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Resumo O crescente interesse na ligação de pequenos sensores à internet levou ao apa-
recimento de sistemas operacionais capazes de operar em qualquer hardware as-
segurando todas as funcionalidades de rede, interface gráfica, servidor, etc. A
Globaltronic, uma empresa sedeada em Águeda, tem vindo a desenvolver a plata-
forma de hardware WiiPiiDo, que se caracteriza por ser um computador embebido
altamente especializado para IoT e capaz de assegurar a ligação às redes NB-IoT-
LTE Cat NB1 (Narrow Band IoT), permitindo o rápido desenvolvimento de solu-
ções IoT completas para os utilizadores. Por tudo isto, é indispensável criar uma
imagem Linux que garanta a fácil utilização de todas as potencialidades da pla-
taforma de hardware. Neste contexto, analisamos o Projecto Yocto, que oferece
um sistema de desenvolvimento composto por diversas ferramentas para criação de
distribuições Linux para sistemas embutidos, e que tem ganho popularidade numa
grande comunidade de utilizadores, especialmente empresas. Contudo, o Yocto
não é a única escolha da comunindade de desenvolvedores de sistemas embuti-
dos. De facto, o Armbian, que é uma distribuição baseada em Debian/Ubuntu
especializada para sistemas ARM, aparece como uma escolha popular para o de-
senvolvimento de imagens nestes ambientes. Neste trabalho, iremos ver os passos
necessários para testar a plataforma de hardware WiiPiiDo, desde o primeiro ar-
ranque até ao desenvolvimento do sistema operativo de suporte, não esquecendo
o desenvolvimento dos drivers de suporte aos dispositivos integrados e os testes de
desempenho. No final, as ferramentas de desenvolvimento para a criação das ima-
gens vão ser comparadas, desde os resultados obtidos nos testes de performance,
ao sistemas de construção em si.





Keywords embedded linux, operating systems, Armbian, Yocto.

Abstract The increasing interest to connect small sensors to the internet took the develop-
ment of operating systems able to operate in any hardware ensuring all network,
graphical and server functionalities. Globaltronic, a company in Águeda, has de-
veloped a hardware platform call WiiPiiDo, that can be described as a embedded
computer, power by an ARM SoC, highly specialized for IoT, ensuring connection
to the Internet even in harsh conditions using NB-IoT- LTE Cat NB1 (Narrow
Band IoT), does ensuring rapid development of complete IoT solutions for end-
users. The development of a Linux image that exposes all the potential of the
hardware platform is a must and will provide extra value to it. In this context, we
take a look at the Yocto Project, which is a building environment that allows the
creation of such a operating system, and that is gaining a crescent community of
users and specially enterprises. Nevertheless, Yocto is not the only choice for the
developer community for embedded platforms, in fact, a distribution like Armbian,
a Debian/Ubuntu based Distribution that is specialized for ARM boards, appears
as a popular alternative for embedded development in ARM development boards.
In this work we will see the steps necessary to test the first boot of the hard-
ware platform until the development of the supporting operating system, passing
through the driver development and performance tests. In the end, the used build
system will be compared, from the results of the tests performance, to the build
system in itself.
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CHAPTER 1
Introduction

This chapter will give the introduction and explain the purpose and goals, as well as the
structure of the whole thesis.

The emergence of IoT devices in the development industry brings new challenges to the
design perspective. According to Fortune Business Insights report of 2019, the Global IoT
Market was valued at 172 Billion Euros in 2018 and is expected to reach the 1000 Billion
Euros by 2026 [1]. The IoT is a multidisciplinary paradigm in which many of the objects
that surround us will be networked and connected to the Internet in order to provide new
and more efficient services [2]. The diversity of IoT applications and technologies makes it
difficult to present a general comprehensive statement for the requirements of IoT in hardware
and software [3]. According to the Eclipse IoT Working Group surveys [4], for five years in a
row Linux is the most used Operating System (OS) for embedded IoT devices, followed by
Windows Embedded and FreeRTOS. Figure 1.1 summarizes the results obtained in the IoT
Developer Surveys since 2015.

Figure 1.1: OS used in IoT devices
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In the 2019 survey, the Linux results are further divided into several distributions. Figure
1.2, from the 2019 survey, shows that Debian and its derivatives like Raspbian and Ubuntu
dominate the developer’s preferences, followed by CentOS and Yocto.

Figure 1.2: Linux Distribution preference [4]

The fast development of new architectures and platforms specially design to face the
challenges of IoT and the developers preference in the risen of new IoT products gathering
data, tracking usage, monitoring functionalities, automating systems and processes all over the
world. Therefore, companies all over the world are investing in this new market by developing
new platforms from fully embedded devices to SBC. This huge market is expected to reach
1.5 trillion Euros in 2020, and, according to Coldwell Banker study [5] more than a quarter of
all consumers already own a smart-home device, i.e., a device that is connected and allows the
automation of functions that once had to be controlled manually. It is, nevertheless, important
to clarify the difference between an embedded system and a general purpose computer, since
all of these are computational networked devices, but with different purposes.

An embedded system can be defined as a computer hardware system with integrated
software that is designed for a specific task, or a small set of specific tasks [6]. Embedded
systems are integrated in many devices nowadays, such as smartphones, routers, building
tools, house appliances, cars, IoT devices, and many others. Since they have small sets of
tasks to perform, embedded systems can be designed to minimize the size, the cost and
power consumption, and to improve the performance and reliability of the system. This
contrasts with personal computers, which are general-purpose devices, being used to perform
a multitude of tasks, such as web browsing, gaming, video editing, etc. An embedded system
is characterized by [7]:

• Having a single, or small set of tasks to perform
• Being optimized in terms of size, cost, performance, etc, only to provide the necessary

requirements for the tasks to perform
• Often having to operate under real time constraints
• Being able to react to changes

2



1.1 The WiiPiiDo board

Capitalizing on the evolution of the market from purely embedded systems to SBCs, Global-
tronic1, a company based in Águeda (Aveiro, Portugal) that is specialized in the development
of integrated electronics with hardware, firmware, software and prototyping, developed the
WiiPiiDo board. This is the target board for the images that were developed in this thesis.

The core components of the board are listed below, with references to Figure 1.3.
• Quad-Core ARM Cortex A53 64-bit System on a Chip (SoC) 18
• 8GB iNAND Embedded MultiMediaCard (eMMC) flash memory 15
• 2GB DDR3 Random-Access Memory (RAM) 17
• Wi-Fi and Bluetooth 4.0 23
• U-Blox Max M8Q, Global Positioning System (GPS) 22
• Quectel BC66, Narrow Band IoT (NB-IoT) 20
• 4K/30Hz HDMI 6
• 1 Real Time Clock and Calendar (RTCC) 15
• 3 Differential Analog-to-Digital Converters (ADCs)
• Raspberry Compatible GPIO Header 11
• 40 Additional General-Purpose Input/Output (GPIO) Ports 12 , 13
• 1 MicroSD Card Slot 8
• 4 USB Ports 2 , 3
• 1 USB-On-The-Go (OTG) Port 4
• Gigabit LAN 1
• Audio Jack Connector 5
• MIPI Display 7
Table 1.1 shows the comparison of the main features between the WiiPiiDo board, and 3

other popular SBCs on the market, the Raspberry Pi 4 Model B2, the BeagleBone Black3

and the Pine A64+4.
From this table, we can highlight some the main advantages that the WiiPiiDo board has

against the other boards as the internal storage, NB-IoT, ADCs and RTCC, as well as other
non-component related features such as having an high working temperature threshold, from
-20 to 70 ºC. This way, this board is more recommended for industrial applications, instead of
home use, having more communication options than most other SBCs.

1Globaltronic Portugal – https://www.globaltronic.pt/en/
2Raspberry Pi 4 Model B – https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
3BeagleBone Black – https://beagleboard.org/black/
4Pine A64+ – https://www.pine64.org/devices/single-board-computers/pine-a64/

3
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Figure 1.3: The WiiPiiDo Board Components [8].

1.2 Purpose and goals

The purpose of this work was to study and compare multiple embedded Linux building
environments, highlighting their main differences and characteristics. With this research we
selected the most appropriate environments to be used to generate Linux images that fully
support the WiiPiiDo board. The chosen environments were selected to be versatile and allow
easy maintainability by the manufacturer, but also to be able to accommodate multiple client
profiles.

1.3 Thesis structure

In Chapter 1 the motivations for the development of this thesis are presented, as well as its
objectives. Chapter 2 starts with a description of the Linux subsystems and functionality
that generally require customization for deployment on an embedded system. Then, several
currently existing tools for developing Linux distributions for embedded systems are presented
and compared. In Chapter 3 we present an initial development of test images that were
developed to do a quick first validation of the first prototypes of the WiiPiiDo board. In
the last sections of this chapter, we also demonstrate the implementation of device drivers
in the board. In Chapter 4 we describe the implementation of two embedded Linux images
developed using the Armbian and Yocto building environments, respectively. In Chapter 5
the built images are evaluated. In a first scenario, the different components from the board
are validated in the different built images, using a test utility developed for this purpose. In

5



a second scenario, the memory usage, CPU performance, as well as some internal metrics
are evaluated and compared between different images and boards. Finally, in Chapter 6, the
results of this thesis are summarized, and some of the possible future work is discussed.
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CHAPTER 2
Linux Development Tools

This chapter is intended to situate the reader in the context of the project, giving brief notions
of the basic information needed for the rest of the thesis, as well as present some building
environments that were studied.

In the development that will be done further down the line, the changes that will be done
to the configurations to be able to support the new board will be focused in the following:

• Bootloader
• Kernel
• Device Tree Source (DTS)
• Device Drivers

2.1 Bootloader

After a device is powered, the first process to run is the boot sequence. In a common desktop
computer, this process is divided in multiple parts [9]:
The Hardware Boot The Hardware Boot consists of running a program directly from Read-

Only Memory (ROM), the Basic Input/Output System (BIOS) or Unified Extensible
Firmware Interface (UEFI) depending on the machine, that will do some basic self-
testing and read further parameters from non-volatile memory. One of these parameters
will then tell the computer where the boot device is located, and load the OS loader
from a fixed address in this device.

The OS loader At this stage of the boot sequence, the computer is trying to find the kernel
in a device and load it. In computers, this loader is located in the first sector of the
boot device, the Master Boot Record (MBR). Due to limitation in size and complexity
of the bootloader, this process is usually divided in two parts:
1. The First stage loader, which is initialized in the MBR
2. The Second stage loader, that is located in a device with a larger capacity, and

contains the full featured loader
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In Linux, the most typical OS loader are LILO and GRUB.
The Kernel Initilization It is at this point in the boot sequence that the multiple compo-

nents that exist in the computer are initialized.
Other At this stage, there are a couple more steps the root user-space process and the boot

script, respectively. But as these are not important in this description, they will not be
presented further.

In embedded Linux, a similar boot sequence is performed, however, instead of separating
the first two steps in multiple programs, only a single program will perform those tasks
[10]. This program is the bootloader, and most devices use U-Boot. U-Boot is an open
source bootloader that can be built to work on a multitude of architectures, being popular in
embedded Linux devices.

2.2 Kernel

The Kernel is a program that is loaded to RAM at the boot sequence, that contain critical
functions required for the OS to work correctly [11, Chapter 1.4]. This functions consist in
managing system resources, such as RAM, and processor time, as well as to manage and
interact with hardware components.

2.3 Device tree

When working with desktop and server computers, as they are widely used, the firmware
interfaces for this machines are standardized to make it easier for OS developers to integrate
hardware their OS. This however does not happen in embedded systems and embedded Linux.
As systems vary widely, and software and firmware is customized for each SBC, there is no
pressure in the market to standardized the firmware interfaces [12]. This way, to make this
easier on SBC, we make use of Device Trees in embedded Linux.

The Device Tree is a software data structure that is used to describe and configure the
hardware in a system, allowing the kernel to remain the same, by separating hardware specific
details from the kernel [13]. Prior to the adoption of the Device Tree in Linux, specific
modifications required to configure the hardware had to be applied to the kernel source code
directly. Device tree configurations are read during the booting process, in the kernel phase
described in the previous section.

The device tree is developed in a human-readable data structure. These structures are
stored as files, where .dtsi files, generally contain SoC-level definitions, and .dts, which
source the respective .dtsi file, add board-level definitions. These are compiled using the
Device Tree Compiler (dtc), resulting in Device Tree Blob .dtb files, which are the binaries
objects read by the SoC in the boot sequence. Code 1 shows a template of a DTS file.

There also exists the concept of Device Tree Overlays. These are partial Device Tree that
can be used to complement or overwrite the base Device Tree without needing to recompile
the Kernel. The Device Tree Overlays can be developed, compiled and activated at runtime,
inside the SBC, requiring a reboot to be loaded.
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/dts-v1/;

/{
compatible = "<manufacturer>,<model>";

<node name>[@device address]{
compatible = "<manufacturer>,<model>";
reg = <start address length>;

};

//Additional device node descriptions

:
:
:

};

Code 1: DTS Example File [14]

2.4 Device drivers

A device driver is a mechanism that allows the communication between a specific peripheral
device and the kernel, using a well defined internal programming interface [15]. This enables
the kernel to use the hardware without knowing the details of how it works.

In Linux, a device driver may be statically linked into the kernel, or it may be built as a
separate kernel module. In the former case, the driver is loaded into RAM with the rest of the
kernel at boot time. In the latter case, the driver can be loaded and unloaded dynamically by
the running kernel, if and when required. A simple “hello world” kernel module is shown in
Code 2.
#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void)
{

printk(KERN_ALERT "Hello, world\n");
return 0;

}

static void hello_exit(void)
{

printk(KERN_ALERT "Goodbye, cruel world\n");
}

module_init(hello_init);
module_exit(hello_exit);

Code 2: Example Kernel Module

2.5 Tools for developing a Linux image

Several distributions and independent projects have developed multiple tools that simplify
the creation and maintenance of a Linux image for embedded systems. In this section, we
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present some of these tools.

2.5.1 The BuildRoot development tool

BuildRoot is an open source build system with a menu driven configuration tool, similar to
the Linux kernel build system, that completely automates this process. It supports uLibc, a
low-footprint alternative to the GNU standard C library, and BusyBox which combines many
of the standard UNIX utilities and a shell into a single low-footprint executable [16].

BuildRoot is composed from a set of Makefiles that are used to generate a complete
embedded Linux system. This is done by compiling an image for the kernel and bootloader,
as well as generating a root file system for the target device. BuildRoot starts by generating
a cross-compilation toolchain that will act as an environment used to build the whole system.
This step is necessary because the architecture of the target system is often different from
that of the host system that is compiling the system [17, Chapter 1]. That is the case with
the WiiPiiDo, which has an Advanced RISC Machine (ARM) architecture, whereas the host
system has an x86_64 processor.

2.5.2 The Yocto Project

The Yocto Project1 derives directly from another open source project: OpenEmbedded. In
2003 some of the developers of the OpenZaurus project, a project for the Sharp Zaurus PDAs
lineup, founded OpenEmbedded. Their goal was to create a build system for embedded Linux
distributions based on a task scheduler inspired by the Gentoo Portage package system. This
build system was dubbed BitBake.

In the meantime, in 2006, the embedded Linux start-up OpenedHand created Poky, which
was a cleaner and easier-to-support fork of OpenEmbedded. In 2010, the Yocto Project was
founded in the context of the Linux Foundation, providing the needed manpower to the
OpenEmbedded Project for coherently organizing the metadata produced for building software
for embedded systems. Poky was also donated by Intel for becoming the reference distribution
of the project, thanks to its improvements to the OpenEmbedded build system [18].

2.5.3 The Armbian build system

Armbian2 is a Ubuntu/Debian based lightweight distributions that are compiled specially for
SoC, and ARM based boards. Officially born in 2015, Armbian started to support 17 boards,
today it supports over 101 board configurations, with more than 3 Kernel/U-Boot branches
for each SoC. Armbian uses the Debian apt package system and offers systems based on
Debian Stretch and Buster or Ubuntu Xenial and Bionic. One of the user more appealing
features is its dialog driven configuration utility that eases the configuration for inexperience
users. It also provided specific runtime tools such as armbian-config which allows the user to
change timezone, reconfigure language, locales, network, manage OpenSSHD settings, freeze
kernel upgrades and toggle hardware settings.

1The Yocto Project – https://www.yoctoproject.org/
2Armbian – https://www.armbian.com/
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2.5.4 ELBE

Originally developed by Linutronix, ELBE3 is a Debian based system used to generate root
file systems for embedded devices. ELBE is composed of the command elbe, which can be
called with several subcommands to initialize the building environment, build a complete
image for the target architecture, as well as debug and control of the environment. ELBE
starts by creating a building environment, using a virtual machine, named initvm by default,
which will be used to compile the images in the target architecture. The image configurations,
such as architecture, SD card partitioning, etc, are all present in single XML file. For example,
the package list of the default packages to install are presented in Code 3. A full example
configuration file is also located in the Appendix A, in Code 29.

<pkg-list>
<pkg>linux-image-686-pae</pkg>
<pkg>grub-pc</pkg>
<pkg>xserver-xorg-video-radeon</pkg>
<pkg>xserver-xorg-core</pkg>
<pkg>xserver-xorg-input-all</pkg>
<pkg>xterm</pkg>
<pkg>isc-dhcp-client</pkg>
<pkg>net-tools</pkg>
<pkg>network-manager</pkg>
<pkg>mono-runtime</pkg>
<pkg>slim</pkg>
<pkg>awesome</pkg>

</pkg-list>

Code 3: ELBE Package List configuration example

2.5.5 OpenWrt

OpenWrt4 , like the BuildRoot environment, is a collection of Makefiles, patches and scripts,
which generates the cross-compilation toolchain, downloads Linux kernel, generates a root file
system and manages 3rd party packages. Like BuildRoot, the cross-compilation toolchain
uses uClibc. Therefore, developers can compile the custom firmware image for supported
hardware architectures. In the OpenWrt source tree, there is no Linux kernel or any source
code tarballs of 3rd party packages. The collection of Makefiles determines the version of
Linux kernel to download, the version of the package tarball to be downloaded and compiled
into the image that is created.

2.6 Comparison of development tools

To objectively compared the described building environments, minimal test images where
built from each environment, where the images built from BuildRoot, Armbian, Yocto and
OpenWrt where all targeted to the Pine A64 board, and the ELBE image was targeted to the
Beagle Bone Black Board, as there was no official Pine A64 image that existed. We were not

3ELBE – https://elbe-rfs.org/
4OpenWrt – https://openwrt.org/
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able to boot the ELBE image, so some parameters from this are not present in the final table.
Table 2.1 then summarizes some preliminary differences that were observed from the different
environments.

Observing this table, we can divide the environments in two types, the standalone and the
Distribution-based environments.

In this sense, Armbian and ELBE can be categorized as Distribution-based environments,
as they are directly based in Debian. By being based on an already established distribution,
the images developed in this environments contain a multitude of already supported packages
and facilities that make working in this images easier for an end-user. However, due to these,
the images are not optimized, and can be harder to be trimmed to generate more compact
images.

Alternately, BuildRoot, Yocto and OpenWrt end up being standalone environments, as
they are not based in any already existing Linux Distribution. These environments generate
more minimalistic images by default, and are customized for the target board. By result,
the images generated in this environment are compact, which can be good when the target
has limited resources, however, more time can be spent in tuning the environment, when
compared to Distribution-based environments.

In the end, based in this finds, and as a way to be able to provide more options to the
end-user we decided to develop two images, one from each of this categories. In the end, we
used Armbian and Yocto.
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2.7 Synthesis

In this chapter we studied multiple building environments that allow a developer to create a
custom Linux image for an embedded board. From this, we were able to extract the main
features and differences from each studied environment and categorizing them in two different
categories, distribution-based environments and standalone environments. In the end, we
decided to use two different environments, one from each category, so as to give more options
to an end-user which may have prefer either a totally custom or a more desktop-like image.
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CHAPTER 3
Image Prototyping and Peripherals

Integration

This chapter presents the steps performed in the developing of the first prototypes, as well as
an example of a peripheral adaption to work in the WiiPiiDo board.

When the development of the images started, as the WiiPiiDo was still in development at
the time, only a couple of prototypes where assembled. This was such that, if any hardware
problem existed, it would be detected in this phase, before starting a larger production of the
board. Therefore, it was required to validate as much as possible of the board, but with the
precautions to not damage the prototypes, as there where only a couple of them, and a new
production for testing could take weeks.

As such, instead of directly building the complete images using the chosen building
environments, we started by validating the board in a more moderate way, where we purposely
lower the requirements of the board, for example, lower the Central Processing Unit (CPU)
and RAM frequency, as a prevention for problems that could occur with the prototypes.

This way, this first testing phase was divided in three parts:

1. Simple Bootloader – The first part for this test consists in compiling and running
a simple bootloader, with an built-in shell, in which a few tests can be performed to
validate the core board peripherals, such as the CPU, RAM and mass storage device.

2. Minimal Linux Image – Secondly, a minimal but complete Linux image that includes
the bootloader, kernel and rootfs 1, was compiled and deployed to the board, for more
in-depth testing of the board peripherals before we start developing the final images in
the selected build environments.

3. Driver Adaptation – Finally, a few of the driver adaptations were done in this phase,
as this image has a fast compilation time.

1Root File System – the top directory from the hierarchical filesystem present in Unix and Unix-like OS,
where all other file systems are mounted in the boot up process [19]
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With this approach we can quickly and safely validate and detect any hardware problems
that the board may have in the core peripherals, before spending time to build a full image,
which takes more work. Also, the time that was spent in this phase was not be totally lost,
as, for example, the bootloader developed here can be used later in the full images, as well as
the driver adaptations done in this phase.

3.1 Bootloader validation

3.1.1 Compiling the Bootloader

As mentioned in the previous section, we started by running a simple bootloader in the board.
To do so then, we first fetched the source files for the bootloader, U-Boot, from its official

Git repository [20].
U-Boot makes use of a Makefile to build itself, and it requires to be configured for the

target board before compiling it. This configuration is provided by a .config file that is
present in the root folder of the source files. U-Boot already provides configuration files for
its supported boards in the configs folder.

Seeing that a new board is being tested, no such file exists in this folder, but we can
use a configuration file for an already supported board that has the same SoC as the one in
WiiPiiDo, the Allwinner 64, as a base and reference for the configurations that will later be
used in our board.

This way, the configuration file for the Pine A64 Plus [21], pine64_plus_defconfig, was
chosen as the base for our configuration file. We chose the Pine A64 Plus, as it is one of
the first, and well known SBCs featuring the Allwinner A64 SoC, having good support and
stability from not only U-Boot, but also the kernel and the building environments that we
will be using later on. This is the reason why we also used this board in those environments
as a reference as well.

As such, the bootloader can be built by running the following in the command line:

$ make clean
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make pine64_plus_defconfig
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make

Code 4: Compilation of U-Boot with the Pine A64 configurations

The steps in Code 4 perform the following tasks:
1. Clean the repository
2. Create the .config configuration file using the Pine A64 configurations as base
3. Compile the bootloader image
By adding ARCH=arm64 and CROSS_COMPILE=aarch64-linux-gnu- to the commands, we

are specifying in the toolchain the target architecture and the cross-compiler to use.
After we let the compilation finish, we can verify that the compilation contains a warning,

as presented in Figure 3.1. This is because it is missing the PATH for the Boot Loader Stage
3-1 (BL31) [22, chapter 4.12], binary, which is required to have a fully functional bootloader.
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Figure 3.1: U-Boot Missing BL31 Warning

Therefore, to compile this binary we need to run the code described in Code 5, which will
first fetch the source files for the BL31 and then compile the binary with the required target
and cross compiler. Finally, it exports the variable BL31 with the path of the built binary,
which will then be used by the bootloader toolchain to retrieve this binary when needed.

$ git clone https://github.com/ARM-software/arm-trusted-firmware
$ cd arm-trusted-firmware
$ CROSS_COMPILE=aarch64-linux-gnu- make PLAT=sun50i\_a64 bl31
$ export BL31="$PWD/build/sun50i_a64/release/bl31.bin"

Code 5: Compilation of the BL31 for sunxi A64 SoCs

After the BL31 had been properly compiled and exported, the BuildRoot was recompiled
using the make command once again, inside the U-Boot root folder.

3.1.2 Changing the configurations

At this point we already know that the bootloader is compiling correctly. Thus, we will start
by making our desired modifications to lower the system requirements. This can was achieved
by running the Make target menuconfig, which will start a Terminal User Interface (TUI) that
allows us to modify with the bootloader configurations. As such, we executed the following
command ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make menuconfig

After the command is executed, a menu similar to the one in Figure 3.2 will appear in the
terminal.

Thereupon we can start to do our modifications. One of the precautions we can take is to
reduce the RAM clock speed, as well as the CPU clock frequency. To do so, first it is required
to check the correspondent peripherals datasheet to verify the slowest clock speed supported,
which in this case is 333Hz for the RAM and 408MHz for the CPU.

To change RAM value, we need to first select the ARM architecture submenu, and in the
option sunxi dram clock speed, change its default value to 333, as summarized in Code 6,
which shows the menu progressing within the TUI, as well as the modified variable for the
desired option.

ARM architecture --->
DRAM Type and Timing (DDR3 1333) --->
(333) sunxi dram clock speed
(3881915) sunxi dram zq value

Code 6: Change RAM clock speed
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Figure 3.2: U-Boot Menuconfig Home

Similarly, to change the CPU frequency, inside the Boot images submenu, we changed
the option CPU clock frequency to 408000000.

After the desired changes to the configurations are done, we can then save them by selecting
<Save> in the bottom of the menu. A recompilation is then needed to build the bootloader
binary with the latest modifications. This can be accomplished by executing make again.

3.1.3 Booting

At this stage, we can now deploy the bootloader to the test board. To achieve this, we flashed
an SD Card, and booted from there.

However, before flashing, we first need to prepare an SD Card by deleting all of its
partitions and formatting it, for example, as FAT322. This can be accomplished in Linux with
GParted3.

After the SD Card is formatted, we will flash the compiled bootloader image, with the
integrated Second Program Loader (SPL), which will copy the U-Boot from the SD Card to
system RAM at boot time [23].

To do so, we executed the command in Code 7. The device /dev/sdX is being used here,
as in later Codes, as a generic mountpoint for the SD Card in the build host machine.

$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=1024 seek=8

Code 7: Flashing U-Boot

After the SD Card has been successfully flashed, we booted the board and started the
validation of the core peripherals. To see the output from the board, we need to connect a

2FAT32 – https://support.microsoft.com/en-us/help/154997/description-of-the-fat32-file-system
3GParted – https://gparted.org/
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USB to TTL Serial converter, to the serial port of the board, as illustrated in Figure 3.3.

Figure 3.3: WiiPiiDo to PC Serial Connection

The image booted successfully, as shown in Figure 3.4. With this information, we can
already validate that the CPU, RAM and SD Card Reader are working, as without these
devices functioning, it would not be possible to boot from the SD Card. We also noticed that
some USB where detected, as seen in the last lines of the output shown in Figure 3.4.

Figure 3.4: U-Boot First Boot

Depending on the installed U-Boot version, a few test commands exist in the Command
Line Interface (CLI), which allow further testing [24]. An example of such command is the
mtest command, which performs a simple RAM test, or the command mmc, which allows to
do some basic read/write tests to the eMMC.

The final modifications are located at the Globaltronic’s U-Boot Fork [25].
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3.1.4 Boot using FEL

In the first revision of the board, a problem was detected in one of the prototypes with the
SD Card Reader, which prevented us to boot the board from the SD Card. To alleviate this
problem from disabling us to further test the rest of the board when the issue was being
resolved, we made use of a special subroutine that exists in some Allwinner SoCs, including
the Allwinner A64, that allowed us to boot directly over USB OTG, by loading the bootloader
from the USB to RAM, enabling us to forgo the SD Card completely [26].

With this tool, we not only were able to test the bootloader, but the minimal Linux image
as well, as FEL supports booting a complete system over USB, limited only by the board
RAM size.

To use this mode, first we fetched the official tools from the sunxi repositories 4, and
compiled the code. This was achieved by running the code in Code 8.

$ git clone https://github.com/linux-sunxi/sunxi-tools.git
$ cd sunxi-tools
$ make

Code 8: Compiling Sunxi-tools

After the tools were compiled, we connected a USB OTG cable, with no power, to the board.
Subsequently, we forced the board to enter the FEL subroutine, which can be accomplished
in 5 ways [27]:

• Pressing a dedicated button
• By holding a standard button in a specific manner
• By inputting special characters though serial console
• Using a special SD Card which enter FEL mode
• Having no valid boot image
In our case, WiiPiiDo has a dedicated button to enter FEL mode. Finally, we only need

to execute the command described in Code 9, which will get the appropriate files and write
them to the correct addresses in memory.

$ sudo ./sunxi-fel -v -p spl sunxi-a64-spl32-ddr3.bin write 0x44000 </path/to/arm-trusted-firmware/bl31.bin>
write 0x4a000000 </path/to/u-boot/u-boot.bin> reset64 0x44000

Code 9: Upload Bootloader using FEL

Unfortunately, the AArch64 branch for the U-Boot SPL does not support FEL, since FEL
is done entirely in AArch32. So, to boot the Allwinner A64 from FEL we need to combine the
AArch32 SPL, with the previously compiled U-Boot and BL31, as referenced in the official
documentation [28].

3.2 Creating a minimal Linux image

After the core peripherals validation was completed, a minimal Linux image was built.
4Sunxi Tools Git Repository – https://github.com/linux-sunxi/sunxi-tools
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The procedure for this build was similar to the U-Boot compilation, in which we will
compile a minimal image, with minimal requirements. This will result in a lower building time,
as well as to avoid possible kernel errors due to incorrect device integration when probing the
hardware.

Therefore, to build the first complete Linux image, BuildRoot will be used, seeing that it
allows full customization over the image to be built, and by default, it has a small image size
compared to other building environments, and consequently, a faster compilation time, as it
has a lot of kernel, U-Boot, and other settings disabled by default.

The source files for the build environments was fetch from the official sources [29]. All of
the system requirements where also installed, which where found in the official documentation
[17, chapter 2].

3.2.1 Building the image

As referred in 2.5.1, BuildRoot consist of a set of Makefiles, which will create the complete
Linux Image that can then be flashed to the board, including the bootloader and the kernel
with respective Device Tree Blobs (DTBs), the root file system, as well as BusyBox, which
provides most of the GNU utilities in a single small executable [30].

Similarly to U-Boot, BuildRoot also has configuration files that contain the configurations
for different boards already supported by the environment.

We will be using the same approach as we used with the bootloader, and first compile an
image for the Pine A64 Plus, to serve as a base for the configurations.

As such, to build the default BuildRoot image for the Pine A64 Plus, we need to execute
in the command line the Code 10.
$ git clone git://git.busybox.net/buildroot
$ cd buildroot
$ make pine64_defconfig
$ make

Code 10: Compilation of BuildRoot using the configuration file pine64_defconfig

The chosen building configurations already define the target board, so there is no need to
specify the architecture and compiler to used, contrarily to the U-Boot process.

3.2.2 Configuration menu

After making sure that BuildRoot is compiling correctly, we started making our desired
modifications to the image. Opposite to the U-Boot configuration menu, BuildRoot provides
several interfaces to change its configurations, from curses (menuconfig) and ncurses (nconfig)
TUIs, to interactive Qt (xconfig) and GTK (gconfig) interfaces.

BuildRoot can also independently invoke the configuration menu for the U-Boot
(uboot-menuconfig), Kernel (linux-menuconfig), BusyBox (busybox-menuconfig) and
uClibc (uclibc-menuconfig), which is the C library installed by default.

In our case, we will be using the curses configuration menu, so we start the TUI by running
make menuconfig, which produces a display similar to the one in Figure 3.5.
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Figure 3.5: BuildRoot menuconfig Home

Some of the sub menus to take note are:
• System configuration – Configuration for the target system, such as the PATH,

hostname, shell, locale, etc.
• Kernel – Top configuration for the kernel (the version to use, kernel patches, device

tree blob, etc). For a more in-depth configuration we use the kernel configuration menu
(linux-menuconfig).

• Target packages – The packages to be included in the filesystem. The majority of the
coreutils are in BusyBox (busybox-menuconfig).

• Filesystem images – Configurations for the file system (ext4, btrfs, etc).
• Bootloaders – Top configuration for the bootloader (the version to use, the defconfig

file, etc). For a more in-depth configuration we use the U-Boot configuration menu
(uboot-menuconfig).

The modifications done in this stage result in:
Change CPU Governor As it was done in the U-Boot configuration, we will start by

changing the CPU Frequency. In the Kernel however, there is not a fixed CPU Frequency
value, but a CPU Governor, or in other words, the frequency profile. By default, the
CPU is using an ondemand or performance profile, which scale the CPU Frequency
by the current demand from the system, or have it always using the max frequency,
respectively. We changed this option to powersafe, which will make the CPU always
use the lowest frequency supported. This option belongs in the Kernel configurations,
which can be called using the Make target linux-menuconfig. Inside the submenu
CPU Frequency scaling in CPU Power Management, we modify the Default CPUFreq

governor to powersafe, which will tell the Kernel to use the lowest supported CPU
frequency. A summary of the TUI submenus if demonstrated in Code 11.
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CPU Power Management --->
CPU Frequency scaling --->

Default CPUFreq governor (powersafe) --->

Code 11: Change the Kernel CPU Governor

Change the DTSs used Another option that we changed is the DTS used by the Kernel
and bootloader. This is the because the version of BuildRoot in use does not contain a
configuration file for the Pine A64 Plus, only the Pine A64, which belongs to the same
family of SBCs, however, the configurations for this board exist internally in the U-Boot
and Kernel repositories. As such, we can modify the BuildRoot options that states
which DTS or configuration file to use in both the Kernel and U-Boot. In the case of
the Kernel DTS definition, this option resides in the BuildRoot Configurations, inside
the Kernel submenu, by the name of In-tree Device Tree Source file names, as
summarized in Code 12. The desired value is allwinner/sun50i-a64-pine64-plus.

Kernel --->
(allwinner/sun50i-a64-pine64-plus) In-tree Device Tree Source file names

Code 12: Changing the Kernel DTS in BuildRoot

As for the, this modifications is described in Code 13.
Kernel --->

[*] U-Boot
(pine64_plus) Board defconfig

Code 13: Changing the U-Boot configuration file in BuildRoot

Apply the modifications made to the bootloader The modifications made to the boot-
loader can be applied once again, following the steps described in Section 3.1.2, using
the U-Boot configurations menu target uboot-menuconfig. Alternately, we can later,
before booting the image, overwrite the bootloader compiled by the BuildRoot, with
the one compile previously, by running the command in Code 7.

3.2.3 Booting

After a successful compilation, we can now boot the built image. All of built binaries
reside in the folder buildroot/output/images, such as the bootloader, kernel, rootfs, etc, as
demonstrated in Figure 3.6.

Figure 3.6: BuildRoot output images

BuildRoot will also generate the file sdcard.img, which contains the complete image in a
single file. This way, to flash the image in a formatted SD Card, we execute the Code 12.

We can now boot the new image, and do further validations to the board devices. The
default login credentials are username root, and no password.
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$ sudo dd if=sdcard.img of=/dev/sdX bs=1M status=progress

Code 14: Flashing the BuildRoot Image

3.3 Peripherals integration

At this stage, we can now start doing a more thorough validation of each peripheral present
in the board. To make this process more systematic, an approach was defined, which was
based on the principle that when a peripheral is not working correctly, there are generally
only three possible locations where modifications have to be made, which are:

• The Kernel configurations
• The DTS
• The Device Driver (Firmware)
The outlined approach is illustrated in Figure 3.7.

Figure 3.7: Device Validation Approach

To start the validation of a specific peripheral, a respective validation test needs to be
specified. For example, to validate a GPIO port, a test to make sure that the GPIO is working
correctly is to use the file system interface to manipulate an individual port and read/write
values from/to it. Once this test is defined we can then perform it. If the test was successful,
the peripheral is validated and working correctly, if not, we retrieve the outputs from the
test, as well as possible kernel and/or system logs, provided, for example, by the command
dmesg and the file /var/log/syslog, respectively. Once this information is gathered, we can
then research further for a possible solution by consulting available resources, such as online
documentation or forums, as well as other developers. If a solution was found in this process,
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we then apply it and try the validation test again. If no solution was found, we can try to
narrow down the potential causes of the problem by doing the following validations:

• Verify if the peripheral is being detected. If the device is not being detected
correctly, there are generally three possible causes:
– An hardware problem, such as the device not being powered or soldered correctly.
– An error in the kernel configuration.
– An error in the DTS.

• Verify if the peripheral driver is being loaded. If the device driver is not
being loaded, then generally the problem must be in the kernel configurations.

Finally, if these validations were successful, then the problem must be in the device driver.
Errors in the device driver are the last possibility to consider in this approach because,

unlike the kernel configurations and the DTS, the device driver should generally be independent
of the particular target board or build environment being used.

3.3.1 Example: GPIO port

As an example of the device validation approach, when we tried to use a GPIO port as an
output pin, we noticed that the file system interface for the device was absent (see Figure 3.8).
Therefore, the Kernel configurations where checked and noted to not have the sysfs interface

Figure 3.8: Missing GPIO sysfs interface. The /sys/class/gpio directory is absent.

for the GPIOs activated. The problem was easily fixed by toggling the sysfs interface option in
the GPIO Support inside the Device Drivers submenu of Kernel configurations (Code 15).

Device Drivers --->
GPIO Support --->

[X] /sys/class/gpio... (sysfs interface)

Code 15: Activating the sysfs interface for the GPIOs

3.4 Synthesis

In this chapter we looked over and defined a process to rapidly validate the components of the
board in situations of simultaneous hardware and firmware development. We argue that in
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such cases the development should proceed in stages, starting from a simple bootloader, moving
on to a minimalistic but complete Linux image and finally, ending with the development
of the final images in the chosen building environments. In each stage, different building
environments may be used, allowing the developer to profit from the distinct advantages of
each environment in different stages of development.
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CHAPTER 4
Building The Final Images

This chapter presents the Armbian and Yocto building environments, as well as some of the
modifications that were implemented to support the WiiPiiDo board.

With the in aim to compare the chosen build environments, we are going to show in some
detail the process used to compile the final images.

4.1 Building an image in Armbian

As it was discussed in the Section 2.5.3, Armbian is a Debian-based distribution specially
develop for ARM SoCs. The build system consists of a series of shell scripts, and the structure
of the environment is summarized in Figure 4.1.

Figure 4.1: Armbian Folder Structure

Armbian has two types of configurations that can be made. There are user configurations,
which are associated to the developers using the environment and are meant to be personal
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modifications, associated only to the specific repository being used. Additionally, there are
Armbian official board configurations, which are the permanent configurations associated
with the build environment in itself. As such, the userpatches directory contains the user
configurations, and the patch and config folders contain the Armbian official configurations.

4.1.1 Building a test image

To compile an Armbian image, we first fetched the source files [31] and used the script
compile.sh. Armbian supports several alternative ways of building images:

• building natively in a host machine;
• building in a virtual machine using VirtualBox, for example;
• building with Vagrant, which manages VirtualBox images in an easily repeatable way;
• building inside a Docker container.

In our case, we decided to compile natively in our host machine, so that we could later fairly
compare the compilation time between building environments, and to generally compile the
Armbian images faster. To start the building process, we executed the commands in Code
16. The compilation option NO_HOST_RELEASE_CHECK=yes was required in our case, because we
did not use the officially supported host OS.

$ git clone --depth 1 https://github.com/armbian/build armbian
$ cd armbian
$ ./compile.sh NO_HOST_RELEASE_CHECK=yes

Code 16: Armbian Quick Start

After the compilation started, a TUI will open asking a few options that need to be picked
before the compilation can start. This options are presented in the following list, as well as
selections that were made.

1. The output of the compilation
• Just the bootloader and kernel
• The full image [selected]

2. To open the kernel configuration menu before compiling
• Yes
• No [selected]

3. The target board [selected pine64]
4. The kernel version

• default Legacy kernel (3.10.y)
• next Mainline kernel (4.19.y) [selected]

5. The distribution and its release to build
• stretch Debian 9 [selected]
• buster Debian 10
• xenial Ubuntu 16.04
• bionic Ubuntu 18.04
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6. The type of image
• Server image [selected]
• Desktop image

7. The image installed packages
• Standard
• Minimal image with less installed packages [selected]

As an alternative, we could also give this information to Armbian as command line options,
the same way as it was done previously to stop the host machine verification. In a command
line only format, the options selected previously are equivalent to the following command:

./compile.sh NO_HOST_RELEASE_CHECK=yes BOARD=pine64 BRANCH=next RELEASE=stretch

BUILD_MINIMAL=yes BUILD_DESKTOP=no KERNEL_ONLY=no KERNEL_CONFIGURE=no

The full list of the building options can be found in the official documentation [32, Build
Options]. The output from the compilation is demonstrated in Figure 4.2.

Figure 4.2: Armbian Compilation

4.1.2 Adding support for the WiiPiiDo

Once its verified that an image compiled successfully, we started adding the support for the
WiiPiiDo board. This is mainly focused in four areas:

• Kernel and bootloader building configurations
• Kernel and bootloader DTSs
• Kernel and bootloader source code modifications
• Compiled image settings, like the target file system, installed packages, default user

configurations, etc

These modifications are also divided in two phases that were discussed previously, which
are respectively the user modifications and the Armbian official configurations. We started by
focusing first in making our modifications as user patches, and later adapt them to be able to
be added as Armbian official support.

Changing the build configurations To modify the kernel options, we invoked the kernel
configuration menu by using the command line option KERNEL_CONFIGURE=yes, in conjunc-
tion with the option KERNEL_KEEP_CONFIG=yes, which tells Armbian keep the configurations
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between compilations. After the modifications where validated, we copied the resulting
file .config to userpatches/linux-sunxi64-next.config [32, User Configurations].

For the bootloader, there is no direct interface as the one used in the Kernel. In this
case, we had to make a patch in the U-Boot source code. Alternately, we could have
changed the U-Boot Repository used, for a custom repository with the changes made
in the previous built U-Boot image. However, for initial development, we flashed the
previous working U-Boot image, as in Code 7.

Changing the DTSs The development of the DTS is easy in Armbian as it supports
Device Tree Overlays by default. As such, we can add the overlays to the
SBC, and test them without the need to recompile a new image. The over-
lays are located at /boot/dtb/allwinner/overlay, and can be compiled and ac-
tivated using the command armbian-add-overlay, that has the following syntax
armbian-add-overlay <overlay_file.dts>. The file /boot/armbianEnv.txt is used to acti-
vate/deactivate, as well as to pass parameters to the overlays if needed.

Once again, there is no simple way to change the bootloader DTS. To do modifications
to the bootloader DTS we can use the same methods as the ones described previously.

Changing the source code The method to change the source code of the kernel and
bootloader is the same, which is to create patches with the desired modifications from
the sources.

To do this, Armbian provides an interactive patch creating tool, which is started
when passing the option CREATE_PATCHES=yes to the build system. Armbian will, right
before starting the compilation, wait for the user to make its desired modifications to
the kernel and bootloader respectively. Once the modifications are made, it will generate
a patch file with them and apply it, as demonstrated in Figure 4.3.

Figure 4.3: Armbian Source Files Patch

It is important to remember that Armbian is using the git diff command to generate
the patches, so modifications made in files that are present in .gitignore will not be de-
tected. Once the patches are created, they will be placed in the directory outputs/patch.
If further compilations are still executed with the option CREATE_PATCHES=yes, the build
system applies the previously generated patches, however, if it is not present, they will
not be applied. To make these patches permanent, we placed them in the directories
userpatches/kernel/sunxi-next and userpatches/u-boot/u-boot-sunxi, for the
kernel and bootloader patches respectively.

Changing the image settings To change the image settings, we made use of the file
userpatches/lib.config, which redefines some of the configurations used by Armbian,
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such as the kernel and bootloader version used, as well as the initially installed packages
[32, User provided configuration], as shown in the example in Code 17.

PACKAGE_LIST_ADDITIONAL="$PACKAGE_LIST_ADDITIONAL nodejs" # Add nodejs
BOOTSOURCE=https://github.com/Globaltronic/u-boot.git # Change the U-Boot source
BOOTCONFIG=wiipiido_defconfig # Change the U-Boot defconfig

Code 17: Changing Armbian Configurations

4.2 Building an image in Yocto

Yocto is different from Armbian, as Yocto is not a distribution in itself, but a set of tools that
allow the developer to create a full Linux Distribution. To do so, Yocto defines metadata, or
sets of instructions and configurations used by the OpenEmbedded’s build system, bitbake.
Related recipes are then organized together in different layers, where there are:

• BSP layers, which contain the recipes necessary to add support for a system
• Application layers, that contain the necessary recipes to install an application
• Distribution layers

To better understand how to use the environment, we will first look at Poky [33], the
reference repository that is recommended to be used as the base for any Yocto image. It
contains the build system, bitbake, as well as the core recipes that will be used in the majority
of the projects. The structure for this directory is summarized in Figure 4.4.

Figure 4.4: Poky Repository Structure

Some of the files and directories to take note from this Figure are:
• The oe-init-bulid-env script, which is used to initialize the build environment.
• The directory build/conf, that contains the main configurations for the image to be

compiled, such as the configuration of the target board, the selection of the packages to
be installed, the meta layers to included, as well as the target filesystem, etc.
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• The meta-* directories, which represents a bitbake layer.
A layer can then be expanded further, as illustrated in Figure 4.5.

Figure 4.5: Yocto BSP Layer Structure

In this figure it is summarized a BSP layer, which consist in:
The conf directory This directory has the general configurations for the layer, such as the

name of the layer, recipes path, the priority of the layer, which is used to chose a layer
from multiples with the same name, and the layer’s compatibility, i.e., in which versions
of Poky does the layer work on. Also present in this directory are the board specific
configurations, that contain the version and configurations of the kernel and bootloader
to use, as well as the target file system, pre-installed packages, recipes dependencies,
etc. Code 18 is a snippet of a board configuration file. In Appendix A, Code 30 there is
the full configuration file that ended up being used in WiiPiiDo.

PREFERRED_PROVIDER_virtual/kernel ?= "linux-wiipiido"
PREFERRED_VERSION_linux-wiipiido ?= "4.19%"
KERNEL_CLASSES = "kernel-fitimage"
KERNEL_IMAGETYPE = "fitImage"
KERNEL_DEVICETREE = "allwinner/sun50i-a64-wiipiido.dtb"

MACHINE_EXTRA_RRECOMMENDS += "kernel-modules linux-firmware-brcm43430"

IMAGE_FSTYPES += "wic"
WKS_FILE ?= "wiipiido-bsp-image.wks"

Code 18: Yocto BSP Board Configuration Snippet Example.

The recipes-* directory This directory has the recipes that are present in the layer. Each
recipe contains at least a *.bb file, which is the recipe in itself, and may have additional
files used by the recipe in the separate folder files.

Each recipe contains a set of tasks that have the information of the instructions to
be accomplished in a given step of the building process. The most important tasks that
exist in a recipe are [34]:
1. do_fetch – Fetches the source code
2. do_unpack – Unpacks the source code into a working directory
3. do_patch – Locates patch files and applies them to the source code
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4. do_configure – Configures the source by enabling and disabling any build-time
and configuration options for the software being built

5. do_compile – Compiles the source in the compilation directory
6. do_install – Copies files from the compilation directory to a holding area
7. do_package – Analyzes the content of the holding area and splits it into subsets

based on available packages and files
8. do_package_write_rpm – Creates the actual RPM packages and places them in

the Package Feed area
Recipes can also inherit definitions from other recipes, and Yocto already provides

base recipes for common building utilities used in most applications like Autotools,
CMake, etc [35, Chapter 3.3.10]. Beyond the tasks definitions, the recipe also has
information about the sources and licensing. Code 19 contains the source file of a simple
recipe.

SUMMARY = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
${CC} helloworld.c -o helloworld

}

do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}

}

Code 19: Yocto Recipe Example [35, Chapter 3.3.21.1].

The wic directory The wic directory contains the partitioning configurations. An example
configuration is presented in Figure 20.

part spl --source rawcopy --sourceparams="file=u-boot-sunxi-with-spl.bin"
--ondisk mmcblk --no-table --align 8

part /boot --source bootimg-partition --ondisk mmcblk0 --fstype=vfat
--label wiipiido --active --size=100M --align 20480

part / --source rootfs --ondisk mmcblk0 --fstype=ext4 --label platform --align 4096

Code 20: Wic Partitioning Configurations.

4.2.1 Building a test Image

Similarly to the other images that were created with the different build environments, first we
started by building a test image, making use of Poky as the reference distro, as mentioned
in the last section. As such, we first fetched the Poky repository from the Yocto Project,
making sure we used the last stable version, which at the time of this development was version
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2.7.1, codenamed warrior. The full system requirements for the build host are defined in the
official documentation [36, Compatible Linux Distribution]

$ git clone git://git.yoctoproject.org/poky
$ cd poky
$ git fetch --tags
$ git checkout tags/yocto-2.7.1 -b wiipiido
$ source oe-init-build-env
$ bitbake core-image-base

Code 21: Yocto Quick Start [36].

The first compilation took more than 1 hour, as bitbake is downloading all the required
packages sources to compile, such as the kernel, bootloader, BusyBox and extra packages
defined in recipes or local configurations. Further compilations are optimized by bitbake,
as it automatically recognizes what has changed and will compile only recipes that received
modifications since the last build.

By default, the target for the base image that was just compiled is set to be a x86 QEMU 1

image, which will work as a machine emulator and run images compiled in other architectures
other than the one of the build host machine. Once the image was built, it was started with the
command runqemu qemux86. This is a useful feature as it allows a developer to test recipes,
applications, etc, in a virtual environment, without the need to have the specific hardware
platform. After this image was checked to be working in QEMU, we started compiling the
same image now for our test board. To accomplish this, we changed the target for the image.
We started by adding a BSP layer for the Pine A64 board and compile it, which later was
modified to support the WiiPiiDo BSP layer.

The Pine A64 BSP layer is not included in the Poky repository. As such, we used the
OpenEmbedded Layer Index [37], a website that contains, as the name sugests, an index of
multiple layer and recipes for the OpenEmbedded, and consequently, the Yocto Project. After
finding the layer, we cloned it to the root of the Poky directory, and added it to the build
environment, using the bitbake-layer command, as demonstrated in Code 22. Alternately,
we could also manually add a new layer’s path to the conf/bblayers.conf configuration file.

$ cd poky
$ git clone https://github.com/alistair23/meta-pine64
$ source oe-init-build-env
$ bitbake-layers add-layer ../meta-pine64

Code 22: Adding the Pine A64 BSP Layer

After the layer was added successfully, there were a couple of configurations that had
to be adjusted. The first one was the target board for bitbake, which is defined in the
conf/local.conf file. This configuration now needed to be changed to target the Pine A64
board. The second adjustment was to add the format of the root filesystem. The BSP Layer
is already defining the root filesystem to be a Wic Image, however, we will be adding another

1QEMU: Machine emulator and virtualizer – https://www.qemu.org/
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option so that bmaptool 2, the reference tool used in Yocto to flash images, can be used
optimized. The described steps are illustrated in Code 23.

@@ -35,7 +35,8 @@
#MACHINE ?= "edgerouter"
#
# This sets the default machine to be qemux86 if no other machine

is selected:
-MACHINE ?= "qemux86"
+MACHINE ?= "pine-a64-lts"
+IMAGE_FSTYPES += "wic wic.bmap"

#
# Where to place downloads

Code 23: Changes done to the local configurations

The only steps missing were recompiling the image and flashing it to a formatted SD Card,
which were accomplished with the following commands:

$ bitbake core-image-base
$ sudo bmaptool copy tmp/deploy/images/pine-a64-lts/core-image-base-pine-a64-lts.wic /dev/sdX

When testing the image, we came across an error in the bootloader, which was not booting
correctly. To alleviate us from debugging the bootloader at this stage, the old U-Boot image
that had been compiled previously, as in Section 3.1, was used. To do so, we overwrote the
malfunctioning bootloader as demonstrated in Code 7.

4.2.2 Adding support for WiiPiiDo

With the image now booting and working as expected, we started with adding the support
for the WiiPiiDo board. This mainly took place in the respective BSP layer, however some
modifications to the local configurations, the build/conf/local.conf file, were also made.
The modifications that need to be done to add support for the WiiPiiDo consisted in:

• Modifying a recipe, explicitly the bootloader and kernel recipes
• Adding missing firmware and packages if necessary

In a later stage when the layer had been validated to be working correctly, the general
metadata was also changed to contain the board information. This mainly consisted in
changing the name of board in the layer configurations files, and recipes from pine-a64 to
wiipiido.

Modifying a recipe In a BSP layer, to add support to a new board, mainly the kernel and
bootloader recipes will need to be modified. As both modifications follow the same
steps, only the kernel changes will be used as an example in this step.

There are mainly two types of modifications that need to take place in the recipe,
which are, respectively, changes to the configurations menu and changes to the source.

2BMAP Tools – https://github.com/intel/bmap-tools
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To modify the kernel configurations, the menuconfig tasks was used, which invokes
the default menuconfig from the Kernel sources, that can be modified as desired.
Any other modification that needs to be done to the DTSs, or other source files were
made with the devshell task, which starts a shell with the environment setup for
developing/debugging the specified recipe. Code 24 presents the call for both tasks,
respectively. In this case, virtual/kernel is the name of the kernel recipe.

$ bitbake -c menuconfig virtual/kernel
$ bitbake -c devshell virtual/kernel

Code 24: Invoke the kernel’s menuconfig and development shell

After the desired changes were completed, we were able to simply rebuild the image
to validate them. This however does not make the modifications persistent in the BSP
layer. To do so, we needed to first generate patches and link them to the recipe.

The modifications to the Kernel configurations can be retrieve using the diffconfig

task, which will generate a *.cfg file with the differences between the default layer
configurations and ours.

For the other modifications, the patch can be built using git’s builtin patch command.
As such, the modifications that were tested before were replicated in a cleaned state of
the kernel’s git repository. This was accomplished by copying the repository to another
directory, and after cleaning the repository, rebuilding the changes. This has to be done
as the recipe already patches the kernel separately, and we will want our modification
to be in a different patch. This way, the commands needed to generate a patch to the
source files are in Code 25.

$ bitbake -c devshell virtual/kernel
$ cp -r ../kernel-source <temporary/kernel/path>
$ cd <temporary/kernel/path>
$ git reset --hard
$ git clean -fdx
DO MODIFICATIONS TO SOURCE FILES
$ git add *
$ git commit -m <msg>
$ git format-patch -1

Code 25: Kernel Patch Procedure

At this point we added the newly formatted patches to the recipe. This was
accomplished by copying the generated patches files to the files subfolder inside the
kernel recipe directory, and then add the files path to the SRC_URI variable inside the
recipe. The patches are automatically applied in proceeding builds.

Adding missing firmware When testing the image, it was noted that a few peripherals
were not working correctly. This was due to the fact that some firmware was missing
from the image. There are a couple of ways to fix the issue, we can add the required
packages directly in the board configuration file, or alternately, we can add the packages
to the local configuration file.
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The syntax for both cases is the same, with only difference being that in the first
case, the packages is directly added to the BSP layer, so anyone that uses the layer
will have this packages installed by default, and in the second case only when explicitly
specified by the user will the package be installed.

In our case we decided to go by the second route, to allow a user to explicitly
specify if the firmware is to be installed. Code 26 shows the modification done to the
build/conf/local.conf.

@@ -253,3 +253,6 @@
# track the version of this file when it was generated. This can safely be ignored if
# this does not mean anything to you.
CONF_VERSION = "1"

+
+# LINUX FIRMAWARE
+IMAGE_INSTALL_append = " linux-firmware"

Code 26: Adding Missing Firmware

4.3 Synthesis

In this chapter we demonstrated how use the chosen building environments, Armbian and
Yocto, and highlight the main differences between their building processes.

In Armbian we configure the kernel and bootloader using patches and configurations files,
as well as add specific user configurations that modify the final rootfs. When the build process
starts, Armbian will fetch the sources for the kernel and bootloader, apply the patches and
configurations that we provided, compile and then generate the final image. During this
process Armbian fetches all the packages integrated in the image from the official Debian
repositories. Figure 4.6 summarizes this process.

Figure 4.6: Armbian Build Process

In contrast, Yocto will fetch and compile all of the image software and firmware, from
the kernel to program applications, not having public repositories with pre-built packages.
Therefore, everything that is contained in the final image has an associated recipe that
provides the steps that are required to build everything from source. Figure 4.7 summarizes
the building process in Yocto.
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Figure 4.7: Yocto Build Process
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CHAPTER 5
Testing Results

This chapter describes the procedures and presents the results of a couple of the tests that were
performed on the developed images.

In other to validate the usability and performance of the two implemented images, some
tests have been performed, that can be mainly divided in two parts:

Firstly, even though the majority of the board components were tested when developing
the images, as mentioned in Section 3.3, it was required to create a single application that
would integrate the maximum number of tests needed to validate the components of the board.
The reasoning for this application was twofold. One, to verify that all the components were
working correctly in a standardized way, and two, in a later phase, in the production line of
the board, to validate if the boards are assembled correctly.

Secondly, we subjected the built images to a field test, and recorded performance metrics
for an extended period of time, in order to try to quantify differences between them.

Other tests were performed, namely a temperature chamber test that placed the board in a
chamber with temperatures ranging between -40 Celsius to 85 Celsius, while performing CPU
intensive tasks. This was done to validate the working temperatures of the board components.
However, as these tests were board-oriented, and not image-oriented, they are not presented
here.

5.1 Automatic peripherals validation

As previously mentioned, a custom application was developed to validate the components of
the board, which will later be used in the production line to validate the assembled boards.

To complement the test, a breadboard configuration was assembled, which allowed us
to standardize the test. Later this breadboard configuration will be fully built as a Printed
Circuit Board (PCB) test jig.

The test utility, which was named WTU, was developed in Python3. This programming
language was chosen for several reasons. First, because it is a programming language that
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we had prior experience with, it supports Object Oriented Programming (OOP), and it has
a faster development time compared to other high-level languages such as Java or C/C++.
Also, Python3 has a multitude of libraries that help using it as a scripting language, as well as
to create an CLI, which was the intended interface for the final application. Finally, even at
this early phase in the development, the team set a long-term goal of developing a library in a
popular and user-friendly language that would enable the end-user to control the peripherals
in the board. As such, this utility will be the building blocks for the future library to be
developed.

5.1.1 Procedure

After the test utility and corresponding breadboard had been developed, the procedure used
for the tests was to, one board at the time, connect the board to the breadboard test jig, and
then run the test utility to collect the results, which were printed to the console. Figure 5.1
shows the output of the Wi-Fi test.

Figure 5.1: WTU Output

Once the automated tests were executed, and the corresponding results recorded, some
manual tests were performed. The manual tests consist in validations which are not included
in the developed utility, and generally require human intervention for the test to be performed
and/or validated. The executed manual tests comprise in:

• Connecting the High-Definition Multimedia Interface (HDMI) to a monitor and verify if
it works correctly

• Connecting a speaker to the audio port and play the audio test
speaker-test -Ddefault -c 6

• Connecting a USB pen drive to each of the USB ports and validate the read/write
functionality of the device

• Use the same test as previously pointed in the USB-OTG port

5.1.2 Test examples

Each type of peripheral device requires a specific testing procedure, a specific hardware, and
specific testing code. It would be tedious and somewhat redundant to describe these details
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for all the peripheral devices. So, here we describe the testing procedure and apparatus for
just two of the devices.

The first example is the 1-Wire test, which is one of the simplest tests. It consists of
connecting the 1-Wire interface to a 1-Wire temperature sensor, and collect the values from
the sensor. This connection is demonstrated in the corresponding schematic, in Figure 5.2,
where PC4 is the 1-Wire Pin provided from the WiiPiiDo board.

Figure 5.2: 1-Wire Test jig Schematic

Due to the sysfs interface for the 1-Wire, the test code in the appli-
cation consists in reading the slave file for the 1-Wire interface, located at
/sys/bus/w1/devices/w1_bus_master1/<1-wire_identifier>/w1_slave, and collect-
ing the respective sensor values. As this reading had a significant delay, up in the seconds,
and as the frequency of all the other tests is higher, the reading method for the 1-Wire is run
in a separate process. The read data are then validated in the main application. An excerpt
of the code for this test, the method that reads the sensor value, is shown in Code 27. The
full code for this particular test is in Appendix A, in Code 31.

def read_wire(self):
while self.running.value:

try:
tmp_str = WFile.readFrom(self.wire_file, readAll=True)[1]

except Exception as exception:
self.print_warning("File Read Error")

self.read.value = int(tmp_str.split('=')[1]) # get just the temperature
self.print_info(self.read.value)
time.sleep(self.delay.value)

Code 27: 1-Wire Test Read Method

The second example is the USB-UART Bridge test. This test consists in reading/writing
to/from the bridge, in a loop. The schematic for this test is shown in Figure 5.3.

In terms of code, we are once again using the sysfs interface to do this operations, iterating
through the three devices provided by this bridge. The test code is presented in Code 28.
Similarly to the last test, the full code is in the Appendix A, in this case located at Code 32.
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Figure 5.3: USB-UART Bridge Test jig Schematic

def test(self):
if self.initialized():

with serial.Serial('/dev/ttyUSB%d' % self.usb_dev, self.baudrate,
timeout=self.timeout) as ser:

# write
self.print_info("USB%d - Write '%s'" % (self.usb_dev, self.test_string))
ser.write(b'%s\n' % str.encode(self.test_string))

# read
line = ser.readline() # read a '\n' terminated line
line = line.decode()[:-1] # decode back to string and remove '\n'
self.print_info("USB%d - Read '%s'" % (self.usb_dev, line))

# test written and read strings
if line == '':

self.print_test("USB%d ERROR - Timeout" % self.usb_dev)
elif self.test_string == line:

self.print_test("USB%d OK" % self.usb_dev)
else:

self.print_test("USB%d ERROR - Strings are different" % self.usb_dev)

# cycle through the usb devices
self.usb_dev = self.usb_dev + 1 if self.usb_dev < 3 else 1

Code 28: USB-UART Bridge Test Method

5.1.3 Results

The results in this phase are summarized in two tables, Table 5.1 and Table 5.2. These
represent the information provided from the manual test and the WTU, respectively.

Analyzing the tables we can verify that all of the automated tests were successful in both
images, however, some of the manual tests failed, namely the Bluetooth test, for both images,
and the Audio test for the Yocto image.

Component Armbian Yocto
Audio Yes No
Bluetooth No No
HDMI Yes Yes
USB Yes Yes
USB-OTG Yes Yes

Table 5.1: Manual Test Results
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Component Armbian Yocto
1-Wire Yes Yes
Accelerometer Yes Yes
ADC Yes Yes
eMMC Yes Yes
Ethernet Yes Yes
GPIOs Yes Yes
GPS Yes Yes
NB-IoT Yes Yes
Pulse-width Modulation (PWM) Yes Yes
RTCC Yes Yes
USB-Serial Peripheral Interface (SPI) Bridge Yes Yes
USB-SPI GPIOs Yes Yes
USB-UART Bridge Yes Yes
Wi-Fi Yes Yes

Table 5.2: WTU Results

The Audio not working in Yocto is probably due to a missing kernel patch, as any
configuration, DTS and firmware associated with this interface was checked to be similar to
the ones used in the Armbian image.

Regarding the Bluetooth interface, the root of the problem still has not been detected. We
are excluding the problem being an hardware anomaly as the Bluetooth is not a standalone
module, but a combo module with the Wi-Fi, which is working. As such, we argue that
the cause for the Bluetooth not being working is probably due to some missing firmware, or
Bluetooth-related package missing or malfunctioning.

5.2 Field test

There was some discussion when deciding how the image would be compared in a final stage.
The obvious answer that we came across was to deploy the application that the majority of
boards will be running when deployed in the real world and do some field testing. To to so, a
NodeJS application that enables a user to control and monitor devices that work with Radio
Frequency (RF), was deployed to the test boards. As a way to get some sort of reference for
the developed images, a Raspberry Pi 3 Model B1 running Raspbian, the default and official
image for this board, was also put to the same test.

5.2.1 Procedure

Three boards were prepared for this procedure, with the equipment and software summarized
in Table 5.3. In each board, we deployed the respective OS, always choosing the smallest
image when possible, i.e., for board P1, a minimal Yocto image was chosen, like shown in
Section 4.2.1, for board P2, we chose the Armbian server image with minimal packages, as
demonstrated in Section 4.1.1, and finally, for board P3 we chose the Raspbian Lite image.

1Raspberry Pi 3 Model B – https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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ID Board OS SoC RAM
P1 WiiPiiDo Yocto Allwinner A64 (1.2 GHz) 2 G
P2 WiiPiiDo Armbian Allwinner A64 (1.2 GHz) 2 G
P3 Raspberry Pi 3B Raspbian Broadcom BCM2837 (1.2 GHZ) 1 G

Table 5.3: Test Equipment

Afterwards, we installed only the NodeJS application and its requirements. After verifying
that the application was running correctly in all the boards, these were placed in the same
room, which contained RF devices that were interacting with the boards. A test script was
then deployed to each machine to gather performance metrics with a frequency of 6 times per
minute, which are then saved locally. The metrics being monitored in this test were:

• Memory usage, with statistics from the /proc/meminfo file.
• CPU usage, containing the average usage during the test. This information was obtained

using the iostat -c command.
• Number of running processes, which were retrieved by parsing the /proc/stat file.

A second script was also deployed to one of the P1 board, that synchronizes all of the gathered
data once every 5 minutes.

Figure 5.4 illustrates the field test setup.

Figure 5.4: Field test setup

5.2.2 Results

The first results presented are the memory test results, as shown in Figure 5.5. The information
included in these graphs contain the following data [38]:

• Buffers – The memory that is in use in buffer cache
• Cached – The memory in disk cache
• Active – The memory that has been recently used and that is not reclaimed unless

being absolutely necessary.
Observing the graphs, we see that board P1 has the lowest memory usage from all the boards,
and it stays almost constant during the full field test. Board P2 presents higher average values
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compared with before, but similar behaviors for the Cached and Buffers memory. However
the Active memory in this board possesses an aggressive usage, being reclaimed in definite
periods of time. On the other hand, board P3 has the highest average values from all the
tested boards, and a greater growth of the memory usage over time. This may be due to the
fact that this board has half of the total memory compared with the other boards, and the
OS is managing the memory differently.

Figure 5.5: Memory usage from boards P1, P2 and P3

The second graph presented in Figure 5.6 contains the CPU performance test results.
From this figure with can observe that board P1 and P3 had similar behaviors during the
field test, with averages values around 0.6%. Board P2 however shows a completely different
behavior, with increasing values over time, stabilizing around 28%.

Finally, Figure 5.7 illustrates the number of running processes during the test. From this
figure we can see an average number of process for each image being between 52-60 for P1,
64-84 for P2 and 62-65 for P3. The different behaviors may be due to the different services
running in background in each board by default.

To conclude, some of the results were as anticipated, such as board P1, the Yocto image,
being the one using less resources overall. This was unsurprising seeing that this was the most
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Figure 5.6: CPU usage

Figure 5.7: Number of running processes

compact image, with fewer installed packages and running services. Board P3 also showed
expected results, with the default values from the tests being higher compared to board P1,
and with slightly different behaviors. These differences are estimated to result from how the
different OSs are managing the boards resources. That being said, the results provided by
board P2 were not as expected, from the behavior of the Active memory, to the CPU usage
during the test. The definite cause for these results was not found. However, we argue that
the most likely cause was an hardware anomaly in the board that was used. This must be
the case as, due to logistic reasons, the WiiPiiDo boards used in these tests were the first
prototypes assembled, which presented a few problems in some hardware components.

5.3 Synthesis

In this chapter we performed several tests to validate the developed images. From these, we
were able to confirm that the majority of the peripherals from the board are working correctly,
with only two components not working at the time of this writing. There were also some
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significant differences detected between images during the performance tests, that we believe
may be due to hardware anomalies. Concluding, the performance test were inconclusive, with
problems detected a posteriori that may be unrelated to the developed images, but we were
not able to confirm this during this work.
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CHAPTER 6
Conclusions

This chapter presents the conclusions, contributions and future work.

6.1 Conclusions

In this thesis we have described the development of custom Embedded Linux images that
explore the full potential of the custom hardware platform WiiPiiDo. For that, two environ-
ments were used to build embedded Linux images. However, during the initial development
phase, it was rapidly noted that starting to develop the final images from the get-go was not
the best idea, since we had no experience in the environments that we had to use, and since
these were the first images being developed for a new custom board that was not yet fully
tested. In such cases, we argue that it is best to use a different approach, which allows us to
safely boot images to the board, with an incremental level of complexity, minimizing possible
errors that could occur. This also made the validation of the most important peripherals
faster. As such, the used approach was divided in three phases:

1. Building of a simple bootloader, which allowed us to test mainly the core board
peripherals, such as SoC, RAM and mass storage.

2. Building of a complete but minimalistic image, which allowed for fast compilation times,
and rapid validation of some of the simplest peripherals from the board, such as the
GPIOs, SPI, etc. This phase also provided the opportunity to integrate the tested
peripherals in this environment.

3. Developing the final images in the intended environments.
From the final images that were developed, we concluded that both environments have

their place in an new embedded hardware development, with distinct purposes that each is
trying to fill. Armbian, being Debian-based, has the advantages and disadvantages of being a
desktop-class Linux image in an embedded Linux system. Armbian is a familiar distribution
for end-users, with access to the Debian Package repositories, and provides utilities to help
the end-user to configure the image at runtime. This makes it more attractive as an image for
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Armbian Yocto
Desktop-class image + –
Flexibility – +
Learning curve/Ease of use + –
Maintainability – +
Runtime configuration utilities + –
Community – +
Documentation and online resources – +
Supported architectures – +

Table 6.1: Summary of differences between the Armbian and Yocto build environments.

a multi-purpose user-controlled system. On the other hand, in situations where the target
system is intended to have specific set of tasks, with a lower end-user control of the setup,
Yocto is preferable. Yocto has more flexibility, allowing developers to create custom images
tailored for their needs.

Another key difference between the environments is in how they work and their ease of use.
Armbian will be easier to use if a developer is already somewhat familiar with embedded Linux
development and shell scripting. Yocto, on the other hand, has a unique build system, which
presents multiple concepts and configurations files that need to be understood by the developer
when using the environment. This is responsible for a more difficult learning process, but on
the other hand is what makes Yocto such a flexible environment, with a good collaborative
development support. Additionally, the Yocto build system provides ways to freeze a layer to
a specific version of the environment. This characteristic simplifies the maintainability.

Finally, although the community for both environments is vibrant and active, the Yocto
community is larger, with more learning resources available.

Table 6.1 summarizes the main differences between the used build environments.

6.2 Contributions

In this work the following contributions were made:
• A comparative analysis of different Linux development environments (Section 2.5).
• Proposition of a thee phase approach to incrementally test and validate images in a new

SBC (Chapter 3).
• Based on the experience obtained when integrating the peripherals, a procedure was

proposed to help new developers start this process (Section 3.3).
• Creation and validation of the BSP Layer in Yocto for the WiiPiiDo (Subsection 4.2.2).
• Development of automatic scripts for board testing and validation (Section 5.1).

Part of this work was described in a paper accepted for publication in the Computing
Conference 2020 [39].

6.3 Future Work

There is still a significant amount of work that could be conducted, which can be summarized
in the following list:
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• Complete the Armbian and Yocto support, namely, the integration of remaining invali-
dated devices.

• Finish the Yocto bitbake application recipes that provide the WTU and Globaltronic’s
proprietary software.

• Make all the developed work public and create pull requests to the official repositories,
namely the Armbian, U-Boot and Kernel repositories.

• Evolve the WTU into a Python library that allows end-users to easily control the board
peripherals.

• Continue maintaining the developed images.
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APPENDIX A
Source Files

This appendix presents complete source files that are referenced in the thesis.
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<ns0:RootFileSystem xmlns:ns0="https://www.linutronix.de/projects/Elbe"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
created="2009-05-20T08:50:56" revision="6"
xsi:schemaLocation="https://www.linutronix.de/projects/Elbe dbsfed.xsd">

<project>
<name>i386-stretch-grub</name>
<version>1.0</version>
<description>for testing 32bit with grub2</description>
<buildtype>i386</buildtype>
<mirror>

<primary_host>ftp.de.debian.org</primary_host>
<primary_path>/debian</primary_path>
<primary_proto>http</primary_proto>

</mirror>
<suite>stretch</suite>

</project>
<target>

<hostname>i386-stretch</hostname>
<domain>elbe-rfs.org</domain>
<passwd>foo</passwd>
<console>ttyS0,115200</console>
<images>

<msdoshd>
<name>sda.img</name>
<size>1900MiB</size>
<grub-install/>
<partition>

<size>remain</size>
<label>rfs</label>

</partition>
</msdoshd>

</images>
<fstab>

<bylabel>
<label>rfs</label>
<mountpoint>/</mountpoint>
<fs>

<type>ext4</type>
<tune2fs>-i 0</tune2fs>

</fs>
</bylabel>

</fstab>
<finetuning>

<rm>var/cache/apt/archives/*.deb</rm>
</finetuning>
<pkg-list>

<pkg>linux-image-686-pae</pkg>
<pkg>grub-pc</pkg>
<pkg>xserver-xorg-video-radeon</pkg>
<pkg>xserver-xorg-core</pkg>
<pkg>xserver-xorg-input-all</pkg>
<pkg>xterm</pkg>
<pkg>isc-dhcp-client</pkg>
<pkg>net-tools</pkg>
<pkg>network-manager</pkg>
<pkg>mono-runtime</pkg>
<pkg>slim</pkg>
<pkg>awesome</pkg>
</pkg-list>
</target>
</ns0:RootFileSystem>

Code 29: Example of an minimal ELBE configuration file.
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#@TYPE: Machine
#@NAME: WiiPiiDo Board
#@DESCRIPTION: An Allwinner based development board http://www.globaltronic.pt/en/product/wiipiido/

require conf/machine/include/arm/arch-arm64.inc

PREFERRED_PROVIDER_virtual/bootloader ?= "u-boot"
EXTRA_IMAGEDEPENDS += "u-boot"
UBOOT_MACHINE ?= "wiipiido_defconfig"
UBOOT_BINARY ?= "u-boot-sunxi-with-spl.bin"
UBOOT_ENV ?= "boot"
UBOOT_ENV_SUFFIX ?= "scr"
SPL_BINARY ?= "spl/sunxi-spl.bin"
UBOOT_ENTRYPOINT = "0x40080000"
UBOOT_DTB_LOADADDRESS = "0x4FA00000"

PREFERRED_PROVIDER_virtual/kernel ?= "linux-wiipiido"
PREFERRED_VERSION_linux-wiipiido ?= "4.19%"
KERNEL_CLASSES = "kernel-fitimage"
KERNEL_IMAGETYPE = "fitImage"
KERNEL_DEVICETREE = "allwinner/sun50i-a64-wiipiido.dtb"

MACHINE_EXTRA_RRECOMMENDS += "kernel-modules linux-firmware-brcm43430"

IMAGE_FSTYPES += "wic"
WKS_FILE ?= "wiipiido-bsp-image.wks"

IMAGE_BOOT_FILES ?= " \
fitImage \
boot.scr \
"

WKS_FILE_DEPENDS ?= " \
mtools-native \
dosfstools-native \
virtual/bootloader \
virtual/kernel \
"

SERIAL_CONSOLES = "115200;ttyS0"
MACHINE_FEATURES = "alsa apm keyboard rtc serial screen touchscreen \

usbgadget usbhost vfat ext2 ext3 wifi"

Code 30: Yocto BSP Board Configuration File Example.
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from auxiliar.file_handler import WFile
from tests.wt import WT
import multiprocessing
import time

class OneWire(WT):
def __init__(self, config=None, verbose=False):

WT.__init__(self, runAsRoot=True, config=config, verbose=verbose)
self.wire_file = WFile.find_files("/sys/bus/w1/devices/w1_bus_master1", "w1_slave")

self.process = multiprocessing.Process(target=self.read_wire)
self.read = multiprocessing.Value('i', -1)
self.running = multiprocessing.Value('b', True)

self.delay = multiprocessing.Value('f', 1)

def parse_config(self):
super(OneWire, self).parse_config()
if not self.enabled:

return

current_config = self.configs['OneWire']

if 'Delay' in current_config:
tmp = self.parse_config_time(

current_config['Delay'], 'Delay', dest_scale=1)
if tmp > 0:

self.print_info("Using 'Delay' [%fs]" % tmp)
self.delay.value = tmp

else:
self.print_warning("Error parsing 'Delay'")
self.print_warning("Using default 'Delay' [%fs]" % self.delay)

def pos_config(self):
if self.enabled:

if len(self.wire_file) > 0:
self.wire_file = self.wire_file[0]
self.process.start()

else:
self.print_error("Device not Found!")
self.start_success = False

def read_wire(self):
while self.running.value:

try:
tmp_str = WFile.readFrom(self.wire_file, readAll=True)[1]
self.read.value = int(

tmp_str.split('=')[1]) # get just the temperature
self.print_info(self.read.value)

except Exception as exception:
self.print_warning("File Read Error")
self.read.value = NaN

time.sleep(self.delay.value)

def test(self):
if self.initialized():

if self.a.value is None:
self.print_warning("%s" % self.read.value)

else:
self.print_test("%s" % self.read.value)

def finish(self):
if self.initialized():

self.running.value = False
self.process.join()
super(OneWire, self).finish()

Code 31: 1-Wire Test Code
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from auxiliar.logger import Logger
from tests.wt import WT
import serial

class USB_UART(WT):
def __init__(self, config=None, verbose=False):

WT.__init__(self, runAsRoot=False, config=config, verbose=verbose)
self.usb_dev = 1
self.test_string = "test"
self.baudrate = 19200
self.timeout = 1

self.acceptable_baud = [9600, 19200, 38400, 57600, 115200]

def parse_config(self):
super(USB_UART, self).parse_config()
if not self.initialized():

return

current_config = self.configs['USB_UART']

if 'TestString' in current_config:
tmp_str = current_config['TestString']
if tmp_str.isalnum():

self.test_string = tmp_str
self.print_info("Using 'TestString' [%s]" % self.test_string)

else:
self.print_warning(

"'TestString' needs to be alpha numerical [%s]" % tmp_str)
self.print_warning(

"Using default 'TestString' [%s]" % self.test_string)

if 'BaudRate' in current_config:
tmp_num = self.parse_config_number_in_range(

current_config['BaudRate'], 'BaudRate', self.acceptable_baud)
if tmp_num[0] == True:

self.baudrate = tmp_num[1]
self.print_info("Using 'BaudRate' [%d]" % self.baudrate)

else:
self.print_warning(

"Using default 'BaudRate' [%d]" % self.baudrate)

if 'TimeOut' in current_config:
tmp = self.parse_config_time(

current_config['TimeOut'], 'TimeOut', dest_scale=1)
if tmp > 0:

self.print_info("Using 'TimeOut' [%fs]" % tmp)
self.timeout = tmp

else:
self.print_warning("Error parsing 'TimeOut'")
self.print_warning(

"Using default 'TimeOut' [%fs]" % self.timeout)

def test(self):
if self.initialized():

with serial.Serial('/dev/ttyUSB%d' % self.usb_dev, self.baudrate, timeout=self.timeout) as ser:
# write
self.print_info("USB%d - Write '%s'" %

(self.usb_dev, self.test_string))
ser.write(b'%s\n' % str.encode(self.test_string))

# read
line = ser.readline() # read a '\n' terminated line
line = line.decode()[:-1] # decode back to string and remove '\n'
self.print_info("USB%d - Read '%s'" % (self.usb_dev, line))

# test written and read strings
if line == '':
self.print_test("USB%d ERROR - Timeout" % self.usb_dev)
elif self.test_string == line:
self.print_test("USB%d OK" % self.usb_dev)
else:
self.print_test(

"USB%d ERROR - Strings are different" % self.usb_dev)

# cycle through the usb devices
self.usb_dev = self.usb_dev + 1 if self.usb_dev < 3 else 1

Code 32: USB-UART Bridge Test Code
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