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 Abstract 

 Globally, cancer is one of the leading causes of death, is one of the leading causes 

of death worldwide and so the development of strategies for an early diagnosis of cancer 

is of great importance. Since Biochemical alterations precede morphological changes in 

cells and tissues, so studying cancer metabolome seems like a reasonable approach for 

early diagnosis, prognosis and to follow treatment progression. Fourier-transform 

infrared (FTIR) spectroscopy is a valuable tool for studying the metabolome of biological 

samples, such as cancer cell lines. Unlike staining procedures and other histopathologic 

approaches, this technique is rapid, non-destructive and does not require reagents. The 

spectral differences that result from probing the biochemical composition of cancer and 

normal cells are indicative of distinct metabolic profiles, which allows for allow the 

discrimination of different cells. Using FTIR spectroscopy and multivariate statistical 

analysis, several alterations concerning the content of lipids, proteins, nucleic acids and 

carbohydrates have been identified in cancer cells, some of which can be regarded as 

potential biomarkers. This review focuses on FTIR spectroscopy as a metabolomics tool 

to study and characterize cancer cell lines. 
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1. Introduction 

 Cancer is the second leading cause of death worldwide. It is estimated that every 

year there are 14 million new cases of the disease every year, causing almost 9 million 

deaths (1,2). Despite the efforts in finding new diagnostic and therapeutic strategies, 

cancer patients exhibit relatively low survival rates. One of the reasons for that is the 

fact that the disease is often detected when it is well established, meaning that it is 

diagnosed at a late stage, only when morphological alterations are observed, in many 

cases resulting in a poor prognosis. that in many situations it is associated with a poor 

prognosis (3). Furthermore, costs associated with cancer treatment are a huge problem 

to for healthcare systems, so it is imperative to discover new strategies to diagnose 

cancer as early as possible. for the early diagnosis and treatment of cancer as early as 

possible (4,5).  

 Similar to every other disease, cancer exhibits several cellular and molecular 

alterations (6–8). Because cancer cells display a very distinct and unique metabolic 

phenotype, cancer is basically considered a metabolic disease. Moreover, an altered 

metabolism has been recognized as one of the hallmarks of cancer (9,10). Since it is the 

endpoint of cellular biological processes, metabolism carries an imprint of the cell’s 

phenotype and, therefore, it is indicative of its activity. Common alterations present in 

several types of cancer cells include increased glucose uptake, increased rate of 

glycolysis, decreased mitochondrial activity, low bioenergetic status and abnormal 

phospholipid metabolism (11–13). In addition to these general metabolic alterations, 

specific metabolites have been implicated in particular types of cancer, such as 1-

stearoylglycerol, citrate and spermine in prostate cancer (14,15) and glycine in breast 

cancer (16). In this way Thus, measuring the metabolites themselves appears to be a 

reasonable approach to study diseased cells (17).  

 The study of the metabolome provides rapid, sensitive and reproducible data 

and has been widely used to understand phenotypic and metabolic alterations 

associated with cancer cells (18–20). The main advantage of metabolomics lies on the 
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fact that the metabolome can reflect early changes that occur in the cell, allowing the  

identification of diagnostic biomarkers before morphological changes occur (18,21). 

Furthermore, metabolomics allows to monitor the efficacy of medical interventions and 

the understanding of molecular mechanisms involved in cancer and carcinogenesis 

(21,22). 

 The main metabolomic techniques used for metabolic fingerprinting are nuclear 

magnetic resonance (NMR) spectroscopy, mass spectrometry and vibrational 

spectroscopy, which includes FTIR spectroscopy (17,23). The latter has gained relevance 

in biomedical research because it provides an inexpensive, rapid, high-throughput and 

non-destructive analysis of a wide range of samples, including biological fluids, tissues 

and cells (24,25). FTIR spectroscopy probes the chemical composition and molecular 

structure of the analyzed samples (17,26). Moreover, since biochemical alterations lead 

to spectral differences, it is possible to discriminate samples with distinct metabolic 

profiles (3,27). In this review, we intend to explore the importance of FTIR spectroscopy 

in cancer metabolomics and compile work that has been conducted in the study of 

cancer cell lines using FTIR spectroscopy.  

2. FTIR Spectroscopy 

 FTIR spectroscopy is a form of vibrational spectroscopy. Therefore, it is based on 

the vibrations of the atoms in a molecule, caused by the interaction of infrared (IR) 

radiation with matter (28–30). However, not every molecule shows IR absorptions: only 

the vibrations that cause a change in the dipole moment of the molecule absorb IR 

radiation, and the larger this change, the more intense will be the absorption band will 

be (29). Molecular vibrations that are produced (mainly stretching and bending) are 

specific to the composition and structure of analyzed samples (24,26,29). The IR region 

can be divided into three regions: near-IR (13,000 – 4,000 cm-1), mid-IR (4,000 – 400 cm-

1) and far-IR (< 400 cm-1) (29). Nevertheless, many of the studies that have been 

conducted regarding FTIR spectroscopy and cell lines included only the mid-IR region 

because, aside from being very informative, most of the molecules absorb its radiation 

(31,32). 
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 FTIR spectroscopy has shown potential as a tool for analyzing cells. Unlike 

histopathologic techniques, FTIR spectroscopy is rapid, non-invasive, cost-effective, easy 

to operate, reagent-free and requires minimal sample preparation. Furthermore, 

experimental materials can be re-used for further analysis and, as it is a method without 

technician interference, it tends to be less subjective (17,25,30). Despite these great 

advantages, one of the main disadvantages of this technique is the strong absorption 

that water exhibits in the mid-IR region. As biological tissues and cells are mainly 

composed by water, this may constitute a problem in FTIR analysis of biological samples. 

Nevertheless, this drawback can be overcome simply by dehydrating the samples, 

ridding them of the water (17,33–35). 

 Since IR spectra reflect the chemical composition of a given sample, alterations 

that occur in key macromolecules, such as proteins, lipids, carbohydrates and nucleic 

acids, can be monitored (36–39). Furthermore, IR spectrum can be considered a 

molecular fingerprint of the sample, meaning that changes that occur in biomolecules, 

for instance, during carcinogenesis, will modify this fingerprint, enabling the 

discrimination between cancer and normal cells (37,40–42). 

 To analyze FTIR data, both direct spectra analysis and statistical tools can be 

used. In spite of its importance, Since the direct analysis of the IR spectra, although 

important, is difficult and subjective, so multivariate statistical tools analyses are widely 

used instead to study metabolomics data. , such as IR spectra of biological samples 

(43,44). One of the most commonly used tools is principal component analysis (PCA), 

which is an unsupervised model, so it does not require an initial knowledge about the 

samples (43,45). PCA reduces thousands of variables characteristic of a spectrum to a 

few principal components and is used as an exploratory tool that groups samples 

according to shared similarities (43,46). The results of a PCA can be presented in the 

form of score and loadings plots; score plots present the separation of groups observed 

in the samples, while loadings plots indicate variables that are responsible for the 

discrimination (44,46). After the samples are analyzed with an unsupervised model, 

other statistical methods can be applied, such as partial least square – discriminant 

analysis (PLS-DA). This is a supervised model, meaning that an initial knowledge about 

the samples is required (e.g. cancer cells vs. normal cells) and can be used if the 
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discrimination provided by PCA is insufficient (43,44,47). After the use of appropriate 

multivariate analysis tools, it is possible to create quantitative and qualitative 

classification models that make analysis of spectroscopic data approach more objective 

and, in some cases, almost automatic. 

3. Cell lines for in vitro study of cancer 

 Cells are composed by several macromolecules, such as proteins, lipids, nucleic 

acids and carbohydrates (24). Therefore, the study of cells can provide a great deal of 

information regarding metabolic processes and absence or presence of disease (48). 

 Human cancer-derived cell lines are considered an important asset in biomedical 

research among the other tools of studying cancer. Since they offer an almost unlimited 

source of cells, are relatively easy to work with, exhibit a high degree of homogeneity 

and provide consistent and reproducible results, cancer cell lines have become the most 

used experimental model to study cancer. Furthermore, the use of cancer cell lines 

evades ethical issues that are associated with the use of animal and human tissues 

(49,50). 

 Cancer cell lines are widely used to study the biology of cancer and in the 

development and testing of anticancer drugs, and many of the results that are obtained 

with cell lines are extrapolated to human cancers in vivo (51–55). The most commonly 

used approaches for the study of cells rely on staining procedures, which can be 

expensive, time-consuming and potentially cause harmful effects on the cells (56). 

Therefore, new approaches to study cell lines, mainly such as FTIR spectroscopy, have 

emerged in the last years, showing promising results (36,41,57). 

4. FTIR spectroscopy applied to cancer cell lines 

 FTIR spectroscopy has proven to be a valuable tool in cancer metabolomics. 

When analyzing biological samples, such as cells, there are key spectral regions that 

need to be considered. The 3000 – 2800 cm-1 region is mainly associated to lipids. 

Proteins are mostly characterized by two bands in the 1800 – 1300 cm-1 region: amide I, 

between 1700 and 1600 cm-1, and amide II, which peaks at ~1540 cm-1, which are 

sensitive to the secondary structure of proteins; however, the amide I band is the most 

frequently used for this type of analysis. Also, in the 1800 – 1300 cm-1 region, the 
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shoulder band at ~1740 cm-1 is assigned to phospholipids, and the bands between 1480 

and 1300 cm-1 have been attributed to amino acid side chains and fatty acids. Lastly, the 

major bands in the 1300 – 900 cm-1 region arise mainly due to carbohydrates 

(particularly glycogen) and phosphates associated with nucleic acids (17,58). 

Furthermore, any changes in intensity or shape of bands or shifts to lower or higher 

frequencies, may indicate cellular alterations (58). A more detailed description of the 

mid-IR bands and their assignments can be consulted in table 1. 

a. Spectral characteristics of cancer cell lines 

 A typical IR spectrum of cancer cells is presented in figure 1. The spectrum 

represents an average of 8 spectra, which were acquired in a Fourier-transform infrared 

spectrometer (Alpha Platinum ATR, Bruker), controlled by OPUS software (©Bruker). The 

spectra were obtained over the wavenumber range 4000-600 cm-1, with a resolution of 

8 cm-1 and 64 co-added scans. The cell suspension was air-dried to remove water and, 

therefore, prevent its strong absorption. The spectral assignments for the cells were 

made according to table 1. 

 

Figure 1: IR spectrum of prostate cancer cells LNCaP in the 4000-600 cm-1 region with the main 

spectroscopic signals. The spectrum represents the average of 8 spectra. X-axis: wavenumber (cm-1); Y-

axis: arbitrary units (AU). 

 The study of cancer cell lines with FTIR spectroscopy came to light when Rigas 

and colleagues observed that several colon adenocarcinoma cell lines (LoVo, SW1116, 

HCT-15, SW403, SW480) had similar spectra to those of colon cancer tissues (59). In a 

subsequent study, Rigas and Wong compared the same cell lines and an additional 

adenocarcinoma lineage (SKC01) to normal and malignant colon tissues. They observed 
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that these cells shared many characteristics with malignant colon tissues, such as an 

increased hydrogen-bonding of the phosphodiester groups of nucleic acids (57). In 

addition, they observed that the symmetrical PO2
- stretching causes a band shift from 

1082 cm-1 (in normal tissue) to 1086 cm-1 (in adenocarcinoma cells). In the 1010 – 950 

cm-1 region, two bands were discovered in adenocarcinoma cell lines: one at 972 cm-1, 

assigned to nucleic acids and symmetrical stretching mode of dianionic phosphate 

monoesters of phosphorylated proteins, and the other at 991 cm-1, which varies 

amongst cell lines and wasn’t assigned to any particular biochemical component (57). 

Previous results obtained with HCT-15 cells also indicated that the phosphodiester 

stretching bands are related to nucleic acids (60). Lastly, Rigas and Wond studied the 

amide I band in the 1700 – 1600 cm-1 region, assigned to the in-plane C=O stretching 

vibration weakly coupled with C-N stretching and in-plane N-H bending of the amide 

groups of proteins. They observed an increase in the relative amount of β-sheets, in 

relation to α-helical segments, in adenocarcinoma cells and malignant tissue in 

comparison with normal tissue (57). It is already known that β-sheets are highly present 

in less soluble proteins that are likely to form aggregates (61,62). Similar to 

neurodegenerative diseases, protein aggregation has been found to be present in many 

types of tumors and cancer cell lines, mainly involving aggregates of the tumor 

suppressor p53 (63–65), which can play an important role in carcinogenesis and drug 

resistance (66). 

 In a study comparing the uterine cervical adenocarcinoma cell line SiSo with 

cervical adenocarcinoma tissue and exfoliated malignant and normal cervical cells, 

Neviliappan and colleagues observed that several spectral bands of the malignant tissue 

and exfoliated cells and the SiSo cell line were noticeably different from those of the 

normal exfoliated cells (67). The bands at 1047 and 1025 cm-1 (usually called glycogen 

bands) are associated mostly with C-O stretching and bending of the C-OH groups of 

carbohydrates and were significantly reduced in the malignant tissue and exfoliated 

cells, and in the SiSo cell line (67). Similarly, the band at 1155 cm-1, assigned to the C-OH 

stretching mode of carbohydrates, exhibited a lower peak in the abnormal cases due to 

the decrease of the glycogen levels. A shift in the frequency from 1080 cm-1 (in normal 

cases) to 1085 cm-1 (in abnormal cases) was also observed, indicating a strong 
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intermolecular interaction that occurs in nucleic acids, suggesting that DNA packing is 

tighter and higher in malignant tissue and exfoliated cells and in the SiSo cell line. Also, 

an increase of intensity of the band at 970 cm-1 was observed in the abnormal cases. 

Furthermore, a peak at 1170 cm-1 was detected in malignant tissue, exfoliated cells and 

SiSo cell line, which is derived from the C-OH groups of tyrosine, serine and threonine of 

cell proteins, indicating an increase in the phosphorylation of the C-OH groups (67). It 

has been shown that an increase of the phosphorylation of these three amino acids by 

oncoproteins is an important event that occurs during carcinogenesis (68). Another shift 

observed in the spectra of the malignant tissue, exfoliated cells and the SiSo cell line 

occurred in the band at 1400 cm-1: there was an increase of the intensity of this band in 

these samples, which might be related to structural changes in the methylene chains of 

lipids (67). 

 Later, in 2004, Fujioka and colleagues applied FTIR spectroscopy to compare 

three gastric cancer cell lines (AGS, SNU-1 and NCI-N87) with normal gastric mucosal 

epithelial cells (69). In this study, they analyzed the spectral region between 1650 and 

925 cm-1 and were able to find significant differences between cells, mainly an increase 

of intensity of bands at 1240, 1120 and 1080 cm-1 (69). Regarding the band at 1240 cm-

1, a shift to a higher frequency was observed in cancer cells (peak maximum absorbance 

at ~1241.5 cm-1), compared to the peak maximum absorbance at ~1236.9 cm-1 

presented by the normal epithelial cells, suggesting an alteration in the hydrogen bonds 

in the phosphodiester groups of the DNA in cancer cells. As for the band at 1080 cm-1, 

authors observed a shift to a higher frequency in two cancer cells (AGS and SNU-1) in 

comparison to the one detected in normal cells (1085.7 cm-1 and 1081.9 cm-1, 

respectively). This shift can be attributed to the tighter packing of DNA molecules in the 

cancer cells. On the other hand, a shift to a lower frequency was registered in the NCI-

N87 cell line (1081.5 cm-1) (69). Finally, the increased IR absorbance observed in the cell 

lines in the band at 1120 cm-1 was due to an increment of RNA content in these cells. 

Given these results, the authors concluded that the changes observed in the spectra 

were all associated with an increase in the phosphate backbone, corresponding to an 

increase in DNA and RNA content in the cancer cell lines (69). 
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 A few studies using FTIR spectroscopy have also been carried out in breast cancer 

cell lines. In 2008, Hwang and colleagues studied the 4000-2400 cm-1 region to evaluate 

lipids in cell lines MCF 10A (normal cell line), MCF7 (cancer cell line) and MDA-MB-231 

(invasive cancer cell line) (70). They observed major absorption bands at 3683, 3664 

3641, 3621, 2923, 2873 and 2854 cm-1, with notable differences at 3621 and 2873 cm-1 

that were only observed in the MCF 10A cell line. Their results suggest that cancer cells 

exhibit a stronger bonding structure in the membrane lipids compared to normal cells 

(70). In 2010, Mostaço-Guidolin and colleagues focused on the study of the MCF7 and 

SKBr3 cells, which are estrogen receptor positive and negative, respectively (71). Their 

results indicate that the MCF7 cell line shows increased absorbance intensity in the 

bands at 1085 (DNA), 1542 (amide II) and 1650 cm-1 (amide I), compared to the SKBr3 

cell line. Furthermore, differences in the 3000-2800 cm-1 region were detected. Their 

results suggest that SKBr3 cells show an increased IR absorbance in the lipids region, 

mainly in the bands at 2962 and 2924 cm-1 (71). 

 In the field of lung cancer, Lee and colleagues conducted a study in which they 

compared two cancer cell lines (NCI-H358 and NCI-H460) to normal human bronchial 

epithelial (NHBE) cells (72). They observed that the bands at 1085 and 970 cm-1 were 

increased in the cancer cells. These bands are assigned to the symmetric stretching of 

PO3
2- and PO2

-, respectively, and the authors attributed this result to an increase of 

phosphorylation that occurs in cancer cells. Apart from this result, they verified that 

bands at ~1030 and ~1155 cm-1 were more intense in normal cells, suggesting a decrease 

of glycogen in cancer cells, as was previously reported by Wong and colleagues (72,73). 

 Hematological diseases cancers have also been subject to IR spectroscopic 

studies. Babrah et al. studied five cell lines derived from human leukemias and 

lymphomas: Karpas 299 (T-cell lymphoma cell line), REH (acute lymphoid cell line), RCH-

ACV (acute lymphoid cell line), HL60 (acute myeloid leukemia cell line) and Meg01 

(chronic myeloid cell line) (74). The results indicated notable changes in the 1500-900 

cm-1 region, mainly an increase of the intensity of the amide III and DNA bands. This 

increase might indicate an increment of cellular nuclear content, shedding light on the 

biochemical differences that exist between the cell lines (74). 
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 In what concerns investigation of drug-resistant cell lines, the band at 1740 cm-1 

was subject to a couple of studies. Gaigneaux and colleagues were able to determine 

significant differences in the lipid content between sensitive K562 cells derived from 

human chronic myelogenous leukemia (K562/DNS) and its multiresistant variant 

(K562/DNR). A reduction of the intensity of the band in K562/DNR cells suggested a 

decrease of lipid content (75). Zwielly and colleagues focused on the discrimination of 

two melanoma cell lines based on their sensitivity to cisplatin: GA (sensitive parental cell 

line) and GAC (cisplatin-resistant cell line derived from GA). Unlike K562/DNR cells (75), 

these results indicated an increase of the intensity of the band at 1740 cm-1 in the GAC 

cell line (38). These opposite results can be attributed to the number of passages the 

cells were subjected to. Le Moyec et al. verified that after several passages in the 

absence of the anticancer drug, K562 cells partially recovered their lipid content (76). 

 A recent investigation, carried out by Minnes et al., determined that FTIR 

spectroscopy could also be useful in distinguishing cancer cells with distinct metastatic 

potentials (77). It has already been proven that metastatic cells exhibit a higher level of 

fluidity of the cell membrane, which can be associated with a higher level of hydration 

(78,79). Additionally, an increase in the level of hydration is followed by an increment in 

the absorption intensity of proteins (80). In this study, two pairs of melanoma cell lines 

were utilized: murine B16-F1 and B16-F10, and human WM-115 and WM-266.4. It was 

concluded that cells with a higher metastatic potential (B16-F10 and WM-266.4) 

exhibited a higher absorption intensity of the band at 1540 cm-1 (amide II), in 

comparison to the cells with a low-metastatic potential (B16-F1 and WM-115), which 

can be attributed to the higher level of hydration of the cell membrane (77). To sum up 

all these results, table 2 presents the main spectral characteristics of cancer cell lines. 

b. Potential spectral biomarkers 

 Apart from the spectral differences between different cancer cells, ratios 

between specific mid-IR bands have been regarded as potential biomarkers. Gazi et al. 

explored the peak area ratio of 1030 cm-1/1080 cm-1, which corresponds to the 

glycogen/phosphate ratio, as a potential diagnostic biomarker (36). This ratio correlates 

with the metabolic turnover of cells, and lower values are observed in malignant cell 

lines. However, non-malignant cell line PNT2-C2 also exhibits a low ratio, which the 
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authors attributed to the transformation process that cells had to undergo in order to 

become immortal (36). 

 In a study comparing two K562 cell lines (75), a decrease of the lipid/protein and 

nucleic acid/protein ratios, in the 3000-2800 cm-1 and 1300-900 cm-1 regions, 

respectively, was detected in the K562/DNR cells. However, a higher 2871 cm-1/2853 

cm-1 ratio was observed in K562/DNR cells, which can be attributed either to the 

decrease of lipid content in resistant cells or to the modification of the membrane 

composition (75). Characteristic IR absorptions were also found at the bands at 2958 cm-

1 (methyl groups of lipids and proteins) and 2852 cm-1 (methylene chains in membrane 

lipids) in GA and GAC cells, and the ratio between these two frequencies was considered 

a potential biomarker to distinguish the two types of cells, with a lower ratio observed 

in resistant cells (38). Furthermore, lipid/protein ratios using the intensities at 1740 and 

1400 cm-1 were assessed, and a noteworthy increase of the ratio in resistant cells was 

detected. The increase of the intensity of the bands at 2852 and 1740 cm-1 can be used 

to monitor lipids in resistant cells and, therefore, is considered a diagnostic parameter 

that can be associated with drug resistance (38). Also, another potential biomarker was 

found in the 1200-1000 cm-1 region, which was associated to the ratio between RNA 

(1121 cm-1) and DNA (1022 cm-1). It was found that, in resistant cells, this ratio was 

higher compared to normal cells (38).  

c. Multivariate analysis applied to FTIR spectra of cancer cell lines 

 Besides direct spectra analysis, multivariate statistical analysis is a powerful tool 

to analyze FTIR spectra and has gained an important role in the discrimination of several 

cell lines (36,41). Wood et al. carried out a study in which they compared HeLa cells 

(derived from cervical cancer) to normal and malignant exfoliated cells (81). Using PCA 

a clear separation was observed between normal and malignant exfoliated cells. 

Furthermore, HeLa cells were grouped with the malignant cells, validating the spectral 

similarities between HeLa and malignant exfoliated cells (81). 

 In 2003, Gazi and colleagues were able to discriminate, for the first time, prostate 

cancer cell lines derived from distinct metastatic sites based on their IR spectra (36). 

Using PCA, they discriminated three cell lines used as models for prostate cancer: DU 

145 (derived from brain metastasis), PC-3 (derived from bone metastasis) and non-
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malignant PNT2-C2 (normal prostate epithelial cells transformed with the genome of 

SV40 virus to express the large T antigen) (36). In 2009, Harvey and colleagues carried 

out a similar study, in which they also compared prostate cancer cell lines: PC-3, PNT2-

C2 and LNCaP, which is derived from lymph node metastasis. Using the spectral region 

between 1481-800 cm-1, they were able to discriminate the cells based on their spectra 

and discard possible factors that could have influenced the discrimination of the 

prostate cell lines reported by Gazi et al. (41). To do so, they studied the effect of the 

growth media and the nucleus/cytoplasm ratio on this discrimination and verified that 

neither were able to explain it. Therefore, they concluded that the intrinsic biochemical 

differences between the cell lines were the main factor for discrimination, proving also 

the robustness of PCA analysis (41). 

  Regarding human melanoma cells studied by Zwielly et al., a distinct 

discrimination between the GA and GAC cells was observed after PCA analysis (38). Also, 

human leukemia and lymphoma cell lines investigated by Babrah et al. were clearly 

discriminated by PCA, unveiling the potential of both FTIR spectroscopy and multivariate 

analysis for the early detection of leukemia and lymphoma (74). 

 Despite these promising results, the use of cell lines as cancer models was put in 

doubt in a study carried out by Baker and colleagues on the prostate-derived RWPE 

family of cell lines (RWPE-1, RWPE-2, WPE1-NA22, WPE1-NB14, WPE1-NB11 and WPE1-

NB26) (47). Non-tumorigenic cell line RWPE-1 is derived from a normal adult prostate 

epithelial cell transformed with a single copy of the human papillomavirus-18 and the 

tumorigenic cell line RWPE-2 is the result of the transformation of RWPE-1 cells with Ki-

ras. Also, WPE1-NA22, WPE1-NB14, WPE1-NB11 and WPE1-NB26 cell lines were created 

upon the exposure of RWPE-1 to N-methyl-N-nitrosourea and exhibit increasing 

invasiveness (47). Using principal component – discriminant function analysis (PC-DFA), 

authors observed a clear discrimination of the cells. However, these results indicated 

that biochemical changes associated with invasiveness were not responsible for the 

discrimination, but rather the biochemical changes induced by different transformation 

methods (genetic vs. genetic and chemical) (47). Despite this, it is important to point out 

that FTIR spectroscopy is a suitable technique to study cancer cell lines and it is 

important to continue the development of new spectroscopic based applications for 
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studying malignant cells, keeping in mind that the appropriate controls must always be 

used in order to be confident of the results (82). Apart from the control sample selection, 

it is important to define and validate all the experimental design, in particular the 

biological replicates and the standardization of spectral acquisition conditions. During 

the spectroscopic data analysis, after a meticulous and exploratory direct spectra 

analysis, the choice of pre-treatments and the selection of the appropriate spectral 

region to study are of utmost importance and crucial to the success of the experiment. 

5. Concluding remarks  

 Cancer cells have distinct features that separate them from normal cells. Several 

alterations regarding the content of lipids, proteins, nucleic acids and carbohydrates 

have been identified in cancer cells by FTIR spectroscopy. 

 Membrane lipids seem to have a stronger bonding structure in cancer cells in 

comparison to normal cells. Furthermore, analysis of the band at 1740 cm-1 can give 

insights on an increased intensity in the band at 1740 cm-1 can be used to monitor lipids 

in drug-resistant cells and it is possibly associated with drug resistance. As for 

differences detected in the main protein bands (amide I and amide II), the most striking 

alteration is the increase of the relative amount of β-sheets in some cancer cells, which 

might indicate protein aggregation. Carbohydrates, particularly glycogen, are found to 

be decreased in cancer cells in comparison to normal cells. Furthermore, differences 

regarding DNA and RNA are have been detected and are mainly associated with an 

increase of their content and a tighter packing of DNA in cancer cells.  

 This review highlighted the potential of FTIR spectroscopy to detect biochemical 

differences between distinct groups of cells. Given the fact that biochemical changes 

precede morphological alterations, it is likely that this technique could allow for an early 

diagnosis of cancer. Nevertheless, other metabolomics techniques, such as NMR and 

mass spectrometry, should be considered to complement results obtained by FTIR 

spectroscopy and discover specific metabolites that could be involved in cancer 

initiation and progression. 
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Tables 

Table 1: Major vibrational modes and corresponding assignments found in biological samples. 

Wavenumber (cm-1) Vibrational mode Assigned biochemical component Reference 
~3300 N-H stretching Amide A: peptide, protein (28,83) 
~3100 N-H stretching Amide B: peptide, protein (28,83) 
~2960 CH3 asymmetric stretching 

Lipids (24,70,71) 
~2925 CH2 asymmetric stretching 
~2870 CH3 symmetric stretching 
~2853 CH2 symmetric stretching 
~1740 C=O stretching Phospholipid esters (24,48,83) 
~1683 

C=O stretching, C-N stretching, in-plane 

N-H bending 

Amide I: antiparallel β-sheets (24,57) 
~1650 Amide I: α-helices (24,57) 
~1635 Amide I: parallel β-sheets (24,57) 

~1550 – 1520 
N-H stretching, C-N stretching, C-C 

stretching 
Amide II (24,83) 

~1460 – 1400 CH3 and CH2 deformation Membrane lipids and proteins (67,74,83) 
~1380 CH3 symmetric wagging Phospholipid, fatty acid, triglyceride (83) 

~1310 – 1200 
N-H bending, C-N stretching, C=O 

stretching, C-C stretching, CH3 stretching 
Amide III (24,83,84) 

~1240 PO2
-
  symmetric stretching Nucleic acids (27,69) 

1170 C-O stretching 
Tyrosine, serine and threonine of cell 

proteins 
(67) 

1155 C-O stretching, C-O-H bending Carbohydrates (67) 

1122 – 1120 
Vibration mode of the PO-

2 of the 

phosphodiester groups 
RNA (69,71) 

1086 – 1080 PO2
- symmetric stretching 

DNA, RNA, phospholipid, phosphorylated 

protein 
(67,69) 

1047, 1025 C–O stretching and bending of C–OH Glycogen (67) 

972 – 970 PO3
2- symmetric stretching 

Dianionic phosphate monoesters of 

phosphorylated proteins and nucleic acids 
(67,70) 
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Table 2: Specific spectral characteristics for cancer cell lines. 

Mid-IR region IR frequency Alterations in the IR spectra 

3000 – 2800 cm-1 

2962 cm-1 
Increased intensity in SKBr3 

2924 cm-1 

2873 cm-1 Increased intensity in MCF 10A 

2852 cm-1 
Increased intensity in GAC 

1800 – 1300 cm-1 

1740 cm-1 
Decreased intensity in K562/DNR 

1700 – 1600 cm-1 
Increased number of β-sheets in LoVo, SW1116, HCT-15, 

SW403, SW480 and SKC01 

1650 cm-1 Increased intensity in MCF7 

1542 – 1540 cm-1 Increased intensity in B16-F1, WM-115 and MCF7 

1400 cm-1 Shift in the spectrum of SiSo 

1300 – 900 cm-1 

1242 cm-1 
Increased intensity in Karpas 299, REH, RCH-ACV, HL60 and 

Meg01 

1240 cm-1 Shift in the frequency in AGS, SNU-1 and NCI-N87 

1170 cm-1 Increased intensity in SiSo 

1155 cm-1 Decreased intensity in SiSo 

1120 cm-1 Increased intensity in AGS, SNU-1 and NCI-N87 

~1086 – 1080cm-1 

Shift in the frequency in LoVo, SW1116, HCT-15, SW403, 

SW480, SKC01, SiSo, AGS, SNU-1 and NCI-N87 

 

Increased intensity in NCI-H358, NCI-H460 and MCF7 

1047 cm-1 and 1030 - 1025 cm-1 Decreased intensity in SiSo, NCI-H358 and NCI-H460 

991 cm-1 
Present in LoVo, SW1116, HCT-15, SW403, SW480 and 

SKC01 

972 – 970 cm-1 
Increased intensity in LoVo, SW1116, HCT-15, SW403, 

SW480, SKC01, SiSo, NCI-H358 and NCI-H460 

 


