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Abstract 

Wildfires affect vast areas of Mediterranean forests, thereby triggering changes in hydrological 

and geomorphological processes that can negatively affect both terrestrial and aquatic 

ecosystems. Although several studies have evaluated the post-fire hydrological and erosive 

response in burnt forest areas, an important knowledge gap remains with respect to nutrient 

mobilization by overland flow. To address this gap, a recently burnt area was selected near the 

Ermida village (north-central Portugal). The study area was instrumented shortly after a 

wildfire that occurred in July 2010, to evaluate the export of dissolved (nitrate – NO3-N and 

orthophosphate – PO4-P) and total nitrogen (TN) and phosphorus (TP) forms by overland flow. 

This was done in two burnt eucalyptus plantations due to their contrasting slope aspects 

(south-east vs. north-west). Bounded micro-plots were installed in August 2010 and monitored 

over two years. During this period, overland flow samples were collected on a 1- to 2-weekly 

basis, depending on the occurrence of rain. Results showed that the north west-facing slope 

(BE-N) presented higher nutrient losses than the south east-facing slope (BE-S), contradicting 

the findings of previous studies in the Mediterranean region. A logging operation that had 
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taken place at the BE-N site shortly before the fire might account for these findings, by causing 

soil compaction and/or reducing the protective vegetation and litter cover. TN and TP exports 

were particularly pronounced during the first four months following the wildfire. After this 

initial period, further peaks in TN and TP exports occurred sporadically, mainly associated to 

intense rainfall events. The observed mid-term post-fire nutrient losses not only suggested a 

threat to the soil nutrient balance of Mediterranean eucalypt forests but also a potential risk 

of eutrophication of downstream water bodies. 

 

Keywords: wildfires; nutrient exports; runoff; slope aspect; land management; Mediterranean 

region 

 

1. Introduction 

The warmer and drier conditions forecasted for the Mediterranean region during the 21st 

century are expected to change the region’s wildfire regimes (Turco et al., 2014; Viedma et al., 

2015). Although fire is a natural element, more severe and recurrent fires can pose a serious 

threat to the ability of forest ecosystems to regenerate spontaneously and, thereby, to the 

services that these ecosystems provide, including the regulating functions of the water cycle 

and protection against erosion (Mayor et al., 2016; Vallejo and Alloza, 2015). 

Depending on fire severity, fire-induced changes in vegetation and soil physical (e.g. 

decrease in soil porosity and decrease in water holding capacity and infiltration), chemical (e.g. 

decrease in soil organic matter) and biological (e.g. reduction of soil microbial biomass and 

activity) properties can greatly affect the nutrient cycles, both directly and indirectly, through 

enhanced post-fire exports by runoff (Certini, 2005; Costa et al., 2014; Ferreira et al. 2016a, 

2016b; Hosseini et al., 2017; Knoepp et al., 2005; Machado et al., 2015; Moody et al., 2013). 

This is a major concern for the sustainable management of forest soils of Mediterranean 

hillslopes and mountains as these soils are often shallow and poor in nutrients (Caon et al., 
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2014; Ferreira et al., 2005; Mayor et al., 2016; Shakesby, 2011; Shakesby and Doerr, 2006). In 

the case of macronutrients such as nitrogen (N) and phosphorus (P) largely contained in the 

aboveground vegetation and litter pools, fires not only provoke direct losses through 

volatilization and particle emission but also lead to deposition in the form of ash and charcoal 

particles that are particularly prone to erosion by wind and, especially, water (Badía et al., 

2014; Bodí et al., 2014; Caon et al., 2014; Certini, 2005; Knoepp et al., 2005; Neary et al., 

1999).  

 Enhanced nutrient losses by runoff after fire are often strongly related to the lack of 

protective soil cover, resulting from the partial or complete consumption of vegetation and 

litter layer (Certini, 2005; Ferreira et al., 2005; Ferreira et al., 2016a, 2016b; Thomas et al., 

1999, 2000a, 2000b; Shakesby, 2011). The decrease in interception by vegetation and litter not 

only enhances the erosive potential of rain (Certini, 2005) but also increases the effective 

rainfall intensity, increasing the likelihood of overland flow generation and the associated 

transport of ash, charcoal and soil particles as well as of nutrients in dissolved and particulate 

form (Caon et al., 2014; Certini, 2005; Ferreira et al., 2005; Pausas et al., 2008; Shakesby, 2011; 

Thomas et al., 1999, 2000a, 2000b; Wittenberg et al., 2014). Aside from decreasing the on-site 

nutrient pools (Caon et al., 2014; Certini, 2005; Pausas et al., 2008; Shakesby, 2011), runoff-

induced nutrient losses enhance the risk of eutrophication to downstream water bodies and 

the associated deterioration of chemical and biological water quality (Abraham et al., 2017; 

Bladon et al., 2014; Emelko et al., 2016; Silins et al., 2014; Smith et al., 2011; Verkaik et al., 

2013). 

The existing knowledge of post-fire nutrient losses by runoff is still rather limited but 

suggests that these losses are highly variable, as they involve a complex interplay of a large 

number of factors, including: (i) fire regime, such as fire frequency, intensity, and severity (Bodí 

et al., 2014; Caon et al., 2014; Hosseini et al., 2017; Knoepp et al., 2005; Neary et al., 1999; 

Shakesby and Doerr, 2006); (ii) land cover and management, such as vegetation type and stand 
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age (Caon et al., 2014; Cerdà and Doerr, 2008; Certini, 2005; Ferreira et al. 2016a, 2016b; 

Knoepp et al., 2005; Neary et al., 1999); (iii) terrain, including slope steepness and aspect (Bodí 

et al., 2014; Certini, 2005; Neary et al., 1999; Shakesby and Doerr, 2006); (iv) bedrock and soil 

type (Certini, 2005; Ferreira et al. 2016a, 2016b; Neary et al., 1999; Shakesby and Doerr, 2006); 

and (v) post-fire climate conditions, such as timing and intensity of rainfall events (Bodí et al., 

2014; Certini, 2005; Neary et al., 1999; Shakesby and Doerr, 2006). This study specifically 

addresses the role of slope aspect and pre-fire forest management or, to be more specific, 

logging. Slope aspect determines the amount of solar radiation received by a hillslope, which, 

in turn, can affect pre-fire vegetation and soil properties, fire intensity and severity, and post-

fire vegetation recovery (Cerdà, 1998; Gabarrón-Galeote et al., 2013; Kutiel and Lavee, 1999; 

Sternberg and Shoshany, 2001; Wittenberg et al. 2014). Especially when involving heavy 

machinery that causes soil compaction and reduction of soil cover, post-fire forest 

management operations such as ploughing and logging have been found to enhance runoff 

and soil (fertility) losses (Fernández et al., 2007; Malvar et al., 2016; Thomas et al., 2000a, b; 

Smith et al., 2012). These same operations can be expected to have similar impacts when 

carried out before a fire, with the extent of these impacts depending on the time-between the 

operation and fire (Malvar et al., 2016; Vieira et al., 2016). 

Given this multitude of factors affecting post-fire nutrient mobilization, the existing 

literature does not allow a comprehensive understanding of N and P processes in burnt areas 

across the Mediterranean (Cancelo-González et al., 2013; DeBano et al., 1998; Díaz-Fierros et 

al., 1990; Lasanta and Cerdà, 2005; Ferreira et al. 2016a, b; Santos et al., 2015). In the case of 

Portugal, nine scientific articles have quantified post-fire N and P exports by overland flow, 

focusing on the first 1 to 2 years following fire (Coelho et al., 2004; Hosseini et al., 2017; 

Ferreira et al., 1997, 2005; Ferreira et al., 2016a, 2016b; Thomas et al., 2000a, 2000b; Walsh et 

al., 1992). These studies concerned the two predominant and, at the same time, markedly fire-

prone forest types in north and central Portugal, i.e. Maritime pine (Pinus pinaster Ait.) and 
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eucalypt (Eucalyptus globulus Labill.) plantations. Six of these studies, however, were limited 

to nutrient losses in dissolved form (Coelho et al., 2004; Ferreira et al., 1997, 2005; Thomas et 

al., 2000a, 2000b; Walsh et al., 1992), ignoring the losses in particulate form associated to the 

transport of ash, charcoal and soil particles. Nonetheless, the findings of Ferreira et al. (2016a, 

2016b) suggested that particulate losses substantially exceeded dissolved losses, at least 

during the initial 6 months following the wildfire.     

The present study complements the studies of Ferreira et al. (2016a, 2016b) which 

quantified total N and P exports by post-fire overland flow in the same burnt area but 

addressed the role of parent material, comparing a burnt eucalypt stand on granite vs. a burnt 

eucalypt stand on schist, as well as the role of land cover, comparing a burnt eucalypt stand vs. 

a burnt Maritime Pine stand. Furthermore, Ferreira et al. (2016a, 2016b) studied a different 

stand than the present study and, most importantly, could only quantify short-term exports, 

due to the conversion of the study slopes to bench terraces for a new eucalypt plantation 

some six months after the fire. This study focused on eucalypt forests, as it is the predominant 

forest type in north-central Portugal and it produced greater N and P losses than the Maritime 

pine forest in Ferreira et al. (2016a, 2016b). The specific objectives were then to: i) quantify N 

and P exports at the micro-plot scale for two eucalypt plantations with contrasting slope 

aspects (south-east vs. north-west), as aspect was expected to be a key factor in post-fire 

nutrient mobilization; (ii) analyze the evolution of post-fire N and P losses with time-since fire, 

as especially total export was expected to closely follow the typically fast decrease in erosion 

with time-since fire in the region; iii) relate N and P exports to their contents and stocks in the 

ash layer and topsoil, for a better understanding of the N and P cycles; and iv) evaluate if the N 

and P levels in overland flow posed a risk of contamination for downstream water bodies.  

 

2. Materials and Methods 
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2.1. Study area and sites 

The study area was located near the Ermida village, in the Sever do Vouga municipality, 

north-central Portugal (Fig. 1). On July 26 2010, the area was affected by a wildfire that 

consumed roughly 300 ha of forest (DUDF, 2011). Prior to the fire, the area was predominantly 

covered by eucalypt plantations (Eucalyptus globulus Labill.) but it also included some 

Maritime pine stands (Pinus pinaster Ait.). Fire severity was, on overall, moderate, since the 

ash was black, the litter layer and understory vegetation were completely consumed by fire 

and tree crowns were only partially scorched (Shakesby and Doerr, 2006). Within the burnt 

area, two hillslopes with eucalypt plantations were selected due to their contrasting slope 

aspect (south-east vs. north-west) but, at the same time, being comparable in terms of fire 

severity (i.e. moderate) and slope angle (20o vs. 30o) (Fig. 1; Table 1). At the time of fire, the 

north-west facing slope (BE-N) had recently been logged but the logs themselves had not yet 

been extracted (Fig. 2). The presumed presence of dried-out logging residues on the forest 

floor at the time of the fire could explain that the ash cover immediately after the fire was 

higher at this site than at the south-east facing site (BE-S) (Fig. 3). 

The climate of the study area is classified as humid meso-thermal (Csb, according to the 

Köppen classification), with moderately dry but prolonged summers (DRA-Centro, 2002). The 

mean annual temperature at the nearest climate station (Castelo-Burgães: 40°51′10″N, 8° 

22′44″W; 306 m a.s.l.) was 14.8 °C (1991–2017; SNIRH, 2019), with average monthly 

temperatures ranging from 9.0 °C in January to 21.0 °C in July. Annual rainfall at the nearest 

rainfall station (Ribeiradio: 40°73′65″N, 8°30′08″W; 228 m a.s.l.) was, on average, 1655 mm, 

but varied markedly between dry (960 mm) and wet (2530 mm) years (1991–2011; SNIRH, 

2019).  

The area belongs to the Hesperic Massif, one of the major physiographic units in the region 

(Ferreira, 1978). The parent material in the study area consists mainly of pre-Ordovician schists 

but included Hercynian granites at some locations (Pereira and FitzPatrick, 1995). Field 
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descriptions of soil profiles revealed that soils are mainly Umbric skeletic leptosols (dystric) at 

the BE-S site and Umbric hyperskeletic leptosols (dystric) at the BE-N site (IUSS, 2015). The 

topsoil (0–2 cm) at the two sites was rather coarse, with a sandy-loam to sandy-clay loam 

texture and high organic matter content (28–32%) (Table 1). The bulk density of the topsoil (0-

5 cm depth) was similar at the two sites, but slightly higher values were found at the BE-S (1.15 

± 0.19 g cm-3) than at the BE-N slope (0.88 ± 0.13 g cm-3). 

 

2.2. Experimental design and sample collection 

Each of the study sites was divided into two adjacent strips, running from the base to the 

top of the slope section (Fig. 4). One of the strips was used for repeated soil sampling and the 

other for installing micro-plots for measuring overland flow (Fig. 4).  

Soil sampling was limited to the upper 2 cm of the mineral soil, because moderate severity 

fires are known to principally affect the uppermost centimeters of the mineral soil (Badía et al., 

2014; Fernández et al., 2013; Vega et al., 2014; Zavala et al., 2014). Soil samples were first 

collected on August 10 2010, roughly two weeks after the wildfire; and then at 6-month 

intervals till the end of the monitoring period, on August 25 2012. At the first sampling 

occasion, ash samples were collected along with soil samples. Soil and ash layer sampling was 

done at five equally-distant points along a transect laid out from the base to the top of the 

slope section (Fig. 4), shifting the location of transect some 1-2 m across the slope in the 

subsequent sampling occasion. At each transect point, first the ash layer was collected in a plot 

of 0.25 m2 (0.5 m × 0.5 m), and then the topsoil (0-2 cm depth) was collected at the center of 

this plot, over an area of 0.06 m2 (0.25 m × 0.25 m). 

The study sites were instrumented with runoff plots on August 25 2010, before the 

occurrence of any significant post-fire rainfall. This involved the installation of two pairs of 

bounded micro-plots (0.25–0.30 m2) at each study site. One pair was installed at the base of 
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the slope and the other pair halfway up the slope (Fig. 4), to evaluate if slope position would 

influence nutrient mobilization. The outlets of the micro-plots were connected, using a garden 

hose, to one or more high density polyethylene 30 L tanks to collect overland flow (Fig. 4). 

From August 25 2010 to August 22 2012, the runoff collected in the various tanks was 

measured at 1- to 2-weekly intervals, depending on the occurrence of rainfall. Whenever the 

volume in each tank exceeded 250 mL, a sample was collected in a 500 mL polyethylene bottle 

that had been previously rinsed with hydrochloric acid (pH < 2.0) and distilled and deionized 

water. These samples were then transported to the laboratory in cool boxes and stored at 4ºC 

for no longer than 24 hours.  

The 1- to 2-weekly field trips also involved measurement of rainfall accumulated in 4 

storage gauges (in-house design) that had been installed across the study area by the middle 

of August 2010. Their main purpose, however, was to validate the automatic recordings of two 

tipping-bucket rainfall gauges (Pronamic Professional Rain Gauge with 0.2 mm resolution) that 

had been installed in close proximity to two of the storage gauges. 

2.3. Analytical methods 

Upon arrival at the laboratory, ash and soil samples were air dried and then sieved 

manually with a 2 mm sieve. Total nitrogen (TN) content, i.e. ammonium plus organic nitrogen, 

of the ash and soil samples was determined using the Kjeldahl method (Bremner, 1979). 

Available phosphorus (Pav) content of ash and soil samples was determined by the Bray 

method (Bray and Kurtz, 1945), using a mixture of ammonium fluoride (0.03 M) and 

hydrochloric acid (0.025 M) as extractant. The extracted P was analyzed 

spectrophotometrically as orthophosphate by the molybdenum blue method (APHA, 1998). 

Aside from N and P, soil samples were also analysed for: i) bulk density (0-5 cm depth), using 

the core method as described by Porta et al. (2003); ii) soil particle size, following the 

international method of mechanical analysis as defined by Guitián and Carballas (1976); and iii) 
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organic matter, determined by loss on ignition at 550 ºC for 4 h, as described by Botelho da 

Costa (2004). 

Overland flow samples were analyzed for dissolved inorganic (NO3-N; and PO4-P) and total 

(i.e. dissolved plus particulate) N and P forms, using a flow injection FIAstarTM 5000 analyser 

(FOSS-Tecator). For determination of NO3-N and PO4-P concentrations in overland flow, 50 mL 

subsamples were filtered over 0.45 μm MilliporeTM membrane filters. For analysis of TN and TP 

concentrations, 50 mL subsamples were first subjected to an oxidative digestion, using 

peroxodisulphate/alkali (Oxisolv®, Merck), and then filtered over 0.45 μm Millipore© 

membrane filters. The total suspended solids (TSS) concentration in overland flow samples was 

quantified gravimetrically through filtration of 50-150 mL over a glass fiber filter, followed by 

drying to a constant weight at 105 ºC (APHA, 1998). 

2.4. Data analysis 

Between-site differences in TN and Pav contents in ash were evaluated by means of 

Student’s t-tests, after checking for normality (Shapiro-Wilk test) and for homogeneity of 

variance (Brown-Forsythe test). Differences in the soil TN and Pav contents between the two 

sites and sampling occasions were tested by means of two-way ANOVAs. If significant 

differences were found multi-comparison Tukey tests were performed. Whenever data did not 

meet the assumptions of normality and homogeneity of variance underlying ANOVA, 

logarithmic transformations were performed (Zar, 1999). 

Differences in the exports of NO3-N, TN, PO4-P and TP between plots, sites and sampling 

dates were tested for significance by means of two-way Repeated Measures ANOVAs. These 

data, however, consistently failed to meet the normality assumption, even for a range of 

typical data transformations, so a general linear model was applied. Two-way Repeated 

Measures ANOVAs were also used to test differences in overland flow and sediment losses 
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between plots, sites and sampling dates. As overland flow and erosion data also failed the 

normality test, a general linear model was applied.  

N and P exports were related to possible explanatory variables, in particular, rainfall 

amount and intensity, overland flow volumes and sediment losses. These relationships were 

assessed using the Spearman’s rank correlation coefficient, since most data lacked a normal 

distribution.  

All statistical tests were carried out with the SigmaPlot 14.0 software, using a significance 

level of 0.05.  

 

3. Results and Discussion  

3.1. Nitrogen and phosphorus contents in ash and topsoil 

The average values of TN and Pav contents in the ash layer and the upper 2 cm of the topsoil 

at the two study sites are shown in Fig. 5.  

No significant differences in TN (t = -1.933; p = 0.085; Fig. 5) and Pav (t = -0.212; p = 0.837; 

Fig. 5) contents were observed between the ashes collected at the BE-S and BE-N sites. This 

was in line with the findings of Ferreira et al. (2016a, 2016b) for two other eucalypt sites burnt 

at moderate severity within the same study area. Such minor differences in the composition of 

ash produced by similar fire severities can be explained by the similar pre-fire N and P contents 

in aboveground vegetation and litter in eucalypt stands (Magalhães et al., 2011; Ribeiro et al., 

2002). 

At both study sites, TN and Pav contents of ash were, on average, two times higher than 

topsoil contents immediately after the wildfire (Fig. 5). Similar findings were reported by prior 

studies in northern Portugal (Marão and Caramulo mountains), for both eucalypt (Thomas et 

al., 1999, 2000a, 2000b) and pine stands (Costa et al., 2014; Thomas et al., 1999, 2000a, 

2000b). This contrast between the ash and topsoil layer could reflect the fast mineralization of 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

organic matter during the combustion of aboveground vegetation and litter (Caon et al., 2014; 

Kutiel and Inbar, 1993; Santín et al., 2018). The present results differed, however, from those 

of Ferreira et al. (2016a) who reported higher Pav contents in the topsoil than in the ash layer 

of a burnt eucalypt plantation on schist in the same study area. Possibly, soil heating had been 

stronger at the eucalypt stand of Ferreira et al. (2016a) than at the present stands, as stronger 

soil heating could explain the lower soil organic matter (SOM) content at their stand 

immediately after the fire (22% vs. 28 and 32%, at BE-S and BE-N, respectively), and SOM is 

known to strongly influence P adsorption processes (Otero et al., 2015). Lower SOM values 

might have limited the P adsorption capacity of the soils at their stand, in turn, increasing Pav 

concentrations to a point that soil values were higher than ash values. Alternatively, 

differences in the mineral fraction of the soil between the two stands, in particular of iron (Fe), 

aluminum (Al) and manganese (Mn) contents, could have also accounted for these results 

since the formation of oxyhydroxides of these elements has been reported to influence the P 

sorption capacity of soils (Otero et al., 2015).  

Topsoil TN contents did not differ significantly between the two study sites (p = 0.463; 

Table 2), in agreement with the results for the ash layer. By contrast, topsoil Pav contents were, 

on overall, significantly lower (p = 0.003; Table 2) at the BE-N site than at the BE-S site. This 

site-wise difference in Pav contents was only significant at the third and fourth sampling 

occasions, i.e. 12 and 18 months after the fire, but was noticeable at all occasions except 

immediately after the fire (Fig. 5).  A possible explanation for these findings could be the 

higher P losses by overland flow at the BE-N site, as detailed in the next section. In turn, the 

comparable topsoil Pav as well as TN contents at both sites immediately after the fire could be 

attributed, besides to the comparable fire severity, to the similar N and P contents in 

aboveground vegetation, litter and topsoil layers that have been reported for eucalypt stands 

in Portugal (Magalhães et al., 2011; Ribeiro et al., 2002).  
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Time-since-fire played a significant overall role in both TN (p < 0.001; Table 2; Fig. 5) and Pav 

(p < 0.001; Table 2; Fig. 5) topsoil contents. The most obvious pattern was the decrease in N 

and P contents between the first and second sampling occasion, which corresponded to 

significant differences at both study sites. This drop was most likely due to the elevated N and 

P losses by runoff during the first post-fire rainfall events as reported by several authors (Caon 

et al., 2014; Cerdà and Doerr, 2008; Certini, 2005; Ferreira et al. 2016a, 2016b; Khanna et al., 

1994; Knoepp et al., 2005; Pausas et al., 2008; Shakesby, 2011; Thomas et al., 1999). After this 

initial drop, there were no pronounced changes or clear temporal trends in topsoil contents of 

either TN or Pav, except that the lowest values were observed at the end of the study period. 

These findings could be explained by the development of a protective soil cover, mainly 

constituted by vegetation and litter in the case of the BE-N site but also by stones at the BE-S 

site (Fig. 3), which most likely limited overland flow generation and the associated soil 

(fertility) losses (Shakesby, 2011).   

 

3.2. Nitrogen and phosphorus exports by overland flow 

Annual rainfall during the first two years after the fire were respectively 15% and 33% 

lower  than the long-term average of 1655 mm at the nearby rainfall station (cf. section 2.1). 

This total of 2508 mm of rain generated, on average, 783 mm and 987 mm of overland flow, at 

the BE-S and BE-N sites, respectively (Table 3). Although this difference in total overland flow 

was noticeable (+26%), it was not statistically significant (Table 4), reflecting the elevated 

variability between the four plots at each site (CVs of 36% and 31%, respectively at the BE-S 

and BE-N sites). The between-site differences in cumulative sediment, TN and TP losses were 

more pronounced, as average values were 3.3x, 1.9x and 4.8x higher at the BE-N than BE-S 

site, respectively (Table 3), however no significant differences were found between sites (Table 

4). In the present study, the export of dissolved N and P as NO3-N and PO4-P could only be 
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determined until April 2012 but the total values accounted for less than 6% and 30%, of the 

respective TN and TP exports. Also, Lane et al. (2008) and Smith et al. (2011) found that total N 

and P exports from burnt eucalypt forests in South East Australia were predominantly in 

particulate form, accounting for 68% and 86%, respectively, of the overall exports. These 

findings confirm that disregarding the particulate fraction may lead to an underestimation of 

wildfire impacts on terrestrial and aquatic ecosystems. 

The present finding of a stronger runoff response and greater soil and nutrient losses at the 

north than south slope contrasted with what has been commonly reported for the 

Mediterranean basin, both in unburnt and burnt areas (Cerdà, 1995; Wittenberg and Inbar, 

2009; Wittenberg et al., 2014). The typically stronger response of south compared to north 

slopes in burnt areas has been attributed to a slower post-fire vegetation recovery, reflecting 

more pronounced drought and higher solar radiation (Cerdà, 1995; Gabarrón-Galeote et al., 

2013; Kutiel and Lavee, 1999; Wittenberg and Inbar, 2009; Wittenberg et al., 2014).  As shown 

in Fig. 3, also in this study vegetation recovery was slower at the south than north slope but 

vegetation cover was low throughout the study period (<20%) and unlikely to have played a 

relevant role. Alternatively, the higher stone cover along the south slope could have accounted 

for its lower overland flow amounts and soil (fertility) losses, since stones are known to not 

only affect hydrological processes, e.g. rainfall interception, infiltration, percolation and runoff 

generation (Urbanek and Shakesby, 2009), but also to limit the extent and/or continuity of 

water repellent soils (Urbanek and Shakesby, 2009) and the availability of sediments for 

transport (Shakesby, 2011). 

The runoff-erosion differences observed here were probably linked to pre-fire land 

management and, in particular, the logging operation that had taken place at the BE-N site 

shortly before the fire. The logging machinery is likely to have modified soil properties and 

disturbed vegetation, thereby affecting both pre- and post-fire hydrological and erosion 

processes (Malvar et al., 2017; Vieira et al., 2016). A decrease in above-ground vegetation 
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cover by logging will reduce interception and, thereby, increase effective rainfall volume, 

intensity as well as erosivity (Beasley and Granillo, 1985). In addition, soil compaction by heavy 

machinery will decrease infiltration capacity and, at the same time, increase soil erodibility 

(Carr and Loague, 2012; Huang et al., 1996). Differences in overland flow, sediment and 

nutrient losses between slopes were evident over time (Figs. 6 and 7). 

Time-since-fire had a significant overall effect on sediment and nutrient mobilization by 

runoff, while slope position did not (Table 4) similarly to what has been reported by other 

authors for this region (Hosseini et al., 2017; Malvar et al., 2017). At both study sites, the 

greatest N and P losses occurred during the first 4 months after fire (Fig. 7), i.e. during the 

early stages of the “window-of-disturbance” (Burke et al. 2005; Lane et al. 2008; Shakesby and 

Doerr, 2006). This was likely due to the wash-off of the nutrient-enriched ash layer (Caon et al., 

2014; Khanna et al., 1994; Knoepp et al., 2005; Shakesby, 2011; Thomas et al., 1999), 

combined with a lack of protective soil cover (Bodí et al., 2014; Ferreira et al., 2005; Thomas et 

al., 1999). In the case of the south slope, such a wash-off of the ash layer was also suggested 

by a strong decrease in the ash cover between August 2010 and January 2011 (Fig. 3). The 

peaks in N and P exports during this initial period were typically associated with peaks in 

rainfall (Fig. 7). At both study sites, the exports of TN, TP and PO4-P were significantly related 

not only with rainfall volumes and maximum intensities but also with overland flow amounts 

and sediment losses, with no obvious differences in the strengths of these correlations (Table 

5). Even so, important peaks in rainfall as well as overland flow during the second post-fire 

year did not produce marked exports of especially TP and PO4-P, suggesting a faster exhaustion 

of P than N stocks in the ash and topsoil layers. The export of NO3-N at both study sites was 

also significantly correlated with rainfall and overland flow volumes, but the correlations were 

not very strong (Table 5). NO3-N further stood out for the fact that the highest peak in exports 

occurred during the second year after fire (October 2011), associated to a relatively low rainfall 

(45 mm and 12 mm/h) as well as runoff events (25 mm). A possible explanation could be 
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related with a boost in soil N mineralization and nitrification processes (Lane et al., 2008) due 

to the first rainfall events after the dry summer season, which were possibly enhanced by the 

continued presence of an elevated ash cover. 

A comparison of the present results with the – relatively few – plot-scale studies of post-fire 

N and P exports in Mediterranean-type ecosystems, revealed that the current figures were 

within the expected ranges (Ferreira et al. 2005; Hosseini et al. 2017; Thomas et al. 2000b). 

Using similar micro-plots, Hosseini et al. (2017) found cumulative TN and TP exports over the 

first two years after fire to amount to 0.70 and 0.66 g m-2, respectively, as opposed to the 1.04 

– 1.98 and 0.18 – 0.87 g m-2 of this study. Worth noting is that these results of Hosseini et al. 

(2017) concerned a different forest type, i.e.  Maritime pine plantations. Hosseini et al. (2017) 

also reported markedly higher values (TN: 2.78 g m-2; TP: 1.51 g m-2) but those concerned 

Maritime Pine plantations that had suffered recurrent fires (i.e. 4 time burned as opposed to 

once burned in 34 years) and, linked to that, lacked spontaneous needle cast due to complete 

consumption of the tree crowns. The temporal patterns in nutrient exports reported by 

Hosseini et al. (2017), however, contrasted with the present ones, in that their exports were 

clearly higher during the second year following the wildfire. The authors attributed their 

somewhat anomalous results to the reduced rainfall during their first post-fire year. Likewise, 

Vieira et al. (2016) found that the runoff-erosion response of micro-plots during the first four 

years depended more on rainfall regime than time-since-fire per se.   

The present results on dissolved nutrient exports also agreed well with those of previous 

studies carried out in the study region (foothills of the Caramulo Mountains). In the case of 

NO3-N, the export from an eucalypt forest over the first post-fire year ranged from 0.04 – 0.11 

g m-2 (Thomas et al., 2000b), i.e. similar to the present range of 0.04 – 0.10 g m-2, in spite of the 

larger plot size (16m2) of Thomas et al. (2000b).  The authors still reported comparable values 

of NO3-N exports over the first post-fire year for Maritime pine forest (0.04 – 0.11g m-2) and so 

did Ferreira et al. (2005: 0.05 g m-2). The concomitant PO4-P exports reported by Thomas et al. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

(2000b), however, involved narrower and lower ranges than those observed in this study (0.02 

– 025 g m-2), not only in the case of their eucalypt plots (0.04 – 0.06 g m-2) but especially in the 

case of their pine plots (0.001 – 0.008 g m-2). In the same burnt area as studied here, Ferreira 

et al. (2016a, b) also found greater TN and TP exports for eucalypt than pine plots but this 

contrast between the two forest types was consistent for N and P and, for dissolved and total 

exports.    

Overall Nlosses by overland flow over the 2-year study period (Table 3) represented 10% 

and 20% of the differences in topsoil N stocks between the 1st and 24th month after the fire, at 

the BE-S (10.9 g m-2) and BE-N site (9.8 g m-2), respectively. These values were even lower in 

the case of dissolved/available P, as the PO4-P losses represented only 1% and 13% of the 

topsoil available P stocks at the BE-S (2.5 g m-2) and BE-N site (2.0 g m-2), respectively. These 

results were expectable since PO4-P has been reported to be mainly transported adsorbed to 

eroded sediments rather than in its dissolved form (Thomas et al. 2000b). Although this 

decrease in soil N and P stocks cannot be exclusively attributed to post-fire water erosion, as 

plant and soil microbial recovery, for example, can also contribute to such a decline 

(Goodridge et al. 2018), these results support the idea that moderate severity fires could 

enhance the risk of soil fertility loss in Mediterranean forest areas (Caon et al., 2014).  

 

3.3. Nitrogen and phosphorus concentrations in overland flow and implications for surface 

water quality 

Dissolved and total N (NO3-N and TN) and P (PO4-P and TP) concentrations in overland flow 

are presented in Fig. 8. Peaks in N and P concentrations were considerably higher at the BE-N 

site than at the BE-S site, in line with what was observed for N and P exports (Fig. 7). Unlike 

export peaks, however, peaks in N and P concentrations, were often unrelated to the major 

rainfall-runoff events, reflecting the complexity of biogeochemical processes in burnt areas 
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(Caon et al., 2014; Murphy et al., 2006). Noteworthy, the temporal patterns in nutrient 

concentrations varied markedly between the two elements (Fig. 8). In the case of dissolved as 

well as total P concentrations, the highest peaks coincided with the first significant post-fire 

rainfall events, likely due to the detachment and transport of the P-enriched easily-erodible 

ash layer (Ferreira et al., 2005; Lane et al., 2008; Thomas et al., 1999; Santín et al., 2018). By 

contrast, the major peaks in dissolved and total N concentrations, occurred all over the 

monitoring period, suggesting that the availability of N forms for export may be dependent on 

an interplay of biogeochemical processes such as N mineralization and nitrification (Lane et al., 

2008). 

The comparison of the observed TN and TP levels in post-fire overland flow with the 

Portuguese quality standards for multi-purpose surface waters (SNIRH, 2019: TN ≈ 52 mg L-1, 

TP – 0.4 mg L-1) suggested that P is more likely to cause water quality problems than N. 

Phosphorus concentrations in overland flow exceeded the quality threshold levels at several 

occasions, especially during the first 4 months after fire, reinforcing the need for timely 

application of post-fire erosion mitigation measures. This risk of P contamination has also been 

referred in other studies dealing with other forest types and water quality standards (Blake et 

al., 2009a, b, 2010; Burd et al. 2018; Burke et al., 2005; Santín et al., 2018; Santos et al., 2015; 

Silins et al., 2014; Stein et al., 2012).  

 

4. Conclusions  

The present study provides an estimate of the range of N and P exports from burnt eucalypt 

forests in the Mediterranean region, which is crucial for understanding the potential indirect 

effects of wildfires on soil fertility as well as on the water quality of downstream aquatic 

ecosystems.  
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The obtained results suggested that the role of pre-fire land management can obscure that 

of slope aspect since post-fire nutrient exports were higher at the north-facing slope than at 

the south-facing slope, unlike what was expected from prior field studies in the 

Mediterranean. This discrepancy with prior findings could be explained, at least in part, by the 

logging operation that had taken place on the north-facing slope shortly before the fire, 

therefore suggesting that recently logged eucalypt plantations should be considered a priority 

when planning post-fire erosion mitigation treatments. Nevertheless, more studies are needed 

to further evaluate the effect of pre-fire management operations on post-fire nutrient exports, 

ideally comparing slope parts or slopes with similar characteristics except for the pre-fire 

management operations.  

Post-fire N and P exports revealed to be strongly associated to the first post-fire rainfall 

events, implying that post-fire risks of on-site soil fertility losses and off-site eutrophication of 

water bodies require rapid intervention. At the same time, however, N and P exports also 

peaked after this initial 4-month period, so that wildfire impacts on forest and aquatic 

ecosystems need to be assessed over periods of at least 2 and ideally 4-5 years, also depending 

on fire severity and forest ecosystem resilience.  

Although plot-scale studies as the present one provide important insights into the export of 

nutrients after wildfires, there is still a strong and urgent need for similar studies at the 

catchment scale. Despite being very challenging, because of the difficulties in installing and 

maintaining equipment in the field as well as the expense involved, such studies are 

indispensable to validate model predictions that, directly or indirectly, scale up plot-scale 

results.  
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Figure 1. Location of the Ermida burnt area within the Vouga River basin (north-central 

Portugal) and, of the two study sites: BE-S — burnt eucalypt site facing south-east and BE-N — 

burnt eucalypt site facing north-west.  
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Figure 2. View of the two study sites immediately after the wildfire. BE-S — burnt eucalypt site 

facing south-east and BE-N — burnt eucalypt site facing north-west. The bottom picture shows 

eucalypt tree logs that had felled shortly before the fire.  
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Figure 3. Average (n = 4) bare soil, ash, stone, litter and vegetation cover (%) at the two study 

sites during the first two years after fire. BE-S — burnt eucalypt site facing south-east and BE-N 

— burnt eucalypt site facing north-west. 
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Figure 4. Schematic representation of the experimental set-up (left), dividing the study slopes 

into two strips (z1 — transect for ash and soil sampling; z2 — micro-plot scale runoff plots). 

Example of the micro-plots located at the base of the slopes (right). 
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Figure 5. Average (± standard deviation; n=5) total nitrogen (TN) and available phosphorus (Pav) concentrations (mg g-1) in the ash and topsoil (0-2 cm) layers 

of the two study sites during the first two years after fire. BE-S — burnt eucalypt site facing south-east and BE-N — burnt eucalypt site facing north-west. 

Different letters correspond to significant differences (p<0.05) between sites. Different symbols correspond to significant differences (p<0.05) between 

sampling events. 
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Figure 6. Rainfall (mm), and average (n=4) overland flow volumes (mm) and sediment losses (g 

m-2) at the two study sites during the first two years after fire. BE-S — burnt eucalypt site 

facing south-east and BE-N — burnt eucalypt site facing north-west. 
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Figure 7. Rainfall, and average (n = 4) nitrate (NO3-N), total nitrogen (TN), orthophosphate 

(PO4-P) and total phosphorus (TP) losses (mg m-2) at the two study sites during the first two 

years after fire. BE-S — burnt eucalypt site facing south-east and BE-N — burnt eucalypt site 

facing north-west. 
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Figure 8. Rainfall, and average (n = 4) nitrate (NO3-N), total nitrogen (TN), orthophosphate 

(PO4-P) and total phosphorus (TP) concentrations (mg L-1) at the two study sites during the first 

two years after fire. BE-S — burnt eucalypt site facing south-east and BE-N — burnt eucalypt 

site facing north-west. 
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Table 1. General description of the two study sites. BE-S — burnt eucalypt site facing south-

east and BE-N — burnt eucalypt site facing north-west. 

Slope BE-S BE-N 

General characteristics   

Forest type Eucalyptus globulus Eucalyptus globulus 

Parent material Schist Schist 

Exposure South-east North-west 

Geographical coordinates 40º43'30'' N 40º44'05'' N 

 8º20'57'' W 8º21'15'' W 

Elevation (m.a.s.l.) 150 266 

Slope angle (º) 20.0 ± 2.0  19.0 ± 3.0 

Slope length (m) 60 90 

Fire severity Moderate Moderate 

   

Topsoil properties   

[0-2] cm depth   

     Texture Sandy clay loam Sandy loam 

     Sand fraction (%) 67 71 

     Silt fraction (%) 9 10 

     Clay fraction (%) 24 18 

     Organic matter (%) 28 ± 4 32 ± 12 

[0-5] cm depth   

     Bulk density (g cm-3) 1.15 ± 0.19 0.88 ± 0.13  
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Table 2. Summary of the two-way ANOVAs, with interaction terms, for soil total nitrogen (TN) 

and available phosphorus (Pav) contents at the two study sites during the first two years after 

fire. df – degrees of freedom, MS – mean square variation, F – F statistic, p – probability value. 

Variable Source of variation df MS F p 

TN Time 4 0.381 16.180 <0.001 

 Slope aspect 1 0.013 0.550 0.463 

 Time x slope aspect 4 0.026 1.100 0.373 

Pav Time 4 7.119 10.568 <0.001 

 Slope aspect 1 6.779 10.063 0.003 

 Time x slope aspect 4 1.155 1.714 0.166 

 

 

 

 

 

 

 

 

 

 

Journal Pre-proof



Jo
urnal P

re-proof

Table 3. Total rainfall, and cumulative overland flow, runoff coefficient, and sediment, nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) and total 

phosphorus (TP) losses (average ± standard deviation; n = 4) at the two study sites over the first two years after fire. BE-S — burnt eucalypt site facing south-

east and BE-N — burnt eucalypt site facing north-west.  

Site Rainfall  Overland flow Runoff coefficient  Sediment losses NO3-N exports TN exports PO4-P exports TP exports 

 (mm) (mm) (%) (g m-2) (g m-2)* (g m-2)§ (g m-2)* (g m-2)§ 

BE-S 2508 783 ± 283 31 ± 11 114 ± 62 0.04 ± 0.02 1.04 ± 0.44 0.02 ± 0.01 0.18 ± 0.90 

BE-N  987 ± 312 39 ± 12 376 ± 138 0.10 ± 0.06 1.98 ± 0.30 0.25 ± 0.15 0.87 ± 0.58 

*NO3-N and PO4-P exports were measured between August 2010 and April 2012 

 
§
TN and TP exports were measured between August 2010 and August 2012 
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Table 4. Summary of the repeated measures two-way ANOVA, with interaction terms, for 

overland flow amounts, and sediment, nitrate (NO3-N), total nitrogen (TN), orthophosphate 

(PO4-P) and total phosphorus (TP) losses at the two study sites during the first two years after 

fire. df – degrees of freedom, MS – mean square variation, F – F statistic, p – probability value. 

Variable Source of variation df MS F p 

Overland flow Plot  3 712.216 0.365 0.734 

 Time 63 2398.751 30.873 <0.001 

 Slope Aspect 1 1730.845 0.866 0.450 

 Time x Slope aspect 63 132.746 1.084 0.734 

Sediment Plot  3 16.103 0.066 0.938 

 Time 61 901.042 36.882 <0.001 

 Slope Aspect 1 2731.664 11.032 0.080 

 Time x Slope aspect 61 766.985 27.610 <0.001 

NO3-N Plot  3 17.584 0.226 0.816 

 Time 41 32.480 3.152 <0.001 

 Slope Aspect 1 150.413 1.931 0.299 

 Time x Slope aspect 41 15.377 1.491 0.063 

TN Plot  3 278.614 0.036 0.965 

 Time 48 7250.56 13.577 <0.001 

 Slope Aspect 1 32027.420 3.898 0.187 

 Time x Slope aspect 48 2190.025 2.038 0.002 

PO4-P Plot  3 751.304 0.906 0.526 

 Time 40 307.766 2.432 <0.001 

 Slope Aspect 1 1889.14 2.266 0.271 

 Time x Slope aspect 40 263.241 2.017 0.004 

TP Plot  3 1882.367 0.619 0.629 

 Time 47 1705.491 5.670 <0.001 

 Slope Aspect 1 10370.76 3.119 0.219 

 Time x Slope aspect 47 703.116 1.202 0.223 
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Table 5. Spearman rank correlation coefficients of post-fire nitrate (NO3-N), total nitrogen ( 

TN), orthophosphate (PO4-P) and total phosphorus (PO4-P and TP) losses with rainfall amounts, 

maximum rainfall intensities during 30 min (I30), overland flow volumes and sediment losses. 

BE-S — burnt eucalypt site facing south-east and BE-N — burnt eucalypt site facing north-west. 

Significant values (p ≤ 0.05) are presented in bold. 

    Nutrient losses (mg m−2) 

Site Variable NO3-N TN PO4-P TP 

BE-S Rainfall (mm) 0.47 0.82 0.73 0.85 

 

I30 (mm h−1) 0.34 0.84 0.59 0.85 

 

Overland flow (mm) 0.50 0.90 0.77 0.91 

 

Sediment losses (g m−2) 0.39 0.86 0.67 0.85 

BE-N Rainfall (mm) 0.48 0.86 0.77 0.87 

 

I30 (mm h−1) 0.38 0.87 0.64 0.86 

 

Overland flow (mm) 0.50 0.92 0.77 0.86 

  Sediment losses (g m−2) 0.38 0.81 0.68 0.83 
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Graphical abstract 
 
 
 
Highlights 

 Post-fire N and P exports were evaluated in recently burnt eucalypt hillslopes.  

 Higher N and P exports were found at north than south-facing hillslopes. 

 Land management practices can exacerbate the effect of fires on nutrient exports. 

 Wildfires can be a source of P contamination to surface water bodies. 
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