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optimização de forma,  problemas de resistência mínima, teoria de dispersão 
clássica,  aerodinâmica Newtoniana, corpos invisíveis em uma direção. 

resumo  
 
 

Nesta tese estamos preocupados com o problema da resistência mínima 
primeiro dirigida por I. Newton em seu Principia (1687): encontrar o corpo de 
resistência mínima que se desloca através de um médio. As partículas do 
médio não interagem entre si, bem como a interação das partículas com o 
corpo é perfeitamente elástica. Diferentes abordagens desse modelo foram 
feitas por vários matemáticos nos últimos 20 anos. Aqui damos uma visão 
geral sobre estes resultados que representa interesse  independente, uma vez 
que os autores diferentes usam notações diferentes. Apresentamos uma 
solução do problema de minimização na classe de corpos de revolução 
geralmente não convexos e simplesmente conexos. Acontece que nessa 
classe existem corpos com resistência menor do que o mínimo da resistência 
na classe de corpos convexos de revolução. Encontramos o infimum da 
resistência nesta classe e construimos uma sequência regular de corpos que 
aproxima este infimum. Também apresentamos um corpo de resistência nula. 
Até agora ninguém sabia se tais corpos existem ou não, evidentemente o 
nosso corpo não pertence a nenhuma classe anteriormente analisado. Este 
corpo é não convexo e não simplesmente conexo; a forma topológica dele é 
um toro, parece um UFO extraterrestre. Apresentamos aqui várias famílias de 
tais corpos e estudamos as suas propriedades. Também apresentamos um 
corpo que é natural de chamar um corpo "invisíveis em uma direção", uma vez 
que a trajectória de cada partícula com a certa direcção coincide com a linha 
recta fora do invólucro convexo do corpo. 

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords  
 

Shape optimization, problems of minimal resistance, classical scattering, 
Newtonian aerodynamics, bodies invisible in one direction. 

abstract  
 

In this thesis we are concerned with the problem of minimal resistance first 
addressed by I. Newton in his Principia (1687): find the body of minimal 
resistance moving through a medium. The medium particles do not mutually 
interact, and the interaction of particles with the body is perfectly elastic. 
Different approaches to that model have been tried by several mathematicians 
during the last 20 years. Here we give an overview of these results that 
represents interest in itself since all authors use different notations. We present 
a solution of the minimization problem in the class of generally non convex, 
simply connected bodies of revolution. It happens that in this class there are 
bodies with smaller resistance than the minimum in the class of convex bodies 
of revolution. We find the infimum of the resistance in this class, and 
construct a sequence of bodies which approximates this infimum.  Also we 
present a body of zero resistance. Since earlier it was unknown if such bodies 
exists or not, evidently our body does not belong to any class previously 
examined. The zero resistance body found by us is non-convex and non-simply 
connected; topologically it is a torus, and it looks like an extraterrestrial UFO. 
We present here several families of such bodies and study their properties. We 
also present a body which is natural to call a body "invisible in one direction", 
since the trajectory of each particle with the given direction, outside the convex 
hull of the body, coincides with a straight line.  
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Chapter 1

Notation and introductory results

1.1 Historical overview

In 1687, I. Newton in his Principia [1] considered a problem of minimal resistance

for a body moving in a homogeneous rarefied medium. In slightly modified terms, the

problem can be expressed as follows.

A convex body is placed in a parallel flow of point particles. The density of the flow

is constant, and velocities of all particles are identical. Each particle incident on the body

makes an elastic reflection from its boundary and then moves freely again. The flow is

very rare, so that the particles do not interact with each other. Each incident particle

transmits some momentum to the body; thus, there is created a force of pressure on the

body; it is called aerodynamic resistance force, or just resistance.

In this chapter we give a review on results concerning this topic. During the last 20

years there have been a quite high scientific activity on this problem [1]-[27] which in-

volved several research groups who used different notations; this chapter plays the role of

introduction to recent results in this theory. In the chapter 2 we present a solution of the

resistance minimization problem in the class of generally non-convex simply-connected

bodies of revolution. Using some tricks in the spirit of [19] the problem is reduced to a

variational 1D problem in the class of convex curves which is studied using Pontryagin

1



2 1. Notation and introductory results

Figure 1.1: The Newton solution for h = 2.

variational principe. Chapter 3 is devoted to our discovery of a zero resistance body. We

construct a one-dimensional family of such bodies and present the proof of the zero resis-

tance property. We also present a modification of the construction which leads to a class

of bodies which we call bodies invisible in one direction. They have the following property:

the trajectory of each particle of the flow outside a prescribed bounded set coincides with

a straight line. Indeed, such a body with mirror surface becomes invisible to an observer

staying in the certain direction far enough from the body. The new results presented in

chapters 2 and 3 are mainly based on the author’s published papers [25],[26],[27].

Newton described (without proof) the body of minimal resistance in the class of con-

vex and axially symmetric bodies of fixed length and maximal width, where the symmetry

axis is parallel to the flow velocity. That is, any body from the class is inscribed in a right

circular cylinder with fixed height and radius. A rigorous proof of the fact that the body

described by Newton is indeed the minimizer was given two centuries later [2]. From now

on, we suppose that the radius of the cylinder equals 1 and the height equals h, with h

being a fixed positive number. The cylinder axis is vertical, and the flow falls vertically

downwards. The body of least resistance for h = 2 is shown on fig. 1.1.

Time to time that problem attracted attention of scientists. Only in the 20th century

engineers understood that this problem is adequate for aircrafts in the rarefied gas [22],

for example, in the stratosphere or in space on low Earth orbits (from 100km to 1000km
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height). Since the early 1990s, there have been obtained new interesting results related

to the problem of minimal resistance in various classes of admissible bodies [5]-[19]. In

this chapter we will describe of all old and recent results.

1.1.1 Rigorous description of the model

Consider a compact connected set B ⊂ R3 and choose an orthogonal reference system

Oxyz in such a way that the axis Oz is parallel to the flow direction; that is, the particles

move vertically downwards with the velocity (0, 0,−1). Suppose that a flow particle (or,

equivalently, a billiard particle in R3 \ B) which initially moves according to x(t) = x,

y(t) = y, z(t) = −t, falls on the body, makes a finite number of reflections at regular

points of the boundary ∂B and moves freely afterwards. Denote by vB(x, y) the final

velocity. If there are no reflections, put vB(x, y) = (0, 0,−1).

Thus, one gets the function vB = (vx
B, vy

B, vz
B) taking values in S2 and defined on a

subset of R2. We impose the following condition.

Regularity condition. vB is defined on a full measure subset of R2.

All convex sets B satisfy this condition; examples of non-convex sets violating it are

given on figure 1.2. Both sets are of the form B = G × [0, 1] ⊂ R2
x,z × R1

y, with G being

shown on the figure. On fig. 1.2a, a part of the boundary is an arc of parabola with the

focus F and with the vertical axis. Incident particles, after making a reflection from the

arc, get into the singular point F of the boundary. On fig. 1.2b, one part of the boundary

belongs to an ellipse with foci F1 and F2, and another part, AB, belongs to a parabola

with the focus F1 and with the vertical axis. After reflecting from AB, particles of the

flow get trapped in the ellipse, making infinite number of reflections and approaching the

line F1F2 as time goes to +∞. In both cases, vB is not defined on the corresponding

positive-measure subsets of R2.

DEFINITION 1.1.1. We denote by B the class of compact connected sets with piecewise

smooth boundary satisfying the regularity condition.
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Figure 1.2: (a) After reflecting from the arc of parabola, the particles get into the singular

point F . (b) After reflecting from the arc of parabola AB, the particles get trapped in

the ellipse.

Each particle interacting with the body B transmits to it the momentum equal to

the particle mass times ((0, 0,−1) − vB(x, y)). Summing up over all momenta transmitted

per unit time, one obtains that the resistance of B equals −ρ R(B), where

R(B) =

∫∫

R2

(vx
B, vy

B, 1 + vz
B) dx dy,

and ρ is the flow density. One is usually interested in minimizing the third component of

R(B),1

Rz(B) =

∫∫

R2

(1 + vz
B(x, y)) dx dy. (1.1.1)

If B is convex then the upper part of the boundary ∂B is the graph of a concave

function w(x, y). Besides, there is at most one reflection from the boundary, and the

velocity of the reflected particle equals vB(x, y) = (1+ |∇w|2)−1(−2wx, −2wy, 1−|∇w|2).
Therefore, the formula (1.1.1) takes the form

Rz(w) =

∫∫

Ω

2

1 + |∇w(x, y)|2 dx dy, (1.1.2)

where Ω is the domain of w. Note that the same construction holds for the 2dimensional

problem, therefore we keep the same notation B, R(B), Rz(B) for this case.

1Note that in the axisymmetric cases (i), (iv), and (v), the first and second components of R(B) are

zeros, due to radial symmetry of the functions v
x
B and v

y
B : Rx(B) = 0 = Ry(B).
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Further, if B is a convex axially symmetric body then (in a suitable reference system)

the function w is radial: w(x, y) = f(
√

x2 + y2), therefore one has

Rz(f) = 2π

∫
2r

1 + f ′2(r)
dr, (1.1.3)

the integral being taken over the domain of f .

1.2 A new sight

1.2.1 Existence and uniqueness problems

So, in today’s language Newton considered the problem of minimization of the func-

tional (1.1.2), where w : Ω → R+
0 is a radial concave function and Ω is a plane disc. It

is supposed that the function w describes the upper boundary of a 3D rotational body

which has Ω as a base. We have to note that Newton in [1] did not state explicitly the

convexity condition for w.

Legendre was the first after Newton who gave a look on the functional (1.1.3) and

noted that it does not make physical sense for some obstacles. For example, if f is a

zig-zag function with large values of derivative then (1.1.3) tends to zero, and of course

this fact has nothing in common with resistance minimization. So he discussed other

classes of admissible obstacles, in particular he proposed and described the problem for

obstacles of revolution with prescribed length of the profile [3]. Recently M.Belloni and

B.Kawohl [4] noted that actually Legendre solved another problem, namely the problem

in the class of bodies with prescribed arclength

L =

∫ 1

0

√
1 + f2

r (r)χ{fr 6=0}dr

In both cases Buttazzo and Kawohl showed that the solution exists, and described trape-

zoidal form of the solution.

In 1993 G.Buttazzo and B.Kawohl [5, 1993] examined a nonsymmetric case with the

rotational symmetry condition removed. They stated the following theorem.
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Theorem 1.2.1. G.Buttazzo and B.Kawohl. Let Ω be a bounded open convex subset

of R2 and let height h > 0 be given. Then the minimization problem of Rz(·) for w in the

class

Ch = {w : Ω → [0, h], w is concave}

admits at least one solution, and every solution w has the property that |∇w| 6∈ (0, 1).

The full proof was published in [6, 1995]. In [5, 1993] Buttazzo and Kawohl stated

the following open problems:

BK.1 Is it true that the solution is zero on ∂Ω?

BK.2 If the solution unique?

BK.3 Is there a flat region, that is, an open set Ω0 ⊂ Ω such that u = h on Ω0?

BK.4 Is the solution Lipschitz continuous up to the boundary ∂Ω?

BK.5 Suppose that Ω is a symmetric set. Should the solution also be symmetric?

In [6, section 5, 1995] authors also considered the so-called "physical case". They

introduced the class of bodies Sh:

Sh = {0 ≤ w ≤ h, almost every particle hits the body at most once }. (1.2.1)

They characterized this set by the condition

∀x ∈ dom(∇w),∀τ > 0, such that x − τ∇w(x) ∈ Ω,

w(x − τ∇w(x)) − w(x)

τ
≤ 1

2

(
1 − |∇w(x)|2

)
.

They showed that it imply

|∇w(x)| ≤ h +
√

h2 + dist2(x, ∂Ω)

dist(x, ∂Ω)
, ∀x ∈ Ω, (1.2.2)

for all x where w is differentiable. Therefore they proved

Lemma 1.2.2. For any h ≥ 0 the set Sh is bounded in W 1,∞
loc (Ω)

More open problems by G. Buttazzo, V. Ferone, B. Kawohl [6]

BFK.1 They noted that it is out of their possibilities to prove the existence of the minimal
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resistance problem in the class Sh.

BFK.2 Uniqueness of minimizers in the class of general convex domains.

BFK.3 They also noted the all standard methods to prove that "symmetry properties of

Ω imply symmetry properties of minimizers" fail.

In [7, 1996] the authors answer questions BK.2 and BK.4; Namely, they considered

the class of functions

CWh = {w ∈ W 1,∞
loc |0 ≤ w(x) ≤ h in Ω, w concave }

and proved

Theorem 1.2.3. Let u be Newton’s radial solution. Then u does not minimize (1.1.2) in

CWh

So we see that the functions that minimize (1.1.2) in the class CWh are not radial and

therefore are not unique. (Any function obtained from a solution by rotating Ω around

the center is also a solution.) "The proof consisted of remarking that the second derivative

of the Newton functional calculated at Newton’s function has a negative direction. The

result naturally opened the hunt on the true form of the minimizer."2.

The fact that optimal profiles with circular cross section do not need to be radially

symmetric can be also proved by exhibiting nonsymmetric profiles which are more perfor-

mant than the optimal radial one. This was first discovered by Guasoni in [8], who con-

sidered a body of the form obtained as the convex envelope of the set (Ω×{0})∪(S×{h})
where S is a segment (see fig. 1.3).

In [9] there was considered the class of obstacles where the maximal cross section Ω

is not fixed. Namely, three classes of obstacles CK,Q, CV,Q and SA,K,Q were considered,

CK,Q = {E convex subset of R3 : K ⊂ E ⊂ Q}

CV,Q = {E convex subset of R3 : E ⊂ Q, |E| ≥ V }

SA,K,Q = {E convex close subset of R3 : K ⊂ E ⊂ Q, σ(E) ≥ A},
2Cited by [10]
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Figure 1.3: A nonradial profile better than the optimal radial one.

where K and Q are two compact subsets of R3 and V is a positive number, σ(E) is a

cross section, i.e. area of the projection of E onto a given plane. The authors proved

[9, Th. 1] that the resistance minimization problem in classes CK,Q or CV,Q admits at

least one solution. Moreover, they noted that the same result is true for classes C̃V,Q and

S̃A,K,Q which differ from the original classes by substituting equalities |E| ≥ V, σ(E) ≥ A

for inequalities.

1.2.2 Properties of the solution

H.Berestycki [7],[10, 2001] noted that if u is in the class C2 on some open subset

Ω′ ⊂ Ω and satisfies d2u < 0 on Ω′, then u is not a minimizer of (1.1.2). Also he stated

a conjecture that minimizers could be "affine by parts". In [10, 2001] the authors proved

that whenever the Gaussian curvature on the surface of a minimizer u is finite, it is zero.

In [11, 2001] the same authors strengthened this result. Recall that "function f is

strictly convex in U" means

∀x, y ∈ U, ∀t ∈ (0, 1), x 6= y ⇒ f(tx + (1 − t)y) < tf(x) + (1 − t)f(y).

Theorem 1.2.4. [11, 2001] Let w be a minimizer of the problem (1.1.2) and let Ω1 be

an open subset of Ω. Then w is not strictly convex on Ω1.



1.3 Case of single impact assumption 9

Figure 1.4: Several optimal shapes in Cd(h) for different values of h.

In [10, 2001] the problem (1.1.2) was considered in a class smaller than Ch. This

reduction was motivated by the above mentioned result stating that the minimizer can

not be strictly convex. Slightly changing the notation used in n [10, 2001] the definition

of the class is as follows.

Let Ω be a disc. Consider the class Cd = Cd(h) which contains all functions w ∈ Ch

such that their graph is the convex envelope in R3 of the set Ω×{0} and the set N0×{h},
where

N0 = {x ∈ Ω : w(x) = h}.

Theorem 1.2.5. [10, 2001] Let h > 0 be given. If w is the minimizer in the class Cd

then the set N0 is a regular polygon centered in the center of Ω. Moreover, the number of

sides of the polygon is a non-increasing function of the height h.

1.3 Case of single impact assumption

1.3.1 Generally non symmetrical bodies

The authors of [13] examined the case of single impact assumption (1.2.2). Using

the result of [6] that every function satisfying (1.2.2) must be locally Lipschitz, they

considered the topology of W 1,∞
loc (Ω) ∩ C0(Ω), where Ω is a strictly convex domain. As

already explained in [12], the physical meaning of the problem requires more regularity

for the gradient than usually found for functions of W 1,∞
loc (Ω), so they had to define a

smaller vector space to work with. They considered

P (Ω) = {w ∈ C0(Ω) : w polyhedral}
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where "polyhedral" means that w is a result of a finite sequence of minimum or maximum

operations on affine functions. The vector space of interest is

W (Ω) := P (Ω),

where the closure operation is with respect to the topology of W 1,∞
loc (Ω) ∩ C0(Ω). It is

easy to check that

C1(Ω) ∩ C0(Ω) ( W (Ω) ( W 1,∞
loc (Ω) ∩ C0(Ω)

Discussing radial case below we will show in example below that W (Ω) 6= W 1,∞
loc (Ω) ∩

C0(Ω).

The set of admissible functions is

Sh = {w ∈ W (Ω) : 0 ≤ w ≤ h, w satisfies (1.2.1)}

In fact, if x ∈ Ω is such that w is not differentiable at x but its hypograph has a vertical

tangent plane at (x, w(x)), we shall say that x is a regular point of w. We extend the

notation of dom(∇w) for points of the boundary as follows:

dom(∇w) = {x ∈ Ω : w is differentiable at x} ∪ {x ∈ ∂Ω : x is a regular point for w}

Definition. A function w ∈ Sh is said to be "regular on the boundary" if

∃Γw ⊂ ∂Ω, nonempty and open in ∂Ω, Γw ⊂ dom(∇w).

The authors proved the following theorem:

Theorem 1.3.1. [13] 1. Let w ∈ Sh be regular on the boundary (in the sense of definition

above). Then w is not a minimizer of (1.1.2) in the class Sh.

1.3.2 Analogue of Newton’s problem for bodies with radial sym-

metry

Introduce the notations:

Wr = {u ∈ W 1,∞
loc (0, 1) ∩ C0([0, 1]) such that w = u

(√
x2

1 + x2
2

)
∈ W (Ω)}
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and Ω is the unit disc of R2.

It is not obvious that Wr is actually smaller than W 1,∞
loc (0, 1)∩C0([0, 1]). In order to

show this, let us give an example of a function which does not belong to Wr.

Lemma 1.3.2. [13, Lemma 3.1] the set Wr is equal to the set

{u ∈ W 1,∞
loc (0, 1) ∩ C0([0, 1]) : u′ has a right-limit and left-limit everywhere in (0, 1)}

Consider a value t0 ∈ (0, 1), and φ(t) = φ0(t− t0) where φ0(x) := x2 sin(1/x). Clearly

φ ∈ W 1,∞(0, 1), since φ′
0 is bounded near 0. On the other hand, φ′

0 does not have a right

or left limit at 0; hence φ 6∈ Wr. Note that φ′ cannot be approximated in W 1,∞-topology

by step functions (through it is obviously possible in W 1,p-topology, p < ∞);

Theorem 1.3.3. [12],[13] there exists a minimum w = u
(√

x2
1 + x2

2

)
of the minimization

problem of (1.1.3) in class of

{u ∈ Wr(Ω) : 0 ≤ u ≤ h, w = u

(√
x2

1 + x2
2

)
satisfies (1.2.1)}

Moreover, there exists a critical value h∗ such that for h ≥ h∗ the minimizer is unique.

And for h < h∗ the set of minimizers is not compact in W 1,p(0, 1) ∩ Wr,∀p > 0.

As we can see, the minimum is attained in the radial class, but is not attained in

the general class of non-radial functions. "This comes from the presence of a boundary,

which induces special effects, and, in particular, allows oscillations near it"3...This leads

us to the idea that without a boundary, the problem would be more "stable", and a global

minimizer could exist with no radial symmetry assumption.

1.3.3 Bodies containing a half-space

Let us describe the result of [14]. Let Ω be a domain tiling the plane (meaning

that there exists a finitely generated subgroup GΩ ⊂ O2 such that ∪g∈GΩ
g(Ω) = R2, and

g1(Ω) ∩ g2(Ω) = ∅, if g1 6= g2); let w : R2 → R be a function with the same periodicity

3Cited by [14].
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(w ◦ g = w for all g ∈ GΩ); and let w be the restriction of w to Ω. The authors looked for

the body {(x, z) ∈ R3; z ≤ w(x)} minimizing the mean value of (1.1.2), that is

F (w; Ω) =
1

|Ω|

∫

Ω

dx

1 + |∇w(x)|2 (1.3.1)

with respect to all domains Ω tiling the plane and to all functions w ∈ W (Ω) : Ω → [0, h]

having periodicity Ω.

Note that Ω is not well defined in general if only w is given. In order to fix the

notations, we choose Ω such that w(x) = 0 for all x ∈ ∂Ω and w > 0 in Ω.

Theorem 1.3.4. [14, Th. 1] Among all regular functions and regular domains tiling the

plane, the minimum of F is attained in only two cases, up to a similitude (with the same

minimal value):

1. Ω is a square, Ω = (−a, a)2 with a ≤ 4h/3, and w is the function

w(x1, x2) = max[φa(|x1|), φa(|x2|)], where φa(x) =
(x + a)2

4a
− a.

2. Ω is a regular convex hexagon with diameter 4a/
√

3, with center O = (0, 0) and two

vertices A = (a, a/
√

3), B = (a,−a/
√

3); then w is the function invariant by rotation of

π/3 whose restriction to the triangle OAB is φa(|x1|).
In both cases, the optimal value for F is given by

Fopt = π + 12 ln 2 − 4 ln 5 − 4 arctan 2 ≃ 0.59330123. (1.3.2)

The authors noted that resistance of the infinite tiling is less that 60 percents of the

resistance of the plane (which has maximal values).

1.4 Arbitrary number of collisions

1.4.1 Generally non convex bodies and generally non symmetric

bodies

By removing both assumptions of symmetry and convexity, one gets the (even wider)

class of bodies inscribed in a given cylinder. A.Plakhov was the first [18] who considered
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the problem of minimization of (1.1.1) without imposing the single impact assumption.

He proved the following theorem.

Denote by Oε(B̂) the open ε-neighborhood of B̂.

Theorem 1.4.1. [18, A.Plakhov, ] For any connected bounded set B̂ ⊂ R3 and any ε > 0

there exists a connected set B such that the following is true.

1. B̂ ⊂ B ⊂ Oε(B̂).

2. vB(x, y) is defined and measurable on R2 and |R(B)| < ε.

3. If, additionally, B̂ is open and ∂B̂ is a two-dimensional C2 manifold, then B can be

chosen to be homeomorphic to B̂, and the corresponding homeomorphism shifts the points

a distance smaller than ε.

Then Plakhov studied an analogue of the classical problem, considering generally

nonconvex bodies inscribed in the cylinder and with a prescribed circular cross section:

Denote Da = {x ∈ Rd−1 : |x| ≤ a}, d = 2, 3, then

Ga
h = {B ∈ B : Da × {0} ⊂ B ⊂ Da × [0, h]}, a, h > 0.

In particular, he considered the following problem: "Determine the smallest m such that

a set or a sequence of sets minimizing resistance could be chosen in such a way that the

number of collisions with them would not exceed m". Note that case of single impact

assumption (part 1.3) is about the case m = 1. Let

ρ(d) = inf
B∈Ga

h

|R(B)|,

then the following theorem holds

Theorem 1.4.2. [19, A.Plakhov, ]

ρ(3) = 0, ρ(2) = 2a

(
1 − h√

a2 + h2

)
;

besides for d = 2 and for d = 3, h ≥ a/2, the greatest number of collisions for the

corresponding family of sets equals 2, and this value cannot be improved, i.e., one cannot

present a minimizing set or a family of sets with the number of collisions equal or less to

1. As d = 3 and 0 < h < a/2, one has m = 3.

The author constructed corresponding sequences minimizing |R(B)|.
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1.4.2 Bodies containing a half-space

Following the basic idea that the minimal resistance can be diminished by allowing

multiple reflections, m > 1, A.Plakhov considered the problem of minimal specific re-

sistance for the case of unbounded obstacles (see part 1.3.3). Let us describe Plakhov’s

result [20]: Let n = (n1, . . . , nd) ∈ Sd−1 such that nd > 0 (d means dimension). Consider

sets B ⊂ Rd such that

{x ∈ Rd : (x, n) < 0} ⊂ B. (1.4.1)

Denote Rd
− = {x ∈ Rd : xd < 0} and Π = ∂Rd

− = {x : xd = 0}. Denote by Bn the set of

bodies B ⊂ Rd such that

1. B satisfies (1.4.1);

2. the vector function vB(x) is defined and Borel measurable on Π minus possibly a set

of zero (d − 1)-dimensional measure.

The total resistance corresponding to a Borel set A ⊂ Π can be defined by

R(B,A) =

∫

A

(
v1

B, v2
B, . . . , vd−1

B , 1 + vd
B

)
dx, B ∈ Bn.

Note that scattering direction v(x) should always be out of Π, that is why we have

nd|A| ≤ |R(B, A)| ≤ 2|A|, ∀ Borel A ⊂ Π, B ∈ Bn.

Evidently the upper bound is exact, to see it it suffices to consider the surface which is

almost everywhere perpendicular to n. The following theorem shows that the lower bound

is also exact.

Theorem 1.4.3. [20] There exists a sequence of sets Bk ∈ Bn such that

lim
k→∞

|R(B,A)| = nd|A|,

for any Borel set A ⊂ Π with |A| < ∞.

Let us compare this result with the result of (1.3.3). If n = (0, 0, 1) then for

infB∈Bn
|R(B,A)|

|R(Rd
−, A)| = 0.5,

and in the case of single impact assumption the corresponding coefficient equals 0.593

(see (1.3.2)).
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1.4.3 Case of symmetric but generally non convex bodies

By 2007 there have been studied the following cases:

(i) convex & axisymmetric (the classical Newton problem);

(ii) convex but generally non-symmetric (studied in [5]-[9]);

(iii) generally nonconvex and non-symmetric (studied in [18],[19]).

It was natural to consider the 4th logically possible case:

(iv) axisymmetric but generally nonconvex bodies.

This problem was investigated in [25],[26], and the results are presented in the chapter 2.

We should note that the authors impose another condition which was not mentioned in

the title, since it did not seem to be significant. Actually, authors of [25],[26] considered

simply connected surfaces only.

We should also notice that in the paper [12] there was considered the intermediate

class of

(v) axially symmetric nonconvex bodies, under the additional so-called

"single impact assumption".

On the contrary, multiple reflections are allowed in our setting; we only assume that the

body’s boundary is piecewise smooth and satisfies the regularity condition stated above

in 1.1.1.

Let Gh be the class of compact connected sets G ⊂ R2 with piecewise smooth boundary

that are inscribed in the rectangle −1 ≤ x ≤ 1, 0 ≤ z ≤ h. That is, belong to the

rectangle and have nonempty intersection with each of its sides. Moreover it is symmetric

with respect to the axis Oz, and satisfy the regularity condition. Denote by Gconv
h the

class of convex sets from Gh. One can easily see that if G ∈ Gh then conv G ∈ Gconv
h .

For G ⊂ Gconv
h define the modified law of reflection as follows. A particle initially moves

vertically downwards according to x(t) = x, z(t) = −t and then reflects at a regular

point of the boundary ∂G; at this point the velocity instantaneously changes to v̂G(x) =

(v̂x
G(x), v̂z

G(x)), where v̂G(x) is the unit vector tangent to ∂G such that v̂z
G(x) ≤ 0 and

x · v̂x
G(x) ≥ 0 (see fig. 1.5).
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Figure 1.5: Modified reflection law.

The set G ∈ Gconv
h is bounded above by the graph of a concave even function z =

fG(x). For x > 0, one has

v̂G(x) =
(1, f ′

G(x))√
1 + f ′2

G (x)
. (1.4.2)

The resistance of G under the modified reflection law equals (0,−R̂(G)), where

R̂(G) =

∫ 1

0

(1 + v̂z
G(x)) x dx . (1.4.3)

Taking into account (2.2.1), one gets

R̂(G) =

∫ 1

0

(
1 +

f ′
G(x)√

1 + f ′2
G (x)

)
x dx; (1.4.4)

the function fG is concave, nonnegative, and monotone non-increasing, with fG(0) = h.

The following theorem allows to restrict the problem of minimization of resistance R

in the class of bodies of revolution to the problem of minimization of R̂ in the class of

convex bodies of revolution.

Theorem 1. infG∈Gh
R(G) = infG∈Gconv

h
R̂(G).

This theorem immediately follows from the next two lemmas, proved in the chapter

2.

Lemma 1.4.4. Let G ∈ Gh. Note that convex hull conv G belongs to Gconv
h . It holds

R̂(conv G) ≤ R(G).

Lemma 1.4.5. Let G ∈ Gconv
h . There exists a sequence of nonconvex sets Gn ∈ Gh such

that limn→∞ R(Gn) = R̂(G).
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The search for the minimum of R̂ is restricted now to minimization of
∫ 1

0
(1− f ′(x)√

1+f ′2(x)
) x dx

in the class of convex and nondecreasing functions f defined on [0, 1], satisfying relations

f(0) = 0, f(1) ≤ h. This minimization is done using Pontryagin’s minimum principle; as

a result we obtain the following theorem.

Theorem 2.

inf
G∈Gconv

h

R̂(G) =
1

2
− 1

16

(
8 − 2Z2/3 − 3Z4/3

) √
1 − Z2/3 +

3Z2

16
ln

(
1 +

√
1 − Z2/3

Z1/3

)
,

(1.4.5)

where Z = Z(h) is a unique solution of the equation:

h =

∫ 1

z

√(x

z

)2/3

− 1 dx = −3

8

(
(z1/3 − 2z−1/3)

√
1 − z2/3 − ln

(
1 +

√
1 − z2/3

z1/3

))
.

(1.4.6)

Set Ĝh ∈ Gconv
h , and is the minimizer of the functional R̂, is given by





0 ≤ z ≤ h, if |x| ≤ Z

0 ≤ z ≤ h −
∫ x

Z

√(
t
Z

)2/3 − 1 dt, if Z < |x| ≤ 1.
(1.4.7)

Denote by R(h) := infG∈Gh
R(G) and RN(h) := infG∈Gconv

h
R(G) the minimal values for

our problem and for Newton’s one, respectively. The following expressions: R(0+) =

1
2
RN(0+) = 1/2; R(h) = 1

4
RN(h)(1 + o(1)) = 27

128
1+o(1)

h2 as h → +∞.

1.4.4 Bodies of zero resistance and bodies invisible in one direc-

tion

The class Gh defined in the previous section 1.4.3 consists of compact connected sets

G ⊂ R2 with piecewise smooth boundary that are inscribed in the rectangle −1 ≤ x ≤ 1,

0 ≤ z ≤ h. It was additionally supposed that each body G ∈ Gh is symmetric with respect

to the axis Oz and satisfies the regularity condition.

Let us now remove the condition that the set G should be connected. It was very

surprising for us to learn that in the resulting wider class there exist bodies having exactly

zero resistance! The 3D bodies obtained by rotating such sets about Oz, in turn, have zero
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increases. This is not the case for the bodies of zero resistance constructed by us in

chapter 3: slight changing of the direction of incidence would imply only slight change of

the resistance. More precisely, the following theorem holds.

Theorem 1.4.6. Let B be a body having zero resistance in the direction v0 ∈ S2 presented

in section 3.4. Then there exist positive constants C1, C2 and δ > 0 such that

C1|v − v0| ≤ Rv(B) ≤ C2|v − v0|, if |v − v0| ≤ δ.

In the end of that chapter we discuss possible applications of bodies of zero resistance.

1.5 Averaged resistance over all directions

In subsection 1.1.1 we described resistance R(B) supposing that the incident flow

has velocity (0, 0,−1) ∈ S2. Evidently one can define it for any arbitrary velocity vector

v ∈ S2. Corresponding function we will call R(B, v), v ∈ S2.

A.Plakhov introduced the averaged resistance

R̃(B) =

∫

Sd−1

R(B, v)dµ(v), (1.5.1)

where µ(v) is the Lebesgue measure on the unit sphere Sd−1. He considered the problem

of minimization R̃ in two class of bodies:

Pg = {B : vol(B) = 1}

Pc = {B convex : vol(B) = 1}

The following theorems were proved:

1.5.1 The convex problem

Theorem 1.5.1. The least value of R̃ in the class of bodies B ∈ Pc is attained at the unit

ball and is equal to

inf
B∈Pc

R̃(B) =
cd|Sd−1|
B

d−1

d

, cd =

∫

Sd−1

|v1|3dµ(v),

where v1 is the first coordinate of the vector v.
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Remark 1 In particular, as d = 2, one has c2 = 8/3, |B2| = π, |S1| = 2π, and

therefore

inf
B∈Pc

R̃(B) =
16

3

√
π.

1.5.2 The non-convex problem for d = 2

Let B ⊂ R2 be a bounded set with piecewise smooth boundary of class C2. A billiard

motion (x(t), v(t)) in R2\B is called regular and asymptotically free (r.a.f.), if it is defined

for all t ∈ R and has a finite number (maybe none) of reflections at regular points of ∂B.

Obviously, any pair (x, v) ∈ R2 × S1 uniquely determines a billiard motion (x(t), v(t)) by

the condition x(t) = x + vt for t sufficiently small. Denote C = {(x, v) ∈ R2 × S1 : the

corresponding billiard motion is not r.a.f.}.
Statement[21, Part 3.]. C is a set of measure zero.

Let (x(t), v(t)) be a r.a.f. billiard motion, with limt→−∞ v(t) = v, limt→−∞(x(t) −
vt) = x; denote limt→∞ v(t) =: v+(x, v). This relation defines a function v+ on the set

(R2×S1)\C. It is easy to see that (R2×S1)\C is open, and the function v+ is continuous,

bounded, and coincides with v for |x|2 − (x, v)2 sufficiently large. Hence for almost all

values of v there exists the integral

R(B, v) =

∫

0<(x,v)<1

(v − v+(x, v))dx,

which is a measurable function of v, therefore there also exists the integral R̃(B) (see

(1.5.1)).

The author provided that if the direction of the flow is unknown, then the average

resistance of minimizer in the class Pg is close to the resistance of the circle.

Theorem 1.5.2. [21, Th. 2]

0.9878 ≤ infB∈Pg
R̃(B)

infB∈Pc
R̃(B)

≤ 1

Here we stop our review and go on to the detailed exposition of our own results. Notice

that several articles [24],[16] concerning extensions of the Newton’s functional remain out

of scope of our review.



Chapter 2

Generally non-convex bodies of

revolution of minimal resistance

2.1 Description of the class of bodies

Let B be a compact connected set inscribed in the cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ h

and possessing rotational symmetry with respect to the axis Oz. This set is uniquely

defined by its vertical central cross section G = {(x, z) : (x, 0, z) ∈ B}. It is convenient

to reformulate the problem in terms of the set G.

Consider the billiard in R2 \ G and suppose that a billiard particle initially moves

according to x(t) = x, z(t) = −t, then makes a finite number of reflections (maybe none)

at regular points of ∂G, and finally moves freely with the velocity vG(x) = (vx
G(x), vz

G(x)).

The regularity condition now means that the so determined function vG is defined for

almost every x. One can see that νx
B(x, y) = (x/

√
x2 + y2)vx

G(
√

x2 + y2), νy
B(x, y) =

(y/
√

x2 + y2)vx
G(

√
x2 + y2), and νz

B(x, y) = vz
G(

√
x2 + y2). It follows that Rx(B) = 0 =

Ry(B) and Rz(B) = 2π
∫ 1

0
(1 + vz

G(x)) x dx. Thus, our minimization problem takes the

form

inf
G∈Gh

R(G), where R(G) =

∫ 1

0

(1 + vz
G(x)) x dx (2.1.1)

and Gh is the class of compact connected sets G ⊂ R2 with piecewise smooth boundary

21
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Figure 2.1: A set G ∈ Gh.

that are inscribed in the rectangle −1 ≤ x ≤ 1, 0 ≤ z ≤ h,1 are symmetric with respect

to the axis Oz, and satisfy the regularity condition (see fig. 2.1).

The main results are stated in section 2: the minimization problem is solved and the

solution is compared with the Newton solution (case (i)) and the single-impact solution

(case (v)). Details of all proofs are put in section 3.

2.2 Statement of the results

Denote by Gconv
h the class of convex sets from Gh. One can easily see that if G ∈ Gh

then conv G ∈ Gconv
h . For G ⊂ Gconv

h define the modified law of reflection as follows.

A particle initially moves vertically downwards according to x(t) = x, z(t) = −t and

reflects at a regular point of the boundary ∂G; at this point the velocity instantaneously

changes to v̂G(x) = (v̂x
G(x), v̂z

G(x)), where v̂G(x) is the unit vector tangent to ∂G such

that v̂z
G(x) ≤ 0 and x · v̂x

G(x) ≥ 0 (see fig. 2.2).

The set G ∈ Gconv
h is bounded above by the graph of a concave even function z =

fG(x). For x > 0, one has

v̂G(x) =
(1, f ′

G(x))√
1 + f ′2

G (x)
. (2.2.1)

1That is, belong to the rectangle and have nonempty intersection with each of its sides.
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Figure 2.2: Modified reflection law.

The resistance of G under the modified reflection law equals (0,−R̂(G)), where

R̂(G) =

∫ 1

0

(1 + v̂z
G(x)) x dx . (2.2.2)

Taking into account (2.2.1), one gets

R̂(G) =

∫ 1

0

(
1 +

f ′
G(x)√

1 + f ′2
G (x)

)
x dx; (2.2.3)

the function fG is concave, nonnegative, and monotone non-increasing, with f(0) = h.

Theorem 2.2.1.

inf
G∈Gh

R(G) = inf
G∈Gconv

h

R̂(G). (2.2.4)

This theorem follows from the following lemmas 2.2.2 and 2.2.3 which will be proved

in the next section.

Lemma 2.2.2. For any G ∈ Gh one has

R(G) ≥ R̂(convG).

Lemma 2.2.3. Let G ∈ Gconv
h . Then there exists a sequence of sets Gn ∈ Gh such that

lim
n→∞

R(Gn) = R̂(G).

Indeed, lemma 2.2.2 implies that infG∈Gh
R(G) ≥ infG∈Gconv

h
R̂(G), and lemma 2.2.3

implies that infG∈Gh
R(G) ≤ infG∈Gconv

h
R̂(G).
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Theorem 2.2.1 allows one to state the minimization problem (2.1.1) in an explicit

form. Namely, taking into account (2.2.3) and putting f = h− fG, one rewrites the right

hand side of (2.2.4) as

inf
f∈Fh

∫ 1

0

(
1 − f ′(x)√

1 + f ′2(x)

)
x dx, (2.2.5)

where Fh is the set of convex monotone non-decreasing functions f : [0, 1] → [0, h] such

that f(0) = 0. The solution of (2.2.5) is provided by the following general theorem.

Consider a positive piecewise continuous function p = p(u) defined on R+ := [0, +∞)

and converging to zero as u → +∞, and consider the problem

inf
f∈Fh

R[f ], where R[f ] =

∫ 1

0

p(f ′(x)) x dx. (2.2.6)

Denote by p̄(u), u ∈ R+ the greatest convex function that does not exceed p(u). Put

ξ0 = −1/p̄′(0) and u0 = inf{u > 0 : p̄(u) = p(u)}. One always has ξ0 ≥ 0; if u0 = 0

and there exists p′(0) then ξ0 = −1/p′(0), and if u0 > 0 then ξ0 = u0/(p(0) − p(u0)).

Denote by u = υ(z), z ≥ ξ0 the generalized inverse of the function z = −1/p̄′(u), that is,

υ(z) = inf{u ∈ R+ : −1/p̄′(u) ≥ z}. By Υ, denote the primitive of υ: Υ(z) =
∫ z

ξ0
υ(ξ)dξ,

z ≥ ξ0. Finally, put R(h) := inff∈Fh
R[f ].

Theorem 2.2.4. For any h > 0 the solution fh of the problem (2.2.6) exists and is

uniquely determined by

fh(x) =





0 if 0 ≤ x ≤ x0

1
Z

Υ(Zx) if x0 < x ≤ 1 ,
(2.2.7)

where Z = Z(h) is a unique solution of the equation

Υ(z) = zh (2.2.8)

and x0 = x0(h) = ξ0/Z(h). Further, one has f ′
h(x0 + 0) = u0. The function x0(h) is

continuous and x0(0) = 1. The minimal resistance equals

R(h) =
1

2

(
p̄(υ(Z)) +

υ(Z) − h

Z

)
; (2.2.9)

in particular, R(0) = p(0)/2.
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If, additionally, the function p satisfies the asymptotic relation p(u) = cu−α (1+ o(1))

as u → +∞, c > 0, α > 0 then

x0(h) = cα

(
α + 1

α + 2

)α+1

ξ0h
−α−1(1 + o(1)), h → +∞, (2.2.10)

and

R(h) =
c

2

(
α + 1

α + 2

)α+1

h−α(1 + o(1)), h → +∞. (2.2.11)

Let us apply the theorem to the three cases under consideration.

1. First consider the non-convex case. The problem (2.2.5) we are interested in is a

particular case of (2.2.6) with p(u) = pnc(u) := 1− u/
√

1 + u2 (the subscript "nc" stands

for "non-convex"). The function pnc itself, however, is convex, hence u0 = 0 and p̄nc ≡ pnc.

Further, one has −1/p̄′
nc(u) = (1 + u2)3/2, therefore υnc(z) =

√
z2/3 − 1, ξnc

0 = 1, and

Υnc(z) =
3

8
(2z2/3 − 1)z1/3

√
z2/3 − 1 − 3

8
ln(z1/3 +

√
z2/3 − 1). (2.2.12)

The formulas (2.2.12), (2.2.8), and (2.2.7) with x0 = 1/Z, determine the solution of

(2.2.5). Notice that, as opposed to the Newton case, the solution is given by the explicit

formulas. However, they contain the parameter Z to be defined implicitly from (2.2.8).

Further, according to theorem 2, f ′
h(x0 + 0) = 0 = f ′

h(x0 − 0), x0 = xnc
0 , hence the

solution fh is differentiable everywhere in (0, 1). Besides, one has

xnc
0 (h) =

27

64
h−3(1 + o(1)) as h → +∞. (2.2.13)

The minimal resistance is calculated according to (2.2.9); after some algebra one gets

Rnc(h) =
1

2
+

3 + 2Z2/3 − 8Z4/3

16Z5/3

√
Z2/3 − 1 +

3

16Z2
ln(Z1/3 +

√
Z2/3 − 1).

One also gets from theorem 2.2.4 that Rnc(0) = 0.5 and

Rnc(h) =
27

128
h−2(1 + o(1)) as h → +∞. (2.2.14)

2. The original Newton problem (case (i) in our classification) is also a particu-

lar case of (2.2.6), with p(u) = pN(u) := 2/(1 + u2). One has u0 = 1 and p̄N(u) =
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



2 − u if 0 ≤ u ≤ 1

2/(1 + u2) if u ≥ 1 ,
and after some calculation one gets that ξN

0 = 1 and the

function ΥN(z), z ≥ 1, in a parametric representation, is ΥN = 1
4
(3u4/4 + u2 − ln u −

7/4), z = (1 + u2)2/(4u), u ≥ 1. From here one obtains the well-known Newton solu-

tion: if 0 ≤ x ≤ x0 then fh(x) = 0, and if x0 < x ≤ 1 then fh is defined parametrically:

fh = x0

4
(3u4/4 + u2 − ln u − 7/4), x = x0

4
(1+u2)2

u
, where x0 = 4u∗/(1 + u2

∗)
2 and u∗ is

determined from the equation (3u4
∗/4 + u2

∗ − ln u∗ − 7/4) u∗/(1 + u2
∗)

2 = h. The function

fh is not differentiable at x0: one has f ′
h(x0 + 0) = 1 and f ′

h(x0 − 0) = 0.

One also has RN(0) = 1,

RN(h) =
27

32
h−2(1 + o(1)) as h → +∞. (2.2.15)

and

xN
0 (h) =

27

16
h−3(1 + o(1)) as h → +∞. (2.2.16)

3. The minimal problem in the single impact case with h > M∗ ≈ 0.54 can also

be reduced to (2.2.6), with p(u) = psi(u) :=





p∗ if u = 0

2/(1 + u2) if u > 0 ,
where p∗ =

8(ln(8/5) + arctan(1/2) − π/4) ≈ 1.186. This fact can be easily deduced from [12]; for

the reader’s convenience we put the details of derivation in the next section.2 From the

above formula one can calculate that u0 ≈ 1.808 and ξsi
0 ≈ 2.52.

The asymptotic formulas here take the form

xsi
0 (h) = ξsi

0 · xN
0 (h)(1 + o(1)) as h → +∞ (2.2.17)

and

Rsi(h) =
27

32
h−2(1 + o(1)) as h → +∞. (2.2.18)

Finally, using the results of [12], one can show that Rsi(0) = π/2−2 arctan(1/2) ≈ 0.6435.

This will also be made in the next section.

2We would like to stress that the results presented here about the single impact case can be found in

[12] or can be easily deduced from the main results of [12].
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Now we are in a position to compare the solutions in the three cases. One obviously

has Rnc(h) ≤ Rsi(h) ≤ RN(h). From the above formulas one sees that Rnc(0) = 0.5,

RN(0) = 1, and Rsi(0) ≈ 0.6435. Besides, one has limh→+∞(Rnc(h)/RN(h)) = 1/4

and limh→+∞(Rsi(h)/RN(h)) = 1. Thus, for "short" bodies, the minimal resistance in

the nonconvex case is two times smaller than in the Newton case, and 22% smaller, as

compared to the single impact case. For "tall" bodies, the minimal resistance in the

nonconvex case is four times smaller as compared th the Newton case, while the minimal

resistance in the Newton case and in the single impact case are (asymptotically) the same.

In the three cases of interest, the convex hull of the three-dimensional optimal body

of revolution has a flat disk of radius x0(h) at the front part of its boundary. One

always has x0(0) = 1. For "tall" bodies, one has limh→+∞(xnc
0 (h)/xN

0 (h)) = 1/4 and

limh→+∞(xsi
0 (h)/xN

0 (h)) = ξsi
0 ≈ 2.52; that is, the disk radius in the non-convex case

and in the single impact case is, respectively, 4 times smaller and 2.52 times larger, as

compared to the Newton case.

Besides, in the nonconvex case, the front part of the surface of the body’s convex hull

is smooth. On the contrary, in the Newton case, the front part of the body’s surface has

singularity at the boundary of the front disk.

2.3 Proofs of the results

Proof of lemma 2.2.2

It suffices to show that

vz
G(x) ≥ v̂z

conv G(x) for any x ∈ [0, 1]. (2.3.1)

Consider two scenarios of motion for a particle that initially moves vertically down-

wards, x(t) = x and z(t) = −t. First, the particle hits convG at a point r0 ∈ ∂(conv G)

according to the modified reflection law and then moves with the velocity v̂conv G(x). Sec-

ond, it hits G (possibly several times) according to the law of elastic reflection, and then
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Figure 2.3: Two scenarios of reflection.

moves with the velocity vG(x). Denote by n the outer unit normal to ∂(conv G) at r0; on

fig. 2.3 there are shown two possible cases: r0 ∈ ∂G and r0 6∈ ∂G.

It is easy to see that

〈vG(x), n〉 ≥ 0, (2.3.2)

where 〈· , ·〉 means the scalar product. Indeed, denote by r(t) = (x(t), z(t)) the particle

position at time t. At some instant t1 the particle intersects ∂(conv G) and then moves

outside conv G. The function 〈r(t), n〉 is linear and satisfies 〈r(t), n〉 ≥ 〈r(t1), n〉 for t ≥ t1,

therefore its derivative 〈vG(x), n〉 is positive.

Let ϕ0 = arcsin(v̂z
conv G(x)) ∈ [−π/2, 0] be the angle between v̂conv G(x) and axe OX.

Let ϕ̂ = arcsin(vz
G(x)) be the angle between vG(x) and axe OX. From (2.3.2) we have

ϕ̂ ∈ [ϕ0, ϕ0 + π]. We get now (2.3.1) from the evident statement

sin ϕ0 = min
ϕ∈[ϕ0,ϕ0+π]

sin ϕ, ϕ0 ∈ [−π/2, 0].

Proof of lemma 2.2.3

Take a family of piecewise affine even functions fε : [−1, 1] → [0, h] such that f ′
ε

uniformly converges to f ′
G as ε → 0+. Require also that the functions fε are concave and

monotone decreasing as x > 0, and fε(0) = h, fε(1) = fG(1). Consider the family of

convex sets Gε ∈ Gconv
h bounded from above by the graph of fε and from below, by the

segment −1 ≤ x ≤ 1, z = 0. Taking into account (2.2.3), one gets limε→0+ R̂(Gε) = R̂(G).

Below we shall determine a family of sets Gε,δ ∈ Gh such that limδ→0+ R(Gε,δ) = R̂(Gε)

and next, using the diagonal method, select a sequence εn → 0, δn → 0 such that
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limn→∞ R(Gεn,δn
) = limn→∞ R̂(Gεn

) = R̂(G). This will finish the proof.

Fix ε > 0 and denote by −1 = x−m < x−m+1 < . . . < x0 = 0 < . . . < xm = 1

the jump values of the piecewise constant function f ′
ε. (One obviously has x−i = −xi.)

For each i = 1, . . . , m we shall define a non self-intersecting curve li,ε,δ that connects the

points (xi−1, fε(xi−1)) and (xi, fε(xi)) and is contained in the quadrangle xi−1 ≤ x ≤ xi,

fε(xi) ≤ z ≤ fε(xi−1) + (f ′
ε(xi−1 + 0) + δ) · (x − xi−1). The curve l−i,ε,δ is by definition

symmetric to li,ε,δ with respect to the axis Oz. Let now lε,δ := ∪−m≤i≤mli,ε,δ and let Gε,δ

be the set bounded by the curve lε,δ, by the two vertical segments 0 ≤ z ≤ fε(1), x = ±1,

and by the horizontal segment −1 ≤ x ≤ 1, z = 0.

For an interval I ⊂ [0, 1], define

R̂I(Gε) :=

∫

I

(1 + v̂z
Gε

(x)) x dx (2.3.3)

and

RI(Gε,δ) :=

∫

I

(1 + vz
Gε,δ

(x)) x dx. (2.3.4)

Denote Ii = [xi−1, xi]; one obviously has R̂(Gε) =
∑m

i=1 R̂Ii
(Gε) and R(Gε,δ) =

∑m
i=1 RIi

(Gε,δ).

Thus, it remains to determine the curve li,ε,δ and prove that

lim
δ→0+

RIi
(Gε,δ) = R̂Ii

(Gε). (2.3.5)

This will complete the proof of the lemma.

Note that for x ∈ Ii, i = 1, . . . ,m holds

v̂z
Gε

=
f ′

ε(xi−1 + 0)√
1 + (f ′

ε(xi−1 + 0))2
. (2.3.6)

Fix ε and i and mark the points P = (xi−1, fε(xi−1)), P ′ = (xi, fε(xi)), Q =

(xi−1, fε(xi)), and S = (xi, fε(xi−1) + (f ′
ε(xi−1 + 0) + δ) · (xi − xi−1)); see fig. 2.4. Mark

also the point Qδ = (xi−1 +δ, fε(xi)), which is located on the segment QP ′ at the distance

δ from Q, and the points Pδ = (xi−1 + δ, fε(xi−1 + δ)) and Sδ = (xi−1 + δ, fε(xi−1) +

(f ′
ε(xi−1 + 0) + δ) · δ), which have the same abscissa as Qδ and belong to the segments

PP ′ and PS, respectively. Denote by l the line that contains Pδ and is parallel to PS.

Denote by Πδ the arc of the parabola with vertex Qδ and focus at Pδ (therefore its axis
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Figure 2.4: Constructing the curve li,ε,δ: a detailed view.

is the vertical line QδPδ). This arc is bounded by the point Qδ from the left, and by the

point P̄δ of intersection of the parabola with l, from the right. Denote by xδ
i the abscissa

of P̄δ and denote by P ′
δ the point that lies in the line PP ′ and has the same abscissa xδ

i .

Denote by πδ the arc of the parabola with the same focus Pδ, the axis l, and the vertex

situated on l to the left from Pδ. The arc πδ is bounded by the vertex from the left, and

by the point S ′
δ of intersection of the parabola with the line QδPδ, from the right. There

is an arbitrariness in the choice of the parabola; let us choose it in such a way that the

arc πδ is situated below the line PS. Finally, denote by Jδ the perpendicular dropped

from the left endpoint of πδ to QP ′, and denote by Q′
δ the base of this perpendicular.

If xδ
i ≥ xi, the curve li,ε,δ is the union (listed in the consecutive order) of the segments

PSδ and SδS
′
δ, the arc πδ, the segments Jδ and Q′

δQδ, and the part of Πδ located to the

left of the line P ′S.

If xδ
i < xi, the definition of li,ε,δ is more complicated. Define the homothety with the

center at P ′ that sends P to P ′
δ, and define the curve l̃i,ε,δ by the following conditions: (i)

the intersection of l̃i,ε,δ with the strip region xi−1 ≤ x ≤ xδ
i is the union of PSδ, SδS

′
δ,

πδ, Jδ, Q′
δQδ, Πδ, and the interval P̄δP

′
δ; (ii) under the homothety, the curve l̃i,ε,δ moves

into itself. The curve l̃i,ε,δ is uniquely defined by these conditions; it does not have self-

intersections and connects the points P and P ′. However, it is not piecewise smooth, since
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Figure 2.5: The curve li,ε,δ, again.

it has infinitely many singular points near P ′. In order to improve the situation, define

the piecewise smooth curve li,ε,δ in the following way: in the strip xi−1 ≤ x < xi − δ, it

coincides with l̃i,ε,δ, the intersection of li,ε,δ with the strip xi−δ < x ≤ xi is the horizontal

interval xi − δ < x ≤ xi, z = fε(xi), and the intersection of li,ε,δ with the vertical line

x = xi − δ is a point or a segment (or maybe the union of a point and a segment) chosen

in such a way that the resulting curve li,ε,δ is continuous.

The particles of the flow falling on the arc Πδ make a reflection from it, pass through

the focus Pδ, then make another reflection from the arc πδ, and finally move freely, the

velocity being parallel to l. Choose δ < |f ′
ε(0

+)| and δ < min1≤i≤m−1(f
′
ε(xi−1+0)−f ′

ε(xi+

0)), then the particles after the second reflection will never intersect the other curves lj,ε,δ,

j 6= i. Thus, for the corresponding values of x, the vertical component of the velocity of

the reflected particle is

vz
Gε,δ

(x) =
f ′

ε(xi−1 + 0) + δ√
1 + (f ′

ε(xi−1 + 0) + δ)2
= v̂z

Gε
(x) + O(δ), δ → 0+. (2.3.7)

If xδ
i ≥ xi, the formula (2.3.7) is valid for x ∈ [xi−1 + δ, xi]. If xδ

i < xi, it is valid for

the values x ∈ [xi−1 + δ, xδ
i ]. Note, however, that (2.3.7) is also valid for values of x

that belong to the iterated images of x ∈ [xi−1 + δ, xδ
i ] under the homothety, but do not

belong to [xi − δ, xi]. Summarizing, (2.3.7) is true for x ∈ [xi−1, xi], except for a set of

values of measure O(δ). Thus, taking into account (2.3.3), (2.3.4), (2.3.6), and (2.3.7),
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the convergence (2.3.5) is proved. Q.E.D.

Proof of theorem 2.2.4

Let us first state the following lemma.

Lemma 2.3.1. Let λ > 0 and let the function fh ∈ Fh satisfy the condition

Iλ. fh(1) = h, and for almost all x ∈ [0, 1] the value u = f ′
h(x) is a solution of the

problem

xp(u) + λu → min, u ∈ R+. (2.3.8)

Then the function fh is a solution of the problem (2.2.6) and any other solution satisfies

the condition Iλ with the same value of λ.

Proof. This simple lemma is a direct consequence of the Pontryagin maximum principle.

The proof we give here, however, is quite elementary and does not appeal to the maximum

principle (cf. [22]).

For any f ∈ Fh one has

x p(f ′(x)) + λ f ′(x) ≥ x p(f ′
h(x)) + λ f ′

h(x) (2.3.9)

at almost every x. Integrating both sides of (2.3.9) over x ∈ [0, 1], one gets

1

2

∫ 1

0

p(f ′(x)) dx2 + λ (f(1) − f(0)) ≥

≥ 1

2

∫ 1

0

p(f ′
h(x)) dx2 + λ (fh(1) − fh(0)), (2.3.10)

and using that f(1) ≤ h = fh(1) and f(0) = fh(0) = 0, one obtains that R(f) ≥ R(fh).

Next, suppose that f ∈ Fh and R(f) = R(fh), then, using the relation (2.3.10) and

the equality f(0) = fh(0), one gets that f(1) ≥ fh(1) = h, hence f(1) = h. Therefore the

inequality in (2.3.10) becomes equality, which, in view of (2.3.9), implies that

x p(f ′(x)) + λ f ′(x) = x p(f ′
h(x)) + λ f ′

h(x)

for almost every x, hence u = f ′(x) is also a solution of (2.3.8), on a set of full measure.

Thus, f satisfies the condition (Iλ).
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Now we shall find the function fh satisfying the condition Iλ for some positive λ.

Let x ∈ [0, 1] be the value for which Iλ is fulfilled. Then the value u = f ′
h(x) is also a

minimizer for the function xp̄(u)+λu, and p(u) = p̄(u). This implies that (if the function

fh really exists then)

R[fh] =

∫ 1

0

p̄(f ′
h(x)) x dx. (2.3.11)

Besides, if u > 0 and p̄ is differentiable at u then one has d
du

(xp̄(u) + λu) = 0, hence

x

λ
= − 1

p̄′(u)
. (2.3.12)

If u > 0 and p̄ is not differentiable at u, then it has left and right derivatives at this point

and

− 1

p̄′(u − 0)
≤ x

λ
≤ − 1

p̄′(u + 0)
. (2.3.13)

If, finally, u = 0 then one has
x

λ
≤ − 1

p̄′(0)
= ξ0. (2.3.14)

Put z = 1/λ and x0 = ξ0/z and rewrite (2.3.12) and (2.3.13) in terms of the generalized

inverse function: υ(zx − 0) ≤ u ≤ υ(zx); thus the equality

u = υ(zx), (2.3.15)

is valid for almost all values x ≥ x0. Taking into account (2.3.14), substituting u = f ′
h(x),

and integrating both parts of (2.3.15) with respect to x, one comes to (2.2.7). In particular,

f ′
h(x0 + 0) = υ(ξ0 + 0) = u0. Using that fh(1) = h, one gets (2.2.8).

The function Υ(z)/z is continuous and monotone increasing; it is defined on [ξ0, +∞)

and takes the values from 0 to +∞. Therefore the equation (2.2.8) uniquely defines

Z as a continuous monotone increasing function of h; in particular, z(0) = ξ0 and

x0(0) = ξ0/z(0) = 1. The relations (2.2.7) and (2.2.8) define the function fh solving

the minimization problem (2.2.6). From the construction one can see that this function

is uniquely defined.

Recall that R(h) = R[fh]. Integrating by parts the right hand side of (2.3.11), one

gets

R(h) =
p̄(f ′

h(1))

2
−

∫ 1

0

x2

2
p̄′(f ′

h(x)) df ′
h(x).
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Taking into account that f ′
h(1) = υ(Z) and xp̄′(f ′

h(x)) = −1/Z, one obtains

R(h) =
p̄(υ(Z))

2
+

1

2Z

∫ 1

0

x df ′
h(x),

and integrating by parts once again, one gets (2.2.9). Substituting in (2.2.9) h = 0 and

using that z(0) = ξ0, υ(ξ0) = u0, Υ(ξ0) = 0, one obtains R(0) = (p̄(u0) + u0/ξ0)/2, and

using that p(0) − ξ−1
0 u0 = p̄(u0), one obtains R(0) = p(0)/2.

Taking into account the asymptotic of p̄ (which is the same as the asymptotics of

p: p̄(u) = c u−α(1 + o(1)), u → +∞), and the asymptotic of p̄′: p̄′(u) = −cα u−α−1(1 +

o(1)), u → +∞, one comes to the formulas

υ(ξ) = (Cα)
1

α+1 ξ
1

α+1 (1 + o(1)), ξ → +∞,

Υ(z) =

(
α + 1

α + 2

)
(cα)

1

α+1 z
α+2

α+1 (1 + o(1)), z → +∞,

and

z =
1

cα

(
α + 2

α + 1

)α+1

hα+1 (1 + o(1)), h → +∞.

Substituting them into (2.2.9) and using the relation x0 = ξ0/Z, after a simple algebra

one obtains (2.2.11) and (2.2.10). The theorem is proved.

Summarizing, the three-dimensional bodies of revolution minimizing the resistance

are constructed as follows. First, we find the function fnc
h minimizing the functional

(2.2.5) and define the convex set −1 ≤ x ≤ 1, 0 ≤ z ≤ h− fnc
h (|x|). Next, the upper part

of its boundary (which is the graph of the function z = h−fnc
h (|x|)) is approximated by a

broken line and then substituted with a curve with rather complicated behavior, according

to lemma 2.2.3. The set bounded from above by this curve is "almost convex": it can

be obtained from a convex set by making small hollows on its boundary. By rotating it

around the axis Oz, one obtains the body of revolution B having nearly minimal resistance

Rz(B).

The vertical central cross sections of optimal bodies in the Newton, single impact,

and nonconvex cases, for h = 0.8, are presented on figure 9.

Derivation of the asymptotic relations in the single impact case
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Figure 2.6: Profiles of optimal solutions in the single impact (a), Newton (b), and non-

convex (c) cases, for h = 0.8. In the nonconvex case, the profile is actually a zigzag curve

with very small zigzags, as shown on the next figure.

Figure 2.7: Detailed view of the zigzag curve.
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For h small (namely, h < M∗ ≈ 0.54), a solution in the single impact case can

be described as follows. There are marked several values −1 < x−2n+1 < x−2n+2 <

. . . < x2n−2 < x2n−1 < 1, n ≥ 2 related to the singular points of the solution. As

h → 0+, n = n(h) goes to infinity. One has x−k = −xk and x2i = (x2i−1 + x2i+1)/2;

thus x0 = 0. Besides, one has maxk(xk − xk−1) = x1 = 4h/3. The vertical central

cross section of the solution G = Gsi
h ⊂ R2

x,z is bounded from above by the graph of a

continuous non-negative piecewise smooth even function f = f si
h , and from below, by

the segment −1 ≤ x ≤ 1, z = 0. This function has singularities at the points xk, and

the values of the function at the points x2i−1 coincide: f(x2i−1) = h. On each interval

[x2i−1, x2i], the graph of f is the arc of parabola with vertical axis and with the focus

at (x2i+1, h). Similarly, on [x2i, x2i+1] the graph of f is the arc of parabola with vertical

axis and with the focus at (x2i−1, h). The first parabola contains the focus of the second

one, and vice versa. From this description one can see that on [x2i−1, x2i], the function

equals f(x) = (x−x2i+1)2

2(x2i+1−x2i−1)
+ yi, and on [x2i, x2i+1], f(x) = (x−x2i−1)2

2(x2i+1−x2i−1)
+ yi, where

yi = h − (x2i+1 − x2i−1)/2. On the intervals [−1, x−2n+1] and [x2n−1, 1] the graph of the

function represents the so-called "Euler part" of the solution (see [12]).

Note that the solution is not unique. The values x1 and x2n−1 are uniquely determined,

but there is arbitrariness in choice of the intermediate values x3, . . . , x2n−3 and also in the

number n of the independent parameters.

After some calculation, one obtains the value of 1 + vz
G for the figure G:

if x ∈ [x2i−1, x2i], 1 + vz
G(x) =

2

1 +
(

x2i+1−x
x2i+1−x2i−1

)2 ;

if x ∈ [x2i, x2i+1], 1 + vz
G(x) =

2

1 +
(

x−x2i−1

x2i+1−x2i−1

)2 .

Let us now calculate the integral
∫ x2i+1

x2i−1
(1 + vz

G(x)) x dx, 1 ≤ i ≤ n − 1. Since the

function 1 + vz
G(x), x ∈ [x2i−1, x2i+1] is symmetric with respect to x = x2i, the integral

equals 2x2i

∫ x2i+1

x2i
(1 + vz

G(x)) dx. Changing the variable t = (x − x2i−1)/(x2i+1 − x2i−1)

and taking into account that 2x2i = x2i−1 + x2i+1, one comes to the integral 2x2i(x2i+1 −
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x2i−1)
∫ 1

1/2
2/(1 + t2) dt = (x2

2i+1 − x2
2i−1)(π/2 − 2 arctan(1/2)). Therefore

∫ x2n−1

x1

(1 + vz
G(x)) x dx = (x2

2n−1 − x2
1)(π/2 − 2 arctan(1/2)).

Taking into account that x1 = 4h/3 → 0 and x2n(h)−1 → 1 as h → 0+, one finally gets

R(Gsi
h ) =

∫ 1

0

(1 + vz
Gsi

h
(x)) x dx = π/2 − 2 arctan(1/2) + o(1), h → 0+,

that is, Rsi(0) = π/2 − 2 arctan(1/2) ≈ 0.6435.

If h > M∗, the function f = f si
h has three singular points: x1 = x1(h), 0, and −x1.

On the interval [−x1, x1], the graph of f is the union of two parabolic arcs, as described

above with i = 0. On the intervals [−1, −x1] and [x1, 1], the graph is the "Euler part"

of the solution; on both intervals, f is a concave monotone function, with f(±1) = 0 and

f(±x1) = h. The part of resistance of G = Gsi
h related to [0, x1] can be calculated:

∫ x1

0

(1 + vz
G(x)) x dx = x1p

∗,

where p∗ = 8(ln(8/5)+arctan(1/2)−π/4) ≈ 1.186. That is, the convex hull of G represents

the solution of the problem (2.2.6) with p(u) = psi(u) =





p∗ if u = 0

2/(1 + u2) if u > 0 .








































































