
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2019

Diogo Macedo
de Sousa

Decision Support Service for Bewegen Bike-Sharing
Systems

Serviço de Suporte de Decisão para os Sistemas de
Bike-Sharing da Bewegen

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2019

Diogo Macedo
de Sousa

Decision Support Service for Bewegen Bike-Sharing
Systems

Serviço de Suporte de Decisão para os Sistemas de
Bike-Sharing da Bewegen

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestrado em Engenharia de
Computadores e telemática realizada sob a orientação cient́ıfica da Doutora
Petia Georgieva, Professora Auxiliar do Departamento de Eletrónica, Tele-
comunicações e Informática da Universidade de Aveiro

Dedico este trabalho a todas as pessoas que acreditaram em mim, em
especial aos meus pais por todo o apoio que me deram.

o júri / the jury

presidente / president Professor Doutor Lúıs Filipe de Seabra Lopes,
Professor Associado, Universidade de Aveiro

vogais / examiners committee Professora Doutora Catarina Helena Branco Simões Silva
Professora Auxiliar, Escola Superior de Tecnologia e Gestão de Leiria (Ar-

guente Principal)

Professora Doutora Petia Georgieva Georgieva
Professora Auxiliar, Universidade de Aveiro (Orientadora)

agradecimentos
acknowledgements

À minha orientadora, Professora Petia Georgieva, pela disponibilidade,
pelos conhecimentos transmitidos e pela motivação que me deu.
À Bewegen e Wegoshare que me permitiram avançar com este tema
de dissertação disponibilizando as condições e a sua ajuda sempre que
precisei.
Ao meu ”mentor” na Wegoshare, Ricardo Costa, pelo acompan-
hamento e motivação transmitida.
Aos meus colegas na Wegoshare pelo constante apoio e paciência por
me estarem sempre a ouvir falar da dissertação.
A todas as pessoas que fizeram parte destes últimos 6 anos da minha
vida.
Aos meus pais, por todo o apoio. Sem eles eu não seria o que sou
hoje.
Ao resto da minha faḿılia por terem estado sempre presentes e terem
sempre palavras de incentivo que me ajudaram imenso.

Obrigado a todos, sem vocês este trabalho não teria sido posśıvel.

Palavras-Chave bike-sharing, aprendizagem automática, seleção de features, visual-
ização de features, redes neuronais, k-nearest neighbour.

Resumo Os sistemas de bike-sharing estão a tornar-se cada vez mais populares
e a sua gestão mais complexa. O objetivo principal desta dissertação
é o desenvolvimento de um serviço de suporte de decisão, baseado
em métodos de aprendizagem automática, para os sistemas de bike-
sharing da empresa Bewegen. Um objetivo secundário é o desenvolvi-
mento de um mecanismo de recolha sistemática de dados de utilização
do sistema, necessários ao desenvolvimento e teste dos métodos de
aprendizagem automática. O serviço de suporte de decisão tem dois
objetivos. O primeiro objetivo é a previsão do número de bicicletas
em cada estação com 30 minutos de antecedência, informação esta
a disponilizar aos clientes do sistema de bike-sharing. O segundo ob-
jetivo é a previsão do número de bicicletas em cada estação com 24
horas de antecedência, informação esta a disponilizar aos operadores
do sistema no planeamento da distribuição das bicicletas pelas difer-
entes estações. Para cumprir com estes objetivos foram implementados
dois algoritmos de aprendizagem automática: uma rede neuronal e um
algoritmo k-nearest neighbour. Os testes realizados mostram que os al-
goritmos baseados em redes neuronais obtêm melhor desempenho nos
dois objectivos. Os dados utilizados nos testes dos dois algoritmos são
os dados históricos de um dos sistemas da Bewegen recolhidos desde
1 de janeiro de 2019 até 30 de abril de 2019.

Keywords bike-sharing, machine learning, feature selection, feature visualisation,
neural networks, k-nearest neighbour.

Abstract Bike-sharing systems (BSS) are becoming very popular and, conse-
quently, their management is becoming more complex. The main ob-
jective of this dissertation is the development of a decision support
service for Bewegen bike-sharing systems applying machine learning
(ML) methods. An additional objective is the development of an ap-
propriate mechanism for systematic data collection, required in the
development and test of the ML methods. The decision support ser-
vice has two goals. The first goal is the prediction of the number of
bikes in each station 30 minutes ahead of time, to be provided to the
bike-sharing system clients. The second goal is the prediction of the
number of bikes in each station 24 hours ahead of time, to be provided
to the bike-sharing operators when deciding how to redistribute bikes
among the different stations. In order to reach these two goals, two
ML approaches were implemented: a neural network (NN) model and
a k-nearest neighbour (k-NN) algorithm. The tests have shown that
the NN algorithms provide better prediction results on both goals. The
prediction algorithms were trained and tested with collected historical
data from one of the Bewegen’s BSS from 1 of January, 2019 until 30
of April, 2019.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Dissertation Outline . 2

2 Bike-Sharing Systems - State of the Art 3
2.1 Background . 3
2.2 Bewegen Systems . 4
2.3 Major Bike-Sharing Systems . 5

2.3.1 Hangzhou Public Bicycle . 6
2.3.2 BIXI Montreal . 6
2.3.3 Capital Bike Share . 7
2.3.4 Citi Bike Share . 7
2.3.5 Vélib’ Métropole . 8

2.4 Data Cleaning and Feature Extraction . 9
2.4.1 Historical data . 9

Historical Average (HA) model . 9
Auto-Regressive and Moving Average (ARMA) model 10

2.4.2 Weather . 10
2.4.3 Time . 10
2.4.4 Users . 12
2.4.5 Stations . 12
2.4.6 Ranking features . 13

2.5 Machine Learning Algorithms . 14
2.5.1 Random Forest model . 14
2.5.2 Gradient boosting decision tree . 15
2.5.3 Neural Networks . 16

i

2.5.4 K-Nearest Neighbour . 17
2.5.5 Support Vector Machine (SVM) . 18
2.5.6 K-means Clustering . 19

3 Decision Support System for Bewegen Bike-Sharing Systems 21
3.1 Data Collection . 21

3.1.1 Backend data collection module . 21
3.1.2 Weather data collection . 24
3.1.3 Holidays data . 25

3.2 Data Visualisation and Processing . 25
3.2.1 Data Visualisation (Station Occupation) 26
3.2.2 Feature Matrix Construction - First Version 26
3.2.3 Data Visualisation (Pickups) . 28
3.2.4 Data Visualization (Weather) . 30
3.2.5 Feature Matrix Construction - Final Version 31

3.3 Description of Features . 32
3.3.1 Features . 32
3.3.2 Ranking features . 33

4 Prediction of Bike-Share Usage with Machine Learning 36
4.1 Dataset Description . 36
4.2 Error Calculation . 36
4.3 Neural Network . 37

4.3.1 NN model selection for Station 1 - short term prediction 38
4.3.2 NN model selection for Station 1 - long term prediction 39
4.3.3 Features selection in NN-based prediction 40
4.3.4 Results for the Other Stations . 41

4.4 K-Nearest Neighbour . 41
4.4.1 K-NN parameters . 44
4.4.2 K-NN model selection for Station 1 - short term prediction 46
4.4.3 K-NN model selection for Station 1 - long term prediction 46
4.4.4 Results for the Other Stations . 46

4.5 Analysis of Accuracy Results . 47

5 Conclusions and Future Work 49

References 51

ii

List of Figures

2.1 Zyp Bikeshare System bikes . 6
2.2 U-Bike Bike-share System . 6
2.3 Hangzhou Public Bicycle bikes [1] . 6
2.4 BIXI Montreal bikes [2] . 7
2.5 Capital Bike Share bikes [3] . 8
2.6 Citi Bikes bikes [4] . 8
2.7 NYC bike trips vs. temperature [5] . 11
2.8 NYC bike-share usage per hour [5] . 11
2.9 ValleyBike BSS map . 13
2.10 Simple Random Forest example [6] . 15
2.11 Shallow Neural Network architecture [7] 16
2.12 Two dimensional linear SVM [8] . 18
2.13 K-means clustering example [9] . 19

3.1 Station 1 occupation percentage in January 26
3.2 Station 2 occupation percentage in January 26
3.3 Station 3 occupation percentage in January 27
3.4 Station 11 occupation percentage in January 27
3.5 Number of pickups per day of week . 29
3.6 Pickups on Monday in Station 1 . 29
3.7 Pickups on Tuesday in Station 1 . 29
3.8 Pickups on Wednesday in Station 1 . 30
3.9 Pickups on Thursday in Station 1 . 30
3.10 Pickups on Friday in Station 1 . 30
3.11 Pickups on Saturday in Station 1 . 30
3.12 Pickups on Sunday in Station 1 . 31
3.13 Average number of pickups for the 3 temperature categories at each day of

week . 31

4.1 Test error as a function of number of neurons (n) and regularisation param.
(α) on short term prediction . 40

4.2 Test error as a function of the number of neurons (n) and regularisation
value (α) on long term prediction . 42

iii

4.3 Average test error with different number of features (p) for short term and
long term prediction tasks . 43

iv

List of Tables

2.1 Bewegen systems information . 4

3.1 One Hot Encoding of Temperature feature encoded in 3 binary features
T Cold, T Medium and T Hot . 33

3.2 One Hot Encoding of Month of year in a binary feature per month 33
3.3 Scores and ranking of each feature with f regression 35

4.1 NN Model selection (number of neurons and alpha parameter) on short term
prediction . 39

4.2 NN Model selection (number of neurons and alpha parameter) on long term
prediction . 41

4.3 Study of neural network model parameters for short term prediction for the
rest of stations . 44

4.4 Study of neural network model parameters for long term prediction in the
rest of stations . 45

4.5 K-NN Model selection (K neighbours, distance and weight function) on a
short term prediction . 46

4.6 K-NN Model selection (K neighbours, distance and weight function) on a
long term prediction . 47

4.7 Study of K-NN model for short and long term predictions in the rest of
stations . 47

v

vi

Chapter 1

Introduction

1.1 Motivation

A Bike-Sharing System (BSS) is a system in which bikes are rented by clients on a
short-term basis for a cost that can be a combination of a periodical subscription and a
rental time-based price. A BSS is composed by multiple stations, which are places where
bikes are locked and can be released by proper client authentication. Rental time starts
when the client unlocks the bike on a station and terminates when the client locks it again
on a station. Clients can pick a bike from any station and return it to the same or any
other station.

Public bike-sharing is becoming increasingly popular in the last decade with systems
installed all over the world. The Canadian company Bewegen is a bike-sharing company
with many different systems in North America, Central America and Europe. Due to
the increased complexity of bike-sharing daily management and the need to improve the
quality of the service provided to clients, human based management is not enough and
advanced decision support systems must be envisioned. One possible approach is the one
adopted in this dissertation of exploiting machine learning techniques that can provide
useful information based on the historical behaviour of the system.

The information provided by machine learning techniques can be useful in different
contexts. In this dissertation, two contexts are taken into consideration. First, a BSS
requires daily management decisions on how many bikes should be operating and how they
must be distributed among all available stations. Second, clients need information on bike
availability (or space availability) at nearby stations when deciding how to move to their
next destination (or where to drop their currently rented bikes).

The development work included in this dissertation was conducted in Wegoshare, a
portuguese IT company with an office in Aveiro, who is in charge of all IT developments
for all Bewegen BSSs.

1

1.2 Objectives

The main objective of this dissertation is the development of a decision support service
for Bewegen BSSs based on machine learning methods. The decision support service has
two goals:

• The first goal is to assist the clients of the BSS when they need to know the bike/space
availability at the nearby stations in a short period of time. So, this is a short term
prediction task where the goal is to predict the number of bikes in each station 30
minutes ahead of time.

• The second goal is to assist the system operators on how they should distribute
the bikes among all stations in the system. This is a long term prediction task
because the operators need this information much early in advance. So, the goal is
to predict the number of bikes in each station 24 hours ahead of time.

An additional objective of this dissertation is the development of an appropriate mech-
anism for systematic data collection to be plugged in Bewegen internal system, required
in the development and test of the machine learning methods.

1.3 Dissertation Outline

The dissertation is organised in five chapters as follows:

• Chapter 1 provides an introduction to this dissertation.

• Chapter 2 introduces the concept of a BSS, describes the BSSs of the Bewegen com-
pany and reviews the scientific literature related to the prediction problem in hand.

• Chapter 3 describes all the work done to prepare data for machine learning algo-
rithms, including data collecting, data processing, data visualisation, and feature
description and ranking.

• Chapter 4 describes and evaluates the two machine learning approaches (neural net-
work and k-nearest neighbour) taken in order to predict the number of bikes on each
stations in Bewegen BSSs.

• Chapter 5 draws the main conclusions of the work described in this dissertation and
discusses some possible future work.

2

Chapter 2

Bike-Sharing Systems - State of the
Art

This section introduces the concept of bike-sharing system (BSS), describes the BSSs
of the Bewegen company and reviews the scientific literature related to the prediction
problem in hand. In section 2.1 the background of BSSs is described. In section 2.2 the
Bewegen BSSs are shortly introduced. Section 2.3 describes some of the largest and most
important BSSs worldwide. Section 2.4 discusses the major BSS characteristics that are
typically considered as features in prediction tasks. Finally, in section 2.5 are reviewed the
most frequently applied Machine Learning (ML) algorithms in bike-sharing predictions.

2.1 Background

A contemporary BSS is referred in [10] as a system that enables short-term rentals of
bikes taken from one station and returned to the same or other station. Stations are places
where bikes are locked and can be released by proper client authentication. There are two
types of stations [11]. The first type are stations with docks for clients to park the rented
bikes. For a long time, this type of stations was the only one used in bike-sharing. In
recent years, a new type of stations has appeared, commonly named as dockless stations.
In this type, clients can park the bikes where they want inside the station limits and there
is no specific mechanism in the station (such as docks) to lock the bikes.

Rental time starts when the client picks up the bike at a certain station and terminates
when the client returns the bike to the same or any other station. Stations are placed in
strategical locations over the system limits in order to satisfy the clients needs.

Due to many factors, the use of BSSs has increased significantly over the last years.
Among the most significant ones, these systems are an environmentally friendly solution for
transportation, provide a much healthier way to move around in the city, reduce traffic con-
gestion and fuel consumption and reduce the transportation costs within short distances.
An interesting conclusion drawn in [12] is that BSSs have a positive financial impact in the
Minneapolis businesses. The results show that food-related businesses and job destinations

3

are positively affected by the existence of nearby bike-sharing stations. Positive impacts
in several businesses are also reported in [13] for the Washington DC BSS.

2.2 Bewegen Systems

Bewegen is a Canadian company that has BSSs all over the world. Table 2.1 presents
the list of all current Bewegen systems identified by their locations (city and country).
The table shows the number of stations and the number of bikes of each system, which
spans from quite small systems (the smallest is in Guilford, United Kingdom, with only 2
stations and 20 bikes in total) to significantly large ones (the largest is in Tartu, Estonia,
with 69 stations and 750 bikes).

Continent Country City No Stations No Bikes

Europe

Portugal

Vale do Lobo 5 30
Coruche 4 27
Lagoa 3 30

Rio Maior 4 24
Leiria 11 220

United Kingdom
Guilford 2 20

Forth Valley 10 100
Estonia Tartu 69 750

America
United States of America

Birmingham 40 400
Richmond 22 220

Howard County 8 80
Summit County 10 130

Raleigh 30 330
Riverside 7 55

Pioneer Valley 50 500
Columbia 15 135

Costa Rica Peninsula de Papagayo 7 60

Table 2.1: Bewegen systems information

All Bewegen systems operate with two types of bikes: regular bikes and pedelecs.
Pedelecs are electric bikes with a motor that helps riders to pedal in hard situations like
hills or long distances. Moreover, both types of bikes have a GPS module and a sim card
to report periodically their geographical location through a local available mobile network.
Therefore, at any time, the system has the information of the location of each bike.

An important characteristic in both types is that each bike has a padlock. This is
useful, for example, when a client in the middle of a ride needs to make a stop where no
station is nearby. In this case, clients can just lock the bike (using the padlock) to some
fixed structure and the bike is safely parked. When this happens (i.e., the bike being locked

4

with the padlock outside a station), the system is reported by the bike of this situation and
considers that the bike is in a intermediate stop. This information is currently used only
for usage statistics. Nevertheless, it might be used in the future when system expansion is
needed, i.e., if new stations are required, their potential best locations can be determined
by the more frequent intermediate stop locations.

The padlock is also useful when a station is full and a client wants to park its rented
bike. In this case, the system lets the client to lock its bike with the padlock to the wheel
of a docked bike. When bikes are locked in one of the station docks, it is named a Primary
Lock. When the bikes are locked using the padlock, it is named Secondary Lock.

Bewegen systems operate with two different types of stations: physical stations and
virtual stations. A physical station has docks where bikes can be picked or dropped. One
of the main advantages of the docks is that when the bikes are docked, they are being
charged and therefore the risk of draining all bike’s battery in the next ride is significantly
reduced. Another advantage is that the bikes are more securely locked and the risk of
being stolen is minimised. On the other hand, a virtual station is an empty area in the
map where the bike inside the area considers it as a station. Clients can park the bikes
in the virtual stations but, because there are no docks, the bikes can only be dropped as
Secondary Locks (i.e., locked with the padlock).

Bewegen systems enable two major ways of bike renting: bikes can be unlocked with
smart cards through RFID technology, or with the mobile app of the system. A third way
is described next but requires the existence of a kiosk on the station.

Kiosks are a bike-sharing component that exists only in some stations. Their purpose is
to provide additional support to clients, as kiosks allow them to do different actions more
easily. Their most important functionalities are:

1. Allow clients to register in the system as occasional users;

2. Allow clients to unlock a bike in the station;

3. Allow clients to buy single rides;

4. Provide information about the system to clients.

Figure 2.1 and Figure 2.2 show 2 examples of bikes from Bewegen BSSs parked in
stations of Zyp Bikeshare System (Birmingham, United States of America) and U-Bike
(Leiria, Portugal), respectively.

2.3 Major Bike-Sharing Systems

This section briefly describes some of the largest and most important BSSs worldwide.

5

Figure 2.1: Zyp Bikeshare System
bikes

Figure 2.2: U-Bike Bike-share
System bikes

2.3.1 Hangzhou Public Bicycle

Hangzhou Public Bicycle System is one of the first contemporary BSSs. It was launched
on 1st of May 2008 with 2800 bikes and 60 stations. Currently it has 78000 bikes and
2965 stations. The first years of the system and its impact on the city of Hangzhou are
described in [14]. The authors argue that BSSs such as Hangzhou Public Bicycle are not
just a competitor to other public transportation but, actually, a complement to them.

This BSS is currently operated by the newly-formed Hangzhou Public Bicycle Devel-
opment Company called Hangzhou Urban Public Bicycle Sharing Program and financed
by the government. Figure 2.4 shows Hangzhou Public Bicycle bikes parked in one of the
Hangzhou stations.

Figure 2.3: Hangzhou Public Bicycle bikes [1]

2.3.2 BIXI Montreal

BIXI Montreal is one of the largest BSSs worldwide and the first to be implemented in
the american continent. It was lunched in 2009 and currently has 540 stations and 6200
bikes. The authors of [15] studied the first six years of the system existence. Since the
beginning, the system expanded rapidly reaching its peak in 2012 and stabilised since then.

6

The system has been operated and further developed by Public Bike System Company
(PBSC). PBSC started as a public company and, meanwhile, became a private company
that started to offer bike-sharing expertise to many other systems around the world. Figure
2.4 shows BIXI Montreal bikes parked in one of Montreal stations.

Figure 2.4: BIXI Montreal bikes [2]

2.3.3 Capital Bike Share

Capital Bike Share is known as the BSS in Washington DC but, in fact, the system
covers six jurisdictions according to their website: Washington DC; Arlington, VA; Alexan-
dria, VA; Montgomery County, MD; Prince George’s County, MD; and Fairfax County, VA.
The system was launched in September of 2010, it has more than 4300 bikes and more than
500 stations, and was the largest BSS in the United States until Citi Bike Share opened in
New York (Section 2.3.4).

Capital Bike Share uses the BIXI-branded system provided by Montreal-based PBSC
Urban Solutions (Section 2.3.2) and is operated by a public-private partnership between
all local governments. Figure 2.5 shows Capital Bike Share bikes parked in one of the
Washington DC stations.

2.3.4 Citi Bike Share

Citi Bike Share, launched in 27 May 2013, is a privately owned public BSS serving the
New York City, including Manhattan, Queens, Brooklyn and New Jersey city. Named after
the lead sponsor Citigroup, it is operated by Motivate. The BSS bikes and stations use
BIXI-branded technology from PBSC Urban Solutions. The last records show that this
system has 739 stations and 10494 bikes. Figure 2.6 shows Citi Bike Share bikes parked
in one of its stations.

7

Figure 2.5: Capital Bike Share bikes [3]

Figure 2.6: Citi Bikes bikes [4]

2.3.5 Vélib’ Métropole

Vélib’ Métropole is a large-scale public BSS in France. It operates in Paris and other
64 surrounding cities. It was launched on 1 January 2018 and has 1100 stations and 20000
bikes. The previous BSS in France was Vélib’ system, lauched in 15 July 2007. It had
1229 stations and 14500 bikes and was one of the biggest systems in the world. This first
system was closed on 31 December 2017 and replaced by Vélib’ Métropole. Figure 2.3.5
shows Vélib’ Métropole bikes parked in one of its stations.

8

Vélib’ Métropole bikes [16]

2.4 Data Cleaning and Feature Extraction

The first step in building a BSS prediction model is to select the most relevant data
(features) to serve as input to the prediction algorithms. The collected historical data
of bike pickups and drop-offs is naturally the most important data used in all analysed
research works. However, other features like temperature, rain, or day of the week are also
considered in some of them. In this section are presented the features used in the reviewed
references.

2.4.1 Historical data

The historical data describes the BSS dynamics in the past and usually includes in-
formation about the number of pickups and drop-offs at different time intervals, as well
as the occupation of each station at different time instants. This data is then used by a
number of statistical algorithms for prediction of the bike-sharing traffic. The most typical
methods for BSS prediction based only on historical data are Historical Average (HA) and
Auto-Regressive and Moving Average (ARMA) models.

Historical Average (HA) model

The HA model computes the average of the historical data over specified time windows
(day, time) and locations (i.e. stations) to predict the future BSS behaviour [17]. Consider,
for example, the prediction of the bike-sharing behaviour at a given station on Friday
between 16h and 17h. The HA model proposed in [18] considers the pickups and drop-offs
over all collected past Fridays between 16h and 17h from the same station. Alternatively,
the HA model in [19] clusters the days in workdays and non-work days and for the same
example, it takes into account the registered values of all past workdays between 16h and
17h from the same station. A different HA model is proposed in [20] where historical values
between 16h and 17h from the same station, 1 day before, 2 days before, 3 days before, 7
days before and 14 days before, are considered in the prediction.

9

Auto-Regressive and Moving Average (ARMA) model

ARMA model is a well known approach for time series prediction. Since the pickups
and drop-offs of BSS are time series, ARMA is also popular in bike-sharing predictions.
In this approach, historical data of the last n hours is considered (n is defined for each
particular case). For example, the ARMA model proposed in [21] makes predictions for the
next n hours based on the previous n hours, i.e., if one wants to predict the bike-sharing
traffic 3 hours ahead, the method uses the last 3 hours of historical data (in [21], the
maximum value for n is 24 hours).

2.4.2 Weather

An important additional feature in BSS is the weather as it significantly affects the
intensity of the bike usage. The most typically considered aspects of the weather are: the
maximum, minimum and average temperature, the volume (and/or intensity) of the rain
or snow and the speed of wind.

The authors of [15] take into account only two weather dimensions: the average tem-
perature and the rain quantity (in millimetres). They demonstrate that the rain has a
negative impact on the bike usage (as can be expected) while conditions of mild and not
too high temperatures have a positive impact. The same conclusions are drawn in [5], with
respect to the effect of the max daily temperature on the average daily NYC Citi Bike
trips (see Figure 2.7).

More aspects of the weather are considered in [22], namely the daily maximum and
minimum temperatures, the precipitation, the snow and the rainfall. Their statistical
results are similar to the ones in [15], adding also the expected negative impact on the bike
usage of snow conditions.

In [18] is demonstrated that the humidity, the visibility and the wind speed have also
a significant influence on the number of pickups at the stations.

The authors of [23] link hourly bike usage data to more detailed hourly weather data,
including temperature, rainfall, snow, wind, fog, and humidity levels. Their results show
that among all considered weather aspects, cold temperatures, rain and high humidity
levels have a dominant effect on the reduction of the bike-share usage and also on the
decrease of the average duration of bike trips.

2.4.3 Time

The influence of the hour of the day on the number of pickups/drop-offs in the stations
is studied in [18]. This study concludes that the system has a very low usage during the
hours of the night and, as a consequence, they remove the data entries of the night hours.
In Figure 2.8, from [5], it is shown the average number of trips in NYC Citi Bike as a
function of the day and night hours. In this figure, it is easy to observe that both in
weekdays and in the weekends the number of bike trips is much less between midnight and
7h in the morning.

10

Figure 2.7: NYC bike trips vs. temperature [5]

Figure 2.8: NYC bike-share usage per hour [5]

The seasons of the year (Winter, Spring, Summer and Autumn) also affect the system
usage levels. There is much bigger demand during the Summer than during the Winter

11

season as shown, for example, in [24].

There are two types of BSSs with respect to the target clients. First, BSSs whose main
business target are the tourists/visitors. In this type of systems, the stations are usually
located in touristic places in the cities. Second, BSSs whose main business target are the
local citizens. In this type of systems, the stations are usually located around job related
areas and residential areas [18,25]. An efficient way to identify the BSS case of study is by
analysing the bike usage differences between week days, weekends and holidays. Normally,
in a touristic oriented BSS, the bike traffic increases over the weekends and holidays. On
the other hand, a BSS oriented to local citizens has more usage during week days, as it
often serves as a mean of transportation to the work places. For example, the NYC Citi
Bike Sharing is a more touristic oriented BSS since its usage increases 25% from work days
to weekends (and holidays), as reported in [24].

2.4.4 Users

Very few research works make analysis of the clients personal information. For example,
the Bixi Bike-share (Section 2.3.2) members are described as young people with much
higher percentage of man than women [15]. The generations with more bike users are aged
between 25 and 39 years old. However, none of the reviewed references considers the clients
characteristics as BSS prediction features.

2.4.5 Stations

Bike-sharing predictions are normally applied separately on each station of a BSS.
However, some studies propose to cluster the stations in groups in order to get more
data for prediction. For example, [19] proposes to cluster the stations according to their
geographical location and according to pickups/drop-offs traffic. In BSSs that are spread
over more than one city, the weather conditions may not be the same in all locations.
Therefore, station clustering by location can be a valuable factor as clusters may have
different weather characteristics on the same moment. The authors of [25] add that by
station clustering, small communities can be found where a lot of trips are being done inside
each community. One example of a BSS spread over multiple small cities is ValleyBike,
one of the Bewegen BSSs, shown in Figure 2.9.

It is shown in [22] a study of the station-level predictive performance where stations
are divided in 5 clusters, depending on their locations and behaviour. On the other hand,
paper [26] presents a different way to cluster stations based on their surrounding built
environment.

Paper [19] points out that the dynamics of neighbour stations can influence the be-
haviour of each other. For example, if one station is full, the neighbour stations tend to
have more drop-offs. On the other hand, if the station is empty, the neighbour stations
tend to have more pickups. When using station clustering, this mutual influence between
neighbour stations is lost when they are in the same cluster (as the information becomes

12

Figure 2.9: ValleyBike BSS map

aggregated for all stations of the same cluster) and this is one of the disadvantages of
station clustering.

In paper [27], some conclusions are made about the impact of placing the stations in
good locations. Certain locations are more suitable for bike-sharing stations, such as close
to small business areas, to big universities (and schools) and to stations of other public
transportation systems (such as train or bus).

2.4.6 Ranking features

Besides the selection of the features that influence the usage of a BSS, some research
works also rank the features according to their influence on the historical data.

Paper [15] ranks the selected features in two different scenarios. When the aim is to
predict the number of pickups/drop-offs per day, the proposed ranking considers only 3
features in the following order: the first, and more important, is the historic number of
bikes in the stations, the second is the average temperature and the last is the precipitation.
When the aim is to predict the number of pickups/drop-offs per day and per station, the
proposed ranking considers much more features and in the following order: the first is the

13

capacity of the stations, the second is the average temperature, the third is the membership
pricing plan, the fourth is the population density, the fifth is the number of buses passing
within 500 meters of the station and the last one is the precipitation.

In paper [21], the features are divided into four categories ranked by their importance.
The Very Relevant category has only the number of bikes in each station in the last 1 hour
time interval. The Relevant category has the temperature and the number of bikes in a
sequence of 1 hour time intervals prior to the last one. The Average category contains the
weather, humidity, holiday and weekday. Finally, the Not Relevant category has the hour
of the day, the wind speed and the working day.

2.5 Machine Learning Algorithms

There is a variety of Machine Learning (ML) methods that have been used for predicting
bike-sharing behaviours. In this section the major ML algorithms considered in the state
of the art references are described.

2.5.1 Random Forest model

Random Forest (RF) model is a supervised ML algorithm, which is an ensemble of
several decision trees. Ensemble learning methods combine the decisions from multiple
models which is expected to improve the overall prediction performance. RF can be applied
both for classification and regression problems [28]. RF main advantages are:

• Fast training process and overall high accuracy;

• Can be easily implemented in parallel computational frameworks;

• Requires few hyper-parameters;

• Allows class prioritisation through class weight assignment.

RF is very successful particularly in multi-class object detection and in large-scale real-
world computer vision problems. However, it has some disadvantages:

• The prediction is rather time-consuming;

• Requires significant computational resources.

The RF model is built on Decision Tree (DT) elements. Each DT has a number of
nodes with different functionalities. The leaf node is a class label, determined by the
majority vote of training examples reaching that leaf. A node is a question on one feature,
for example ”the temperature is higher or lower than a predefined threshold value ?”. It
branches out according to the answer. The root node is the first (top) node of the tree,
the child node is the next node to a current node. Figure 2.10 shows an example of a

14

simple RF model with two DTs. Each DT has one root node with two child nodes. All
other nodes have one parent node and either two child nodes or no child node. For any
given input provided at the root node, the prediction is defined by the leaf nodes (red and
green circles in Fig. 2.10). The RF model final prediction is the mean value of all DTs
predictions.

Figure 2.10: Simple Random Forest example [6]

The authors of [18] compare four methods, HA (Section 2.4.1), ARMA (Section 2.4.1),
HP-MSI and P-TD and RF model, to predict the number of docked bikes at each station
at a given time interval. It is demonstrated that RF outperforms the other methods. One
possible reason is because RF model takes into account also meteorology data and time
factors (holiday or not) in contrast to the other methods that only consider historical data
of bike pickups/drop-offs.

2.5.2 Gradient boosting decision tree

Gradient Boosting Decision Tree (GBDT) is similar to RF algorithm (section 2.5.1).
Both are ensemble learning methods (combining the decisions from all trees). The main
difference, as described in [29], is the way the results are combined. The GBDT builds the
decision trees sequentially is a way that each next tree is supposed to identify the errors
from the previous trees and eventually correct them. In this way, GBDT often outperforms
the RF. On the other hand, RF builds simultaneously and independently all trees. As a
consequence, RF algorithm is much faster than GBDT.

Paper [19] compares the GBDT, the HA (Section 2.4.1), the ARMA (Section 2.4.1)
and a hierarchical prediction based on a K-nearest neighbour (K-NN) algorithm. Two
approaches are studied in the paper. In the first approach, the models try to predict
the number of pickups across station clusters during all hours the system is open. In
the second approach, only anomalous hours (i.e. only critical situations), are considered.

15

In both approaches, stations are clustered by an algorithm similar to K-means clustering
(Section 2.5.6).

With respect to the first approach, the four studied algorithms (HA, ARMA, K-NN
and GBDT) have similar errors in the range of 0.1. However, with respect to the second
approach, HA and ARMA exhibit larger errors (in the range of 1-2), while GBDT and
K-NN have errors between 0.6 and 0.8.

2.5.3 Neural Networks

Artificial Neural Networks (NNs) represent a variety of ML algorithms, inspired by
biological nervous systems such as the brain. The NNs are particularly successfully in
computer vision, natural language processing, bio-informatics, to mention a few. A stan-
dard (also known as shallow) NN consists of 3 layers (input, hidden and output layers).
The input layer has as many nodes as are the features representing a particular dataset.
The output layer produces the model predictions. An example of a shallow NN with three
neurons in the input layer, five neurons in the hidden layer and two neurons in the output
layer is represented in Figure 2.11. A sequence of hidden layers can build more complex
functions of the network inputs and extract hidden representations of the raw data. Such
complex NN architectures are known as deep learning (DL).

Figure 2.11: Shallow Neural Network architecture [7]

The NN is first trained with labelled training data. Its parameters are computed such
that a predefined cost function is minimised. Once the parameters are optimised, the NN
model is applied to new data for prediction purposes. Over the last few years, the NNs
became also popular in the framework of BSS prediction. For example, in [24], a standard
NN and a convolutional neural network (CNN) are comparatively studied combined with
an ARMA model (Section 2.4.1). The results show that the CNN model outperforms the
standard NN model.

16

CNNs lie at the core of the most powerful DL architectures working with images and
video data, primarily due to their ability to extract representations that are robust to
partial translation and deformation of input patterns. The key element of CNN is the
convolution operation using small filter patches (kernels). These filters are able to au-
tomatically learn local patterns which can be combined together to form more complex
features when stacking multiple CNN layers together. Within the stack of convolution
layers, pooling layers are often placed intermittently. The pooling layers subsample the
output of the convolution layers by outputting only one (e.g. max, mean) value for each
small region. The subsampling allows the convolution layer after the pooling layer to
work on a different scale than the layers before it. These features learned from the CNN
are used as input to fully connected layers to perform classification, prediction, detection,
segmentation.

The authors of [30] comparatively study the NN and GBDT models to transform the
data into suitable inputs for a linear regression model in order to predict bike-sharing
behaviours.

2.5.4 K-Nearest Neighbour

K-Nearest Neighbour (K-NN) is a classification technique usually applied when there
is a little or no prior knowledge about the distribution of the data [31]. K-NN is based on
the concept of distance (similarity) between records. To classify a new (unlabelled) record,
K-NN computes its distance to all labelled records and identify K nearest neighbours
(the k closest points to the new record). The class label of the new record is the label
of the majority of the nearest neighbours. K is a design parameter that needs to be
determined. Typical distance (similarity) measures applied in K-NN framework are the
Euclidean Distance, Hamming Distance, Manhattan Distance and Minkowski Distance.
K-NN can be described by the following steps:

1. Load the data.

2. Choose the number of the neighbours K.

3. For each new data entry (record):

(a) Compute the distance between this entry and the entries from the given labelled
dataset.

(b) Add the distance and the index of the entry to a collection list;

4. Sort the distances and indices in increasing distance order.

5. Pick the first K entries from the sorted list.

6. In case of a regression problem, return the mean of the features of the selected K
neighbours.

17

7. In case of a classification problem, return the label of the majority of the K nearest
neighbours.

K-NN is a simple and easy to implement non-parametric algorithm, that does not go
through a training stage. It is an instance-based learning model that evolves and adapts
in the course of collecting new training examples. However, it has some disadvantages
such as getting slow particularly when the labelled dataset is large. K-NN performs well
when the number of features is relatively small, but suffers if the feature space has a
high dimensionallity. The correct choice of the number of neighbours K is the main K-NN
challenge. The search for the optimal K value requires running the algorithm several times
which can be computationally very expensive.

2.5.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning model suitable for both clas-
sification and regression problems. In the classification framework, SVM is also known as
a large margin binary classifier. The algorithm searches for a hyper-plane that provides
the maximum margin between the two separated classes. This idea is illustrated in Figure
2.12. In the regression framework, SVM is known as Support Vector Regression (SVR).

Figure 2.12: Two dimensional linear SVM [8]

The authors of [21] compare several regression models, Ridge Regression, Ada-boost
Regression [32], Support Vector Regression [33], Random Forest Regression [28] and Gra-
dient Tree Boosting Regression [34], to predict n hours ahead the number of bikes in use.
Parameter n is a design parameter fixed as a number in the range of 1 to 24 hours. For
each n, historical data from the past n hours before the time of prediction is used.

The results show that Ridge Regression and Ada-boost Regression are the best pre-
diction models, particularly with respect to one hour prediction time. Although their
prediction capacity deteriorates for longer prediction intervals, they still outperform the

18

other models. Support Vector Regression, Random Forest Regression and Gradient Tree
Boosting Regression suffer of over-fitting problems and are not recommended as reliable
solutions for the considered BSS scenario.

2.5.6 K-means Clustering

K-means clustering is an unsupervised ML algorithm (data is provided without labels)
to automatically cluster similar data examples together. K-means is an iterative procedure
that starts by guessing the initial cluster centers (aka centroids), and then refines this guess
by repeatedly assigning data points to their closest centroids and then re-computing the
centroids based on the assignments. The algorithm repeatedly carries out two steps: (i)
assigning each training data point to its closest centroid, and (ii) re-computing the mean
of each centroid using the points assigned to it. The K-means algorithm converges always
to some final set of centroids. However, the converged solution may not always be ideal
and depends on the initial setting of the centroids. Therefore, in practice the K-means
algorithm is usually run a few times with different random initialisations. One way to
choose the best clustering solution is to choose the one with the lowest cost function value
(distortion). Figure 2.13 shows an example of a K-means algorithm result where each
colour corresponds to a cluster.

Figure 2.13: K-means clustering example [9]

19

20

Chapter 3

Decision Support System for
Bewegen Bike-Sharing Systems

This chapter describes the development and implementation steps of the Decision Sup-
port System for Bewegen BSSs, which was conducted in three phases. The first phase,
described in Section 3.1, is related with the collection of real data. The second phase, pre-
sented in Section 3.2, is related with data processing and visualisation. Finally, the third
phase, described in Section 3.3, corresponds to the feature engineering approach to select
the most representative features based on a ranking procedure. The selected features are
used in next Chapter 4 to predict the bike-share traffic for the Bewegen BSS.

3.1 Data Collection

At the beginning of this project, the Bewegen BSSs had no means to collect in a
systematic way the information on the usage of each station. Therefore, there was the need
to develop and put in operation the appropriate mechanisms for data collection. Moreover,
other types of data (weather and holiday information) had also to be collected from other
external (i.e., Internet) services. Section 3.1.1 describes the developments done in the
Bewegen backend system in order to collect station status data. Section 3.1.2 describes
the service API used to collect information regarding the weather conditions. Section 3.1.3
describes the data collected regarding holidays in the city of the Begewen BSS used for
collecting data.

3.1.1 Backend data collection module

In order to collect on-line, in an incremental manner, the historical data from all Bewe-
gen systems, a new table was created in the backend database of each BSS named System
Status.

Synchronous data collection approach. The first approach to feed this database

21

was to use the KPI (Key Performance Indicator) information available in the Bewegen
systems. If this would be possible, the implementation of data collection module would
be relatively simple and the extra computational effort for Bewegen servers would be
minimal. Bewegen systems use a set of KPIs which are updated every 2 hours. In fact,
the updated values of some of these KPIs are provided on the system webpage (number of
active members, total number of trips, favourite stations for pickups or drop-offs, etc.) but
the ones of interest were only active for debugging purposes. The KPIs of interest to this
dissertation are the number of parked bikes and the number of free docks on each station.
Since these KPIs were already available, the idea of the first approach was to make their
update more frequent (e.g. every 15 minutes) and start storing all updated values in the
System Status table together with their timestamp values. One question that had to be
considered in this approach was how frequent these updates should be done.

After consulting several references on BSS prediction solutions, it became clear that
this approach has a lot of problems. First, since we do not have the information on the
pickups and drop-offs between two consecutive updates, the occupation information can be
inaccurate. For example, on a given time period, if a sequence of three drop-offs occurs and
is followed by a sequence of three pickups on a given station, the average occupation at this
station will be different from the value registered in the KPI associated with the number
of parked bikes. Second, because there is no information on each pickup or drop-off, it is
also not possible to know which type of lock is used when a bike is parked. As explained
in Section 2.1, there are two different ways to lock a bike: clients can either park the bike
in one of the available docks (primary lock), or attach the bike to another bike using its
padlock (secondary lock). Although there are no rules, typically, clients use primary lock
unless all the docks are occupied. Since it was important to know what action type (pickup
or drop-off) and lock type (primary or secondary) occurs, this approach was discarded.

Asynchronous data collection approach. Instead of periodically collecting the
status of each station, the collecting operation is triggered every time an action (pickup
or drop-off) occurs. In this way, instead of storing the system status information in fixed
periods of time, this approach is asynchronous: when an action occurs, a new row is added
to the System Status table with the information of the action. Following this approach, all
relevant data from each station is collected.

Note that, by default, the bikes send a message to the server when a pickup/drop-off
occurs, and the server handles this message by generating events which afterwords are sent
to a message broker to be processed. Based on this characteristic of the system, a module
was created that whenever one of these messages arrive to the message broker, the system
checks the status of the station related to this event and stores all useful information in
the System Status table.

The System Status table was implemented with each row representing an action and
the different columns containing all relevant information collected when the action occurs.
Each row has 8 columns, with the following information:

1. Tenant: a string with Bewegen system’s name where the action occurred (String)

22

2. Id: unique ID of the action (UUID)

3. StationId: unique ID of the station where the action occurred (UUID)

4. StartAt: the UTC time instant when the action occurred (Sec)

5. FreeSpaces: number of available docks in the station after the action (Integer)

6. OccupiedSpaces: number of occupied docks in the station after the action (Integer)

7. SecondaryLockFreeSpaces: number of available Secondary Locks in the station after
the action (Integer)

8. SecondaryLockOccupiedSpaces: number of used Secondary Locks in the station after
the action (Integer)

Note that, there is no explicit columns to indicate the action type or the associated lock
type. This fact is because this table was created for multiple purposes and not only for
the purpose of this dissertation. The action type and associated lock type were computed
from the table information in the following way:

• The associated lock is calculated by comparing which column value changes between
this action row and the previous row of the same station. If the OccupiedSpaces col-
umn has different values in both rows, it means that it is a primary lock. Otherwise,
if the OccupiedSpaces column has the same value in both rows and SecondaryLock-
OccupiedSpaces column has different values, it means that it is a secondary lock.

• The action type is calculated taking into account the associated lock. If it is a primary
lock, the action type is calculated by subtracting the number of OccupiedSpaces
from this row to the number of OccupiedSpaces from the previous row (of the same
station). If the result is one, it means that the number of occupied docks decreased
and, therefore, this action is a pickup. On the other hand, if the result is minus one, it
means that there is one less occupied dock and, so, this action is a drop-off. A similar
calculation is done if the associated lock type is of secondary type. The action type is
calculated by subtracting the number of SecondaryLockOccupiedSpaces of this row
to the number of SecondaryLockOccupiedSpaces of the previous row. If the result
is one, it means that the number of secondary locks being used decreased and this
action is a pickup. On the other hand, if the result is minus one, it means that there
is one less secondary lock being used and this action is a drop-off.

After analysing the first month of data collected in this table, a problem was identified.
As explained before, every time that an action occurs, a message is sent to a message
broker to be processed. In normal operation, there is no queuing of messages in the broker.
Nevertheless, in the case when multiple actions occur in a small time interval in the same
station (i.e., very close to each other), the message broker has a queue where messages are

23

stored while they are waiting to be processed. In this case, sometimes a problem occurs
where the values of the received messages are not properly handled and, as a result, the
generated events can swap values between actions.

To solve this problem, a more reliable message broker need to be developed in the near
future (this development was outside the scope of this dissertation). Moreover, as already
referred, this problem occurs only when the multiple actions occur in the same station,
which happens rarely.

Nevertheless, to eliminate data collected with errors, the following processing was also
implemented. In both lock types (i.e., primary lock and secondary lock), if the subtraction
does not produce a value of one or minus one, the action is discarded. Moreover, if both
OccupiedSpaces and SecondaryLockOccupiedSpaces values are simultaneously different or
simultaneously equal, it means that there was an error processing the data of this action
and this action is discarded as well.

3.1.2 Weather data collection

Another important factor in order to predict the occupation of system stations is the
weather conditions. It is easily foreseen that factors such as temperature and rain deeply
impact the usage of BSSs. Moreover, there are even BSSs that close on seasons that have
more extreme weather conditions. As an example, in Bewegen systems, half of the ones in
United States of America close in winter.

There are many reliable web services for weather information. Services like AccuWeather
and YahooWeather were considered but at the end it was decided to use OpenWeatherMap
for collecting weather data. In every weather request in a city of choice, the OpenWeath-
erMap Api returns information about the current weather in the time instant of the request.
The response contains the following fields:

1. Weather description (UUID)

2. Temperature:

(a) Actual Temperature (Double)

(b) Maximum Temperature (Double)

(c) Minimum Temperature (Double)

3. Atmosphere:

(a) Pressure (Double)

(b) Humidity (Double)

4. Wind:

(a) Speed (Double)

(b) Degree (Double)

24

5. Rain (Double)

6. Snow (Double)

In order to collect the proper data from OpenWeatherMap Api, the first approach was
to create a cron job (a job that executes a given set of scripts at a given predefined time
instant) which would run three times a day. The idea was to run this job executing a
python script (which calls the OpenWeatherMap Api) and store the retrieved information
in a Postgresql database. Initially, collecting weather data three times a day seemed
enough to obtain the needed data for the purpose of this dissertation. This solution was
implemented and run for two weeks.

Nevertheless, after better analysis of the OpenWeatherMap Api documentation, an-
other solution was used to collect the required weather information. OpenWeatherMap
has a historical service which provides the weather conditions for all hours of all days be-
tween two dates and in a given city (the city, the starting date and the ending date are the
request parameters). This service has an associated cost but, after discussing this issue
with Bewegen and since the cost was not too high, it was decided to use this historical
service instead of the first approach.

3.1.3 Holidays data

Another important factor for BSS prediction is the information about holidays or special
events. This factor affects in a different way, the various types of clients. On one hand, the
usage of bike-sharing in holidays is expected to rise since normally more people have the
day off. On the other hand, the usage might decrease among clients using BSS between
their home and working places. In both cases, it is expected changes in the normal usage of
bikes. The information about the holidays was taken from the website http://www.webcal.fi.
For each holiday, the information given by this website is the following:

1. Date (Sec)

2. Name (String)

3. Alternative name (only if exists) (String)

4. Description (String)

To collect the holiday information, it is only needed to go to the website and download
a file with all the information. In this case, this service is free.

3.2 Data Visualisation and Processing

This section describes the data visualisation and pre-processing conducted in order to
prepare the data for the prediction of machine learning (ML) algorithms.

25

3.2.1 Data Visualisation (Station Occupation)

Important to refer that data collection started at the beginning of January 2019. There-
fore, the first data visualisations were based on less data. As a consequence, it was observed
that the number of Secondary Locks was usually very close to zero in all stations. There-
fore, it was decided to consider the occupation as a ratio between the number of docks
occupied by bikes (i.e. the number of Primary Locks) and the total number of available
docks at the station.

In order to have a better understanding of the Bewegen system usage dynamics, the
collected data for each station was visualised to check the existence of particular patterns
on the station status as time goes on. The occupation (in percentage) observed in January
in four representative stations is shown in Figures 3.1 to 3.4.

The following conclusions can be made from the figures. The two stations with more
traffic (more total number of pickups and drop-offs) were Station 1 (Figure 3.1) and Station
2 (Figure 3.2). In January, Station 3 was the only one that reached 0% occupation (i.e.,
no bikes available at the station) and it happened only in one day (observed in Figure 3.3).
Although such situation is normally rare in the Winter season, it is exactly the type of
situations the Decision Support Service needs to prevent. On the other hand, no station
has reached its full capacity (all available docks at the station to be occupied), with the
maximum observed occupation around 81% in Station 11 (Figure 3.4) and almost 80% in
Station 2 (Figure 3.2). Finally, Station 11 is, among all stations, the one that presents
the highest range of occupation, varying during this month from 3% up to 81%.

Figure 3.1: Station 1 occupation
percentage in January

Figure 3.2: Station 2 occupation
percentage in January

3.2.2 Feature Matrix Construction - First Version

In the previous section, data visualisation was based on the timestamp of each action
(pickup or drop-off). The next logical step was to divide the days into equal periods of
time and see how many pickups and drop-offs have occurred in each interval. To this aim,

26

Figure 3.3: Station 3 occupation
percentage in January

Figure 3.4: Station 11 occupation
percentage in January

a python script was developed in order to process the System Status information. The
script runs the following tasks.

Task 1 The script divides the input data (System Status information) into one hour time
intervals and counts the number of pickups and drop-offs occurred on each time interval.
The 1 hour time interval was chosen because the weather API also returns hourly weather
updates.

Task 2 The script converts the timestamp of each action into the local hour of the system
location (this is necessary because the timestamps collected by Bewegen servers are always
defined in UTC time zone).

Task 3 The script processes the weather information considering only 3 weather indicators:
the temperature, the rain and the snow.

Concerning the temperature, since it can have a wide range of values, and to facilitate
the ML prediction algorithms, instead of using the temperature absolute value, it was
decided to cluster the values into three categories: Cold, Medium and Hot. The range
limits between the three categories for a given time period are based on the minimum
temperature tm and the maximum temperature tM of all historical data on the same time
period. Then, the range limits are calculated assuming equal temperature intervals for all
categories, i.e., the range limit between Cold and Medium is:

tm +
(tM − tm)

3

and the range limit between Medium and Hot is:

tm +
2× (tM − tm)

3

Concerning the rain and the snow, these two weather indicators are aggregated on a
single binary feature which is equal to 1 if it is either snowing or raining, or equal to 0
otherwise (i.e., it is neither snowing nor raining).

27

Task 4 The script places all data (either collected or processed) into a table (which is
saved in a csv file) where each row has all information related to each 1 hour time period.
Each row of the table has the following fields:

1. Day: day of the month of the time period (Integer)

2. Month: month of the year of the time period (Integer)

3. Year: year of the time period (Integer)

4. Hour: initial hour of the time period (Integer)

5. Pickups: number of pickups occurred in the time period (Integer)

6. Drop-offs: number of drop-offs occurred in the time period (Integer)

7. Day of week: day of week of the time period represented by an integer value from 0
(Monday) to 6 (Sunday) (Integer)

8. Is holiday: value indicating if the day of the time period is a holiday (Binary)

9. Temperature: a string indicating the temperature category in the time period (String)

10. Rain/Snow: value indicating if it is raining or snowing in the time period (Binary)

3.2.3 Data Visualisation (Pickups)

This data visualisation phase was conducted when 7 weeks of collected data were avail-
able and, so, the data visualisation results of this section are based on this dataset.

The first step of data visualisation phase was to observe the number of pickups in the
whole system. Figure 3.5 shows the minimum, average and maximum number of pickups
per hour of the day among all days and the same values among the different days of each
week. The main goal was to understand if there were different behaviours at different days
of week and at different hours of the day. As observed in Figure 3.5, data seem uniformly
distributes in all cases, which means that the day of week and the hour of the day in the
winter season do not have a major influence in the system usage.

The next step of this phase was to observe the number of pickups on a single station.
Station 1 was selected as it is the station with more usage in terms of number of pickups
and drop-offs. Figures 3.6 to 3.12 show the minimum, average and maximum number of
pickups per hour of the day among the different days of a week.

By analysing these figures, one can reach the following observations. The maximum
number of pickups per hour is two but most of the hour periods have at most one pickup.
In most of hour periods, there are no pickups the reason why the average number of pickups
per hour is less than 0.2.

With these observations, we can conclude that the number of pickups is well spread
over the 24 period of time. This is unexpected because normal behaviour is to have more

28

0 5 10 15 20
0

2

4

6

8

10

12
Sunday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Monday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Tuesday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Wednesday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Thursday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Friday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Saturday

min

max

avg

0 5 10 15 20
0

2

4

6

8

10

12
Full System

min

max

avg

Figure 3.5: Number of pickups per day of week

Figure 3.6: Pickups on
Monday in Station 1

Figure 3.7: Pickups on
Tuesday in Station 1

pickups at day time. One possible reason for this behaviour is the low system usage of the
observed data which corresponds to winter time.

Moreover, clients are using the system more in weekdays than in weekends. Usually this
behaviour happens in BSSs where there are more clients using the system in day-to-day
activities than clients visiting the city.

29

Figure 3.8: Pickups on
Wednesday in Station 1

Figure 3.9: Pickups on
Thursday in Station 1

Figure 3.10: Pickups on Fri-
day in Station 1

Figure 3.11: Pickups on
Saturday in Station 1

3.2.4 Data Visualization (Weather)

Another important feature that impacts the usage of BSSs is the weather. As explained
before, the temperature feature is categorical and can be Cold, Medium or Hot. Figure
3.13 shows the impact on the number of pickups on each day of week the system is in each
of the temperature categories.

Much like the previous observations, not much can be concluded, mainly due to the
low system usage of the observed data. In fact, it was expected that warm weather would
increase the number of pickups which is not always the case. On Mondays, Tuesdays and
Wednesdays, the average number of pickups is higher with Hot temperatures but for all
the other days of week, that is not the case. Moreover, in all cases, the difference in the
number of pickups between the 3 temperature categories is small.

30

Figure 3.12: Pickups on Sunday in Station 1

Histogram of Temperature

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0

0.5

1

1.5

2

2.5

3

3.5

4

Cold

Medium

Hot

Figure 3.13: Average number of pickups for the 3 temperature categories at each day of
week

3.2.5 Feature Matrix Construction - Final Version

As concluded before, the number of pickups (and drop-offs) in the system stations is
not high and this was mainly due to the fact that collected data happened on winter. It is
known that prediction methods do not perform well with a lot of zeros as input data. Since
the occupation is almost never zero in any station and predicting the stations’ occupation

31

(in number of bikes) is actually the ultimate goal of this dissertation, a new approach was
adopted where instead of studying the number of pickups, the main focus was changed to
the occupation of the stations.

A few number of changes had to be done in the previous python script in order to
cope with this change. First, instead of dividing the data into 1 hour time intervals, it
was decided to change it to 30 minute time intervals, which was the initial goal for the
short term prediction task (Section 1.2). Second, instead of the number of pickups and
drop-offs, the script has to calculate the average occupation on each time interval. The
average occupation is calculated by adding the occupation given by the OccupiedSpaces
column (see Section 3.1.1) of the System Status table associated with all actions occurred in
the time interval divided by the number of such actions. Third, it was decided to discard
the night hours (from slot 23:00-23:30 until slot 8:30-9:00) of the system because there
was not enough traffic in stations to be considered relevant for the prediction algorithms.
Therefore, in the resulting datasets, each day has a total of 28 time intervals (each 30
minutes over 14 hours)

3.3 Description of Features

This section describes all selected features to be used as input to the ML algorithms in
Chapter 4 and how they were ranked in terms of their importance.

3.3.1 Features

All state of the art approaches use the historical values in order to predict bike-sharing
usage. The difference between different approaches is on which values are used. In this
dissertation, it was decided to include all the occupation historical data from the 9:00-9:30
to 22:30-23:00.

Two discrete features are considered: the Hour feature which indicates for each time
interval, the hour of day of its initial time instant and whose values are all integers from
0 to 23; and the Day of week feature whose values are from 0 (representing Monday) to 6
(representing Sunday).

Moreover, some binary features are also considered. First, the feature Is holiday which
indicates if the day of the current time period is holiday or not. Second, the feature
Rain/Snow, which indicates if the day of the current time period is raining/snowing or
not. Third, the feature Is today, a runtime feature which is used to give more importance
to the historical occupation values of the same day as the current time period (this feature
is only used in the K-nearest neighbour algorithm). As already stated, each time interval
takes 30 minutes and, so, the feature Minutes is binary with the possible values being
0 (representing 0 minutes) and 1 (representing 30 minutes). Like the Hour feature, the
Minutes feature represents the initial time instant of the time interval. For example, the
interval 10:00-10:30 has the associated features Hour = 10 and Minutes = 0, while interval
10:30-11:00 has the associated features Hour = 10 and Minutes = 1.

32

The categorical features that were considered are the Temperature and the Month of
the year. In order to encode the values of these features as input to the ML algorithms, it
was used the One Hot Encoding.

One Hot Encoding is a method by which categorical feature values are converted into
a more appropriate form for ML algorithms (this method avoids the categorical values
to have different levels of importance between them). The method consists in creating a
binary feature for each possible value of the categorical feature. Then, each binary feature
is 1 when the categorical feature has its associated value. In the case of temperature,
the method turns the categorical values Cold, Medium and Hot into three binary features
T Cold, T Medium and T Hot as illustrated in Table 3.1.

Temperature T Cold T Medium T Hot

Cold 1 0 0
Medium 0 1 0

Hot 0 0 1

Table 3.1: One Hot Encoding of Temperature feature encoded in 3 binary features T Cold,
T Medium and T Hot

The One Hot Encoding method is also used for Month of the year. In the current
implementation, since the dataset of this dissertation is from January to April, the con-
sidered number of binary features is four (as illustrated in Table 3.2). Nevertheless, the
system was implemented in a way such that as soon as more months appear as values of
the Month of the year feature, the One Hot Encoding automatically extends the number
of binary features.

Month M January M February M March M April

January 1 0 0 0
February 0 1 0 0

March 0 0 1 0
April 0 0 0 1

Table 3.2: One Hot Encoding of Month of year in a binary feature per month

Note that by using One Hot Encoding, the matrix with the input features becomes
larger which might impose in general extra computational costs. In the case of this disser-
tation, this was not a problem since the resulting number of features is not that large.

3.3.2 Ranking features

Section 3.3.1 described all features taken into account in this dissertation. In order
to improve ML predictions, it is also important to rank the features according to their

33

influence on the data. For feature ranking, it was used a python library called Sklearn, one
of the most used ML libraries for python.

The features were ranked based on the SelectKBest class of Sklearn library. This
class scores the features according to an input scoring function. Since in this dissertation
we are dealing with float values (representing average occupation values) there are only
two possible scoring functions available: f regression and mutual info regression. It was
decided to use function f regression, a linear model that calculates the influence of each
feature regarding all features. This model was applied to the following features:

• Hour (Hour of the day between 9 and 23)

• Minutes (binary value - 0 for 0 minutes and 1 for 30 minutes)

• Temperature, encoded as the 3 features T Cold (binary value), T Medium (binary
value), T Hot (binary value)

• Day of week (value between 0 and 6)

• Is holiday (binary value)

• Rain/Snow (binary value)

• Month of the year, encoded as the 4 features M January (binary value), M February
(binary value), M March (binary value), M April (binary value)

The ranking results of applying f regression to these features are shown in Table 3.3.
Curiously, the features related with the type of days (either the Day of week and the
Is holiday) are the most influential features on the collected data while the features related
with the time intervals on each day (Hour and Minutes) are the least influential. More-
over, among the Temperature features, the T Hot and T Medium features are much more
important than the T Cold feature.

34

Rank Features Ranking

1 Day of week 3.0452e+01
2 Is holiday 2.3022e+01
3 T Hot 9.5574e+00
4 T Medium 8.8768e+00
5 M January 5.0890e+00
6 M March 3.4212e+00
7 Rain/Snow 4.7335e-01
8 T Cold 3.0409e-01
9 M February 2.6692e-01
10 Hour 2.5395e-01
11 M April 1.3940e-02
12 Minutes 7.6795e-03

Table 3.3: Scores and ranking of each feature with f regression

35

Chapter 4

Prediction of Bike-Share Usage with
Machine Learning

This chapter describes the ML algorithms proposed in this dissertation for predicting
the number of bikes in each station. Section 4.1 describes the dataset. Section 4.2 describes
how the test error is calculated in the prediction algorithms. Section 4.3 describes the
studies done with the Neural Network (NN) prediction model. Section 4.4 describes the
studies done with the k-Nearest Neighbour (K-NN) model. Finally, Section 4.5 draws the
main conclusions.

4.1 Dataset Description

Since the aim is to predict the number of bikes on each BSS station, each station has its
own individual dataset. In order to train and test the ML models, 16 stations (generically
named from Station 1 to Station 16) from one of Bewegen’s systems were selected.

As already mentioned, the data collecting process was firstly developed and put in
operation and, then, data started being collected. The final dataset used in this work is
the historical data collected from 1 of January 2019 until 30 of April 2019. Since time is
divided in 30 minute time intervals, each station dataset has 3324 rows of data (containing
all the feature values, as described in Section 3.3.1).

4.2 Error Calculation

In order to evaluate the implemented ML models, an error metric needs to be defined.
The average of the absolute values of the differences between the predicted values and the
real values of all predicted cases is typically used in the relevant literature. This error is
computed by the following formula where c is the number of predicted cases.

error =
1

c

c∑
i=1

| predicted valuei − real valuei | (4.1)

36

Recall that the historical data values are the average number of bikes in a station
for every 30 minute time interval and, so, the results are float values. This means that
regression is the relevant ML approach to be applied to this problem. Nevertheless, the
final prediction needs to be an integer value because in a business standpoint, it is more
meaningful to provide an integer value indicating an estimated number of bikes.

Consider a case of a client searching for a nearby station with available bikes in the next
30 minutes. In this case, there is no problem if there are more bikes in a station than the
predicted number of bikes. On the other hand, if the prediction is that some bikes are in
station and, then, no bikes are available, the client satisfaction on the service will degrade
drastically. Note that the other extreme case is not a problem in Bewegen systems since
when the station is full (no available docks), the clients can always lock the bikes through
the padlock as Secondary Locks (see Section 2.2).

Since it is preferable that the estimated value is lower than the real value (i.e., it
predicts a lower number of bikes), the final estimated value is computed as the regressor
result rounded down, i.e., the highest integer value not higher than the regressor estimated
value.

4.3 Neural Network

The choice of using an artificial NN in this dissertation was mainly because some state
of art articles report good accuracy results of this algorithm when applied to bike-sharing
estimation tasks (see Section 2.5.3). A standard 3 layers (input, hidden, output) NN was
implemented by using the MLPRegressor class from the python library Sklearn, the same
library used for ranking system features (Section 3.3.2).

In the initial step, the NN was tested with the dataset associated to the station with
more traffic in terms of total number of pickups and drop-offs, named Station 1 (see Section
3.2.1). As input values for the NN model, in addition to the features described in Section
3.3.2, the historical values of the last 27 time intervals were also included. So, there are 39
input features which are the following ones:

1. Day of week (Integer from 0 to 6) - 1 feature

2. Is holiday (Binary) - 1 feature

3. T Cold (Binary) - 1 feature

4. T Medium (Binary) - 1 feature

5. T Hot (Binary) - 1 feature

6. Rain/Snow (Binary) - 1 feature

7. Hour (Integer from 0 to 23) - 1 feature

8. Minutes (Binary) - 1 feature

37

9. M January (Binary) - 1 feature

10. M February (Binary) - 1 feature

11. M March (Binary) - 1 feature

12. M April (Binary) - 1 feature

13. Historical data: occupation values of the previous known 27 time intervals (Float) -
27 features

The NN has only one output value which is the estimated average number of bikes
on a given station for a given time interval. For example, if the current time is between
16:00 and 16:30, the more recent historical time interval is 15:30-16:00. Then, in the short
term prediction task, the aim is to predict the average number of bikes that will happen
during the current time interval. In the long term prediction task, the aim is to predict
the average number of bikes between 16:00 and 16:30 of the next day.

So, the time interval to be estimated is: (i) the current time interval in the short term
prediction task or (ii) the time interval 24 hours after the current one in the long term
prediction task.

In order to get the best possible prediction accuracy, two NN parameters have to be
selected: the number of neurons in the hidden layer (n) and the regularisation value (α)
which helps avoiding overfitting (by penalising for high feature weights). Moreover, the
input features that provide the best accuracy results have also to be selected. Recall that
the features are already ranked (see Section 3.3.2) and the question is which of the most
ranked features should be considered.

For testing the model, the full dataset of Station 1 was divided in two datasets: the
training dataset which has 60% of the four months historical data and the test dataset
with the remaining 40%. Concerning the number of neurons (n), the values from 2 to 20
neurons in the hidden layer were tested. Concerning the regularisation value α, six values
were considered: 0.0001, 0.001, 0.01, 0.1, 0.3 and 0.5.

Next, the NN model selection results (i.e., the selection of the number of neurons n and
regularisation value α) are described separately for the short term prediction task (Section
4.3.1) and for the long term prediction task (Section 4.3.2). Then, the feature selection
results are described in Section 4.3.3 for both tasks. Finally, Section 4.3.4 reports the best
parameters and resulting average test errors applied in all other 15 stations.

4.3.1 NN model selection for Station 1 - short term prediction

Table 4.1 presents the test errors of the NN algorithm for all combinations of n and α.
In order to better understand the results, Figure 4.1 plots the test error values obtained
by each α (alpha in the legend of the figure) as a function of the number of neurons n.

The results show that the minimum error is 1.003 (highlighted in Table 4.1) which
is obtained by having 9 neurons in the hidden layer and a regularisation value of 0.5.

38

α =0.0001 α =0.001 α =0.01 α =0.1 α =0.3 α =0.5

n = 2 1.009 1.314 1.020 1.343 1.077 1.106
n = 3 1.084 1.035 1.254 2.170 1.115 1.080
n = 4 1.071 1.068 1.060 1.007 1.157 1.028
n = 5 1.039 1.026 1.084 1.079 1.045 1.076
n = 6 2.052 1.071 1.048 1.071 1.019 1.062
n = 7 1.033 1.040 1.066 1.030 1.128 1.174
n = 8 1.099 1.046 1.192 1.033 1.084 1.011
n = 9 1.111 1.019 1.064 1.086 1.118 1.003
n = 10 1.017 1.017 1.056 1.070 1.021 1.063
n = 11 1.196 1.164 1.024 1.018 1.055 1.235
n = 12 1.191 1.124 1.136 1.105 1.088 1.129
n = 13 1.103 1.074 1.049 1.022 1.066 1.058
n = 14 1.025 1.161 1.108 1.046 1.030 1.094
n = 15 1.108 1.135 1.019 1.055 1.088 1.043
n = 16 1.129 1.072 1.132 1.060 1.014 1.030
n = 17 1.074 1.015 1.043 1.080 1.014 1.027
n = 18 1.029 1.071 1.040 1.057 1.067 1.013
n = 19 1.111 1.169 1.127 1.022 1.008 1.037
n = 20 1.019 1.021 1.075 1.119 1.013 1.137

Table 4.1: NN Model selection (number of neurons and alpha parameter) on short term
prediction

Nevertheless, there are many other combinations of values providing a test error value very
close to the minimum one, showing that the NN accuracy is not much penalised if the
adopted parameters are not the optimal ones. This observation is easily seen in Figure 4.1
where most of the cases have an error value below 1.2 and only two cases have a really bad
result.

4.3.2 NN model selection for Station 1 - long term prediction

Similarly to the previous section, Table 4.2 presents the test error value of the NN
algorithm for all combinations of n and α. Again, in order to better understand the results,
Figure 4.2 plots the test error values obtained by each α as a function of the number of
neurons n.

In this case, the results show that the minimum error is 1.011 (highlighted in Table 4.2)
which is obtained by having 12 neurons in the hidden layer and a regularisation value of
0.0001. Once again, the NN accuracy is not much penalised if the adopted parameters are
not the optimal ones since there are many other combinations of values providing a test
error value very close to the minimum one. This observation is again easily seen in Figure

39

2 4 6 8 10 12 14 16 18 20

number of neurons

1

1.2

1.4

1.6

1.8

2

2.2

T
e

s
t

E
rr

o
r

Station 1

alpha = 0.0001

alpha = 0.001

alpha = 0.01

alpha = 0.2

alpha = 0.3

alpha = 0.5

Figure 4.1: Test error as a function of number of neurons (n) and regularisation param.
(α) on short term prediction

4.2 where only four cases have a really bad result.

4.3.3 Features selection in NN-based prediction

After the search of the optimal values for the number of neurons in the hidden layer
and the regularisation parameter, the next step is to study if it is possible to further reduce
the test error by removing the least important features (defined by the rank reported in
Section 3.3.2). In this step, the number of most important features is defined as p and the
tested values of p are all possible ones, i.e., from 1 (only the most important feature) up
to 39 (all features). For each value of p, the NN model was run ten times and the result is
the mean test error value among all 10 values.

As determined before, the best NN model for short term prediction task is when the
value of neurons in hidden layers is 9 and the regularisation parameter is 0.5. For long
term prediction task the best NN model is when the number of neurons in hidden layer is
12 and regularisation parameter is 0.0001. Figure 4.3 shows the average test error obtained
by these two models as a function of the selected number of most important features p.

The results in Figure 4.3 show that the best test error has improved from the previous
1.003 to 0.978 for the NN short term prediction task by using the 12 best ranked features.
Similarly, the results show that the best test error has improved from the previous 1.011
to 0.987 for the NN long term prediction task by using the 6 best ranked features. So, the
main conclusion is that indeed reducing the input number of features improves the accuracy

40

α =0.0001 α =0.001 α =0.01 α =0.1 α =0.3 α =0.5

n = 2 1.925 1.125 1.077 1.101 1.098 1.926
n = 3 1.925 1.229 1.926 1.135 1.113 1.058
n = 4 1.057 1.087 1.047 1.170 1.017 1.040
n = 5 1.117 1.096 1.041 1.121 1.106 1.033
n = 6 1.031 1.116 1.046 1.190 1.029 1.119
n = 7 1.033 1.106 1.091 1.117 1.054 1.044
n = 8 1.077 1.171 1.070 1.174 1.090 1.106
n = 9 1.217 1.084 1.076 1.113 1.071 1.114
n = 10 1.064 1.173 1.149 1.092 1.085 1.084
n = 11 1.041 1.049 1.099 1.029 1.046 1.145
n = 12 1.011 1.041 1.130 1.079 1.122 1.092
n = 13 1.052 1.044 1.180 1.051 1.046 1.048
n = 14 1.044 1.182 1.195 1.063 1.094 1.210
n = 15 1.046 1.092 1.121 1.175 1.090 1.128
n = 16 1.051 1.175 1.162 1.105 1.059 1.089
n = 17 1.068 1.071 1.111 1.050 1.087 1.071
n = 18 1.116 1.055 1.137 1.026 1.045 1.090
n = 19 1.165 1.085 1.057 1.054 1.103 1.044
n = 20 1.038 1.048 1.139 1.062 1.059 1.045

Table 4.2: NN Model selection (number of neurons and alpha parameter) on long term
prediction

of both NN models while also reducing the computational costs of their execution.

4.3.4 Results for the Other Stations

The study previously described for Station 1 was then repeated for all other 15 stations.
Table 4.3 presents the n, α and p values that have provided the best test error and the
obtained test error value for all other stations in the short term prediction task, while
Table 4.4 provides the same information for all other stations in the long term prediction
task. The analysis of these results will be done later in Section 4.5.

4.4 K-Nearest Neighbour

The second algorithm used in this dissertation is K-NN, which is mentioned in some
works of the state of the art. This method was implemented by using the KNeighborsRe-
gressor class from the python library Sklearn. Like in the previous ML method, the K-NN
was first tested with the dataset associated to Station 1. Recall that the time interval to
be estimated is: (i) the current time interval in the short term prediction task or (ii) the

41

2 4 6 8 10 12 14 16 18 20

number of neurons

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

T
e

s
t

E
rr

o
r

Station 1

alpha = 0.0001

alpha = 0.001

alpha = 0.01

alpha = 0.2

alpha = 0.3

alpha = 0.5

Figure 4.2: Test error as a function of the number of neurons (n) and regularisation value
(α) on long term prediction

time interval 24 hours after the current time interval in the long term prediction task. The
features used in this algorithm are the following ones:

1. Day of week (Integer from 0 to 6) - 1 feature

2. Is holiday (Binary) - 1 feature

3. T Cold (Binary) - 1 feature

4. T Medium (Binary) - 1 feature

5. T Hot (Binary) - 1 feature

6. Rain/Snow (Binary) - 1 feature

7. Hour (Integer from 0 to 23) - 1 feature

8. Minutes (Binary) - 1 feature

9. M January (Binary) - 1 feature

10. M February (Binary) - 1 feature

11. M March (Binary) - 1 feature

42

0 5 10 15 20 25 30 35 40

Number of features

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

A
v
e

ra
g

e
 e

rr
o

r
NN short term

NN long term

Figure 4.3: Average test error with different number of features (p) for short term and long
term prediction tasks

12. M April (Binary) - 1 feature

13. Is today (Binary) - 1 feature

Concerning the Is today feature (the last in the above list), this is a runtime feature
whose value changes based on the current time instant in the following way: this feature
is set to 1 on all historical time intervals of the same day as the current time interval,
and it is set to 0, otherwise. The aim is to give more relevance to the historical data of
the current day since their feature values (like the ones associated with temperature) are
expected to be more relevant for the prediction.

Due to the fact that the efficiency of K-NN is penalised for large datasets, it was decided
to cluster the dataset in different groups and, then, to use only one of the groups as input
data to the algorithm. The 8 different groups are defined based on the values of 2 most
important features (Day of week and Is holiday), as ranked in Section 3.3.2. The resulting
groups are:

1. All data from holidays

2. All data from Mondays except holidays

3. All data from Tuesdays except holidays

4. All data from Wednesdays except holidays

43

n α p Test Error

Station 2 14 0.01 7 0.799
Station 3 13 0.1 3 0.458
Station 4 9 0.1 3 0.264
Station 5 5 0.1 3 0.683
Station 6 2 0.5 3 0.607
Station 7 11 0.3 4 0.450
Station 8 11 0.0001 3 0.386
Station 9 13 0.5 3 0.645
Station 10 7 0.5 3 0.509
Station 11 13 0.0001 7 0.890
Station 12 12 0.1 3 0.291
Station 13 8 0.1 5 0.492
Station 14 2 0.3 5 0.577
Station 15 6 0.3 3 0.407
Station 16 6 0.3 3 0.442

Table 4.3: Study of neural network model parameters for short term prediction for the rest
of stations

5. All data from Thursdays except holidays

6. All data from Fridays except holidays

7. All data from Saturdays except holidays

8. All data from Sundays except holidays

Then, the group of data that is given as input to the K-NN is the one whose Day of week
and Is holiday feature values are the same as the current time interval.

4.4.1 K-NN parameters

In order to get the best possible prediction accuracy, there are some parameters whose
values/options must be selected. As explained in Section 2.5.4, the most important pa-
rameter is the number of neighbours (K). In this dissertation, the values of K between
1 and 5 were tested. The reason for limiting the tests to 5 is due to the small quantity
of data. In the available historical data, the probability of finding many historical time
instants similar to the current one is low and there is a higher probability of getting better
accuracy if a small number of neighbours is considered (the analysis of results will confirm
this assumption).

Another parameter that must be selected is the distance measure (d) to be used between
data points. Two distance measures were tested. First, the manhattan distance which

44

n α p Test Error

Station 2 3 0.3 11 0.782
Station 3 6 0.5 3 0.465
Station 4 9 0.0001 3 0.256
Station 5 19 0.1 3 0.699
Station 6 16 0.0001 3 0.601
Station 7 3 0.5 4 0.440
Station 8 6 0.01 3 0.382
Station 9 5 0.5 3 0.638
Station 10 3 0.01 3 0.503
Station 11 10 0.1 3 0.881
Station 12 4 0.5 3 0.298
Station 13 14 0.001 4 0.488
Station 14 5 0.5 3 0.577
Station 15 7 0.01 3 0.407
Station 16 4 0.01 3 0.431

Table 4.4: Study of neural network model parameters for long term prediction in the rest
of stations

defines the distance between two points as the sum of the modules of the differences of
their corresponding dimensions (in this case, a dimension is a feature). The formula to
calculate the manhattan distance between two points A and B in n-dimensions is the
following:

D manhattan =
n∑

i=1

| Ai −Bi | (4.2)

The second tested distance measure is the euclidean distance which defines the distance
between two points as the square root of the sum of the squares of the differences of their
corresponding dimensions. The distance between points A and B is calculated in this case
by the following formula.

D euclidean =

√√√√ n∑
i=1

(Ai −Bi)2 (4.3)

The last parameter that must be selected is the weight function (w) that determines how
the output prediction value is computed from the K neighbours. Two weight functions were
tested: uniform and distance. The uniform weight function assumes that all neighbours
have the same influence in the prediction and computes the estimated value by a simple
average of the neighbour values. The distance weight function gives higher weight values
to the neighbours that are closer to the data point to predict and computes the estimated

45

value by a weighted average of the neighbour values. Note that this parameter w is only
used when the number of neighbours K is higher than 1 since for the case of K = 1, the
estimated value is given by the single neighbour value.

4.4.2 K-NN model selection for Station 1 - short term prediction

Table 4.5 presents the test errors of the K-NN algorithm for all combinations of K, d
and w. These results show that the minimum test error is 1.380 which is obtained with
K = 1 neighbours and the distance measure D euclidean. Moreover, the results show
that considering a larger number of neighbours K always decrease the method accuracy
confirming in practice the previous assumption of not testing K values higher than 5.
Nevertheless, the results also show that for each value of K higher than 1, the distance
weight function has always better results than the uniform weight function while the impact
of the distance measure is residual.

w d K = 1 K = 2 K = 3 K = 4 K = 5

distance D manhattan 1.380 1.439 1.500 1.531 1.538
uniform D manhattan 1.380 1.654 1.783 1.847 1.905
distance D euclidean 1.379 1.440 1.503 1.535 1.540
uniform D euclidean 1.379 1.655 1.787 1.852 1.911

Table 4.5: K-NN Model selection (K neighbours, distance and weight function) on a short
term prediction

4.4.3 K-NN model selection for Station 1 - long term prediction

Like before, Table 4.6 presents the test errors of the K-NN algorithm for all combinations
of K, d and w. These results show that the minimum test error is 1.425 which is obtained
with K = 1 neighbours and with both distance measure options. Again, larger number of
neighbour values K decrease the method accuracy. Finally, the results show again that for
each value of K higher than 1, the distance weight function has always better results than
the uniform weight function while the impact of the distance measure is residual.

4.4.4 Results for the Other Stations

The study previously described for Station 1 was then repeated for all other 15 stations.
Table 4.7 presents the K and d values that have provided the best test error and the
obtained test error value for all other stations both in the short and long term prediction
tasks. Note that since the best values are always with K = 1, the table does not include
the wright function w. The analysis of these results are done in the next Section 4.5.

46

w d k = 1 k = 2 k = 3 k = 4 k = 5

distance D manhattan 1.425 1.492 1.561 1.592 1.598
uniform D manhattan 1.425 1.673 1.806 1.902 1.927
distance D euclidean 1.425 1.492 1.561 1.588 1.594
uniform D euclidean 1.425 1.673 1.804 1.897 1.924

Table 4.6: K-NN Model selection (K neighbours, distance and weight function) on a long
term prediction

K d (30 min) Error (30 min) d (24 hours) Error (24 hours)

Station 2 1 both 1.185 D manhattan 1.155
Station 3 1 both 0.734 both 0.702
Station 4 1 both 0.609 both 0.630
Station 5 1 both 1.035 D euclidean 1.003
Station 6 1 both 0.952 both 0.884
Station 7 1 both 0.740 both 0.663
Station 8 1 both 0.699 both 0.696
Station 9 1 both 0.954 D euclidean 0.941
Station 10 1 D euclidean 0.795 both 0.806
Station 11 1 both 1.216 both 1.221
Station 12 1 D euclidean 0.657 D euclidean 0.598
Station 13 1 D euclidean 0.746 D euclidean 0.780
Station 14 1 both 0.860 both 0.866
Station 15 1 both 0.762 both 0.827
Station 16 1 both 0.761 both 0.735

Table 4.7: Study of K-NN model for short and long term predictions in the rest of stations

4.5 Analysis of Accuracy Results

Recall from Section 3.2.1 that Station 1 and Station 2 are the stations with more traffic
in terms of number of pickups and drop-offs and Station 11 is the one with the highest
range of occupation. Therefore, one might expect that these three stations are the most
challenging ones for the prediction methods. In fact, this is the case since all results of
both ML algorithms and in both (short and long) prediction tasks show that these three
stations are the ones with the highest test error values among all.

For the NN prediction algorithm, the results show that the test error values are always
below 1.0 for all stations when the best parameter values are applied. The average test
error among all stations is 0.56 for the short term prediction and 0.55 for the long term
prediction. Since the usual station occupation values are between 5 and 15 bikes, these
test error values can be considered of a good accuracy. Note that the accuracy of the NN

47

algorithm in the long term prediction task is similar to the accuracy in the short prediction
task. This performance might be unexpected as the intuition is that the more in future we
aim to predict, the hardest it would be.

For the K-NN prediction algorithm, the results show that test error values are always
higher than the ones of the NN prediction algorithm for all stations even when the best
parameter options are applied. The average test error among all stations is 0.88 for the
short term prediction and 0.87 for the long term prediction. Again, given the usual station
occupation values, these test error values can be considered also of a good accuracy but
they are clearly worse than the accuracy of the NN models. Note that in the case of the
K-NN, the test error values are more similar between different stations than they were in
the NN case. Like in NN, the accuracy of the K-NN algorithm in the long term prediction
task is similar to the accuracy in the short prediction task.

One of the reasons that might explain the inferior performance of K-NN (when com-
pared with NN) is the fact that the used dataset is the historical data of only four months
which are typically the ones with the lowest system usage (because they correspond to the
Winter and initial Spring months). A larger dataset (i.e., with more months of historical
data) has the potential of improving more significantly the K-NN prediction than the NN
prediction since with larger datasets, the probability of past data points being closer to the
time period in estimation (both in terms of distance and number of neighbours) increases
significantly. So, K-NN with a K value higher than 1 will be potentially better for larger
datasets.

48

Chapter 5

Conclusions and Future Work

The main objective of this dissertation was the development of a decision support ser-
vice for Bewegen Bike-Sharing Systems (BSSs) based on Machine Learning (ML) methods
to predict the occupation (in number of bikes) of each station of a Bewegan BSS. This
objective had two aims defined as short term prediction task and long term prediction
task.

The first step was to develop a backend data collection module to collect in a systematic
way the Bewegen BSSs data needed to serve as input for the ML algorithms. Only after
this first step being done, data started to be collected in 1 of January 2019.

The second step was to collect other relevant features like weather information and
holidays information. These features contain information that was later concluded as
being very important to obtain accurate predictions.

The third step was, based on all collected data, to determine which are the most im-
portant features that impact positively the prediction accuracy. The order of the features’
importance was defined based on a well-known feature ranking process.

The fourth step was to implement and test two ML algorithms, one based on Neural
Networks (NNs) and the other based on K-nearest neighbour (K-NN), for both prediction
tasks (the short and long term predictions). The dataset used in this last step was the
historical data collected from 1 of January 2019 until 30 of April 2019.

Concerning the analysis of the accuracy results, it was shown that the stations either
with more traffic (in number of pickups and drop-offs) and/or more occupation range are
the most challenging ones as the results of both algorithms and in both prediction tasks
show that these cases have the highest test error values.

For the NN prediction algorithm, the average test error among all stations was 0.56 for
the short term prediction and 0.55 for the long term prediction. On the other hand, for
the K-NN prediction algorithm, the average test error among all stations was 0.88 for the
short term prediction and 0.87 for the long term prediction. So, the NN based algorithm
has better accuracy performance in both tasks but both algorithms can be considered of
good accuracy since the usual station occupation values are between 5 and 15 bikes.

As future work, the most important task to be done is to run again the whole evaluation
of both ML algorithms as soon as a complete year of historical data is available. This

49

task is important for three main reasons. First, a whole year of historical data will have
more features (the number of months becomes 12 instead of the current 4). Second, the
clustering of temperature values into the Cold, Medium and Hot categories will change
as the limits between the categories are calculated based on the historical data (since the
current historical data is of Winter and early Spring months, in a complete year dataset
the limits will surely increase and current historical temperature values will be classified
differently). Third, the usage of any BSS is typically much higher in the Summer season
with higher occupation ranges in more stations (which was shown to be more challenging
for the prediction algorithms). All these three factors might potentially affect the accuracy
efficiency of both ML algorithms, the reason why their evaluation must be repeated.

Then, many other ideas come to mind when thinking about future work. One is to
extend the evaluation of the developed ML algorithms to the available datasets of the
other Bewegen BSSs (the data collection started in 1 of January 2019 is collecting data
from all Bewegen BSSs). In this way, the accuracy of the implemented prediction tasks
could also be studied to BBSs with different characteristics in terms of size, type of clients
and geographical location. Second, state of the art suggests that other algorithms (such
as gradient boosting decision tree or random forest) could also fit on this dissertation ob-
jectives and, so, their implementation and performance comparison with the implemented
algorithms is a possible interesting future work.

Note that the decision support service developed in this dissertation is still not inte-
grated in Bewegen internal system. In future, the short term prediction task has to be
integrated in the website and mobile apps to be available to clients and the long term pre-
diction task has to be integrated with the internal backoffice to be available to the system
operators of each Bewegen BSS.

50

References

[1] Hangzhou information, https://https://use.metropolis.org/case-studies/hangzhou-
china-urban-public-bicycle-sharing-program.

[2] Bixi montreal information, https://www.mironline.ca/a-review-of-2018-bixi-usage-in-
montreal/.

[3] Capital bike-share information, https://en.wikipedia.org/wiki/capital bikeshare/.

[4] Citi bike-share information, https://www.wired.com/story/lyft-bets-bikes-nyc/.

[5] A tale of twenty-two million citi bike rides: Analyzing the nyc bike
share system, https://toddwschneider.com/posts/a-tale-of-twenty-two-million-citi-
bikes-analyzing-the-nyc-bike-share-system/.

[6] Random forest, https://towardsdatascience.com/the-random-forest-algorithm-
d457d499ffcd.

[7] Artificial nueral networks, https://hackernoon.com/artificial-neural-network-
a843ff870338.

[8] Support vector machine, https://medium.com/deep-math-machine-learning-
ai/chapter-3-support-vector-machine-with-math-47d6193c82be.

[9] K-means cluster, https://rpubs.com/cyobero/k-means.

[10] Elliot Fishman, Simon Washington, and Narelle Haworth. Bike share: A synthesis of
the literature. Transport Reviews, 33(2):148–165, 2013.

[11] Danilo Saraiva. Servios de distribuio, recolha de dados e indicação de presença para
a bicicleta bewegen, 2017.

[12] Xize Wang, Greg Lindsey, Jessica E. Schoner, and Andrew Harrison. Modeling bike
share station activity: Effects of nearby businesses and jobs on trips to and from
stations. Journal of Urban Planning and Development, 142(1):04015001, 2016.

[13] Ralph Buehler and Andrea Hamre. Business and bikeshare user perceptions of the
economic benefits of capital bikeshare. 2015.

51

[14] Susan Shaheen, Hua Zhang, Elliot Martin, and Stacey Guzman. China’s hangzhou
public bicycle. Transportation Research Record: Journal of the Transportation Re-
search Board, 2247:33–41, 12 2011.

[15] Catherine Morency, Martin Trépanier, Antonio Paez, Hubert Verrault, and Julien
Faucher. Modelling bikesharing usage in montreal over 6 years. 2017.

[16] Vélib’ métropole bike-share information, https://www.nouvelobs.com/societe/20180302.obs2970/le-
fiasco-des-nouveaux-velib-un-desaveu-pour-la-mairie-de-paris.html.

[17] Nicolas Gast, Guillaume Massonnet, Daniel Reijsbergen, and Mirco Tribastone. Prob-
abilistic forecasts of bike-sharing systems for journey planning. 10 2015.

[18] Zidong Yang, Ji Hu, Yuanchao Shu, Peng Cheng, Jiming Chen, and Thomas Mosci-
broda. Mobility modeling and prediction in bike-sharing systems. pages 165–178, 06
2016.

[19] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. Traffic prediction in a bike-sharing
system. Proceedings of the 23rd SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 33:1–33:10, 2015.

[20] Haitao Xu, Jing Ying, Hao Wu, and Fei Lin. Public bicycle traffic flow prediction
based on a hybrid model. Applied Mathematics Information Sciences, 7:667–674, 03
2013.

[21] R. Giot and R. Cherrier. Predicting bikeshare system usage up to one day ahead.
2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation
Systems (CIVTS), pages 22–29, 2014.

[22] Hong Yang, Kun Xie, Kaan Ozbay, Yifang Ma, and Zhenyu Wang. Use of deep learn-
ing to predict daily usage of bike sharing systems. Transportation Research Record,
2672(36):92–102, 2018.

[23] Kyle Gebhart and Robert B. Noland. The impact of weather conditions on bikeshare
trips in washington, dc. Transportation, 41(6):1205–1225, Nov 2014.

[24] Pengcheng Dai, Changxiong Song, Huiping Lin, Pei Jia, and Zhipeng Xu. Cluster-
based destination prediction in bike sharing system. pages 1–8, 12 2018.

[25] Pierre Borgnat, Celine Robardet, Jean-Baptiste Rouquier, Patrice Abry, Patrick Flan-
drin, and Eric Fleury. Shared bicycles in a city: A signal processing and data analysis
perspective. Advances in Complex Systems, 14, 06 2011.

[26] Steven R. Gehrke and Timothy Welch. A bikeshare station area typology to forecast
the station-level ridership of system expansion. Journal of Transport and Land Use,
12:221–235, 04 2019.

52

[27] Lindsay Kathryn Maurer. Feasibility study for a bicycle sharing program in sacra-
mento, california. 2012.

[28] Adele Cutler, David Cutler, and John Stevens. Random forests. Machine Learning -
ML, 45:157–176, 01 2011.

[29] Gradient boosting vs random forest, https://medium.com/@aravanshad/gradient-
boosting-versus-random-forest-cfa3fa8f0d80.

[30] Ming Zeng, Tong Yu, Xiao Wang, Vincent Su, Le T. Nguyen, and Ole J. Mengshoel.
Improving demand prediction in bike sharing system by learning global features. KDD
2016, 2016.

[31] S.B. Imandoust and Mohammad Bolandraftar. Application of k-nearest neighbor
(knn) approach for predicting economic events theoretical background. Int J Eng Res
Appl, 3:605–610, 01 2013.

[32] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August
1997.

[33] Harris Drucker, Christopher Burges, Linda Kaufman, Alexander Smola, and V Vapnik.
Support vector regression machines. Adv Neural Inform Process Syst, 28:779–784, 01
1997.

[34] Jerome Friedman. Stochastic gradient boosting. Computational Statistics Data Anal-
ysis, 38:367–378, 02 2002.

[35] Arnab Datta. Predicting bike-share usage patterns with machine learning, 2014.

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res., 12:2825–2830, November 2011.

[37] Harris Drucker. Improving regressors using boosting techniques. Proceedings of the
14th International Conference on Machine Learning, 08 1997.

[38] Susan Shaheen, Stacey Guzman, and Hua Zhang. Bikesharing in europe, the americas,
and asia: Past, present, and future. Institute of Transportation Studies, UC Davis,
Institute of Transportation Studies, Working Paper Series, 2143, 01 2010.

[39] Yilin Yan, Min Chen, Mei-Ling Shyu, and Shu-Ching Chen. Deep learning for imbal-
anced multimedia data classification. pages 483–488, 12 2015.

[40] Jaime Salvador-Meneses, Zoila Ruiz–Chavez, and José Rodŕıguez. Compressed knn:
K-nearest neighbors with data compression. Entropy, 21:234, 02 2019.

53

54

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Bike-Sharing Systems - State of the Art
	Background
	Bewegen Systems
	Major Bike-Sharing Systems
	Hangzhou Public Bicycle
	BIXI Montreal
	Capital Bike Share
	Citi Bike Share
	Vélib' Métropole

	Data Cleaning and Feature Extraction
	Historical data
	Historical Average (HA) model
	Auto-Regressive and Moving Average (ARMA) model

	Weather
	Time
	Users
	Stations
	Ranking features

	Machine Learning Algorithms
	Random Forest model
	Gradient boosting decision tree
	Neural Networks
	K-Nearest Neighbour
	Support Vector Machine (SVM)
	K-means Clustering

	Decision Support System for Bewegen Bike-Sharing Systems
	Data Collection
	Backend data collection module
	Weather data collection
	Holidays data

	Data Visualisation and Processing
	Data Visualisation (Station Occupation)
	Feature Matrix Construction - First Version
	Data Visualisation (Pickups)
	Data Visualization (Weather)
	Feature Matrix Construction - Final Version

	Description of Features
	Features
	Ranking features

	Prediction of Bike-Share Usage with Machine Learning
	Dataset Description
	Error Calculation
	Neural Network
	NN model selection for Station 1 - short term prediction
	NN model selection for Station 1 - long term prediction
	Features selection in NN-based prediction
	Results for the Other Stations

	K-Nearest Neighbour
	K-NN parameters
	K-NN model selection for Station 1 - short term prediction
	K-NN model selection for Station 1 - long term prediction
	Results for the Other Stations

	Analysis of Accuracy Results

	Conclusions and Future Work
	References

