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Resumo Ao ritmo que a literatura biomédica publicamente disponível cresce, os sis-
temas de pesquisa atuais começam a ter dificuldades em manter um desem-
penho aceitável. Esta situação torna-se mais severa quando uma questão é
submetida em linguagem natural. Movido por esta limitação, esta dissertação
tem como principal objetivo criar um sistema automático de reposta a per-
guntas aplicado ao domínio biomédico que retorne, para uma dada questão,
os documento mais relevantes e os seus respetivos excertos. O sistema foi
dividido em três tarefas, a primeira consiste em encontrar documentos poten-
cialmente relevantes para cada pergunta. No segundo passo, esses docu-
mentos são classificados por um modelo neural, que tem em consideração
o significado e contexto da pergunta. Por fim, os excertos dos documentos
relevantes mais significativos do ponto do vista do modelo neural são extrai-
dos. Adicionalmente, foi proposto um novo modelo neural que é utilizado nas
duas últimas tarefas do sistema. Como forma de validação, os resultados do
sistema foram comparados com os resultados do desafio BioASQ deste ano,
sendo que foi obtido o melhor resultado para o primeiro conjunto de teste e o
terceiro melhor para o último conjunto de teste, enquanto que nos restantes
os resultados ficaram próximos do topo.





Keywords Neural networks, Deep learning, Information Retrieval, Neural Information Re-
trieval, Statistical Models.

Abstract At the rate that publicly available biomedical literature grows, current search-
ing systems start to struggle to maintain an acceptable performance. This
situation becomes more severe when a question is submitted in natural lan-
guage format. Moved by this limitation, this dissertation has the main purpose
of creating an automatic question answering system applied to the biomedical
domain that returns for a given natural language question, the most relevant
documents and their relevant snippets. The system was divided into three
steps, the first consist in finding potentially relevant documents to the query.
In the second step, a more powerful deep neural model will rank these docu-
ments, in a way that the query context and meaning is taken into consideration.
Additionally, it was been proposed a novel deep neural model that is used in
the final two steps of the system. Finally, the snippets that helped the deep
neural model to rank the most relevant documents are also extracted. As a
way of validation, the system results were compared with the results from this
year’s BioASQ challenge, scoring the best result in first batch and third best
on the last batch, while staying near to the top in the remaining batches.
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CHAPTER 1
Introduction

1.1 Motivation

Over the years, we witnessed the continued growth of biomedical literature. According to
the US National Library of Medicine [1], almost 1 million biomedical articles are indexed by
MEDLINE every year. This rate of growth poses a challenge to the biomedical experts, that
need to routinely search a wide amount of scientific documents.

Indexing systems or most commonly known as search engines have emerged to help with
this trend. These systems offer the users the ability to search the indexed documents, in an
effective and efficient way. For example, PUBMED [2] is the most widely used search engine
in the biomedical domain and has indexed over 24 millions of biomedical articles. However,
as shown in the report of the BioASQ challenge [3]1, the experts still notice the following
problems with this type of system:

• Search queries are not based in natural language, instead, it is usually used a combination
of different keywords connected with boolean operators;

• Usually, these systems are unable to retrieve all the relevant documents;
• The experts must study all the retrieved documents until they find the desired informa-

tion.
Currently, there has also been a growing interest in question answering systems since,

what a user often wants is a precise answer to a question, instead of the full document [4].
Furthermore, Question Answering (QA) is a subfield of information retrieval, that specializes
in producing or retrieving a single answer for a natural language question. Following this
trend, biomedical question answering systems have also become more popular, mostly thanks

1More precisely, the results about question 6 "How useful are these search engines or tools? What are the
main problems you face when using them?"

1



to the public competitions like BioASQ challenge [5], that push forward the research of QA
systems applied to a biomedical domain.

In parallel, deep learning techniques are also growing. Especially after the paper by Hinton
et al. [6] in 2006, on how to train a deep neural model, capable of achieving state-of-the-art
precision in handwritten digit recognition. Since then, multiple neural models with excellent
results were published. More recently this trend has reached the IR field, as shown in Figure
1.1 that represents the percentage of papers using neural models, that were accepted in the
Special Interest Group on Information Retrieval (SIGIR)2 conference.

Figure 1.1: The percentage of neural IR papers at the ACM SIGIR conference - shows
a growing trend of the neural approach for IR. The figure was taken from
https://twitter.com/UnderdogGeek/status/1153280750889906176 .

1.2 Objectives

The main goal of this dissertation is to create an information retrieval system, applied to the
biomedical domain, using deep learning techniques. As a way of evaluating and validating the
system, the results were compared with the results from this year’s BioASQ competition.

1.3 Contributions

This dissertation presents the following contributions to the neural information retrieval area:

• Implementation, in TensorFlow, of two state-of-the-art models that at time of writing
are not available online;

• A novel deep neural model for information retrieval, that joins the DeepRank architec-
ture with the self-attention mechanism, it is capable of achieving the same or better
performance with half of the training weights of the DeepRank model;

• Best result in the first batch of the 2019 BioASQ challenge and third best on the last
batch when compared with the submitted models.

2SIGIR website: http://sigir.org/
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1.4 Dissertation outline

This dissertation is divided into seven chapters. The remaining chapters are organized as
follows:

• Chapter 2 gives a quick overview of neural, convolution and recurrent networks and
their inner workings. Other more advanced techniques are also introduced, such as the
Attention mechanism.

• Chapter 3 introduces the information retrieval problem with some traditional methods
and evaluation metrics. Then the core concepts and ideas of the new neural information
retrieval trend are addressed.

• Chapter 4 shows the current neural information retrieval state-of-the-art models and for
each model, an explanation and basic intuition is given about their inner workings.

• Chapter 5 presents the overall system, that is divided into a set of modules following a
pipeline. Then, for each module, a set of requirements were defined, which guide its
implementation.

• Chapter 6 shows the results for each module with a respective analysis. After that, the
performance of the overall system is compared to the 2019 BioASQ challenge results.

• Chapter 7 summarizes the methodology during the system creation and adds some final
conclusions about the results. In the end, some indications for future work and system
evolution are referred.
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CHAPTER 2
Artificial Neural Networks and

Deep learning

This chapter intends to give a solid intuition about the working process of feed forward,
convolutional and recurrent neural networks alongside with some more advanced techniques.

Humans always relied on nature as a source of inspiration. Birds inspired us to fly, the
kingfisher shape improved the bullet train design, the model of wind turbines was inspired on
humpback whales and much more examples can be found1. So, it seems only logical that the
creation of an intelligent machine should be inspired by the structure of the human brain and
this is the inspiration behind the Artificial Neural Network (ANN).

The ANN can be seen as an automatic pattern recognition framework belonging to the
field of machine learning. An ANN is capable of automatically learning patterns (abstraction)
from sparse and complex data, in order to solve a specific problem.

Nowadays, ANN can be applied to a vast list of problems from different areas such as Image
Recognition, Machine Translation, Information Retrieval, Question Answering, Text-to-Speech
and much more.

In a more detailed way, similar to the human brain, the ANN basic unit of computation
is the neuron. These neurons can be organized in layers with different architectures. For
example, Figure 2.1 shows a general architecture of a Multi-Layer Perceptron (MLP), that is
the most basic type of an ANN. It has three layers, where each neuron of the previous layer
is connected to all neurons of the next layer, also called a fully connected layer. Even though
this network has only one hidden layer, it is possible to have more. Usually, if the ANN has a
high number of hidden layers it is called Deep Neural Network (DNN).

1For more examples the following links can be used: https://www.digitaltrends.com/cool-tech/biomimicry-
examples/ and https://www.bloomberg.com/news/photo-essays/2015-02-23/14-smart-inventions-inspired-by-
nature-biomimicry
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Figure 2.1: Visual representation of an MLP architecture. Here is presented an MLP with three
layers, input layer of size n, a hidden layer with m units and an output layer with k units.
Each neuron has a bias value not shown in the figure. θ1 and θ2 matrices correspond to
the weight value associated with connections between the neurons.

Mathematically speaking, the computation performed by each unit (neuron) was introduced
by McCulloch and Pitts [7] in 1943. From their definition and continuing with the example of
Figure 2.1, the computation of the unit hj can be presented by Equation 2.1.

hj = γ

(
m∑
i=1

θ1(j,i) × xi + b1j

)
(2.1)

This represents a linear combination between the weights (θ1(j,1,...,m)) of each connection
and the output of the previous neurons (x1,...,n) plus a weight called bias (b1(j)) associated
with each neuron. After this, a nonlinear function γ is applied, also known as activation
function.

This formulation clearly reflects the inspiration from the human brain and the working
process of the neurons: a human neuron receives electrical impulses (signals) from the
connected neurons (linear combination) and when the number of incoming signals is greater
than a threshold an output signal is fired (activation function).

However, using Equation 2.1 for computing the result of multiple neural units in a
layer is inefficient. A better way would be to compute the result of the layer as a vector
~h = (h1, h2, ..., hm), where each dimension corresponds to the output of a neural unit. This
can be achieved with the help of linear algebra by vectorizing Equation 2.1, resulting in
Equation 2.2.

~h
m×1

= γ

 θ1
m×n
· ~x
n×1︸ ︷︷ ︸

dot product

+ ~b1
m×1

 (2.2)

As shown previously, a neural unit or single layer of units is represented by a very simple
computation and on its own can only solve linear problems. But when organized in a network
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with multiple layers like in Figure 2.1, it is capable of approximating advanced mathematical
functions, in order to solve extremely complex nonlinear problems. So, in the end, ANN can
be mathematically formulated as a function F parameterized by a set of weight’s θ, as shown
in Equation 2.3.

F (xn; θ)→ Rd (2.3)

Here, xn corresponds to a sample from the data, also designated input vector or feature
vector of size n, which must be a numerical vector. The output is a real number vector of size
d.

2.1 Learning processes

An ANN is capable of learning to solve a problem directly from the data with or without
supervision. In the current literature, there are four types of supervision.

• Supervised learning - Supervision is given through a label, i.e, each sample from the
dataset is associated with a correct prediction (label).

• Unsupervised learning - There is no supervision, i.e, the dataset is only composed
of the individual samples.

• Semi-supervised learning - It is a combination of supervised and unsupervised
learning, i.e, only a small set of samples are labeled.

• Reinforcement learning - Here the dataset is replaced by an interactive environment,
that will be used to extract a supervised goal.

More formally, in supervised learning, all the samples xi from a dataset are associated
with a correct prediction yi. So the objective is to find the optimal values for the weights θ,
so that the ANN output, ỹi, is similar to the correct prediction yi. From this description a
mathematical optimization approach can be achieved by minimizing the error of the ANN
predictions, i.e, the ANN training objective is to minimize the error (loss) between the yi and
ỹi as shown in Equation 2.4.

J(θ) = loss(yi, ỹi)⇔ J(θ) = loss(yi, F (xi; θ)) (2.4)

Function J(θ) in Equation 2.4 represents the numeric value of the error with respect to
function F (xm; θ) (ANN predictions). The selection of the loss function depends on the type
of problem that the network is trying to solve.

As mentioned before, the training of the ANN is reduced to an optimization problem and
the most common method to solve this problem is based on algorithms of the gradient descent
family. These follow an iterative approach, wherein each iteration the algorithm computes the
gradients of J(θ), obtained from the partial derivatives of J(θ) with respect to the weights θ.
Finally, the computed gradients are used to update the weights θ using a specific optimizer2

such as Stochastic Gradient Descent (SGD), AdaGrad [9], AdaDelta [10] or Adaptive Moment
2Overview of these methods can be found in reference [8], pages 117-120 and 293-299
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Estimation (ADAM) [11]. For neural networks, the computation of the gradients for each
layer is achieved by the backpropagation algorithm [12].

θ = Optimizer(θ,∇J(θ)) (2.5)

Equation 2.5, describes the weight update process, depending on the chosen optimizer.

2.2 Supervised Tasks

Without loss of generality, when ANN is used in unsupervised or semi-supervised tasks, usually
they are converted to a supervised task. This way the ANN can be optimized by the gradient
descent algorithm. So in a supervised environment, the most common tasks that the ANN
tries to solve are the classification and regression tasks.

2.2.1 Classification Task

Given a set of discrete classes c ∈ C and |C| > 1, find a function capable of mapping the
feature vectors xi ∈ Dataset to their correct class. The problem of image classification is an
example of a classification task, where the features vectors xi are the image pixels and the set
of classes C are images classes (label). This function will learn the conditional probability
p(c|xi) for all c ∈ C given an input feature vector xi.

In order to use an ANN to approximate this function, the output layer of ANN commonly
has one neural unit for each class and the output of each unit is converted into probabilities
using softmax operation. So the ANN is capable of outputting a probabilistic distribution of
the input xi over all the discrete classes c.

P (c = k|xi) = e
~Zk,xi∑|C|

j=1 e
~Zj,xi

(2.6)

The softmax operation, Equation 2.6, creates a probabilistic distribution over the output
layer of the ANN. The vector ~Zk,xi

corresponds to network output (score) for the class k given
xi as input. Since the softmax uses a summation over all the classes scores, as shown in the
denominator, this makes it a computationally expensive operation when the number of class
(|C|) is high. In terms of optimization, usually, the objective is to minimize the cross-entropy
loss, Equation 2.7.

loss(yi, ỹi) = − 1
|Dataset|

|Dataset|∑
i=1

 ~yi︸︷︷︸
C×1

⊗ log(~̃yi)︸ ︷︷ ︸
C×1

 ,
where ỹi = P (c|xi), ∀c ∈ C

(2.7)

Here, ~yi correspond to the vector of the true probabilistic distribution over all the classes
for the i-th sample in the Dataset. On the other hand, ỹi represents the predicted probabilistic
distribution by the neural network given the input feature of the i-th sample in the Dataset.
The ⊗ symbol represents the element-wise multiplication between the two vectors. The
average of the error for all the samples corresponds to the final value of the loss function.
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2.2.2 Regression Task

Given a continuous real value yi, find a function capable of mapping the feature vectors
xi ∈ Dataset to a continuous variable ỹi, in such a way that yi is close to ỹi for the various
samples.

In order to use an ANN to approximate this function, the output layer of ANN usually
has only one neural unit without an activation function. So the output of this neural unit, ỹi,
is directly used by the loss function. Equation 2.8 shows the commonly used Mean Squared
Error (MSE) function.

loss(yi, ỹi) = − 1
|Dataset|

|Dataset|∑
i=1

(
~yi − ~̃yi

)2 (2.8)

2.3 Regularization

An ANN during the training can start to overfit the training data, which means that the
network is approximating a function that is trying to fit every data point. So the network
loses the capability of generalization to new data, i.e, when new data is fed to the network, it
tends to perform poorly. The problem of overfitting usually occurs when the training data
has few samples or when the neural network has a great number of trainable weights.

A solution to this issue is the applications of regularization techniques. This subsection
will present l2-regularization and Dropout [13].

2.3.1 L2 regularization

The l2-regularization consist of applying l2-norm3 as penalty term to the loss function, so
rewriting Equation 2.4 in order to add the l2-norm, results in Equation 2.9.

J(θ) = loss(yi, F (xi; θ)) + λ

|θ|∑
w∈θ

w2 (2.9)

This regularization forces the network to chose small values for the weights (θ)4 during the
training process since big values will result in a higher loss. In other words, the neural network
freedom is reduced by this regularization. Another important aspect is the hyper-parameter
λ, which weighs the importance that is given to the regularization.

2.3.2 Dropout

Dropout was initially proposed by Hinton et al. [14] in 2012 and further detailed by Srivastava
et al. [13]. For every training iteration, this technique will choose with a probability p, what
are the neural units that are inactive, with the exception of the output layer. This idea is
represented in Figure 2.2.

This simple idea presents a powerful solution to the overfitting problem. One possible
interpretation of the potential of this technique is that in every training iteration a unique

3The l2-norm is equal to the squared Euclidean distance.
4Only the weight of the connection should be included in this regularization
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Figure 2.2: Visual representation, from the reference [8], of the dropout regularization, where the
inactive units are represented by the red cross. In this Figure, the bias weight is
represented by the connections of a neural unit that outputs 1, shown in yellow.

neural network is used. Considering that every neuron can be active or inactive, in fact, it is
possible to have 2N possible combinations of neural networks, where N is the total number of
neural units that can be dropped.

2.4 Convolutional Neural Network

The Convolution Neural Network (CNN) is a special type of ANN, which is build using
convolutional layers, hence its name. Unlike the fully connected layer shown initially, in a
convolution layer the neurons of the current layer are only connected to a limited number of
neurons in the previous layer, which is defined by the neural unit receptive field, as shown in
Figure 2.3 image a). Each layer has a set of filters, also known as kernels, with the same size
of neural units receptive field and a bias term per filter. The filters and bias are the trainable
weights, so in each layer, all the neural units share the same weights, e.g, in image b) of
Figure 2.3 is visible that all the neurons apply the same 2× 2 filter. Thanks to this property
the number of trainable weights is much smaller than a fully connected neural network with
the same number of neural units. Finally, the output of a convolution layer is called feature
map and the output of each neural unit is the same as presented before in Equation 2.1, with
the difference that now the vector of weight is smaller (size of the filter) and each neuron
performs this computation for every filter.

In a CNN architecture as shown in image c) of Figure 2.3, after the convolutional layer
it is usually to see a pooling layer. This layer is simpler than a convolutional and has the
purpose of reducing the size of the produced feature maps. In a pooling layer, each neural
unit applies to its receptive field a simple aggregation operation, e.g, maximum, average or
minimum. The most common aggregation operation is the maximum and when it is used the
layer is called max-pooling layer. Another important aspect is that in this layer, the neural
units do not have any filters or bias, so this layer does not have any trainable weights.

This type of neural network is extremely popular with tasks that involve image data, e.g.,
AlexNet [17], GoogleLeNet [18] and ResNet [19] are convolution neural networks that, in the
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Figure 2.3: Workflow of a CNN. In a) Is shown the connection between the neural units. In b) is
exemplified convolutional operation with 2 × 2 kernel, image was taken from [15]. At
last in c) is shown the generic architecture of a CNN for a classification task, image was
taken from [16]

years 2012, 2014 and 2015 respectively, achieved state-of-the-art results in the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) challenge.

The intuition behind the CNN is that the filters will learn to recognize small patterns
over the input. For example, when using an image as input, the filters of the first convolution
layer can learn how to recognize lines. From there, the filters of the second layer can learn
how to recognize shapes and following this logic the filters of the following layers will learn
more abstract representations. This idea is clearly visible in Figure 2.4.

Figure 2.4: Visualization of filters from different layers of the VGG-16 model [20], the filters activa-
tion’s were removed from [21].

After the success of the CNN in image related tasks, some works began to appear for text
data, like in [22] and [23]. Generally, the application of a CNN to text data is straightforward,
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as shown in Figure 2.5, the filters are applied directly to the words of a sentence. More
precisely, the convolution operates over a numerical vector representation of the words, since
the neural unit only works with numerical data, but this will be discussed more ahead. Usually,
this type of convolution uses a kernel of n by e, where e is the dimension of the word numerical
vector and is usually designated of 1D-convolution since the kernel only moves along of the
first dimension. Intuitively, the filters will identify n-grams and the pooling layer will extract
the most important ones.

Figure 2.5: Visual representation of the operations in CNN applied to a sentence. Image from [23].

2.5 Recurrent Neural Network

The Recurrent Neural Network (RNN) is another type of neural network, that is specialized
in handling sequential data of variable length. In this type of data, the samples ( ~x(t)) are
sequentially dependent of the previous samples ( ~x(t−1), ~x(t−2), ..., ~x(0)), e.g, the next word of a
sentence is dependent on the previous words or the next position of a moving car is dependent
on its past positions. To handle this type of data an RNN uses recurrent units in its layers,
instead of the normal neural unit.

In a more architectural view, the recurrent unit has one new connection that is pointing
to itself, since it also uses the previously calculated output as input, as shown in the left side
of Figure 2.6. This gives it the ability to remember and use the data from the past during the
output calculation. In the right side of Figure 2.6, it is shown the unrolled view of the same
neural unit through time.

Similar to Equation 2.2, a vectorized formulation of the recurrent layer computation is
presented in Equation 2.10. The computation of the output layer for the time step t, ~y(t), is
given by a recursive function, with the terminal case when the time step t is equal to 0. The
N is the number of neural units within the layer and M the number of input features. There
are two sets of weights, θx and θy, the first one is associated with the input data ~x(t) and the
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Figure 2.6: Visual representation of a recurrent unit on the left and the same unit unrolled through
time on the right.

second one with the output of the previous time step ~y(t−1).

~y(t)
N×1

=


~0 if t = 0,

γ

(
θx

N×M
· ~x(t)
M×1

+ θy
N×N

· ~y(t−1)
N×1

+ ~b
N×1

)
otherwise

(2.10)

The memory of this unit is essentially represented by the output of the previous step
~y(t−1), sometimes also called hidden state ~h(t−1), combined with the weights θy. The intuition

here is that the weights during training will learn what the unit should remember from its
last output, in order to minimize the neural network loss function.

For the training process, the gradients are calculated using the Backpropagation Through-
out Time (BPTT) algorithm, which consists of applying the normal backpropagation algorithm
to an unrolled throughout time RNN.

2.5.1 LSTM and GRU

A common problem with neural network training is the vanish or explosion of the gradients
during the backpropagation algorithm, which is even more severe for the RNN. Unfortunately,
the gradients tend to get smaller during the gradient propagation through the layers, which
defines the vanishing problem. Or on the other hand, the gradients can also get bigger during
the propagation, which characterizes the explosion problem. In 2010, Glorot and Bengio [24]
published a paper to get a better understanding of these problems. Also in 2013, Pascanu
et al. [25] presented the Gradient Clipping technique, that handles the explosion problem.
This technique consists of clipping the gradients between a well defined interval and this way
preventing them from exploding.

Besides the vanishing and explosion problem, the normal RNN unit also has difficult to
remember long past events. So, more advanced recurrent units with the ability to retain long
dependencies were proposed. The most popular unit is the Long Short-Term Memory (LSTM)
and it was introduced in 1997 by Hochreiter and Schmidhuber [26]. Over the years, this unit
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received several improvements, e.g., Zaremba et al. [27] show how to effectively apply dropout
to the LSTM units to reduce overfitting.

Figure 2.7: Visual representation of an LSTM unit.

The LSTM unit, as shown in Figure 2.7, uses a total of three gates, that enable it to chose
what it should remember or forget from its internal memory, which also alleviates the gradient
vanishes problem. In terms of memory, this unit has two vectors, the ~c(t) long-term state and
the ~h(t) short-term state, that also corresponds to the layer output ~y(t) = ~h(t).

The three gates that control the long-term state ( ~c(t)) are implemented by a fully connected
layer over the input and the previous state.

• Input Gate ( ~i(t)) - Controls which part of the candidate memory ( ~̃c(t)) should be added
to the long-term state ( ~c(t)).

• Forget Gate ( ~f(t)) - Controls which part of the long-term state ( ~c(t)) should be erased.
• Output Gate ( ~o(t)) - Controls which part of the long-term state ( ~c(t)) should be output

~y(t).

So, using vectorized notation, the computation of an LSTM layer ~y(t) is given by Equation
2.11.

~y(t)
N×1

= ~h(t)
N×1

= ~o(t)
N×1
⊗ tanh

(
~c(t)

N×1

)
(2.11)

Where ⊗ represent the element-wise product between the output gate and the long-term
state activated by the hyperbolic tangent function (tanh).

The long-term state ( ~c(t)) is updated following Equation 2.12,

~c(t)
N×1

= ~f(t)
N×1
⊗ ~c(t−1)

N×1
+ ~i(t)
N×1
⊗ c̃(t)
N×1

(2.12)

where c̃(t), corresponds to a candidate state memory, that is obtained from the inputs and
the previous state as shown below,

c̃(t)
N×1

= tanh

(
θxc
N×M

· ~x(t)
M×1

+ θhc
N×N

· ~h(t−1)
N×1

+ ~bc
N×1

)
(2.13)
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Finally, the three gates are computed by

i(t)
N×1

= σ

(
θxi
N×M

· ~x(t)
M×1

+ θhi
N×N

· ~h(t−1)
N×1

+ ~bi
N×1

)

f(t)
N×1

= σ

(
θxf
N×M

· ~x(t)
M×1

+ θhf
N×N

· ~h(t−1)
N×1

+ ~bf
N×1

)

o(t)
N×1

= σ

(
θxo
N×M

· ~x(t)
M×1

+ θho
N×N

· ~h(t−1)
N×1

+ ~bo
N×1

) (2.14)

Every gate is described by computation similar to Equation 2.10, where the activation
function is the sigmoid function (σ). So each gate will be represented by a vector, where
each dimension will belong to the interval ]0, 1[, where values close to zero will be ignored
(closed gate) and values close to one will continue (opened gate). In the end, as described
in Equations 2.11-2.14, the computation of ~y(t) involves a series of sequential operations,
including the update of the internal long-term state ~c(t). This sequence of computations brings
a clear downside in terms of performance when compared to a normal recurrent unit.

A light alternative to the LSTM is the Gated Recurrent Units (GRU). The GRU was
proposed by Cho et al. in [28] and as shown by Greff et al. in [29] is a simplification of the
LSTM, which it seems to perform just as well. More precisely the GRU is equivalent to set
the forget gate of the LSTM to ~f(t) = 1− ~i(t).

2.6 Attention mechanism

Although RNN is capable of successfully learning the sequential dependencies in the data, its
performance is always bound to the size of the memory representation. One simple example is
the well known Sequence to Sequence (Seq2Seq) model [30]. This model aims to transform a
sequential input into a sequential output and is widely adopted in translation tasks, e.g, given
a sentence in English, the model will output a sentence in Portuguese with the same meaning.
To accomplish this objective the model uses RNN-LSTM5 as an encoder, to condense the
meaning of the input sentence into a fixed size vector (hidden state of RNN). Then another
RNN-LSTM, as a decoder, uses this inner representation in order to generate a new sentence
(output sequence) with the same meaning. Figure 2.8 presents a simplistic visualization of the
previously described model.

With respect to the previous model Bahdanau et al. [31] conjecture that the encoded
vector is a bottleneck of these types of models since the encoder must be able to compress all
the important information in the input sentence into a fixed size vector. This bottleneck is
more severe for long sentences, especially when the sentences during training are shorter than
sentences during test/production.

To cope with this issue Bahdanau et al. [31] proposed an attention layer, where the decoder
will be able to see a weighted representation of all the input. That is, in each timestep, t, the
decoder will get as input the decoder previous state, ~h(t−1)d, and a context vector, ~c(t). In
Figure 2.9 is presented the introduction of the attention mechanism to the Seq2Seq model.

5This notation means that the recurrent neural network is build using lstm layers
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Figure 2.8: Simplistic example of the seq2seq model. Where the sentence "Bob is smart" is fed to
the encoder and then the sentence "Bob é inteligente" is generated.

Formally speaking, given the encoder hidden states, ~h(t)e, for each timestep, t, the context
vector, ~c(t), is computed as the weighted sum over these hidden states as shown in Equation
2.15,

~c(t)
N×1

=
t∑

j=1
aij × ~h(j)e

N×1
(2.15)

where the attention weights aij are obtained by the alignment model (align) and normalized
with softmax operation, Equation 2.16.

aij = softmax
(
align

(
~h(i−1)d,

~h(j)e

))
aij = ealign( ~h(i−1)d

, ~h(j)e
)∑t

k=1 e
align( ~h(i−1)d

, ~h(k)e
)

(2.16)

Here the alignment model uses the encoded inputs, ~h(j)e, and the previous state of the
decoder, to calculate a matching score that indicates how well the inputs around position j
will be related with the output at position i. So intuitively the context vector ct inherits the
responsibility of storing the important information in each timestep.

In terms of the alignment model, Bahdanau et al. used a feed forward neural network, but
during the years other alignment models were proposed. Table 2.1 shows other implementations
for the alignment model (align).
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Figure 2.9: Simplistic example of the seq2seq with the attention mechanism.

Table 2.1: Three alternatives to compute the attention weights. Here H is the dimension of the
hidden state and A is a predefined dimension of the attention vector.

.

Alignment model Formulation Authors

Feed Forward Net vT
1×A
· tanh

 W
A×2H

· { ~h(i−1)d
H×1

; ~h(j)e
H×1
}︸ ︷︷ ︸

concatenation

 Bahdanau et al. [31]

Dot-product ~h(i−1)d
1×H

T
· ~h(j)e
H×1

Luong et al. [32]6

Scaled dot-product
~h(i−1)d

1×H

T · ~h(j)e
H×1√

n
Vaswani et al. [33]

2.6.1 Self-Attention

Self-Attention presents a way of applying the attention mechanism only to the input sequence,
i.e, the attention model only uses the input sequence. The intuition is to create a better
representation of the input sequence by giving more weight to individual inputs that are more
important to the respective task.

Lin et al. [34] shown a recent implementation of the self-attention mechanism with the
objective of generating a vector representation for a sentence. Based on the visualization
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presented in Figure 2.10, this self-attention mechanism is similar to the previously attention
mechanism, where the context vector ct becomes a vector representation of the sentence and
the attention weights, aij , are computed based on the Equation 2.16. The different alignment
models presented in Table 2.1 are also theoretically applicable to this type of attention where
~h(i−1)d is discarded or replaced by a trainable vector.

Figure 2.10: Simplistic example of the self-attention mechanism. Here the self-attention is computed
over an LSTM layer similar to the seq2seq-attention.
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CHAPTER 3
Information Retrieval

This chapter aims to give some background about the information retrieval field and introduce
the core idea in neural information retrieval.

As mentioned in the literature [35], the meaning of the term information retrieval can be
very broad. However as an academic field of study information retrieval can be defined as:

Information Retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers).

Given the wide universe of different tasks in IR, Onal et al. [36] chose to divide them into
five categories, as shown in Table 3.1. In bold are the tasks that will be the focus of this
dissertation, Ad-hoc retrieval and Question Answering.

Table 3.1: Five IR categories of tasks according to Onal et al. [36]

.

Tasks More granular example

Ad-hoc retrieval

Text retrieval
Document ranking
Query expansion
Query re-weighting
Product search

Question Answering Answer sentence retrieval
Conversational agents

Query understanding
Query suggestion
Query auto completion
Query classification

Similar item retrieval
Related document search
Detecting text re-use
Content-based recommendation

Sponsored search
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3.1 Ad-hoc Retrieval

Continuing with the literature [37], the following quotation defines the ad-hoc retrieval task
and other important terminology.

Ad-hoc retrieval is the most standard IR task. In it, a system aims to pro-
vide documents from within the collection that are relevant to an arbitrary user
information need.

Information need is the topic about which the user desires to know more.

Query is what the user conveys to the computer in an attempt to communicate
the information need.

Relevant document A document is relevant if it is one that the user perceives
as containing information of value with respect to their personal information need.

Furthermore, for an ad-hoc retrieval task a system should be able to present, usually in a
ranking order, the most relevant documents that were retrieved from a large collection, given
a user query. This query expresses the information that the user is searching for.

Since the implementation of each system is dependent on the retrieval task, Figure 3.1
shows the architectural majors steps that a retrieval system usually performs. For this
dissertation only the study of the Retrieval mechanism, green box in Figure 3.1, will be
considered, giving less emphasis to the other steps. However, more detailed information about
the other steps can be found in reference [38] Chapters 2 (text preprocessing), 4 and 5 (index).

Figure 3.1: Generic representation of the major’s components involved in a retrieval system.

The most simpler Retrieval mechanism is the boolean model, that is based on set theory
and boolean logic. In this model, each word is considered as a term, each document as a set
of terms and the query is represented as a boolean expression of the terms. The documents
that satisfy the query expression are retrieved to the user.

A major drawback of this model is that it does not use any knowledge about the words
and considers that every word has the same importance, thus neglecting rare words.
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3.1.1 Vector Space Model and Cosine Similarity

An alternative to the boolean model is to assign a weight to each term, in a way that the most
important/relevant terms have a bigger weight. In this perspective, each query or document
is represented as a vector, where each dimension corresponds to a term and its respective
weight. This representation of documents and queries as vectors in the same dimensional
space is known as Vector Space Model.

In this model, the retrieval is achieved by computing the similarity between the query
vector and all the document vectors and the documents with the higher scores are retrieved.
The cosine similarity, Equation 3.1, is the most used measurement of similarity between
vectors. This measures the cosine of the angle between two non-zero vectors, a value in the
interval [−1, 1].

cos(~q, ~d) = ~q · ~d
‖~q‖

∥∥∥~d∥∥∥ (3.1)

Here, the numerator is the inner product between the two vectors, also called dot product.
The denominator corresponds to the length-normalization of the vectors into a unit vector,
that is achieved by their Euclidean norms (‖.‖). Since the query vector must be compared
with all the document vectors, Equation 3.1 can be optimized to directly compute all the
scores using linear algebra, resulting in Equation 3.2.

cos(~q, C) =

D×1︷ ︸︸ ︷
C

D×V
· ~q
V×1

‖C‖︸︷︷︸
D×1

‖~q‖︸︷︷︸
1×1︸ ︷︷ ︸

D×1

(3.2)

Here, matrix C correspond to all the documents in the collection, where each row correspond
to a document vector, so D is the total number of documents and V is the dimension of the
vector, i.e, the total number of unique terms in the collection. The Euclidean norm of C is
computed along the row dimension. Finally, C and ‖C‖ can be already computed and stored
in cache.

Using Figure 3.2 as an illustrative example, the query q is represented in a two-dimensional
space as a vector ~v(q). Given three documents d1, d2, d3 the most relevant to that query,
according to the cosine similarity, is the document two (d2), since the angle between q and d2

is the closest to zero, which mean that the cosine of this angle is the closest to one, when
comparing with d1 and d3.
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Figure 3.2: Two-dimensional representation (only two terms are considered "gossip" and "jealous") of
cosine measurement between the query vector and the document vector. The image was
taken from [39].

3.1.2 TF-IDF Weighting scheme

Term Frequency - Inverse Document Frequency (TF-IDF) is an example of a weighting
mechanism, that weights each unique term present on a query or document given its importance.
So each query or document is mapped to a vector with the size of the vocabulary and the
value of each dimension is given by the TF-IDF weight. This formulation is presented in
Equation 3.3.

tfidft,d = tft,d × idft (3.3)

Term Frequency (TF) (tft,d) captures the importance of each term with respect to that
document and can be directly represented by the number of occurrences of term t in the
document (d). On the other hand, Inverse Document Frequency (IDF) idft captures the
importance of rare terms according to the collection, calculated as shown in Equation 3.4.

idft = log

(
D

dft

)
(3.4)

Here, D correspond to the total number of documents and dft stands for document frequency,
usually represented by the number of documents that contain the term (t).

3.1.3 BM25 Weighting scheme

The Best Match 25 (BM25) belongs to the family of weighting schemes implemented by the
Okapi retrieval system, presented at the Text REtrieval Conference (TREC) by Robertson et
al. [40]. In their article, the authors showed the different weighting schemes BM1, BM11/BM15
and BM25, that were used, respectively, in the first, second and third edition of the TREC
competition.
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As shown in [41], BM25 to take into consideration the term frequency and the length of
the document in a more sensitive way.

score(q, d) =
∑

tq ∈ Q

weight(q,d)︷ ︸︸ ︷
idft︸︷︷︸

first part

× (k1 + 1)tft,d
k1(1− b+ b(|D|/avg|D|)) + tft,d︸ ︷︷ ︸

second part

× (k3 + 1)tft,q
k3 + tft,q︸ ︷︷ ︸
third part

(3.5)

In Equation 3.5 is shown a ranking function that uses the BM25 weighting scheme. In
the first part, it takes into consideration the IDF of a term. In the second part weights the
term frequency in a document, tft,d, with the document length |D| and the average document
length of the collection avg|D|. At last, the third part weights the length of the query by
taking into consideration the frequency of a term in a query, this part tries to alleviate the
penalization for long queries. The k1, k3 and b are hyperparameters that can be fine tuned to
the data collection.

3.2 Neural Information retrieval

In general, traditional approaches to IR tasks rely on high engineering techniques to perform
the retrieval task. An example is the BM25 weight mechanism, that uses a well defined
equation to calculate the term-document weight based on word statistics, which works well
for tasks that require an exact match between query and document terms. However, it will
fail to retrieve semantically similar documents, since this and other types of more traditional
techniques do not capture any knowledge or meaning about the words.

In recent years, following the trends of other areas like computer vision, neural information
retrieval has gained enormous popularity according to Mitra and Craswell [42]. In a neural
approach, the objective is to use a neural model to directly learn a specific task from the data
(raw text). The idea is that the neural model will learn what features are the most important
in order to perform the retrieval task.

The two most common tasks that use a neural model in IR are: query-document matching
and query-document ranking, also known as learning to match and Learning to Rank (LTR),
respectively.

3.2.1 Query-Document matching

According to Li and Xu [43], this problem consists in learning a matching function f(x, y) that
computes a similarity between two objects x and y from two different spaces X and Y , given
the training data T composed of triples (x, y, r), where r is the relevance between x and y, i.e,
its similarity. So the query-document matching problem, in terms of neural IR, tries to find
a function f(d, q), using neural networks, that computes the similarity between a document
and a query, where the objective is to assign high similarity scores to query-document pairs
that share some meaningful information.
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This learning to match optimization problem is the same presented in Section 2.1, where
the loss function most commonly used in the literature is the negative log likelihood of
document being similar to a given query, as shown in Equation 3.6.

loss = −log

 ∏
(d+,q,r=1)∈T

P (d+|q)

 (3.6)

An important note regarding the previous equation is that the calculation of P (d+|q)
requires computation of a probabilistic distribution over all the documents in a collection,
as also shown in Equation 2.6, which is expensive, so an alternative is to select only a small
subset of documents to approximate the probabilistic distribution.

According to Onal et al., there are two types of neural architectures commonly used
to implement the relevance matching function f(d, q), namely Representation Based and
Interaction Based, as shown in Figure 3.3. In a Representation Based architecture1, left
side in Figure 3.3, the query and the document are processed by a separate neural network,
creating a separate representation for the query and the document, the matching is achieved
by computing similarity over the two representations, e.g, using cosine similarity. In contrast,
the Interaction Based architecture, uses a neural network to first create a joint representation
of the query-document pair and then compute the similarity score over that representation.

Figure 3.3: Two neural architectures used to implement the function f(D,Q). In a) Representation
Based architecture, b) Interaction Based architecture. The image was taken from [36].

3.2.2 Query-Document ranking

The Learning to Rank (LTR) problem consists in learning a function f , also known as ranking
function, capable of ordering a set of objects. In terms of IR the LTR objective, according to
Liu [44], is to produce a ranked list of documents given the relevance between these documents
and the query, in a way that the most relevant documents should be ranked higher. A neural
model can be the implementation of the function f , in this case, Liu [44] also categorizes three
ways of training the neural model, i.e, defines three distinct loss functions as the training
objective, Pointwise, Pairwise and Listwise.

• Pointwise approach assigns real number values as relevance score between each query-
document pair and the objective is to predict the correct score for each query-document

1Some authors also use the term Siamese network to identify this neural architecture.
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pair, (q, d) ∼ r. The most used loss functions are the cross-entropy Equation 2.7 and
MSE Equation 2.8.

• Pairwise approach assigns a relevance preference between two documents to a query
and the objective is to give a higher score to the most relevant document in the pair.
More formally, given the triple (q, d+, d−), if rd+ > rd− ⇒ F (q, d+) > F (q, d−), where
F (q, d) is the score computed by the neural model and rd is the real relevance. In the
literature the common loss function is the hinge [45] function, shown in Equation 3.7.

hinge = max(0, 1− F (q, d+) + F (q, d−)) (3.7)

where d+ denotes a document that should be ranked higher than d−. Another
popular loss function is the RankNet Loss [46] function Equation 3.8, which gives the
probability that document F (q, d+) be ranked higher than document F (q, d−).

RankNet = 1
1 + e(−σ(F (q,d+)−F (q,d−)) (3.8)

where σ denotes the sigmoid function.
• Listwise approach tries to directly optimize a ranking metric, e.g, Normalized Dis-

counted Cumulative Gain (nDCG). Generally, this is more challenging since these
metrics usually are not differentiable with respect to the model parameters. An example
of a loss function is the LambdaRank [47] function, Equation 3.9, which uses the ∆nDCG
to directly weight the gradients from the RankNet loss.

∇LambdaRank = ∇RankNet× |∆nDCG| (3.9)

So LambdaRank combines a pairwise loss (RankNet) with the nDCG metric, in such
way that the RankNet gradients should linearly scale given the size of the change of
the nDCG metric, i.e, by swapping the rank positions of two ranked documents, while
leaving the others rank positions unchanged. A possible intuition is to visualize the
RankNet gradients as directional vectors and the difference of nDCG as a weight that will
change the vector magnitude and this way enforcing a signal from a non-differentiable
metric. A more detailed analysis can be found in the following article [48]. Note that
the LambdaRank loss does not have a single error value, instead it directly outputs the
list of gradients that will be used to update the model.

3.2.3 Word Representation

As previously mentioned, a neural model is capable of using "raw" text as input in order
to learn some specific task. However a neural model is a mathematical function that needs
numerical data as the input, so this subsection is concerned with the conversion of raw text
data into numerical data.

In IR the smallest unit of representation is considered to be the word (term)2. So a
common solution is to encode the word into a numerical vector, which corresponds to the
word representation. Mitra and Craswell [42] distinguish two types of word representation.

2Some times are the individual characters depending on the task.
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• Local representation, also known as one-hot encoding, maps each word to a binary
vector ~v ∈ 0, 1|V |, where each dimension corresponds to a word of the vocabulary V .
This type of representation creates sparse vectors.

• Distributed representation, also known as embedding, maps each word to a fixed
size real valued continuous vector ~v ∈ R|K|, where the number of dimensions K usually
ranges from 50 to 300 and each dimension encodes some property about that word. This
type of representation creates dense vectors.

The distributed representation imposes a difficult challenge of decomposing a word in a
set of fixed dimensions. Moved by the idea of distributed hypothesis [49], that states that
words that occur in the same context tend to be similar, some algorithms try to explore this
property and learn word representation directly from the data, like Word2Vec [50].

A visual representation of the local and distributed representation is presented in Figure
3.4. From the figure, it is clear how the distributed representation can encode the similarity
between the words. For example, the word "banana" is more similar to the word "mango"
when comparing with the word "dog", due to the fact that "banana" and "mango" share similar
value along the "fruit" dimension3. On the other hand, it is not possible to extract this kind
of information with the local representation, since all the vectors are orthogonal.

Figure 3.4: Visual illustration of the a) local representation and b) distributed representation. Circle
represent each individual dimension and the painted circles represent a value, which in
the case of local representation is 1. The image was taken from [42].

In the current literature, the most frequent used representation in neural models is
distributed, since the local representation creates a considerable larger vector, which injuries
the neural network training and performance. Besides that, the ability of the distributed
representations to group similar words together helps the neural models generalize better for
new data.

3.2.4 Word2Vec

The word2vec algorithm, introduced by Mikolov et al. [50], uses a shallow neural network
to create a distributed representation of the words directly from big text collections, which
makes it an unsupervised algorithm. The network idea is to represent words that appear in a
similar context with similar vectors since according to the distributed hypothesis [49] these
words will have a similar meaning.

In general, the neural network architecture, which is illustrated in Figure 3.5, is composed
of an input layer of the size of the vocabulary V , one hidden layer with the size of our

3For sake of simplicity it was assumed that each dimension directly corresponds to a semantic dimension.
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embedding vectors N and one output layer with the size of the vocabulary. The connections
between the neural layers are represented by the weight matrices WIN

V×N
and WOUT

N×V
, which

corresponds to the learned word embeddings. So in more detail, this neural network produces
two embedding vectors for each word wi, the in vector represented as ~vwi and the out vector
represented as ~uwi .

Figure 3.5: Overview of the word2vec neural network architecture. Win and Wout are the weight
matrices, previously introduced as θ, i.e, these matrices correspond to the connections
between the neural units. The image was withdrawn from the article [51].

For the training process, the corpus is firstly scanned using a fixed size window, which
produces the training samples. The window is composed of a central word and their neighbour
words also called context words. Formally, given i as the index of the i-th word of the
training corpus and c as half of the window size. A window W of size 5 (c = 5

2 ≈ 2) is
represented asW = {wi−2, wi−1, wi, wi+1, wi+2}, where a central word is represented as wi and
the context words as wi±c = {wi−2, wi−1, wi+1, wi+2}. Mikolov et al. proposed two approaches
for the optimization problem, the continuous Skip-Gram (SG) model and Continuous Bag of
Words (CBoW) model, illustrated in Figure 3.6,

The SG consists in trying to predict the context words, given the central word of the
window. So, given a sentence of size T , the training objective is to minimize the negative
average log likelihood of wi±c being the context words of wi. Equation 3.10 shows the
mathematical formulation.

loss = − 1
T

T∑
t=1

c∑
j=−c,j 6=0

log (P (wi+j |wi)) (3.10)

In contrast, the CBoW tries to predict the central word, given the context words of the
window. So, the training objective is to minimize the negative average log likelihood of wi
being the central word given the context words wi±c. Equation 3.11 defines a mathematical
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Figure 3.6: Overview of the Skip-Gram and Continuous Bag of Words approach. The image was
withdrawn from the article [50].

formulation and ec corresponds to the summation of the embeddings of the context words
wi±c.

loss = − 1
T

T∑
t=1

log (P (wi|ec)) (3.11)

In both Equations 3.10 and 3.11, the conditional probability is computed by the softmax
operation that is shown in Equation 3.12. This equation was derived from the generic softmax
equation previously presented in Equation 2.6. For that, the set of discrete classes (C)
corresponds to the words of the vocabulary V and the network score for each class (word) wC
given the input word wI (ZwC ,wI ) corresponds to the dot product between the out vector of
wC and the in vector of wI , i.e, ZwC ,wI =

(
~uwC

T · ~vwI

)

P (wC |wI) = e(ZwC ,wI )∑|V |
j=1 e

(Zwj ,wI )

P (wC |wI) = e( ~uwC
T · ~vwI )∑|V |

j=1 e
( ~uwj

T · ~vwI )

(3.12)

It was also shown that softmax is a computationally expensive operation when the number
of discrete classes is high, which is the case. To address this issue Mikolov et al. [52] show two
approximations, the hierarchical softmax and the Negative Sampling (NEG). The hierarchical
softmax, first introduced by Morin and Bengio [53], uses a tree structure to distribute the V
discrete classes, which reduces the computation complexity of the softmax to log(V ). On the
other hand, NEG is a simplification of a well known Noise Contrastive Estimation (NCE),
introduced by Gutmann and Hyvärinen [54], which states that model should be able to
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differentiate data from noise by means of logistic regression, i.e., NCE transforms the multi-
class problem to a binary classification problem. Furthermore, word2vec is only concerned
with the quality of the embedding vectors and not with the quality of the output probabilistic
distribution. This allowed to simplify NCE resulting in the NEG Equation 3.13.

log(P (wC |wI)) ≈ log (σ (ZwC ,wI ))︸ ︷︷ ︸
Positive sample

+
k∑
j=1

Ewj∼Pn(V ) log
(
σ
(
−Zwj ,wI

))
︸ ︷︷ ︸

Negative sample



log(P (wC |wI)) ≈ log
(
σ
(
~uwC

T · ~vwI

))
︸ ︷︷ ︸

Positive sample

+
k∑
j=1

Ewj∼Pn(V ) log
(
σ
(
− ~uwj

T · ~vwI

))
︸ ︷︷ ︸

Negative sample


(3.13)

In NEG a sample is positive if the context words are neighbour of the central word
otherwise, the sample is considered to be negative. So, this formulation uses k negative
samples for each positive sample and the negative samples are randomly selected by the
probabilistic distribution Pn(V ). The idea is that the model will only update the weights
associated with the k words of the negatives samples and with the word of the positive sample.
In the experiments of Mikolov et al., the value of k between 5− 20 produces good results for
small corpora and 2 − 5 can be used in bigger corpora. For the probabilistic distribution,
Pn(V ) they used an unigram distribution U(wi) raised to the power of 3

4
4, Equation 3.14.

U(wi) = f(wi)
3
4∑|V |

j=1 f(wj)
3
4

(3.14)

Here, the function f(wi) corresponds to the frequency of the word wi in the corpus.

3.2.5 Word2Vec subword extension

The word2vec algorithm is only capable of learning a vector representation (embedding) for
words that are present in the training data. As a consequence, it is impossible to get an
embedding vector for a never seen word, which makes it difficult to reuse the learned vectors.
This problem, in the literature, is known as an Out-of-Vocabulary (OOV) entry.

Bojanowski et al. [55], proposed an extension to the continuous Skip-Gram (SG) model
that alleviates this problem, by incorporating subword information (word morphology) in the
training process. For that, the model learns a vector representation (embedding) for each
subword unit and the word embedding is given by the sum of its subword embeddings. So, a
word is defined as a bag of character n-gram and by the word itself, here the n-gram corresponds
to a subword unit and note that n can belong to an interval. For example, using n ∈ {3, 4, 5}
(3-gram to 5-gram), the word "banana" is represented by the following bag of characters
{< ba, ban, ana, nan, na >,< ban, bana, anan, nana, ana >,< bana, banan, anana, nana >

,< banana >}.
4This value was found to produce good results
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More formally, considering G(wI) as a set that contains all the n-gram of the word wI ,
the network score for each word wC given the input word wI (ZwC ,wI ) of this SG extension is
given by the Equation 3.15.

ZwC ,wI =
∑

g ∈ G(wI)
~vwg

T · ~uwC (3.15)

This formulation can directly replace the original network score function in the Equations
3.12 and 3.13. Note that, the embedding of the i-th word (wi) is given by ~vwi = ∑

g ∈ G(wI) ~vwg .
Additionally, when comparing this score function to the original, it becomes more clear
that the sum of the n-gram embeddings directly replaces the in vector of the word wi,∑
g ∈ G(wI) ~vwg → ~vwI . Which explains why this extension produces better representations for

rare words since a rare word is composed by a set of n-grams that are also shared with other
words, thus a n-gram is more likely to have a greater frequency when compared to the rare
word.

For the optimization process, the authors also used the NEG formulation with 5 negatives
samples and n-gram between 3 and 6. In terms of results, the authors observed that the
learned embeddings outperform the original SG model and also produce robust embeddings
for OOV words. Finally, this extension was open-sourced in the fasttext library5.

3.3 Evaluation Metrics

In IR, the developed systems are compared using a set of metrics that measures their
effectiveness. This section will address the metrics that are used over this dissertation, but a
more complete overview is available in the following book [56].

To evaluate a IR system let us first define the gold standard as a set of relevant documents
to a given query G = {d+

1 , d
+
2 , ..., d

+
n }, Rm = {d1, d2, ..., dm} as the ordered set of top m

documents retrieved by the system to the same query and Q as a set of queries to be tested
by the system.

Recall, Equation 3.16, gives the probability of a relevant document being retrieved by
the system, i.e, recall is the fraction of relevant documents that are retrieved.

Recall = |G| ∩ |Rm|
|G|

(3.16)

Precision, Equation 3.17, gives the probability of a retrieved document being relevant,
i.e, recall is the fraction of retrieved documents by the system that are relevant.

Precision = |G| ∩ |Rm|
|Rm|

(3.17)

Additionally, both recall and precision can be computed at a cut-of rank of K, which
means that the metric is only performed to the top K retrieved documents Rk, instead of all
the retrieved documents Rm. In this situation, the metrics are designated of Recall@K and
Precision@K.

5https://fasttext.cc/
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F1 score, Equation 3.18, is a measure that performs a weighted harmonic mean of the
precision and recall.

F1 = 2× Precision×Recall
Precision+Recall

(3.18)

Mean Average Precision (MAP), Equation 3.19, is a mean of theAverage Precision,
that computes the precision in each rank, this will approximate the area under the precision-
recall curve [56].

MAP = 1
|Q|

|Q|∑
j=1

1
|Gq ∩Rm|

|Rm|∑
k=1

Precision@k × rel(k)︸ ︷︷ ︸
Average Precision

(3.19)

Here, rel(k) is a binary function that indicates if the retrieved document at position k is
relevant.

Mean Reciprocal Rank (MRR), Equation 3.20, is the average of the reciprocal ( 1
x)

rank of the first relevant result, retrieved by the system.

MRR = 1
|Q|

|Q|∑
j=1

1
rank1(Rm) (3.20)

Here, rank1 is a function that returns the position of the first retrieved document that is
relevant.
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CHAPTER 4
State of the Art

This chapter presents the state of the art in terms of neural models for IR. It is divided into
two sections, that address the query-document matching and learning to rank tasks. Some of
the state of the art models are also previous submissions to the BioASQ competition.

4.1 Query-Document Matching

In this subsection are presented state of the art neural solutions to the query-document
matching task, previously introduced in Section 3.2.1. In general, the neural model will learn
how to project the queries and the documents to the same n-dimensional space. Ideally, in
this space, the relevant documents and the query will be grouped in terms of similarity. Then
the closest documents could be retrieved for a specific query.

4.1.1 Average word embedding

Average Word Embedding (AWE) is a simple technique to create a dense vector representation
of sentences over an embedding space. In a neural IR perspective, the queries and the
documents are represented by the average of their embedding words, i.e, the queries and the
documents are projected to an n-dimensional embedding space. So, for a given text t, that can
be a query or a document, its dense vector representation, ~t, is obtained following Equation
4.1. Then the relevant documents to a query are retrieved by the cosine similarity, Equation
3.1.

~t = 1
|t|

|t|∑
i=1

~wi
‖ ~wi‖

(4.1)

Here, ~t correspond to the vector representation of the text t and ~wi is the embedding
vector of the i-th word of the text t. Note that ~wi

‖ ~wi‖ corresponds to a normalization step of
the embedding vector ~wi to a unit vector.

Kosmopoulos et al. [57], improve the previous idea by combining it with the TF-IDF
weights, i.e, the AWE becomes a weighted arithmetic mean as shown in Equation 4.2. They
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apply this technique to obtain low dimensional text representation to feed an hierarchical text
classification algorithm, for automatically assigning MeSH labels to text.

~t =
∑|V |
i=1

~wi
‖ ~wi‖ × tfidfwi,t∑|V |
i=1 tfidfwi,t

(4.2)

AWE in document retrieval

Years later, Brokos et al. [58] used this technique in a document retrieval task applied to the
biomedical domain. In more detail, they compared three variants of this technique with the
PubMed search engine. The four systems compared were:

• Cent - Correspond to the normal AWE, Equation 4.1.
• Cent-IDF - Correspond to the weighted arithmetic mean, Equation 4.2.
• Cent-IDF-RWMD - Same as the previous, but Word Mover Distance (WMD) was used

to rerank the results.
• PubmedSE - Pubmed Search Engine.
Also in their experiments, they used 1307 biomedical queries from BioASQ challenge

as test-set and documents were from the Pubmed collection, which at that time contained
approximately 14 million articles. In terms of results, Cent-IDF had similar performance
to the pubmedSE for the MAP and Mean Interpolated Precision (MIP) metrics, which is
surprising since Cent-IDF is a much simpler and fast technique when compared to the highly
engineered system behind PubmedSE. As expected the Cent-IDF-RWMD got the best results.

The authors also report that PubmedSE failed to retrieve documents for 35% of the queries,
which indicates a limitation for retrieval systems based on keyword match.

AWE in snippet retrieval

In the work of Galkó and Eickhoff [59], they applied the previous techniques, Equation 4.1 and
4.2, to a task of snippets retrieval. The objective in this type of task is to retrieve short text
passages, snippets, from documents given a specific query. The results were compared, in terms
of MAP, precision, recall, and F1, against some other neural models like the state-of-the-art
Deep Relevance Matching Model (DRMM).

In their experiment, they used the 2017 BioASQ data, with 1799 biomedical questions
and test set with 500 biomedical questions. For each given question the relevant documents
were split into individual sentences, i.e, snippets. Then the retrieval mechanism will score the
resulting set of snippets.

Both techniques, AWE and weighted AWE, were capable of reaching a similar performance
to the DRMM model. These results are highly influenced by the small amount of training
data, but as the authors said, this is a fast and non-trainable1 method capable of achieving
good results, especially with small datasets.

1The process of learning the embedding is not considered
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4.1.2 Dual Embedding Space Model

Moved by the idea that the aboutness of a document can be captured by the relationship
between the query terms and all the terms in the document, Mitra et al. [51] proposed the Dual
Embedding Space Model (DESM). This model utilizes two different embedding spaces for the
queries and documents projections, which shows to be able to capture more topical relation
between the query and the document words. For example, given the query Alburquerque, two
passages were retrieved, as shown in Figure 4.1. Both passages contain the term Alburquerque,
in yellow, but clearly, the first passage (a) is much more relevant to the query that the second
passage (b). Due to the fact that the passage (a) contains more topical similar terms, to
the query term Alburquerque represented in green like population and metropolitan. In other
words, the passage (b) merely refers the Alburquerque, while the passage (a) is about the
Alburquerque city.

Figure 4.1: Two examples of passages retrieved for the query Alburquerque. In yellow, is represented
the exact match and in green are the topical similar words. The image was withdrawn
from the article [51].

The authors decided to use the two embeddings spaces that are learned during the word2vec
training process since the CBoW and SG training objective effectively captures the words
co-occurrence. As previously shown in 3.2.4, the word2vec learn two embedding vectors for
each word, that correspond to the IN and OUT projections. When the training finishes only
one space, usually the IN space is kept. However, the authors were able to observe that
the similarity between the two spaces, IN and OUT, encoded a more topical relationship
between words. This property can be verified in Table 4.1, that compares the most similar
words to the query term eminem, when using the different embedding spaces. IN-IN and
OUT-OUT, correspond to the projection of the query term to the, IN and OUT embedding
space respectively. On the other hand, IN-OUT corresponds to the projection of the query
term using the IN embedding to the OUT embedding space. From the table is visible that
the IN-IN and OUT-OUT retrieve similar words and there are semantically equivalents, in
this case, other artist names. But in the case of the IN-OUT, the most similar words are
words that give an idea of aboutness about the query term, like rap, featuring and tracklist.
Once more, the cosine similarity is used to retrieve the most similar words to a term in an
embedding space.

Mathematically speaking, the authors formulated the DESM model as an average of the
cosine similarity between all the embedding query terms and the document embedding vector,
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Table 4.1: Most similar words to "eminem", using different embedding spaces. The data was withdrawn
from the article [51].

IN-IN OUT-OUT IN-OUT
eminem eminem eminem
rihanna rihanna rap
ladacris dre featuring
kanye kanye tracklist

beyounce beyounce diss

as shown in Equation 4.3.

DESM(q,D) = 1
|q|

|q|∑
i=1

cos(~qi, ~D) (4.3)

Here, ~qi corresponds to the IN embedding of the i-th word belonging to the query q. ~D
correspond to the AWE of the document terms using OUT space, Equation 4.1. The function
cos is the cosine similarity previously shown in Equation 3.1.

In their experiments, the authors found that the DESM was prone to retrieve false positives,
but at the same time was capable of model the important aspect of document aboutness. So
the authors proposed a mixed model, where the BM25 ranking function is combined in a linear
fashion with the DESM model, as demonstrated in Equation 4.4. BM25 was an interesting
choice because it is a ranking function based on the exact match between query and document
terms and commonly misses semantically or topical similar documents which is the strong
point of the DESM model.

MM(q,D) = αDESM(q,D)× (1− α)BM25(q,D) (4.4)

Where α is a hyperparameter that will control the weight given to each model. Considering
that the BM25 produces absolute ranking scores, we can say that in this linear combination,
the DESM model will rearrange the final ranking scores of the BM25, in order to "push" the
score of documents that are more topical related to the query, i.e, the DESM model will act
as a weaker ranker over the BM25.

In term of the evaluation, the authors compare the performance of the following models,
BM25, Latent Semantic Analysis (LSA), DESM and Mixed model (DESM+BM25) using the
nDCG metric. Overall the Mixed model got better results, which reinforces the idea that the
DESM model gives a positive boost in performance to the BM25.

4.1.3 Deep Semantic Similarity Model

An alternative to the embedding representation of the queries and documents is to use a
DNN to directly learn a dense vector representation of the queries and documents from
a set of relevant query-document pairs. The Deep Semantic Similarity Model (DSSM) or
Deep Structured Semantic Model (DSSM) proposed by Huang et al. [60], was one of the
pioneering models, that used DNN to learn a semantically similar low-dimensional space for
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the queries and documents. The model follows a Representation Based architecture, where
two neural models are used to separately learn a low-dimensional representation of the query
and documents. The neural models are composed of a fully connected layers and the final
score between the two models is obtained through cosine similarity.

Figure 4.2: . The image was withdrawn from the article [60].

A more detailed view of the architecture is given in Figure 4.2. The input text (documents
or queries) is represented as Bag of Words (BoW), which correspond to the input layer of the
network. After that, the authors introduced the word hashing layer, that is a non-trainable
layer, with the objective to reduce the input dimensionality. Then, they used three fully
connected layers, where the first two are hidden layers with 300 units and the last one is the
output layer with 128 units. The hyperbolic tangent was the activation function used. Finally,
the DSSM model computes a score between the two neural models outputs using the cosine
similarity.

In terms of the learning process, the objective is to maximize the conditional likelihood
P (D|Q) of a relevant document to a given query. Once more, the conditional probability is
computed using the softmax operation over all the documents scores, Equation 2.6, since the
number of documents tends to be large, they use a technique similar to NEG to approximate
the probabilistic distribution. So for each positive pair (query - relevant document), the authors
randomly select four negative pairs (query - non-relevant document) and the probabilistic
distribution will only be computed over this total of five pairs. The loss function that will be
minimized is the negative log likelihood, Equation 3.6.

The authors used click-through data logged by a commercial web search engine, where a
positive pair is composed by the user-query and the respective clicked document. They split the
data into training and validation set and compared the results against other models/techniques
using the validation set. The evaluation metric was the nDCG and the DSSM model had the
best results when comparing to the TF-IDF, BM25, LSA and Deep auto-encoder (DAE) [61].

Word Hashing Layer

This layer aims to reduce the dimensionality of the Bag of Words (BoW) vectors, used to
represent the queries and the documents. The method consists in transforming a word into
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letter n-gram. For example, the word good can be represented by the following letter trigrams
{#go, goo, ood, od#}, where # is an initial and final word delimitor.

On the negative side, this technique produce collisions between words, i.e, two different
words can have the same letter n-gram representation. The authors reported that a vocabulary
with 500k words can be represented by a 30621 letter trigram vector (approx. 16 times smaller)
with only 22 cases of collisions, which are negligible.

Since the number of letter n-gram tends to be finite, this technique is more robust to
the OOV problem, because it is possible that the decomposition of a never seen word can
be mapped by the preexistence letter n-gram vector. A common example are the composed
words since they are morphologically similar.

DSSM Variants

This model opened the doors to a new strand of DSSM models, based on bridging its weakness.
The most popular variants are the following.

• Convolutional Latent Semantic Model (CLSM) [62] is an extension of the DSSM,
that uses convolution and max-pooling layers instead of the fully connected layers. In
this model the text is represented as a set of words t = {w1, w2, ..., wn} and each word
is encoded as bag-of-trigrams. Then a convolution layer will extract local contextual
features from fixed sized window (filter) of words, then a max-pooling layer will only
capture the most relevant ones since the meaning of a sentence is determined by few
words.

• LSTM Deep Structured Semantic Model (LSTM-DSSM) [63] is also an exten-
sion of the DSSM, that use LSTM layers instead of the fully connected layer. Since the
LSTM is capable of handle sequential data, the input text is also represented as a set of
sequential words t = {w1, w2, ..., wn}, encoded as bag-of-trigrams.

Both variants use the same optimization objective of the DSSM model. Palangi et al. [63]
used click-through data logged by a commercial web search engine, to train the three models
and they reported that the LSTM-DSSM model outperforms the DSSM and CLSM model.

4.1.4 Word Mover Distance

So far, the similarity between sentence was calculated by the cosine similarity between a
dense vector representation of the sentences. The Word Mover Distance (WMD), proposed
by Kusner et al. [64], describes a distance function2 between two sentences. More specifically,
this function measures the cost needed to transform the first sentence into the second one over
the embedding space. Small values of the cost mean these sentences are semantically similar.

More formally, WMD is the minimum cumulative distance that words from sentence A, in
an embedding space, need to travel to be able to exactly match the words of the sentence B, in
the same embedding space. The distance between words in the embedding space is computed
using the Euclidean distance. WMD can be seen as a transportation optimization problem,

2Note that distance function is equal to 1−similarity function
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defined in Equation 4.5, and more precisely is a special case of the well-studied Earth Mover
Distance (EMD) [65].

wmd(sa, sb) = min
T>0

|V |∑
i,j=1

Ti,j × ‖ ~wi − ~wj‖

Subject to:
|V |∑
j=1

Ti,j = di

|V |∑
i=1

Ti,j = dj

Where: V = sa ∪ sb

(4.5)

Here, each entry of the flow matrix T ∈ R|V |×|V | represents how much of word i from the
sentence a travels to the word j from the sentence b. di and dj are distributions of words in
the sentences a and b, respectively. The two restrictions ensure that sentence a is completely
transformed in sentence b. Finally, ‖ ~wi − ~wj‖2 corresponds to the Euclidean distance between
the embedding vectors of the word i and j from the sentences a and b.

To better understand the intuition behind WMD lets consider the example presented in
Figure 4.3. First the non-relevant words are removed resulting in the following sentences
(a) Obama speaks media Illinois and (b) President greets press Chicago. Then the objective
is to find a matrix T capable of minimizing the Equation 4.5, where the distribution of all
the words in a and b is 1

4 , i.e, di = 1
4 ∀i ∈ 1, ..., |a| and dj = 1

4 ∀j ∈ 1, ..., |b|. The final
result of the matrix T following the example must be, TObama,President = 1

4 , Tspeaks,greets = 1
4 ,

TIllinois,Chicago = 1
4 and Tmedia,press = 1

4 , where the other entries are equal to 0. This was
a trivial case because the sentences have the same number of words. When this does not
happen normally one word is transported to multiple words.

Figure 4.3: . The image was withdrawn from the article [64].

Regardless of whether there are common words between the sentences, the WMD will
always return small distances for semantic similar sentences, since in the embedding space,
similar words tend to be closer to each other.

Unfortunately, the computation complexity of this method is O(|V |3log(|V |)), which
directly scales with the number of unique words (vocabulary |V|) in both sentences. In
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order to improve this complexity, the authors shown a lower-bounder approximation to the
WMD, which is Relaxed Word Moving Distance (RWMD), in this relaxation one of the two
restrictions in Equation 4.5 is forgotten.

The authors reported superiors results of the WMD performance in eight datasets, when
compared with some baselines like TF-IDF, BM25.

Query-Document Word Mover Distance

The original WMD formulation is not suitable for the query-document match problem since
the two sentences to be compared, query and document, are a lot different. Usually, a query
consists of a small number of words, aiming for a piece of specific information. On the contrary,
the document contains a large number of words and diverse information.

Kim et al. [66] propose a new version of the WMD applied to the query-document matching
problem. To tackle the previously stated problems the authors made the following changes:

• The embedding space was trained in the documents collection.
• Introduced the Inverse Document Frequency (IDF) as weight in the distribution of the

words di, moved by the idea that more important words should have higher weight and
in turn bigger distribution.

• Instead of the Euclidean distance, the cosine similarity is used.
• The minimization became a maximization, i.e, maxT>0

∑|V |
i,j=1 Ti,j × cos( ~wi, ~wj), since

the dissimilarity measure (Euclidean distance) change to a similarity measure (cosine
similarity).

4.2 Learning to Rank

In this subsection are presented state of the art neural solutions to the query-document
ranking problem. In general, the neural model will learn the interactions between a query
and the documents giving a real number score value, that can be used to retrieve the most
relevant documents.

4.2.1 Deep Relevance Matching Model

The previous models/techniques were based on a Representation Based architecture, where
the queries and documents representation were created/learned separately. On the other
hand, the Deep Relevance Matching Model (DRMM) proposed by Guo et al. [67], explores
the Interaction Based architecture, where a query and document representation is learned
together.

The author’s design a deep neural model focused in relevance matching, instead of the
semantic matching, since in their perspective the semantic matching objective is not suitable
for the ad-hoc retrieval task, especially of large documents. In their perspective the most
important factors for relevance match are:

• Exact matching signals: The exact match between document and queries terms is
the most important signal in ad-hoc retrieval, which explains the performance of more
traditional models like BM25.
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• Query term importance: The queries tend to be short and simple, most commonly
based on keywords. So the importance of each query term is an important feature to
take into account.

• Diverse matching requirement: The documents are usually long and relevant in-
formation can be only a small subset of a greater document. So a relevance matching
could happen in any part of a document.

So, based on these three factors the DRMM model was created, using a matching
histogram mapping, a feed forward matching network and a Term gating network,
as show in Figure 4.4.

Figure 4.4: Architecture of the Deep Relevance Matching Model. The image was withdrawn from
the article [67].

The matching histogram mapping is concerned into capture the interactions of each
query term and all the documents terms, since the length of the queries and documents are
variable the authors decided to represent each interaction between the query term and the
document with histograms. So the input of the model will be a set of histograms with the
size of the query. Mathematically speaking this operation corresponds to Equation 4.6.

h(wi ⊗D), ∀i ∈ 1, ..., |Q| (4.6)

Here, h corresponds to the histogram mapping function, ⊗ denotes the interaction operator3

between a query term w
(q)
i and all the documents terms D.

Equation 4.7 is derived from 4.6 and describes the practical implementation used by
the authors to capture the word interactions. In it, they used the word embedding of size
E, created from word2vec algorithm, to represent each word and therefore used the cosine
similarity as the interaction operator ⊗. For the histogram h they used a set of 30 bins, which
mean that the cosine output interval [−1, 1] was subdivided into 30 discrete intervals. Then a

3In here as a different meaning of the previously used in Equations 2.11 and 2.12.
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logarithm operation was applied to each bin of the histogram, with the intuition of ease the
learning of multiplicative relationships.

log(h30(cos( D
|D|×E

,
~
w

(q)
i

E×1
))), ∀i ∈ 1, ..., |Q| (4.7)

To better understand the histogram mapping let us considered that the query-document
interactions are captured in a histogram with 4 bins h4. So, as previously seen, the histogram
subdivide the cosine output into 4 intervals, [−1,−0.5[, [−0.5, 0[, [0, 0.5[, [0.5, 1]. Given a query
q = {car}, a document D = {car, rent, truck, bump, injunction, runway} and the cosine
similarity between the query and document terms cos( D

|D|×E
, ~wi
E×1

) = {1, 0.2, 0.7, 0.3,−0.1, 0.1}.

It will result in the following histogram h4({1, 0.2, 0.7, 0.3,−0.1, 0.1}) = [0, 1, 3, 2]. Then, the
final step is to apply logarithm to each bin, so log(h4) = [−inf, 0, 0.47, 0.3].

A feed forward neural network will receive the histograms as input and for each, will
output a single result. So the network is composed of an input layer with 30 nodes, one node
for each histogram dimension. Follow by a hidden layer with 5 nodes and an output layer
with 1 node. All the layers apply the hyperbolic tangent as activation function. Note that
this network will run over each individual histogram, so the number of histograms can be a
variable parameter, which allows queries with different lengths. The authors also explain that
more advanced neural networks, like CNN and RNN, will not improve the performance since
the network input is positional independent (histogram dimension).

The term gating network will weight and aggregate each output of the previous network,
i.e, this network will capture the individual importance of the query terms, which is related
to the second factor in relevance matching Query term importance. For that, each query
term w

(q)
i is associated with a gate gi that corresponds to the word importance. The gate gi is

computed by the softmax function Equation 4.8, where the resulting probabilistic distributing
over all the query terms measure the individual importance of each term.

gi = e(wg ·x(q)
i )∑M

j=1 e
(wg ·x(q)

j )
(4.8)

In Equation 4.8 the weight wg, denotes the trainable weight of the term gating network
and x(q)

i denotes numerical representation of the i-th query term. The authors find out that
the IDF as query term representation gives the best results, x(q)

i = idft, so in this case the
term gating network is reduced to just one trainable weight. Also note that this equation is a
derivation of the more generic version presented in Equation 2.6 and the resulting conditional
probability correspond to the term importance distribution.

The final DRMM output is obtained by a linear combination between each term gate and
output of the feed forward network, Equation 4.9,

s =
M∑
i=1

gizi (4.9)
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where M denotes the size of the query and zi the output of the feed forward network for
the interactions between the i-th query term and the document.

The authors trained the term gating network and the feed forward network in a end-to-end
fashion, using a pairwise loss function, namely the hinge loss previously presented in 3.2.2.
It is worth to mention, that this model is not capable of train the term embedding in an
end-to-end fashion since the gradients can not be back-propagated through the histogram.

In their experiments the authors shown that this model outperforms strong baselines,
like BM25, representation-focused models, like DSSM and Convolutional Deep Structured
Semantic Model (C-DSSM). The results supported the author’s hypothesis.

DRMM variants

Similar to the DSSM, the DRMM also was a pioneer model that open the doors to a new
trend of relevance matching models that explore its weakness. More precisely, the histograms
are not differentiable which makes it impossible to propagate the gradients to the embedding
matrix. Besides that, the histograms also ignore the context in which the terms occur.

• Attention Based ELement-wise DRMM (ABEL-DRMM) [68] propose a differ-
entiable context-aware encoding of the query or document terms, in order to capture
their context in which the terms occur. The encoding is performed by a residual neural
layer over the term ti and their neighbours ti−1, ti+1, Equation 4.10 shows the layer
operation.

c(ti) = γ

θ · [ ~ti−1; ~ti; ~ti+1]︸ ︷︷ ︸
concatenation

+b

+ ~ti︸︷︷︸
residual

(4.10)

Here, c(ti) represents the context-aware encoding of the i-th term ti and ~ti is its
embedding representation. Then in order to capture the interactions between each
encoded query term (c(qi)) and all the document terms (C(dj) = [c(d1); ...; c(dj)]), the
model uses a attention mechanism over all the documents terms, instead of using the
histogram alternative proposed in the original DRMM since it is non-differentiable.

ai,j = softmax

(
C(D)
D×E

· c(qi)
E×1

)
dqi =

∑
j

ai,j × c(dj)

φH(qi) = dqi

‖dqi‖
⊗ c(qi)
‖c(qi)‖

(4.11)

Equation 4.11 describes the process to compute the interactions between the docu-
ments terms and the i-th query term (φH(qi)), or as they call Doc-Aware Query Term.
That is given by an element-wise (⊗) multiplication between an attention based represen-
tation of the document given the query term (dqi). This attention-based representation
is given by a linear combination between the attention weights and the encoding of
the document terms (c(dj)), where the weights ai,j of the attention model are given by
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a probabilistic distribution of the i-th query term with all the documents term, this
distribution is computed by the softmax operation. Alternatively, Figure 4.5 presents
a visualization of the ABEL-DRMM perspective, that follows the mathematical steps
presented in Equation 4.11.

Figure 4.5: Architecture of the document query interactions follow the ABEL-DRMM. The image
was withdrawn from the article [68].

Worth mention that this alternative will only replace the matching histogram mapping
of the original DRMM.

• POoled SImilariTy DRMM (POSIT-DRMM) [68] this alternative states that the
maximum and the average match between the query and document terms must be
both considered by the model. However, the ABEL-DRMM formulation does not follow
this assumption, since the attention summation hides the matching contribution of the
terms matching, i.e, from the resulting encoding it is not possible to know if a single or
multiple terms were matched with high similarity.

To achieve the proposed idea the authors describe a max and k-max polling strategy
over the query document term similarity. This way the maximum and the average match
signal are kept, contrary to the ABEL-DRMM. Equation 4.12 shows the mathematical
steps behind this idea.

ai,j = cos(c(qi), c(dj))

ai = [ai,1; ...; ai,j ]︸ ︷︷ ︸
concatenation

φP (qi) = [max(ai); avg(k-max(ai))]︸ ︷︷ ︸
concatenation

(4.12)

Firstly the attention weight (ai,j) for the i-th query term and j-th document term
is computed by the cosine similarity (Equation 3.2). Then a 2-dimensional Doc-Aware
Query Term vector (φP (qi)) is created using a pooling strategy, where the first dimension
corresponds to the maximum value of the attention weight for the i-th query term and
the second dimension is obtained by the average over the top k maximum values of the
attention scores for the i-th query term.
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As a final note, this alternative also uses the context-aware encoding of a term (c(ti))
proposed in Equation 4.10 and it will also replace the matching histogram mapping in
the original DRMM.

Both extensions were used in the previous year competition of the BioASQ challenge.

4.2.2 DeepRank

Following with the Interaction Based architecture, Pang et al. [69] proposed a new deep
model for relevance ranking inspired by the human methodology. In their perspective, the
model should emulate the human judgement process when looking for relevant documents,
this process can be divided into three steps.

• Detection - Find passages on the document that are relevant to the query.
• Measurement - Measure the importance of each passage.
• Aggregation - Decide if the document is relevant based on the previous measures.

So the DeepRank model follows this process by implementing a detection network,
followed by a measurement network and finally by an aggregation network that gives
a relevance score.

Given a query and a document, the Decision network will find relevant passages to that
query and for each query-passage will create a tensor, S, that captures their interactions.
Based on query-centric assumption [70] the authors consider a passage to be relevant if it
matches any token of the query, i.e, if a document token at position k matches any query token,
the passage will be a sequence of tokens belonging to the interval [k − 7, k + 7]. Assuming
that ~xi and ~yi are, respectively, the embeddings of the query and the document token at
position i. So each entry in the tensor, S, correspond to the cosine similarity between these
tokens, Sij = ~xi

T ·~yi

‖~xi‖×‖~yi‖ , S ∈ ] − 1, 1[(Q,P,1). The authors also try to extend the S tensor
by concatenating the query and document embedding, e.g, if the embedding dimension is
represented by 200-vector and let Q and P be the respective length of the query and the
passage, then the S tensor becomes with the following dimensions S ∈ R(Q,P,401).

The Measurement network has the objective of transforming the tensor S into a
scorable vector, i.e, the network will try to condense all the interactions that are present
S into a fixed size vector ~p. For that the authors proposed a CNN or a 2D-GRU, that is
directly applied to each query-passage tensor. In the case of the CNN it is used a 3 by 3
kernel followed by a global max pooling layer. On the other hand, the 2D-GRU, proposed
by the same authors in the following paper [71] is a special case of GRU that processes the
tensor from top-left to bottom-right in a recursively way. Beyond that, the authors also
concatenate to the final fixed size vector, ~p, a function of the position of the passage relative
to the document, g(p), where g can be a constant, linear, reciprocal or exponential function.

Finally, the Aggregation network will first aggregate the vectors of the passages, ~p, that
share the same query token, resulting in the vector ~t(wi) where wi corresponds to the token at
position i in the query. Then the final score is computed using a term level aggregation over
all the vectors ~t(wi). A GRU was chosen by the authors to aggregate the sequence of passages,
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i.e, the GRU will transform the sequence of ~p aggregated by their shared token wi into ~t(wi).
The term level aggregation has one trainable weight per token and follows Equation 4.13.

s =
∑

wk k ∈ q

(θk × ~o)T︸ ︷︷ ︸
1×G

· ~t(wk)︸ ︷︷ ︸
G×1

(4.13)

Here, θk is a trainable weight associated with the token k, ~o
G×1

is a ones-vector with size

G and the aggregation vector per query token, ~t(wk), as also the size of G.

Figure 4.6: Complete visualization of the deeprank model with several steps of granularity. The
image was withdrawn from the article [69].

Unlike the DRMM, the DeepRank model is a complete end-to-end neural network, since
it is also capable of back-propagate the gradients to the embedding layer. It can be trained
by any gradient descent algorithm and the authors decided to use the hinge loss 3.7, leaving
open the possibility of using other types of losses. Figure 4.6 presents a visualization of the
complete model were the different sub-networks are also identified. In their experiences, this
model has shown an improvement over the state of the art DRMM and other strong baselines.
Concrete comparison is shown at the end of this chapter.

4.2.3 A Hierarchical Attention Retrieval Model

At the time of writing the most recent neural ranking model in the literature is the HAR
model proposed by Zhu et al. [72]. This model is interacted based and uses multiple attention
mechanism to create a jointly abstract representation of the query and document, that is
scored by a neural network.

Essentially, the HAR model uses the following two attention mechanism.

• Self-Attention - Creates a new representation of the input sequence by a weighted
aggregation, already presented in 2.6.1.

• Bidirectional Cross-Attention - Captures the query-document interaction by com-
puting the relevance of each query word with respect to each document word, and
vice-versa.

Given two embedded input sequences, e.g query Q
m×E

= {~q1, ~q2, ..., ~qm} and document

D
n×E

= { ~d1, ~d2, ..., ~dn}, the Bidirectional Cross-Attention mechanism, proposed in [73],
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computes the attended relevance of each embedding in di with each embedding in qj and
vice-versa. Which correspond to the Document-to-Query (D2Q) attention and Query-to-
Document (Q2D) attention, respectively. Another way to interpret is by considered that the
attention occurs in two directions simultaneously, from document to the query as well as from
the query to the document.

In terms of conceptualization, a similarity matrix S ∈ Rn×m is firstly constructed, where
each row corresponds to a document word embedding from D, each column corresponds to a
query word embedding from Q, and each entry of the similarity matrix sxy is described by
Equation 4.14.

sxy = wTc
1×3E

· [ dx
E×1

; qy
E×1

; dx
E×1
⊗ qy
E×1

]︸ ︷︷ ︸
concatenation

(4.14)

Here, wc is a trainable vector that project the interaction vector to a single value and each
interaction vector is given by the concatenation of the query and document embedding plus
their element-wise multiplication, ⊗. Then the softmax operation, Equation 2.6, is applied
over each row and column of the similarity matrix S, which gives, respectively, the D2Q and
Q2D attention weights Equation 4.15.

SD2Q = softmaxrow(S)

SQ2D = softmaxcol(S)
(4.15)

Intuitively, the query embeddings, Q, is weighted by the attention matrix SD2Q resulting
in the attended matrix AD2Q, which tell us what are the query words that are most important
to each document word. Likewise, the document embedding, D, is weighted by the attention
matrix SQ2D resulting in the attended matrix AQ2D, which tell us what are the document
words that are most important to each query word. Equation 4.16 shows how this computation
is performed.

AD2Q
n×E

= SD2Q
n×m

· Q
m×E

AQ2D
n×E

= SD2Q
n×m

· (SD2Q)T
m×n

· D
n×E

(4.16)

Finally, the attended vectors present on the attended matrices are multiplied by the
document embedding D to complete the bidirectional flow, D

n×E
⊗ AD2Q

n×E
and D

n×E
⊗ AQ2D

n×E
.

Note that in this paper the cross-attention is performed on the document side, as shown in
Figure 4.7.

In terms of network architecture, Figure 4.7, the model receive as input a query and a
set of sentences that composes the document, both the inputs are represented as a sequence
of tokens.

This model uses an embedding layer to transform each token into an embedding vector,
then a bidirectional GRU is used as an encoder to add context-aware to the embeddings
creating the context-aware vector u. This model uses two separated encoders, one for the
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Figure 4.7: Complete visualization of the HAR. The image was withdrawn from the article [72].

query and other for the sentences, creating the respective context-aware vectors uq and us.
Focusing on the query side, a self-attention layer is then used to create a vector representation
that condenses the most important information on the query, resulting in zq ∈ RE×1. On the
document side, cross attention is performed between context-aware vectors of the query and
each sentence, creating the vector vsi,j that corresponds to the cross attention output of the
j-th token of the i-th sentence. After this, a two-level self-attention mechanism is performed
to first create a vector representation of each sentence and then create a representation for the
document corresponding to the vector ydR4E×1. Finally, yd is reduced to the same dimension
of zq by using a trainable projection vector and the jointly query-document representation
is computed by multiplying zq with y−d, the resulting vector is fed to a three layer neural
network that outputs the document score.

In an additional note, the authors added to the output of the cross attention the
sentence context-aware U s and the D2Q attend matrix AD2Q. So the output matrix of
the cross attention between the query and the i-th sentence corresponds to the matrix
V si

n×4E
= { U s

n×E
;AD2Q
n×E

;U s ⊗AD2Q
n×E

;U s ⊗AQ2D
n×E

}︸ ︷︷ ︸
concatenation

and vsi,j ∈ R4E×1.

In terms of optimization, they used the Adadelta [10] optimizer with a learning rate of
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2 and the hinge loss function Equation 3.7. During training, for each query were selected
six completely irrelevant documents and three partially negatives. The authors considered a
partially negative document as a document that has some relevance to the query but does not
contain the answer.

The authors also create a dataset for the healthcare domain (HealthQA), which they used
to train and test the HAR model. They gather a total of 1235 articles and for each article, a
total of six human annotators were encouraged to construct 1 to 3 simple questions that can
be asked about that document. The final dataset contains 1235 articles and 7515 questions.

4.3 Summary

In this section is presented an a priori comparison of the previous models based on their
definition and published results. Table 4.2 shown an overview of all the models. They are
compared in terms of task, the needed of embedding, overall architecture, if is required
training, loss objective and the inference time. Note that only the trainable models have a
loss objective.

Table 4.2: Summary table that compares all of the presented models in terms of task, embedding,
overall architecture, if is required training, loss objective and the inference time.

Models Task Pre-trainned embeddings Architecture
AWE Learn to Match Any embedding representation Representation based
DESM Learn to Match Embedding created with Word2Vec Representation based
DSSM Learn to Match No, uses hash trick over BoW Representation based
WMD Learn to Match Any embedding representation not applied
DRMM Learn to Rank Any embedding representation Interaction based

DeepRank Learn to Rank Any embedding representation Interaction based
HAR Learn to Rank Any embedding representation Interaction based

Models Require Training Loss objective Inference Time
AWE No - Fast (dot product)
DESM No - Fast (dot product)
DSSM Yes Pointwise (cross-entropy) Fast (dot product)
WMD No - Slow (solve optimization)
DRMM Yes Pairwise (hinge) Slow (run neural net over the collection)

DeepRank Yes Pairwise (hinge) Slow (run neural net over the collection)
HAR Yes Pairwise (hinge) Slow (run neural net over the collection)

Table 4.3 shows some comparatives results on different datasets withdrawn from the
DeepRank [69] and HAR [72] articles. In the first case, the tests were performed on the
MQ2007 [74] dataset4. On the second case, it was used the HelthQA dataset, as mention in
the previous section, which is not publicly available.

On MQ2007 dataset the DeepRank get an upper hand when comparing to the other models
in terms of MAP values. The same way, on the HealthQA dataset the HAR outperformed
the other available models in terms of MRR values.

These results are only presented to give an intuition of what to expect from each model.
However, the relative performance of these models should not be extrapolated when applied
to biomedical data, since the domain and size of the data will be completely different.

4https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval

49



Table 4.3: Summary table with some comparatives results of some neural models

Model MAP on MQ2007 MRR on HelthQA
BM25 (baseline) 0.45 -

DSSM 0.409 -
CDSSM 0.364 0.645
DRMM 0.467 0.740

DeepRank 0.497 -
HAR - 0.879

Additionally, in both cases, the implementation of the BM25, DSSM, C-DSSM and DRMM
follow the default settings, which is also a bad indicator of the true potential of each model.
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CHAPTER 5
Architecture and Implementation

This chapter firstly presents, with a high level of abstraction, the adopted architecture to tackle
the biomedical information retrieval problem. Then, it is shown a more detailed view of each
individual component and their implementation.

The retrieval system follows the architecture presented in Figure 5.1 and can be visualized
as a pipeline. The inputs are the user queries and the collection of documents that will be
searched. The outputs are the top ten most relevant documents or a set of relevant snippets
from these documents.

Figure 5.1: Overview of the principal modules of the proposed system.

This adopted pipeline can be reduced to three major tasks filtering, ranking and
extracting. Which gives the name to each individual module, Fast Retrieval, Neural
Ranking, and Snippet Extraction.

• Fast Retrieval - Select a set with N possible candidates to a query from the document
collection.

• Neural Ranking - Uses a neural model to rank the possible N candidates and return
the top ten with a higher score.
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• Snippet Extraction - Highlights the most relevant snippets from each of the ten
retrieved documents.

The idea behind this division is essentially due to the speculation that the neural model’s
inference times would be too higher to be applied to the full collection. So to cope with
this issue, a module that will act as a filter was introduced before the use the neural model.
The following section discusses the chosen technologies and after that, each module will be
introduced and detailed.

5.1 Technologies and libraries

This dissertation follows a hands-on methodology. So all the neural and non-neural models
were implemented from scratch in Python3.5.21.

5.1.1 TensorFlow

TensorFlow [75]2, developed by the Google Brain Team3, is an open-source library4 for
distributed numerical and auto-differentiable computations, which is the basis for any imple-
mentation of deep learning algorithms. It was implemented in C++, yet a native Python API
is available.

In TensorFlow, the mathematical computations are defined as a directed graph composed
by a set of nodes and edges. Each node represents an operation or variable, while the edge,
also called tensor, defines a data flow between the nodes. Additionally, it is possible to divide
the computational graph into different chunks, which enable the parallelization across multiple
Central Processing Unit (CPU), Graphics Processing Unit (GPU), and Tensor Processing
Unit (TPU) or even the distribution across multiple devices.

On the left side of Figure 5.2, that is presented on TensorFlow article [75], it is shown an
example of a direct graph created for the computation of the cost value C with respect to the
operation relu(W · x+ b). The operation of the cost value is omitted for sake of simplicity.
On the right side, is shown an automatically generated graph for the computation of the
gradients of C with respect to the set of inputs x. Furthermore, the gradients graph is created
by backtracking the operation from C to x and for each operation, the partial derivatives
along the backward passage are solved using the chain rule of differentiation.

This dissertation uses the version 1.9 of TensorFlow, which uses as default a first define,
then run methodology. This implies that the computational graph must be firstly constructed
and only then the computations can be performed. This methodology is no longer the default
mode in the version 2.0-alpha of TensorFlow. Which now uses dynamic constructed graph’s,
enabling the graph definition while ruining.

1https://www.python.org/downloads/release/python-352/
2https://www.tensorflow.org
3https://ai.google/research
4https://github.com/tensorflow/tensorflow
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Figure 5.2: Generic example of a TensorFlow computation on the left and the auto-differentiable
operation on the write. From [75]

Additionally, the TensorFlow package has sub-module5 that implements the Keras6 API,
that offers a user-friendly interface for easily implement a great range of deep learning models.

Another popular candidate was the PyTorch7 library by facebook. Essentially this library
offers the same functionally as the TensorFlow. However, by default PyTorch uses dynamic
constructed graphs opposed to TensorFlow version 1.9. The main reason to chose the
TensorFlow was due to the greater community behind it.

5.1.2 Numpy

The Numpy8 is an open-source9 python library that offers an efficient way to operating with
multidimensional numerical data (n-arrays).

5.2 Fast retrieval

The fast retrieval module was designed to act as a document filter capable of reducing the
irrelevant documents while keeping the relevant documents to the query. For that, the
following requirements were selected to guide the retrieval mechanism choice.

• Efficiency - The execution time during inference must be within the second scale.
• Efficacy - The N retrieved documents must contain relevant documents to the query

while keeping N small.
• Scalability (less severe) - The execution time should not scale with the size of the

collection.
5tensorflow.keras https://www.tensorflow.org/guide/keras
6https://keras.io/
7https://pytorch.org/
8https://www.numpy.org/
9https://github.com/numpy/numpy

53



The Scalability is considered a less severe requirement because it only ensures the system
longevity on futures updates to the document collection. For that reason, this requirement
should only be considered if the first two requirements are met.

Based on the previous set of requirements, a mathematical score, s(d), can be defined as
shown in Equation 5.1, which offers a systematic methodology for choosing the ideal retrieval
mechanism over a pool of candidates.

s(d) =

recall@N(d) 4t <= T

0 4t > T
(5.1)

Here, 4t is the elapsed inference time in seconds, T is a maximum acceptable time in
seconds and d correspond to the set of top N documents retrieved. The score is based on the
value of recall@N for the set of retrieved documents if their elapsed time is at most T . The
intuition behind this formulation is that the number of relevant documents returned
by the retrieved mechanism must be maximized. However, it is also important to
minimize the total number of returned documents N , since the inference times of
the neural models is directly proportional to N . This optimization problem may not be
trivially solved10, so to alleviate this, multiples runs with different values for N were taken
into consideration and based on that, a suitable value for N was chosen. Then, after fixing
the value for N , the retrieval mechanism with the highest score, s(d), will be chosen to power
this module.

From all the retrieval mechanism presented in Chapters 3 and 4, the eligible models for
testing were, BM25, AWE, AWE with TF-IDF and the DSSM model. These models
were chosen based on their potential to fulfill the previous requirements. In the following
subsections will be discussed their individual implementation.

5.2.1 Implementation of BM25

As previously mentioned, this dissertation follows a hands-on methodology. As such, this
subsection addresses the implemented technical details of the ranking function with the BM25
weight scheme. However, it is worth mentioning that popular search engines like Elastic
Search11 could be used instead.

Recalling Section 3.1.3, the ranking function, Equation 3.5, computes a matching score
given a query-document pair. A naive implementation would be directly applying the equation
to every pair, which is an inefficient solution. Therefore, an enhanced alternative would be
to construct an inverted index, where each vocabulary term records a list of documents that
contain it, recall Figure 3.1.

The diagram presented in Figure 5.3 shows the adopted flow to create an inverted index
over a large collection of documents. Initially, all the documents in the collection are divided
into sets, that have approximately the same size. Each of these sets is indexed in parallel,

10This affirmation is based on the fact that the values of the recall@N and N are directly proportional, so
the maximization of the recall and minimization of N will end up in a contradiction

11https://www.elastic.co/
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Figure 5.3: Flow diagram for the creation of the inverted index

which originates an inverted index per set. The second step, consists of organizing the inverted
index by frequency term, i.e, the most frequent terms are grouped into the same inverted
index, where the total number of documents in each group is limited by a predefined threshold.
This ensures that all inverted indexes have approximately the same size in disk. For example,
the inverted index with the most frequent terms (1 Inverted Index) contains fewer terms than
the next inverted index (2 Inverted Index), but both have approximately the same size in disk.

The motivation for creating multiple inverted indexes is related to the high memory
footprint needed for the complete inverted index. This implies that for a given query, different
inverted indexes will be load from disk into memory, which increases the execution time.
However, as each inverted index is organized by term frequency, in theory and on average,
the number of inverted index loads per query is minimized, therefore the execution time is
reduced.

In general, the training process for this retrieval mechanism, left side of Figure 5.4, con-
sists in building the inverted index described in the previous paragraphs and by precomputing
the BM25 weights for each term. For the last one to occur, the BM25 Equation 3.5 needs to
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Figure 5.4: On the left is presented the Flow diagram for the training process and on the right is
presented the Flow diagram for the inference process

be simplified, in order to not be dependent on the query term, resulting in Equation 5.2.

weight(t, d) = idft︸︷︷︸
first part

× (k1 + 1)tft,d
k1(1− b+ b(|D|/avg|D|)) + tft,d︸ ︷︷ ︸

second part

(5.2)

Here, the third part of the equation was unconsidered, which is not severe since the queries
are usually small. This way for each term in the inverted index the associated BM25 weight
can be precomputed.

The inference process, on the right in Figure 5.4, creates a ranked list of documents,
given a query and the inverted indexes following Equation 5.3.

score(q, d) =
∑

tq ∈ Q

weight(t, d) (5.3)

The precomputation of the BM25 weighting scheme for each term ensures that the order of
complexity of calculating weight(t, d) is O(1) and consequently the complexity of score(t, d)
is O(|Q|), where |Q| represent the number of query terms. So the complexity of this retrieval
model must be inferior12 to O(|Q| × |D+|), where |D+| is the total number of documents that
contains terms from the query Q, i.e, |D+| represents the total number of documents returned
by the retrieval model. This complexity analysis ensures that the scalability requirement is
respected, since O(|Q| × |D+|) does not directly depend on the number of documents in the
collection.

In Table 5.1 is shown a list of the chosen hyperparameters, where the k1 and b values were
chosen according to the literature [40], [41].

12Since O(|Q| × |D+|) assumes that each query term appear in all the returned documents, which is false in
practice.
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Table 5.1: Hyperparameters chosen for the BM25 retrieval mechanism

Hyperparameters
Number parallel processes 20

Number of documents per Inverted Index 309 146 814
k1 1.2
b 0.75

From now and until the end of this dissertation the term BM25 model will be used to
referring this retrieval model.
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5.2.2 Implementation of AWE and AWE with TF-IDF

The training process implemented by the AWE and AWE with TF-IDF weighting is
described in Algorithm 1. Essentially, consists of constructing a document embedding matrix,
De. Where the i-th row corresponds to the i-th document embedding obtain by applying the
AWE or AWE with TF-IDF, Equations 4.1, 4.2, to the document tokens.

Algorithm 1: Train algorithm for the AWE and AWE with TF-IDF retrieval
mechanism.
Input :Document collection (D)
Output :Normalized document embedding matrix (De)

1 for i← 0 to |D| do
2 De[i]← awe(D[i]) ; Equation 4.1 or 4.2

3 end

Similarly, the inference process is described by Algorithm 2, which for a given set
of queries (Q) computes their AWE representation. Then the cosine similarity between
the queries representation and the representation of the documents is calculated using the
vectorized implementation shown in Equation 5.4. Finally, the top N documents with the
highest score are returned by the algorithm.

cos( Q
|E|×|Q|

, D
|D|×|E|

) =
D

|D|×|E|
· Q
|E|×|Q|

‖C‖
|D|×1

⊗ ‖Q‖
1×|Q|

(5.4)

This formulation computes the score for all the documents in the collection, D, given a
set of queries, Q, where |Q| correspond to the number of queries. The size of the embedding
vector is represented by |E|.

Algorithm 2: Inference algorithm for the AWE and AWE with TF-IDF retrieval
mechanism.
Input :Normalized document embedding matrix (De), Set of queries (Q)
Output :Top N documents with the highest score

1 for i← 0 to |q| do
2 Qe[i]← awe(Q[i]) ; Equation 4.1 or 4.2

3 end
4 rank ← cos(Qe,De) ; Equation 5.4

5 top(rank,N)

The inference algorithm has a complexity order of O(
awe complexity︷ ︸︸ ︷
|Q| × |avgQ|+

dot product complexity︷ ︸︸ ︷
|D| × |E| × |Q| ).

Here, the first term corresponds to the complexity of computing the AWE for the set of queries,
where |Q| represents the total number of queries and |avgQ| correspond to the average length
of the queries. The second term shows the order of complexity of the dot product operation
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that is used by the cosine function, where |E| corresponds to the size of the embedding
dimension. However, when the algorithm only uses a single query the previous complexity
order can be simplified to O(|avgQ| + |D| × |E|) since |Q| = 1. This complexity analysis
shows that the scalability requirement is not respected, because it directly scales with the size
of the collection. However, as will be shown in the next Chapter, in practice the dot product
complexity is smoothed by the efficient mathematical libraries.

5.2.3 Implementation of DSSM

Recalling Section 4.1.3, the DSSM is a neural network that learns how to project the queries
and documents into the same low-dimensional space. The implemented network architecture
follows Figure 4.2 with the exception of the word hashing layer, that was not implemented,
because it requires to have an in memory matrix with the dimensions, |V | × |Vt|, size of
vocabulary (|V |) by the size of the tri-gram vocabulary (Vt). Given this matrix size, it is
impractical to keep it in memory, so an on-the-fly solution was implemented instead, i.e, the
tri-gram representation of a sentence is computed before fed to the network.

The neural network tensor diagram is presented in Figure 5.5, wherein a) shows the DSSM
model architecture and in b) shows the training architecture on top of the DSSM model. The
blue boxes represent graph operations, more specifically in this case TensorFlow operations,
while the arrows are the tensors connecting the different operations.

Following the implemented model architecture in a), the DSSM network takes as input a
tri-gram vector representation of a sentence (document or query). Then, three fully connected
layers, each with hyperbolic tangent activation, will project the tri-gram vector into a 128-
dimensional space.

Recalling that the idea behind this model is to learn how to project query-document
pairs that are relevant to a similar 128-dimensional vector. The training that is shown in
b), consists in compute the relevance probability for all the query-document pairs. However,
this is impractical to do for every pair in the collection, so an approximation is made by
using one relevant document and n irrelevant documents per query (NEG). Then, given the
approximated distribution and a true distribution, the cross-entropy loss is calculated and
the SGD optimizer will minimize such loss. Following the diagram in b) the true distribution
corresponds to the fixed vector {1, 0, 0, 0, 0} if n = 4.

The training process implemented here is similar to Algorithm 1, with the additional
step of training the DSSM model and use them to make the document projection on line 2. As
a result, the matrix De ∈ R(|D|×128) is created and each row corresponds to the precomputed
representation of a document by the DSSM model.

Likewise, the inference process is also similar to Algorithm 2, with the respective change
on line 2, in order to use the DSSM model to get the projection of the query.

The complexity order of the inference process, O(
dssm complexity︷ ︸︸ ︷
O(dssm)× |Q|+

dot product complexity︷ ︸︸ ︷
|D| × |E| × |Q| ), is

also similar to the AWE since the base algorithm is the same. The first term corresponds to the
complexity of computing the projection for all the queries and the second term corresponds to
the cosine similarity complexity between the queries and all the documents. So, the scalability
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Figure 5.5: Tensor diagram of the dssm model in a). In b) tensor diagram created to train the dssm
model. The blue color represents graph computations that were supported by the Keras
API, the arrows are tensors.

requirement is also not respected because the complexity order directly scales with the size of
the collection |D|. Based on the comparison of the complexity is also possible to infer that
this method will be theoretically the slowest.

Table 5.2: Hyperparameters chosen for the DSSM

Hyperparameters
|Vt| 48482

Activation function tanh
Optimizer SGD

learning rate 0.01

All the chosen hyperparameters are based on the original model and are presented in the
Table 5.2. Note that, for a tri-gram vocabulary of |Vt| = 48482, the number of trainable weights
of the DSSM becomes 48482×300+300+300×300+300+300×128+128 = 14673728 ≈ 14.6M
trainable weights. So, in theory, this model will be prone to easily overfit, due to the high
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number of parameters.

5.3 Neural ranking

The neural ranking module was designed to rank the top N documents, in a way that relevant
documents are ranked higher than non-relevant ones. This module implements a neural
retrieval mechanism that will return the top ten most relevant documents to a query. To
accomplish this the following requirements must be taken into consideration.

• Efficacy - The 10 retrieved documents must contain relevant documents to the query.
• Snippet based - The neural architecture of the model must be designed around the

idea that "a document is a composition of snippets". This way it is possible to directly
extract the relevant snippets of a relevant document, as will be explained more ahead.

The reason why efficiency was not taken into consideration is due to the fact that the
number of documents to rank (N), already ensures that these models will have an acceptable
inference time. Similarly, the scalability requirement was also dropped, since it can not be
applied because the number of documents (N) is already fixed.

The decision of including a Snippet based requirement reduces the available pool of
possible neural models. Nevertheless, that decision is motivated by the premise that a good
retrieval result should be the outcome of a set of relevant snippets present on a document. A
second motivation to consider this requirement is that allows the extraction of theses relevant
snippets in the next module.

score(d) = map@10(d) (5.5)

Similar to the fast retrieval model, Equation 5.5 is used to systematically test and find
the best neural retrieval mechanism to be implemented by this module. In this case, the score
is given by the map@10 metric and d are the N documents previously retrieved.

The eligible neural retrieval models, presented in Chapter 4, were DeepRank and HAR
since are the only ones that respect the Snippet based requirement. In the following
subsections are presented their implementation with the help of tensor diagrams, that for sake
of simplicity the batch/data dimension was not included. Additionally, the training
and inference process directly corresponds to the train and inference done by the deep model.

5.3.1 Implementation of DeepRank

The implemented DeepRank model, Section 4.2.2, follows the author’s architecture, summa-
rized in Figure 4.6. Firstly, let us define Q as the maximum number of query tokens, P as
the maximum number of passages per query token, S as the maximum number of snippet
tokens, and E as the size of the embedding vectors. So the model receives as input a query,
a set of snippets respectively aggregated by their query term and absolute position of
the snippet concerning the document. The snippets are aggregated at the input level to
simplify the aggregation step, which will appear later on. Then the model is divided into three
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complementary networks, the detection network, the measure network, and the aggregation
network, that operate sequentially over the input.

Given a query and a set of snippets per query term, the objective of the Detection
network is to create an interaction matrix between them, where each entry is computed by
the dot product of their embedding vectors. Since both embeddings are normalized the dot
product corresponds to the cosine similarity between the query and the snippet tokens.

Figure 5.6: DeepRank detection network. Q is the maximum number of query tokens, P is the
maximum number of passages per query token, S is the maximum number of snippet
tokens, and E is the size of the embedding vectors. The blue boxes correspond to native
Keras layers. Correspondent TensorFlow graph can be visualized in Figure B.1.

In Figure 5.6 is presented the tensor diagram of the detection network, that is mapped
to TensorFlow. In terms of network, first the embedding layer maps each token to the
respective embedding vector and them the similarity layer creates the interaction matrix.
For the embedding layer the Keras Embedding Layer13 was used, while the similarity layer
was implemented by extending Keras Base Layer14, the code can be visualized in Appendix
C Code 1. It is worth to mention that most of the queries or snippets are padded to the
correspondent maximum length, which implies that most of the interaction matrices are full
of zeros. This zero matrices must be ignored during the network, for that masking layers are
utilized to ignore them.

The measure network captures the most relevant matching signals for each interaction
matrix, then all the resulting signals of the same query term are aggregated into a final
representation.

The tensor diagram, presented in Figure 5.7, describes the operations of the computational
graph implemented in TensorFlow for the measure network. First, a 2d convolution with 3× 3
kernel is applied to the interaction matrix resulting in F feature maps, where F define the

13https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/Embedding
14https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/Layer
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Figure 5.7: DeepRank tensor diagram of the measure network. F number of filters and R output
dimension of the GRU. The blue boxes correspond to native Keras layers. Correspondent
TensorFlow graph can be visualized on Figure B.2

number of filters used. Then a Global Max Pool15 layer will select the higher value of each
feature map, resulting in a vector representation, ~p, with dimension F for each interaction
matrix.

Without loss of generality, note that the layer Masked Conv2D correspond to a custom
layer, code in Appendix C Code 2, because the masking mechanism in Keras was too generic
to be used in this model. So, for every interaction matrix with full zeros the Masked Conv2D
will ignore them by multiplying the output by zero. Also note that when a convolution is
applied to zero matrices, the result is the bias value for each entry in the resulting feature
map.

Continuing with the diagram flow, each absolute position of the snippet is transformed
by the reciprocal function, g(x), Equation 5.6, and is concatenated to the vector ~p. Then a

15https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/GlobalMaxPool2D?hl=en
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GRU will aggregate the vectors ~p that belong to the same query term, wi, creating the final
vector representation ~t(wi). This last step was included in the measure network, rather than
in the aggregation network as proposed in the original model since it facilitates the network
assembling and does not interfere with the model performance.

g(x) = 1
x+ 2 (5.6)

Finally, the aggregation network will group the vectors ~t(wi) by their respective query
term, wi, producing ~t. This step must take into consideration the importance of each query
term (wi), i.e, the vector ~t(wi) is weighted by the importance of the word wi. Then the final
vector ~t is used to produce a real number that corresponds to the query-document score.

Figure 5.8: DeepRank tensor diagram of the aggregation network. The blue boxes correspond to
native Keras layers. Correspondent TensorFlow graph can be visualized on Figure B.4

In Figure 5.8 is presented the tensor diagram corresponding to the implemented computa-
tional graph for the aggregation network. The Term gating layer is a custom layer, Appendix
C Code 3, that will infer the importance of each query term (attention weights) based on
their embedding vector. Then, it computes a weighted sum of ~t(wi), that is fed to a Dense16

layer that outputs a final score.
Note that, the gating mechanism implemented here differs from the original mechanism

described in Equation 4.13 since the authors used a trainable variable per vocabulary token.
However, the biomedical data has a rich vocabulary, which will result in an extremely large
trainable vector. So the implemented gating mechanism uses the embedding of each token
to directly compute the gating weights, this way as shown in the diagram, it only requires a
trainable vector with the size of the embedding vector.

The sequential connection of the three sub-networks previously presented, constitute the
DeepRank model, as shown in the tensor diagram in Figure 5.9.

16https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/Dense
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Figure 5.9: DeepRank tensor diagram.

To train this model is used the hinge loss, Equation 3.7, as suggested by the authors. This
loss compares the score of a relevant query-document pair directly to the score of an irrelevant
pair, so no implicit labels are required, i.e, each training sample correspond to the following
tuple (query-positive document, query-negative document). As a consequence, it was necessary
to implement this loss as a tensor operation and manually add it to the graph, since it was
not supported by the tensorflow.keras library. This process can be visualized in the tensor
diagram Figure 5.10, where the two DeepRank models correspond to the same model, i.e,
they share the same training variables and operations.

Figure 5.10: DeepRank tensor diagram of the training architecture.

Recalling the system pipeline, this model occurs after the fast retrieval method with
the purpose to re-rank its results, which means that the available documents for the negative
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sampling must be withdrawn from these results and not from the entire collection since it is
more similar to what the model should expect during inference time. However, these results
already carry strong matching signals, ensured by thefast retrieval method, which can
hamper the model training. So, as suggested in [76], some completely irrelevant documents
were also added as part of the negatives documents. As a result, a negative document can be
sampled from:

• A set with partially relevant negative documents, that corresponds to the documents
returned by the fast retrieval method that are not relevant to the query.

• A set with irrelevant negative documents, that corresponds to the documents from the
collection that do not share any matching signal with the query.

Table 5.3 shows all the chosen hyperparameters concerning the implementation and training
of the model. The resulting model with this configuration of hyperparameters has a total of
29.1 thousand trainable weights. Note that the weights of the embedding matrix are discarded
since they are not trained. The reason to not train the embedding matrix is to keep the focus
on the model, so that can be compared with others.

Table 5.3: Hyperparameters chosen for the DeepRank

Hyperparameters
Q - number max of query tokens 13

P - number max snippets per query token 5
S - number max of snippet tokens 15
E - Size of embedding vector 200

F - number of convolutional filters 100
R - number of recurrent units 56

Number of Partially relevant negative samples 2
Number of Irrelevant negative samples 3

Activation function Selu [77]
Optimizer AdaDelta [10]

Learning rate 2
Regularization l2 = 0.0001

Train embedding No

DeepRank variation

Although the DeepRank respects the snippet based requirement, it is challenging to extract
the weights of each snippet with respect to the document final score, i.e, it is challenging
to know what are the snippets that most contribute to the final score, because the result
of the GRU aggregation is a vector, which only the model can interpret. Inspired by the
inner-workings of the attention networks [78], a solution to this problem is to replace the
GRU snippet aggregation by a self-attention snippet level aggregation, were the attention
weights will be directly related to the relevance of each snippet. The tensor diagram presented
in Figure 5.11 shows the replacement of the GRU layer by the self-attention layer in the
measure network. From now on, this variation will be refereed as Self-Attn-DeepRank.
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Figure 5.11: Snippet of tensor diagram of measure network with self-attention layer.

The implemented self-attention layer follows Equation 2.15 and the align model is described
by Equation 5.7. The code of this layer is shown in Appendix C Code 4 and the respective
tensor diagram in Figure 5.12.

ai = vT
1×R
· tanh

(
W

R×F+1
· ~p(i)
F+1×1

)
(5.7)

Here, the attention weight ai correspond to the weight of the i-th passage vector ( ~p(i)) for
each query term.

Figure 5.12: Tensor diagram of self attention layer. Correspondent TensorFlow graph can be
visualized in Figure B.5

In this tensor diagram, for sake of simplicity, it is used the dimension F ′ that corresponds
to F + 1, i.e, F ′ = F + 1. R is an intermediate dimension and represents the size of the
attention vectors. The flow of this diagram directly follows Equations 2.15 and 5.7.

Finally, this variation was trained with the same architecture and hyperparameters of the
original. The Self-Attn-DeepRank model has a total of 11.6 thousand trainable weights, which
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compared with the original is less than half of the training weights. So, this reduction as the
potential to improve the model’s inference times.

5.3.2 Implementation of Hierarchical Attention Retrieval Model

The implemented HAR model follows the author’s description and Figure 5.13 presents the
respective tensor diagram that is implemented in TensorFlow. The blue boxes correspond to
native Keras layers that were used, while the other boxes correspond to custom operation or
layers that were implemented from scratch.

Figure 5.13: Tensor diagram of the complete HAR model. The blue boxes correspond to native
Keras layers. Correspondent TensorFlow graph can be visualized in Figure B.6.

To better understand the tensor diagram of the model, lets us define Q as the maximum
number of query tokens; Ds as the maximum number of sentences in a document; S as the
number maximum of tokens in a sentence; E as the size of the embedding vector and H as
an inner dimension of the model that define the number of GRU units and attention size.
Additionally, can be useful to recall the data flow described in Section 4.2.3 to get a better
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interpretation of this tensor diagram.
Note that the Bidirectional GRU that is used to encode the query embeddings is different

from the one used to encode the sentence embeddings. Additionally, the implementation of
the Self-Attention Layer was already presented by the tensor diagram in Figure 5.12, while
the implementation of the Cross Attention Layer is described in the tensor diagram, Figure
5.14.

Figure 5.14: Tensor diagram of the Cross Attention Layer. Correspondent TensorFlow graph can be
visualized in Figure B.7.

This diagram shows the operations needed to create the similarity matrix, that is then
used to compute the D2Q and Q2D attention matrices, which corresponds to Equations 4.14,
4.15 and 4.16.

The same exact train architecture used by the DeepRank model was utilized to train the
HAR model, which correspond to the implementation of the hinge loss as a tensor operation,
shown in Figure 5.15.

Table 5.4 shows the adopted hyperparameters to train this model and following this
configuration the resulting model has a total of 221.2 thousand trainable weights. So, this
model has almost eight times more trainable weights than the DeepRank, which will become
more easily to overfit. To cope with this problem, it was added dropout layers between the
dense layers and l2 regularization to the loss.
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Figure 5.15: Tensor diagram of HAR of the training architecture

Table 5.4: Hyperparameters chosen for the HAR model

Hyperparameters
Q - Number max of query tokens 13

Ds - Number max of document sentences 40
S - Number max of sentence tokens 13

E - Size of embedding vector 200
H - Attention and Bi-GRU dimension 100

Number of Partially relevant negative samples 3
Number of Irrelevant negative samples 6

Activation function Selu [77]
Optimizer AdaDelta [10]

Learning rate 2
Regularization l2 = 0.001 and dropout (dr = 0.2)

Train embedding No

5.4 Snippet extraction and visualization

The snippet extraction module was designed with the intent to discriminate the information
inside a document since, usually, only small portions of a document are relevant to a query. So
the idea is to highlight the most important information inside a document to a given query.
This module takes advantage of the snippet based requirement in the previous module, to
facilitate the extraction of the most relevant information in the form of snippets.

This snippet extraction was only implemented to the Self-Attn-DeepRank and HAR models
since the original version of the DeepRank uses a GRU layer to aggregate the snippets to
a single vector, which requires a more deep analysis to understand how the most relevant
snippets correlate with the produced recurrent vector.

For the Self-Attn-DeepRank model, this correlation can be directly extracted by looking
at the attention weights produced during the snippet aggregation. Besides that, the attention
weights of each query term are also taking into consideration, since the snippets are aggregated
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by these query terms. So, given a document and a query let us define the attention weights of
the self-attention layer as Adrqs

Q×P
and the attention weights of the term-gating layer as ~aqdr

Q×1
, where

Q is the number of query terms and P the number of snippets per query term. Note that, the
self-attention layer is applied to each query term, so Adrqs corresponds to the concatenation
of the snippet attention weights for all the query terms, i.e, Adrqs represents a concatenation
of the local attention of the snippets for each query term Adrqs

Q×P
= { ~aqs0

dr

P×1
; ...; ~aqsQ

dr

P×1
}. So, to

get a global attention weight with respect to each snippet an element-wise multiplication is
performed between Adrqs and ~aq

dr, Equation 5.8.

Adrs
Q×P

= Adrqs
Q×P

⊗ ~aq
dr

Q×1
(5.8)

The element-wise multiplication, ⊗, can be seen as a normalization over each row of
Adrqs with respect to the attention given for each query terms. Now each weight in Adrs will
approximate the global importance that is given to each snippet. In practice, only the top
ten most important snippets are extracted from Adrs , so a more normalization step is required
to ensure that the attention weight is in probabilistic distribution format, Equation 5.9.

~as
10×1

=

10×1︷ ︸︸ ︷
top(As, 10)∑

x ∈ top(As,10)
x

︸ ︷︷ ︸
1×1

(5.9)

Here, the matrix Adrs can be seen as a flat vector and the top as a function that will
retrieve the ten higher values. Now, the vector ~as corresponds to the attention weights of the
ten most relevant snippets in the perspective of the model.

In the case of the HAR model, the snippet importance can be directly inferred from the
attention weights of the document level self-attention layer. So, given a document and a query
let us define the attention weights of the document level self-attention layer as ~ahard

Ds×1
and the

attention weights of the query self-attention as ~aharq
Q×1

, where Ds is the maximum number of

snippets. As previously mentioned, only the top ten most important documents are extracted,
which means that the previously normalization step, Equation 5.9, is also applied to ~ahard

resulting in ~ahard
10×1

.

The snippets are displayed with a blue background color in a hsl17 format, where the
lightness (l) value is inversely proportional to the value of the attention weight, i.e, higher
attention weights have lower light values (darker color). The idea is to facilitate the distinction
of the relative importance of each snippet, this way the most important snippets are presented
by a progressively darker blue. In a similar way, the query attention weights are presented by
a red background color in a hsl format.

17https://www.w3schools.com/colors/colors_hsl.asp
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5.5 System as web application

This section presents web application that exposes the system pipeline in an online environment
that can be accessed by a web browser. This is an extension of the current developed work that
was not originally planned. Figure 5.16 shows an overview of the implemented architecture in
order to expose the system pipeline. The front-end was built using React18, because offers
a way to encapsulate the code in components. So in practice, the search mechanism was
encapsulated by a React Component19 that can be reused in different web pages. For the
back-end was used the Flask20 micro-framework that works in Python, which facilitates the
integration with the created system since it is also written in Python.

In a more detailed way, the Flask Server offers a route to access the html pages and another
route (/api) that executes the system pipeline for a given query. In the /api route the query
is sent in JSON format on the body of a POST request.

Figure 5.16: Overview of the web application components.

As an additional note, the BM25 version that runs on elastic search was used since has
better inference times as will be shown later on.

18https://reactjs.org/
19https://reactjs.org/docs/react-component.html
20https://github.com/pallets/flask
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CHAPTER 6
Experiments and Results

This chapter will present the experiments and the results for each of the three modules and the
overall experimental result for the system.

6.1 Biomedical data

As mentioned before, the proposed system will be applied to the biomedical data, however, it
is generic enough to be adapted to other domains. The major challenging of working with
biomedical data is the extensive and specialized vocabulary that the models must take into
consideration, i.e, comparing with more generic retrieval tasks, beyond the ordinary English
vocabulary it is added a large specialized vocabulary, which can range from molecules names
to DNA sequences. This large vocabulary presents an even greater challenge to the neural
models since it increases the difficulty of creating distributed vector representations of the
words (embeddings).

6.1.1 BioASQ dataset

BioASQ1 is a public competition, where the organizers promote annual challenges on biomedical
semantic indexing and question answering (QA), currently, this competition is sponsored by
Google. The biomedical semantic index, also known as task A, consists of annotating articles
with classes from MeSH2, which is not addressed in this dissertation. On the other hand the
question answering, task B, is subdivided into two phases; phase A involves the information
retrieval problem, where is asked to retrieve the most relevant documents, snippets, RDF
triples or concepts to a given question; phase B involves the extraction or generation of an
answer for a query given the previous retrieved information. For both tasks, the BioASQ
organizers make available a training set that the competitors can use to train their models.
More specific for the document retrieval task B phase A, that is the focus of this dissertation,
the training data consist on a set of queries with the correspondent relevant articles selected by

1http://bioasq.org/
2https://www.ncbi.nlm.nih.gov/mesh
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biomedical experts from an annual PubMed/MEDLINE repository. In terms of competition,
the BioASQ provides a set of test queries, in pre-established date, and the results can be
submitted, online, in their platform to be evaluated.

This year is the seven edition of the BioASQ challenge. The released training set contains
a total of 2747 queries and the article collection is the 2018 PubMed/MEDLINE repository.
Beyond that, the organizers released five test sets3 with 100 queries each. For each query, the
ten most relevant articles should be retrieved from the collection. In terms of evaluation, the
retrieved articles are first evaluated using the following metrics Average Precision, Recall, F1,
Map@10 and GMAP. In a later phase, the biomedical experts will inspect each non-relevant
article to see if it should be considered as relevant.

As an additional note, since the third edition of the BioASQ challenge the used Map@10
metric, Equation 6.1, was slightly modified according to BioASQ Evaluation Guidelines [79].

BioASQMAP@10 = 1
|Q|

|Q|∑
j=1

1
10

10∑
k=1

Precision@k × rel(k)︸ ︷︷ ︸
Average Precision

(6.1)

Here, the MAP is computed at ten documents, since is the maximum number of documents
allowed by the BioASQ. Another important detail is the fraction 1

10 that is also fixed, this
results in an additional penalization when compared to the original MAP function, because
the number of relevant documents in the dataset is on average less than ten for each query.

6.1.2 PubMed

PubMed4 is a free online search engine, available since 1996, that currently contains about 30
million citations of biomedical literature from MEDLINE5, life science journals, and online
books. Being the MEDLINE database the primary source of indexed citations. Annually the
MEDLINE/PubMed6 repository is released in xml format with all the citations indexed until
that respective year. The publicity available EDirect7 software was used to download the
2018 annual repository, that is the document collection for the BioASQ dataset. The 2018
MEDLINE/PubMed repository has almost 31 millions articles of which only 19 million are
composed by title and abstract.

Table 6.1: Number of articles in 2018 MEDLINE/PubMed dump.

MEDLINE/PubMed
Total number of articles 30 862 349

Number of articles with title and abstract 18 824 355

3http://participants-area.bioasq.org/Tasks/7b/phaseB/
4https://www.ncbi.nlm.nih.gov/pubmed
5https://www.nlm.nih.gov/bsd/medline.html
6https://www.nlm.nih.gov/databases/download/pubmed_medline.html
7https://dataguide.nlm.nih.gov/edirect/overview.html
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6.2 Data preprocess

In this section will be addressed the preprocessing steps of the queries and articles, which
involves the tokenization and the embedding vectors.

6.2.1 Tokenization

The tokenization is a process that transforms a sentence into a sequence of tokens, where
each token should correspond to a word, a number or a specific term/symbol. Normally, a
tokenizer uses a parser with a set of pre-established rules to transform a sentence into the
tokens. For example, a simple rule can be: "split by spaces" and when applied to the sentence
"Bob is smart" will result in the following sequence of tokens "Bob", "is", "smart".

Since the tokenization process occurs before the creation or training of the retrieval models,
recalling Figure 3.1, the quality of these tokens will directly influence their performance. So the
correct choice of tokenizer is of great importance, however, it is challenging given the extensive
biomedical vocabulary. The following works [80], [81] also reinforces this idea and try to
alleviate the burden of this choice by showing several standard tokenizers applied to biomedical
data. An example, it is the chemical substance "4-epoxy-3-methyl-1-butyl-diphosphate" that
can result in different tokens depending on the tokenizer rules.

This dissertation uses two tokenizers, the Bllip8, that will be designated as tokenizer 1
and the Regex, that will be the tokenizer 2.

The Bllip [82] is a two stage statistical parser, publicly available9, that produces a
tokenized tree with Part-of-Speech (POS) tags. However, for this dissertation, only the
sentence splitting rules are used to make the tokenization. In the end, this tokenizer will
lower-case the sentence and then apply the splitting rules, that tries to keep all the words intact,
only some characters like commas, parenthesis and punctuation are ignored or transformed.
With this parser the tokenization of "4-epoxy-3-methyl-1-butyl-diphosphate" will result in a
unique token ("4-epoxy-3-methyl-1-butyl-diphosphate"). Additionally, each produced token is
stemmed using nltk stem10. The stemming is a process for reducing a group of similar words
to the same root using heuristics, e.g, walked, walks, walking are reduced to the word walk by
removing the suffixes. The stemming will sacrifice the loss of the words syntax in order to
reduce the vocabulary size.

The Regex tokenizer utilizes an alphanumeric regular expression to split the sentence, this
is a more simplistic approach and is intended to create small vocabularies without modifying
the tokens. For example, with this tokenizer the complex word "4-epoxy-3-methyl-1-butyl-
diphosphate" will result in the sequence of tokens "4", "epoxy", "3", "methyl", "1", "butyl" and
"diphosphate".

Both tokenizers were applied to almost 19 million articles that composes the collection and
Table 6.2 shows the number of unique tokens produced by each tokenizer, i.e, the vocabulary
size. In a first analysis, the number of unique tokens is extremely large, which supports the

8http://bllip.cs.brown.edu/resources.shtml#software
9https://github.com/BLLIP/bllip-parser

10https://www.nltk.org/api/nltk.stem.html
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Table 6.2: Size of the resulting vocabulary for the bllip and regex tokenizer

Tokenizer Vocabulary size
Bllip tokenizer 1 11 108 738
Regex tokenzer 2 4 291 793

idea that biomedical data has an extensive vocabulary. To better understand these numbers a
second analysis was made, where it was added a minimum word frequency restriction to the
produced vocabulary. In other words, the size of the vocabulary was analysed as a function
of the minimum token frequency, which mean that only the tokens that appear at least a
specific number of times were included in the tokenization. In Figure 6.1 it is shown the
bllip vocabulary, on the left, and the regex vocabulary, on the right, both as a function of a
minimum token frequency from 1 to 20.

Figure 6.1: Comparison of the minimum number of occurrences of word for each tokenizer.

In both cases, the function follows a reciprocal behaviour, which indicates that most of the
tokens are extremely rare in the collection. For example, in the case of the bllip tokenizer with
a minimum token frequency restriction of 20, the resulting vocabulary has only 744 thousand
unique tokens, as shown in Table 6.3.

Table 6.3: Size of the vocabulary with minimum token frequency restriction for the bllip and regex
tokenizer

Tokenizer Vocabulary size with restriction at 20 Size reduction (%)
Bllip tokenizer 1 744 567 1490
Regex tokenizer 2 502 263 850

A common practice in Natural Language Processing (NLP) tasks is to only use the most
frequent tokens since it is computational more efficient. For example, instead of using the
bllip vocabulary, it is preferable to use the bllip vocabulary with a restriction at 20, because it
produces a smaller vocabulary. However as mentioned before, for the retrieval task the most
important signal is the exact match between the query and the document tokens, which is
directly injured by the reduction of vocabulary. Additionally, the matching signal between
less frequent terms is usually the most important one to be captured since is associated with
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more important words. For this reason, the complete vocabulary without restriction must be
chosen to process the data for the retrieved models.

6.2.2 Collection and BioASQ statistics

The two tokenizers were applied to the entire collection and in Figure 6.2 is shown the
distribution of the number of tokens in the documents (document length), using a histogram
with the bin set to 500.

Figure 6.2: Distribution of the number of tokens by documents for both tokenizers. Histogram
constructed with bin = 500

Both distributions resembles a gausian distribution and when compared, the bllip on
the left with regex on the right, it is clear that the bllip produce documents with lesser
tokens. This is explained by the fact that the regex tokenizer usually splits complex words in
multiple tokens, recalling the "4-epoxy-3-methyl-1-butyl-diphosphate" example. On average,
the documents tokenized with bllip have 133 tokens. On the other hand, the documents
tokenized with the regex have 208 tokens.

The same analysis was made for the BioASQ queries on the training data and the same
conclusion is verified, as shown in Figure 6.3. On average the queries tokenized with bllip
have 5 tokens and the queries tokenized with regex have 9 tokens.

Figure 6.3: Distribution of the number of tokens by queries for both tokenizers. Histogram constructed
with bin = 20.
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6.2.3 Embeddings

For both tokenizer, the respective embedding vector was obtained by using the pre-trained
fasttext model published by Zhang et al. [83]. For each token in the vocabulary, the fasttext
model was able to compute the correspondent embedding vector, as shown in Section 3.2.5. The
authors trained the fasttext model on biomedical data to create a 200-dimension embedding
vector for each word and sub-word. For the training data, they used the PubMed/MEDLINE
collection and clinical notes from MIMIC-III Clinical Database 11. The model is available on
github12.

Alternatively, the word2vec algorithm could also be used to learn the embedding vectors.
However, due to time limitation, this alternative would not be feasible. Furthermore, would
even be less robust, since any change in the vocabulary would imply the rerun of the word2vec
algorithm.

6.3 Evaluation methodology

Before the evaluation of the general system, an evaluation of each individual module is
performed, in order to decide the respective retrieval model that will power each module. The
chosen dataset was from the BioASQ competition.

In a first stage, during development, an 80% train and 20% validation split methodology
for the BioASQ training data was followed resulting in 2498 and 549 queries respectively. The
validation split was used to find the best fast retrieval models and neural models. In a second
stage, the BioASQ testing data from this year was used to evaluate the overall system and
compare with other submission/systems.

To facilitate the testing and validation between different models, a testing framework
was created. This will ensure that all the models are validated/tested in a similar way. In
practice, this framework is accomplished by ensuring that all the created models implement a
common interface, ModelAPI, that will offer a systematic way of testing and a unified way of
interacting with all the neural an non neural models. The ModelAPI interface, presented as a
snippet in the Appendix C Code 6, covers all the basic tasks that each model should need,
i.e, doing predictions, training if applicable, save/load their state and perform an evaluation
following a set of predetermined metrics.

6.3.1 Hardware

All the training and tests were run on a server, Table 6.4 shows the server specifications.

11https://physionet.org/physiobank/database/mimic3cdb/
12https://github.com/ncbi-nlp/BioSentVec
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Table 6.4: Server specifications

Server
CPU Intel(R) Xeon(R) CPU E5-2670 v3

cores/threads 12/24
base/turbo clock 2.3/3.1 GHz

RAM 192 GB

6.4 Fast retrieval Results

Following the methodology present in Section 5.2 the first step was to choose a suitable value
of N . For that, an empirical evaluation was performed based on the execution times of the
fast and neural retrieval models. In theory, different values of N should not affect the fast
retrieval models in terms of time efficiency.

In Table 6.5 is shown the average execution time per query over a total of 100 queries,
that were registered for the following values of N ∈ [1000, 2500, 5000]. The execution time
concerns the elapsed-time taken by the algorithm to compute the score for all the documents.
The sorting time is the time taken to sort the scores of the retrieved documents. For the
neural retrieval model, the sorting time was not noted because it was negligible, around 1ms.

Table 6.5: Record of empirical observations for different values of N

Overall Average Time per query (seconds)
Models N=1000 N=2500 N=5000

Execution time Sort time Execution time Sort time Execution time Sort time
BM25 2.27 1.81 2.31 1.86 2.29 1.91
AWE 0.68 0.73 0.67 0.73 0.68 0.73

AWE-TFIDF 0.67 0.75 0.68 0.75 0.68 0.76
DSSM 0.28 0.61 0.28 0.60 0.29 0.61

DeepRank 4.12 - 9.71 - 20.10 -
Self-Attn-DeepRank 3.94 - 9.52 - 18.86 -

HAR 1.93 - 5.09 - 9.33 -

As expected, the execution times of the fast retrieval were not affected by different N .
However, unlike expected, the BM2513 was the slowest of the fast retrieval models, which
contradicts the intuition given by the complexity analysis. The explanation for this is that the
BM25 executes one query at a time, while the others fast retrieval models use linear algebra,
Equation 5.4, to compute the score for multiple queries at the same time. So the efficiency
of these linear algebra computations improves their execution time. The fastest of the fast
retrieval models was the DSSM model, due to a lower dimensionality (128) when compared to
both AWE (200).

For the neural retrieval models, it is notable a linear penalization of the execution time
in function of N , which reinforces the idea of including the filter module as a first step into
the pipeline. Another interesting observation is that the Self-Attn-DeepRank has half of the
parameters of the DeepRank. Therefore it was expected to be considerable faster. However,

13To be comparable with the others, the loading times of the inverted index were discarded, but as a side
note they took approximately 50s each.
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this is not verified, which indicates that the convolution layer must be the main reason for
the higher execution time of the DeepRank model14.

Continuing with the problem of finding an acceptable value of N , the next step is to
evaluate, in terms of recall, the fast retrieval models for the same set of N values. Table 6.6
shows the recall values computed over the validation set of the training BioASQ data. For
the BM25 and both AWE is shown the utilized tokenizer with respect to Table 6.2.

Table 6.6: Fast retrieval models results for different values of N in the validation set.

Fast Retrieval Models Recall
N=1000 N=2500 N=5000

BM25 (tokenizer 1) 0.832 0.875 0.908
AWE (tokenizer 2) 0.251 0.322 0.390

AWE TF-IDF (tokenizer 2) 0.256 0.352 0.444
DSSM 0.041 0.061 0.077

As expected, the value of N is proportional to the value of the recall, which means that
higher values of N will give a better chance to the neural model to get the best possible
results, since it will score more positives documents. On the other hand, small values of N
will give the possibility to train a higher number of models, which facilitate the fine-tuning
process. Based on these considerations, when comparing the rate of growth of the execution
times of the neural model and recall values of the fast models in function of N , it becomes
clear that it may not be worth it to chose a bigger value for N , since the time penalization in
the neural model would be too high. In the end, a compromise was made, an N=2500 was
the chosen value.

Now that the value of N is established let us focus on choosing the best fast retrieval
model. By looking at the results, it is clear that the BM25 was, by some margin, the best
model, which reinforces the importance of the exact match signal, in retrieval tasks, between
a query and document terms. On the other hand, the semantic match approaches fail to
extract this type of exact signal and hence becoming not suitable for this specific task. In
general, the results clearly show the difficulty of this retrieval task, recalling that the PubMed
collection has almost than 19 millions of documents.

All the AWE variations had a similar performance, with a bit of gain to the TF-IDF
variation. The overall results were worst than the BM25, this is easily explained by the
negligence of the exact match signal. Another recurrent problem with this model is the
number of words per document, that is a lot higher than the number of words per queries.
So the document has more embeddings during the computation of their average, which can
negatively affect the document final representation and harm the similarity computation.
Another evidence that supports the previous analysis, it is the fact that the TF-IDF weighting
system boosted the results, which means that the TF-IDF positively shifted the query
representation (centroid) to be closer in terms of cosine similarity to the representation of the
relevant documents.

14To verify this affirmation both models could be tested in GPU environment, which smooth the convolution
times.
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The DSSM had the worst results, which indicate that during training the model did not
learn a meaningful way of projecting a query and a relevant document. The reason behind
this observation can be related to the 128-dimensional space that is created to project both
queries and documents. This dimension may be too small to condense all the information
present in a document, which is also related with the input layer that uses bag-of-trigram to
represent an entire document. Another problem is the higher number of trainable variables
and the lack of training data when comparing it with the total number of documents in the
collection.

Based on the analysis of the previous results, both AWE models were improved. In this
new version, a greater emphasis was given to the less frequent words, supported by the idea
that less frequent words are generally more important in retrieval tasks. The improvement
consists in creating a new tokenizer, that will be designated as "tokenizer 3", that only outputs
a token if has a frequency less than 70000015, i.e, if appears less than 700000 times in the
data collection. So this tokenizer will not tokenize the most frequent words and the resulting
vocabulary has 4291062 words. The previous recall test was performed to this new version and
the results are shown in Table 6.7. In parenthesis is the relative improvement, in percentage,
of the recall score with respect to its previous one.

Table 6.7: Improvements of the AWE models with the tokenizer 3 over the validation set.

Fast Retrieval Models Recall (improvement %)
N=1000 N=2500 N=5000

AWE (tokenizer 3) 0.371 (47%) 0.470 (46%) 0.549 (41%)
AWE TF-IDF (tokenizer 3) 0.424 (66%) 0.529 (50%) 0.606 (36%)

In general, the AWE model receives a boost of almost 50%, which is extremely positive
taking into consideration that the tokenizer 3 only has less 731 tokens when comparing with
the tokenizer 2. Intuitively the boost seems to be related with the fact that this tokenizer
produces shorter sentences while keeping the most important information.

Finally, the model that has the higher score given by Equation 5.1 is the chosen to power
the fast retrieval module, this ensures that the model fulfil all the module requirements,
defined in Section 5.2. For the computation of the score, it is needed to define the value of
N and the maximum acceptable execution time T . N was already set to N = 2500 and it
was defined that the maximum acceptable time will be five seconds, T = 5. So, Equation 5.1
becomes s(d) = recall@2500 because all the models times are inside the interval ]0, 5]. Then
the ideal model is the BM25 with a score of 0.875.

On a side note, the PubMed collection was also indexed by the elastic search16 engine
using the BM25 weights. This way it possible to validate the implementation of the BM25 and
perhaps compare the performance. The elastic search was already running and configured in
another machine, which means it was only needed to index the collection. Table 6.8 presents
a comparison between the implemented BM25 version (1) and the elastic search version in

15This value was fine-tunned in the training set
16https://www.elastic.co/
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terms of index times, search times and recall@2500 score. For the elastic search version,
the times were recorded with (2) and without cache (3). From the results, the value of
recall@2500 metric validate the implementation presented in this dissertation, note that the
same BM25 hyper-parameters were used in both versions. In terms of times, it is shown that
the implemented version is extremely competitive with the elastic search version without the
caching mechanism17. At last, the average search time test is a bit biased, since it corresponds
to the average of 100 queries and in this case, the time of an inverted index load in (1) are
less severe because the index is reused for all the 100 queries, which "hides" the loading times.
Although not recorded, if the inverted index for the version (1) was kept in memory the
theoretical average search time will be 2.31 + 1.86 = 4.17s18, which are a lot higher than the
version (3).

Table 6.8: Comparison between the implemented BM25 ranking function and elastic search BM25
version. The average search time is measure in a total of 100 queries.

BM25 Version Indexing time Average search time RECALL@2500
Implemented BM25 (1) 02h18m28s 8.82s 0.875

Elastic Search (BM25) without cache (2) 02h17m37s 10.75s 0.875
Elastic Search (BM25) with cache (3) - 0.39s -

6.5 Neural Ranking Results

The neural models were trained, as a ranking task, over the 2500 previously retrieved
documents for each query in the BioASQ training set. Then their efficacy is evaluated in
terms of MAP@10 and recall@10 using the BioASQ validation set. Following Equation 5.5,
the best neural model will be the model that has a higher value of MAP@10.

In the following subsections, it is analysed the training behaviour of each neural model.
For that, it is presented an evolution of the MAP score and loss value during the training
iterations (epochs). The MAP value was only computed on a subset of the validation set
to mitigate the higher inference times. This subset corresponds to just 15% of the original
validation set resulting in a total of 82 queries, which are enough to give an idea of the model
capability for generalizing to new data. Additionally, the MAP score is measure on intervals
of 10 epochs since even with only 82 queries, it would be impractical to measure in every
epoch due to time limitations. For the loss value, it is presented the maximum, average, and
minimum value for each epoch on the training set. Also note that the validation loss is not
presented since it does not provide useful information about the model performance. This
affirmation is sustained by the fact that the model performance should be measured by its
final ranking order, however, the hinge loss only measures a relative preference between two
documents to the same query.

As a way to clarify the terminology, in this work, an epoch is considered as a complete run
over the training set, since the data is fed in batches that are smaller than the training set,

17This mechanism also includes the caching of the FileSystem
18This are the recorded average values presented on Table 6.5
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each epoch will correspond to several steps with a fixed batch size. The training of
each neural model was done in an interactive way, e.g, initially, the model could be trained
only on 50 epochs, then based on the results more epochs were added until it converges to a
satisfactory minimum in terms of loss. The number of samples per batch was chosen based
on the trade-off of efficiency of training and the noise of the gradients. Very briefly, a big
batch size severely increases the training time and the resources needed, while with the small
batches, the model will be more susceptible to bad weight updates due to poor data.

6.5.1 DeepRank training behaviour

As presented in Table 6.9, the DeepRank model was trained over a total of 230 epochs,
where each epoch has 8 steps with a batch size of 256, i.e, the model weights are updated
230× 8 = 1840 times.

Table 6.9: Additional information of the training hyperparameters for the DeepRank model

Additional training information
Epoch 230

Step per epoch 8
Batch size per step 256

Total training time (h) 3h48m57s
Total evaluation time (h) 5h05m13s

Figure 6.4: On the left, it is the evolution of the map score in the subset of the validation set and on
the right, the evolution of the loss during training for the DeepRank model.

From Figure 6.4, it is possible to see that the model quickly converges after 30 epochs, in
both validation and loss graph, then the values seem to stabilize. Additionally, more advanced
techniques could also be applied, like learning rate decay, to try to get a better minimum.
However, in this work, this was not adopted because it will difficult the comparisons between
the models since it introduces more variation between the models.

An important note to take into consideration during the loss analysis, it is that the average
value of the loss corresponds to 8 values from each step of an epoch, so for the same epoch
the final step value of the loss is 8 iterations ahead of the first one, since the model already
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performed 8 weight updates. This also explains the fact that in the epoch 1 the maximum
and minimum values are so separated.

6.5.2 Self-Attn-DeepRank training behaviour

The same training hyperparameters were chosen to this model, as shown in Table 6.10, which
also facilitates the comparations between the two models. In terms of total time, this model
was marginally faster than the previous one, once again, the convolution operation should be
the operation that takes longer to compute, which explains the proximity in terms of times.

Table 6.10: Additional information of the training hyperparameters for the Self-Attn-DeepRank
model

Additional training information
Epoch 230

Step per epoch 8
Batch size per step 256

Total training time (h) 3h42m16s
Total evaluation time (h) 4h59m14s

Figure 6.5: On the left, it is the evolution of the map score in the subset of the validation set and on
the right, the evolution of the loss during training for the Self-Attn-DeepRank model.

In Figure 6.5 and also comparing with the loss graph of the previous model, it seems that
this model converges a bit faster in terms of loss function, just after 20 epochs. However, in
terms of performance takes longer to stabilize, this behaviour was unexpected but could be
related with some variance from the negative sampling.

6.5.3 HAR training behaviour

For the HAR model, the 230 epochs were not enough based on the loss values Figure 6.6, so
more epoch was added in an incremental way making a total of 900 epoch. The same batch
size was used, which means that during training this model performed a total of 900×8 = 7200
weight updates. Due to a considerably higher number of iterations, the total training and
evaluation times were also a lot higher.

From the loss graph, on the right, it seems that the model could be trained for more
iterations. However as previously mentioned, this model is more prone to overfit so the
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Table 6.11: Additional information of the training hyperparameters for the Hierarchical Attention
Retrieval model

Additional training information
Epoch 900

Step per epoch 8
Batch size per step 256

Total training time (h) 8h19m12s
Total evaluation time (h) 10h26m04s

Figure 6.6: Graphic.

presented loss behaviour can be an indicator of overfitting as opposed to lake of training
iterations. On the other hand, the poor results on the validation set also support the idea of
overfitting, since it was not capable of generalizing to new data. But this will be discussed
more ahead.

6.5.4 Neural models comparison

In this subsection, the best neural models19 that were obtained during training will be
evaluated on the complete validation set. This evaluation uses the MAP@10 and recall@10
metrics and the results are presented in Table 6.12. Additionally, the BM25 was also included
in the results table to verify if, indeed, the neural retrieval models were capable of improving
its ranking order. The publicly available BioASQ-Evaluation20 Code, written in java, was
used to compute the MAP and recall values. This way is ensured that the best model is
chosen based on the BioASQ metrics, which uses a more penalize version of MAP, Equation
6.1.

From the results, both variations of the DeepRank model achieved an improvement of 10%
over the previous ranking order (BM25 result), which, curiously, it is also the same percentage
of improvement that the DeepRank authors got on the MQ2007 dataset. It should also be
noted that the Self-Attn-Deeprank, which has half of the training parameters of the DeepRank
were capable of achieving the same performance.

19The best model during train, it corresponds to the model that has the higher MAP score.
20https://github.com/BioASQ/Evaluation-Measures/tree/master/flat/BioASQEvaluation
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Table 6.12: Evaluation of the neural retrieval models in the complete validation set

Models MAP@10 RECALL@10
BM25 (baseline) 0.153 0.330

DeepRank 0.168 (10%) 0.356 (8%)
Self-Attn-DeepRank 0.168 (10%) 0.358 (9%)

HAR 0.036 0.100

As suspected, the HAR model performs poorly, possibly due to the lack of training data.
To confirm this hypothesis, the same metrics were performed using this time the training
set. The results were MAP@10 = 0.176 and recall@10 = 0.520, which clearly confirms the
overfitting of the training data. Due to these results, this model will be discarded for the
following analysis.

As suggested in the literature [56], a usual way to compare different retrieval models
is to analyse the precision-recall curves. In practice, for each model, the precision of a
model is plotted in function of 11 recall levels {0, 0.1, ..., 1}. Normally the precision must be
interpolated, since it may not be possible to obtain the exact value for a given recall level,
Equation 6.2.

Pinterpolated(r) = maxr′≥r(Precision(r′)) (6.2)

Here, for a given recall level (r) the maximum value of precision found in the interval [r, 1]
is returned.

Figure 6.7: Graphic with precision-recall curves at eleven recall levels for both DeepRank variations
and BM25. The precision was computed over the 2500 documents that correspond to
the complete ranking order produced by both neural models.

In Figure 6.7 are presented the curves for the DeepRank model, in yellow, the Self-Attn-
DeepRank, in green, and the BM25, in blue. As shown both lines are over the baseline
(BM25), which clearly indicates a superior performance of both models. Another interesting
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fact, it is that the Self-Attn-DeepRank seems to have a significantly better precision at low
recall levels when compared to the DeepRank.

A further investigation was performed to analyze the re-ranking behavior of both models.
For that, the MAP@N value was computed in function of different values of N .

Figure 6.8: Graphic of MAP@N in function of different N for both DeepRank variations.

Figure 6.8, shows the results of this additional experiment and it can be observed an
increasing gap between the DeepRank variations and the BM25 (before the re-rank). This
shows that the DeepRank is correctly scoring (ranking) relevant documents that were over-
looked by the BM25, i.e, the false negatives documents of the BM25 are being pushed to the
top by the DeepRank. Additionally, at N = 50 the MAP value already surpasses the best
MAP value of the BM25, which demonstrates the power of the neural solution.

In general, taking into consideration the small dataset of the BioASQ, the results of both
DeepRank models were extremely positives and both were chosen to be included in the pipeline
so that can be tested. It is worth to recall, that the both DeepRank models results are limited
by the previous BM25 results since if the BM25 fail to retrieve any positive document, the
DeepRank will not be able to score it.

6.6 Snippet Extraction Results - visualization

The main idea of this module is to offer a way of visualizing, according to the neural model
perspective, the most important information inside a document with respect to a given query.
So this section presents an illustrative example of this type of visualization followed by a
respective analysis.

Proceeding with the visualization, it is shown a positive and a negative document for the
same query21, the positive document was ranked in the first position at the ranking list and
the negative document is the first false positive document in the ranking list, corresponding to
the third position. Figure 6.9 shows the query-positive pair and Figure 6.10 shows the query-
negative pair for the query "Which enzyme is inhibited by Imetelstat?". Both visualizations

21The chosen example was the best from a set of randomly selected query-document pairs
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Figure 6.9: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a true positive document at position 1 of the ranked list.

Figure 6.10: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a false negative document that appears at position 3 of the ranked list.

were performed with the Self-Attn-DeepRank model and the maximum number of returned
snippets is fixed to ten.

In both visualization, at the top is presented the tokenized query and for each query token,
the respective model’s attention is highlighted with a red background. The color intensity
indicates the importance that is given to each token, where more important tokens are more
darker. At the bottom is presented the document after the tokenization, where each snippet
is highlighted in blue, with a variable color intensity according to its importance with respect
to the model perspective.

From the examples, the model considers the Imetelstat as the most important word in the
query followed by the term enzyme, which it seems to be a plausible distribution of attention
because it respects the intuition that rare terms tend to be more important. Note that the
notion of rare terms was not fed to the model and it is something that the model was capable
of learning.

It is a bit difficult to judge if the highlighted snippets are indeed correct, due to the lake of
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knowledge in the biomedical domain. However, in the positive document, from the highlighted
snippets it possible to infer that telomerase should be an enzyme that is inhibited by the
imetelstat, that indeed is true. Following this assumption, the presented negative document
should be a positive document that was misclassified by the experts, since it is possible to
make the same inference from the highlighted snippets. More examples of different queries
can be found in Appendix A.

Figure 6.11: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a negative document that it is ranked at position 50.

In Figure 6.11 is presented another negative document but this time with a lower score,
more precisely this document only appears at position 50 in the ranking list. As can be seen,
the color of the snippets highlights is more lighter giving an idea that information of this
snippets is less important with respect to the query terms.

So in general, the snippet highlighting provided by the attention levels of the neural model
seems to be a useful mechanism that can be exploited to get a correct answer. However,
this is something that can be further investigated in a more methodical way in the future.
Additionally, this mechanism also helps to analyse/debug the neural model behaviour by
looking at the attention levels.

6.6.1 DeepRank - inner working analysis

This subsection presents a more speculative analysis of the DeepRank models based on their
behaviour and results. The goal is to explain why the DeepRank is capable of improving the
BM25 ranking order and what operations contribute the most for that.

In the first place, the aggregation network seems to not have a major role in the DeepRank
performance. This affirmation is sustained on the fact that both variations (DeepRank and
Self-Attn-DeepRank) had similar performance with different types of aggregation networks.
Additionally, the boost in performance that the DeepRank is capable of achieving, with respect
to the BM25, must be related with its wider context view over the query and snippet input,
i.e, the BM25 only performs an exact term matching search, while the DeepRank takes into
consideration the context of where this match occurs, giving more information that probably
helps to score this match. As an example let us explore a slice of one of the interaction
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matrices that is built for the previously presented positive query-document pair Figure 6.9,
for sake of simplicity let us also considered only a subset of the snippet terms (... imetelstat
inhibited telomerase ...)22 and the query terms (enzyme inhibited imetelstat), the resulting
slice of the matrix is shown in Table 6.13.
Table 6.13: Slice of the expected interaction matrix for query terms enzyme inhibited imetelstat and

snippet terms imetelstat inhibited telomerase.

imetelstat inhibited telomerase
enzyme low low high
inhibited low 1 low
imetelstat 1 low low

Here, the high and low values belong to the cosine domain, i.e, the high value should be a
value close to 1 and a low should be close to −123. The matrix entries with value 1 corresponds
to the maximum similarity value that occurs for the exact matches. Continuing with the
example, the enzyme-telomerase interaction is expected to have a higher value of similarity,
because the term telomerase is indeed an enzyme and this relation should be presented in
their embeddings representation, so a high similarity value is captured by the normalized dot
product operation when the matrix is built. Then a convolutional filter, that has a window
3 by 3, when applied to this matrix should give a high score to this type of pattern, that is
then extracted by the max pooling layer, i.e, the presented matching signal is successfully
extracted by this sequence of operations. Assuming that these suppositions are true, it can be
concluded that this architecture represents a context-aware term matching extraction process,
which seems to have a major role in the final document score since it represents the core
process of a retrieval task. On the other hand, the aggregation network and the term gating
network are only a weighting mechanism to refine the matching signal previously extracted.

It is also worth to mention, that the attention that is given to the query terms, in the gating
network, is only based on a linear combination between a weight matrix and the respective
query terms embedding. As a result, the learned matrix must be capable of successfully
extract the information from the embeddings dimensions to compute its importance. The
most simplistic example could be that one of the embeddings dimensions is responsible to
encode the relative term importance, which seems plausible given that they are created by
the word2vec algorithm. However, in practice, it may not be that simple, nerveless a more
complete analysis of this learned weight matrix can give more insights about some of the
embeddings dimensions and help to understand the distributed representation that is built
during the word2vec training.

6.7 BioASQ 7 taskB phaseA results

In this section is presented the evaluation of the overall system on the 2019 BioASQ 7b phaseA
test set for the document retrieval task. The evaluation is performed locally using the BioASQ

22First highlighted snippet on Figure 6.9
23In practice, this may not be true, however at least it will be a lower value when compared to the

enzyme-telomerase similarity value
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metrics and the 2019 BioASQ 7b phaseB test set, which has the relevant documents for the
phaseA.

In terms of testing, were prepared two systems, since both DeepRank based models got a
similar performance. System 1 will be referred as the system that uses the original DeepRank
and System 2 will be the system that uses the Self-Attn-DeepRank as the neural model. For
the filter module, both systems use the BM25.

Table 6.14: Comparison with other submissions of the bioASQ task 7b phaseA results

System Test Batch 1 Test Batch 2 Test Batch 3
MAP@10 S Pos G Pos MAP@10 S Pos G Pos MAP@10 S Pos G Pos

Best result 0.0809 - - 0.0849 - - 0.1199 - -
System v1 0.0874 1/12 1/6 0.0760 7/23 4/9 0.1006 6/21 3/8
System v2 0.0865 1/12 1/6 0.0764 7/23 4/9 0.0995 6/21 3/8
System Test Batch 4 Test Batch 5

MAP@10 S Pos G Pos MAP@10 S Pos G Pos
Best result 0.1034 - - 0.0425 - -
System v1 0.0922 5/17 2/6 0.0344 9/18 3/6
System v2 0.0882 6/17 2/6 0.0373 3/18 2/6

Table 6.14 compares both systems with other submitted systems, available online24, in
all of the five released batches. The complete tables are provided in Appendix D. Column
"S Pos" (system position) represents the absolute position that the system would have if it
had been submitted, i.e, (x/y) x is the system position and y is the total number of valid
submissions. In the same way, the column "G Pos" (group position) represents the group
position, since each researcher (group) is allowed to submit a maximum of five systems. The
line Best result corresponds to the result of the best submitted system for each test batch.

In general, the results were extremely competitive and both systems were able to achieve
satisfactory results. For example, in Batch 1 both systems achieve, with some margin, better
results than the best submitted systems. For the Batch 2,3 and 4, both systems stayed close
to the top with competitive map scores. In the final Batch (5) the System v2 achieved the
third best result.

It is worth mention, that after the Batch 1 the group aueb25 submitted five systems that
got almost every top spot on Batch 2 to 5. So the second place on the Batch 5, has an even
bigger importance since it means that System v2 was capable of beat three of the five systems
of aueb group. To give more context the aueb system [68], [84], partially presented in Section
4 as a DRMM improvement, in the last year competition comes in first place on three of the
five test Batch and in their team is a researcher that works at Google AI26.

6.8 System as web application

To conclude this dissertation work, it will be presented the interaction with the web application
as a set of sequential images.

24http://participants-area.bioasq.org/results/7b/phaseA/ (30/06/2016)
25http://nlp.cs.aueb.gr/
26https://ai.google/

91



Figure 6.12: Front page of the application on the left and search request on the right. Both images
where captured with resolution of 640× 360.

Figure 6.13: Display of the results for the previous search. The image was capture with resolution of
1366× 768.

In Figure 6.12, on the left, it is displayed the front page with an example query from the
BioASQ dataset, other queries can be load by using the "Other Example" button. On the
right, it is shown the state of the web application after a request was been submitted.

The API response time was also evaluated for a total of ten identical requests, the average
waiting time was 16.66 seconds. This value was expected, since the neural model on its own
takes approximately 10 seconds, according to Table 6.5. The additional six seconds must be
related with the BM25, data preparation and http overhead. In practice, from a user point of
view, the 16 seconds as waiting time is acceptable given the quality of the results and also
recalling that this application is just a prototype that can be improved.
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CHAPTER 7
Conclusion and Future work

With the growth of the publicly available biomedical literature, this dissertation aimed to
create a deep learning based system capable of searching a vast biomedical literature given
a natural language question. Additionally, it also gives some form of intuition that should
be followed in order to keep pushing the research forward in the area of neural information
retrieval in the biomedical domain.

Initially, this document presents a background about neural networks, advanced deep
learning techniques and an introduction to the information retrieval. The purpose is to give a
theoretical support to the state-of-the-art models that are explored and implemented during
this dissertation.

Then, in Chapter 5 it is shown the pipeline of question-answering system. In short, the
system is composed of the three following modules, filter, rank, and extract. The filter module
will search the vast literature and return the top 2500 documents that are plausible relevant
to the query. For this module were tested a retrieval model focus in exact match, the bm25,
and several models focused in semantic match, the AWE, AWE-TF-IDF, and DSSM. The
rank module uses deep neural models to score all the plausible relevant documents jointly
with the query, with the objective to give higher scores to relevant documents. Additionally,
only the deep neural models that directly used a set of snippets as a document representation
were considered. This restriction is based on the premise that a high score for each document
is directly correlated with their individual snippets. The DeepRank model and the HAR
model were the only deep neural models that respect this requirement. Finally, the extracting
module will highlight which of the snippets, from the documents, are relevant. This last
module uses the deep model from the previous step, to directly extract this information from
its activations.

The evaluation, presented in Chapter 6, was conducted in a systematic and methodical
way. In first place, the requirements that each module should achieve were tested by their
respective evaluation function. In the case of the filter module, the objective was to find a
commitment between the maximization of the recall and the minimization of the number of
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returned documents. On the rank module the objective was to maximize the map@10 metric.
Looking at the results for the first module, Table 6.6, the bm25 got the overall best results,
showing that when searching a vast collection with sparse vocabulary the exact match model
had an upper-hand. The AWE results were expected given the small embedding dimension
when compared with the vast search space and the length difference of documents and queries.
At last, DSSM had extremely low results, the main reason may be related with the insufficient
training data and the small dimension (128) of the query/document projection. For the
rank module, both DeepRank variants had satisfactory results on the validation set, with
an improvement of 10% over the BM25 ranking order. Also as suspected the HAR was not
capable to generalize for new data. At last, for the snippet extraction module is only presented
a visualization, which seems to support the evidence that the model score is depended only
on a subset of relevant snippets. It was also developed a web application that exposes, in an
interactive way, this system pipeline.

The overall system was evaluated on BioASQ 7 task B phase A, where it obtained the
best score on first batch and the third best score on the last batch, when compared to the
submitted models.

The final system has some known limitation, one that can be pointed out is the elapsed
time needed to computed a single query. However, all the retrieval models are prototypes,
so they can be considerable speed up. Another limitation has the lack of time to do a more
thorough search to the model’s hyperparameters. In terms of DeepRank, the concept of
snippet could be enhanced to build better representations since for now is using a fixed size
window.

This dissertation supports the following evidence present through the literature: "The exact
match signal must be taking into consideration with higher weight than the semantic match
for the specific retrieval task". It is also shown the implementation of two state-of-the-art
deep neural models, which at time of writing do not exist any publicly available solution.

For future work, exist the possibility of further evolving the current system or add a text
generator to the system.

To continue the evolution of this system the following ideas can be adopted.

• Incorporate the bm25 jointly with some weighted semantic retrieval system, for example,
the AWE-TF-IDF. Note that a bigger weight should be given to the bm25.

• Directly improve de DeepRank models results by doing a better fine-tunning and
additionally exploring the possibility of using ensemble of multiple trained version of
the same neural model.

• Unify the rank and the extract module, so that during training the deep neural model
take directly into consideration the snippets that are more important. This can be
achieved by using a document loss plus a weighted snippet loss.

The text generation path will consist in creating a human-readable sentence, given a query
and a document or set of snippets that are relevant, which means that the text generator must
be conditioned on relevant information. In terms of implementations, the state-of-the-art
Transformer Block can be explored in order to generate high quality sentences.
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APPENDIX A
Appendix A: Visualization of more

extracted snippets

Figure A.1: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a positive document at position 2 of the resulting ranking list. Given the query Are
hepadnaviral minichromosomes free of nucleosomes?
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Figure A.2: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a negative document at position 1000 of the resulting ranking list. Given the query Are
hepadnaviral minichromosomes free of nucleosomes?

Figure A.3: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a positive document at position 2 of the resulting ranking list. Given the query What
kind of analyses are performed with the software tool "unipept"

Figure A.4: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a negative document at position 9 of the resulting ranking list. Given the query What
kind of analyses are performed with the software tool "unipept"

102



Figure A.5: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a positive document at position 1 of the resulting ranking list. Given the query "Are
there any DNMT3 proteins present in plants?"

Figure A.6: Visualization of the query and snippets attention by the Self-Attn-DeepRank model for
a positive document at position 1000 of the resulting ranking list. Given the query "Are
there any DNMT3 proteins present in plants?"
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APPENDIX B
Appendix B: Tensorflow graph
visualization on TensorBoard

All the presented visualizations were automatically generated by the TensorBoard for the
respective computational graph.

Figure B.1: Tensorboard visualization associated with implementation of Figure 5.6.
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Figure B.2: Tensorboard visualization associated with implementation of Figure 5.7.

Figure B.3: Tensorboard visualization of the CNN extraction sub-model
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Figure B.4: Tensorboard visualization associated with implementation of Figure 5.8.
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Figure B.5: Tensorboard visualization associated with implementation of Figure 5.12.
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Figure B.6: Tensorboard visualization associated with implementation of Figure 5.13. The output of
a) and b) are fed to the self_attention and self_attention_2 layers presented in c).
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Figure B.7: Tensorboard visualization associated with implementation of Figure 5.14
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APPENDIX C
Appendix C: Implementation of the

custom layers in Keras

class SimilarityMatrix(Layer):
def __init__(self, query_max_term, snippet_max_term, interaction_mode=0, **kwargs):

"""
interaction mode 0: only use similarity matrix

mode 1: similarity matrix + query and snippet embeddings
"""
assert interaction_mode in [0,1] #only valid modes

self.query_max_term = query_max_term
self.snippet_max_term = snippet_max_term
self.interaction_mode = interaction_mode

super().__init__(**kwargs)

def call(self,x):
if self.interaction_mode==0:

#sim => dot product (None, MAX_Q_TERM, EMB_DIM) x (None, MAX_Q_TERM, MAX_PASSAGE_PER_Q, EMB_DIM, QUERY_CENTRIC_CONTEX)
query = K.expand_dims(x[0], axis=1) #(None, 1, MAX_Q_TERM, EMB_DIM)
query = K.expand_dims(query, axis=1) #(None, 1, 1, MAX_Q_TERM, EMB_DIM)
query = K.repeat_elements(query,x[1].shape[1],axis=1) #(None, MAX_PASSAGE_PER_Q, MAX_Q_TERM, EMB_DIM)
query = K.repeat_elements(query,x[1].shape[2],axis=2)
s_matrix = K.batch_dot(query,x[1]) #(None, MAX_PASSAGE_PER_Q, MAX_Q_TERM, #(None, MAX_PASSAGE_PER_Q, MAX_Q_TERM, EMB_DIM)

s_matrix = K.expand_dims(s_matrix)

return s_matrix #Add one more dimension #(None, MAX_PASSAGE_PER_Q, MAX_Q_TERM, #(None, MAX_PASSAGE_PER_Q, MAX_Q_TERM, EMB_DIM, 1)
elif self.interaction_mode==1:

raise NotImplementedError("interaction mode of layer SimilarityMatrix is not implemented")

Code 1: Implementation of the similarity layer.
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class MaskedConv2D(Layer):

def __init__(self, filters, kernel_size, activation, regularizer=None, **kargs):
super(MaskedConv2D, self).__init__(**kargs)

self.activation = activations.get(activation)

if regularizer is None or isinstance(regularizer,str):
self.regularizer = regularizers.get(regularizer)

else:
self.regularizer = regularizer

self.filters = filters
self.kernel_size = kernel_size
self.activation = activation

def build(self, input_shape):
#NOTE THAT:
#This class does not extend Conv2D
#because it is more simple to add more Conv2D in parallel
#this way, (future updates)
self.conv2dlayer = Conv2D( filters = self.filters, kernel_size=self.kernel_size, activation=self.activation, kernel_regularizer=self.regularizer )
self.conv2dlayer.build(input_shape)
self._trainable_weights = self.conv2dlayer.trainable_weights

super(MaskedConv2D, self).build(input_shape)

def call(self, x):

condition = K.all(x) #if all the values are the same
inv_condition = (1-K.cast(condition, K.floatx()))
print(inv_condition)
feature_maps = self.conv2dlayer(x)

return feature_maps * inv_condition

Code 2: Implementation of the masked conv2d layer.
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class TermGatingDRMM(Layer):

def __init__(self, embedding_dim, rnn_dim, activation=None, initializer='glorot_normal', regularizer=None):
super(TermGatingDRMM_FFN, self).__init__()

self.activation = activations.get(activation)
self.initializer = initializers.get(initializer)

if regularizer is None or isinstance(regularizer,str):
self.regularizer = regularizers.get(regularizer)

else:
self.regularizer = regularizer

self.emb_dim = embedding_dim
self.rnn_dim = rnn_dim

def build(self, input_shape):

#term gating W
self.W_query = self.add_variable(name = "term_gating_We",

shape = [self.emb_dim,1],
initializer = self.initializer,
regularizer = self.regularizer,)

super(TermGatingDRMM_FFN, self).build(input_shape)

def call(self, x):

query_embeddings = x[0] #(None, MAX_Q_TERM, EMB_SIZE)
snippet_representation_per_query = x[1] #(None, MAX_Q_TERM, BI_GRU_DIM)

#compute gated weights
gated_logits = K.squeeze(K.dot(query_embeddings, self.W_query), axis = -1 )
#print(gated_logits)
gated_distribution = K.expand_dims(K.softmax(gated_logits))
#print(gated_distribution)
#snippet projection
self.attention_weights = gated_distribution

weighted_rep = K.sum(snippet_representation_per_query * gated_distribution, axis = 1)
print(weighted_rep)

return weighted_rep

Code 3: Implementation of the term gating layer.
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class SelfAttention(Layer):

def __init__(self, attention_dimension, initializer='glorot_normal', regularizer=None, **kargs):
super(SelfAttention, self).__init__(**kargs)
self.initializer = initializer
self.attention_dimension = attention_dimension
if regularizer is None or isinstance(regularizer,str):

self.regularizer = regularizers.get(regularizer)
else:

self.regularizer = regularizer

def build(self, input_shape):
emb_dim = int(input_shape[2])
self.W_attn_project = self.add_variable(name = "self_attention_projection",

shape = [emb_dim, 1],
initializer = self.initializer,
regularizer = self.regularizer,)

self.W_attn_score = self.add_variable(name = "self_attention_score",
shape = [self.attention_dimension, 1],
initializer = self.initializer,
regularizer = self.regularizer,)

super(SelfAttention, self).build(input_shape)

def call(self, x):
x_projection = K.dot(x, self.W_attn_project) # (NONE, 300, 300)
x_tanh = K.tanh(x_projection) # (NONE, 300, 15)
x_attention = K.dot(x_tanh, self.W_attn_score)
x_attention_softmax = K.softmax(x_attention,axis = 1)
x_scored_emb = x_attention_softmax * x
return K.sum(x_scored_emb, axis=1)

Code 4: Implementation of the self-attention layer.
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class CrossAttention(Layer):
def __init__(self, initializer='glorot_normal', regularizer=None, **kargs):

super(CrossAttention, self).__init__(**kargs)
self.initializer = initializer
if regularizer is None or isinstance(regularizer,str):

self.regularizer = regularizers.get(regularizer)
else:

self.regularizer = regularizer

def build(self, input_shape):
"""
input: [0] - query context embedding

[1] - document context embedding
"""
doc_embedding = input_shape[1]
query_embedding = input_shape[0]
self.query_len = query_embedding[1]
self.doc_len = doc_embedding[1]
assert int(query_embedding[2]) == int(doc_embedding[2])
self.embedding_dim = int(query_embedding[2])
self.W_sim_projection = self.add_variable(name = "similarity_projection",

shape = [self.embedding_dim*3,1],
initializer = self.initializer,
regularizer = self.regularizer,)

super(CrossAttention, self).build(input_shape)

def call(self, x):
"""
input: [0] - query context embedding

[1] - document context embedding
"""
doc_embedding = x[1]
query_embedding = x[0]
#build similarity matrix | row document token | colum query token
doc_q_matrix = K.expand_dims(doc_embedding, axis=2)
doc_q_matrix = K.repeat_elements(doc_q_matrix, self.query_len, axis=2)
q_doc_matrix = K.expand_dims(query_embedding, axis=1)
q_doc_matrix = K.repeat_elements(q_doc_matrix, self.doc_len, axis=1)

element_mult = doc_q_matrix * q_doc_matrix
#concatenation
S = K.concatenate([doc_q_matrix, q_doc_matrix, element_mult])
S = K.dot(S, self.W_sim_projection)
S = K.squeeze(S,axis=-1)
S_D2Q = K.softmax(S, axis=1)
S_Q2D = K.softmax(S, axis=2)
A_D2Q = K.batch_dot(S_D2Q, query_embedding)
S_Q2D_transpose = K.permute_dimensions(S_Q2D,[0,2,1])
A_D2Q_Q2D = K.batch_dot(S_D2Q, S_Q2D_transpose)
A_Q2D = K.batch_dot(A_D2Q_Q2D, doc_embedding)
#concat
doc_attn = doc_embedding * A_D2Q
doc_q_attn = doc_embedding * A_Q2D

return K.concatenate([doc_embedding, A_D2Q, doc_attn, doc_q_attn])

Code 5: Implementation of the cross attention layer.
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class ModelAPI():
"""
API to interact in a unified way with all neural an non neural models
"""
def __init__(self, saved_models_path='/backup/saved_models/' , metrics=[f_map,f_recall]):

self.trained = False
self.metrics = metrics
self.saved_models_path = saved_models_path

def train(self, data, **kargs):
self._training_process(data, **kargs)
self.trained = True

def _training_process(self, data, **kargs):
raise NotImplementedError

def predict(self, data, **kargs):
if not self.trained:

raise RuntimeError("The models most be trained before the inference")
return self._predict_process(data, **kargs)

def _predict_process(self, data, **kargs):
raise NotImplementedError

def evaluate(self, queries, expectations, index_pmid_mapping = None, batch_size=None):
"""
run set of metrics over a data
"""
(... hidden ...)

return [ (metric.__name__,metric(predictions,expectations)) for metric in self.metrics]

def save(self, **kargs):
raise NotImplementedError

@staticmethod
def load(**kargs):

raise NotImplementedError

Code 6: Interface that all the neural an non neural models should implement.
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APPENDIX D
Appendix D: Complete results of

the BioASQ TaskB phase A

Tables with the current results of the BioASQ TaskB phase. However a online document was
also created in order to reflect future updatesa .

ahttps://docs.google.com/spreadsheets/d/1M6MPP5PyRh9jGwhSuqQRYdfvGt8lpvhD3XxJJ1FJbgI/edit?usp=sharing

Table D.1: Table with the results of the first test batch for the BioASQ TaskB phase A, the developed
systems are highlighted in bold.

System Mean precision Recall F-Measure MAP GMAP
System v1 0.1641 0.5544 0.2205 0.0874 0.0052
System v2 0.1621 0.5558 0.2181 0.0865 0.0063
Ir_sys2 0.1190 0.5216 0.1746 0.0809 0.0047
lh_sys4 0.1200 0.5069 0.1745 0.0798 0.0039
lh_sys1 0.1200 0.5069 0.1745 0.0795 0.0041
lh_sys5 0.1220 0.5192 0.1778 0.0792 0.0046

Deep ML methods for 0.1120 0.5087 0.1660 0.0742 0.0039
lh_sys2 0.1060 0.4348 0.1531 0.0721 0.0021
Ir_sys1 0.1110 0.4887 0.1637 0.0676 0.0033
lh_sys3 0.1050 0.4608 0.1541 0.0616 0.0024
auth-qa-1 0.1920 0.2770 0.2069 0.0611 0.0003
Ir_sys3 0.0870 0.3620 0.1256 0.0444 0.0010
Ir_sys4 0.0900 0.3762 0.1306 0.0415 0.0012
lalala 0.1406 0.2264 0.1571 0.0386 0.0002
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Table D.2: Table with the results of the second test batch for the BioASQ TaskB phase A, the
developed systems are highlighted in bold.

System Mean precision Recall F-Measure MAP GMAP
aueb-nlp-4 0.1270 0.5908 0.1911 0.0849 0.0067
aueb-nlp-5 0.2872 0.5663 0.3443 0.0830 0.0049

lalala 0.1250 0.5779 0.1877 0.0791 0.0048
lh_sys4 0.1230 0.5702 0.1846 0.0772 0.0045

aueb-nlp-3 0.1260 0.5967 0.1905 0.0771 0.0075
lh_sys1 0.1250 0.5779 0.1877 0.0768 0.0046

System v2 0.1200 0.5619 0.1815 0.0764 0.0047
System v1 0.1210 0.5691 0.1829 0.0760 0.0051
lh_sys3 0.1250 0.5779 0.1877 0.0753 0.0044
Ir_sys4 0.1333 0.5679 0.1964 0.0752 0.0045

aueb-nlp-1 0.1170 0.5776 0.1784 0.0741 0.0066
aueb-nlp-2 0.1200 0.5777 0.1823 0.0741 0.0062
lh_sys5 0.1150 0.5403 0.1737 0.0705 0.0040
lh_sys2 0.1120 0.5479 0.1716 0.0692 0.0041
Ir_sys1 0.1030 0.4687 0.1568 0.0662 0.0026
Ir_sys2 0.1250 0.5779 0.1877 0.0619 0.0036
Ir_sys3 0.1250 0.5779 0.1877 0.0601 0.0035

Deep ML methods for 0.0950 0.4733 0.1444 0.0579 0.0021
auth-qa-1 0.1760 0.2990 0.2020 0.0569 0.0004
from milab 0.0420 0.1883 0.0631 0.0267 0.0001

MindLab Red Lions++ 0.0140 0.0825 0.0214 0.0105 0.0000
MindLab QA Reloaded 0.0140 0.0825 0.0214 0.0105 0.0000

MindLab QA System ++ 0.0140 0.0825 0.0214 0.0104 0.0000
MindLab QA System 0.0140 0.0825 0.0214 0.0104 0.0000
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Table D.3: Table with the results of the third test batch for the BioASQ TaskB phase A, the developed
systems are highlighted in bold.

System Mean precision Recall F-Measure MAP GMAP
aueb-nlp-4 0.1270 0.5908 0.1911 0.0849 0.0067
aueb-nlp-5 0.2872 0.5663 0.3443 0.0830 0.0049

lalala 0.1250 0.5779 0.1877 0.0791 0.0048
lh_sys4 0.1230 0.5702 0.1846 0.0772 0.0045

aueb-nlp-3 0.1260 0.5967 0.1905 0.0771 0.0075
lh_sys1 0.1250 0.5779 0.1877 0.0768 0.0046

System v2 0.1200 0.5619 0.1815 0.0764 0.0047
System v1 0.1210 0.5691 0.1829 0.0760 0.0051
lh_sys3 0.1250 0.5779 0.1877 0.0753 0.0044
Ir_sys4 0.1333 0.5679 0.1964 0.0752 0.0045

aueb-nlp-1 0.1170 0.5776 0.1784 0.0741 0.0066
aueb-nlp-2 0.1200 0.5777 0.1823 0.0741 0.0062
lh_sys5 0.1150 0.5403 0.1737 0.0705 0.0040
lh_sys2 0.1120 0.5479 0.1716 0.0692 0.0041
Ir_sys1 0.1030 0.4687 0.1568 0.0662 0.0026
Ir_sys2 0.1250 0.5779 0.1877 0.0619 0.0036
Ir_sys3 0.1250 0.5779 0.1877 0.0601 0.0035

Deep ML methods for 0.0950 0.4733 0.1444 0.0579 0.0021
auth-qa-1 0.1760 0.2990 0.2020 0.0569 0.0004
from milab 0.0420 0.1883 0.0631 0.0267 0.0001

MindLab Red Lions++ 0.0140 0.0825 0.0214 0.0105 0.0000
MindLab QA Reloaded 0.0140 0.0825 0.0214 0.0105 0.0000

MindLab QA System ++ 0.0140 0.0825 0.0214 0.0104 0.0000
MindLab QA System 0.0140 0.0825 0.0214 0.0104 0.0000

Table D.4: Table with the results for the fourth test batch of the BioASQ TaskB phase A, the
developed systems are highlighted in bold.

System Mean precision Recall F-Measure MAP GMAP
aueb-nlp-4 0.1461 0.6132 0.2148 0.1034 0.0112
aueb-nlp-5 0.3332 0.6141 0.3783 0.1015 0.0116
aueb-nlp-2 0.1391 0.5995 0.2051 0.0968 0.0083
aueb-nlp-1 0.1391 0.6139 0.2056 0.0951 0.0101
System v1 0.1331 0.5719 0.1934 0.0922 0.0054
aueb-nlp-3 0.1311 0.5879 0.1942 0.0909 0.0083
System v2 0.1291 0.5667 0.1887 0.0882 0.0054
lh_sys4 0.1240 0.5599 0.1853 0.0835 0.0051
lh_sys2 0.1200 0.5510 0.1796 0.0812 0.0044
lh_sys3 0.1130 0.5228 0.1695 0.0793 0.0032
lh_sys5 0.1160 0.5342 0.1737 0.0771 0.0039
lh_sys1 0.1140 0.5297 0.1709 0.0768 0.0035

MindLab QA Reloaded 0.1040 0.5103 0.1573 0.0726 0.0033
MindLab QA System ++ 0.1040 0.5103 0.1573 0.0726 0.0033
MindLab QA System 0.1040 0.5103 0.1573 0.0726 0.0033
MindLab Red Lions++ 0.1040 0.5103 0.1573 0.0726 0.0033
Deep ML methods for 0.0980 0.4795 0.1481 0.0710 0.0028

auth-qa-1 0.1790 0.3316 0.2094 0.0605 0.0006
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Table D.5: Table with the results for the fifth test batch of the BioASQ TaskB phase A, the developed
systems are highlighted in bold.

System Mean precision Recall F-Measure MAP GMAP
aueb-nlp-4 0.0710 0.3937 0.1120 0.0425 0.0010
aueb-nlp-5 0.1751 0.3670 0.2012 0.0399 0.0008
System v2 0.0640 0.3746 0.1016 0.0373 0.0007
aueb-nlp-1 0.0620 0.3614 0.0990 0.0368 0.0006
lh_sys3 0.0570 0.3700 0.0927 0.0368 0.0005

aueb-nlp-3 0.0620 0.3667 0.0991 0.0366 0.0007
aueb-nlp-2 0.0560 0.3395 0.0900 0.0355 0.0006
lh_sys5 0.0590 0.3794 0.0962 0.0354 0.0006
lh_sys1 0.0570 0.3663 0.0931 0.0347 0.0005

System v1 0.0620 0.3843 0.0995 0.0344 0.0008
lh_sys4 0.0590 0.3741 0.0963 0.0331 0.0006

Deep ML methods for 0.0530 0.3420 0.0859 0.0329 0.0005
lh_sys2 0.0570 0.3404 0.0920 0.0328 0.0005

MindLab QA System ++ 0.0550 0.3476 0.0888 0.0326 0.0005
MindLab Red Lions++ 0.0550 0.3476 0.0888 0.0326 0.0005
MindLab QA System 0.0550 0.3476 0.0888 0.0326 0.0005
MindLab QA Reloaded 0.0550 0.3476 0.0888 0.0326 0.0005

auth-qa-1 0.0910 0.2067 0.1167 0.0223 0.0001
auth-qa-2 0.0070 0.0414 0.0112 0.0032 0.0000
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