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Abstract25

The goal of sperm is to fertilize the oocyte. To achieve that purpose, it must acquire motility
in the epididymis and hyperactivated motility in the female reproductive tract. Motility is only
achieved when the sperm presents a fully functional flagellum, is capable of producing energy
to fuel the movement, and suffers epididymal maturation and capacitation. Since sperm is a
transcriptionally silent cell, motility depends on the activation and/or inhibitions of key signaling
pathways. This review describes and discusses the main signaling pathways involved in primary
and hyperactivated motility, as well as the bioenergetic mechanisms necessary to produce energy
to fuel sperm motility. Although the complete human sperm motility process is far from being fully
known, we believe that in the upcoming decades extensive progress will be made. Understanding
the signaling pathways behind sperm motility can help pinpoint the cause of male infertility and
uncover targets for male contraception.

30

35

Summary Sentence

Sperm motility depends on energy availability, intact flagellum and the crosstalk of several signal-
ing pathways that lead to an increase of tyrosine phosphorylation of key proteins.

Key words: sperm motility, signaling pathways, phosphorylation, epididymis, female reproductive system.40

Introduction

Human spermatozoon is one of the most differentiated cell types
and the only that must leave the male body where it is produced
and achieve its goal in the female reproductive system [1]. To
fertilize an egg, the sperm is formed in the testes, in a process45

called spermatogenesis. At the end of spermatogenesis, sperm are
morphologically complete but functionally immature and incapable
of fertilizing an egg. To be functional, sperm cells must undergo

(i) maturation in the epididymis, (ii) capacitation, and (iii) acro-
some reaction in the female reproductive system [2]. These events 50

are co-dependent since acrosome reaction does not occur if capac-
itation is impaired and capacitation depends on functional matu-
ration of sperm in the epididymis. Motility acquisition is essential
for human sperm function and ultimately male fertility. In 2011,
Paoli defined sperm motility as a propagation of transverse waves 55

along the flagellum in a proximal-distal direction producing an

C© The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved.
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Figure 1. Schematic representation of human spermatozoon and flagellum structure. Human sperm is divided into two parts: head and flagellum. The flagellum
is further divided into four structures: connecting piece, midpiece, principal piece, and endpiece. A cross-section shows that the flagellum structure differs
between midpiece and principal piece. In midpiece, plasma membrane and mitochondrial sheath surround the outer dense fibers. Within outer dense fibers, the
axoneme composed of the microtubule doublets associated with the dyneins arms (inner and outer), radial spoke, and microtubule central pair. Nexin connects
adjacent microtubule doublet. In the principal piece, plasma membrane and fibrous sheath surround the outer dense fibers. In two opposing microtubule
doublets, the outer dense fibers are replaced by longitudinal columns of fibrous sheath.

impulse that pushes the spermatozoon through the female genital
tract [3].

Severe asthenozoospermia is one of the causes of male infertil-
ity, which arises from the inability of the sperm cell to reach the60

oocyte [4]. Primary or activated motility is acquired throughout the
journey in the epididymis. Although the exact mechanism behind
motility acquisition is still far from being fully understood, specific
signaling events are described in the literature as essential for this
process [2,5]. Low-amplitude symmetrical tail movements charac-65

terize sperm-activated motility and drive sperm in a straight line
in a nonviscous media (seminal plasma) [6]. However, in fallopian
tubes, sperm must acquire a specific type of motility, hyperactivated
motility, which is characterized by high amplitude and asymmetric
flagellar bends. Only this type of flagellar movement allows sperm to70

overcome dense mucus, detach from the oviductal epithelium, and
penetrate the egg’s protective vestments [7]. Curiously, in the viscous
media hyperactivated sperm swim in a circular or figure-8 pattern
[6,8]. Alterations in pH, specific molecules, and ion concentration
changes are a few of the crucial events for the stimulation of hy-75

peractivated motility [9,10]. However, the cellular mechanism and
signaling pathways responsible for this type of motility are not fully
described.

To be motile, human sperm need a morphologically complete
flagellum, be able to produce energy to power flagellar movement 80

and functional signaling pathways (to transduce external signals into
internal signals). This review discusses these three topics, but mainly
focuses on the signaling pathways involved in human sperm motility
regulation. For an in-depth review on sperm bioenergetics, see du
Plessis et al. [11] 85

Sperm flagellum—structure and function

The human sperm are composed of two main structures: head and
flagellum (Figure 1). The head comprises the nucleus and the acro-
some. The nucleus houses the genetic information to be delivered
to the oocyte. Upon acrosome reaction, the acrosome integrity is 90

disrupted and its content is released digesting the oocyte’s zona pel-
lucida [12]. The flagellum contains the motile apparatus necessary
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for sperm motility [6,13] and is divided into four ultrastructures:
connecting piece, midpiece, principal piece, and end piece [6]. The
connecting piece attaches the flagellum to the sperm head, the mid-95

piece contains the sperm mitochondria, the principal piece and the
end piece generate the flagellar waveform pattern motility [6,13,14].
The main structure of the flagellum is the axoneme, which is the
sperm motility motor. This structure is well conserved throughout
evolution, present in flagella from protozoans to humans [1,13]. The100

axoneme originates in the connecting piece and terminates in the
end piece. Typically, the axoneme is composed of nine microtubules
doublets and a central pair, designated a 9+2 structure. The nine mi-
crotubules doublets connect to each other by nexin links and connect
to the central pair by projections, the radial spokes. The latter are105

responsible for positioning and spacing the microtubules doublets
in a perfect circle around the central pair microtubule. Projecting
from the microtubules doublets are the inner and outer axonemal
dynein arms (classified according to their position in relation to the
doublet microtubule). These proteins are key for motility, by pro-110

moting sliding of a microtubule doublet in relation to the adjacent.
The flagellar beating pattern begins with a dynein from one doublet
transiently interacting with the following doublet. In the presence
of ATP, axonemal dynein “walks” toward the base of the flagel-
lum, forcing the adjacent microtubule doublet to slide down. Since115

microtubules are attached to the connecting piece, this movement
encounters resistance, leading to the bending of the flagellum. At the
end, the dynein detaches from the adjacent microtubule. To obtain a
flagellum waveform movement and consequently motility, this pro-
cess has to occur on one side of the axoneme and be inactive on the120

opposite site. Hence, the flagellar beat appears to be based on an
“on-and-off” switch of the axonemal dynein arms, in specific points
in the axoneme [1,6,13,14].

In mammalian sperm, between the axoneme and the plasma
membrane, there are several accessory structures, such as the mi-125

tochondrial sheath, outer dense fibers, and fibrous sheath [1,6]. In
the midpiece, the axoneme is surrounded by outer dense fibers and
the mitochondrial sheath, while in the principal piece the axoneme is
surrounded by outer dense fibers and fibrous sheath. The end piece
has no accessory structures between the axoneme and the plasma130

membrane [13]. The mitochondrial sheath is composed of individual
mitochondria coiled helically around the axoneme. In humans, the
midpiece length is about a dozen mitochondrial turns [15]. The outer
dense fibers have a petal-like shape, are directly above the axoneme
microtubules doublets, and diminish in diameter from base to tip of135

the principal piece [16]. The outer dense fibers appear to be respon-
sible for maintaining the passive elastic structure and recoil of the
flagellum and to protect the axoneme against shearing forces [17].
In the principal piece, the fibrous sheath confers flexibility, shape
and plane to the flagellar beat [18]. It also supports and ensures140

compartmentalization of signaling proteins that regulate motility,
capacitation, and hyperactivation. In the principal piece, two oppos-
ing outer dense fibers are replaced by fibrous sheath projections [16]
(Figure 1).

The regulation and propagation of this “on-and-off” signal and145

the conversion into flagellar bending appear to reside in the con-
trol of the ATPase activity of axonemal dynein arms. Although this
process is not fully understood, alterations in pH, ATP availability,
calcium concentration, and phosphorylation of key proteins appear
to modulate axonemal dynein arms activity and consequently sperm150

motility. The process of ATP production and the signal pathways
that control axonemal dynein activity will be discussed in the next
topics [19].

Energy for motility—oxidative phosphorylation

vs. glycolysis 155

One of the key requirements for sperm motility is energy availability.
ATP is the fuel used by axonemal dynein ATPases within the flagel-
lum [20], and active protein modifications, such as phosphorylation,
also depend on ATP. Thus, it is not surprising that sperm requires
exceptionally high amounts of ATP when compared with somatic 160

cells [21]. Consequently, a constant and adequate supply of ATP is
crucial [20]. In spite of the efforts [20,22,23], a long-standing de-
bate exists on the metabolic pathway responsible for sperm motility
bioenergetics: oxidative phosphorylation in mitochondria, glycolysis
in the flagellum and head, or both. 165

In mammalian sperm, oxidative phosphorylation occurs in mi-
tochondria, which are exclusively located in the midpiece. A ma-
ture mammalian spermatozoon contains approximately 72–80 mi-
tochondria [24] and in theory can produce more than 30 ATP
molecules per glucose molecule [25]. Since midpiece is localized at 170

the anterior end of the flagellum, the transport of ATP to the all
length of the flagellum must be efficient. Ford et al. believed that
the model of flux transfer chains proposed by Dzeja and Terzic in
2003 is able to transport the ATP produced in mitochondria through
the entire flagellum [23,26]. It was indeed shown that an increase 175

in human sperm motility requires a parallel increase in mitochon-
drial activity [3,22,27]. Also, the use of specific inhibitors for the
mitochondrial electron transport chain and ATP synthase decreases
drastically human sperm motility [25]. Moreover, high mitochon-
drial activity levels increase the success of in vitro fertilization rate 180

[20]. These studies suggest that human sperm motility correlates
with mitochondrial functional status. Furthermore, mitochondrial
activity is negatively correlated with morphological alterations in
the midpiece, which appears to reinforce the role of mitochondrial
ATP production in sperm motility [22]. 185

In spite of the reports supporting the role of mitochondria in
sperm motility, its contribution to flagellar beat can be questioned.
Since mitochondria are localized in the midpiece, it has been argued if
ATP diffusion and carrier systems are able to supply ATP throughout
the entire length of the flagellum (about 50 μm in humans) [23,25]. 190

Also, some authors argued that if ATP produced in the mitochon-
dria fuels motility, the levels of reactive oxygen species produced
during the electron transport chain would be harmful to DNA in-
tegrity [28]. However, both enzymatic (e.g., superoxide dismutase
and glutathione peroxidases) and nonenzymatic antioxidants (e.g., 195

glutathione and ascorbic acid) present in human sperm and seminal
plasma appear to control the levels of ROS activity [28–30].

A growing hypothesis for the source of ATP (or at least part of the
ATP) in sperm is the glycolytic pathway. Glycolysis is the process
by which glucose is converted into pyruvate. During this process, 200

energy is released in the form of ATP and NADH, with a rate of
2 ATP molecules per glucose. When human sperm are deprived of
glucose (the starting unit of glycolysis) or when glycolysis is blocked,
ATP content and protein tyrosine phosphorylation decreases. Con-
sequently, sperm exhibits decreased motility [25,31–34]. Mukai and 205

Okuno proved that even when mitochondria function is conserved,
mouse sperm motility decreases when glycolysis is impaired. More-
over, a sperm-specific lactate dehydrogenase (LDHC) accounts for
80%–100% of the LDHC activity in human sperm and is anchored
to the fibrous sheath along the length of the flagellum, representing 210

a local ATP production closer to the site of ATP consumption [34].
Also, Odet et al. showed that a disruption in mouse sperm-specific
Ldhc resulted in impaired fertility due to immotile sperm [35].



4 M. J. Freitas et al., 2017, Vol. 0, No. 0

Furthermore, sperm-specific LDHC presents a low Km for pyruvate
and a high Km for lactate, suggesting a higher affinity of LDHC215

for pyruvate and consequently a preference for the glycolytic energy
pathway. It is noteworthy to mention that although most mammals
rely, at least partially, on glycolysis for motility, the bull seems to be
an exception. Oxidative phosphorylation in bull sperm appears to
be the only source of ATP [36].220

A third possibility for ATP availability in human sperm is a co-
operation and dependence between oxidative phosphorylation in
mitochondria and glycolysis in the flagellum. This hypothesis is sup-
ported by different energetic subtracts of the reproductive tract fluids
[11,21]. It appears that mammalian sperm switch between metabolic225

pathways depending on oxygen availability and glucose, pyruvate,
lactate, sorbitol, glycerol, and fructose concentration in the fluid
[25,32,37–40]. For example, in the human female reproductive tract,
glucose, pyruvate, and lactate are found in the range of 0.5–3.2, 0.1–
0.2, and 4.9–10.5 mM, respectively. Sperm must adapt its bioener-230

getic metabolism according to the metabolites available from the
epididymis until the fallopian tubes [41].

Signaling pathways in sperm motility

Sperm leaving the testes are immotile and acquire motility through-
out the epididymis journey. Sperm is virtually devoid of transcription235

and translation due to highly condensed DNA and lack of endoplas-
mic reticulum [42]. Since gene expression cannot be accounted for
functional alterations in sperm, activation or inhibition of specific
signaling pathways and protein posttranslational modifications must
be involved. The interaction between sperm and the environment cre-240

ated by the epididymis and the female reproductive tract are essential
to trigger sperm motility.

Several signaling pathways have been described as having a role
in mammalian sperm motility. In the next section, the most relevant
signaling pathways and messengers involved in sperm motility ac-245

quisition in the epididymis and hyperactivated motility in the female
reproductive tract will be described.

Sperm motility in the male reproductive system—a
journey through the epididymis
After spermatogenesis, sperm is morphologically complete but func-250

tionally immature. When entering the epididymis, a long convoluted
tubule that connects the testis to the vas deferens, human sperm is
incapable of fertilizing an oocyte. The epididymis is roughly divided
into three regions: caput, corpus, and cauda. The caput is adjacent
to the testis and the caudal portion adjacent to the vas deferens [43].255

Only during the journey through the epididymis, the sperm acquire
fertilization ability. Epididymal maturation involves the interaction
of sperm with proteins that are synthesized and secreted into the epi-
didymis in a region-dependent manner [44]. The majority of studies
concerning epididymis function are carried out in rodent models, due260

to the limited availability of human epididymal tissues at reproduc-
tive ages, the impossibility of mimicking the epididymis environment
in vitro and the difficulty to manipulate the human epididymis exper-
imentally. The exact mechanism behind sperm motility acquisition
in the epididymis is still unknown [6].265

One of the first described signaling events responsible for sperm
motility acquisition within the epididymis is the control of phos-
phoprotein phosphatase 1 (PPP1, also known as PP1) activity in
sperm (Figure 2). PPP1CC2 (also known as PP1γ 2), a testis-enriched
sperm-specific PPP1 isoform, is distributed throughout the flagellum,270

midpiece, and posterior region of the head [45], suggesting a role in
motility and acrosome reaction [46,47]. In 1996, Smith et al. de-
scribed, for the first time, the association between PPP1 activity and
sperm motility. In caput sperm, PPP1 activity is high and sperm is
immotile. Conversely, in caudal sperm PPP1 is inactive and sperm 275

are motile [48,49]. In the following years, several studies attempted
to unveil the signaling pathways responsible for PPP1 activity mod-
ulation in sperm, through the epididymis journey. PPP1 regulatory
subunit 2, PPP1R2 (also known as Inhibitor-2), is a PPP1 inhibitor
[50]. In sperm, PPP1R2 localizes throughout the principal piece, 280

midpiece, and posterior and equatorial regions of the head. Former
studies described PPP1R2 activity in human sperm and that some of
the sperm PPP1 population is bound to PPP1R2 and is therefore in-
active [51]. When phosphorylated at threonine 73, human PPP1R2
is unable to bind to PPP1, rendering it active [52]. Glycogen synthase 285

kinase 3 (GSK3) is the kinase responsible for PPP1R2 phosphoryla-
tion. Interestingly, GSK3 activity has been extensible correlated with
sperm motility regulation both in cauda and caput (bovine, mouse,
and macaque models) [53–55]. GSK3 is six times more active in
caput than in caudal sperm and its activity is correlated negatively 290

with sperm motility [53,55]. Moreover, GSK3 appears to have an
isoform-specific function on sperm motility. When GSK3alpha is
knockout, there is a decrease in sperm motility and metabolism,
while GSK3beta conditional knockout is fertile [56].

Recently, Koch et al. showed that the Wnt signaling can be par- 295

tially responsible for GSK3 activity regulation in epididymal sperm.
In corpus and caudal epididymis, Wnt signaling proteins are re-
leased in epididymosomes from epididymal principal cells. In the
epididymis, lumen Wnt proteins bind to low-density lipoprotein
receptor-related protein 6 receptor (LRP6), activating it. In turn, 300

LRP6 induces GSK3 inhibition, which leads to decreased PPP1R2
phosphorylation [57]. Synergistically, GSK3 activity can be mod-
ulated by phosphoprotein phosphatase 2A (PPP2 also known as
PP2A). Dudiki et al. demonstrated that in caput sperm demethy-
lated and phosphorylated PPP2 isoform alpha (PPP2CA) is active. 305

Consequently, it dephosphorylates GSK3 in serine residues render-
ing it active. Subsequently, PPP1R2 threonine 73 is phosphorylated
and the inhibitor becomes inactive, resulting in active PPP1 and im-
motile sperm. In caput sperm, methylation of PPP2CA increases due
to a decrease in protein phosphatase methylesterase 1 (PPME1) ac- 310

tivity. In these conditions, PPP2CA becomes inactive resulting in
increased GSK3 serine phosphorylation and thus its inactivation.
Subsequently, PPP1R2 is active and inhibits PPP1, leading to motile
sperm [58] (Figure 2).

Moreover, in 2013, Korrodi et al. identified a new PPP1R2 iso- 315

form in human sperm, PPP1R2P3 (also known as inhibitor 2-like)
[51]. This isoform has the unique feature of threonine 73 being re-
placed by proline avoiding GSK3 phosphorylation. Korrodi et al.
hypothesized that PPP1R2P3 is only present in caudal motile sperm,
representing a constitutively inhibitor of PPP1, and therefore re- 320

sponsible for the process of sperm motility acquisition along the
epididymis journey [51] (Figure 2).

Besides PPP1R2, PPP1 regulatory subunit 7 (PPP1R7) and PPP1
regulatory subunit 11 (PPP1R11), other two PPP1 inhibitors are
present in sperm, suggesting a synergetic mechanism for PPP1 activ- 325

ity control [59]. PPP1R11 (also known as I3) is a human homolog
of the mouse Tctex5, a protein associated with male infertility due
to impaired sperm motility. On mouse sperm, PPP1R11 is localized
in the head and principal piece of the flagellum, the same subcellular
localization of PPP1 [60]. In rat liver cells, PPP1R7 (also known as 330

sds22) inhibits PPP1, and in rat testis, it associates with PPP1CC2. In
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Figure 2. Schematic representation of the signaling events required for sperm motility acquisition in the epididymis. In caput epididymis, PPP2CA is phospho-
rylated and consequently active, which in turn dephosphorylates GSK3 at serine residues, rendering it active. GSK3 phosphorylates PPP1R2 at thr73 which
inhibits the interaction between PPP1R2 and PPP1 resulting in active PPP1. PPP1R7 is bound to p17, which leads to free and active PPP1. Active PPP1 results in
dephosphorylation of key residues and consequently immotile sperm. In cauda epididymis, PPME1 activity decreases increasing PPP2CA methylation, resulting
in inhibition of PPP2CA. Consequently, GSK3 serine phosphorylation increases leading to GSK3 inhibition. Also, Wnt binds to LRP6 receptor which promotes
GSK3 inhibition by an unknown mechanism. Moreover, ATP binds to purinergic receptors (PR), resulting in calcium influx. Calcium activates sAC, which produces
cAMP activating Rap guanine nucleotide exchange factor (RAPGEFs). The latter activates AKT that phosphorylates GSK3 at serine residues inactivating it [65].
GSK3 is inhibited, which leads to decrease Thr73 PPP1R2 phosphorylation (the phosphatase responsible is unknown). Consequently, PPP1R2 binds PPP1. Also,
PPP1 is bound to PPPP1R2P3 and in a complex with PPP1R7, actin, and PPP1R11. Thus, PPP1 activity is inhibited and ser/thr phosphorylation of key residues
increases leading to motile sperm. P, phosphorylation; M, methylation; green arrows, activation; red arrows, inhibition; yellow arrows, phosphorylation; yellow,
phosphorylated proteins; pink, methylated proteins.

caput, bovine sperm PPP1R7 and PPP1CC2 do not interact. Instead,
PPP1R7 is associated with a 17 kDa protein (p17) [61], resulting in
active PPP1. Conversely, in mouse caudal sperm, PPP1R7, PPP1R11,
actin, and PPP1 form a complex that is catalytically inactive [59]335

(Figure 2). Although PPP1 plays a crucial role in keeping motility
at check in caput sperm, its substrates are still unknown. Besides
PPP1, a sperm-specific isoform of calcineurin (PPP3CC) appears to
be involved in epididymal maturation. Upon ablation of PPP3 and
regulatory subunit PPP3R2, male mice are infertile due to impaired340

hyperactivation and penetration of zona pellucida. Phenotypically,
sperm without PPP3CC presents an inflexible midpiece. When sperm
is hyperactivated, the bending capacity of the midpiece increases;
however, PPP3CC null sperm are incapable of exhibiting this in-
crease. Interestingly, inhibition of PPP3CC with specific inhibitors345

results in a quick phenotype (5 days) alteration from normal to in-
flexible midpieces. After 1 week of halting drug administration, the
sperm are completely recovered and fertility is restored [62].

Since for sperm motility dephosphorylation must be shut
down, it is not surprising that phosphorylation must in-350

crease. It is well known that the soluble adenylyl cyclase/
cyclic adenosine monophosphate/cAMP-dependent protein kinase
(sAC/cAMP/PRKA; cAC/cAMP/PKA) signaling pathway affects

sperm motility positively. Although the sAC/cAMP/PRKA signaling
is mostly associated with hyperactivated motility [9], its involve- 355

ment in sperm motility acquisition is unquestionable (see below)
[63,64]. In 2013, Vadnais et al. proposed a crosstalk between the
GSK3/PPP1R2/PPP1 and sAC/cAMP/PRKA pathways during motil-
ity acquisition in the epididymis [65] (Figure 2). Figure 2 shows
the main signaling pathways involved in motility acquisition in the 360

epididymis.

Sperm motility in the female reproductive system
During unprotected intercourse, millions of sperm are deposited in
the female reproductive tract, more specifically in the vagina. From
there on, sperm must swim until they reach the oocyte in the fal- 365

lopian tube. Although sperm is already motile when ejaculated,
hyperactivated motility must be acquired to overcome all the fil-
ters and traps imposed by the female reproductive tract. Interest-
ingly, it is the unique female environment that triggers the signal-
ing pathways essential for sperm hyperactivated motility [66]. In 370

the past years, many efforts have been made to unravel the role of
key messengers and signaling pathways involved in hyperactivated
motility.
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First messengers—calcium, bicarbonate, and progesterone
In sperm, calcium (Ca2+) plays a central role in events preceding375

fertilization, specifically, motility, chemotaxis, and acrosome reac-
tion. The relevance of Ca2+ on eukaryotic cell physiology is reflected
in several Ca2+-dependent enzymes, intracellular Ca2+ stores, and
Ca2+ channels [67]. Human sperm is no exception. The most de-
scribed role of Ca2+ in human sperm motility is the activation of the380

sAC. Moreover, the inhibition of Ca2+ signaling is associated with
male subfertility [68]

In human sperm, mean basal Ca2+ is kept around 100—
200 nM, while in the extracellular medium it varies between 1 and
2 mM [69]. This gradient concentration is accomplished by a Ca2+-385

ATPase pump, which promotes Ca2+ efflux with ATP consumption
[70,71]. A low resting Ca2+ concentration is what keeps human
sperm in a basal motility state in the caudal portion of the epi-
didymis and vas deferens. However, in the female reproductive tract,
Ca2+ concentration increases to induce hyperactivated motility. The390

female reproductive system controls the increase in Ca2+ concentra-
tion in the sperm through clues in specific places and menstrual cycle
phase [72].

The influx of Ca2+ into human sperm is promoted by several
mechanisms: increase in membrane permeability [73], depolariza-395

tion [74], inhibition of the Ca2+-ATPase pump, and activation of
voltage-dependent calcium channel (VOCCs). Yet, the main known
mechanism for Ca2+ influx into sperm is the CatSper (cation chan-
nel of sperm), identified in 2001 by Ren et al. [75]. This channel,
located at the principal piece of the flagellum, is the only constitu-400

tively active Ca2+ conductance present in human sperm, responds
weakly to voltage alterations, and is pH sensitive [75,76]. More-
over, null mice for CatSper1 are infertile [75]. Human CatSper acti-
vation is triggered mainly by extracellular progesterone (see below),
prostaglandins [77], and an alkaline environment (created by in-405

creasing HCO3
− concentrations) [78]. Curiously, mouse CatSper is

activated by neither progesterone nor prostaglandins. This suggests
a species-specific Ca2+ influx process, possibly to avoid cross-species
fertilization [77]. Although it is not located to the sperm’s head,
CatSper also appears to be involved in the acrosome reaction by in-410

creasing Ca2+ concentration [79]. Furthermore, Brenker et al. con-
cluded that a range of small odorant molecules present in the female
reproductive tract activate CatSper, resulting in chemotaxis of the
sperm toward the oocyte [80].

Although the process of Ca2+ influx is essential for sperm motil-415

ity, it is established that the human sperm has Ca2+ stores. The
most promising candidates for Ca2+ stores in human sperm are the
acrosome, the nuclear membrane, and the cytoplasmic droplet [81].
Interestingly, it appears that in the sperm flagellum there are no Ca2+

stores, suggesting that the stores are important on processes such as420

acrosome reaction, rather than in motility. Moreover, the presence
of sarcoplasmic and/or endoplasmic reticulum calcium ATPases in
human sperm, channels that transport Ca2+ from the intracellular
medium to Ca2+ stores in somatic cells, further reinforces the pres-
ence and functional importance of Ca2+ stores [81,82].425

Progesterone is probably the most potent activator of capacita-
tion of human sperm [83]. It is produced by the cumulus oopho-
rus cells that surround the oocyte. At nanomolar concentration
range, progesterone induces Ca2+ influx and promotes extensive
phosphorylation through the activation of several kinases, such as430

PRKA [84], protein kinase C (PRKC), mitogen-activated protein ki-
nases (MAPKs) and phosphatidylinositol 4,5-bisphosphate 3-kinase
(PIK3C, PI3K) [85,86]. Phenotypically, progesterone increases the
number of motile sperm, induces hyperactivated motility and acro-

some reaction, and appears to be involved in sperm chemotaxis to- 435

ward the oocyte [86–91].
In somatic cells, progesterone acts through classic nuclear pro-

gesterone receptor and regulates gene expression. Conversely, sperm
is transcriptionally silent and the effect of progesterone on sperm
physiology is far too quick to be explained by gene expression [92]. 440

In 2011, Strünker et al. and Lishko and et al. concluded that pro-
gesterone activates the CatSper channel [77,78]. As the sperm leaves
the epididymis and mixes with the prostatic seminal vesicle fluid, the
bicarbonate (HCO3

−) content increases [93]. Reaching the female
reproductive system, sperm encounters an acidic environment, which 445

should reduce motility. Yet, the basic pH of the seminal plasma neu-
tralizes the acidic pH and allows sperm motility [94] and the semen is
deposited closely to the uterus cervix so that sperm can quickly move
out of the vagina [7,95]. Within the uterus, the rich HCO3

– alka-
line environment is essential for sperm hyperactivated motility [96]. 450

Curiously, throughout the menstrual cycle, HCO3
– concentrations

vary from 35 nM at the follicular phase to at least 90 nM at ovu-
lation, potentiating fecundation [95]. Sperm-specific Na+/ HCO3

−

cotransporters mediate the influx of HCO3
− and, as a result, there

is an increase on sperm pH and hyperpolarization [97]. Though, to 455

achieve complete hyperpolarization, there must be a Na+ and K+ in-
flux, Na+ is transported by the Na+/ HCO3

− cotransporters and K+

influx is mediated by calcium-activated potassium channels and the
ion transporter Na,K-ATPase. Calcium-activated potassium chan-
nels are regulated by intracellular alkalinization and cAMP, which 460

hints a HCO3
− indirect regulation of K+ [94]. Within the sperm,

HCO3
− activates factors that exchange phospholipids within the

bilayer plasma membrane. Consequently, cholesterol is vulnerable
to albumin, which is the most abundant protein on the female re-
productive system, and the main cholesterol acceptor. Albumin can 465

decrease up to 40% of the sperm cholesterol content and this leads
to an increase on membrane fluidity [98,99]. Hyperpolarization, in-
tracellular alkalinization, and increased membrane fluidity promote
influx of Ca2+.

The Na,K-ATPase pump is a membrane protein found in all 470

eukaryotes [100]. By using the energy released from ATP hydroly-
sis, the Na, K-ATPase pump promotes the efflux of three molecules
of Na+ and influx of two molecules of K+ [101]. Two subunits
compose the Na,K-ATPase protein: the alpha and beta subunits. In
several species, including human, the alpha4 subunit presents the 475

most restricted expression. It is present in sperm principal piece only
in mature sperm of males in sexual maturity. Besides the Na,K-
ATPase alpha4 subunit, only subunit alpha1 is present in sperm
[100]. Knockout studies revealed that the Na,K-ATPase alpha4 sub-
unit is crucial for sperm physiology, since alpha4 subunit KO is 480

completely sterile (knockout sperm presents reduced primary and
hyperactivated motility, bent flagellum, increased intracellular Na+,
and cell plasma membrane depolarization [102]). Mcdermott et al.
reinforced the role of Na,K-ATPase alpha4 subunit on human male
fertility by showing that an overexpression of this protein in mouse 485

testis results in an increased total motility (among other param-
eters of sperm movement) [103]. Although the exact mechanism
underlying the role of Na,K-ATPase in sperm physiology is not
fully characterized, Na,K-ATPase alpha4 isoform appears to reg-
ulate intracellular H+. Since it is unlikely that the Na,K-ATPase 490

transports H+, its ability to regulate intracellular H+ arises from
its effect on the activity of a Na+/H+ exchanger (NHE). NHE
uses the Na+ gradient established by the Na,K-ATPase to extrude
H+ in exchange for the influx of Na+ [104] and, consequently,
there is an increase in the intracellular pH [104] (Figure 3). In
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Figure 3. Schematic representation of the signaling events required for sperm hyperactivated motility in the female reproductive system. Several mechanisms
are responsible for intracellular Ca2+ increase in sperm. Progesterone binding to CatSper activates VOCCs and inhibition of Ca2+-ATPase pump promotes Ca2+

influx. In sperm, HCO3
− and Na+ increase due to activation of Na+/HCO3

− cotransporter. Potassium enters through a calcium-activated potassium channels
(CAPC) and Na,K-ATPase. The Na+ gradient created by the Na,K-ATPase activates the Na+/H+ exchanger that promotes the influx of Na+ and de efflux of
H+. HCO3

− activates exchange factors (EF) that promote cholesterol externalization, becoming vulnerable to albumin. HCO3
− and Ca2+ activate sAC, which

converts AMP to cAMP and activates PRKA. PRKA activates tyrosine kinases, by phosphorylation. Also, Ca2+ activates PIK3C, which forms PIP3, that in turn
activates PDPK1 and PDPK1 and PDPK2 activate AKT by phosphorylation. AKT activates tyrosine kinases by phosphorylation. At the same time, DAG activates
PRKC which phosphorylates RAF-1, RAF-1 activates MAP2K2, and MAP2K2 activates MAPK3/1. Again, MAPK3/1 activates tyrosine kinases by phosphorylation.
MAPK3/1 phosphorylates ARHGAP6 which may be involved in hyperactivated motility. MAPK14/11/12/13 inhibits hyperactivated motility. Src inhibits PPP1, which
allows an increase of tyrosine kinases phosphorylation. Tyrosines kinases phosphorylate key proteins inducing hyperactivated motility. P, phosphorylation; Prg,
progesterone; green arrows, activation; red arrows, inhibition; dashed arrow, predicted function; yellow, phosphorylated proteins.

bovine sperm, Jimenez et al. demonstrated that Na,K-ATPase activity495

is upregulated during capacitation. Also, when Na,K-ATPase activity
is impaired, the intracellular decrease in Na+ and plasma membrane
hyperpolarization that typically accompany sperm capacitation are
inhibited [105]. Ouabain, a cardiac glycoside produced in adrenal
glands, is a Na,K-ATPase inhibitor which may have a physiological500

role in fertilization. [106–108].

Signaling pathways in hyperactivated motility
It appears that all the processes that occur in the female reproductive
system increase the Ca2+ and HCO3

− concentrations in the sperm.
This raises the question: Within the sperm, what signaling pathways505

Ca2+ and HCO3
− modulate to promote hyperactivated motility?

The most well-known pathway that controls hyperactivity and
is highly dependent on Ca2+ and HCO3

− concentrations is the
sAC/cAMP/PRKA pathway. The sAC is specific to sperm, does not
interact with guanosine-5’-triphosphate, and, binds to HCO3

− and510

Ca2+ for its activation [97]. Upon activation, sAC converts adeno-
sine monophosphate into 3′5′-cAMP. The increase of cAMP acti-
vates PRKA, a serine/threonine kinase that is dependent on cAMP
[5,109]. The fact that when sAC and Calpha2 sperm-specific PRKA

subunit are knockout, sperm does not acquire motility reinforcing 515

the necessity of such signaling pathway in sperm motility [110,111].
PRKA appears to target and activate tyrosine kinases since inhibition
of PRKA is correlated with a decrease in tyrosine phosphorylation
[112].

PRKA activity control and its subcellular localization are crucial 520

for compartmentalization of its effect. In sperm, PRKA is typically
tethered to A-kinase anchor proteins (AKAPs), which in turn tar-
gets PRKA to specific subcellular sites and provides a mechanism
for defining its substrates [84]. Besides anchoring PRKA, it has been
showed that AKAPs can also scaffold phosphatases and other ki- 525

nases from macromolecular complexes essential for signaling cas-
cades within the sperm [84]. In flagellum sperm, AKAPs have a
prominent role, and AKAP4 is the main component of the fibrous
sheath. Moreover, when AKAP4 is knockout, sperm numbers are
normal but sperm is incapable of progressive motility and proteins 530

usually associated with the fibrous sheath, such as PRKA, are absent
or significantly reduced [70].

Besides increasing PRKA activity, Battistone et al. proved that
serine/threonine phosphatases must be inactivated to allow the
increase in serine/threonine phosphorylation. Members of the Src 535
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family kinase (SFK) inactivate members of the serine/threonine
phosphatases family possibly by tyrosine phosphorylation. In hu-
man sperm, PPP1CC2 is the most promising candidate since it ex-
hibits predicted tyrosine phosphorylation sites and only high okadaic
acid concentrations overcome the SKI606 effect (an SFK inhibitor)540

[113]. Nevertheless, the involvement of other serine/threonine phos-
phatases, such PPP2CA or PPP4C, cannot be ruled out [113].

Although sAC/cAMP/PRKA plays a central role in hyperactivated
motility, it is not the only signaling pathway involved in this pro-
cess. The involvement of the PIK3C-AKT pathway in sperm hyper-545

activated motility was described by Sagare-Patil et al. Progesterone
promotes the influx of Ca2+ through the CatSper channel. Within
the sperm, Ca2+ activates PIK3C (unknown mechanism) converting
PIP2 into PIP3. The latter binds and activates 3-phosphoinositide-
dependent protein kinase 1 (PDPK1), which phosphorylates RAC-550

alpha serine/threonine-protein kinase (AKT or PKB) in threonine
308. Consequently, AKT serine 473 becomes exposed and vulnera-
ble to phosphorylation by PDPK2. Both phosphorylations render an
active AKT, which phosphorylates serine residues on key proteins in
sperm motility [86].555

The MAPK signaling is also involved in human sperm hyperac-
tivated motility, although its role is controversial. In 2005, a study
in human sperm stated that tryptase, a product of mast cells in
the female reproductive system, activates MAPK3/1 (also known as
ERK1/2), which in turn inhibits motility [114]. However, in 2008,560

Almog et al. demonstrated the existence of the MAPK cascade el-
ements, more specifically, MAPK3/1, SOS, RAF-1, MAP2K1, and
MAPK14/11/12/13 (also known as p38 proteins) in the tail of ma-
ture ejaculated human sperm and revealed a positive correlation
between MAPK3/1 and motility. Upon activation by diacylglycerol565

(DAG), protein kinase C (PRKC, PKC) becomes active and phospho-
rylates RAF-1, which in turn phosphorylates and activates MAP2K1.
MAP2K1 activates MAPK3/1 by phosphorylation. One of the iden-
tified substrates of MAPK3/1 was Rho GTPase-activating protein
6 (ARHGAP6). This protein may control the active slide of micro-570

tubules in sperm flagellum since it has already been described as
being involved in cell motility and actin remodeling [115]. On the
other hand, active MAPK14/11/12/13 inhibits sperm motility [116].
Again in 2015, Silva et al. also showed a negative correlation between
MAPK14/11/12/13 activation and human sperm motility [117]. Fig-575

ure 3 shows the signaling pathways involved in sperm hyperactivated
motility in the female reproductive system.

Correlation between sperm motility and
tyrosine phosphorylation
In 1989, Leyton and Saling described for the first time the presence580

of tyrosine phosphorylation in mammalian sperm (mouse) [118].
Twenty-six years later, the importance of tyrosine phosphorylation
in capacitation and motility is unquestionable. The increase of pro-
teins tyrosine phosphorylated in the human sperm is a hallmark of
capacitation and has been positively associated with acquired and585

hyperactivated motility [112,119,120]. Most of the signaling path-
ways involved in human motility, including the ones described pre-
viously, culminate in activation of tyrosine kinases. The identity of
most tyrosine kinases is unknown, still the tyrosine kinases Scr [121],
FGFR1 [122], and ABL1 [123] are already associated with tyrosine590

phosphorylation in mammalian sperm.
Several studies proved that dozens of proteins undergo tyrosine

phosphorylation during capacitation in the sperm, mainly proteins
localized in the flagellum [55,124–127]. In fact, human AKAP4 (see

above) was one of the first proteins to be identified as a substrate for 595

tyrosine phosphorylation [128]. Fibrous sheath protein of 95 kDa
[129], CABYR [130], and HSP90 [131] are other targets of tyrosine
kinases [97]. Also, it has been hypothesized that dyneins are tyrosine
phosphorylated and that this posttranslation modification controls
the sliding of microtubules and therefore motility. The challenge for 600

the next years is to identify new tyrosine phosphorylation targets
and their relationship with sperm motility [112].

Concluding remarks

This review attempts to summarize the current knowledge on the
signaling pathways involved in sperm motility regulation. Since the 605

first observation of the sperm by Anton van Leeuwenhoek in 1677,
the knowledge concerning the sperm cell grew exponentially. The
sperm structure, energy metabolism, epididymal maturation, and ca-
pacitation are indispensable for fertilization. Nevertheless, the road
to unraveling the molecular players involved in the regulation of 610

this processes is still long. Specifically, the molecular basis of sperm
motility is not fully understood. Nowadays, we believe that the ma-
jor setback to fully comprehend the molecular basis of human sperm
motility is a technical one. Animal models and in vitro experiments
are the only options to study epididymal maturation and capacita- 615

tion. Understanding the mechanism responsible for human sperm
motility is of great value. Sperm motility is the perfect target for
male contraception since it does not disturb spermatogenesis and
hormone production. Also, decreased sperm motility is increasing
in developed countries, resulting in an escalation in male infertility 620

rates. Understanding the signaling pathways behind sperm motility
can help pinpoint the cause of male infertility and contribute to the
development of new therapies.
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