
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2019

David Moreira
de Almeida

Reconhecimento Facial através de Representações
Esparsas

Face Recognition via Sparse Representation

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2019

David Moreira
de Almeida

Reconhecimento Facial através de Representações
Esparsas

Face Recognition via Sparse Representation

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2019

David Moreira
de Almeida

Reconhecimento Facial através de Representações
Esparsas

Face Recognition via Sparse Representation

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestrado em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica da Profes-
sora Doutora Ana Maria Perfeito Tomé, Professora Associada da Universi-
dade de Aveiro, e do Professor Armando José Formoso de Pinho, Professor
Associado com Agregação da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar, Universidade de Aveiro (por delegação da Reitora da

Universidade de Aveiro)

Professora Doutora Ana Maria Perfeito Tomé
Professora Associada, Universidade de Aveiro (orientadora)

vogais / examiners committee Doutor Lúıs Miguel Almeida da Silva
Professor Auxiliar Convidado

agradecimentos /
acknowledgements

Gostaria de agradecer à professora Ana Maria Tomé e ao professor
Armando Pinho por todo o apoio e orientação que me deram durante
o desenvolvimento deste trabalho.

À minha faḿılia, por todo o apoio que me deram durante os meus anos
formativos, tanto financeiro como pessoal. Sem ela nunca teria tido as
oportunidades que tive.

À minha namorada que sempre esteve lá para me apoiar tanto nos
momentos altos como nos baixos.

A todos os meus amigos que me acompanharam por este percurso e
com quem partilhei momentos que nunca irei esquecer.

Finalmente queria deixar um obrigado a todos os que contribúıram para
o meu sucesso pessoal e académico.

Palavras Chave Reconhecimento facial, codificação esparsa, representações esparsas,
aprendizagem de dicionários, visão de computador

Resumo Recentemente houve um pico de interesse na área de reconhecimento
facial, devido especialmente aos desenvolvimentos relacionados com
”deep learning”. Estes estimularam o interesse na área, não apenas
numa perspectiva académica, mas também numa comercial. Apesar
de tais métodos fornecerem a melhor precisão ao executar tarefas de
reconhecimento facial, eles geralmente requerem milhões de imagens de
faces, bastante poder de processamento e uma quantidade substantial
de tempo para desenvolver.

Nos últimos anos, representações esparsas foram aplicadas com sucesso
a diversas aplicações de visão de computador. Uma dessas aplicações
é reconhecimento facial. Um dos primeiros metodos propostos para tal
tarefa foi o ”Sparse Representation Based Classification (SRC)”.

Entretanto, vários diferentes metodos baseados no SRC, foram propos-
tos. Estes incluem métodos de aprendizagem de dicionários e métodos
baseados em classificaçao de ”patches” de imagens.

O objetivo desta tese é estudar o reconhecimento facial utilizando rep-
resentações esparsas. Múltiplos métodos vão ser explorados e alguns
deles vão ser testados extensivamente de modo a providenciar uma
visão compreensiva da area.

Keywords Face recognition, sparse coding, sparse representation, dictionary learn-
ing, computer vision

Abstract Face recognition has recently seen a peek in interest due to develop-
ments in deep learning. These developments incited great attention to
the field, not only from the research community, but also from a com-
mercial perspective. While such methods provide the best accuracies
when performing face recognition tasks, they often require millions of
face images, a substantial amount of processing power and a consid-
erable amount of time to develop.

In the recent years, sparse representations have been successfully ap-
plied to a number of computer vision applications. One of those appli-
cations is face recognition. One of the first methods proposed for this
task was the Sparse Representation Based Classification (SRC).

Since then, several different methods, based on SRC have been pro-
posed. These include dictionary learning based methods, as well as
patch based classification.

This thesis aims to study face recognition using sparse classification.
Multiple methods will be explored, and some of these will be tested
extensively in order to provide a comprehensive view of the field.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1
1.1 Objectives . 1
1.2 Thesis Outline . 2

2 Face Recognition 3
2.1 Importance . 3
2.2 Face Recognition System . 4

2.2.1 Face Detection . 5
2.2.2 Pre-processing . 5
2.2.3 Feature extraction and classification 7

2.3 Further Challenges . 7
2.3.1 Occlusion . 8
2.3.2 Facial expressions . 8
2.3.3 Resolution . 9

2.4 Datasets . 9
2.4.1 Georgia Tech Face Database . 9
2.4.2 The Extended Yale Face Database B 10
2.4.3 Labeled Faces of the Wild . 10

2.5 Conclusion . 11

3 Sparse Representation 13
3.1 Definition . 13
3.2 Sparse Representation Applications . 15

3.2.1 Choosing a Dictionary . 16
3.3 SRC . 17

3.3.1 Dictionary . 17

i

3.3.2 Classification . 18
3.3.3 Validation . 19
3.3.4 Difficulties . 21

3.4 Dictionary Learning . 22
3.4.1 K-SVD . 22
3.4.2 Face Recognition and Dictionary Learning 26

3.5 Conclusion . 27

4 Accumulative Local Sparse Representation 29
4.1 Introduction . 29
4.2 Algorithm . 30

4.2.1 Learning Stage . 31
4.2.2 Testing Stage . 32

4.3 Difficulties . 39
4.3.1 Improving performance . 39

4.4 Variations . 40
4.5 Conclusion . 40

5 Experimental Results 43
5.1 SRC . 43

5.1.1 Lambda . 44
5.1.2 Number of training samples . 45
5.1.3 Face Alignment . 46
5.1.4 Dimensionality Reduction . 47
5.1.5 Dictionary size and performance . 49

5.2 ALSR . 51
5.2.1 Number of training images . 52
5.2.2 Image Alignment . 52
5.2.3 Patch Overlap . 53
5.2.4 Best Results . 54

5.3 Conclusion . 55

6 Conclusion 57
6.1 Future Work . 57

Bibliography 59

A Tools 65

ii

List of Figures

2.1 Face recognition stages. 4
2.2 Sample images from the YALE Dataset showing different illumination pat-

terns. 5
2.3 Sample images from the YALE Dataset showing different illumination pat-

terns (Histograms equalized). 6
2.4 Face images with different poses. Taken from [1]. 6
2.5 Sample images from one subject of the AR Dataset [2]. 8
2.6 Sample images from the GT Dataset. 10
2.7 Sample images from the Extended Yale Face Database B. 11
2.8 Sample images from the deep funneled LFW dataset. 12

3.1 Sparse Representation Illustration. Only a few atoms of the dictionary are
needed in order to represent the signal y as most of the coefficients of the
x are zero. 14

3.2 Sparse Coding based Denoising. From left to right: original image, noisy
image, recovered image. [3] . 16

3.3 Illustration of training samples of faces associated with the different subdic-
tionaries before the preprocessing steps. 18

3.4 Bar plot showing the residual error r of each class for test sample from class 1. 19
3.5 Plot of the sparse coefficients ‖x‖ of a face image and a random image. . . 21
3.6 Illustration of the K-SVD dictionary learning algorithm. 23
3.7 Selection of the atom k = 1. Signals in yellow represent the signals that

the atom has contributed to. Coefficients in green represent the coefficients
that use the atom. 24

3.8 Selection of the atom k = 1. The redundant signals and coefficient columns
were removed. 25

4.1 Example of important and unimportant patches in a face image. 30
4.2 Different number of patches in the same image. The image on the left has

been split into np = 25 patches (npx = 5, npy = 5). The image on the left
has been split into np = 100 patches (npx = 10, npy = 10) 31

4.3 Adding the extracted patches to the global dictionary D 32
4.4 Neighborhood of a patch . 34

iii

4.5 Processing a patch from a testing image. 35
4.6 Representation of a high SCI patch (green) and a low SCI patch (red). . . 35
4.7 Plot representing the vector z associated with a face image. 36

5.1 Plots showing the accuracy of the classification when varying the parameter
lambda. 45

5.2 Lambda (λ) ∈ [0.0, 0.01] . 46
5.4 Varying number of training samples LFW Dataset 47
5.6 Accuracy given varying number of samples -

Random Projection . 49
5.7 Time it takes for the sparse coding step with a variable number of columns. 50
5.8 Time it takes for the sparse coding step with a variable number of rows. . . 50
5.9 Overlapping of patches. 54

iv

List of Tables

5.1 Accuracy for the aligned and unaligned LFW and GT datasets. 47
5.2 Times for the dimensionality reduction methods - LFW dataset 48
5.3 Accuracy with varying number of training samples (GT Dataset). 52
5.4 Accuracies for aligned and misaligned datasets (SRC and ALSR). 53
5.5 Accuracy with/without patch overlap. 54
5.6 Table showcasing the best results obtained with the respective algorithms. 55

v

vi

Acronyms

ALSR Accumulative Local Sparse Representation. 29

ASR Adaptive Sparse Representation. 40

CCTV Closed-circuit television. 3

CNN Convolutional Neural Networks. 1, 7

FISTA Fast Iterative Shrinkage-Thresholding Algorithm. 15

HOG Histogram of Oriented Gradients. 5

ISTA Iterative Shrinkage-Thresholding Algorithm. 15

LARS Least Angle Regression. 15

LASSO Least Absolute Shrinkage and Selection Operator. 15

OMP Orthogonal Matching Pursuit. 15

PCA Principal Component Analysis. 17, 48

SCI Sparsity Concentration Index. 20

SRC Sparse Representation based Classification. 13

SVD Singular Value Decomposition. 26, 48

SVM Support Vector Machine. 7

vii

viii

Chapter 1

Introduction

Recently, the interest in computer vision applications has been increasing at an incredible
pace. This increase initiated mainly due to the developments in the area of deep learning,
namely, with the use of CNN’s (Convolutional Neural Networks).

Face recognition is one of the most popular and important applications of computer
vision. The ability to automatically recognize people has innumerous applications in mul-
tiple different areas. While face recognition has been studied for decades, recently it has
seen a boost in interest due to the developments of deep learning.

While the results attained when using deep learning [4] cannot be matched via traditional
face recognition algorithms, in order to train such complex models, unreasonably large
datasets need to be used (in the orders of millions of images) and they require an extremely
high amount of computing resources. Therefore, the use of more traditional machine
learning techniques should not be disregarded entirely on behalf of deep learning techniques.

The idea behind sparse representation is that a vector can be represented using a lin-
ear combination of elements from a dictionary. Over the years, sparse representation
approaches have been applied to many different computer vision applications. One such
application is face recognition. While sparse representation based approaches cannot ob-
tain results on par with the deep learning approaches, they do not require a large amount
of training samples. Significant results can still be attained, especially when compared
with the more traditional face recognition algorithms.

1.1 Objectives

The main objective of this dissertation was to study, develop and test sparse represen-
tation based algorithms for face recognition applications, including:

• An effective and concise description of sparse representation.

1

• An overview of dictionary learning algorithms, especially the ones aimed to face
recognition.

• An exposition of a state of the art face recognition algorithm based on sparse repre-
sentation.

• Detailed experimental results of sparse representation based algorithms tested using
appropriate face recognition datasets.

1.2 Thesis Outline

This dissertation is composed of six chapters. Excluding this introductory chapter, the
remaining of this dissertation is organized as follows:

• Chapter 2: This chapter is dedicated to the introduction of face recognition. This
includes an explanation of its importance, as well as a description of what constitutes
a face recognition system.

• Chapter 3: This chapter aims to explain sparse representation and to relate it to
face recognition. It also introduces the dictionary learning algorithms which are
commonly used in face recognition.

• Chapter 4: This chapter introduces a recent state of the art face recognition algorithm
based on sparse representation.

• Chapter 5: This chapter displays the experimental results of the tests conducted
during the development of this dissertation.

• Chapter 6: This chapter presents the conclusions of the work performed.

2

Chapter 2

Face Recognition

This chapter discusses the importance of face recognition currently. It will explain the
different stages of a complete face recognition system, and introduce a few datasets that
will be used throughout the dissertation.

2.1 Importance

In recent years, face recognition technology has been rapidly introduced in multiple
aspects of our lives. Face recognition algorithms allow two tasks to be performed automat-
ically:

1. Verification: Given a face image, assuring that the image is not from an unknown
individual. The face image should belong to a known and authorized subject. This
can be used to grant/deny access to a resource.

2. Identification: Given a face image of an unknown subject, determine the identity of
that individual by using a database of known identities.

Face recognition technology is currently being applied to a plenty of different scenarios.
Some of these application are:

• Authentication: Either personal or corporate authentication are common applica-
tions of face recognition technology. In a corporate scenario, this could mean giving
access to specific personnel to appropriate resources or locations within a company.
Regarding personal authentication, it is becoming increasingly common to use face
recognition (instead of a fingerprint scanner or a pin code) in order to unlock personal
devices (e.g. personal computers, smartphones).

• Surveillance: Using CCTV cameras, large areas can be easily monitored in order to
look for known criminals or unauthorized personnel.

3

• Marketing: By recognizing the person, and namely his/her characteristics (e.g. gen-
der, age), tailored add/campaigns can be created in real time in order to target that
specific person.

• Identity tracking: Amazon is launching stores that do not require a cashier. These
stores register the people that enter the store and by means of face recognition track
that person’s activity. Then, given that person’s activity it charges the clients directly
to their account upon them leaving the store.

The above applications are only a few of many that underline the importance of face
recognition nowadays.

2.2 Face Recognition System

A face recognition system is composed of multiple stages that start with an input (e.g.
image or video frame) and ends with an output of the identity of the face/faces present in
the input.

The multiple stages of a face recognition system and their sequence are illustrated in
Figure 2.1.

Figure 2.1: Face recognition stages.

4

2.2.1 Face Detection

There are multiple methods to perform face detection in 2d images. Two of the most
famous are the Viola-Jones object detection framework [5] and the Histogram of Oriented
Gradients (HOG) method [6].

These algorithms allow for efficient and accurate face detection. They are fast enough
to be usable in real time video face recognition. Having detected a face in an image, that
face can be isolated and the next stage of the aforementioned stages can proceed.

2.2.2 Pre-processing

There are some difficulties that need to be tackled in order to create a robust face
recognition system. Such a system need to be able to deal with situations such as poor
lighting or face misalignment. While the classifier should be partially resistant to such
factors, there are steps that can be taken in the pre-processing stage in order to improve
the accuracy of the face recognition system.

Illumination

Illumination conditions can greatly influence the results of face recognition methods.
This is especially true, when the illumination conditions of the testing images are not the
same as the training images.

Figure 2.2: Sample images from the YALE Dataset showing different illumination patterns.

Figure 2.2 shows 5 images from the same person with varying illumination conditions.
On the left, a well lighted face image is presented. Then, the images start to feature more
aggressive lighting conditions as they progress to the right.

There are some pre-processing methods that can be applied in order to attenuate the
effects of the lighting condition on the quality of the face image. Examples of these are
contrast stretching, histogram equalization and adaptive equalization. Examples of the
efficiency of these methods can be observed in [7].

5

Figure 2.3: Sample images from the YALE Dataset showing different illumination patterns
(Histograms equalized).

Figure 2.3 shows the same face images shown previously in Figure 2.2 but with their
histograms normalized. Despite not being perfectly matched regarding their illumination,
the differences in lighting between the normalized pictures are much less pronounced than
their original counterparts.

Despite being able to attenuate the effects of varying illumination by using proper prepro-
cessing methods, in order to achieve good recognition accuracy, the classification algorithms
should be able to withstand some illumination inconsistency.

Face misalignment

Different facial poses can also make it difficult to perform a correct classification. Face
alignment methods can help normalize the poses of the face images by identifying key
points in a face and performing operations such as translation, rotation and scaling. While
this works for slightly misaligned face images, when the misalignment becomes substantial
these measures are not enough to ensure a correct classification.

Figure 2.4: Face images with different poses. Taken from [1].

6

Figure 2.4 shows face images of the same subject in several different poses. The images
from (a) to (i) feature misalignments under 45◦. The image (j) has a misalignment greater
than 45◦. After performing image alignment, all the images except for (j) can be correctly
classified. Image (j) is too misaligned to allow for proper alignment and classification using
sparse representation based face recognition methods.

If possible, face alignment methods should therefore always be applied, in order to im-
prove the accuracy of face recognition systems.

2.2.3 Feature extraction and classification

The feature extraction and the classification of face images depend on the approach of
the face recognition system. There are holistic, feature based, and hybrid approaches.

Holistic approaches use the whole image in order to perform the classification. An
example of feature extraction of this type of approach is to simply use the pixels of the
face image itself as features.

One very popular example that applies an holistic approach is the Eigenface algorithm
[8]. This method is based on the PCA technique and allows the calculation of eigenfaces
from the face images. The eigenfaces consist of sets of eigenvectors. These can be used
to train a classifier. That can in turn be used to classify test images, by extracting the
eigenfaces from those images and using the classifier to get the correct classes.

While holistic approaches are easy to implement, they are particularly sensitive to vari-
ations on the face images (e.g. illumination, pose, expression).

Feature based approaches only consider some facial features in the classification. An
example of feature extraction of such an approach would be to use a trained CNN in order
to extract features from the face image. CNN’s are trained to look for specific patterns in
the face images. The outputs of a CNN can then be used to train and test a classification
model (e.g. SVM [9]).

Hybrid approaches combine the characteristics of both holistic and feature based meth-
ods in order to improve the ability of the face recognition system.

2.3 Further Challenges

Besides the aforementioned difficulties (illumination, pose variance) there are more chal-
lenges that cripple the performance of face recognition systems.

7

2.3.1 Occlusion

Some face images can feature occluding elements that hinder the accuracy of face
recognition algorithms. Examples of such elements are: sunglasses, scarfs and long hair in
front of the face.

Figure 2.5: Sample images from one subject of the AR Dataset [2].

Figure 2.5 shows some pictures of a subject from the AR Dataset under different occlu-
sion conditions. The picture in which the man is using sunglasses and the picture in which
he is using a scarf feature full occlusion of some facial attributes. The pictures where he
is only wearing clear glasses feature partial occlusion given the reflections of light seen in
the glasses.

Occlusion can be especially challenging for holistic face recognition algorithms (since
the face is considered as a whole in order to perform the recognition). Feature based face
recognition methods, that rely on extracting different features from the face images, are
not as susceptible, since it is possible to ignore the elements being occluded.

2.3.2 Facial expressions

Another factor that difficults the correct classification of face images are different facial
expressions. In Figure 2.5, the second and third pictures are of the same person, but
with widely different facial expression. If the algorithm was trained with only neutral
expressions, getting a correct classification in test images with different, very pronounced
expressions will be difficult. This affects both holistic and feature based approaches, since
important facial attributes can have a significantly different appearance depending on the
facial expression present in the image.

8

2.3.3 Resolution

The resolution of a face image can affect the face recognition algorithms in different
ways. If the resolution is low, the image might not have enough detail for the algorithm
to perform the classification. On the other hand, dealing with high resolution face images
can cripple the performance of the algorithm, making it run slowly in each test image.

There is another problem deriving from the difference in resolution of face images. In
most cases, the pictures are taken in unconstrained situations, possibly with different
equipment. This means that the face images can either be captured with devices with
different resolutions or the subjects might be at different distances from the capture device.
Therefore, more frequently than not, the resolution of the face images will be different from
each other. Some algorithms require that the images have the same resolution in order
to perform classification. This can be solved by applying downscaling or upscaling to the
images in order to assure that they all have the same resolution.

2.4 Datasets

Many different datasets containing face images are available for research. The datasets
differ from one another on multiple factors. In order to properly test classification algo-
rithms, there should be a selection of multiple datasets, which cover different conditions.
The datasets mentioned below were selected since they all present different characteristics.
This way they are able to simulate multiple use cases of face recognition technology.

2.4.1 Georgia Tech Face Database

The Georgia Tech Face Database [10] consists of photos of 50 people taken in an office
in an informal setting. Each person has 15 photos, and the photos were taken in three
sessions distributed through five months (between 01/06/99 and 15/11/99).

The images present a reasonable amount of inter-class variation, since most of the people
present have distinctly different facial attributes. It also presents a reasonable amount of
intra-class variation, since images of the same person present some variation in lighting
conditions, and each person has multiple photos with different pose misalignments. Some
photos also feature partial occlusion (e.g. the use of glasses, hair in front of the face).

Figure 2.6 shows some images from the dataset. These images have been pre-aligned,
but the dataset itself is not. For the remaining of this dissertation, this dataset will be
referred to as the GT dataset.

9

Figure 2.6: Sample images from the GT Dataset.

2.4.2 The Extended Yale Face Database B

The Extended Yale Face Database B [11] consists of photos of 39 people taken in a highly
controlled environment. Each person has 64 photos. The photos are cropped so that only
the face fills the frame.

All the faces are perfectly aligned, but for each person, there are some differences regard-
ing the facial expressions. The focus of this dataset is in illumination. For each person,
the photos were captured under 64 different illumination conditions, which along with the
differences in facial expressions provides a good amount of intra-class variation.

Figure 2.7 shows some samples of the Extended Yale Face Database B. Each column
corresponds to a different person, and it is possible to see some of the different illumination
conditions. For the remaining of this dissertation, this dataset will be refereed to as the
YALE dataset.

2.4.3 Labeled Faces of the Wild

The Labeled Faces of the Wild dataset [12] contains more than 13000 images of faces.
These images were collected from the internet and feature fully unconstrained conditions.

For our tests, a pre-aligned version of this dataset using deep learning will be used. This
version is known as deep funneled LFWa [13]. From these images only the people who
have 11 or more face images are considered. This subset of images is comprised of 4174
images of 143 people.

Despite the images being pre-aligned, the faces have huge variations in pose, lighting and
facial expressions, therefore making this dataset very challenging regarding face recognition.

10

Figure 2.7: Sample images from the Extended Yale Face Database B.

Figure 2.8 shows some examples from this dataset. For the remaining of this dissertation,
this dataset will be refereed to as the LFW dataset.

2.5 Conclusion

This chapter introduced the concept of face recognition by showing its importance and
explaining the different stages of a face recognition system. It also introduced the datasets
that are used to test the algorithms that will be introduced throughout this dissertation.
It should be noted that these datasets are relatively small in size.

In the next chapters, sparse representation approaches will be presented. These ap-
proaches only require these small datasets in order to perform classification. This opposes
deep learning methods, which need datasets containing millions of labeled examples in
order to be trained.

11

Figure 2.8: Sample images from the deep funneled LFW dataset.

12

Chapter 3

Sparse Representation

This chapter will explain what sparse representation is and how one can achieve a sparse
representation. It will expose the advantages of using a sparse signal, explain what is a
dictionary and how one can obtain it. It will describe how to perform Sparse Representa-
tion based Classification (SRC), and relate it to dictionary learning methods that use the
principles of SRC to perform classification.

3.1 Definition

Sparse Representation aims to provide sparse solutions for a system of linear equations.
At its core, the objective is to solve the equation:

y = Dx, (3.1)

where y corresponds to the signal that is to be represented, D to an over-complete dic-
tionary matrix and x to an array of sparse coefficients that, when multiplied with D,
accurately reconstructs the signal y.

Figure 3.1 shows an illustration of (3.1) as well as the dimensions of the operands of that
equation. The signal y is illustrated by a vector in which y ∈ Rm, and can be accurately
reconstructed by the product of the matrix D, where D ∈ Rm×n, and the set of coefficients
x correspond to another vector, in which x ∈ Rn.

Each column from the dictionary D is often called an atom. Therefore, after obtaining
the sparse representation, the signal y corresponds to a linear combination of the atoms
of D. The non-zero coefficients of x control which atoms of the dictionary D are suitable
to represent y.

In order to obtain the dictionary, multiple approaches can be taken. These will be
discussed afterwards.

13

Figure 3.1: Sparse Representation Illustration. Only a few atoms of the dictionary are
needed in order to represent the signal y as most of the coefficients of the x are zero.

The concrete objective of sparse coding, given a signal y and an overcomplete dictio-
nary D, is to produce the sparsest array of coefficients x, which, by means of a linear
combination of the atoms of D, reconstruct the signal y [14].

In order to reach such solution, a constrained optimization problem needs to be solved,
namely,

x∗ = min
x

Ψ(x) s.t. f(y,Dx) = 0. (3.2)

This optimization is more commonly represented in its Lagrangian dual form, given by

x∗ = min
x
f(y,Dx) + λΨ(x), (3.3)

where usually f(y,Dx) corresponds to the sum of squared error regarding the original
signal and its reconstruction using the sparse coefficients. λ represents a regularization
parameter that controls the trade-off between sparsity and the reconstruction error of the
solution.

The obvious approach to choosing the function Ψ(x) would be to use the l0-norm, in the
form of Ψ(x) = ‖x‖0, since this norm is proportional to the sparsity of the solution. While

14

it would in theory provide the best results, in practice this corresponds to an NP-Hard
problem [15] [16]. Still, there are a great deal of greedy or approximate algorithms that
provide solutions to these problems (e.g. Orthogonal Matching Pursuit [17]).

Another approach that has had good results in inducing sparsity in the solution is the
use of l1-norm in the form of Ψ(x) = ‖x‖1. This variation is usually preferred in literature
since it corresponds to an optimization problem of a quasi-convex function (since it can
have multiple local minima) and has been proven to produce good results [18].

It has been previously demonstrated that for most applications l1-norm based algorithms
also provide the sparsest solutions [19].

Examples of algorithms to solve this variation of the problem are the Least Absolute
Shrinkage and Selection Operator (LASSO) method [20], Least Angle Regression (LARS)
[21], Iterative Shrinkage-Thresholding Algorithm (ISTA) and its fast variant Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [22], among others.

3.2 Sparse Representation Applications

Sparse representation has had many different applications over the years. This can be
explained by analyzing the advantages that a sparse representation has over a dense signal.

A sparse representation offers the following advantages over a dense representation:

• Data compression: Instead of storing the entire signal, only the coefficients and the
dictionary need to be stored. Since the coefficient vector x is sparse by nature it is
compact and uses a low amount of memory. Since the dictionary is overcomplete, it
is usually considerably bigger than the signals to be represented. Therefore, if data-
compression is our goal, using a dictionary would not be a good approach. However,
if there is a need to store a large amount of signals, the memory saved by using the
coefficients will greatly outweigh the memory used by the dictionary. This is also
useful for signal transmission, since, if both parties have the same dictionary, only
the sparse coefficients need to be sent, resulting in better transmission performance.

• Parsimony: Since the sparse signal is smaller and only the essential features are
highlighted, it is much easier to analyze a sparse representation of a signal than the
signal itself. In imaging, given a test image, this makes it easier to see the different
components that constitute the image by analyzing the sparse coefficients and the
dictionary atoms corresponding to them.

• Denoising: When a signal is partially corrupted with noise, if the underlying signal is
sparse in nature, which is often the case, it can be denoised by reconstructing it using

15

its calculated sparse representation. This is particularly useful for performing image
denoising, and to recover lost or corrupted parts of a partially corrupted image.

• Classification: If sparse representation is being used as a classification technique,
ideally there is a sparse solution in which the coefficients only correspond to a unique
class.

Figure 3.2: Sparse Coding based Denoising. From left to right: original image, noisy image,
recovered image. [3]

3.2.1 Choosing a Dictionary

There are multiple approaches in order to obtain an overcomplete dictionary:

• Using a prebuilt dictionary: In some cases a previously built dictionary can be used.
This is a dictionary obtained from a third party. Occasionally, it can have good per-
formance (e.g. audio signal [23]), but this approach is never used in face recognition
tasks.

• Creating a dictionary: For some applications, a dictionary obtained directly from
training samples can be created. When dealing with images, a common approach is
to stack the pixel columns in a vector, and each training image will correspond to a
column of the dictionary. While this is the most common and simple approach, other
approaches like dividing the images into patches and then stacking those patches can
also be used.

• Learning a dictionary: A dictionary can also be learned by using dictionary learning
algorithms like k-SVD [24] or the method of optimal directions (MOD) [25]. These
methods start by using a predefined or random dictionary and then update its atoms
by alternating between the sparse coding of the training images and a stage where
the dictionary is updated in order to improve the sparse coding performance of the
next iteration.

16

In image based approaches, it is not usual to use a prebuilt dictionary, since prebuilt
dictionaries cannot convey correctly the information in the testing images. State of the
art results can be achieved with either a dictionary created directly by using a training set
of images or with a learned dictionary obtained by learning the dictionary with a training
set of images. Learning a dictionary usually results in a more compact dictionary with
more descriptive potential, but in some cases, especially if the number of training samples
is large, and if there is a fair amount of variation in the images from the same class, using
the images directly to build the dictionary can yield better results.

3.3 SRC

While Compressed Sensing (CS) and Sparse Representation had initially been applied
successfully in other areas of study (e.g. Signal Denoising [26], Image Super-Resolution
[27]), in 2009 a new method proposed by Wright et al. [28] suggested a new classification
algorithm based on sparse representation, and applied in a face recognition task. While it
is often related to face recognition, this classification algorithm is generic, and therefore
should work for different types of signals [29].

3.3.1 Dictionary

In SRC the dictionary is created by directly using the training samples. These training
samples are initially converted to grayscale. Since the dimension of the face images can
be very large (when using 125x125 images we end up with vectors with 15625 entries)
using the images themselves to form the atoms of the dictionary can lead to performance
issues. In order to optimize performance, while keeping a good classification accuracy,
dimensionality reduction has to be performed on the face images.

Some of the most popular dimensionality reduction methods are: Principal Component
Analysis (PCA) [30], Random Projection [31], Image Downsampling [32], among others.
In spite of any of them being suitable for dimensionality reduction, in [1] it was verified
that, as long as the number of features remains high enough, the chosen method will have
a negligible impact in the classification performance. Therefore, for the sake of simplicity,
from now on the downsampling method will be used.

Having converted the images to grayscale and downsampled the images, the dictionary
can now be formed by stacking the columns of the downsampled training images vertically
and adding them as columns to our dictionary D. While doing so, a vector l is also created
in order to store the labels corresponding with each class of the dictionary columns.

The final dictionary D can be seen as a set of multiple subdictionaries D =
[D1,D2, . . . ,Dk] ∈ Rm×n, where Di = [vi,1,vi,2, . . . ,vi,ni

] ∈ Rm×ni corresponds to
a subdictionary of a particular class, m corresponds to the number of pixels in the

17

Figure 3.3: Illustration of training samples of faces associated with the different subdic-
tionaries before the preprocessing steps.

downsampled image, n to the total number of samples, ni to the number of samples for
the class i, for i ∈ [1, k], and vi,w to the column number w associated with the class i.

Figure 3.3 shows an illustration of the faces associated with each column of the different
subdictionaries.

3.3.2 Classification

After all the training images have been added to the dictionary D the classification of
the test images can start. Firstly, one must ensure that the columns of the dictionary
D are normalized to unit-norm. Then the sparse representation of the test image can be
calculated by performing sparse coding. This can be done using our dictionary and by
solving the minimization

min
x
‖y −Dx‖22 + λ ‖x‖1 . (3.4)

Such minimization corresponds to a variation of (3.3) in which the reconstruction error
‖y −Dx‖22 is considered as f(y,Dx) and ‖x‖1 as Ψ(x).

After this step, x will represent the sparse coefficients that relate the dictionary D to
the test sample y. Ideally, this will mean that most values in our coefficient vector x will

18

be zero and that the only non-zero values of the vector correspond to entries of a specific
class (e.g. x = [0, ..., 0, α1, α2, ..., αni

, 0, ..., 0]).

Most of the time the obtained solution has non-zero coefficients associated with multiple
classes. Therefore in order to perform the classification, the class that leads to a smaller
residual error ri has to be determined. For each class i, i = 1..k, the coefficients from x
that correspond to that class are obtained. This reduced set of coefficients is represented by
xi. Likewise, Di represents a sub-dictionary in which the atoms from Di only correspond
to the class i. Using xi and Di the residual error ri for each class i can be calculated using

ri(y) = ‖y −Dixi‖2 . (3.5)

The classification of the test sample y corresponds to the class associated with the
minimum residual error ri.

The SRC algorithm is shown in Algorithm 1 in pseudo-code format.

Figure 3.4: Bar plot showing the residual error r of each class for test sample from class 1.

3.3.3 Validation

While classification is the main goal of face recognition approaches, another important
aspect that has to be dealt with, if one aims to develop a robust face recognition system,
is validation. Validating a classification attempt ensures that the sample being classified is
valid. In a face recognition scenario, the validation checks if the sample being recognized is
in fact a face and if it belongs to one of the people used to build the dictionary. Otherwise,
the sample is rejected as unknown. This is of an extreme importance since, it assures that,
if the algorithm is not sure about a classification, it refuses to provide a wrong class.

19

Algorithm 1 Sparse Representation-based Classification (SRC)

1: D ← Dictionary formed by training samples
2: y ← Test sample to be classified
3: λ← Sparsity control parameter top:

4: Normalize the columns of D to have l2-norm
5: Solve the following minimization problem:

minx ‖y −Dx‖22 + λ ‖x‖1
6: Compute the residual errors for each class i:

ri(y) = ‖y −Dixi‖2 for i = 1, ..., k
7: Output: identity(y) = mini ri(y)

In order to perform such validation, the residual error ri mentioned previously can be
used. If the minimum residual error is above a certain established threshold, then the
sample is considered as invalid, and the classification outputs the class as unknown.

While using the residual error can provide reasonable results, it only considers each class
individually. Since in sparse representation the coefficients for all the classes are computed
jointly, considering the sparseness of the entire coefficient vector instead of the residuals of
each individual class is a better approach that leads to more accurate validation [28].

A better alternative that utilizes sparsity in order to perform the validation is the use
of the Sparsity Concentration Index (SCI) given by

SCI(x) =
k ·maxi ‖xi‖1 / ‖x‖1 − 1

k − 1
. (3.6)

This value will vary from 0 to 1, depending on the sparsity of the individual classes of
the coefficient vector. Therefore, if we have a coefficient vector in which only the coefficients
corresponding to class i are different from zero (e.g. [0, 0, ..., 0, ai,1, ai,2, ..., ai,nk

, 0, ..., 0, 0]),
then the SCI will be 1. Given the nature of sparse representation, as long as a valid sample
is provided, the SCI should always approximate 1.

Figure 3.5 shows that, by testing a face image belonging to a person whose face images
were used to form/learn the dictionary, in the resulting sparse coefficients it is possible
to clearly point out the class of the test sample. The SCI of such sample is close to 1.
However, while using a random image, the coefficients are less sparse and it is not possible
to infer any conclusion. The SCI of such image will be near 0.

20

Figure 3.5: Plot of the sparse coefficients ‖x‖ of a face image and a random image.

3.3.4 Difficulties

While SRC can in theory provide good classification performance, there are some cir-
cumstances that prevent it from always being a good choice regarding face recognition:

• Dataset adequacy: The quality and variation of the samples used to form or learn
the dictionary are crucial to have good performance in SRC. The more complete
the dataset is regarding changes in illumination, expression and small pose changes
the better the algorithm will perform. Consistency regarding the different classes
is also recommended, since if one class has an extreme case of illumination and the
other classes do not, there is a high probability that if a test sample of a different
class has the same case of extreme illumination the algorithm will output a wrong
classification.

• Pose variance: The poses of the face images should be aligned if one expects to have
good results using SRC as a classification method. While there are face alignment

21

methods that rely on sparse representations [33], any face alignment method can be
used in order to maximize classification accuracy. It should be noted that even using
aligned images, the method usually fails if the original face image is too misaligned.

• Performance: since the more training samples used the better the recognition per-
formance is, there is a motivation to use as many samples as possible during the
training phase. But, unfortunately, the time it takes to perform the l1 minimization
increases exponentially with the number of samples used in building the dictionary
[34]. This can lead to performance problems when dealing with systems with a large
number of classes.

3.4 Dictionary Learning

While SRC provides good accuracy in some cases, there are situations that it cannot
overcome, resulting in low classification accuracy or bad performance. In order to solve
these problems, one can, instead of creating a dictionary directly from the training samples,
use dictionary learning methods in order to learn a dictionary iteratively.

A learned dictionary, instead of one created directly from training samples, can model
illumination and pose variance and, if needed, can be made more compact in order to
provide better testing times.

There have been many dictionary learning algorithms proposed over the years. Despite
these algorithms using the same principles for learning the dictionaries and for performing
the classification (which is usually done in a similar manner to SRC), they differentiate
themselves from one another by using different approaches in order to ensure that the
learned dictionary has discriminative potential, so as to improve classification performance.

3.4.1 K-SVD

The K-SVD algorithm [24] is usually used as a benchmark dictionary learning algorithm
for face recognition problems.

The K-SVD algorithm works by iterating between the sparse coding stage and the dic-
tionary update stage, until either the algorithm has converged, meaning that there are no
more significant updates between iterations, or until a fixed amount of iterations is reached.

Lets consider a matrix Y of size m× l, where each column represents a different signal,
a dictionary D of size m×n and a matrix of sparse coefficients X of size n× l, where each
column corresponds to the sparse coefficients of the each signal in Y . Each row in X is
related to each atom of the dictionary D.

22

Figure 3.6: Illustration of the K-SVD dictionary learning algorithm.

The sparse coding stage is the same as seen previously. For each signal yi, for i in 1..l,
(3.4) or a different variant from (3.3) has to be solved, in order to find a sparse solution.
When the solution has been found, the dictionary update stage can be executed.

In the dictionary update stage, each atom is optimized individually. Initially, an atom
k is selected, and that atom alone will be updated. k can be selected sequentially or
randomly.

For the selected atom k, any signals that the atom k did not contribute to are disregarded.
This can be easily achieved by analyzing the k-th row xk of the coefficient matrix X. The
atom k only contributes for any signal i if the value of xk,i is non-zero. The columns of Y
and of X that do not use the atom k can also be disregarded. These reduced matrices will
be represented by Ȳ and X̄ respectively.

The optimization problem is then simplified to only use the signals and coefficients that
use the atom k i.e.

‖Y −DX‖2F =⇒
∥∥Ȳ −DX̄∥∥2

F
. (3.7)

Figures 3.7 and 3.8 show the creation of the matrices Ȳ and X̄. The signals and
columns of the coefficient matrix that were not related to the atom k were removed in

23

Figure 3.7: Selection of the atom k = 1. Signals in yellow represent the signals that the
atom has contributed to. Coefficients in green represent the coefficients that use the atom.

order for the optimization to be performed. The removal of these additional coefficients
and signals assures that the sparsity of this solution is maintained on the next iteration of
the algorithm. The atoms in red represent the additional atoms, besides the atom k, that
are used by the coefficients X̄ to represent the signals Ȳ .

Another way of representing
∥∥Ȳ −DX̄∥∥2

F
is by expressing it as a linear combination of

terms. This representation makes it easier to understand the optimization process of the
atom, as can be seen in

∥∥Ȳ −DX̄∥∥2
F

=

∥∥∥∥∥Ȳ −
n∑

d=1

djx̄
j

∥∥∥∥∥
2

F

(3.8)

Where dj denotes a column of the matrix D and xj denotes a line of the matrix X.

The atom k is then isolated from the rest of the atoms, according to

∥∥∥∥∥Ȳ −
n∑

d=1

djx̄
j

∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥(Ȳ −
n∑

d=1
d6=k

djx̄
j)− dkx̄

k

∥∥∥∥∥∥∥
2

F

(3.9)

24

Figure 3.8: Selection of the atom k = 1. The redundant signals and coefficient columns
were removed.

where E = Ȳ −
∑n

d=1
d6=k
djx̄

j corresponds to the representation error when the atom k is

not considered, leading to

∥∥∥∥∥∥∥∥(Ȳ −
n∑

j=1
j 6=k

djx̄
j)− dkx̄

k

∥∥∥∥∥∥∥∥
2

F

=
∥∥E − dkx̄

k
∥∥2
F

(3.10)

The matrix E is of size n× w, n being the number of rows of the matrix Y and w the
number of signals to which the atom k has contributed to. These are the same dimensions
as in matrix Ȳ . Considering m as the number of columns of Y , since the sparse coding
step produces a sparse matrix X, w is much smaller than m.

The final objective in the dictionary update stage is to improve dk and x̄k in order to
solve

min
dk,xk

∥∥E − dkx̄
k
∥∥2
F
. (3.11)

25

The best way to do this is to use Singular Value Decomposition (SVD) [35] to decompose
the matrix E, i.e.

E = UΣV T , (3.12)

which can also be written as a linear combination:

E = u1σ1v
T
1 + u2σ2v

T
2 · · ·+ uwσwv

T
w (3.13)

Since in an SVD the first terms of the decomposition are in decreasing order of im-
portance, the first term u1σ1v

T
1 can be used to extract the new value of dk and of x̄K ,

i.e.

u1σ1v
T
1 =⇒ d∗k = u1, x̄

k∗ = σ1v
T
1 . (3.14)

When the dictionary update stage has iterated through all the atoms in the dictionary,
if the algorithms has not converged, the process repeats itself, starting in the sparse coding
stage.

The K-SVD algorithm is an excellent algorithm for learning overcomplete dictionaries
focused on reconstructing the samples, but it is not a good fit for classification problems,
since it is focused solely in minimizing the reconstruction error of the samples and not in
the discriminative power of the dictionary.

3.4.2 Face Recognition and Dictionary Learning

While K-SVD is an excellent algorithm for creating overcomplete dictionaries with
excellent reconstruction potential, when dealing with classification, it is not the most
adequate solution, since it doesn’t focus on increasing the discriminatory ability of the
dictionary. Many dictionary learning algorithms have been proposed in order to provide
discriminatory ability to the dictionaries. This leads to improvements in the classification,
leading to more accurate results. These dictionaries use the same principles of K-SVD in
order to learn the dictionary, but they use different techniques in order to improve the
discriminative ability of the learned dictionary.

There are many different approaches to dictionary learning regarding face recognition:

• Shared Dictionary Learning: K-SVD also belongs in this category. These algorithms
learn a dictionary using the training samples from all classes, and expect the dictio-
nary to have discriminatory capabilities. Another shared dictionary algorithm that
improves upon K-SVD regarding the discriminatory capabilities of the dictionary is
the LC-KSVD (Label Consistent K-SVD) [36]. This approach assigns labels to the

26

dictionary atoms and then uses a discriminative sparse coding error term by using
said labels.

• Class Specific Dictionary Learning: Since the intra-class variation of a person can
vary greatly with different poses and illuminations, learning a sub-dictionary inde-
pendently for each class can help capture the main characteristics of the face images.
The Fisher Discrimination Dictionary Algorithm (FDDL [37]) is an example of such
a dictionary learning algorithm. Its goal is to learn independent dictionaries for each
class, while at the same time ensuring that the dictionaries are discriminative by
penalizing the objective function in the case that multiple dictionaries are similar.

• Commonality and Particularity Dictionary Learning: In face recognition problems,
both the inter-class and intra-class variation of the face images can be quite large.
The commonality and particularity dictionary learning algorithms can be used to
cope with this variance. The algorithm proposed by Wang and Kong [38] suggests
the creation of a class specific dictionary (particularity) for each category, in order
to capture the discriminative features of that class and a common dictionary to
all classes (commonality), in order to contribute to the representation of all classes
instead of discrimination.

• Auxiliary Dictionary Learning Algorithm: Sometimes we can be facing a situation
in which we have a low amount of samples to perform face recognition. In sparse
coding this can be problematic, since the dictionaries will not have neither good
reconstruction nor discriminate power, when dealing with small amount of labeled
samples. The adaptive dictionary learning algorithm proposes that, in order to deal
with such problems, two dictionaries are learned: A descriptive dictionary with the
available training samples to perform classification, and an auxiliary dictionary from
a generic training set to improve the classification and reconstruction performance
in the cases that there is not an ideal number of samples available.

The different dictionary learning algorithms are appropriate for different situations. In a
recent survey [39], the different algorithms were compared using multiple face recognition
datasets and while there were cases in which different algorithms had an edge over one
another at some point, in general the FDDL seems to consistently provide the best results.

3.5 Conclusion

In this chapter, the core concepts of sparse representation were explained. It was
explained how sparse representation can be useful regarding imaging application and how
one can perform sparse representation-based classification using the SRC algorithm. The
strengths and weaknesses of the SRC algorithm were also presented. Multiple popular
dictionary learning algorithms were exposed, and it was explained briefly why dictionary
learning can be a better option regarding face recognition, when compared with SRC.

27

It should be noticed that, when dealing with a large number of samples per person, SRC
can achieve better results than the dictionary learning algorithms exposed in this chapter
[39]. Therefore, it should not be discarded completely on behalf of the dictionary learning
algorithms. Instead, a better approach should be to evaluate the face recognition task, in
order to choose the algorithm appropriately.

The next chapter will present an algorithm strongly based on SRC, that has proven to
provide better results than the dictionary learning algorithms mentioned previously.

28

Chapter 4

Accumulative Local Sparse
Representation

While SRC and the dictionary learning algorithms mentioned in Chapter 3 provide state
of the art results regarding face recognition problems, recently it has been proposed in the
literature new methods based on sparse representation that provide even better accuracy
in the face recognition task. This chapter will introduce the Accumulative Local Sparse
Representation (ALSR) [40] algorithm. This algorithm has been shown to provide higher
accuracy in face recognition tasks, especially when a huge number of training samples is
not available.

4.1 Introduction

ALSR is heavily based on the SRC algorithm. The main difference is that, instead of
using the full face images to create the dictionary, it extracts patches from the images and
creates the dictionary using them.

Regarding the classification of facial images, not all the facial attributes are of equal
importance. Some parts of a face image can be more distinctive than others. This is why
a patch based approach can provide better results than an approach that evaluates the
whole image.

The use of patches aims to address some of the usual problems associated with face
recognition. The use of patches instead of the entire image can solve, or at least diminish,
some of these problems:

• The use of face accessories (e.g. sunglasses, scarfs). These elements can lead to wrong
classifications. The use of a patch based approach means that the patches containing
the occluding elements can be disregarded.

29

• Some facial attributes can be more discriminative than others. For example, patches
containing facial attributes like the mouth and nose should be more relevant than
patches containing the forehead.

• With face images with bad illumination, only the patches that are in well lit areas
are considered.

• While using the traditional sparse representation based approaches like SRC, there
was a need for highly aligned face images, in order to achieve high recognition per-
formance. By using patches to perform the recognition task, this problem partially
can be partially solved, by not considering only the patches from one fixed position,
but also the patches from the neighbourhood of that position.

• While in SRC we only considered the similarity of whole images to one another, using
a patch based approach we can search for similar face parts in all the dictionary,
instead of just looking for similar images. E.g. a test image that cannot be correctly
classified using the training images, can perhaps be correctly identified by using
patches from multiple images.

Figure 4.1: Example of important and unimportant patches in a face image.

Figure 4.1 shows a face image and some highlighted patches. The patch highlighted
in red is not important for the classification, since it is on top of the sunglasses that are
occluding the facial attributes. The patches in green, however, since they are on top of
important facial attributes, namely the nose and the lips, have a higher importance in the
classification.

4.2 Algorithm

The ALSR algorithm consists of two stages. The learning stage and the testing stage.
During the learning stage, the patches are extracted from each training image and added

30

to the global dictionary D as atoms. The coordinates and label of the patches are also
stored alongside the atoms for later use. The testing stage will output the classification of
a testing image by extracting patches from it and analyzing each of them individually. The
final classification is relatively similar to a voting system, where each patch from the testing
image votes for a class. In the end, the class with the most contributions is considered the
class of the image.

4.2.1 Learning Stage

In the learning stage, the objective is to build the global dictionary D. Each column
of this dictionary corresponds to a patch from one of the training images. Assuming that
there are nc training images of each class, that there are k classes, that np patches are
extracted from each image and that each patch has w×w pixels, the global dictionary D
will have nc× k×np columns and w×w rows. Alongside the dictionary there are also two
arrays c and l, of length nc ∗ k ∗ np, that correspond, respectively, to the coordinates and
labels of the patches associated with each column of the dictionary.

For each training image, np patches are extracted. The patches are extracted in a grid
like manner. The horizontal and vertical number of patches are npx and npy respectively.
For each patch ρ extracted from the image, its pixels are stacked vertically so it becomes
a column. This column is then added to the dictionary D. The coordinates of the patch,
and the label corresponding to the image it belongs to, are stored in the vectors c and l.

Figure 4.2: Different number of patches in the same image. The image on the left has been
split into np = 25 patches (npx = 5, npy = 5). The image on the left has been split into
np = 100 patches (npx = 10, npy = 10)

Figure 4.3 shows an illustration of the process mentioned above.

31

Figure 4.3: Adding the extracted patches to the global dictionary D

4.2.2 Testing Stage

In the testing stage, given a testing image I, the objective is to output the class of that
image. The image I is split into np patches, in the same manner as the training images
were. This assures that the patches cover the same areas from the image and are of the
same size (which they must be in order to perform sparse coding). Then the following
steps are taken, which lead to the classification:

• Building the Local Dictionary

• Sparse Coding

• Analysis of contributions

Figure 4.5 shows an illustration of the processing of a patch, namely the building of the
local dictionary and the sparse coding steps. The test image is split into patches, then,
for each patch, a smaller local dictionary D∗ is built. Using this dictionary, the sparse
representation x of the patch can be obtained in the sparse coding step. Having x, the
contribution vector s can be created. This process is repeated for all the patches. Once

32

all the patches have been processed, the analysis of contributions step can be performed.
This step will output the predicted class of the test image.

Building the Local Dictionary

In SRC, the dictionary is usually of a small size, due to it being formed by downsampled
images. In ALSR, this is not the case. While in SRC the images could be downsampled to
relatively low resolutions, in ALSR, in order for the patches to retain enough information
for them to be discriminative, the image must preserve a large size. The number of atoms of
the dictionary is also much less in SRC than in ALSR, since in SRC each atom corresponds
to an image and in ALSR each atom corresponds to a patch. This, coupled with the fact
that the patches can partially overlap each other, leads to a significantly larger dictionary
than one used in SRC. Performing sparse coding on such a large dictionary would be
too resource intensive, therefore taking far too much time. Hence, the use of a smaller
dictionary is required to be able to perform the classification efficiently. This can be
achieved by using a subset of D. This sub-dictionary is called the local dictionary and it
is represented by D∗.

D∗ can be used instead of D due to two factors:

• Only the patches from the same neighborhood from the patch being tested are rele-
vant, since all the facial attributes are expected to remain approximately in the same
area.

• Only patches that are similar to the patch being tested should be considered. This
allows for patches that are significantly different and that would not bring any benefit
by remaining in the local dictionary to be discarded.

Considering a patch ρ being tested, in order to build the local dictionary D∗ two steps
need to be performed. The patches from the global dictionary D that are in the same
neighborhood as the patch ρ are copied to D∗. In order to select these patches the
coordinate information stored in the training stage is used. Only patches that are within a
distance d to the patch ρ are selected for D∗. Then the cosine similarity of those patches
to ρ is computed, and any patch whose similarity is below a threshold θsim is discarded.

Figure 4.4 shows a patch ρ is highlighted in green and its neighborhood area is highlighted
in yellow. Only patches from D that are within that area and are similar to ρ are used
for D∗.

Sparse Coding

Having created the local dictionary D∗, the sparse coding of ρ can now be performed.
This step is performed in the same way as in SRC, except that now, instead of the whole

33

Figure 4.4: Neighborhood of a patch

image, ρ will serve as the y and, instead of the full dictionary D, the local dictionary D∗

is used, according to

min
x
‖ρ−D∗x‖22 + λ ‖x‖1 . (4.1)

Having performed the sparse coding of ρ leaves us with the coefficient vector x. By
using the labels of the patches from D∗, it is possible to obtain subsets of x associated
with each class i, for i = 1..k. A subset from x only containing the coefficients associated
with the class i is represented by xi.

The contributions of the multiple classes are stored in a vector s of length k, where
each element, si, for i = 1..k, corresponds to the absolute sum of the contributions of the
patches from the class i. This corresponds to the l1-norm of xi, i.e.

s = [s1, ..., sk] (4.2)

si = ‖xi‖1 . (4.3)

Figure 4.5 shows the process until this point. Initially, the patches are extracted from
the testing image on the left. Then, for each patch, a local dictionary is created by
selecting from the global dictionary only the patches from the same area as the patch
being tested. From these patches, any patches whose similarity to the patch being tested
is below a similarity threshold are discarded. Then, by using the dictionary D∗, the sparse
coefficients x of the patch are calculated. The contribution vector s can be created using
x.

34

Figure 4.5: Processing a patch from a testing image.

In order to decide if the patch ρ is to be used in the classification process, a variation
of the SCI mentioned before in (3.6) can be used. This will evaluate the sparsity of the
contributions vector s. The value of the SCI will be between 0 and 1. Values close to 1
mean that the vector s is sparse. If the patch is discriminative, its SCI value is expected
to be closer to 1,

SCI(ρ) =
kmaxi si/ ‖s‖1 − 1

k − 1
. (4.4)

The patch will be considered for classification, if its SCI is greater or equal than a
threshold θSCI .

Figure 4.6: Representation of a high SCI patch (green) and a low SCI patch (red).

Figure 4.6 shows an image with two highlighted patches. The patch in green corresponds
to a well lighted area with discriminative potential (since it is positioned over the eye).
These two factors contribute to the high SCI of the patch. The patch in red, on the

35

contrary, is located in a poorly lighted area with no clear face attributes. Therefore, this
patch has a low SCI.

Analysis of contributions

The next step is to analyze the contributions of all the patches of the image, in order
to perform the classification. For each coefficient vector s associated with each patch ρ,
if that patch is considered relevant given its SCI (SCI(ρ) ≥ θSCI), then its contributions
are normalized by its maximum value, i.e.

s̄ = s/max
i
si. (4.5)

After the normalization of the contribution vectors s̄, any values in those vectors that
are under a threshold θc are replaced by 0. This removes the noise contributions from the
contribution vectors.

The contributions of all the patches ρi of the test image I are added. This sum is a
vector of length k, that is represented by z = [z1, ..., zk], where each element corresponds
to the contributions of all the patches for each possible class,

z(I) =

p∑
i=0

s̄i. (4.6)

The test image I is classified as being of the class i, where zi is maximal.

Figure 4.7: Plot representing the vector z associated with a face image.

Algorithms 2 and 3 show a pseudo-code implementation of the ALSR training and testing
stages.

36

Algorithm 2 Adaptive Local Sparse Representation (ALSR) - Training Stage

input: T ← array of training images
output: D ← global dictionary

1: D ← new empty dictionary matrix
2: l← new empty class label array
3: c← new empty coordinate array

4: for each image I in T do
5: for each patch ρ in I do
6: h← stacked columns of ρ
7: add h to D as column
8: add class(I) to l
9: add coordinates(ρ) to c

10: return D

37

Algorithm 3 Adaptive Local Sparse Representation (ALSR) - Testing Stage

input:
I ← test image
D ← global dictionary
d← distance between coordinates
np← number of patches in global dictionary

output:
class of test image I

1: z ← empty contributions array of length k
2: for each patch ρ in I do
3: D∗ ← new empty local dictionary matrix
4: l∗ ← new empty local labels array
5: for i in 0 ... np− 1 do
6: if dist(c[i], coordinates(ρ)) < d then
7: add D[i] to D∗ as column
8: add l[i] to l∗

9: D∗ ← get only similar patches to ρ from D∗

10: x← sparse coding(ρ,D∗)
11: s = contributions(x)
12: if SCI(s) < θSCI then
13: Skip to the next patch

14: s̄ = s/max(s)
15: for s̄i in s̄ do
16: if s̄i < θc then
17: s̄i = 0

18: z += s̄

19: return i where zi is maximal

38

4.3 Difficulties

The improvement in accuracy gained by using ALSR against the previously mentioned
methods, like SRC or one of the dictionary learning algorithms, comes at the cost of the
performance of the algorithm.

This performance penalty is due to a number of different factors:

• The size of the dictionary is much larger in ALSR. In SRC and in the dictionary
learning algorithms discussed previously, the images could be downsampled without
compromising accuracy. While in ALSR the images can also be downsampled if their
size is unreasonable large, they cannot be reduced to the dimensions as low as with
SRC or the dictionary learning algorithms. Thus, the patches used as columns in the
ALSR can have approximately the same resolution than the entire image in SRC.
This coupled with the fact that each training image in ALSR occupies np columns of
the dictionary, while in SRC each image corresponds to only one column, makes the
sparse coding step very time consuming.

• The construction of the local dictionary, which is done for each patch ρ of an image,
has to be done p times for each testing image and is comprised of two resource
intensive steps:

1. The discovery of all the patches in D whose coordinates are within the distance
d from the current patch being tested.

2. The discovery of the most similar patches to the patch being tested.

• The sparse coding step, while generally faster, since it is dealing with small patches
and a relatively small local dictionary D∗, has to be performed p times for each
testing image.

All of the above factors coupled together lead to a very resource intensive algorithm,
with a testing time per image in the order of several seconds. While this is reasonable for
some applications, for most it is not.

4.3.1 Improving performance

The original paper of ALSR [40] only provides a high level description of the algorithm.
Therefore, it does not delve into details regarding its implementation. Despite it being
a resource intensive algorithm, there are some approaches that can be taken in order to
reduce testing time of the algorithm:

• The first step of the building of the local dictionaries can be done in the training
stage. Since the patches from the training and testing images share the same pairs
of coordinates, it is possible to create the sub-dictionary only containing the patches
within a certain distance d for each different pair.

39

• The use of a highly optimized similarity search library (e.g. FAISS [41]) can speed up
the search for the similar patches when dealing with very large datasets, especially
if the library utilizes GPU resources. If needed, these libraries also offer methods for
approximate search that are much faster than the regular methods, while sacrificing
almost no precision. This step combined with the previous decreases substantially
the time it takes to build the local dictionary.

Even by performing the steps above, the biggest bottleneck of the testing stage is by far
the sparse coding step. It is crucial to use an highly optimized sparse coding library (e.g.
SPAMS [42]) in order to achieve acceptable testing times per face image.

It should also be noted that these sub-dictionaries created in the steps above share a large
amount of the same patches with each other. Therefore, the amount of system memory
used by this approach can be quite large when dealing with larger datasets, since there is a
lot of duplicate information. Another possibility, albeit slower, is to store only the indexes
of the patches and then fetching them from the global dictionary during the testing stage.

4.4 Variations

There are some possible variations of the algorithm that can be used if better testing
times are required. These approached are also patch based, but they do not reach the same
levels of accuracy than ALSR:

• Using a fixed amount of patches in the subdictionary - Instead of using all the patches
that are similar to a patch being tested, only the m most similar patches are selected.
This ensures that the time taken per test image is approximately constant and the
number of patches can be used as a trade-off between accuracy and speed.

• Using random patches - This idea was explored by the same authors of ALSR in
another algorithm called Adaptive Sparse Representation (ASR) [43]. The algorithm
extracts random patches from the training images and then, by using k-means clus-
tering, builds small local dictionaries in order to perform the sparse coding and the
classification.

4.5 Conclusion

In this chapter, a new state of the art algorithm was introduced. Both the advantages
and the disadvantages of such an algorithm were explained, as were solutions to address
such difficulties.

40

ALSR can be considered as an excellent algorithm for performing face recognition, since
it tackles many of the downfalls of such a task. It should be noted that it is a resource
intensive algorithm, and if time is a concern, especially when dealing with bigger datasets,
other approaches should be considered. Otherwise ALSR is the algorithm to beat regarding
face recognition via sparse representation.

41

42

Chapter 5

Experimental Results

In this chapter, the experimental results of this dissertation will be presented. The
chapter will focus on the SRC and ALRS algorithms. The different parameters of each
algorithm will be tested and their influence on the results will be explained. Other results
from other algorithms will be mentioned for reference, but these algorithms will not be tested
in depth. The chapter will also compare the different algorithms regarding multiple factors,
like performance and accuracy. The datasets used will be the three introduced in Chapter
2.

5.1 SRC

There are multiple factors that influence the accuracy obtained by using the SRC al-
gorithm to perform the recognition of face images. The algorithm itself only has one
parameter. The parameter λ, previously seen in (3.4), regulates how sparse the set of
coefficients x should be. The influence of this parameter on the accuracy of the algorithm
will be tested.

Besides the value of λ, different conditions that influence the accuracy and performance
of SRC will be studied. Those conditions are:

• Amount of training samples

• Pre-alignment of the face images

• Dimensionality of the samples

In order to better understand the performance constraints of the sparse coding step,
varying dictionary sizes will also be tested.

All three datasets will be used during the tests, with the exception of the image alignment
test, since the YALE extended dataset and the deep funneled LFW are already aligned.

43

In order to measure the accuracy of the algorithm, the Monte Carlo cross validation
[44] method is used. The samples are shuffled randomly and the testing and training sets
are formed after. The algorithm is then run and the accuracy measured. This process is
repeated five times,and the final accuracy is the average accuracy of the five iterations.

It should be noted that the datasets have a different number of classes. The bigger the
number of classes, the more difficult it is to perform a correct classification. Therefore,
since the LFW dataset has many more classes than the rest of the datasets (143 against
39 for the YALE dataset and 50 for the GT dataset), it is natural that it cannot achieve
the same levels of accuracy.

5.1.1 Lambda

As discussed previously in Chapter 3, the parameter lambda (λ), present in (3.4) regu-
lates the trade-off between the sparsity of the solution and the reconstruction error. High
values of lambda lead to a more sparse solution, but with more reconstruction error, while
low values of lambda lead to less reconstruction error, but are prone to less sparsity.

It should be noted that the images from the GT dataset were pre-aligned, since in this
test we only care about the influence of the lambda parameter. All the images have been
downsampled to a smaller, yet generous size (the size of the downsampled images is (25,
30)) in order to reduce test times without compromising on accuracy [45].

For the GT dataset, ten samples were used for training, while the remaining five were
used for testing. Regarding the YALE dataset forty samples were used for training and
the remaining twenty for testing. For the LFW dataset, ten images were used for training,
and the remaining were used for testing. The number of testing samples per class in the
LFW dataset varies depending on the class.

The plots of Figure 5.1 show how the algorithm performs for varying values of λ. Figure
5.1a shows that the accuracy decreases with increasing values of λ. This means that
focusing too much on the sparsity of the solution can lead to less accurate results. It’s
also interesting to note that when λ = 1 the accuracy is close to zero. This occurs because
by setting the value of λ so high, the algorithm sets all the coefficients to zero, since this
minimizes (3.4).

Another interesting observation is when λ = 0. This means that the algorithm is just
trying to reconstruct the testing samples as faithfully as it can, without any concern for
the sparsity of the solution. As one would expect, since our classification relies on the
sparsity of the solution, this leads to inferior results regarding accuracy.

44

(a) Lambda (λ) ∈ [0.0, 1.0] (b) Lambda (λ) ∈ [0.01, 0.2]

Figure 5.1: Plots showing the accuracy of the classification when varying the parameter
lambda.

The plots shown demonstrate that the best results are achieved for small values of λ,
but that the regularization parameter is still essential in order to improve the accuracy of
the algorithm. Figure 5.2 shows that the optimal value of λ for all the datasets is 0.002,
but any value of lambda around this value yields approximately the same results.

5.1.2 Number of training samples

Utilizing the optimal value of lambda (λ = 0.002) discovered previously, in this section
the number of training samples will vary in order to see the impact in the accuracy of the
algorithm.

The plots shown in the the Figures 5.3a, 5.3b and 5.4 show how the number of training
samples used relates to the accuracy of the algorithm. Naturally, by increasing the number
of training samples the accuracy increases for all the datasets.

It is interesting to note that the increase in accuracy behaves like a logarithmic function,
since the increase in accuracy observed using a low amount of training samples is signif-
icantly higher than the increase observed when using a high amount of training samples.
This becomes especially obvious when analyzing a dataset like the YALE dataset, where
it can be seen that there is almost no benefit in using more than 15 training samples per
class, since the increase in accuracy from 15 onward is minimal.

45

Figure 5.2: Lambda (λ) ∈ [0.0, 0.01]

(a) Varying number of training samples
GT Dataset

(b) Varying number of training samples
YALE Dataset

5.1.3 Face Alignment

The SRC algorithm is by nature very susceptible to misalignment. In the case of down-
sampling as a dimensionality reduction method, the algorithm compares the downsampled
images pixel by pixel. If the images are misaligned, this leads to comparisons between
different facial attributes, which in turn leads to misclassifications.

In Table 5.1 the influence of the face alignment can be observed. Only the GT and LFW
datasets are used, since the images from the YALE dataset are all aligned.

As expected, the drop in accuracy by utilizing the unaligned, instead of the aligned face
images, is significant. This results in about half of the classification accuracy in the GT

46

Figure 5.4: Varying number of training samples LFW Dataset

Aligned Unaligned
GT 95.61% 47.91%
LFW 65.61% 20.84%

Table 5.1: Accuracy for the aligned and unaligned LFW and GT datasets.

dataset and about a third of the accuracy in the LFW. This is due to the poses of the faces
in the LFW being more misaligned than those in the GT dataset.

In conclusion, performing face alignment before the classification when utilizing the SRC
algorithm is a must in order to achieve good classification accuracy.

5.1.4 Dimensionality Reduction

Dimensionality reduction allows the SRC algorithm to run much faster than by using
the original images directly. As long as the reduced images are still reasonably large, the
drop in classification accuracy should be minimal.

Three dimensionality reduction techniques will be used: PCA, Random Projection and
Downscaling.

Figures 5.5a, 5.5b and 5.6 illustrate the variation in accuracy depending on the number of
features outputted by the three dimensional reduction methods mentioned above. Overall,
all of the methods show the same behaviour. The accuracy increases at an accelerated rate
when dealing with a small number of features, and the increase starts to stagnate once a
higher number of features has been reached. By observing the LFW dataset accuracy, it
is possible to conclude that this number is about 500 for the downscaling method, 300 for

47

(a) Accuracy given varying sizes - Downscaling
(b) Accuracy given varying number of samples -
PCA

the PCA and more than 500 for the random projection. When using samples with high
dimensionality, all the methods can achieve approximately the same accuracy.

It should be noted that, while using PCA as a dimensionality reduction method, the
maximum number of dimensions that can be outputted is the number of training samples.
This happens since, in the SVD performed during the PCA algorithm, the maximum
number of singular values is the number of training samples.

Downscaling PCA Random Projection
100 1.3563s 2.7081s 1.8197s
500 1.4761s 4.5964s 1.9845s
1000 1.5017s 8.3496s 2.1544s

Table 5.2: Times for the dimensionality reduction methods - LFW dataset

The time it took for each method can be seen in Table 5.2. While the time always in-
creases in accordance with the number of features, the downscaling and random projection
methods only have a slight increase for any number of features. Using PCA takes much
more time, especially if the number of features is high.

The downscaling was performed using OpenCV [46]. The PCA and random projection
were performed using scikit-learn [47].

The findings presented in this section are consistent with the literature. If the dimen-
sionality of the samples remains reasonably high, the dimensionality reduction method
becomes redundant in terms of accuracy. Still, for the datasets used in these tests, the

48

Figure 5.6: Accuracy given varying number of samples -
Random Projection

downscaling method still provides slightly more accuracy across the board. It is also the
fastest dimensionality reduction method from all the tested, and it does not suffer a high
penalty in performance with the increase of the number of features, as can be seen in the
PCA method.

5.1.5 Dictionary size and performance

This section aims to analyze the performance of the sparse coding step with dictionaries
of varying dimensions. Since this step is the most resource intensive step in the classifica-
tion, it is interesting to see how the dictionary size relates to the time it takes to sparse
code a signal.

In order to preform these tests, a random signal and dictionary are generated with
varying sizes.

Firstly, a signal with length 100, a dictionary with 100 rows and a variable number of
atoms are tested. In SRC, this would simulate the sparse coding of a test sample with a
dictionary with a variable amount of training samples.

Figure 5.7 shows the time it takes to perform the sparse coding step with a dictionary
with a variable number of atoms. The time becomes irregular as the size of the dictionary
increases. Since the signal and dictionary are created randomly, some sparse coding steps
may differ slightly regarding the number of iterations it takes to reach the sparse represen-
tation. Nevertheless, it is clear that, an increase in the number of columns of the dictionary
results in a linear increase of the time it takes to compute the sparse representation of a
signal.

49

Figure 5.7: Time it takes for the sparse coding step with a variable number of columns.

Now, a signal of variable length and a dictionary of 100 columns with a variable number
of rows are tested. In SRC, this scenario would correspond to a fixed amount of training
samples, but with different dimensions.

Figure 5.8: Time it takes for the sparse coding step with a variable number of rows.

Figure 5.8 shows the time it takes to perform the sparse coding step, when varying
the number of rows of the dictionary, as well as the length of the signal to be represented.
Interestingly, the pattern seems to be the same as seen before. By increasing the number of
rows of the dictionary and the signal length, a linear increase in the time can be observed.
Its also worth mentioning, that in spite of the dimensionality growth of the dictionary
being the same as in the previous case, the time increases at a much slower rate.

In a face recognition scenario, the first test shows that the amount of time taken to
perform sparse coding of a face image increases linearly with the amount of training samples

50

in the dictionary. The second test shows that the same can be said for if there’s an increase
of the dimensions of the samples, but this performance hit is not as pronounced as the one
taken from increasing the amount of training samples.

5.2 ALSR

In this section, the different conditions that influence the accuracy and performance of
ALSR will be studied. This algorithm features a high number of parameters:

• px - number of horizontal patches

• py - number of vertical patches

• w - size of the patches (w × w)

• d - distance of the patches from the same neighborhood

• θsim - similarity threshold

• θsci - SCI (Sparsity Concentration Index) threshold

• θc - noise threshold

• Sparse coding algorithm (lars/omp)

Therefore, the analysis performed on this algorithm will not focus on the parameters,
but instead focus on these particular conditions:

• Number of training samples

• Image Alignment

• Patch Overlap

This algorithm will be compared mostly with the SRC. Since the number of parameters
is substantial, and given that the algorithm takes a long time to test, optimizing it for
each test would be too time consuming. Therefore, the tests shown below should not
be considered as the best results possible of the algorithm. They only aim to provide an
insight on how the above mentioned situations affect its accuracy. In the end, a summary of
the best accuracy in each dataset will be provided, where it is possible to compare ALSR
to other sparse representation based classification algorithms (e.g. dictionary learning
algorithms) and other popular face recognition algorithms.

51

Given that the ALSR algorithm is a resource intensive algorithm, it takes a considerable
amount of time to test, especially in large datasets. Therefore, the results will not be
presented in the same manner than the SRC results. Instead, only the results deemed
interesting will be presented, as well as the parameters used to achieve those results.

In order to measure the accuracy of the algorithm, the first images of each class will be
used for training, and the remaining for testing.

5.2.1 Number of training images

ALSR is an algorithm which is expected to perform well even with a low amount of
training samples.

Accuracy
Number of

training samples
SRC ALSR

1 54.0% 58.4%
3 73.8% 78.0%
5 81.4% 91.4%
7 88.5% 94.5%

10 95.6% 97.2%

Table 5.3: Accuracy with varying number of training samples (GT Dataset).

Table 5.3 shows the accuracy of the SRC and ALSR algorithms for the GT dataset.
It should be noted that, unlike for SRC, the parameters used for the ALSR were not
optimized, since optimizing such a large number of parameters would take too much time.
Still it performed admirably, beating the SRC algorithm by a significant margin for any
amount of training samples.

5.2.2 Image Alignment

The ALSR algorithm is somewhat resistent to misaligned face images due to two factors:

1. Portions of a face image that are slightly misaligned will still be considered, since it
considers patches from a wide area.

2. If the image is severely misaligned, only a few discriminative patches should have a
high enough SCI to be considered.

52

The factors mentioned above help the ALSR algorithm perform reasonably well when
using misaligned images. However, aligned images are still preferred as they achieve the
best results. Given that the SRC algorithm has no precautions against misaligned images,
ALSR is expected to perform much better under such conditions.

Once again, the GT and LFW datasets will be used, since they both feature misaligned
face images. The ten first images from each class will be used for training and the remaining
for testing. In the case of the GT dataset this means that each class has five test images.
In the case of the LFW dataset, each class has a variable number of testing images.

SRC ALSR
Aligned Unaligned Aligned Unaligned

GT 95.6% 44.4% 97.2% 70.8%
LFW 64.5% 23.4% 80.6% 48.4%

Table 5.4: Accuracies for aligned and misaligned datasets (SRC and ALSR).

Table 5.4 shows the accuracies obtained for the aligned and misaligned versions of the
datasets. As expected, the accuracy of both algorithms decreases when using the misaligned
versions of the datasets. The ALSR, however, shows an acceptable drop in accuracy,
performing only about 30% worse. By comparison, the SRC algorithm exhibits a drop in
accuracy of around 60%.

In conclusion, the ALSR algorithm shows a much greater resistance to misalignment,
when compared to the SRC algorithm. Despite not being tested, the dictionary learning
algorithms mentioned previously on Chapter 3 are also expected to perform poorly when
used with misaligned images, since they also do not have precautions in place against this
issue.

5.2.3 Patch Overlap

In the ALSR algorithm, the patches can overlap with each other or not. This will depend
on the number of patches and their size. As an example, if the image has 90 pixels of width
and the patches have 10 pixels of width, if px > 9 than the patches will have overlap.

Figure 5.9 shows the same face image divided into two different configuration of patches.
The patches from both images are squared and are of the same size. In the first image
px = 6, and there is no overlap of the patches. Therefore, each pixel of the image only
belongs to one patch. In the second image px = 12, and the patches overlap each other

53

Figure 5.9: Overlapping of patches.

horizontally. Consequently, each pixel of the image can belong to multiple patches (in this
particular case to 2 patches). In neither image the patches overlap themselves vertically.

While increasing the amount of patches results in a duplication of some information,
therefore making the algorithm more resource intensive, it improves the chance of encoun-
tering discriminative patches that result in greater accuracy.

In the following tests, for each dataset, ten images were used for training and the reaming
images were used for testing.

Overlap No Overlap
GT 99.2% 97.2%

LFW 80.6% 50.3%

Table 5.5: Accuracy with/without patch overlap.

Table 5.5 shows the accuracies obtained when utilizing overlapping patches and when
not. The GT dataset, since it features reasonably constrained conditions, features a high
percentage of accuracy in either case, only benefiting slightly from overlapping the patches.
It should be noted that by overlapping the patches, since the number of patches and
overall information increases, so does the time it takes to test one face image. With the
overlap, the algorithm takes roughly five times more to test. A much bigger increase
in accuracy is observed when dealing with the LFW dataset. Since the dataset features
fully unconstrained conditions, the increase in the amount of patches clearly improves the
discriminative capability of the algorithm.

5.2.4 Best Results

In this section, the best results achieved with the SRC and ALSR algorithms are disclosed
and compared with other face recognition algorithms.

54

For reference, the eigenface algorithm achieves around an accuracy of approximately
60% on the LFW dataset [48] and deep learning methods, like the VFF-G [4], achieve an
accuracy of 97.7%.

For this test, the ten first images of each class were used as training images and the
remaining images were used for testing.

GT Yale LFW
SRC 95.6% 96.3% 64.5%
ALSR 99.2% 98.0% 80.6%
FDDL - - 74.8% [40]
ASR - - 78.5% [40]

Table 5.6: Table showcasing the best results obtained with the respective algorithms.

Showcased in Table 5.6 are the best results obtained by each algorithms in the test
conditions mentioned above. As the table shows, the ALSR algorithm achieves the highest
accuracy of the group in all datasets. It does so at the expense of testing time. Since it is
an extremely computational intensive algorithm, the test time for each image on the LFW
dataset is around 17 seconds. While this problem is not as obvious in smaller datasets
(on the YALE dataset it takes about 1 seconds per image), the time if takes to test an
image is still orders of magnitude greater than the test time of SRC (in this test SRC
took about 8 seconds to test all the 2106 testing images of the YALE dataset). The ASR
algorithm can be seen as a lighter version of the ALSR, since it uses a smaller amount of
randomly located patches to perform the classification, instead of patches from the whole
image. While it does not reach the same level of accuracy of the ALSR, it still performs
admirably and is less resource intensive by nature.

It should be noticed that the parameters of the ALSR algorithm were tuned manually.
An automatic parameter search could potentially yield better results, but it would require
either an unreasonable amount of time or a great amount of computational resources.

5.3 Conclusion

As seen by the experimental results above, the SRC and ALSR algorithms are both
suitable candidates for performing face recognition. In constrained conditions, the use
of SRC is recommended, since the results are approximate to those of the ALSR, while
being much faster to perform the recognition. On the other hand, if the conditions are
absolutely unconstrained and there is no limitation of either testing time, or computational
capabilities, then the ALSR provides the best results.

55

While this dissertation did delve into dictionary learning algorithms, they are also a
good option regarding face recognition based on sparse representation. While they take
more time to train, they provide better results than the SRC algorithm and take a similar
amount of time to test.

56

Chapter 6

Conclusion

The main objective of this dissertation was to provide an overview of sparse representa-
tion and namely its application in the field of face recognition. It successfully reached its
goal, by explaining in a correct and concise manner what is sparse representation, how one
can obtain a sparse representation and how it relates to face recognition. This was achieved
by describing multiple algorithms for classification that were applied to face recognition
scenarios thorough the literature.

As demonstrated by the experimental results, sparse representation based classification
algorithms provide remarkable results in constrained and semi-constrained environments,
as seen by their performance on the YALE and GT datasets, and reach very good results
on fully unconstrained environments, as seen by the results on the LFW dataset.

While impressive results in face recognition can be attained via sparse representation,
it is my personal opinion that these results are nowadays overshadowed by the accuracies
attained when using deep learning, namely using CNN’s. Still it remains impressive that
sparse representation methods can achieve such high accuracies, only using such a small
amount of training samples, when compared with the millions of samples required by deep
learning methods.

6.1 Future Work

There are two different directionS that can be taken from the work done for this disser-
tation.

Firstly, the studies of sparse representation based face recognition presented can be
further improved by testing new algorithms, including the dictionary learning based ones
mentioned in Chapter 3. An attempt to improve upon these algorithms can also be pursued.

57

Secondly, one could attempt to optimize the algorithms presented in this dissertation.
Both the minimization performed for sparse representation and the dictionary learning
algorithms are highly parallelizable. Therefore, it would be interesting to attempt an
implementation of these algorithms to be run in a GPU, in order to measure the perfor-
mance gains. This would benefit the ALSR algorithm the most, since the patches could
also be processed in parallel. If the increase in speed was significant, this would allow a
faster automated parameter search, in order to optimize the algorithm and reach greater
accuracies.

58

Bibliography

[1] Arvind Ganesh, Andrew Wagner, Zihan Zhou, Allen Y. Yang, Yi Ma, and John
Wright. Face recognition by sparse representation. Compressed Sensing: Theory
and Applications, pages 515–539, 2009.

[2] Aleix Mart́ınez and Robert Benavente. The AR face database. Tech-
nical Report 24, Computer Vision Center, Bellatera, Jun 1998. Cites
in Scholar Google: http://scholar.google.com/scholar?hl=en&lr=&client=firefox-
a&cites=1504264687621469812.

[3] Brendt Wohlberg. SPORCO. Technical report, 2017.

[4] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In
BMVC, 2015.

[5] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I, Dec 2001.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005.

[7] Shaikh Muhammad Allayear, Md Fakrul Abedin Bhuiyan, Mirza Mohtashim Alam,
S. Rayhan Kabir, Md Tahsir Ahmed Munna, and Md. Samaun Hasan. Human face
detection in excessive dark image by using contrast stretching, histogram equaliza-
tion and adaptive equalization. International Journal of Engineering & Technology,
7(4):3990–3994, 2018.

[8] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proceedings. 1991
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 586–591, June 1991.

[9] Masakazu Matsugu, Katsuhiko Mori, and Takashi Suzuki. Face recognition using
SVM combined with CNN for face detection. In Nikhil Ranjan Pal, Nik Kasabov,
Rajani K. Mudi, Srimanta Pal, and Swapan Kumar Parui, editors, Neural Information
Processing, pages 356–361, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

59

[10] Georgia tech face database. http://www.anefian.com/research/face_reco.htm.
Accessed: 2019-07-10.

[11] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illumina-
tion cone models for face recognition under variable lighting and pose. IEEE Trans.
Pattern Anal. Mach. Intelligence, 23(6):643–660, 2001.

[12] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[13] Gary B. Huang, Marwan Mattar, Honglak Lee, and Erik Learned-Miller. Learning to
align from scratch. In NIPS, 2012.

[14] Stefan Lee. Sparse coding for object recognition. https://www.

semanticscholar.org/paper/Sparse-Coding-for-Object-Recognition-Lee/

3db4bdee7bc03239ef25d23cf8dc14ce5a5300e2, 2013. Accessed: 2019-04-14.

[15] Arthur Szlam, Karol Gregor, and Yann LeCun. Fast approximations to structured
sparse coding and applications to object classification. In Andrew Fitzgibbon, Svetlana
Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Computer Vision
– ECCV 2012, pages 200–213, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[16] Martin Rehn and Friedrich T. Sommer. A network that uses few active neurones to
code visual input predicts the diverse shapes of cortical receptive fields. Journal of
Computational Neuroscience, 22(2):135–146, 2007. QC 20100916.

[17] T. T. Cai and L. Wang. Orthogonal matching pursuit for sparse signal recovery with
noise. IEEE Transactions on Information Theory, 57(7):4680–4688, July 2011.

[18] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Opti-
mization with sparsity-inducing penalties. Found. Trends Mach. Learn., 4(1):1–106,
January 2012.

[19] David L. Donoho. For most large underdetermined systems of equations, the minimal
1-norm near-solution approximates the sparsest near-solution. 2006.

[20] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[21] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle
regression. Ann. Statist., 32(2):407–499, 04 2004.

[22] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm with
application to wavelet-based image deblurring. In 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 693–696, April 2009.

60

http://www.anefian.com/research/face_reco.htm
https://www.semanticscholar.org/paper/Sparse-Coding-for-Object-Recognition-Lee/3db4bdee7bc03239ef25d23cf8dc14ce5a5300e2
https://www.semanticscholar.org/paper/Sparse-Coding-for-Object-Recognition-Lee/3db4bdee7bc03239ef25d23cf8dc14ce5a5300e2
https://www.semanticscholar.org/paper/Sparse-Coding-for-Object-Recognition-Lee/3db4bdee7bc03239ef25d23cf8dc14ce5a5300e2

[23] Chenghong Yang and Hongjuan Zhang. Low-rank sparse representation with pre-
learned dictionaries and side information for singing voice separation. Advances in
Pure Mathematics, 08:419–427, 01 2018.

[24] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, Nov 2006.

[25] K. Engan, S. O. Aase, and J. Hakon Husoy. Method of optimal directions for frame
design. In 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), volume 5, pages 2443–
2446 vol.5, March 1999.

[26] Lijun Bao, Wanyu Liu, Yuemin Zhu, Zhaobang Pu, and Isabelle E. Magnin. Sparse
representation based MRI denoising with total variation. International Conference on
Signal Processing Proceedings, ICSP, pages 2154–2157, 2008.

[27] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution
as sparse representation of raw image patches. 26th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2008.

[28] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust
Face Recognition via Sparse Repression. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 31(2):210–227, 2009.

[29] Dong Wen, Peilei Jia, Qiusheng Lian, Yanhong Zhou, and Chengbiao Lu. Review
of sparse representation-based classification methods on EEG signal processing for
epilepsy detection, brain-computer interface and cognitive impairment. Front Aging
Neurosci, 8:172–172, Jul 2016. 27458376[pmid].

[30] Alaa Tharwat. Principal component analysis - a tutorial. International Journal of
Applied Pattern Recognition, 3:197, 01 2016.

[31] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction:
Applications to image and text data. Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 07 2001.

[32] A Youssef. Analysis and comparison of various image downsampling and upsampling
methods. page 583, 01 1998.

[33] Andrew Wagner, John Wright, Arvind Ganesh, Zihan Zhou, Hossein Mobahi, and Lei
Yu. Toward a practical face recognition system: Robust alignment and illumination by
sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 34:372 – 386, 03 2012.

61

[34] Yongkang Wong, Mehrtash Tafazzoli Harandi, and Conrad Sanderson. On robust
face recognition via sparse encoding: the good, the bad, and the ugly. CoRR,
abs/1303.1624, 2013.

[35] Dan Kalman. A singularly valuable decomposition: The SVD of a matrix. College
Math Journal, 27:2–23, 1996.

[36] Z. Jiang, Z. Lin, and L. S. Davis. Label consistent K-SVD: Learning a discrimina-
tive dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(11):2651–2664, Nov 2013.

[37] Meng Yang, Lei Zhang, Xiangchu Feng, and David Zhang. Fisher Discrimination
Dictionary Learning for sparse representation. Proceedings of the IEEE International
Conference on Computer Vision, pages 543–550, 2011.

[38] Shu Kong and Donghui Wang. A dictionary learning approach for classification: Sepa-
rating the particularity and the commonality. In Andrew Fitzgibbon, Svetlana Lazeb-
nik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Computer Vision –
ECCV 2012, pages 186–199, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[39] Yong Xu, Zhengming Li, Jian Yang, and David Zhang. A Survey of Dictionary Learn-
ing Algorithms for Face Recognition, 2017.

[40] Domingo Mery; Sandipan Benarjee. Recognition of faces and facial attributes using
accumulative local sparse representations. 2018.

[41] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
gpus. arXiv preprint arXiv:1702.08734, 2017.

[42] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for
matrix factorization and sparse coding. J. Mach. Learn. Res., 11:19–60, March 2010.

[43] D. Mery and K. Bowyer. Face recognition via adaptive sparse representations of
random patches. In 2014 IEEE International Workshop on Information Forensics
and Security (WIFS), pages 13–18, Dec 2014.

[44] Qing-Song Xu and Yi-Zeng Liang. Monte carlo cross validation. Chemometrics and
Intelligent Laboratory Systems, 56(1):1 – 11, 2001.

[45] Liansheng Zhuang, Tsung Han Chan, Allen Y. Yang, S. Shankar Sastry, and Yi Ma.
Sparse Illumination Learning and Transfer for Single-Sample Face Recognition with
Image Corruption and Misalignment. International Journal of Computer Vision,
114(2-3):272–287, 2015.

[46] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

62

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[48] LFW classification results. http://vis-www.cs.umass.edu/lfw/results.html#

eigenfaces. Accessed: 2019-07-02.

63

http://vis-www.cs.umass.edu/lfw/results.html#eigenfaces
http://vis-www.cs.umass.edu/lfw/results.html#eigenfaces

64

Appendix A

Tools

• Programming Language - Python

• Sparse Coding library - SPAMS [42]

• Similarity Search - FAISS [41]

• Image Loading/Processing - OpenCV [46]

65

66

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Objectives
	Thesis Outline

	Face Recognition
	Importance
	Face Recognition System
	Face Detection
	Pre-processing
	Feature extraction and classification

	Further Challenges
	Occlusion
	Facial expressions
	Resolution

	Datasets
	Georgia Tech Face Database
	The Extended Yale Face Database B
	Labeled Faces of the Wild

	Conclusion

	Sparse Representation
	Definition
	Sparse Representation Applications
	Choosing a Dictionary

	SRC
	Dictionary
	Classification
	Validation
	Difficulties

	Dictionary Learning
	K-SVD
	Face Recognition and Dictionary Learning

	Conclusion

	Accumulative Local Sparse Representation
	Introduction
	Algorithm
	Learning Stage
	Testing Stage

	Difficulties
	Improving performance

	Variations
	Conclusion

	Experimental Results
	SRC
	Lambda
	Number of training samples
	Face Alignment
	Dimensionality Reduction
	Dictionary size and performance

	ALSR
	Number of training images
	Image Alignment
	Patch Overlap
	Best Results

	Conclusion

	Conclusion
	Future Work

	Bibliography
	Tools

