adam

There are significant improvements when we increase the number of neurons that are used
in the LSTM model. From 1 neuron to 2 neurons, the model decreases the MSE in 9,252.
From 2 to 4 neurons, it presents an improvement of 5,753. From 4 to 8, it improves in 7,185.
The increase of the number of neurons to 16 presents a very small improvement in the MSE,
and the increase to 32 neurons increases a little the MSE. The MSE value is very similar
to 8, 16, or 32 neurons. The same happens with the other evaluation metrics that present
significant improvements until 8 neurons.
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Table 5.17: Comparison of the values obtained by the evaluation metrics for the LSTM neural
network

M N MSE RMSE MAE
Explained
Variance

R2-Score

1 1 63.173 ± 3.799 7.945 ± 0.241 6.390 ± 0.256 0.917 ± 0.004 0.916 ± 0.005

2 2 53.921 ± 1.832 7.342 ± 0.124 5.438 ± 0.132 0.929 ± 0.002 0.928 ± 0.002

3 4 48.168 ± 6.729 6.925 ± 0.490 5.005 ± 0.393 0.940 ± 0.006 0.936 ± 0.008

4 8 40.983 ± 3.151 6.397 ± 0.244 4.471 ± 0.291 0.947 ± 0.003 0.945 ± 0.004

5 16 39.174 ± 1.034 6.258 ± 0.082 4.367 ± 0.025 0.949 ± 0.001 0.948 ± 0.001

6 32 40.011 ± 1.084 6.324 ± 0.086 4.495 ± 0.104 0.948 ± 0.001 0.947 ± 0.001

The first four models present the same activation function and dropout value. The last two
models present the same activation function, dropout value, loss parameter, and optimizer.
Since dropout performs an important task, to ensure that it is not overfitting, the last two
models present some disadvantages since the dropout value is 0.

We try to find the best models with dropout and 16 and 32 neurons. With 16 neurons,
the second-best model used the tanh function as activation function and 0.1 as dropout, and
presented a 40.790 ± 8.000 MSE value. With 32 neurons, in the second place, is the model
with a softmax activation function, a dropout of 0.2, and an MSE error of 40.812 ± 0.808.
Both models present good results and show that it is possible to get good models with more
than 8 neurons.

It is important to perform several simulations, in this case 6, because the same model
can give different values. If we just perform one simulation and choose the best model, we
can have the risk of choosing a biased model to the input data. For that reason it is very
important that we look into the standard deviation. All models in table 5.17 present a small
standard deviation value.

One of the simulations that allow us to obtain the best performance models is presented
in figure 5.35. The model used the parameters of the best model with 8 neurons. The MSE
has a value of 40.983 on average, the RMSE presents a value of 6.397 on average, and the
MAE presents a value of 4.471 on average. All these metrics present low error values and
the standard deviation is also low in all cases. This means that the behavior of the model
is very close to the real behavior. The value of the variance is very close to 1, meaning that
the model could learn the dataset and very little information was lost. The R2-Score value
is also very close to 1. The R2-Score is very similar to the variance and refers to the part of
the model in which the output variable can be explained by the input variable. The standard
deviation is low in both cases.

It is possible to observe that the behavior of the predicted values is very close to the
behavior of the true values. There are some local maximums and minimums that present
the major differences between predicted and true values. Anyway, the model presents a good
behavior since the predicted curve is very close to the true curve.

The training time is an important factor when we are choosing the model. If a model is
very good but takes too much time to train, sometimes it can be better to use a model that
presents a similar but worst performance and has a more acceptable training time. Table 5.18
presents the training time for the LSTM models. It was chosen to divide the results by the
number of neurons and the dropout ratio.
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Figure 5.35: Predicting traffic flow observed by using an LSTM neural network.

Table 5.18: Training time (min:sec) for the LSTM models

Dropout

N 0 0.1 0.2

1 13:48.863 12:49.775 11:58.303

2 13:42.483 12:40.991 11:49.502

4 13:26.971 12:29.341 12:08.250

8 13:45.996 12:50.998 12:07.562

16 13:49.534 12:41.554 11:49.280

32 13:49.806 12:56.986 12:19.271
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By observation, it is possible to conclude that the dropout ratio has an impact on the
training time. Increasing the dropout leads to a decrease in the training time. This happens
because, by performing dropout, we are discarding information, and that information will not
be used in the following steps. The number of neurons does not affect the training time, given
that the values in each column are very similar. This is due to the capability of the networks
to use all available processing resources regardless of the network configuration.

To evaluate the capability to reuse the network configuration in other traffic flow sensors
without having to choose the best models, it was trained a network for predicting the values
for the sensor CT2Z8. Figure 5.36 is the result obtained after we create the model with the
best parameters using 8 neurons.
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Figure 5.36: Reusing the best LSTM model configurations to predict another traffic flow
sensor.

It is possible to observe that the predicted curve is close to the real curve. Once more
there are some problems with the local maximums, but in general, the model presented a
good performance, having a MSE of 17.892, a RMSE of 4.229, and MAE of 2.906. All error
metrics have low values. Regarding the explained variance and R2-Score, the model presented
values of 0.957 and 0.957, which are both values close to 1. The model presented good results
when applied to another sensor, and the evaluation metrics are even better than the ones
obtained for the sensor CT1Z8. Note that the range of values is smaller for this sensor, and
that can lead to smaller errors.

FFNN

FFNNs are the other type of ANN being tested. It was tested different FFNN topologies
with networks of 1, 2, or 3 layers. To a better understanding of the network topologies, please
check section 6.3.

The best results obtained by the application of FFNN are presented in tables 5.19 and
5.20. The first column of table 5.19 is the model number that corresponds to the model results
in table 5.20. Once more, the second column is the number of neurons and the third column
is the number of layers. This table presentes three types of different models, but they are all
in the same table because they are all FFNNs.
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In all the FFNN models the best result was obtained by having no dropout. This can
reveal a big issue. Not having dropout means that the model is doing overfitting of the data.
If the model does overfitting of the data, it will not have the capability to adapt over time.

Table 5.19: The best tested configurations for the feed-forward neural network.

M
Number of

neurons
Number of

layers
Activation Functions Dropout Loss Optimizer

1 1 1 sigmoid 0.0 MAE adam

2 1 2 sigmoid, sigmoid 0.0 MAE adam

3 1 3 sigmoid, sigmoid, sigmoid 0.0 MAE adam

4 2 1 relu 0.0 MAE adam

5 2 2 relu, sigmoid 0.0 MAE adam

6 2 3 relu, sigmoid, sigmoid 0.0 MAE adam

7 4 1 sigmoid 0.0 MSE adam

8 4 2 sigmoid, relu 0.0 MSE rmsprop

9 4 3 sigmoid, relu, sigmoid 0.0 MSE rmsprop

10 8 1 softmax 0.0 MAE adam

11 8 2 sigmoid, relu 0.0 MSE rmsprop

12 8 3 sigmoid, relu, sigmoid 0.0 MAE rmsprop

Table 5.20: Comparison of the values obtained by the evaluation metrics

M MSE RMSE MAE
Explained
Variance

R2 Score

1 34.334 ± 0.159 5.859 ± 0.013 4.225 ± 0.030 0.954 ± 0.001 0.954 ± 0.002

2 37.317 ± 0.377 6.108 ± 0.030 4.410 ± 0.074 0.952 ± 0.005 0.950 ± 0.004

3 39.543 ± 0.616 6.288 ± 0.049 4.573 ± 0.055 0.950 ± 0.006 0.947 ± 0.008

4 39.748 ± 7.668 6.282 ± 0.608 4.256 ± 0.570 0.953 ± 0.005 0.947 ± 0.010

5 38.706 ± 2.276 6.219 ± 0.181 4.409 ± 0.261 0.951 ± 0.004 0.948 ± 0.003

6 36.862 ± 3.733 6.065 ± 0.301 4.251 ± 0.327 0.952 ± 0.003 0.951 ± 0.004

7 40.087 ± 4.362 6.324 ± 0.339 4.490 ± 0.433 0.948 ± 0.005 0.947 ± 0.005

8 36.469 ± 5.270 6.027 ± 0.437 4.033 ± 0.329 0.953 ± 0.005 0.951 ± 0.006

9 35.915 ± 2.672 5.989 ± 0.220 3.968 ± 0.197 0.954 ± 0.001 0.952 ± 0.003

10 41.524 ± 0.917 6.443 ± 0.071 4.472 ± 0.135 0.946 ± 0.001 0.945 ± 0.001

11 34.070 ± 1.741 5.835 ± 0.149 3.877 ± 0.211 0.955 ± 0.001 0.955 ± 0.002

12 36.416 ± 1.304 6.033 ± 0.108 4.206 ± 0.154 0.952 ± 0.001 0.951 ± 0.001

There is not a specific pattern relative to the activation function used; however, the
sigmoid and the relu functions are relevant in the results. The evaluation metrics are all
very similar for each model, being the best model, the number 11 with 8 neurons and 2
layers. The model presents low values in the error metrics (MSE, RMSE, and MAE), and
values very close to 1 in the remaining ones. In a general way, the model presents a good
performance.

Model 11 is the best model; however, model 1 presents a very close MSE value and presents
a much lower standard deviation. This could indicate that model 1 is better than model 11.
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However, if a model presents an extremely small value for standard deviation, that might
mean that the model will react worst to changes because it has no adaptive capabilities. The
differences are small between both models, but model 11 has better variance and R2-Score
values, meaning that model 11 describes better the data.

We try to find the best models that perform dropout (0.1 or 0.2). As expected, the error
values increased, and in some cases, the error increases more than the double. In most of the
cases, the best models with dropout appear after several models without dropout. FFNNs
tend to be less flexible than LSTMs, because they perform dropout on the FFNNs, this means
the loss of important information and that leads to increasing the error. The most common
activation functions are tanh and sigmoid.

The best model with dropout has 8 neurons and 1 layer that uses the activation function
tanh. The model presents low error values, having an MSE of 44.857 ± 0.752, and a variance
and R2-Score close to 1. Given that the increase in the error metrics is small, it is preferable
to use the best model with dropout. Figure 5.37 shows the best model with dropout.
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Figure 5.37: Predicting traffic flow observed with FFNN.

It was studied the training times of the FFNN. Table 5.21 contains the times organized by
the number of layers, number of neurons, and dropout ratio. By observation, we can conclude
that the training time depends on the three factors in which the table was divided. The
training time increases with the number of layers, with the number of neurons, and increases
with the presence of dropout. The columns with 0.1 of dropout versus 0.2 of dropout have
very similar values.

It was tested, once more, the application of a model with the same configurations of the
best dropout model obtained for the FFNN to another sensor. The results are presented in
figure 5.38.

The model presented an excellent performance, being the error metrics 12.295 for the
MSE, 3.506 for the RMSE, and 2.341 for the MAE. The variance and R2-Score are both very
close to 1, being both 0.970.
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Table 5.21: Training time (min:sec) for the FFNN models

Dropout

L N 0 0.1 0.2

1 1 3:22.167 3:30.213 3:31.124

1 2 3:23.487 3:34.512 3:34.182

1 4 4:09.369 4:42:110 4:33.129

1 8 4:04.125 4:36.567 4:35.333

2 1 4:40.384 4:59.249 4:58.340

2 2 4:45.527 5:01.003 5:01.492

2 4 5:58:021 6:31.470 6:45.299

2 8 6:18.452 6:47.339 6:48.286

3 1 5:33.266 5:55.329 5:54.485

3 2 5:40.099 6:00.016 6:00.338

3 4 7:15.199 8:00.442 8:18.020

3 8 7:44.264 8:22.588 8:21.597
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Figure 5.38: Reusing the best FFNN model configurations to predict another traffic flow
observed sensor.
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The impact of dropout

Performing dropout has its advantages and disadvantages, as it was being discussed over
this dissertation. To understand better what means to perform dropout, it will be presented
some images, in figure 5.39, that show the impact of dropout. It was chosen to use the
configuration parameters of the best LSTM model. The only parameter that was changed
was the dropout ratio.
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Figure 5.39: The impact of dropout in the prediction of future values, using LSTM models,
with dropout value of (a) 0 (b) 0.1 (c) 0.2.

Not using dropout leads to some errors in the curve behavior, as it is possible to observe
by the simulations of figure 5.39a. The simulation did overfitting of a pattern observed in the
data. The images 5.39b and 5.39c are very similar and show one of the problems associated
with performing dropout. There is a set of values that are discarded. In the images, it is
possible to see that there are some local maximums and/or minimums that are never achieved.

Some of the best models were obtained without dropout, but because the model performed
overfitting of the data, the same configurations could also lead to models with a really bad
performance. This contributes to the creation of models with a huge standard deviation for
the evaluation metrics.
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Discussion

LSTM seems the most appropriate ANN to use to predict the traffic flow because it
presents good results; the best models perform dropout and it is consistent in terms of pa-
rameter values. Some FFNN achieve better results but did not perform dropout, meaning
that they are more sensitive to changes. The best LSTM parameters seem to be the best
model with 8 neurons. SARIMA models presented good results, but they can not perform
long-term forecasting as the ANN models.

LSTMs present bigger training times, but since we want to predict the values for one
week, the training times are relatively small. The best models for each type of ANN can
indicate the best configuration parameters for the construction of models for sensors that are
very correlated with the sensor in the study.

5.6 Abnormal traffic behaviour detection

Anomaly detection allows us to recognize that the present or near future conditions of the
city (its traffic) are uncommon, given the observed history. Anomaly detection is difficult to
perform because it is, in most of the cases, unexpected. However, there are a few cases in
which we could predict that it will happen something unusual. Since we expect to observe
patterns in traffic as a result of calendar seasonality, we can also expect the existence of
anomalies when there is something that is not dictated by the usual seasonality. The best
example is when a holiday occurs.

November first is a religious holiday celebrated in Portugal. In 2019, this holiday happened
on a Friday, being the perfect candidate for our study. Since this holiday happens one week
later after the last week in the study, it was chosen to analyze the next week based on the
models previously calculated to verify their behavior. Besides that, it is also performed some
analysis that can help to detect some anomalies.

In figure 5.40, we observe that, in the week from October 27 of 2019 to November 3 of
2019, is it possible to detect the anomaly presented in the holiday. The traffic values are
much lower than on the Fridays of the other weeks. The holiday even presents lower values
than Saturday and Sunday.

After it was performed the smoothing of the time-series, it was done the seasonal decom-
position from October 7 of 2019 to November 3 of 2019. By looking into figure 5.41, we
can observe the presence of the anomaly. The observed component is the time-series after it
was performed the smoothing step, and, once more, we can visualize a decrease in the values
corresponding to the holiday. In the residual component, there is a significant decrease in the
holiday, highlighting the anomaly.

It is also possible to visualize a decrease in the trend component, even before the holiday.
This indicate that, the existence of a holiday in a Friday allows that some people take some
additional vacation days.

The only component in which the anomaly is not visible is the seasonal component. This
happens because the seasonal component only retains the patterns, the seasonal and cyclic
patterns. Since every year, the weekday in with the holiday happens changes, it would be very
difficult to have a pattern with just one or two years of information. It would be necessary
much more information to detect and study the pattern presented in the holiday.

The residual component is the component that contains the anomaly. To detect and isolate
the anomaly, we should focus on what happens in this component. In this case, the anomaly
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Figure 5.40: Traffic flow observed from October 27 of 2019 to November 3 of 2019.
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Figure 5.41: Time-series additive decomposition (frequency = 2016) with an anomaly
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generates a decrease in traffic. In figure 5.42c, a marked pattern is found corresponding to the
traffic anomaly; it corresponds to the analysis after performing a day resample. In contrast,
other time frames do not accomplish the goal, as exemplified on figures 5.42a, and 5.42b.

Resample data by day is useful if we expect anomalies for an entire day, but for detecting
more isolated anomalies, like accidents, it might be more useful not to perform the resample
or just resample in one hour interval. If the anomalies can affect an entire week, like the
academic week, we might even have to perform the resample by week.
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Figure 5.42: Time-series additive decomposition - Residual component (a) Original (b) 1
hour frequency (c) 1 day frequency.

We already have a way to determine the anomaly; the real question is if it is possible
to forecast the traffic flow even when there is an anomaly. To answer to this question, we
first started with SARIMA model. Figure 5.43 presents the forecasting done with SARIMA.
The only disadvantage of using SARIMA is that we have to retrain the model at each hour.
However, the model presents good performance, proving once more that the model is gener-
alized. The same did not happen when we try to apply the LSTM neural networks, as can
be observed in figure 5.44.

Since LSTM was trained to perform long term forecasts, the LSTM model did not contain
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Figure 5.43: Forecasting anomalous traffic flow observed with SARIMA (12 steps)
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Figure 5.44: Predicting anomalous traffic flow with LSTM.
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any information that the anomaly occurred. As such, it was not able to get good results, and
there is a huge difference between the predicted values and the true values for the November
first.

Even when the previous hour was added to the features group, in order to verify the
impact in the predicted values, there was not a significant improvement, as can be observed
in figure 5.45. Both LSTM models are very similar and the error obtained for this Friday is
large, as it is represented in figure 5.46.
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Figure 5.45: Predicting anomalous traffic flow with LSTM using the previous hour.

The error obtained by the predicted value and the true value shows that there is a bigger
error when the holiday occurs, as can be observed in figure 5.46, because it is something
unexpected, and the model can not predict. Once more, we can detect the anomaly after it
happened.

Note that, all lags present a strong correlation with lag 0, meaning that the use of lag 12
begun not important, and that might be the reason why the model does not adapt.

One of the reasons why we get better results with SARIMA than with LSTM is due to the
capability of SARIMA to look into data as a sequence. However, LSTM is a type of model for
sequential data and can not adapt. This might be due to ANNs being formatted to receive
input data and output data, and not pure sequential data.

By analyzing the residual component or the error component, it is possible to detect the
anomalies; however, the detection just happens after they occur. Is it also possible to detect
them when they occur, if we use SARIMA, but it is not possible to detect them far in advance.

5.7 System implementation

Figure 5.47, representes the architecture developed to process data from Porto. Note that
part of the infrastructure already existed, as is the case of Veniam database. Besides that,
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Figure 5.46: Predicting anomalous traffic flow - LSTM errors.

the components were distributed by several machines. The database from Veniam was in
one machine, the infrastructure responsible for persist the PortoDigital data was in another
machine and all the other components were in a third machine.

The schema relative to the Veniam data source and database is simplified because it
already existed. However, there is a Webhook Infrastructure responsible to persist the data
from the WebSocket endpoint into the database.

It was necessary to build an infrastructure to gather and manage the data from PortoDig-
ital. Fiware [52] is a standardized open-source platform that allows us to achieve our goals
and, since PortoDigital provides us an endpoint using Fiware Orion Context Broker Generic
Enabler (also known as Orion), it seemed the obvious choice. Fiware offers different compo-
nents (Generic Enablers), being Orion the only that is mandatory. Orion provides a Restful
API designated by Fiware NGSIv2 API. The Cygnus module allows the persistence of data
in the databases [52].

Both components, Orion and Cygnus, allow interaction with other components through
the creation of subscriptions. Note that, the MongoDB database was just used as an auxiliary
database to the Fiware infrastructure. MongoDB persisted data related to subscriptions and
data about the entities, but just for a short period. The database responsible to persist the
information at a long term was the PortoDigital database in PostgreSQL.

The main reason to use GTFS files were to associate segments with bus location or traffic
flow locations. The GTFS files have one file that allows us to get all the road segments where
buses go through, called shapes.txt. The shapes.txt file was converted into a shapefile, and
after that, it was created a PostGIS database and all the segments were inserted. The GTFS
files also contained information about the buses schedules. This information was useful to
validate the information from Veniam.

The cache files associated with the preprocessing models were created because the infor-
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Figure 5.47: The system architecture of data from Porto

mation that was used was in most cases the same. Besides that, the third machine would
have to be connected to IT Virtual Private Network (VPN), since the other two machines,
the ones with Veniam and PortoDigital data, were just accessible inside the IT network, and
the communication cost was significant. Another reason for the creation of cache files was
that, for some of the use cases, it was useful knowing the segment of the bus, and the process
to calculate was computationally expensive.

The cache files associated with the predicting model were used to save the machine learning
models when they were created. Those files have an extension h5 and can be loaded to make
predictions, retrain the model, etc.

The preprocessing module connected to the Veniam database is responsible for prepro-
cessing data from Veniam, check the quality of the data, and associate the GPS position
to bus segments. The preprocessing module connected to the PortoDigital database has a
similar role but for the data from PortoDigital. Connected to this module are the modules to
perform the forecasting and the prediction of the traffic flow data. The anomaly module uses
the predicting module and the forecasted module to predict anomalous data. The speed vs
intensity module tries to find a relationship between traffic flow intensity and the bus data.

All the databases and the Fiware components are deployed in Docker containers. The
Veniam database uses Docker Swarm. The cache files, GTFS files, and Shapefiles are kept in
the file system. The models that realize the preprocessing and the analysis are developed in
Python 3.
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5.8 Summary

In this chapter, it was explained the methodology adopted for forecasting the traffic flow.
The dataset exploration at the early stages of the work reveals several problems associated
with the data. The major problems were related to missing data, the existence of larger values
than expected, imprecise GPS coordinates, etc. These problems were solved by applying
smoothing techniques, working with road segments, etc. In general, the difficulties were
overcome.

It was observed that, we can not describe a relationship between speed and traffic flow,
however; when one of these variables presents large values, the other will present small values.
Since we can’t find the relationship, the speed values were not used in the predicting module.
Besides that, the speed values had an enormous quantity of NaN values when associated with
a traffic flow sensor because, even in a city like Porto, there are a lot of intervals in a location,
which does not go any bus for a time interval.

An analysis of the data reveals patterns and seasonality. The data is stationary, meaning
that it is not necessary to apply any differential techniques. Smoothing data prof effective
and solve the major problems associated with the data.

The forecasting techniques presented good results; however, SARIMA can only make
forecasting for a very limited period of time (1 hour), while the deep learning models can
make long-term predictions (1 week). However, SARIMA can adapt better in anomalous
conditions. This happens because of the nature of the models. SARIMA sees the data as
sequential, knowing the logical order, while ANNs despite knowing the sequence, do not
perceive the order in the same way. Note that, LSTM can save information, and even that is
not enough.
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Chapter 6

Driving Behavior

Driving behavior is a complex field of study, being the driver the central element. There
are several aspects that can influence the way how driving is performed. Having a safe driving
behavior is much more than respecting the speed limits and the road rules. The driver should
have a defensive driving, should be observant and careful with what is going on around, and
should adapt his/her behavior when it is necessary.

Section 1 introduces the 3 datasets used in this chapter. We had to prepare the datasets
before performing any analysis. In section 2, we explain the method created to classify driving
behavior. Section 3 presents the web application created to support the city manager to make
decisions. Section 4 contains the system implementation developed for this chapter.

6.1 Data set preparation

The data from Aveiro also came from different sources, correspond to different types of
information, and had different formats. Once more it was necessary different pipelines for
preprocessing the data. Since the data from OSM came from sources without any kind of
verification, it was necessary to verify the quality of that data. Table 6.1 contains a resume
of the data types, sources, and location for Aveiro.

Table 6.1: Data sources

Data source Data type Data collection location

AveiroBus / NAP Bus data Aveiro

OSM Road data Aveiro

OSM Shapefiles data Aveiro

The data from the buses from Aveiro, with the OSM data, will be used to study driving
behavior.

6.1.1 AveiroBus data

Currently, it is being prepared the integration of the data from sensors installed on
AveiroBus buses with the existing infrastructure. At the time of this work was being de-
veloped, the integration did not exist; for that reason raw data files collected directly from
the OBUs in the buses were used. Later, we made the necessary changes.
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Members of our group installed 10 DCUs and 10 OBUs in the buses to receive information
about the speed of the buses, the heading, the GPS coordinates, and the environment sensors.
The data was collected every second. Figure 6.1 depicts one of the OBUs that was installed.

Figure 6.1: Example of an OBU installed on a bus.

AveiroBus data had some problems, particularly some timestamps had negative values,
there were special characters, and some speed and heading values were NaN. There were also
some outliers because the values were too high.

Note that, we are using anonymised data, and it is not possible to tag the driver, as long
as multiple buses are considered in the analysis.

6.1.2 Shapefiles Aveiro

It was not possible to obtain for Aveiro the same type of GTFS files that we have for Porto.
However, by using available OSM API’s, it was possible to get some information about the
bus network of Aveiro. This information was not verified by any entity, and it can have some
faults and be incomplete. However, it was useful to understand the bus stop localizations.
Figure 6.2 contains the information given by the files.

6.1.3 Roads Aveiro

The roads’ information was also obtained by using an OSM library. Similar to the previous
case, this information was not verified by any entity. However, it was useful to associate GPS
positions from buses with the respective road segments. Besides that, it contained some useful
information about the maximum speed for cars. Since we are working with data from buses,
it was necessary to correct some of the data to get the maximum speed for buses.

For some of the road segments, there is not a value of maximum speed. The maximum
bus speed was determined using the type of road associated with the segment. In some cases,
even the type of road was missing. In that case, it was considered that the type of road was
residential, and the maximum bus speed was 50km/h.

Table 6.2 [40] resumes the maximum speed for cars versus the maximum speed for buses.
All the corrections were made taking that information into consideration. It is also important
to remember that there can be some specific restrictions in some segments. If the maximum
speed was lower than the expected speed, then it was not changed.
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Figure 6.2: Visualization of the Aveiro bus network, defined by the GTFS dataset.

Table 6.2: Maximum speed corrections

Type of road Maximum speed (cars) Maximum speed (buses)

Coexistence areas 20 Km/h 20 Km/h

Residential 50 Km/h 50 Km/h

Remaining ways on public streets 90 Km/h 80 Km/h

Reserved lanes 100 Km/h 90 Km/h

Motorways 120 Km/h 100 Km/h

Note that, the OSM terminology has several names for the types of streets when compared
with Portuguese terminology. Some of the names were: residential, secondary, tertiary, trunk,
unclassified, tertiary link, primary, trunk link, secondary link, primary link, living street,
motorway link, motorway, etc.

Figure 6.3 contains the road segments with the maximum bus speed associated. This
image was obtained after the several corrections mentioned above were done. Note that,
there can be some errors associated with our assumptions.

6.2 Classifying driving behavior

The mobility data from Aveiro offers an increased frequency (1 sample per second) than
the data from Porto (each minute), thus enabling to study acceleration as a dimension to
understand driving behavior. The main attributes are GPS location, speed, and timestamp,
it was necessary to choose a model based on these type of features, or features that could be
calculated like acceleration, or traveled distance.

To analyze driving behavior, we created a model inspired by the model proposed in [46].
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Figure 6.3: Roads Aveiro.

This model is based on the relationship between speed and acceleration, and the relationship
between speed and road friction to determine if the driving behavior is safe or unsafe. This
model was described in section 3.3 with more details.

The relationship between speed and acceleration, and the relationship between speed and
friction are simplified since the road material present in Aveiro is mostly the same and the
month when the data was collected had little precipitation. For this reason, the friction
coefficient used is constant and we get an equation as the one presented in 3.5.

It was necessary to adapt the model to the reality of Aveiro. In Aveiro, even inside the
city, there can be several maximum bus speeds. It is necessary to evaluate if the maximum
speed that the bus can achieve is respected. The created model evaluates if the driving is safe
and has some conditions associated based on the maximum bus speed beyond those described
in the paper.

Working with GPS coordinates can be difficult; for that reason, it was necessary to asso-
ciate the GPS position to a specific road segment. To get the road segments for Aveiro we
used the road’s information obtained by using an OSM library. This information had to be
preprocessed to get the maximum bus speed, as it was described in section 6.1.3.

Besides that, we calculated the traveled distance and the acceleration of the bus. The
traveled distance is the geographical distance (in meters) between two geographical points
using Vincenty’s formula. The acceleration was calculated as described in equation 6.1, being
∆v the difference between speeds, and ∆t the difference between time. Note that, if the
bus was stopped and there was no data for more than one second, the acceleration would be
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considered NaN. After this, the data was ready to be studied.

a =
∆v

∆t
(6.1)

We added an intermediate state between safe condition and unsafe condition based on
the fact that in Portugal if the drivers speed is bigger than the maximum speed, but the
difference is less then 10km/h, it is not considered an infraction [40].

Note that, the evaluation between safe driving behavior versus unsafe driving behavior is
subjective and depends on the criteria chosen for the evaluation. Anyway, since the concepts
of safe and unsafe driving behavior were very limited, we created six categories to evaluate
driving behavior.

Table 6.3 contains different categories regarding driving behavior. For each one of the
categories, we assigned a color in the representation of the driving behavior classification
associated. The colors chosen for encoding this information on the map are based on the
colors used in traffic signs. The green represents that everything is ok; the yellow represents
that the driver should be careful; and the red indicates danger. The darker green, the orange,
and the burgundy have the same connotations associated but represent an additional danger
because it is being performed significant variations in speed.

Table 6.3: Classification of the driving behavior.

Speed
Safety Domain
Within Outside

speed 6 max. speed

(speed > max. speed) and (speed 6 max. speed + tolerance const.)

speed > max. speed + tolerance const.

The first line corresponds to safe speeds, this means that the speed of the driver is smaller
or equal than the maximum bus speed. The second line corresponds to the speeds that are
in the threshold area between safe and unsafe. Those are the speeds that are bigger than the
maximum bus speed, but are smaller or equal to the maximum bus speed plus a tolerance
constant. The tolerance is 10Km/h, by default. All the other speeds belong to the unsafe
driving behavior. The first column corresponds to drivers that do not make hard braking or
hard accelerations, and the second column corresponds to those that make hard braking or
hard accelerations.

Classifying driving behavior can be a difficult task. Speed and acceleration can be useful.
The GPS position allows us to perform a more complete classification, because we can use the
GPS position to associate the bus with road segments and we can obtain the maximum speed
for those segments. This section details how the classification of driving behavior have been
performed and presents a web application that is created to allow a more dynamic study.

Figure 6.4 contains the driving behavior for the first day of study for one of the buses.
The blue lines are the limits that separate a safe driving behavior from a non-safe driving
behavior. If the driver performs a safe driving, then all points or the vast majority of these
belong inside the limits. In the figure, we observe that very few points are outside the limits.

When the acceleration is larger than 0, it means that the bus driver is accelerating. If the
acceleration is positive and is outside the bounds, then the driver performed a sudden accel-
eration. When the acceleration is smaller than 0, it means that the bus driver is decelerating
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Figure 6.4: Driving behavior - Relationship between speed and acceleration.
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and the bus driver can even be performing a braking. A negative acceleration outside the
limits means that the driver performed a sudden braking.

If we look carefully at the data, it is possible to observe that the majority of the points
are centered in the graphic, but there are two distinct lines formed by the points. One of
those lines has a positive trend, and the other is very close to the straight segment where the
speed is 0. The line with the positive trend corresponds to the initial start when the driver
turns on the bus. The other line corresponds when the driver is stopping the bus.

The red lines symbolize the several limits of speed that the bus driver can find in the
route. The first three are red dashed lines because they can only be applied if the bus is on
a certain road. The last red line is the maximum limit of the maximum speed that the bus
can achieve. There can be other limits for specific roads.

Considering that the bus has a speed of 60km/h, but it is on a road with a limit of
50km/h. The bus driver has an excessive speed and, despite having an acceleration that is
inside the limits, the driver is performing an non-safe driving. To perform a more accurate
classification, it is necessary to know the maximum speed limit where the bus is.

In order to achieve a more accurate classification, it was initially planned to create a code
color for the points, but we could have an overlap of points and that could lead to wrong
interpretations. With this in mind, it was planned the creation of a web application as a tool
to study driving behavior.

6.3 Traffic behavior web dashboard

We should take into consideration that, even if a driver does a movement that is not
considered safe, that does not mean that his/ her behavior is unsafe. We must always look
for what happened through time. For that reason, it was created a web application for a
better understanding of the driving behavior.

The goal of the web application was not to study the behavior of a specific driver, but
the behavior of all the drivers. Thus, it was possible to identify what are the situations that
most contribute to more dangerous behavior. Some of the main goals in the study of driving
behavior were the ability to:

• Visualization of the driving behavior of bus drivers,

• Compare different temporal snapshots,

• Compare different days of the week, different weeks, etc,

• Compare time periods (for example: the morning period, afternoon period, evening,
etc),

• Focus the study in one street or region.

To achieve the desired goal, one of the possibilities was the creation of a tool to simplify
user interaction and allow a more dynamic study. It was planned for the creation of a web
application with the capabilities previously mentioned. Table 6.4 contains the period in which
the analysis can be done.

Initially, it was planned some use cases for this application, that are discussed in section
4.2.2. Briefly, the application should allow the comparison of temporal snapshots to highlight
problems associated with roads, epochs of the day, etc.
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Table 6.4: Calendar for studying driving behavior.

March 2020
Week Mon. Tue. Wed. Thur. Fri. Sat. Sun.

1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15
3 16 17 18 19 20 21 22
4 23 24 25 26 27 28 29

As the goal was to perform comparisons, the web application is divided into two sides, each
one of the sides contains a map. Figure 6.5 presents one of the sides of the web application.
Note that both maps are synchronized, and performing zoom in one, will affect the other.
The same happens when we change the visualization area of the map.
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Figure 6.5: Dashboard elements (1) Zoom in and zoom out (2) Add line segments, polygons,
and markers (3) Edit and delete line segments, polygons, and markers (4) Mouse GPS
position (5) Fullscreen (6) Minimap (it can be minimized) (7) Select information (8) Choose
an hour interval (9) Pop-ups a calendar (10) Choose a day or an interval of days (11) Choose
a road (with autocomplete functionality) (12) Apply the changes.

In the type of information, the user can choose to analyze the driving behavior, the
maximum bus speed, or the number of buses, the average speed, and the average acceleration.
For the driving behavior there are two options, the user can choose the periodicity of the
dataset of 1 second or 1 minute. These two options are given because, while the dataset from
Aveiro presents information from 1 in 1 second, the dataset from Porto (Veniam dataset)
presents information with 1 minute interval. Thus, we can compare the impact of increasing
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dataset periodicity. With that in mind, it was created the same functionality for all the other
options except the maximum bus speed. It was also necessary to recalculate the metrics as
traveled distance, acceleration, and if the behavior is safe or unsafe.

Figure 6.6 contains the comparison done for driving behavior with 1 second period between
the same days interval in different hours intervals. It is possible to observe some differences
and some patterns in the images. For example, there is one road segment that is red in both
cases. Besides that, it is perceptible that the buses performed different paths in the morning
shift versus in the afternoon shift, because there are some differences between the colored
lines in both maps.

Figure 6.6: Comparison of different periods of driving behavior.

With the mouse over the box under the fullscreen button, a menu is opened to select
the information that is being displayed. If it is being studied driving behavior, then it is
opened the menu present in figure 6.7. This menu is built based on table 6.3. For example,
if we want to see the difference in terms of maximum speed being exceeded by more than
10km/h, we just select the third and fourth elements. By doing that, we will get as a result
the information on figure 6.8.

Figure 6.7: Driving quality behavior menu.

Through observation, it is possible to detect some roads in both maps in which the speed
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Figure 6.8: Side-by-side comparison of different periods of driving behavior, maximum speed
being exceeded by more than 10km/h.

is exceeded by more than 10km/h. If we want a more detailed analysis, we can focus the map
in one specific area, as can be observed in figure 6.9. Some of the lines are more transparent
than others, as it is possible to observe. This is due to the percentage of unsafe driving
behavior being different. For each segment, it was calculated the percentage of the several
driving classification labels. A more opacity line means that the drivers performed more
unsafe driving behavior.

It is also possible to compare, for example, the driving behavior with the maximum bus
speed, as can be observed in image 6.10. With the mouse over the box under the fullscreen
button, on the second map, it is possible to select the information by roads that have a
maximum bus speed of 20km/h, 30km/h, etc.

Impact of data frequency in driving behaviour analysis

The major difference between the datasets from the buses from Aveiro versus the buses
from Porto, besides the network size, was the periodicity. One of the big questions was about
the impact of having information every second (Aveiro) versus every minute (Porto). Figure
6.11 presents the driving behavior comparison between 1 second and 1 minute. Figure 6.12
presents, for the same interval, the bus count information that contributes to the formation
of figure 6.11.

As can be observed, there is a loss of information that results in some differences in figure
6.11. The difference between the information that contributes to the creation of the maps is
big. This happens because, instead of 60 points, we will have just 1. Figure 6.13 presents
a more simplified explanation with just 5 points instead of 60. In the figure on the left, t0
represents when we start to measure the values and t5 happens after we measure the other 4
values. If we ignore those, we will only have t0 and t5, or, as it is represented in the figure on
the right t′0 and t′1. This will alter the traveled distance, acceleration, and driving behavior
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Figure 6.9: Side-by-side comparison of different periods of driving behavior, maximum speed
being exceeded by more than 10km/h, zoom in with a focus on a specific area.

Figure 6.10: Side-by-side comparison of driving behavior with the maximum bus speed.
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Figure 6.11: Side-by-side comparison of driving behavior using information with a period of
1 second versus 1 minute.

Figure 6.12: Side-by-side comparison of the number of buses using information with a period
of 1 second versus 1 minute.
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Figure 6.13: The effects of periodicity in data.

The impact of increasing periodicity can be one of the reasons why it is difficult to establish
a relationship between traffic flow intensity and bus speed.

Figure 6.14 presents the comparison between the average speed profile using the informa-
tion from 1 in 1 second versus using the information from 1 in 1 minute. Since the map with
information from 1 in 1 minute contains less information, as expected, this map presents a
larger variation of the values.

Figure 6.14: Speed profile.

The same was observed for the average acceleration profile, presented in image 6.15.

Visualizing the city pulse with time-lapse approach

To visualize the evolution of the different metrics through a period, it was created the
possibility for the user to visualize a timelapse of the metric timeline chosen. Figure 6.16
contains the interface presented, and figure 6.17 contains some of the transitions observed.
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Figure 6.15: Acceleration profile.

Figure 6.16: Timelapse interface.
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Figure 6.17: Timelapse transitions.

6.4 System implementation

The data used to study driving behavior was the data obtained by the deployed infras-
tructure with communication and sensing information in the vehicles, and the data obtained
through OSM. The system architecture is described in figure 6.18.

Preprocessing
Module AveiroBus

Database
PostgreSQL

Rest Api

Web Application

HTTP Request

Insert

Select

OSM library

Use

Driving Behavior
Module

Use
PortoDigital
Database

PostgreSQL

Machine 2

Select

Machine 3

Figure 6.18: System architecture of the driving behavior module

The preprocessing module is responsible to process the collected data from the buses, and
associating the buses GPS positions to road segments by using a library developed to get
information from OSM. The information from buses was added to the Fiware infrastructure
mention in the previous section. The Fiware infrastructure is responsible to persist the data
in the database presented in the figure.

The driving behavior module will calculate the metrics as traveled distance, acceleration,
and if the driving behavior is safe or not. Then, it will save the information in a database.
Note that any process related to the association of GPS coordinates with road segments is
computationally expensive.
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The Rest API allows us to perform requests and get information from the database to
the web application. The web application is the tool that was created to analyze the driving
behavior.

The modules were developed in Python 3, and the web application was built using HTML5,
CSS, JavaScript, Bootstrap 4, and the Leaflet JavaScript library.

6.5 Summary

As was discussed in section 6.1, the data from buses from Aveiro have some problems
and needed to be processed. Besides that, the information from the infrastructure had the
maximum speed for cars. Since we were working with buses, some corrections needed to be
made. Because of that, it may exist some mistakes associated.

For the driving profile, we created 6 distinct categories, based on the relationship between
speed and acceleration, and in the relationship between speed and the maximum speed allowed
for buses.

To allow a dynamic study of driving behavior, we created a web application. The created
tool enables a more complete study of driving behavior. Thus, even a person without knowing
how to program can analyze the driving behavior in a city. The applications enable the user
to perform several actions. The user can compare information, and he/she can visualize a
time-lapse from metrics related to driving behavior. The user can even study the impact of
different frequencies in the data.
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Chapter 7

Results

Chapters 5 and 6 contain a section with a detailed explanation of the obtained results,
and mention the multiple steps that contribute to the final result. This chapter is focused on
the final result of the several stages of this work.

7.1 Results from the traffic flow analysis and forecasting

7.1.1 Mobility dataset aspects

Preprocessing the data from buses and sensors has a key role in this work. The data
presents several problems like null values, abnormal values, missing data, and GPS impre-
cision. The data faults could be solved by applying different techniques as data cleaning,
smoothing, associating GPS positions to road segments, etc.

The data from infrastructure prove to be a good allied to make a more complete analy-
sis. Without the infrastructure data, we could not make GPS positions associations to road
segments. Both infrastructure datasets had to be processed. The GTFS dataset from Porto
had to suffer some alterations in order to get smaller segments. As a result, it was created a
database with the smaller road segments. The OSM dataset from Aveiro contains information
about road segments and it’s maximum allowed speed. That information was altered in order
to get the maximum allowed bus speed.

7.1.2 Traffic flow informed by deployed traffic counters

There are several traffic counters in Porto. Those traffic counters allow to have a per-
ception of the evolution of traffic over time in the city. Because of that, they should exhibit
traffic patterns.

Time-series decomposition performed for 4 weeks of data reveals some of the existing
patterns. Figure 7.1 contains the additive decomposition. Note that, the weekends are high-
lighted by a red dashed box, and there are some peaks highlighted with a green circle in the
seasonal component.

By analyzing the seasonal component, we can observe a clear distinction between the
weekdays versus the weekend. The curve is similar between each one of the weekdays, and
the curve is similar between each one of the days of the weekend. The traffic is higher on
the weekdays. The first three green circles belong to the first Monday. Each one of the
green circles is localized in one of the three peaks in the curve that corresponds to the hours
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Figure 7.1: Time-series additive decomposition, frequency = 2016.
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when is supposed to be more traffic. The major peeks happen at the more busy morning and
afternoon period, and the other peek happens in the lunch hour. The differences in traffic at
the weekend are less significant that at the weekdays.

In the observed part of the graphic, the curve is similar between different weeks. That’s
why, it is possible to observe the pattern in the seasonal component, and the remaining values
at the residual component are very low.

Autocorrelation also exposed some of the patterns. that the days are similar, being more
similar the weekdays with other weekdays. The same happens for the days of the weekend.
It was possible to identify similar traffic flow sensors by using cross-correlation.

Some of the traffic counters present anomalous values due the existence of malfunctions.
We should always try to understand if the observed values make sense. The observed values
present in figure 7.1 seem right since we observe expected patterns. This type of study should
have in consideration the location of the sensors because if we have a sensor in a place where
it is rare to pass vehicles, we should not expect to observe the same type of patterns, there
ca even not exist any patterns.

7.1.3 Forecasting the traffic flow

Predict traffic flow can help city managers identifying and solving traffic related problems,
like frequent traffic jams locals, etc. We have available information about traffic counters and
buses speed. Since buses can not represent urban mobility, we should verify if we can use or
not the buses speed.

We were not able to find any relationship between speed and traffic flow intensity. Despite
not establishing a relationship, the obtained results agree with what we can observe in a city.
When there is much traffic, the speed of the vehicles will be low. One good example of this is
traffic jams, and rush hour. When the speed of the vehicles is very high, there can’t be much
traffic, so the traffic flow observed is low. In this case, we can have an example of non-rush
hour.

In most of cases, we can not have a prediction of a value by using the other, since we could
not find any relationship between bus speed and intensity. To forecast traffic flow it was used
just traffic data. Models like SARIMA can not use any additional type of information, but
deep learning models could have benefited from the speed data.

The best model for forecasting traffic flow is LSTM neural networks. The MSE obtained
for one-week prediction is low (40.983 ± 3.151) and the variance is very close to 1, meaning
that the model could learn the data. The training time is low (12 minutes and 29.341 seconds)
given that we are predicting an entire week.

The other models also obtained good values, but the SARIMA only can make 1-hour
forecasting and the FFNN model has a bigger tendency to make overfitting of the data.

The deep learning models were designed to make long term forecasting. For that reason,
they could not make good predictions of anomalous days. Even if we added the last hour,
it was not enough. Since the SARIMA model is retrained each hour, and SARIMA sees the
data has a sequence, the SARIMA model could adapt.

7.1.4 Results from the driving behavior analysis

We choose to use data from Aveiro to analyze driving behavior because the dataset from
Aveiro was sampled with a bigger frequency. One of the big advantages of using data from
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Aveiro is that in Aveiro there aren’t any bus tracks. Even though buses do not represent
general traffic because they have pre-establish routes, trips, and stops, in this case, is elim-
inated one of the problems that existed in the dataset from Porto. Thus, we have a more
approximated representation of the general traffic.

We aim to characterize driving behavior as safe or non-safe and find patterns in time and
space that leads to safe or non-safe driving. Data from multiple trips and buses are analyzed
together, and the system does not offer specific support to filter for individual drivers/buses.

The method created to analyze driving behavior has two components. The first component
relates speed and intensity. The second component relates speed and maximum bus speed.
It was observed that in most of the cases, the drivers do not perform sudden acceleration or
braking. The major problem is in the speed.

In the graphics obtained that relate speed and acceleration, it was visible a distinction
between start driving, driving, and the immobilization of the vehicle. For the first one and last
one, there was observed a distinct line for each one. The other values were more distributed
between the limit lines for safe driving.

7.2 Software prototypes

7.2.1 Web dashboard for traffic behavior visualization

The user application created allow a more broad analysis of the driving behavior. There
are two major functionalities. The first one allows the user to compare driving related metrics.
The second one allows the user to visualize a time-lapses of one of the metrics.

The web application is useful for identifying problematic road segments, identifying prob-
lematic times of the day, compare zones, etc.

For the same day and time period, figure 7.2 contains a side-by-side comparison of 2
different metrics. On the left side, we can visualize the driving profile when the speed is
bigger than the maximum bus speed plus the tolerance constant (10km/h). We used one of
the other available options (maximum speed for buses) to find the maximum bus speed for
the road that is colored in red and we verify that was 50km/h. On the right side is presented
the average speed, after it was filtered for average speeds bigger than 60 km/h.

From the left side, we can conclude that a big portion of the buses that went through the
road at that time presented a non-safe driving behavior. From the right side, we can see that
the average speed presented values between 60km/h and 80km/h. This analysis allowed the
identification of this road as potentially dangerous and can potentiate a more complete study.
For instance, we should verify if this happens more times, if it is associated with certain times
of the day, or specific days, etc.

7.2.2 Container-based processing pipelines

For each one of the main use cases, it was created configurable pipelines (a pipeline
for predicting future values and a pipeline for classifying driving behavior) that are able to
perform the desired tasks autonomously by running scripts. Some of the configurations are
the period in the study and the sensor id.

There are several auxiliaries pipelines that support the main pipelines, like the ones for
preprocessing data, performing statistical analysis, performing graphical analysis, performing
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Figure 7.2: Side-by-side comparation of non-safe driving behavior with average maximum
speed bigger than 60km/h.

smoothing, correlate sensors, decompose time-series, etc. Some of the tasks are optional and
can be excluded from the main task.

For predicting future values there are several tasks that have to be performed. Choosing
the best parameters for predicting traffic flow assumes the training and testing of models with
different parameters and the comparison of the obtained predictions with a metric error to
choose the best model. After that, we can train models and made predictions.

The analysis presented for the forecasting of the traffic flow was done using just one sensor.
We showed that we could use the same metrics, the best metrics that were calculated for the
sensor, to predict the values of another sensor that presented a strong correlation with the
sensor in the study. If the sensor does not present a strong correlation, we can calculate the
best parameters for that sensor.

The pipeline created for classifying driving behavior receives the information from the
buses and calculates for every bus the necessary metrics (classification of the driving behavior,
acceleration, traveled distance, and road segment).

7.3 Relationship between the results for the two cities

The two case studies were developed in isolation since we have different data for Porto
and Aveiro. We try to take advantage of the best features of each one of the datasets.

The component that proves to have a major impact on data is the periodicity of the data
collected by the sensors. There are some major differences in having data collected from
1 in 1 second versus data collected from 1 in 1 minute. Despite not having the data from
Veniam from 1 in 1 second, we can perform the driving behavior, but we have to take into
consideration that the results are less reliable.

The methods developed for Aveiro can be used in Porto, but the analysis will have to take
into consideration the limitations of not having the same frequency. The methods used for
the datasets from Porto could be also used in Aveiro. Study the relationship between speed
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and intensity could achieve better results since we would have a more reliable bus dataset.
We would only need to be installed the traffic counters sensors in the city.

The developed work will be integrated into the S2MovingCity smart city services platform
by providing several services through an API and the merge of the web application with
existing ones.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Improving smart urban mobility can have several positive impacts on the city and its
citizens. For example, the identification of problematic traffic zones can lead the responsible
authorities to implement measures to combat the problems.

Since we had different data from Aveiro and Porto, it was possible to focus on different
analyses for each one of the datasets. The data from sensors had to pass through a process of
data cleaning, reduction, and transformation. The data from the infrastructure also needed
preprocessing to match our requirements.

Time-series analysis was a good starting point because it helped in the identification of
patterns and problems. Smoothing data solved some of the problems associated with the data
like outliers, missing data, noise, etc.

To forecast the traffic flow observed using SARIMA, we have chosen the model based on
the performance for the first forecasted hour. Since we could just forecast one hour (due to
limitations of the model), a model was developed for each weekday. The metric that was
selected to choose the model was BIC because this metric does not perform overfitting of the
data, as it was observed. Thus, it was possible to forecast an entire day, by retraining the
model at every hour.

To use deep learning methods, we performed feature selection of time lags. The results ob-
tained previously by autocorrelation functions helped in the choice of feature lags to compare.
All the feature lags chosen had a strong correlation.

It was possible to forecast one week of the traffic flow by using deep learning methods;
however, we found some limitations. While SARIMA models could adapt and make good
predictions even in the presence of anomalies, the machine learning methods were not able to
do the same. One of the reasons is that they were designed to make long term forecasting.

The methods used to forecast and predict the traffic flow can be used by other sensors,
besides the one in which the study was based if the sensors have a strong cross-correlation. The
parameters used are the same, and it is just necessary to train the models. These were tested
to apply the models (Seasonal AutoRegressive Integrated Moving Average, Long Short-Term
Memory and FeedForward Neural Network) with the same parameters to different sensors.
The results obtained were very close to the real values in both cases, proving the advantages
of performing cross-correlation.

Using the data, we created a method to classify driving behavior based on an existing

101



method that used the relationship between speed and acceleration. Because that relationship
is not enough, the method proposed has into consideration that, on different road segments,
the speed limits can be different. We verified that most of the time the bus drivers do not
perform hard accelerations or brakings. The part of the proposed method that has a major
impact is the speed limits. This might happen because buses are obligated to stick to sched-
ules. For a more dynamic study of the driving behavior, we developed a web application that
can help in the identification of traffic problems. The web application allows the identification
of problematic roads and times of the day. Besides that, it also allows the visualization of the
driving behavior evolution (and other metrics) and comparison in time and space.

On a final note, we conclude that it is difficult to study urban mobility if there is only
information about buses. In Porto, buses travel through bus lanes, and even without the
lanes, buses have pre-established routes, trips, and stops, which makes it more difficult to
analyse mobility. However, the mobility can be inferred with this information, and then be
improved with the information of different types of vehicles.

8.2 Future Work

The study of smart urban mobility is far from being completely explored. Regarding the
developed work, there are some elements that can be improved or developed. Noteworthy:

• One of the ways to improve results and understand if the traffic speed is related to the
traffic intensity would be using sensors to measure the average speed in a given interval
or the instantaneous speed of the vehicles; however, they have to be placed in strategic
places due to the existence of bus lanes in Porto;

• Predict traffic flow together with speed, creating models that predict speed using traffic
flow and models that predict traffic flow using the speed. In this way, we could predict
the traffic with a full picture of the main aspects: speed and intensity;

• Transfer methods between cities: at least in terms of the bus data forecasting, this can
be performed both in Porto and in Aveiro;

• Understand the causes that lead to speeding, for instance, if it happens more frequently
when the bus is delayed. It could be used part of the developed work, by other members
of the group, to associate buses with routes and trips;

• Test new algorithms for anomaly detection (road accidents, holidays, constructions, etc.)
to detect anomalies that happen during short or long-term periods. It could be done a
hybrid method composed by Seasonal AutoRegressive Integrated Moving Average and
Long Short-Term Memory;

• Adaptive methods (methods that can recalculate the parameters used if the error has
a significant increase) to predict traffic flow even if something unexpected happens;

• Study the opportunity to create a recommendation system for the bus drivers, for
example, it could be suggested for the bus drivers to decrease speed, or that they have
to be careful due to the existence of something unexpected;
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• Analyze driving behavior trends (in space and time), for example, analyze the evolution
of driving behavior through the day in a zone using statistical or deep learning methods.
This way, city managers could try to change some aspects (like traffic signals, speed
limit) to improve driving behavior;

• Analysis of the traffic jams progression through the day in the affected areas, and the
flow of the affected areas;

• Include other aspects in the driving behavior analysis like the disrespect for traffic
signals, road marks, u-turns in prohibited roads, etc. However, this may be difficult due
to the lack of information.

Though the computational methods are implemented and operational, there are a few
opportunities to enhance the system deployment:

• Integrate the methods into production, considering, in particular, the context of the
projects S2MovingCity and Aveiro Steam City:

– Deploy into production the prediction module, and provide updated predictions to
users;

– Deploy into production the driving behavior module and allow real-time analysis
and rich visualizations.

• Validate the tools with end-users (usability tests).
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