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optimizacao de forma, problemas de resisténcia minima, teoria de disperséo
classica, aerodindmica Newtoniana, corpos invisiveis em uma direcéo.

Nesta tese estamos preocupados com o problema da resisténcia minima
primeiro dirigida por I. Newton em seu Principia (1687): encontrar o corpo de
resisténcia minima que se desloca através de um médio. As particulas do
médio ndo interagem entre si, bem como a interacdo das particulas com o
corpo é perfeitamente elastica. Diferentes abordagens desse modelo foram
feitas por varios matematicos nos ultimos 20 anos. Aqui damos uma visdo
geral sobre estes resultados que representa interesse independente, uma vez
que os autores diferentes usam notacdes diferentes. Apresentamos uma
solucdo do problema de minimizacdo na classe de corpos de revolugao
geralmente ndo convexos e simplesmente conexos. Acontece que nessa
classe existem corpos com resisténcia menor do que o minimo da resisténcia
na classe de corpos convexos de revolu¢cdo. Encontramos o infimum da
resisténcia nesta classe e construimos uma sequéncia regular de corpos que
aproxima este infimum. Também apresentamos um corpo de resisténcia nula.
Até agora ninguém sabia se tais corpos existem ou nao, evidentemente o
nosso corpo ndo pertence a nenhuma classe anteriormente analisado. Este
corpo € nao convexo e ndo simplesmente conexo; a forma topolégica dele é
um toro, parece um UFO extraterrestre. Apresentamos aqui varias familias de
tais corpos e estudamos as suas propriedades. Também apresentamos um
corpo que é natural de chamar um corpo "invisiveis em uma direcdo", uma vez
que a trajectéria de cada particula com a certa direc¢do coincide com a linha
recta fora do invélucro convexo do corpo.
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In this thesis we are concerned with the problem of minimal resistance first
addressed by I. Newton in his Principia (1687): find the body of minimal
resistance moving through a medium. The medium particles do not mutually
interact, and the interaction of particles with the body is perfectly elastic.
Different approaches to that model have been tried by several mathematicians
during the last 20 years. Here we give an overview of these results that
represents interest in itself since all authors use different notations. We present
a solution of the minimization problem in the class of generally non convex,
simply connected bodies of revolution. It happens that in this class there are
bodies with smaller resistance than the minimum in the class of convex bodies
of revolution. We find the infimum of the resistance in this class, and
construct a sequence of bodies which approximates this infimum. Also we
present a body of zero resistance. Since earlier it was unknown if such bodies
exists or not, evidently our body does not belong to any class previously
examined. The zero resistance body found by us is hon-convex and non-simply
connected; topologically it is a torus, and it looks like an extraterrestrial UFO.
We present here several families of such bodies and study their properties. We
also present a body which is natural to call a body "invisible in one direction",
since the trajectory of each particle with the given direction, outside the convex
hull of the body, coincides with a straight line.
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Chapter 1

Notation and introductory results

1.1 Historical overview

In 1687, I. Newton in his Principia [1] considered a problem of minimal resistance
for a body moving in a homogeneous rarefied medium. In slightly modified terms, the

problem can be expressed as follows.

A convex body is placed in a parallel flow of point particles. The density of the flow
is constant, and velocities of all particles are identical. Each particle incident on the body
makes an elastic reflection from its boundary and then moves freely again. The flow is
very rare, so that the particles do not interact with each other. Each incident particle
transmits some momentum to the body; thus, there is created a force of pressure on the

body:; it is called aerodynamic resistance force, or just resistance.

In this chapter we give a review on results concerning this topic. During the last 20
years there have been a quite high scientific activity on this problem [1]-[27] which in-
volved several research groups who used different notations; this chapter plays the role of
introduction to recent results in this theory. In the chapter 2 we present a solution of the
resistance minimization problem in the class of generally non-convex simply-connected
bodies of revolution. Using some tricks in the spirit of [19]| the problem is reduced to a

variational 1D problem in the class of convex curves which is studied using Pontryagin
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Figure 1.1: The Newton solution for h = 2.

variational principe. Chapter 3 is devoted to our discovery of a zero resistance body. We
construct a one-dimensional family of such bodies and present the proof of the zero resis-
tance property. We also present a modification of the construction which leads to a class
of bodies which we call bodies invisible in one direction. They have the following property:
the trajectory of each particle of the flow outside a prescribed bounded set coincides with
a straight line. Indeed, such a body with mirror surface becomes invisible to an observer
staying in the certain direction far enough from the body. The new results presented in
chapters 2 and 3 are mainly based on the author’s published papers [25],[26],[27].

Newton described (without proof) the body of minimal resistance in the class of con-
vex and axially symmetric bodies of fixed length and maximal width, where the symmetry
axis is parallel to the flow velocity. That is, any body from the class is inscribed in a right
circular cylinder with fixed height and radius. A rigorous proof of the fact that the body
described by Newton is indeed the minimizer was given two centuries later [2|. From now
on, we suppose that the radius of the cylinder equals 1 and the height equals h, with h
being a fixed positive number. The cylinder axis is vertical, and the flow falls vertically
downwards. The body of least resistance for h = 2 is shown on fig. 1.1.

Time to time that problem attracted attention of scientists. Only in the 20th century
engineers understood that this problem is adequate for aircrafts in the rarefied gas [22],

for example, in the stratosphere or in space on low Earth orbits (from 100km to 1000km
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height). Since the early 1990s, there have been obtained new interesting results related
to the problem of minimal resistance in various classes of admissible bodies [5]-[19]. In

this chapter we will describe of all old and recent results.

1.1.1 Rigorous description of the model

Consider a compact connected set B C R3 and choose an orthogonal reference system
Ozxyz in such a way that the axis Oz is parallel to the flow direction; that is, the particles
move vertically downwards with the velocity (0,0, —1). Suppose that a flow particle (or,
equivalently, a billiard particle in R? \ B) which initially moves according to z(t) = =,
y(t) = y, 2(t) = —t, falls on the body, makes a finite number of reflections at regular
points of the boundary 0B and moves freely afterwards. Denote by vg(z,y) the final

velocity. If there are no reflections, put vg(x,y) = (0,0, —1).

Thus, one gets the function vp = (v§,v%,v%) taking values in S? and defined on a

subset of R%2. We impose the following condition.
Regularity condition. vg is defined on a full measure subset of R2.

All convex sets B satisfy this condition; examples of non-convex sets violating it are
given on figure 1.2. Both sets are of the form B = G x [0, 1] C RZ , x R}, with G being
shown on the figure. On fig. 1.2a, a part of the boundary is an arc of parabola with the
focus F' and with the vertical axis. Incident particles, after making a reflection from the
arc, get into the singular point F' of the boundary. On fig. 1.2b, one part of the boundary
belongs to an ellipse with foci F; and F5, and another part, AB, belongs to a parabola
with the focus F; and with the vertical axis. After reflecting from AB, particles of the
flow get trapped in the ellipse, making infinite number of reflections and approaching the
line F}F, as time goes to +0o. In both cases, vg is not defined on the corresponding

positive-measure subsets of R2.

DEFINITION 1.1.1. We denote by B the class of compact connected sets with piecewise

smooth boundary satisfying the reqularity condition.
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@ (b)
Figure 1.2: (a) After reflecting from the arc of parabola, the particles get into the singular
point F. (b) After reflecting from the arc of parabola AB, the particles get trapped in
the ellipse.

Each particle interacting with the body B transmits to it the momentum equal to
the particle mass times ((0,0, —1) — vg(z,y)). Summing up over all momenta transmitted

per unit time, one obtains that the resistance of B equals —p R(B), where

RE) = [[ (5ol 14 o) dndy

and p is the flow density. One is usually interested in minimizing the third component of
R(B),!
R.(B) = //R? (14 vi(x,y)) dxdy. (1.1.1)
If B is convex then the upper part of the boundary 0B is the graph of a concave
function w(z,y). Besides, there is at most one reflection from the boundary, and the
velocity of the reflected particle equals vp(x,y) = (1+|Vw]?) 1 (—2w,, —2w,, 1—|Vw]?).
Therefore, the formula (1.1.1) takes the form

2
R.(w) = //Q T Ve o)l dx dy, (1.1.2)

where 2 is the domain of w. Note that the same construction holds for the 2dimensional

problem, therefore we keep the same notation B, R(B), R.(B) for this case.

!Note that in the axisymmetric cases (i), (iv), and (v), the first and second components of R(B) are

zeros, due to radial symmetry of the functions v§; and v% : R, (B) =0 = Ry(B).
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Further, if B is a convex axially symmetric body then (in a suitable reference system)

the function w is radial: w(z,y) = f(y/2? + y?), therefore one has

R.(f) = 27r/$7:2(r) dr, (1.1.3)

the integral being taken over the domain of f.

1.2 A new sight

1.2.1 Existence and uniqueness problems

So, in today’s language Newton considered the problem of minimization of the func-
tional (1.1.2), where w :  — R{ is a radial concave function and € is a plane disc. It
is supposed that the function w describes the upper boundary of a 3D rotational body
which has 2 as a base. We have to note that Newton in [1] did not state explicitly the
convexity condition for w.

Legendre was the first after Newton who gave a look on the functional (1.1.3) and
noted that it does not make physical sense for some obstacles. For example, if f is a
zig-zag function with large values of derivative then (1.1.3) tends to zero, and of course
this fact has nothing in common with resistance minimization. So he discussed other
classes of admissible obstacles, in particular he proposed and described the problem for
obstacles of revolution with prescribed length of the profile [3]. Recently M.Belloni and
B.Kawohl [4] noted that actually Legendre solved another problem, namely the problem

in the class of bodies with prescribed arclength

1
L= / VIE )X 20y
0

In both cases Buttazzo and Kawohl showed that the solution exists, and described trape-
zoidal form of the solution.
In 1993 G.Buttazzo and B.Kawohl [5, 1993] examined a nonsymmetric case with the

rotational symmetry condition removed. They stated the following theorem.
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Theorem 1.2.1. G.Buttazzo and B.Kawohl. Let €2 be a bounded open convex subset
of R% and let height h > 0 be given. Then the minimization problem of R.(-) for w in the
class

Ch=A{w:Q —1[0,h], w is concave}

admits at least one solution, and every solution w has the property that |Vw| & (0,1).

The full proof was published in [6, 1995|. In [5, 1993] Buttazzo and Kawohl stated
the following open problems:
BK.1 Is it true that the solution is zero on 92?7
BK.2 If the solution unique?
BK.3 Is there a flat region, that is, an open set €2y C €2 such that u = h on Q7
BK.4 Is the solution Lipschitz continuous up to the boundary 027
BK.5 Suppose that 2 is a symmetric set. Should the solution also be symmetric?
In [6, section 5, 1995| authors also considered the so-called "physical case". They

introduced the class of bodies S}:
Sy, ={0<w < h, almost every particle hits the body at most once }. (1.2.1)
They characterized this set by the condition

Va € dom(Vw),¥7r > 0, such that x — 7Vw(z) € Q,

w(x —7Vw(x)) —w(z) 1
. < 5 (1—[Vuw(z)P).
They showed that it imply

< h+ \/h? + dist?(x, 09Q)

V()] < dist(x,00) ’

Vo €, (1.2.2)
for all « where w is differentiable. Therefore they proved

Lemma 1.2.2. For any h > 0 the set Sy, is bounded in W,>>(9Q)

More open problems by G. Buttazzo, V. Ferone, B. Kawohl [6]
BFK.1 They noted that it is out of their possibilities to prove the existence of the minimal
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resistance problem in the class Sj,.
BFK.2 Uniqueness of minimizers in the class of general convex domains.
BFK.3 They also noted the all standard methods to prove that "symmetry properties of
Q2 imply symmetry properties of minimizers" fail.
In |7, 1996] the authors answer questions BK.2 and BK.4; Namely, they considered

the class of functions

CWy, = {fw € W-|0 < w(z) < hin Q,w concave }

loc
and proved

Theorem 1.2.3. Let u be Newton’s radial solution. Then u does not minimize (1.1.2) in

CWwWy,

So we see that the functions that minimize (1.1.2) in the class CW), are not radial and
therefore are not unique. (Any function obtained from a solution by rotating €2 around
the center is also a solution.) "The proof consisted of remarking that the second derivative
of the Newton functional calculated at Newton’s function has a negative direction. The
result naturally opened the hunt on the true form of the minimizer."?2.

The fact that optimal profiles with circular cross section do not need to be radially
symmetric can be also proved by exhibiting nonsymmetric profiles which are more perfor-
mant than the optimal radial one. This was first discovered by Guasoni in [8], who con-
sidered a body of the form obtained as the convex envelope of the set (2 x{0})U(S x {h})
where S is a segment (see fig. 1.3).

In [9] there was considered the class of obstacles where the maximal cross section (2

is not fixed. Namely, three classes of obstacles Cx g, Cv.¢ and S4 ko were considered,
Crq = {E convex subset of R*> : K C ECQ}

Cy.g = {E convex subset of R* : E C Q,|E| >V}

Saxg = {E convex close subset of R* : K C E C Q,0(E) > A},

2Cited by [10]
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Figure 1.3: A nonradial profile better than the optimal radial one.

where K and @ are two compact subsets of R® and V is a positive number, o(FE) is a
cross section, i.e. area of the projection of F onto a given plane. The authors proved
[9, Th. 1| that the resistance minimization problem in classes Cx o or Cy admits at
least one solution. Moreover, they noted that the same result is true for classes 5’va and
Sa k.o which differ from the original classes by substituting equalities |[E| > V,o(E) > A

for inequalities.

1.2.2 Properties of the solution

H.Berestycki [7],[10, 2001] noted that if u is in the class C* on some open subset
V' C Q and satisfies d*u < 0 on €, then w is not a minimizer of (1.1.2). Also he stated
a conjecture that minimizers could be "affine by parts". In [10, 2001] the authors proved
that whenever the Gaussian curvature on the surface of a minimizer u is finite, it is zero.
In [11, 2001| the same authors strengthened this result. Recall that "function f is

strictly convex in U" means
Ve,ye U, Vte(0,1), z#y= fltz+ (1 —1t)y) <tf(z)+1-1)f(y)

Theorem 1.2.4. [11, 2001] Let w be a minimizer of the problem (1.1.2) and let 2y be

an open subset of . Then w is not strictly convex on €)y.
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O WY Y.

Figure 1.4: Several optimal shapes in C4(h) for different values of h.

In [10, 2001] the problem (1.1.2) was considered in a class smaller than Cj,. This
reduction was motivated by the above mentioned result stating that the minimizer can
not be strictly convex. Slightly changing the notation used in n [10, 2001] the definition
of the class is as follows.

Let Q be a disc. Consider the class Cq = C4(h) which contains all functions w € Cj,
such that their graph is the convex envelope in R? of the set 2 x {0} and the set Ny x {h},
where

No={z € Q:w(x)=h}.

Theorem 1.2.5. [10, 2001] Let h > 0 be given. If w is the minimizer in the class Cy
then the set Ny is a regular polygon centered in the center of €. Moreover, the number of

sides of the polygon is a non-increasing function of the height h.

1.3 Case of single impact assumption

1.3.1 Generally non symmetrical bodies

The authors of [13] examined the case of single impact assumption (1.2.2). Using
the result of [6] that every function satisfying (1.2.2) must be locally Lipschitz, they
considered the topology of I/Vllocoo(ﬂ) N C%(€), where € is a strictly convex domain. As
already explained in [12], the physical meaning of the problem requires more regularity
for the gradient than usually found for functions of W,">°(9), so they had to define a

loc

smaller vector space to work with. They considered

P(Q) = {w € C°(Q) : w polyhedral}
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where "polyhedral" means that w is a result of a finite sequence of minimum or maximum

operations on affine functions. The vector space of interest is
W () == P(Q),

where the closure operation is with respect to the topology of W,2®(Q) N C°(Q). It is

loc

easy to check that
CHNCO(Q) S W(Q) € W () N (D)

Discussing radial case below we will show in example below that W (Q) # Wo>(Q) N
Co(Q).

The set of admissible functions is
Sp={weW(Q): 0<w<h, wsatisfies (1.2.1)}

In fact, if € Q is such that w is not differentiable at 2 but its hypograph has a vertical
tangent plane at (x,w(z)), we shall say that = is a regular point of w. We extend the

notation of dom(Vw) for points of the boundary as follows:
dom(Vw) = {z € Q : w is differentiable at 2} U {z € 9Q : z is a regular point for w}
Definition. A function w € &}, is said to be "regular on the boundary" if
T, C 09, nonempty and open in 99, T, C dom(Vw).
The authors proved the following theorem:

Theorem 1.3.1. [13] 1. Let w € Sy, be reqular on the boundary (in the sense of definition

above). Then w is not a minimizer of (1.1.2) in the class Sp,.

1.3.2 Analogue of Newton’s problem for bodies with radial sym-

metry

Introduce the notations:

W, = {u € W.(0,1) n C°(]0,1]) such that w = u (y/xf + x%) e W(Q)}
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and € is the unit disc of R?.
It is not obvious that W, is actually smaller than W,.>°(0,1) N C°([0,1]). In order to

oc

show this, let us give an example of a function which does not belong to W,..

Lemma 1.3.2. [13, Lemma 3.1] the set W, is equal to the set

{fu e Wh>(0,1)nC°([0,1)) : ' has a right-limit and left-limit everywhere in (0,1)}

loc

Consider a value ty € (0,1), and ¢(t) = ¢o(t —to) where ¢o(x) := x?sin(1/x). Clearly
¢ € WH>(0,1), since ¢} is bounded near 0. On the other hand, ¢{, does not have a right
or left limit at 0; hence ¢ ¢ W,.. Note that ¢’ cannot be approximated in W1 >-topology
by step functions (through it is obviously possible in W!P-topology, p < 0o);

Theorem 1.3.3. [12/,[13] there exists a minimum w = u (x/x% + x%) of the minimization
problem of (1.1.8) in class of

{uew,(Q): 0<u<h, w:u(\/a:%—i—x%) satisfies (1.2.1)}

Moreover, there exists a critical value h* such that for h > h* the minimizer is unique.

And for h < h* the set of minimizers is not compact in W(0,1) N W,,Vp > 0.

As we can see, the minimum is attained in the radial class, but is not attained in
the general class of non-radial functions. "This comes from the presence of a boundary,
which induces special effects, and, in particular, allows oscillations near it"3...This leads
us to the idea that without a boundary, the problem would be more "stable", and a global

minimizer could exist with no radial symmetry assumption.

1.3.3 Bodies containing a half-space

Let us describe the result of [14]. Let © be a domain tiling the plane (meaning
that there exists a finitely generated subgroup Go C Oy such that Uyeg,g(Q) = R?, and
g1(Q) N ga(Q) = 0, if g # go); let W : R? — R be a function with the same periodicity

3Cited by [14].
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(Wog=mw for all g € Gg); and let w be the restriction of w to 2. The authors looked for
the body {(z,2) € R% z < w(z)} minimizing the mean value of (1.1.2), that is

1 dx
F(w; Q) = @/QW (1.3.1)

with respect to all domains € tiling the plane and to all functions w € W(Q2) : Q — [0, h]
having periodicity €2.
Note that € is not well defined in general if only w is given. In order to fix the

notations, we choose €2 such that w(x) =0 for all x € 9 and w > 0 in Q.

Theorem 1.3.4. [14, Th. 1] Among all regular functions and regular domains tiling the
plane, the minimum of F' is attained in only two cases, up to a similitude (with the same
minimal value):

1. Q is a square, Q = (—a,a)? with a < 4h/3, and w is the function

w(xy, 22) = max|[pa(|z1]), da(|22])], where ¢pg(z) = (z Iaa) —a

2. Q is a reqular convex hevagon with diameter 4a/\/3, with center O = (0,0) and two
vertices A = (a,a/v/3), B = (a, —a/\/3); then w is the function invariant by rotation of
/3 whose restriction to the triangle OAB is ¢q(|z1]).

In both cases, the optimal value for F' is given by
Fopp =m+12In2 —4In5 — 4arctan 2 ~ 0.59330123. (1.3.2)

The authors noted that resistance of the infinite tiling is less that 60 percents of the

resistance of the plane (which has maximal values).

1.4 Arbitrary number of collisions

1.4.1 Generally non convex bodies and generally non symmetric

bodies

By removing both assumptions of symmetry and convexity, one gets the (even wider)

class of bodies inscribed in a given cylinder. A.Plakhov was the first [18] who considered
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the problem of minimization of (1.1.1) without imposing the single impact assumption.
He proved the following theorem.

Denote by O.(B) the open e-neighborhood of B.

Theorem 1.4.1. [18, A.Plakhov, | For any connected bounded set B C R3 and any e > 0
there exists a connected set B such that the following is true.

1. BC BcC O.(B).

2. vg(z,y) 1s defined and measurable on R? and |R(B)| < ¢.

3. 1If, additionally, B is open and OB is a two-dimensional C? manifold, then B can be
chosen to be homeomorphic to EA?, and the corresponding homeomorphism shifts the points

a distance smaller than e.

Then Plakhov studied an analogue of the classical problem, considering generally
nonconvex bodies inscribed in the cylinder and with a prescribed circular cross section:

Denote D, = {z € R : |z| < a},d = 2,3, then
Gi={BeB:D,x{0} c BC D,x[0,h]}, a,h>0.

In particular, he considered the following problem: "Determine the smallest m such that
a set or a sequence of sets minimizing resistance could be chosen in such a way that the
number of collisions with them would not exceed m". Note that case of single impact

assumption (part 1.3) is about the case m = 1. Let

p(d) = inf |R(B),

Begy:

then the following theorem holds

Theorem 1.4.2. [19, A.Plakhov, |

(8)=0, p(2)=2 (1 h )

= 5 = a _—— ’

g ’ JET R

besides for d = 2 and for d = 3, h > a/2, the greatest number of collisions for the
corresponding family of sets equals 2, and this value cannot be improved, i.e., one cannot

present a minimizing set or a family of sets with the number of collisions equal or less to

1. Asd =3 and 0 < h < a/2, one has m = 3.

The author constructed corresponding sequences minimizing |R(B)|.
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1.4.2 Bodies containing a half-space

Following the basic idea that the minimal resistance can be diminished by allowing
multiple reflections, m > 1, A.Plakhov considered the problem of minimal specific re-
sistance for the case of unbounded obstacles (see part 1.3.3). Let us describe Plakhov’s
result [20]: Let n = (nq,...,ng) € S such that ng > 0 (d means dimension). Consider
sets B C R such that

{z €R?: (2,n) <0} C B. (1.4.1)
Denote R? = {x € R?: 24 < 0} and II = OR? = {z : 74 = 0}. Denote by B,, the set of
bodies B C R? such that
1. B satisfies (1.4.1);
2. the vector function vp(x) is defined and Borel measurable on II minus possibly a set
of zero (d — 1)-dimensional measure.

The total resistance corresponding to a Borel set A C II can be defined by

R(B, A) :/ (vp, vy, vt —1—7173) dx, B e€B,.
A

Note that scattering direction v(z) should always be out of II, that is why we have
nalAl < |R(B,A)| <2|A|, V Borel ACII, Be€BZB,.

Evidently the upper bound is exact, to see it it suffices to consider the surface which is
almost everywhere perpendicular to n. The following theorem shows that the lower bound

is also exact.

Theorem 1.4.3. [20] There exists a sequence of sets By € B,, such that
lim [R(B, )] = nal ],

for any Borel set A C II with |A| < co.

Let us compare this result with the result of (1.3.3). If n = (0,0, 1) then for
[R(RZ, A)]
and in the case of single impact assumption the corresponding coefficient equals 0.593

(see (1.3.2)).

=0.5,
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1.4.3 Case of symmetric but generally non convex bodies

By 2007 there have been studied the following cases:

(i) convex & axisymmetric (the classical Newton problem);

(i) convex but generally non-symmetric (studied in [5]-[9]);

(iii) generally nonconvex and non-symmetric (studied in [18],[19]).
It was natural to consider the 4" logically possible case:

(iv) axisymmetric but generally nonconvex bodies.
This problem was investigated in [25],[26], and the results are presented in the chapter 2.
We should note that the authors impose another condition which was not mentioned in
the title, since it did not seem to be significant. Actually, authors of [25],|26] considered

simply connected surfaces only.

We should also notice that in the paper [12]| there was considered the intermediate
class of
(v) axially symmetric nonconvex bodies, under the additional so-called
"single impact assumption".
On the contrary, multiple reflections are allowed in our setting; we only assume that the
body’s boundary is piecewise smooth and satisfies the regularity condition stated above

in 1.1.1.

Let G, be the class of compact connected sets G C R? with piecewise smooth boundary
that are inscribed in the rectangle —1 < z < 1, 0 < z < h. That is, belong to the
rectangle and have nonempty intersection with each of its sides. Moreover it is symmetric
with respect to the axis Oz, and satisfy the regularity condition. Denote by G;°" the
class of convex sets from G;,. One can easily see that if G € Gj then convG € G;"".
For G C G;™ define the modified law of reflection as follows. A particle initially moves
vertically downwards according to xz(t) = x, z(t) = —t and then reflects at a regular
point of the boundary 0G| at this point the velocity instantaneously changes to vg(x) =
(0% (x), 0&(x)), where vg(z) is the unit vector tangent to dG such that 0% (z) < 0 and

x - 05(x) > 0 (see fig. 1.5).
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G

Figure 1.5: Modified reflection law.

The set G € Gi°* is bounded above by the graph of a concave even function z =

fa(z). For > 0, one has

1 /
da(z) = 2 fe®) (14.2)
V1t fE(@)
The resistance of G under the modified reflection law equals (0, — R(G)), where
R 1
RKD—i/(1+@é@»mdx. (14.3)
0

Taking into account (2.2.1), one gets

o @
m®_1;0+ 1+ﬁ@0 da: (1.4.4)

the function fg is concave, nonnegative, and monotone non-increasing, with f5(0) = h.
The following theorem allows to restrict the problem of minimization of resistance R
in the class of bodies of revolution to the problem of minimization of R in the class of

convex bodies of revolution.
Theorem 1. infgeg, R(G) = infgegeon R(G).

This theorem immediately follows from the next two lemmas, proved in the chapter

Lemma 1.4.4. Let G € G,. Note that conver hull conv G belongs to G{™. It holds

~

R(conv G) < R(G).

Lemma 1.4.5. Let G € G;°™. There exists a sequence of nonconvex sets G,, € Gy, such

that lim,_. R(G,) = R(G).
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f'(=@) )

The search for the minimum of R is restricted now to minimization of J. ! (1-———=)2
o= e

in the class of convex and nondecreasing functions f defined on [0, 1], satisfying relations
f(0) =0, f(1) < h. This minimization is done using Pontryagin’s minimum principle; as
a result we obtain the following theorem.

Theorem 2.

1 32 [1+V1-2°3
— — (8223 =323 \/1— 223 + ; ln< ki )

nf 1
1mn —
Geggonv 2 16 1 Z1/3

where Z = Z(h) is a unique solution of the equation:

J1 — 2/3
/ / 2/3 ( U3 _ 9,713\ /1 - 22/3 —1n (%)) i
z

(1.4.6)

Set G, € G;o™, and is the minimizer of the functional E, is given by
0<z<h, if |z] <Z
27 (1.4.7)
0<z<h—[;\/(£)" —1dt, if Z<|z[ <1
Denote by R(h) := infgeg, R(G) and Ry(h) = infgegeonv R(G) the minimal values for
our problem and for Newton’s one, respectively. The following expressions: R(07) =

IRN(0F) =1/2; R(h) = 1Rn(R)(1 + 0(1)) = 221290 a5 b — 400,

128 k2

1.4.4 Bodies of zero resistance and bodies invisible in one direc-
tion

The class G;, defined in the previous section 1.4.3 consists of compact connected sets
G C R? with piecewise smooth boundary that are inscribed in the rectangle —1 < z < 1,
0 < z < h. It was additionally supposed that each body G' € G, is symmetric with respect
to the axis Oz and satisfies the regularity condition.

Let us now remove the condition that the set GG should be connected. It was very
surprising for us to learn that in the resulting wider class there exist bodies having exactly

zero resistance! The 3D bodies obtained by rotating such sets about Oz, in turn, have zero

dx
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resistance in R?. These bodies are topologically equivalent to a torus, and consequently,

are connected, but not simply connected.
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Figure 1.6: A body invisible in the direction vg. It is obtained by taking 4 truncated

cones out of the cylinder.

We have also constructed bodies that are invisible in one direction, say, vy € S2. This
means that the trajectory of each particle with initial asymptotic velocity vy coincides with
a straight line outside a prescribed bounded set. Such a body having mirror surface will
really become invisible to an observer staying far enough from the body in this direction.

There have been presented several families of bodies of zero resistance, and their
general properties have been studied. In particular, we proved that the maximal number
of reflections of any individual particle from the body of zero resistance is more or equal
to 2, and maximal number of reflections of any individual particle from the body invisible
in one direction is more or equal to 4.

Recall for comparison that in 1.4.1 we considered a class of bodies for which the
infimum of resistance is zero but cannot be attained. Actually, the properties of the bodies
of small resistance constructed there are highly sensitive to variation of the incidence angle;

namely, if the direction of the incident flow slightly changes, their resistance drastically
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increases. This is not the case for the bodies of zero resistance constructed by us in
chapter 3: slight changing of the direction of incidence would imply only slight change of

the resistance. More precisely, the following theorem holds.

Theorem 1.4.6. Let B be a body having zero resistance in the direction vy € S? presented

in section 3.4. Then there exist positive constants Cy,Cy and 6 > 0 such that
Cilv — v < Ry(B) < Colv —wol|, if |v—wg] <6.

In the end of that chapter we discuss possible applications of bodies of zero resistance.

1.5 Averaged resistance over all directions

In subsection 1.1.1 we described resistance R(B) supposing that the incident flow
has velocity (0,0, —1) € S%. Evidently one can define it for any arbitrary velocity vector
v € S2. Corresponding function we will call R(B,v), v € S2

A Plakhov introduced the averaged resistance

R(B) = /S R(B, v)du(w), (1.5.1)

where p(v) is the Lebesgue measure on the unit sphere S, He considered the problem

of minimization R in two class of bodies:
P,={B : vol(B) =1}
P.={B convex : vol(B) =1}

The following theorems were proved:

1.5.1 The convex problem

Theorem 1.5.1. The least value ofé in the class of bodies B € P, is attained at the unit

ball and s equal to

. o Cd’Sd_1| 3
inf R(B) = ——, (g = |v1]?dp(v),
B4 gd—1

BePe

where vy s the first coordinate of the vector v.
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Remark 1 In particular, as d = 2, one has ¢ = 8/3, |B? = 7, |S!| = 27, and
therefore

16

inf R(B) = 2 V.

BeP.

1.5.2 The non-convex problem for d = 2

Let B C R? be a bounded set with piecewise smooth boundary of class C2. A billiard
motion (z(t),v(t)) in R?\B is called regular and asymptotically free (r.a.f.), if it is defined
for all ¢ € R and has a finite number (maybe none) of reflections at regular points of 0B.
Obviously, any pair (z,v) € R? x S uniquely determines a billiard motion (x(t),v(t)) by
the condition x(t) = x + vt for ¢ sufficiently small. Denote C' = {(z,v) € R* x S* : the
corresponding billiard motion is not r.a.f.}.

Statement|21, Part 3.|]. C is a set of measure zero.

Let (z(t),v(t)) be a r.a.f. billiard motion, with lim; . ., v(t) = v, lim;__(x(t) —
vt) = z; denote lim; o, v(t) =: v*(z,v). This relation defines a function v* on the set
(R*x SH\C'. Tt is easy to see that (R? x S')\C'is open, and the function v™ is continuous,
bounded, and coincides with v for |z|*> — (x,v)? sufficiently large. Hence for almost all

values of v there exists the integral
RBo) = [ o=@,
0<(z,v)<1

which is a measurable function of v, therefore there also exists the integral ]SL(B) (see
(1.5.1)).
The author provided that if the direction of the flow is unknown, then the average

resistance of minimizer in the class P, is close to the resistance of the circle.

Theorem 1.5.2. [21, Th. 2/

infBEPg E(B) <1
infpep, E(B) a

Here we stop our review and go on to the detailed exposition of our own results. Notice

0.9878 <

that several articles [24],[16] concerning extensions of the Newton’s functional remain out

of scope of our review.



Chapter 2

(Generally non-convex bodies of

revolution of minimal resistance

2.1 Description of the class of bodies

Let B be a compact connected set inscribed in the cylinder 22 + 3> <1, 0 < 2 < h
and possessing rotational symmetry with respect to the axis Oz. This set is uniquely
defined by its vertical central cross section G = {(z, z) : (z,0,2) € B}. It is convenient
to reformulate the problem in terms of the set G.

Consider the billiard in R? \ G' and suppose that a billiard particle initially moves
according to x(t) = z, z(t) = —t, then makes a finite number of reflections (maybe none)
at regular points of OG, and finally moves freely with the velocity vg(z) = (vE(z), vE&(2)).

The regularity condition now means that the so determined function vg is defined for

almost every z. One can see that v§(z,y) (x/\/2? + y2)E(\/ 22 + y?), vi(z,y) =
(y/\/ 2%+ y?)vE(v/2? + y?), and vi(z,y) = vE (/2?2 + y?). It follows that R, (B) =0 =

R,(B) and R,(B) = 27 fo (1 +v&(z)) xdx. Thus, our minimization problem takes the

form

inf R(G), where R(G) = /O (14 vi(z)) 2 da (2.1.1)

and Gy, is the class of compact connected sets G C R? with piecewise smooth boundary

21
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N———"7]

G

-1 1

Figure 2.1: A set G € Gy,.

that are inscribed in the rectangle —1 <z <1, 0 < z < h,! are symmetric with respect
to the axis Oz, and satisfy the regularity condition (see fig. 2.1).

The main results are stated in section 2: the minimization problem is solved and the
solution is compared with the Newton solution (case (i)) and the single-impact solution

(case (v)). Details of all proofs are put in section 3.

2.2 Statement of the results

Denote by G;°™ the class of convex sets from G;. One can easily see that if G € G,
then convG € Gi". For G C G;°" define the modified law of reflection as follows.
A particle initially moves vertically downwards according to z(t) = z, z(t) = —t and
reflects at a regular point of the boundary 0G; at this point the velocity instantaneously
changes to 0g(z) = (0%(x),0&(x)), where 0g(x) is the unit vector tangent to OG such
that 0%(x) <0 and z - 0%(x) > 0 (see fig. 2.2).

The set G € Gi°" is bounded above by the graph of a concave even function z =

fa(x). For > 0, one has
= (T
V1+ fé(x)

IThat is, belong to the rectangle and have nonempty intersection with each of its sides.

A~

(2.2.1)
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G

Figure 2.2: Modified reflection law.

The resistance of G under the modified reflection law equals (0, — R(G)), where

)

@) = /0 (1 + 05(2)) 2 d. (2.2.2)

Taking into account (2.2.1), one gets

o @
R(G)—/O (1+ 1+fg(x)> da (2.2.3)

the function fg is concave, nonnegative, and monotone non-increasing, with f(0) = h.

Theorem 2.2.1.
Glggfh R(G) = cé&fm R(G). (2.2.4)

This theorem follows from the following lemmas 2.2.2 and 2.2.3 which will be proved

in the next section.

Lemma 2.2.2. For any G € G, one has
R(G) > R(comv@).

Lemma 2.2.3. Let G € G;". Then there exists a sequence of sets G,, € G, such that
lim R(G,) = R(G).

Indeed, lemma 2.2.2 implies that infgeg, R(G) > infgegeons R(G), and lemma 2.2.3
implies that infgeg, R(G) < infgegeon R(G).
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Theorem 2.2.1 allows one to state the minimization problem (2.1.1) in an explicit
form. Namely, taking into account (2.2.3) and putting f = h — fg, one rewrites the right
hand side of (2.2.4) as

e[ f'(z)

flenf-fh/o (1 — W) xdz, (2.2.5)
where Fy, is the set of convex monotone non-decreasing functions f : [0, 1] — [0, h] such
that f(0) = 0. The solution of (2.2.5) is provided by the following general theorem.

Consider a positive piecewise continuous function p = p(u) defined on Ry := [0, +00)

and converging to zero as u — +00, and consider the problem

inf R[f], where ’R[f]:/o p(f'(z)) z dx. (2.2.6)

fE€Fn

Denote by p(u), u € Ry the greatest convex function that does not exceed p(u). Put
& = —1/p'(0) and up = inf{u > 0 : p(u) = p(u)}. One always has § > 0; if up = 0
and there exists p'(0) then { = —1/p'(0), and if ug > 0 then & = uo/(p(0) — p(up)).
Denote by u = v(z), z > &, the generalized inverse of the function z = —1/p(u), that is,
v(z) = inf{u € Ry : —1/p'(u) > z}. By T, denote the primitive of v: Y(z) = f; v(§)d¢,
z > &. Finally, put R(h) := infser, R[f].

Theorem 2.2.4. For any h > 0 the solution f of the problem (2.2.6) exists and is

uniquely determined by

0 if 0<x<umxg
fule) =4 | . (2.2.7)
7 X(Zz) if zo<x <1,

where Z = Z(h) is a unique solution of the equation
T(z) = zh (2.2.8)

and xy = xo(h) = &/Z(h). Further, one has f;(xo +0) = ug. The function xo(h) is

continuous and xo(0) = 1. The minimal resistance equals
v(Z)—h
R(h) = = (p(U(Z)) + %) ; (2.2.9)

in particular, R(0) = p(0)/2.
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If, additionally, the function p satisfies the asymptotic relation p(u) = cu™® (14 0(1))

as u — 400, ¢ >0, a >0 then

zo(h) = ca & . aH& h=*H1+40(1), h— +oo (2.2.10)
= H . .
° o+ 2 0 ' ’
and B
c(a+1\""
R(h) =5 (a n 2) h=*(1+0(1)), h— +oc. (2.2.11)

Let us apply the theorem to the three cases under consideration.

1. First consider the non-convexr case. The problem (2.2.5) we are interested in is a
particular case of (2.2.6) with p(u) = pue(u) := 1 —u/+v/1 4 u? (the subscript "nc" stands
for "non-convex"). The function p,, itself, however, is convex, hence ug = 0 and py. = pye-

Further, one has —1/7,.(u) = (1 + u?)%/?, therefore vy, (2) = V223 — 1, €3¢ =1, and

The(2) = 2(222/3 — 123228 -1 — gln(zl/?’ + V223 —1). (2.2.12)

The formulas (2.2.12), (2.2.8), and (2.2.7) with o = 1/Z, determine the solution of
(2.2.5). Notice that, as opposed to the Newton case, the solution is given by the explicit
formulas. However, they contain the parameter Z to be defined implicitly from (2.2.8).

Further, according to theorem 2, f;(xg+0) =0 = f;(zo — 0), zo = 2°, hence the
solution fj, is differentiable everywhere in (0, 1). Besides, one has

2
zp°(h) = 6_Zh3<1 +o(1)) as h— 4. (2.2.13)

The minimal resistance is calculated according to (2.2.9); after some algebra one gets

222/3 _ Z4/3
+ i s Z23 —1 +
1625/3 1622

Rue(h) = In(Z'3 4/ Z2/3 —1).

1
2
One also gets from theorem 2.2.4 that R,.(0) = 0.5 and

2
Ruc(h) = %h*(l +0(1)) as h— +oo. (2.2.14)

2. The original Newton problem (case (i) in our classification) is also a particu-

lar case of (2.2.6), with p(u) = pn(u) := 2/(1 + u?). One has vy = 1 and py(u) =
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2—u fo<u<l1
and after some calculation one gets that £ = 1 and the
2/(1+w?) if u>1,
function Ty(z), z > 1, in a parametric representation, is Ty = 1 (3u*/4 + u® — Inu —
7/4), z = (1+u?)?/(4u), u > 1. From here one obtains the well-known Newton solu-
tion: if 0 <z < o then f,(z) =0, and if g < x < 1 then f, is defined parametrically:
fo=20u/44+u* —Inu—7/4), v =% %, where 7o = 4u,/(1 + u?)? and w, is
determined from the equation (3ul/4 + u? —Inw, — 7/4) u./(1 + u?)? = h. The function
fn is not differentiable at xy: one has fj(xo+0) =1 and f}(xo —0) = 0.

One also has Ry (0) =1,

27
Ry(h) = ﬁh‘Q(l +o0(1)) as h— +oo. (2.2.15)
and
N 27, 3
xy (h) = 1 h™>(1+4o0(1)) as h — +oc. (2.2.16)

3. The minimal problem in the single impact case with h > M* = 0.54 can also
) p* if u=0
be reduced to (2.2.6), with p(u) = pg(u) := where p* =
2/(1+w?) if u>0,
8(In(8/5) + arctan(1/2) — w/4) ~ 1.186. This fact can be easily deduced from [12]; for
the reader’s convenience we put the details of derivation in the next section.? From the

above formula one can calculate that ug ~ 1.808 and &' &~ 2.52.

The asymptotic formulas here take the form

zy(h) =& - 2 (h)(1+0(1)) as h— +oo (2.2.17)
and
27
Rsi(h) = @h (14+0(1)) as h— +oo. (2.2.18)

Finally, using the results of [12], one can show that R;(0) = 7/2—2arctan(1/2) ~ 0.6435.

This will also be made in the next section.

2We would like to stress that the results presented here about the single impact case can be found in

[12] or can be easily deduced from the main results of [12].
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Now we are in a position to compare the solutions in the three cases. One obviously
has Ruc(h) < Rsi(h) < Ry(h). From the above formulas one sees that R,.(0) = 0.5,
Ry(0) = 1, and Rg(0) =~ 0.6435. Besides, one has limy_(Ruc(h)/Ry(h)) = 1/4
and limy_ oo (Rsi(h)/Ry(h)) = 1. Thus, for "short" bodies, the minimal resistance in
the nonconvex case is two times smaller than in the Newton case, and 22% smaller, as
compared to the single impact case. For "tall" bodies, the minimal resistance in the
nonconvex case is four times smaller as compared th the Newton case, while the minimal
resistance in the Newton case and in the single impact case are (asymptotically) the same.

In the three cases of interest, the convex hull of the three-dimensional optimal body
of revolution has a flat disk of radius zo(h) at the front part of its boundary. One
always has z(0) = 1. For "tall" bodies, one has limy_ o (z5¢(h)/x) (h)) = 1/4 and
limy, oo (28 (h) /2l (h)) = & ~ 2.52; that is, the disk radius in the non-convex case
and in the single impact case is, respectively, 4 times smaller and 2.52 times larger, as

compared to the Newton case.

Besides, in the nonconvex case, the front part of the surface of the body’s convex hull
is smooth. On the contrary, in the Newton case, the front part of the body’s surface has

singularity at the boundary of the front disk.

2.3 Proofs of the results

Proof of lemma 2.2.2

It suffices to show that
vi(x) > 02, o(x) for any x € [0, 1]. (2.3.1)

Consider two scenarios of motion for a particle that initially moves vertically down-
wards, z(t) = x and z(t) = —t. First, the particle hits conv G at a point 9 € d(conv G)
according to the modified reflection law and then moves with the velocity Ocony (). Sec-

ond, it hits G (possibly several times) according to the law of elastic reflection, and then
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a\\\“\\ ve(r)

T ~
O\Uconv a(r)

@ {b)

Figure 2.3: Two scenarios of reflection.

moves with the velocity vg(z). Denote by n the outer unit normal to d(conv G) at ro; on
fig. 2.3 there are shown two possible cases: ry € G and r¢ € 0G.
It is easy to see that

(va(z),n) =0, (2.3.2)

where (-,-) means the scalar product. Indeed, denote by r(t) = (z(t), 2(t)) the particle
position at time ¢. At some instant ¢; the particle intersects d(conv G) and then moves
outside conv G. The function (r(t), n) is linear and satisfies (r(t),n) > (r(t1),n) for t > 4,
therefore its derivative (vg(x),n) is positive.

Nz

Let ¢o = arcsin(v7,,, o(x)) € [=7/2,0] be the angle between VUeony () and axe OX.
Let ¢ = arcsin(vi(x)) be the angle between vg(x) and axe OX. From (2.3.2) we have
? € [¢o, po + 7|. We get now (2.3.1) from the evident statement

singg = min sing, ¢ € [-7/2,0].
pE[po,po+]

Proof of lemma 2.2.3

Take a family of piecewise affine even functions f. : [—1, 1] — [0, h] such that f/
uniformly converges to f, as ¢ — 0%. Require also that the functions f. are concave and
monotone decreasing as x > 0, and f.(0) = h, f.(1) = fe(1). Consider the family of
convex sets G, € G;°" bounded from above by the graph of f. and from below, by the
segment —1 < x < 1, z = 0. Taking into account (2.2.3), one gets lim._o+ R(G.) = R(G).

Below we shall determine a family of sets G, 5 € G), such that lims o+ R(Gc5) = E(GE)

and next, using the diagonal method, select a sequence ¢, — 0, 6, — 0 such that
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lim,, oo R(Ge, 5,) = lim,, . R(G.,) = R(G). This will finish the proof.

Fix e > 0 and denote by -1 =2_,, < 2,1 < ... <20 =0< ... <z, = 1
the jump values of the piecewise constant function f!. (One obviously has z_; = —z;.)
For each i = 1,...,m we shall define a non self-intersecting curve /%> that connects the
points (x;_1, f-(z;—1)) and (z;, f-(x;)) and is contained in the quadrangle z; ; < z < 1z,
fo(zi) < 2z < fowis) + (f(zi1 +0) +6) - (z — 2;_1). The curve [7%%° is by definition
symmetric to (%% with respect to the axis Oz. Let now [¥° := U_,,<i<,n["*? and let G.
be the set bounded by the curve [, by the two vertical segments 0 < z < f.(1), z = %1,
and by the horizontal segment —1 < x <1, 2 =0.

For an interval I C [0, 1], define

R/(G.) := / (1 + 0% (2)) z dx (2.3.3)

I

and
Ri(G.s) = /1(1 + g, (z)) v de. (2.3.4)

Denote I; = [z;_1, ;]; one obviously has R(G.) = > R (G.) and R(G.5) = Yo R (Geyp).
Thus, it remains to determine the curve (“* and prove that

~

lim Ry,(G.s) = Ry,(G.). (2.3.5)

§—0+
This will complete the proof of the lemma.

Note that for x € I;, i =1,...,m holds

s fl(wi1 +0)
UGS - .
V1+ (fi(zioa +0))2
Fix ¢ and ¢ and mark the points P = (z;_1, f-(xi—1)), P = (x;, fo(2:)), @ =
(Ti-1, fe(w:)), and S = (x4, fe(zio1) + (fi(2io1 +0) +0) - (z; — 7i-1)); see fig. 2.4. Mark
also the point Qs = (x;_1+9, f-(z;)), which is located on the segment () P’ at the distance

(2.3.6)

) from @, and the points Ps = (x;_1 + 6, fe(x;—1 + §)) and S5 = (x;1 + 6, fe(xiq) +
(fi(xi—1 +0) +0) - 0), which have the same abscissa as ()5 and belong to the segments
PP’ and PS, respectively. Denote by [ the line that contains Ps and is parallel to PS.

Denote by Il the arc of the parabola with vertex Qs and focus at Ps (therefore its axis
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Figure 2.4: Constructing the curve [**°: a detailed view.

is the vertical line Qs P5). This arc is bounded by the point Qs from the left, and by the

point Ps of intersection of the parabola with I, from the right. Denote by 29 the abscissa
5

of P5 and denote by P} the point that lies in the line PP’ and has the same abscissa z?.
Denote by 75 the arc of the parabola with the same focus Py, the axis [, and the vertex
situated on [ to the left from Ps. The arc w5 is bounded by the vertex from the left, and
by the point Sj of intersection of the parabola with the line Qs Fj, from the right. There
is an arbitrariness in the choice of the parabola; let us choose it in such a way that the

arc 7y is situated below the line PS. Finally, denote by Js the perpendicular dropped
from the left endpoint of w5 to @QP’, and denote by Q% the base of this perpendicular.

If 29 > z;, the curve (%9 is the union (listed in the consecutive order) of the segments
PS5 and S555, the arc 7y, the segments J; and Q5Qs, and the part of Il located to the
left of the line P'S.

If 20 < x;, the definition of /%% is more complicated. Define the homothety with the
center at P’ that sends P to P}, and define the curve [ by the following conditions: (i)
the intersection of [ with the strip region z;_; < x < xf is the union of PSs, S;5Sj,
s, Js, Q5Qs, Ils, and the interval PsPy; (ii) under the homothety, the curve [¢9 moves
into itself. The curve [*9 is uniquely defined by these conditions; it does not have self-

intersections and connects the points P and P’. However, it is not piecewise smooth, since
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Figure 2.5: The curve [**?, again.

it has infinitely many singular points near P’. In order to improve the situation, define

155 in the following way: in the strip z;_; < = < z; — 6, it

the piecewise smooth curve
coincides with l~i’€’5, the intersection of %% with the strip 2; —d < = < x; is the horizontal
interval 7; — 0 < x < x;, z = f-(2;), and the intersection of [**° with the vertical line
xr = x; — J is a point or a segment (or maybe the union of a point and a segment) chosen
in such a way that the resulting curve [% is continuous.

The particles of the flow falling on the arc II; make a reflection from it, pass through
the focus Ps, then make another reflection from the arc 7s, and finally move freely, the
velocity being parallel to I. Choose § < |fL(0%)] and § < miny<j<m—1(fL(2;—1+0) — fL(x;+
0)), then the particles after the second reflection will never intersect the other curves 159,
j # 4. Thus, for the corresponding values of x, the vertical component of the velocity of

the reflected particle is

(221 +0) 46 X
Vi J{E;(x+ +>§> =y~ 6@ +00), 007 (2:3.7)

If 28 > x;, the formula (2.3.7) is valid for x € [z;,_y + §, 2;]. If 27 < x;, it is valid for

VG 5(2)

the values z € [r;_; + 6, 2°]. Note, however, that (2.3.7) is also valid for values of z
that belong to the iterated images of x € [z;_1 + 6, 2] under the homothety, but do not
belong to [z; — §, ;]. Summarizing, (2.3.7) is true for € [z;_1, x;], except for a set of

values of measure O(J). Thus, taking into account (2.3.3), (2.3.4), (2.3.6), and (2.3.7),
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the convergence (2.3.5) is proved. Q.E.D.
Proof of theorem 2.2.4

Let us first state the following lemma.

Lemma 2.3.1. Let A > 0 and let the function f, € F, satisfy the condition
I..  fu(l) = h, and for almost all x € [0, 1] the value u = f;(x) is a solution of the
problem

zp(u) + Au — min, u € R,. (2.3.8)

Then the function fy, is a solution of the problem (2.2.6) and any other solution satisfies

the condition I, with the same value of X.

Proof. This simple lemma is a direct consequence of the Pontryagin maximum principle.
The proof we give here, however, is quite elementary and does not appeal to the maximum
principle (cf. [22]).

For any f € Fj, one has

rp(f'(x)) + A f'(z) = zp(fi(2)) + A fu(x) (2.3.9)

at almost every x. Integrating both sides of (2.3.9) over z € [0, 1], one gets

1

3 /0 p(f'(x))dz* + X (f(1) — £(0)) >

> 1 / p(fy(2)) da + A (fa(1) = fn(0)), (2.3.10)

-2
and using that f(1) < h = f,(1) and f(0) = f,(0) = 0, one obtains that R(f) > R(fs).
Next, suppose that f € Fj, and R(f) = R(fr), then, using the relation (2.3.10) and
the equality f(0) = f,(0), one gets that f(1) > fn(1) = h, hence f(1) = h. Therefore the

inequality in (2.3.10) becomes equality, which, in view of (2.3.9), implies that

zp(f'(x)) + A f'(x) = zp(fi(2)) + A fi(z)

for almost every x, hence u = f’(z) is also a solution of (2.3.8), on a set of full measure.

Thus, f satisfies the condition (I,). O
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Now we shall find the function f; satisfying the condition I, for some positive .
Let = € [0, 1] be the value for which I, is fulfilled. Then the value u = f;(z) is also a
minimizer for the function xp(u) + Au, and p(u) = p(u). This implies that (if the function
fn really exists then)

1
RIf = / 5L () = da. (2.3.11)
0
Besides, if u > 0 and p is differentiable at u then one has %(wﬁ(u) + Au) = 0, hence
T 1
- = — : 2.3.12
A p'(u) (2:312)
If u > 0 and p is not differentiable at u, then it has left and right derivatives at this point
and
1 x 1
_— < - < e 2.3.13
Fa—0 =X = Tpus0 (2:3:19)
If, finally, v = 0 then one has
T 1
- < - = &. 2.3.14

Put z = 1/X and xy = &/z and rewrite (2.3.12) and (2.3.13) in terms of the generalized

inverse function: v(zx — 0) < u < v(zz); thus the equality
u = v(zx), (2.3.15)

is valid for almost all values > zy. Taking into account (2.3.14), substituting v = fj (x),
and integrating both parts of (2.3.15) with respect to z, one comes to (2.2.7). In particular,
fi(xzo+0) =v(& + 0) = up. Using that f,(1) = h, one gets (2.2.8).

The function Y(z)/z is continuous and monotone increasing; it is defined on [£g, +00)
and takes the values from 0 to 4+o0o. Therefore the equation (2.2.8) uniquely defines
Z as a continuous monotone increasing function of h; in particular, z(0) = & and
zo(0) = &/2(0) = 1. The relations (2.2.7) and (2.2.8) define the function f; solving
the minimization problem (2.2.6). From the construction one can see that this function
is uniquely defined.

Recall that R(h) = R|[fy]. Integrating by parts the right hand side of (2.3.11), one

gets

r(t) = P [ ) o),



34 2. Generally non-convex bodies of revolution of minimal resistance

Taking into account that f;(1) = v(Z) and xp'(f;(z)) = —1/Z, one obtains

riny = 2 [eagiio)

and integrating by parts once again, one gets (2.2.9). Substituting in (2.2.9) A = 0 and
using that z(0) = &y, v(&) = uo, Y(§) = 0, one obtains R(0) = (p(ug) + wo/&o)/2, and
using that p(0) — & 'ug = p(ug), one obtains R(0) = p(0)/2.

Taking into account the asymptotic of p (which is the same as the asymptotics of
p: p(u) =cu=*(1+0(1)), u — +00), and the asymptotic of p: p'(u) = —cau"1(1+

o(1)), u — +00, one comes to the formulas

v(€) = (Ca)a €3 (14 o(1)), € — +oo,

1 1 a
T(z) = <312> (ca)a 258 (1 1+ 0(1)), 2 — +oo,

and

1 9 a+1
z = — <a+ > he*t (1 40(1)), h— +oo.
co \a+1

Substituting them into (2.2.9) and using the relation xq = &,/Z, after a simple algebra
one obtains (2.2.11) and (2.2.10). The theorem is proved.

Summarizing, the three-dimensional bodies of revolution minimizing the resistance
are constructed as follows. First, we find the function f;'° minimizing the functional
(2.2.5) and define the convex set —1 <z <1, 0 <z < h— fP°(]z|). Next, the upper part
of its boundary (which is the graph of the function z = h— f°(|x|)) is approximated by a
broken line and then substituted with a curve with rather complicated behavior, according
to lemma 2.2.3. The set bounded from above by this curve is "almost convex": it can
be obtained from a convex set by making small hollows on its boundary. By rotating it
around the axis Oz, one obtains the body of revolution B having nearly minimal resistance
R.(B).

The vertical central cross sections of optimal bodies in the Newton, single impact,
and nonconvex cases, for h = 0.8, are presented on figure 9.

Derivation of the asymptotic relations in the single impact case
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(@) (b)

(©

Figure 2.6: Profiles of optimal solutions in the single impact (a), Newton (b), and non-
convex (c) cases, for h = 0.8. In the nonconvex case, the profile is actually a zigzag curve

with very small zigzags, as shown on the next figure.

Figure 2.7: Detailed view of the zigzag curve.
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For h small (namely, h < M* =~ 0.54), a solution in the single impact case can

be described as follows. There are marked several values —1 < z_9,11 < ZT_9,40 <
. < Top_o < Top_1 < 1, n > 2 related to the singular points of the solution. As
h — 0%, n = n(h) goes to infinity. One has z_ = —xy and z9; = (T2_1 + T2i41)/2;

thus o = 0. Besides, one has maxy(ry — xx_1) = 21 = 4h/3. The vertical central

2

T,z

cross section of the solution G = G§ C R2, is bounded from above by the graph of a

continuous non-negative piecewise smooth even function f = fi and from below, by
the segment —1 < x < 1, z = 0. This function has singularities at the points z;, and
the values of the function at the points z9; 1 coincide: f(x9;_1) = h. On each interval
[9;_1, x2;], the graph of f is the arc of parabola with vertical axis and with the focus
at (911, h). Similarly, on [xg;, x9;11] the graph of f is the arc of parabola with vertical
axis and with the focus at (z2;_1,h). The first parabola contains the focus of the second
one, and vice versa. From this description one can see that on [z9;_1, 2], the function

(z—w2i—1)*

(2—22i41)? ,
2(z2i41—T2i-1) + Yis where

equals f(z) = 5 =20 4 y;, and on [ry;, T2i11], [f(2) =
y; = h — (T2i41 — T2;_1)/2. On the intervals [—1, x_o,.1] and [z, 1, 1] the graph of the
function represents the so-called "Euler part" of the solution (see [12]).

Note that the solution is not unique. The values x; and x5, are uniquely determined,
but there is arbitrariness in choice of the intermediate values xs, ..., xs,_3 and also in the

number n of the independent parameters.

After some calculation, one obtains the value of 1 + v for the figure G:

2
if =€ [z2i1, T2i), 1+vg(z) = 3
T2 41—T
1+ (962141*221'71)
. z 2
if =€ [l‘gi, x2i+l]a 1+ UG(‘Q:) =

5
L ()

Let us now calculate the integral fzﬁl_*:(l + vi(x))xdr, 1 <i < mn—1. Since the
function 1 + v&(z), = € [xe;—1, Toi41] is symmetric with respect to @ = x9;, the integral
equals 2x9; fg‘j*l(l + vg&(z)) de. Changing the variable ¢t = (v — wg;_1)/(Z2i11 — X2i-1)

and taking into account that 2zq; = x9;_1 + 2,41, one comes to the integral 2zy;(x9;11 —
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Toi_1) f11/2 2/(1+t*)dt = (23, — 23,_,)(7/2 — 2arctan(1/2)). Therefore

[ ) ads = @, - (/2 - 2arctan(1/2))

1

Taking into account that x, = 4h/3 — 0 and @a,n)—1 — 1 as h — 0", one finally gets
. 1
R(G}) = / (1+ Ué’i’(x)) rdr = 7/2 —2arctan(1/2) +o(1), h— 0%,
0

that is, R(0) = 7/2 — 2 arctan(1/2) ~ 0.6435.

If h > M*, the function f = f;* has three singular points: z; = z1(h), 0, and —z;.
On the interval [—xq, x1], the graph of f is the union of two parabolic arcs, as described
above with ¢ = 0. On the intervals [—1, —z4] and [z;, 1], the graph is the "Euler part"
of the solution; on both intervals, f is a concave monotone function, with f(£1) = 0 and

f(£x1) = h. The part of resistance of G = G related to [0, z;] can be calculated:

/ (1+vi(z))zde = z1p",
0

where p* = 8(In(8/5)+arctan(1/2)—n/4) ~ 1.186. That is, the convex hull of G represents
p* if u=20

the solution of the problem (2.2.6) with p(u) = pgi(u) =
2/(1+u?) if u>0 .



Chapter 3

Bodies of zero resistance and bodies

invisible 1in one direction

Earlier in the chapter 1, (in 1.1.1) the velocity of incidence onto the body B was
set to be (0,0,—1). Evidently the same construction holds for arbitrary initial velocity
vy € S2%. So, to avoid misunderstanding, let us shortly repeat the description of our model
for arbitrary vy. Suppose that there is a parallel flow of non-interacting particles falling
on B. Initially, the velocity of a particle equals —wvg; then it makes several reflections
from B, and finally moves freely with the velocity v} (z, vo), where z indicates the initial
position of the particle. One can imagine that the flow is highly rarefied or consists of
rays of light. (Equivalently, one can assume that the body translates at the velocity —uvg
through a highly rarefied medium of particles at rest.) The force of pressure of the flow on
the body (or the force of resistance of the medium to the body’s motion) is proportional

to (compare with (1.1.1))

R, (B) == /{ }L(UO — v (z,v9)) du, (3.0.1)

where the ratio equals the density of the flow/medium and dz means the Lebesgue measure
in {vo}+. Here we denoted by {v}* the orthogonal complement to the one-dimensional
subspace {v}, that is, the plane that contains the origin and is orthogonal to v.

In this chapter we show that there exist bodies whose resistance is exactly zero.

39
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More precisely, denoting by vy € S? the initial flow velocity, we say that the body
has zero resistance in the direction vy, if the final velocity of almost every particle is also
equal to vyg. We say that the body leaves no trace (or is trackless) in the direction vy if it
has zero resistance in this direction and, additionally, the flow density behind the body
is constant and coincides with the initial one. Further, we say that the body is tnvisible
in the direction vg if the trajectory of each particle outside a prescribed bounded set
coincides with a straight line. Indeed, such a body with mirror surface becomes invisible
to an observer staying in the this direction far enough from the body. We prove that
there exist bodies of zero resistance, bodies leaving no trace, and bodies invisible in one
direction.

From the viewpoint of classical scattering by obstacle, we construct a body with zero
total cross section. (The total cross section measures the density of scattered rays; see
introduction to [28| for the definition.) Thus in this case, from the scattering data for a
fixed angle of incidence, it is not possible even to say if an obstacle exists or not. A question
arises, if a similar effect can take place in the wave scattering or in the non-relativistic
quantum mechanics. We note in this regard that the wave and classical scattering at
small wave length are closely connected (see, e.g., [29]).

This chapter is organized as follows. In section 3.1, we introduce the mathematical
notation and give rigorous definitions for bodies of zero resistance, bodies that leave no
trace, and bodies that are invisible in one direction. In section 3.2, we give an overview
of the minimal resistance problem and put our result in this context. In section 3.3,
we introduce families of zero resistance bodies, trackless bodies, and invisible bodies,
discuss their properties, and state some open problems. Finally, in Section 3.7 possible

applications of our models are discussed.

3.1 Notation and definitions

Here we introduce more notations to those were presented in the first chapter.

Let B C R? be a bounded connected set with piecewise smooth boundary, and let
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vo € S?. (B and vy represent the body and the flow direction, respectively.) Consider the

billiard in R*\ B. The scattering mapping (x,v) — (x5 (x,v), v (z,v)) from a full measure

subset of R? x S? into R? x S? is defined as follows. Let the motion of a billiard particle

) ) x + vt, if t<ty v, if t <t
x(t), v(t) satisfy the relations z(t) = and v(t) =
xt+ott, if >t ot i >ty
+ .

(here t1, ts are a pair of real numbers depending on the particular motion); then z* =:
r5(z,v), vT = vh(z,v).
Denote 75(z,v) = a7 — (zF,v")ot and t* = t(z,v) = — (T, vT), where (-,-) is the

scalar product; then one has z* + vt = 2T +v™(t — t*), and " is orthogonal to v™.

Definition.

D;. We say that B has zero resistance in the direction vy if v};(z,vo) = vo for almost
every x.

D,. We say that the body B leaves no trace in the direction vq if, additionally to Dy,
the mapping x — T5(x,vo) from a subset of {ve}* into {ve}* is defined almost everywhere
in {vo}t and preserves the two-dimensional Lebesque measure.

Ds. We say that B is invisible in the direction vq if, additionally to Dy, one has

T5(z, v) = .

The condition Dj is stronger than D5, and D5 is stronger than D;. One easily sees that
if B is invisible/leaves no trace in the direction vy then the same is true in the opposite
direction —uvy.

In the case D; one has R,,(B) = 0. If the body has mirror surface then in the case
Ds it is invisible in the direction vg. In the case D, if the body moves through a rarefied
medium, the medium seems to be unchanged after the body has passed: the particles
behind the body (actually, in the complement of the body’s convex hull) are at rest and
are distributed with the same density.

In section 3.7 we give examples of a body satisfying the condition Dy, but not satis-
fying Do; a body satisfying Dy but not Ds; and a body satisfying Ds. That is, there exists
a body of zero resistance that leaves a trace (shown on Fig. 3.2a); a body leaving no trace

but not invisible (Fig.3.2b and 3.2¢); and an invisible body (Fig. 3.3).
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3.2 Problems of the body of minimal resistance

2. Consider the class of bodies B that are contained in the cylinder € x [0, h] and
contain a cross section £ x {c} with ¢ € [0, h], Q x {c} C B C Q x [0, h], and such that
the integral R,,(B) exists. For the sake of brevity, we shall call them bodies inscribed in
the cylinder. Multiple reflections are allowed. If €2 is the unit circle then the infimum of
resistance equals zero, infp | Ry, (B)| = 0 (see [19]). This result generalizes to the case of

arbitrary €2, so that the following statement holds true.

Conjecture. For any Q2 and h, inf{|R,,(B)| : B is inscribed in the cylinder Q X
[0, ]} = 0. If Q is convex then the infimum is not attained. On the other hand, for
some nonconvex 2 and some h, the infimum is attained; that is, there exist bodies of zero

resistance.

We call it conjecture, since the proof of the first assertion has never been published.
The second assertion in the conjecture is reformulated and proved as Proposition 3.2.
Several examples of zero resistance bodies, where €2 is a ring or a special kind of polygon
with mutually orthogonal sides, are provided below in the text. This proves the third
assertion.

Let 2 be a convex set with nonempty interior and let B be a body inscribed in the

cylinder € x [0, h] and such that the integral R,,(B) exists. Then R,,(B) # 0.

Proof. The integral R,,(B) exists, that is, the function v};(z, vo) is defined for almost all
x €  and is measurable. Using that the particle trajectory does not intersect the section
Q x {c} and Q is convex, one concludes that the particle initially moves in the cylinder

above this section, then intersects the lateral surface of the cylinder and moves freely

afterwards. This implies that v} (x,vg) # vg, hence R,,(B) # 0. O

3.3 Zero resistance bodies and invisible bodies

The main result of this paper is the following theorem. Fix vy € S2.
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There exist (a) a body that has zero resistance in the direction vy but leaves a trace;
(b) a body that leaves no trace in the direction vy but is not invisible; (¢) a body invisible

in the direction vg.

Proof. (a) Consider two identical coplanar equilateral triangles ABC and A’B’C’, with C
being the midpoint of the segment A’B’, and C’, the midpoint of AB. The vertical line CC’
is parallel to vg. Let A” (B”) be the point of intersection of segments AC and A'C’ (BC

and B'C’, respectively); see Fig.3.1. The body B generated by rotation of the triangle

Figure 3.1: The basic construction.

AA’A” (or BB'B”) around the axis CC’ is shown on Fig. 3.2a. It has zero resistance in
the direction vg. This can be better seen from Figure 3.1 representing a vertical central
cross section of B.

If a particle initially belongs to this cross section, it will never leave it. Let the particle
first hit the segment A’A” at a point E. (If the particle first hits B'B”, the argument is the
same.) After the reflection, the direction of motion forms the angle 7/3 with the vertical.
Next, the particle hits the segment B”B at the point F such that |[A’E| = |B"F|, and after

the second reflection moves vertically downward. That is, the final velocity equals vg.
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Figure 3.2: (a) A rotationally symmetric body of zero resistance. (b) A disconnected set
leaving no trace. (¢) The union of 4 sets identical to the one shown on fig. (b), the above

view. It is simply connected and leaves no trace.

However, this body does leave a trace (and therefore is not invisible). Indeed, the
particles that initially belong to a larger cylindrical layer of width dz (on Fig. 3.1 above),
after two reflections get into a smaller layer of the same width dz (Fig.3.1 below), and
vice versa. Therefore, the density of the smaller layer gets larger below the body, and the
density of the larger layer gets smaller. If dx is small then increase and decrease of the

density is twofold.

(b) A set generated by translating the pair of triangles AA’A” and BB'B” along a
segment orthogonal to their plane leaves no trace in the vertical direction vg, but is not
invisible. It is disconnected; however, by "gluing together" 4 copies of this set along the
vertical faces, one can get a connected set (that is, a true body) leaving no trace. Figure

2¢ provides the above view of the resulting body.

(¢) A body invisible in the direction vy can be obtained by doubling a zero resistance

body; see Fig. 3.3.

Note that interior of this body is a disjoint union of two domains; this property can

be undesirable. However, the construction can be improved as follows.

Consider a coordinate system Oxqxox3 such that the zz-axis coincides with the sym-
metry axis of the body B shown on Fig. 3.2a, the upper half-space contains the body,
and vy = (0,0, —1). Consider the body B’ symmetric to B with respect to the horizontal
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plane x3 = 0 and suppose that the distance dist(B, B’) =: ¢ is small. Next, take the
intersection of B U B’ with the set x1x2 > 0 (this intersection is the disjoint union of 4
connected sets) and shift it vertically up or down on 2e. The union of the shifted set with

the remaining set (B U B’) N {z1z5 < 0} is connected, that is, it is a true body invisible

g

in the direction vyg.

— —_

-

- -~

Figure 3.3: A body invisible in the direction vg. It is obtained by taking 4 truncated

cones out of the cylinder.

3.4 Several families of bodies invisible in one direction

Here we present our results on description of possible bodies of zero resistance or
bodies invisible in one direction. Evidently, for two bodies €2; and €2 whose convex hulls
do not overlap, holds the following: if both of them have zero resistance in the direction
Vg, then their union £2; U2y also has zero resistance in this direction, and if €2y and €2, are
invisible in the direction vg, then the union €2; U2, is also invisible in the same direction.

Let us introduce some families of bodies having the desired properties.
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3.4.1 Bodies based on isosceles triangles

First, consider a pair of isosceles triangles with the angles o, «, and m — 2a, where
0 < a < w/4. The triangles are symmetric to each other with respect to a certain point.
This point lies on the symmetry axis of each triangle, at the distance (tan2a — tan a)/2
from its obtuse angle and at the distance (tan2a + tan «)/2 from its base. The length of
the base of each triangle equals 2. On Fig. 3.4 there are depicted two pairs of triangles,

(b)

(a)

tan 2av

Figure 3.4: The central vertical cross section of the body B, (a) with small «; (b) with

a close to /4.

with o small and « close to /4.

As seen from the picture, this definition guarantees zero resistance in the direction
vo parallel to the bases of the triangles. The zero resistance body, trackless body, and
invisible body are created, respectively, by the procedures of rotation, translation with

gluing, and doubling, applied to the pair of triangles.
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Consider the one parameter family of zero resistance bodies B, obtained by rotation
of the pair of triangles. It contains the body B = By /s constructed above. Before studying
the properties of this family, introduce the following definition.

For a body D, let k(D) be the relative volume of D in its convex hull, that is,
k(D) := Vol(D)/Vol(ConvD). One obviously has 0 < x(D) < 1, and k(D) = 1 iff D is
convex.

The convex hull of By, is a cylinder of radius L, = (tan 2a+tan «)/2 and height H = 2;
denote by h,, its relative height, h, = H/L,. One has Vol(B,) = 7 tan a(tan 2a+tan «/3).
Now one easily derives the asymptotic relations for h, and k, = k(B,): as a — 0, one
has hq = 2=(1+0(1)) — 0o and K, — 14/27 ~ 0.52. For v = 7/6, one has h, /s = /3
and k6 = 5/12 &~ 0.42. Taking a = (7 —£)/4, £ — 0T, one gets h(r_c)a = 2(1 4+ 0(1))
and Kk, = (1 + o(1)).

3.4.2 Bodies obtained by intersecting a zero resistance body with

several pairs of vertical stripes

Let € be a body of zero resistance composed of two isosceles triangles as described
above in section 3.4.1. Notice that these triangles are mutually symmetric with respect
to a straight line [y parallel to vy.

Recall that the function vl (z,v) and z{,(z, v) are defined by the following conditions:

if a billiard trajectory equals x(t) = x + vt for ¢ sufficiently small, then z(t) = z&(z,v) +

_|_
Vg

(z,v)t for t sufficiently large. Notice that ve(z,v0) = vy and denote the mapping g in
the space of vertical straight lines that takes the line x + Rug to the line xf(x, vo) + Ruy.
That is, if a particle initially moves along a vertical line [, then after reflections from €2 it
will move along the vertical line o(1).

Now consider a set {25 which is a union of a set of vertical lines intersecting €2 invariant
with respect to o and such that each line from the set intersects 2. Actually, {25 is just

a union of an even number of vertical stripes: some of the to the left of [y, and some to

the right of ly. The right stripes are obtained from the left ones by a horizontal shift by
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a fixed distance.

Lemma 3.4.1. Let € be a body of zero resistance composed of two isosceles triangles and

Q) be a set described above. Then 2Ny is a body of zero resistance.

Figure 3.5: Body obtained by intersecting a zero resistance body with two pairs of vertical

stripes.

Proof. 1f a particle initially moves along a line contained in {25, then its interaction with
QQN€2, is precisely the same as with €2, and therefore, the final velocity equal vg. Otherwise,
the particle does not interact with €2 N 5 and again, the vinal velocity equal vy. See

fig.3.4.2. O

3.4.3 Bodies of zero resistance based on isosceles trapezia

Now consider a more general construction based on the union of two isosceles trapezia
ABCD and A'B'C'D’ (see Fig.3.5). Take a billiard particle in R? \ (ABCD U A’'B'C'D’)
with the initial velocity directed vertically downward and having at least one reflection

from one of the trapezia. In this and the two next paragraphs we consider the part of the
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Figure 3.6: The vertical cross section of a zero resistance body of revolution.

trajectory contained in the trapezia BB'C'C (see Fig.3.6). The particle gets in through
the segment BB’, and after a finite number of alternating reflections from the sides BC
and B'C’, it escapes through CC’ or BB'. Suppose without loss of generality that the
first reflection takes place from BC, and apply the procedure of unfolding to the billiard
trajectory. First, to both the trapezium BB'C'C and the part of the trajectory after the
first reflection, apply the reflection from the line BC. As a result we obtain the trapezium
B;BCC; and a billiard trajectory in it, besides the first segment of the trajectory (between
BC and the next point of reflection) belongs to the same vertical line as the initial part
of the particle trajectory.

If the next reflection takes place from the side B;C; (as on Fig. 3.7a) then to both the
trapezium B;BCCj and the rest of the trajectory (after this reflection and before escaping
the trapezium) apply the reflection with respect to the line B;C;. As a result we obtain
the trapezium B,B;C;Cs and a billiard trajectory in it, and again, the initial segment of
this trajectory belongs to the same vertical line as above.

This procedure finishes in a finite number of steps — as a result we obtain a se-
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quence of trapezia BiBCCy, BaB1C1Ca,. .., BiBr_1Cr_1Cy, k < |7/(2a)) + 1/2]| and the
"unfolded" part of trajectory. This unfolded trajectory is a vertical segment whose initial
endpoint belongs to BB’ and the final endpoint, either (i) to the broken line CC;Cs ... Cy,
or (ii) to the broken line BB1Bsy...By. The case (i) means that the original billiard tra-
jectory intersects CC’ and enters the rectangle CDD'C’. The case (ii) means that it
eventually escapes BB'C’'C through the segment BB'.

Denote r := |CC'|/|BB'| and « := £ABC (and therefore « = £LBAD = LA'B'C' =
£B'A'D"); we assume that oo < w/4. Choose the parameters r and « in such a way that the
broken line CC,Cy. .. C|z/(2q)+1/2) touches the straight line AB, that is, intersects this line
and is located to the right of it. It suffices to put r = r(a) = sina/ sin(2| 7/ (4a) |a + «).
The function r(«a) is continuous and monotonically increases from 7(0) = 0 to (7w /4) = 1.
With this choice, the case (ii) is excluded, that is, the particle always enters the rectangle

yal
CDD'C'. 5 o 5 o

A/ A’

Figure 3.7: Unfolding of a billiard trajectory.

After the first reflection the particle velocity forms the angle 2a with the vertical
direction (0, —1) (we measure angles counterclockwise from the vertical); after the second
reflection the angle becomes —4a, and so on. At the point of intersection with CC’ the
angle becomes (—1)*"12ka, where k is the number of reflections from BC and B'C’.

While the particle belongs to the rectangle CC’'D’D, the modulus of the angle remains

equal to 2ka, and when the particle makes reflections from the sides AD and A'D’, it
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decreases, taking successively the values 2(k — 1)a, 2(k — 2)a, ..., and finally, after the
last reflection, the angle becomes 2k'c, where k' is an integer, |k'| < k.

Let us show that &' = 0 and therefore, the final velocity is vertical. To that end, let
us apply the unfolding procedure again, this time to the part of the trajectory contained
in the trapezium ADD’A’ (see Fig.3.6b). Suppose without loss of generality that the
point of last reflection belongs to AD. To both the part of the trajectory before that
point and the trapezium, apply reflection with respect to the line AD. Repeating this
procedure as described above, one obtains the "rectified" trajectory — an interval with
the endpoints on the segment AA’ and on the broken line ... D;D;DD’'D, D), ... generated

by the consecutive reflections of the unfolding procedure. This broken line touches the

lines AB and A'B’.

We see that the tangents drawn from A to the broken line (the lines ADy and AD/
on Fig. 3.6b) form the angles 0 and —2a with the vertical. Analogously, the angles of the
tangents drawn from A’ to that line are 2« and 0. This implies that both the tangents
drawn from any point of the segment AA’ to that line have the angles greater than —2«
and less than 2. The same is true for the angle of inclination of the unfolded trajectory,
that is, |2k'a| < 2a, and therefore, & = 0.

The body of zero resistance is formed by rotation of the trapezia around the vertical
symmetry axis. Its shape is determined by the two parameters o and v = |CD|/|BC|. As
a — 0 and 7 — oo, the maximal number of reflections goes to infinity, the relative volume
of the body in the cylinder ABB’A’ goes to 1, and the relative height of the cylinder goes
to infinity.

By doubling this body, one obtains the body invisible in the direction vy.

This result can be summarized as follows.

Let Q be aring r? < z2+x2 < 1. For h sufficiently large, there exists a body inscribed
in 2 x [0, k] and invisible in the direction vy = (0,0, —1).
Remark. This theorem is also true for the case where € is a special kind of polygon with

mutually orthogonal sides; see, e.q., Fig. 3.2c.
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3.4.4 Four-parameter family of invisible bodies

Basing on the main idea of construction, one can provide various examples of multi-
parameter families of zero resistance bodies. Here we will give an example of 4-parameter
family.

Consider an arbitrary point A and an angle a € (0,7/4), and take a point B such
that vector AB forms the angle o with the direction of incidence vg. (In fig. 3.3.5.1 the
vector v is identified with the vertical vector (0, —1).) Put a point C' below the point B,
so that the line BC' is vertical. Later we will derive an upper bound on the length |BC/|.
Choose an angle (8 such that

a< f< /4 (3.4.1)

Draw two straight lines: one of them contains the point B and forms the angle 2a with
the direction of incidence vy. The other line contains the point C' and forms the angle 23
with vg. Let D be the point of intersection of these lines. Next we find the point /' such
that the vector FD is equal to the vector AB.

The condition we need is that the point F is located below the point C'. If this
condition is fulfilled, take a point F' which is the intersection of two lines: one of them
contains F and is perpendicular to the direction of incidence (that is, is horizontal), and
the other line contains ' and forms the angle § with the direction of incidence. The point
(¢ is calculated in such a way that the vector C'F' is equal to the vector DG.

The other points A’, B', C', D', ¢ in figure 3.5.1 are obtained from the points A,
B, C, D, G by vertical symmetry. More precisely, we obviously have that the points
E and F are symmetric with respect to the vertical line [ through the midpoint of the
segment FI'. Then by definition A’, B’, C’, D', GG’ are, respectively, the points symmetric
to A, B, C', D, (G with respect to [.

Let us now derive the above mentioned upper bound for |BC/|. First, using that
LCBD =2a and £BDC = 2( — «), we have

CD|  |BC|
sin(2a)  sin(2(8 — a))’

(3.4.2)
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The condition that F lies below (' means that the projection of C'D on the direction of

incidence is larger than the projection of FD on the same direction, that is,
|C'D|cos(26) > |AB] cos a.

Using (3.4.2), we get

sin(2av
|BC| m cos(23) > |AB| cos «,
and finally,
|BC| > |AB| cosa_ sin(2(0 — a)) (3.4.3)

cos(20)  sin(2a)
Evidently, after fixing the points A, B, C' one can always choose a 3 > « such that § — «
is small enough to satisfy this condition.

From figure 3.5.1 one easily sees that the obtained body is invisible. Indeed, if an
incident particle hits the segment AB at some point, then after reflection it goes inclined
by the angle 2cr, then it hits the segment E'D and finally goes vertically down. Besides,
the distance between A and the point of the first reflection is equal to the distance between
E and the point of the second reflection. If an incident particle first hits the segment C'F,
then after reflection it goes inclined by the angle 23, hits the segment DG and finally
goes vertically down. The distance between C' and the point of the first reflection is equal
to the distance between D and the point of the second reflection. If a particle hits the
segment A’ B’ or the segment C'F, the consideration is completely similar.

Summarizing, we have constructed a 4-parameter family of invisible bodies, with the

positive parameters «, (3, |AB|, | BC|, satisfying the inequalities (3.4.1) and (3.4.3).

3.4.5 Body of zero resistance bounded by arcs of parabolas

Consider two parabolas P and P’ with the same focus F' and with common axis
parallel to vy. Designate by C' and C” the vertices of the parabolas. The distances |C'F|
and |C'F| are arbitrary but different, besides C_l>7 . CTF > (0. To be definite, suppose that
|C'F| > |CF].
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Figure 3.8: A 4-parameter family of zero resistance bodies.

In this section the vector vg is chosen to be vertical, vg = (0, 1) (see the figure 3.4.5);
thus the line C'C" is also vertical.

From now on in this section we will consider only the points that lie to the left of
the axis C'C’. Consider an arbitrary point A’ € P’ such that ATP>1 -vp > 0. Denote by A
the point of intersection of the straight line A’F' with the parabola P. Next, we find the
point B € P such that 1TB> -v9 = 0. Denote by B’ the point of intersection of P’ with
the straight line F'B.

Denote by [ the straight line parallel to vy through the midpoint of the segment A’ B.
Obviously, A" is symmetric to B with respect to [. Denote by A” A" and BB”, respectively,
the images of the arcs of parabolas AB and A’B’ under the symmetry with respect to [.

The body under consideration is the union of two sets. The first set is bounded by the
arcs A’A” and A’B’, by the vertical line through B’, and by the horizontal line through
A”. The second set is symmetric to the first one with respect to [.

Let us show that the obtained body has zero resistance. A particle with initial

velocity vg, incident on the arc A’B’, according to a focal property of parabola, after the
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Figure 3.9: A body bounded by arcs of parabolas.

reflection after the reflection moves along a straight line passing through the focus F.
Then it is reflected from the arc AB, and after the reflection, according to the same focal
property, moves with the velocity vy. If the particle is incident on BB”, the consideration
is completely similar.

Note in addition that this body has zero resistance in the direction vg, but does not

in the direction —wvy.

3.5 General properties of invisible and zero resistance

bodies

3.5.1 Minimal number of reflections

Denote by m = m(B,vg) the maximal number of reflections of an individual particle

from the body.
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Theorem 3.5.1. (a) If the body B has zero resistance or leaves no trace in the direction

vo then m(B,vg) > 2.

(b) If B is invisible in the direction vy then m(B,vg) > 4. These inequalities are
sharp: there exist zero resistance bodies and trackless bodies with exactly 2 reflections,

and there exist invisible bodies with exactly 4 reflections.

Proof. (a) If m = 1 (that is, under the single impact assumption) then the final velocity of
each particle does not coincide with the initial one, v};(z, vy) # vo, therefore R,,(B) # 0.

That is, a zero resistance body requires at least two reflections.

(b) Note that a thin parallel beam of particles changes the orientation under each
reflection. To be more precise, let z(t) = x + vot, v(t) = vy be the initial motion of a
particle, and let z(t) = 29 (z) + v (2)t, v(t) = v@(z) be its motion between the ith and
(i + 1)th reflections, i = 0, 1,...,m. Let the body be invisible in the direction vg; then

(m

one has v = 0™ = 4y, 20 = 2, and 2™ — z||vy. At each reflection and for any fixed ,

oz 9

the orientation of the triple ( , v(i)) changes. The initial and final orientations,

oz1 ? Oxa
9z(©® 920 (0) dz(m)  §ap(m) (m) fh el ;
( 5o Doy U ) and ( 5e Ha 0 U ), coincide, therefore m is even.

On the other hand, m cannot be equal to 2, as seen from Fig.3.10. Therefore, m > 4.

Figure 3.10: Two reflections are not enough for an invisible body.

From the examples of bodies discussed above one concludes that the inequalities in

(a) and (b) are sharp. O
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3.5.2 Doubling an arbitrary body of minimal resistance

Let B C R?, vy € S?, and let II be a plane orthogonal to vy, that is, IT = {z € R3 :
T -vg = a}. Suppose also that B is contained in the closed half-space R? = {z € R? :

x - vg < a} bounded by II. Denote by B the body symmetric to B with respect to II and
let B=BU B.

Theorem 3.5.2. If B has zero resistance in the direction vy € S?, then B is invisible in

this direction.

To prove this theorem, consider first the interaction of billiard particles with B. Take
an arbitrary billiard particle incident on B with the initial velocity vy, and consider its
trajectory z(t), t < to until its intersection with the plane II. In other words, for ¢ = ¢,
we have

z(tg) -vo=a and x(to —0)- vy > 0. (3.5.1)

Since the particle moves freely for ¢ > to, we have Z(ty + 0) = vp.

Let us show that the point z(ty) does not belong to dB. Indeed, assuming that
x(tp) € OB, we have to conclude that it is a regular point of dB. Since B lies on one
side of IT and x(to) € II, we conclude that the outward normal to OB at the point ()

is equal to vg. Since the particle makes a reflection at this point, we have
I(tO—O) -v9 <0 and x(t0+0) -y > 0.

The first of these inequalities contradicts the second inequality in (3.5.1).
Let us now consider the broken line obtained by joining the line z(t), t < {y and its

image under the symmetry about II. This broken line can be parameterized as follows:

A z(t), if ¢ <t
2(t) =
.T(2t0 — t) + 2(CL — $(2t0 — t) . 7)0)’1)0, if ¢ Z to.

Consider the interaction of particles with the body B. One easily sees that &(t), t € R
is the trajectory of a billiard particle interacting with B. The moments and points of

reflection of this trajectory from B are symmetric to the moments and points of reflection
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from B with respect to the point ¢y and to the plane II, respectively. Besides, there is no
reflection at the moment ty. The final velocity of the particle, vy, coincides with its initial
velocity:; moreover, the trajectory outside the convex hull of B belongs to a straight line.
Since this arguments holds for any particle with initial velocity vy, we conclude that the

body B is invisible in this direction. The theorem is proved.

Recall that any body invisible in the direction vy, is also invisible in the direction —uvy.

This is not true for zero resistance bodies; see the example and figure from the section

3.4.4.

3.5.3 Resistance for small deviations of the flow direction

Let B be a body of zero resistance in a direction vy. It is natural to study the behavior
of the resistance for angles close to vg. We will study this question in the particular case
where B is one of the 2D bodies described in section 3.4. The following theorem holds

true.

Theorem 3.5.3. Let B be one of the bodies of zero resistance in the direction vy presented

in section 3.4. Then there exists a nonzero vector ro such that
Ry(B) = |v = wo|ro + o(|v — wol*) as |v—w| — 0.

Proof. For the sake of transparency we will prove this theorem supposing that B is
the union of isosceles triangles with 7/6 < oo < 7/4 (see part 3.4.1).

Denote by € = ¢(v) the angle between v and vg. By P; = Pi(v),1 < i < 7 we denote
the initial coordinates = such that the corresponding trajectory hits one of the vertices.

One evidently has (see fig. 3.5.3, 3.5.3)
’UE(ZE,’U) =, lf s g ([Pl,PQ] U [Pg,P4] U{P5}U[P6,P7]),

and v} (z,v) is constant, if z € [Py, Py], or x € [P3, Py], or x € [Ps, Py]. Denote v} (z,v) :=
U(LQ), if € [Pl,PQ], ’Ug(l‘,l}) = ’U(374), if < [Pg,P4], UE(ZE,’U) = U(6,7)7 if x € [PG,P7].
Then

Ry(B) = (Py(v) = Pu(0)) (v —v(1,2)) + (Pa(v) = Ps(0)) (0 = v5.0)) + (Pr(v) = P (0)) (0 = v6.7))-
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PP PBP P, P P

Y

B/

Figure 3.11: Incident angle has defect £ with vy. Part 1.

First of all, note that Py(v) — Pi(v) = |AA'|tane and v 2 = v + O(e), therefore
(P2(v) = Pi(v))(v = va2)) = O(?).

Next, note that L A”"EB = « — €. Using law of sines we have

|[EA"] A" B

sine  sin({A”EB)’

and therefore,

A"B
P4(U) — Pg(U) = |EA”| sin(7r/2 — o+ 5) = Sinf‘:m COS(OZ — 8) =
2
&?u cosa+0(e?), as & — 0.
sin v
We then estimate P;(v) — Ps(v) in the same way,
|B/F/| B |A//B/|
sine  sin(£A"F'B')’
Note that LA"F'B' =1 — LA"F'B" = 1 — (a + ¢), therefore
|A//B/|
Pr(v) — Ps(v) = |B'F'|sin(n/2 — a — €) = sine— cos(a+¢) =

sin({LA"F'B')
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Y

h P PP P P P;

Figure 3.12: Incident angle has defect £ with vy. Part 2.

|A//B/|

S1n

=¢ cosa+O0(g?), as £— 0.

Analyzing the motion of the particle with x € [P3, P,], we see that the particle makes
only one reflection and the final velocity v(s 1) makes the angle 2a+0O(¢g) with v. Similarly,
analyzing the motion with x € [P, P;] and using that a > 7/6, we conclude that the
particle makes two reflections and the final velocity v(g7) makes the angle 4o+ O(e) with

v. Taking into account that |A”B| = |A”B’|, we get

Ro(B) == = A8 9y _ (030 + v6m)) + O()
v ——Stana v ’0(374) U(6,7) g7 ).

Theorem 3.5.3 is proven.

3.6 Non-uniform motion of the zero-resistance body

We have shown that if the zero-resistance body (a union of two prisms; see the
basic construction) moves uniformly in a homogeneous medium, no resistance force ap-

pears. However, in non-uniform conditions (e.g., non-uniform motion or non-homogeneous
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Figure 3.13: The basic construction.

medium), a force can appear. Below we consider two cases corresponding to (i) non-

homogeneous medium and (ii) non-uniform motion, and calculate the resulting force.

3.6.1 Getting into a cloud and getting out of it

Consider a zero-resistance spacecraft composed of two prisms (see the basic construc-
tion, fig. 3.3.13). Denote by a, h and d the width, length and thickness of the spacecraft,
respectively; that is, a = |AB|, h = |AA’|, and d is the height of each prism. Therefore,
the convex hull of the body (spacecraft) is a parallelepiped with sizes a, h and d. One
obviously has h = ? a.

Suppose that there is a flow falling on a face of the body, and the symmetric flow
falling on the other face. The incidence angle (that is, the angle between the incident
particles and the normal to the face) equals a, the flow velocity and density are v and
p, respectively, and the area of the face exposed to the flow equals S = § x d. Then the

force of pressure on the face can be calculated as follows:

force = 2pvSsin®a. (3.6.1)
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In order to calculate the resulting force acting on the body one needs to sum up the two
forces, that is, multiply by 2, and take the projection on the vertical axis, that is, multiply
by 1/2. Therefore, the resulting force will be given by the same formula (3.6.1).

Now consider the spacecraft getting into an interstellar cloud and then getting out
of it. The boundary of the cloud at the two points of intersection is perpendicular to the
direction of motion. The spacecraft velocity equals v, and the density of the cloud equals
p. An observer on board will see a parallel flow that starts falling on the upper face of
the spacecraft. Then a force acting downwards on the body will be created. The force

will increase linearly during the time
T=— (3.6.2)

until it stabilizes at the maximal value F'. This maximal force is calculated by substituting

S =%dand a = 7/3 into (3.6.1); that is,

2

1

— o2yl
F =2pv 5 d4. (3.6.3)

It takes the time h/v = 2T for the first particles of the flow to get to the lower face of
the prism. Then a compensating force acting upwards is created. It will linearly increase
during the time 7" until it reaches the maximal value F. Since that moment the resulting

force will be equal to zero; see the figure below.

That is, both times, when the spacecraft gets into the cloud and when it gets out, a
force tending to expulse it out of the cloud is created.
It is convenient to choose the values F' and T as the reference force and reference

time, respectively.
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immediately after the moment of stopping.

The observer on the body will see that all the particles has suddenly stopped the
motion, except for the set of particles that are traveling between the first and the second
reflection. This set is the union of two subsets corresponding to particles traveling (i)
from the left face to the right face, and (ii) from the right face to the left face. These

subsets are mutually symmetric. On the figure below, the first subset is A’B”BA".

Figure 3.15: Stopping the motion.

The observer will see that the velocity of these particles has changed: initially it was
parallel to the line A’B”, and now it is parallel to the line A”B’, and the modulus of the
velocity remains equal to v. Notice that |[DyB”| = h/3 and DyB” is perpendicular to
B"B. The width of the parallelogram A’B”BA” equals a/4.

Initially, the pressure force on the lower face equals 2p02%d = 4F. During the
time h/(3v) = 2T (the time needed for all the particles inside the triangle DoB"B to
hit the lower face) this force linearly decreases to zero. On the contrary, the force on
the upper face initially equals zero. During the same time %T it linearly increases to
2p0° Td i = F/2, then during the time %T remains the same value, and finally, during

the time %T linearly decreases to 0. The resulting force on the body linearly increases
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from 4F to —F/2 during the time during the time % T, then remains equal to — F'/2 during

the same time, and finally, linearly decreases to 0 during %T; see the figure below.

4F

Suppose now that the body initially stays at rest in the medium, and at a certain
moment suddenly starts moving at the velocity v. The analysis of this case is easier than
of the previous one. During the time h/v = 2T, the force F' will be acting on the body,
and then the particles will reach the lower face and hit it, thus creating the compensating

force; therefore, the force acting on the body will sharply disappear; see the figure below.

3.7 Possible applications

We believe that the models proposed in this paper can find applications in optics and
in aerodynamics of space flights.

A body of zero resistance with specular surface can be used, for example, as a con-
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stituent element of a structure (curtain) that lets light through only in one direction. By
slightly modifying the construction, a surface can be designed that, like a lens, focuses
sunlight onto one point. Bodies with mirror surface invisible in one direction may also be
of interest.

Above 150 km, the atmosphere is so rarefied that the effect of intermolecular collisions
is negligible [30]. As regards the body (union of two prisms) on Fig. 3.2a, the flow density
in some zones between the prisms duplicates and triplicates as compared with the density
outside the body, that is, remains sufficiently small. The bodies depicted on Figures
3.2a and 3.3 create infinite density along their symmetry axis; however this effect may
be of little importance for practice, because of thermal motion of flow particles and not
completely specular reflection from the body surface.

Our model is robust with respect to small changes of physical parameters. This
means that in the case of slight thermal motion of gas molecules and nearly specular
gas-surface interaction, the resistance is still small. The velocity of artificial satellites
on low Earth orbits is much greates than the mean thermal motion of the atmospheric
particles [31]. The gas-surface interaction is being intensively studied nowadays. It is
very sensitive to many factors, including the spacecraft material, atmosphere composition
(which in turn depends on the height), angle of incidence, velocity of the satellite, etc.
It is commonly accepted now that the interaction of the atmospheric particles with the
surface of existing spacecraft at heights between 150 and 300 km is mostly diffuse [30],[32];
however it is argued [31] that carefully manufactured clean smooth metallic surfaces would
favour specular reflections.

Therefore we believe that spacecraft of the shapes indicated on Fig. 3.2a and 3.2b with
suitably manufactured surface may experience reduced air resistance and, consequently,

have increased lifetime and decreased deflection from the predicted trajectory.



Conclusion

The study of Newton’s minimal resistance problem is attractive not only because of
its classical flavor, but also because the model and the question are natural and simple
and are closely connected with real world problems. It often happens that simple models
need very complicated analysis and require different approaches. In the first chapter we
give an overview of results and approaches, both very old and recent ones. This overview
shows that a great variety of methods were used to attack this problem.

In chapter 2 we examine the class of simply connected, generally non-convex bodies
of revolution and find the infimum of resistance in this class. We present a sequence of
bodies which approximate the unattainable value of the resistance.

In chapter 3 we present a body of zero resistance. The construction is not a result of
complicated mathematical calculations, but rather appears as a result of a deep analysis
of unfoldings of billiard trajectories in funnels. We present reasons why the simplicity
of the constructed body gives hope for future applications in aerodynamics, optics, and
scattering theory. Even now this example represents an important object for study in
mathematical disciplines like geometric optics, classical scattering theory, wave scattering
theory, and inverse problems in general.

We should also note that the existence of a body of zero total cross section and

invisible in one direction states many open questions:
1. Do there exist bodies invisible from a certain point?

2. Do there exist bodies invisible in more than one direction? The same question

concerns bodies of zero resistance/leaving no trace.
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Conclusion

Note that bodies having zero resistance in a set of directions of positive Lebesgue

measure do not exist. The proof will be published elsewhere.

. For which domains 2 (others than a ring) is Theorem 3.4.3 true?

. The resistance of any convex body is nonzero. However, by taking a small portion of

volume out of a convex body, one can get a body of zero resistance. Namely, there
exists a sequence of zero resistance bodies B,, such that their relative volumes x(B5,,)
go to 1, lim, .o x(B,) = 1. The maximal number of reflections for these bodies
goes to infinity, lim, .. m(B,,vy) = 0o. The question is: estimate the maximal
relative volume of a zero resistance body B, given that the maximal number of
reflections does not exceed a fixed value m > 2. In other words, estimate x,, :=
sup{x(B) : Ry,,(B) =0, m(B,vy) < m}. It is already known that &, > 14/27 and

lim,,, oo Km = 1.
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