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Abstract: We propose two efficient numerical approaches for solving variable-order fractional
optimal control-affine problems. The variable-order fractional derivative is considered in the
Caputo sense, which together with the Riemann–Liouville integral operator is used in our new
techniques. An accurate operational matrix of variable-order fractional integration for Bernoulli
polynomials is introduced. Our methods proceed as follows. First, a specific approximation of
the differentiation order of the state function is considered, in terms of Bernoulli polynomials.
Such approximation, together with the initial conditions, help us to obtain some approximations
for the other existing functions in the dynamical control-affine system. Using these approximations,
and the Gauss—Legendre integration formula, the problem is reduced to a system of nonlinear
algebraic equations. Some error bounds are then given for the approximate optimal state and control
functions, which allow us to obtain an error bound for the approximate value of the performance
index. We end by solving some test problems, which demonstrate the high accuracy of our results.

Keywords: variable-order fractional calculus; Bernoulli polynomials; optimal control-affine problems;
operational matrix of fractional integration

MSC: 34A08; 65M70 (Primary); 11B68 (Secondary)

1. Introduction

The Bernoulli polynomials, named after Jacob Bernoulli (1654–1705), occur in the study of
many special functions and, in particular, in relation with fractional calculus, which is a classical
area of mathematical analysis whose foundations were laid by Liouville in a paper from 1832
and that is nowadays a very active research area [1]. One can say that Bernoulli polynomials
are a powerful mathematical tool in dealing with various problems of dynamical nature [2–6].
Recently, an approximate method, based on orthonormal Bernoulli’s polynomials, has been developed
for solving fractional order differential equations of Lane–Emden type [7], while in [8] Bernoulli
polynomials are used to numerical solve Fredholm fractional integro-differential equations with
right-sided Caputo derivatives. Here we are interested in the use of Bernoulli polynomials with respect
to fractional optimal control problems.

An optimal control problem refers to the minimization of a functional on a set of control and state
variables (the performance index) subject to dynamic constraints on the states and controls. When such
dynamic constraints are described by fractional differential equations, then one speaks of fractional
optimal control problems (FOCPs) [9]. The mathematical theory of fractional optimal control has born
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in 1996/97 from practical problems of mechanics and began to be developed in the context of the
fractional calculus of variations [10–12]. Soon after, fractional optimal control theory became a mature
research area, supported with many applications in engineering and physics. For the state-of-the-art,
see [13–15] and references therein. Regarding the use of Bernoulli polynomials to numerically solve
FOCPs, we refer to [2], where the operational matrices of fractional Riemann–Liouville integration
for Bernoulli polynomials are derived and the properties of Bernoulli polynomials are utilized,
together with Newton’s iterative method, to find approximate solutions to FOCPs. The usefulness of
Bernoulli polynomials for mixed integer-fractional optimal control problems is shown in [16], while the
practical relevance of the methods in engineering is illustrated in [17]. Recently, such results have been
generalized for two-dimensional fractional optimal control problems, where the control system is not
a fractional ordinary differential equation but a fractional partial differential equation [18]. Here we are
the first to develop a numerical method, based on Bernoulli polynomials, for FOCPs of variable-order.

The variable-order fractional calculus was introduced in 1993 by Samko and Ross and deals
with operators of order α, where α is not necessarily a constant but a function α(t) of time [19].
With this extension, numerous applications have been found in physics, mechanics, control, and signal
processing [20–24]. For the state-of-the-art on variable-order fractional optimal control we refer
the interested reader to the book [25] and the articles [26,27]. To the best of our knowledge,
numerical methods based on Bernoulli polynomials for such kind of FOCPs are not available in
the literature. For this reason, in this work we focus on the following variable-order fractional optimal
control-affine problem (FOC-AP):

min J =
∫ 1

0
φ(t, x(t), u(t))dt (1)

subject to the control-affine dynamical system

C
0 D

α(t)
t x(t) = ϕ

(
t, x(t), C

0 D
α1(t)
t x(t), . . . , C

0 D
αs(t)
t x(t)

)
+ b(t)u(t) (2)

and the initial conditions
x(i)(0) = xi

0, i = 0, 1, . . . , n, (3)

where φ and ϕ are smooth functions of their arguments, b 6= 0, n is a positive integer number such
that for all t ∈ [0, 1], 0 < α1(t) < α2(t) < . . . < αs(t) < α(t) ≤ n, and C

0 Dα(t)
t is the (left) fractional

derivative of variable-order defined in the Caputo sense. We employ two spectral methods based
on Bernoulli polynomials in order to obtain numerical solutions to problem (1)–(3). Our main idea
consists of reducing the problem to a system of nonlinear algebraic equations. To do this, we introduce
an accurate operational matrix of variable-order fractional integration, having Bernoulli polynomials
as basis vectors.

The paper is organized as follows. In Section 2, the variable-order fractional calculus is briefly
reviewed and some properties of the Bernoulli polynomials are recalled. A new operational matrix of
variable-order is introduced for the Bernoulli basis functions in Section 3. Section 4 is devoted to two
new numerical approaches based on Bernoulli polynomials for solving problem (1)–(3). In Section 5,
some error bounds are proved. Then, in Section 6, some FOC-APs are solved using the proposed
methods. Finally, concluding remarks are given in Section 7.

2. Preliminaries

In this section, a brief review on necessary definitions and properties of the variable-order
fractional calculus is presented. Furthermore, Bernoulli polynomials and some of their properties
are recalled.
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2.1. The Variable-Order Fractional Calculus

The two most commonly used definitions in fractional calculus are the Riemann–Liouville integral
and the Caputo derivative. Here, we deal with generalizations of these two definitions, which allow
the order of the fractional operators to be of variable-order.

Definition 1 (See, e.g., [25]). The left Riemann—Liouville fractional integral of order α(t) is defined by

0 Iα(t)
t y(t) =

1
Γ(α(t))

∫ t

0
(t− s)α(t)−1y(s)ds, t > 0,

where Γ is the Euler gamma function, that is,

Γ(t) =
∫ ∞

0
τt−1 exp(−τ)dτ, t > 0.

Definition 2 (See, e.g., [25]). The left Caputo fractional derivative of order α(t) is defined by

C
0 D

α(t)
t y(t) =

1
Γ(n− α(t))

∫ t

0
(t− s)n−α(t)−1y(n)(s)ds, n− 1 < α(t) < n,

C
0 D

α(t)
t y(t) = y(n)(t), α(t) = n.

For 0 ≤ β(t) < α(t) ≤ n, n ∈ N, γ > 0, and ν > −1, some useful properties of the Caputo
derivative and Riemann–Liouville fractional integral are as follows [25]:

0 Iα(t)
t tν =

Γ(ν + 1)
Γ(ν + 1 + α(t))

tν+α(t), (4)

0 Iγ
t (

C
0 D

γ

t y(t)) = y(t)−
dγe−1

∑
i=0

y(i)(0)
ti

i!
, t > 0, (5)

0 In−α(t)
t (y(n)(t)) = C

0 D
α(t)
t y(t)−

n−1

∑
i=dα(t)e

y(i)(0)
ti−α(t)

Γ(i + 1− α(t))
, t > 0, (6)

0 Iα(t)−β(t)
t (C

0 D
α(t)
t y(t)) = C

0 D
β(t)
t y(t)−

dα(t)e−1

∑
i=dβ(t)e

y(i)(0)
ti−β(t)

Γ(i + 1− β(t))
, t > 0, (7)

where d·e is the ceiling function.

2.2. Bernoulli Polynomials

The set of Bernoulli polynomials, {βm(t)}∞
m=0, consists of a family of independent functions that

builds a complete basis for the space L2[0, 1] of all square integrable functions on the interval [0, 1].
These polynomials are defined as

βm(t) =
m

∑
i=0

(
m
i

)
bm−iti, (8)

where bk, k = 0, 1, . . . , m, are the Bernoulli numbers [28]. These numbers are seen in the series
expansion of trigonometric functions and can be given by the following identity [29]:

t
et − 1

=
∞

∑
i=0

bi
ti

i!
.

Thus, the first few Bernoulli numbers are given by
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b0 = 1, b1 = −1
2

, b2 =
1
6

, b3 = 0, b4 = − 1
30

, b5 = 0, b6 =
1
42

.

Furthermore, the first five Bernoulli polynomials are

β0(t) = 1,

β1(t) = t− 1
2

,

β2(t) = t2 − t +
1
6

,

β3(t) = t3 − 3
2

t2 +
1
2

t,

β4(t) = t4 − 2t3 + t2 − 1
30

.

For an arbitrary function x ∈ L2[0, 1], we can write

x(t) =
∞

∑
m=0

amβm(t).

Therefore, an approximation of the function x can be given by

x(t) ' xM(t) =
M

∑
m=0

amβm(t) = AT B(t), (9)

where
B(t) = [β0(t), β1(t), . . . , βM(t)]T (10)

and
A = [a0, a1, . . . , aM]T .

The vector A in (9) is called the coefficient vector and can be calculated by the formula (see [2])

A = D−1〈x(t), B(t)〉,

where 〈·, ·〉 is the inner product, defined for two arbitrary functions f , g ∈ L2[0, 1] as

〈 f (t), g(t)〉 =
∫ 1

0
f (t)g(t)dt,

and D = 〈B(t), B(t)〉 is calculated using the following property of Bernoulli polynomials [29]:

∫ 1

0
βi(t)β j(t)dt = (−1)i−1 i!j!

(i + j)!
bi+j, i, j ≥ 1.

It should be noted that
X = span {β0(t), β1(t), . . . , βM(t)}

is a finite dimensional subspace of L2[0, 1] and xM, given by (9), is the best approximation of function
x in X.

3. Operational Matrix of Variable-Order Fractional Integration

In this section, we introduce an accurate operational matrix of variable-order fractional integration
for Bernoulli functions. To this aim, we rewrite the Bernoulli basis vector B given by (10) in terms of
the Taylor basis functions as follows:

B(t) = QT(t), (11)
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where T is the Taylor basis vector given by

T(t) =
[
1, t, t2, . . . , tM

]T

and Q is the change-of-basis matrix, which is obtained using (8) as

Q =



1 0 0 0 0 . . . 0
− 1

2 1 0 0 0 . . . 0
1
6 −1 1 0 0 . . . 0
0 1

2 − 3
2 1 0 . . . 0

...
...

...
...

...
...

bM (M
1 )bM−1 (M

2 )bM−2 (M
3 )bM−3 (M

4 )bM−4 . . . 1


.

Since Q is nonsingular, we can write

T(t) = Q−1B(t). (12)

By considering (11) and applying the left Riemann–Liouville fractional integral operator of order
α(t) to the vector B(t), we get that

0 Iα(t)
t B(t) = 0 Iα(t)

t (QT(t)) = Q(0 Iα(t)
t T(t)) = QSα(t)

t T(t), (13)

where Sα(t)
t is a diagonal matrix, which is obtained using (4) as follows:

Sα(t)
t =



1
Γ(1+α(t)) tα(t) 0 0 0 · · · 0

0 1
Γ(2+α(t)) tα(t) 0 0 · · · 0

0 0 2
Γ(3+α(t)) tα(t) 0 · · · 0

...
...

...
...

...
0 0 0 0 · · · Γ(M+1)

Γ(M+1+α(t)) tα(t)


.

Finally, by using (12) in (13), we have

0 Iα(t)
t B(t) = QSα(t)

t Q−1B(t) = Pα(t)
t B(t), (14)

where Pα(t)
t = QSα(t)

t Q−1 is a matrix of dimension (M + 1)× (M + 1), which we call the operational
matrix of variable-order fractional integration α(t) for Bernoulli functions. Since Q and Q−1 are
lower triangular matrices and Sα(t)

t is a diagonal matrix, Pα(t)
t is also a lower triangular matrix. In the

particular case of M = 2, one has

Pα(t)
t =


1

Γ(α(t)+1) tα(t) 0 0(
1

2Γ(α(t)+2) −
1

2Γ(α(t)+1)

)
tα(t) 1

Γ(α(t)+2) tα(t) 0(
1

6Γ(α(t)+1) −
1

2Γ(α(t)+2) +
2

3Γ(α(t)+3)

)
tα(t)

(
2

Γ(α(t)+3) −
1

Γ(α(t)+2)

)
tα(t) 2

Γ(α(t)+3) tα(t)

 .

4. Methods of Solution

In this section, we propose two approaches for solving problem (1)–(3). To do this,
first we introduce

n = max
0<t≤1

{dα(t)e} .
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Then, we may use the following two approaches to find approximations for the state and control
functions, which optimize the performance index.

4.1. Approach I

In our first approach, we consider an approximation of the nth order derivative of the unknown
state function x using Bernoulli polynomials. Set

x(n)(t) = AT B(t), (15)

where A is a 1× (M + 1) vector with unknown elements and B is the Bernoulli basis vector given
by (10). Then, using the initial conditions given in (3), and Equations (5), (14), and (15), we get

x(t) = 0 In
t (x(n)(t)) +

n−1

∑
i=0

x(i)(0)
ti

i!

= AT(0 In
t B(t)) +

n−1

∑
i=0

xi
0

ti

i!

= AT Pn
t B(t) +

n−1

∑
i=0

xi
0

ti

i!
.

(16)

Moreover, using (6), (14), and (15), we get

C
0 D

α(t)
t x(t) = AT Pn−α(t)

t B(t) +
n−1

∑
i=dα(t)e

xi
0

ti−α(t)

Γ(i + 1− α(t))
:= F[A, t] (17)

and
C
0 D

αj(t)
t x(t) = AT P

n−αj(t)
t B(t) +

n−1

∑
i=dαj(t)e

xi
0

ti−αj(t)

Γ(i + 1− αj(t))
:= Fj[A, t], j = 1, . . . , s. (18)

By substituting (16)–(18) into the control-affine dynamical system given by (2), we obtain
an approximation of the control function as follows:

u(t) =
1

b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)]
. (19)

Taking into consideration (16) and (19) in the performance index J, we have

J[A] =
∫ 1

0
φ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
dt.

For the sake of simplicity, we introduce

G[A, t] = φ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
.

In many applications, it is difficult to compute the integral of function G[A, t]. Therefore, it is
recommended to use a suitable numerical integration formula. Here, we use the Gauss–Legendre
quadrature formula to obtain

J[A] ' 1
2

N

∑
i=1

ωiG
[

A,
ti + 1

2

]
, (20)

where ti, i = 1, 2, . . . , N, are the zeros of the Legendre polynomial of degree N, PN(t), and ωi are the
corresponding weights [30], which are given by
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ωi =
2(

d
dt PN(ti)

)2
(1− t2

i )
, i = 1, . . . , N. (21)

Finally, the first order necessary condition for the optimality of the performance index implies

∂J[A]

∂A
= 0,

which gives a system of M + 1 nonlinear algebraic equations in terms of the M + 1 unknown elements
of the vector A. By solving this system, approximations of the optimal state and control functions are,
respectively, given by (16) and (19).

4.2. Approach II

In our second approach, we set

C
0 D

α(t)
t x(t) = AT B(t). (22)

Then, using (7) with β(t) ≡ 0, we obtain that

x(t) = 0 Iα(t)
t (C

0 D
α(t)
t x(t)) +

dα(t)e−1

∑
i=0

x(i)(0)
ti

Γ(i + 1)

= AT(0 Iα(t)
t B(t)) +

dα(t)e−1

∑
i=0

xi
0

ti

i!

= AT Pα(t)
t B(t) +

dα(t)e−1

∑
i=0

xi
0

ti

i!
.

(23)

Furthermore, we get

C
0 D

αj(t)
t x(t) = AT P

α(t)−αj(t)
t B(t) +

dα(t)e−1

∑
i=dαj(t)e

xi
0

ti−αj(t)

Γ(i + 1− αj(t))
:= Fj[A, t], j = 1, . . . , s. (24)

Taking (22)–(24) into consideration, Equation (2) gives

u(t) =
1

b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
dα(t)e−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)]
. (25)

By substituting the approximations given by (23) and (25) into the performance index, we get

J[A] =
∫ 1

0
φ

(
t, AT Pα(t)

t B(t) +
dα(t)e−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
dα(t)e−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
dt.
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By introducing

G[A, t] = φ

(
t, AT Pα(t)

t B(t) +
dα(t)e−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
dα(t)e−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
,

then this approach continues in the same way of finding the unknown parameters of the vector A as in
Approach I.

5. Error Bounds

The aim of this section is to give some error bounds for the numerical solution obtained by the
proposed methods of Section 4. We present the error discussion for Approach II, which can then be
easily extended to Approach I.

Suppose that x∗ is the optimal state function of problem (1)–(3). Let f (t) := C
0 Dα(t)

t x∗(t) with
f (t) ∈ Hµ(0, 1) (Hµ(0, 1) is a Sobolev space [31]). According to our numerical method, fM(t) = AT B(t)
is the best approximation of function f in terms of the Bernoulli polynomials, that is,

∀g ∈ X, ‖ f − fM‖2 ≤ ‖ f − g‖2.

We recall the following lemma from [31].

Lemma 1 (See [31]). Assume that f ∈ Hµ(0, 1) with µ ≥ 0. Let LM( f ) ∈ X be the truncated shifted
Legendre series of f . Then,

‖ f − LM( f )‖2 ≤ CM−µ| f |Hµ;M(0,1),

where

| f |Hµ;M(0,1) =

 µ

∑
j=min{µ,M+1}

‖ f (j)‖2
2

 1
2

and C is a positive constant independent of function f and integer M.

Since the best approximation of function f in the subspace X is unique and fM and LM( f ) are
both the best approximations of f in X, we have fM = LM( f ). Therefore, we get that

‖ f − fM‖2 ≤ CM−µ| f |Hµ;M(0,1). (26)

Hereafter, C denotes a positive constant independent of M and n.

Theorem 1. Suppose x∗ to be the exact optimal state function of problem (1)–(3) such that

f (t) := C
0 Dα(t)

t x∗(t) ∈ Hµ(0, 1), with µ ≥ 0, and x̃ be its approximation given by (23). Then,

‖x∗(t)− x̃(t)‖2 ≤ CM−µ| f |Hµ;M(0,1). (27)

Proof. Let Y = L2[0, 1] and 0 Iα(t)
t : Y → Y be the variable-order Riemann–Liouville integral operator.

By definition of the norm for operators, we have

‖0 Iα(t)
t ‖2 = sup

‖g‖2=1
‖0 Iα(t)

t g‖2.
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In order to prove the theorem, first we show that the operator 0 Iα(t)
t is bounded. Since ‖g‖2 = 1,

using Schwarz’s inequality, we get∥∥∥0 Iα(t)
t g

∥∥∥
2
=

∥∥∥∥ 1
Γ(α(t))

∫ t

0
(t− s)α(t)−1g(s)ds

∥∥∥∥
2

≤ ‖g‖2

∥∥∥∥ 1
Γ(α(t))

∫ t

0
(t− s)α(t)−1ds

∥∥∥∥
2

=

∥∥∥∥∥ tα(t)

Γ(α(t) + 1)

∥∥∥∥∥
2

≤ C,

where we have used the assumption α(t) > 0, which gives tα(t) < 1 for 0 < t ≤ 1, and a particular
property of the Gamma function, which is Γ(t) > 0.8. Therefore, 0 Iα(t)

t is bounded. Now, using (26),
and taking into account (7) and (23), we obtain that

‖x∗(t)− x̃(t)‖2 =

∥∥∥∥∥0 Iα(t)
t f (t) +

dα(t)e−1

∑
i=0

x(i)(0)
ti

Γ(i + 1)
−
(

0 Iα(t)
t (AT B(t)) +

dα(t)e−1

∑
i=0

xi
0

ti

i!

)∥∥∥∥∥
2

=
∥∥∥0 Iα(t)

t ( f (t)− AT B(t))
∥∥∥

2

≤
∥∥∥0 Iα(t)

t

∥∥∥
2

∥∥∥ f (t)− AT B(t)
∥∥∥

2

≤ CM−µ| f |Hµ;M(0,1).

The proof is complete.

Remark 1. Since we have α(t)− αj(t) > 0, j = 1, 2, . . . , s, with a similar argument it can be shown that∥∥∥∥∥∥C
0 D

αj(t)
t x∗(t)−

AT P
α(t)−αj(t)
t B(t) +

dα(t)e−1

∑
i=dαj(t)e

xi
0

ti−αj(t)

Γ(i + 1− αj(t))

∥∥∥∥∥∥
2

≤ CM−µ| f |Hµ;M(0,1).

With the help of Theorem 1, we obtain the following result for the error of the optimal control
function. For simplicity, suppose that in the control-affine dynamical system given by (2) the function
ϕ appears as ϕ := ϕ(t, x) (cf. Remark 2).

Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Let u∗ and ũ be the exact and approximate
optimal control functions, respectively. If ϕ : R2 −→ R satisfies a Lipschitz condition with respect to the second
argument, then

‖u∗(t)− ũ(t)‖2 ≤ CM−µ| f |Hµ;M(0,1). (28)

Proof. Using Equation (2), the exact optimal control function is given by

u∗(t) =
1

b(t)
( f (t)− ϕ (t, x∗(t))) (29)

and the approximate control function obtained by our Approach II is given by

ũ(t) =
1

b(t)

(
AT B(t)− ϕ (t, x̃(t))

)
. (30)
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By subtracting (30) from (29), we get

u∗(t)− ũ(t) =
1

b(t)

(
f (t)− ϕ (t, x∗(t))− AT B(t) + ϕ (t, x̃(t))

)
. (31)

Since the function ϕ satisfies a Lipschitz condition with respect to the second variable, there exists
a positive constant K such that

|ϕ(t, x1)− ϕ(t, x2)| < K|x1 − x2|.

Therefore, using (26) and (27), and also taking into account b(t) 6= 0, we have

‖u∗(t)− ũ(t)‖2 ≤
1

‖b(t)‖2

(∥∥∥ f (t)− AT B(t)
∥∥∥

2
+ K ‖x∗(t)− x̃(t)‖2

)
≤ CM−µ| f |Hµ;M(0,1),

which yields (28).

Remark 2. For the general case ϕ := ϕ(t, x, x1, . . . , xs), the same result of Theorem 2 can be easily obtained by
assuming that ϕ satisfies Lipschitz conditions with respect to the variables x, x1, . . . , xs.

As a result of Theorems 1 and 2, we obtain an error bound for the approximate value of the
optimal performance index J given by (20). First, we recall the following lemma in order to obtain the
error of the Gauss–Legendre quadrature rule.

Lemma 2 (See [30]). Let g be a given sufficiently smooth function. Then, the Gauss–Legendre quadrature rule
is given by ∫ 1

−1
g(t)dt =

N

∑
i=1

ωig(ti) + EN(g), (32)

where ti, i = 1, . . . , N, are the roots of the Legendre polynomial of degree N, and ωi are the corresponding
weights given by (21). In (32), EN(g) is the error term, which is given as follows:

EN(g) =
22N+1(N!)4

(2N + 1)[(2N!)]3
g2N(η), η ∈ (−1, 1).

Now, by considering the assumptions of Theorems 1 and 2, we prove the following result.

Theorem 3. Let J∗ be the exact value of the optimal performance index J in problem (1)–(3) and J̃ be its
approximation given by (20). Suppose that the function φ : R3 −→ R is a sufficiently smooth function with
respect to all its variables and satisfies Lipschitz conditions with respect to its second and third arguments,
that is,

|φ(t, x1, u)− φ(t, x2, u)| ≤ K1|x1 − x2| (33)

and
|φ(t, x, u1)− φ(t, x, u2)| ≤ K1|u1 − u2|, (34)

where K1 and K2 are real positive constants. Then, there exist positive constants C1 and C2 such that

∣∣J∗ − J̃
∣∣ ≤ C1M−µ| f |Hµ;M(0,1) + C2

(N!)4

(2N + 1)[(2N!)]3
. (35)

Proof. Using (20) and (32), we have

J̃ =
1
2

N

∑
i=1

ωiφ

(
ti + 1

2
, x̃
(

ti + 1
2

)
, ũ
(

ti + 1
2

))
=
∫ 1

0
φ (t, x̃(t), ũ(t)) dt− ξN , (36)
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where

ξN =

(
1
2

)
22N+1(N!)4

(2N + 1)[(2N!)]3

(
1
2

)2N ∂2Nφ (t, x̃(t), ũ(t))
∂t2N

∣∣∣∣
t=η

=
(N!)4

(2N + 1)[(2N!)]3
∂2Nφ (t, x̃(t), ũ(t))

∂t2N

∣∣∣∣
t=η

for η ∈ (0, 1). Therefore, taking into consideration (33)–(36), we get

∣∣J∗ − J̃
∣∣ = ∣∣∣∣∫ 1

0
φ(t, x∗(t), u∗(t))dt−

∫ 1

0
φ (t, x̃(t), ũ(t)) dt + ξN

∣∣∣∣
=

∣∣∣∣∫ 1

0
φ(t, x∗(t), u∗(t))dt−

∫ 1

0
φ(t, x̃(t), u∗(t))dt +

∫ 1

0
φ(t, x̃(t), u∗(t))dt−

∫ 1

0
φ (t, x̃(t), ũ(t)) dt + ξN

∣∣∣∣
≤ K1

∫ 1

0
|x∗(t)− x̃(t)| dt + K2

∫ 1

0
|u∗(t)− ũ(t)| dt + max

0<t<1
|ξN |

≤ C1 M−µ| f |Hµ;M(0,1) + C2
(N!)4

(2N + 1)[(2N!)]3
,

where we have used the property of equivalence of L1 and L2-norms and

C2 = max
0<t<1

∣∣∣∣∂2Nφ (t, x̃(t), ũ(t))
∂t2N

∣∣∣∣ .

The proof is complete.

Remark 3. A similar error discussion can be considered for Approach I by setting f (t) := x∗(n)(t) with
f (t) ∈ Hµ(0, 1) and taking into account the fact that the operators In, Iα(t) and Iαj(t), for j = 1, 2, . . . , s, are
bounded.

Remark 4. In practice, since the exact control and state functions that minimize the performance index are
unknown, in order to reach a given specific accuracy ε for these functions, we increase the number of basis
functions (by increasing M) in our implementation, such that

max
1≤i≤M

|F[A, ti]− ϕ (ti, x̃(ti), F1[A, ti], . . . , Fs[A, ti])− b(ti)ũ(ti)| < ε (Approach I),

and
max

1≤i≤M

∣∣∣AT B(ti)− ϕ (ti, x̃(ti), F1[A, ti], . . . , Fs[A, ti])− b(ti)ũ(ti)
∣∣∣ < ε (Approach II),

where
ti =

i
M + 1

, i = 1, 2, . . . , M.

6. Test Problems

In this section, some FOC-APs are included and solved by the proposed methods, in order to
illustrate the accuracy and efficiency of the new techniques. In our implementation, the method
was carried out using Mathematica 12. Furthermore, we have used N = 14 in employing the
Gauss–Legendre quadrature formula.

Example 1. As first example, we consider the following variable-order FOC-AP:

min J =
∫ 1

0

[(
x(t)− t2

)2
+

(
u(t)− 1

Γ(3− α(t))
t2−α(t)e−t +

1
2

et2−t
)2
]

dt (37)
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subject to

C
0 D

α(t)
t x(t) = ex(t) + 2etu(t), 0 < α(t) ≤ 1,

x(0) = 0.

The exact optimal state and control functions are given by

x(t) = t2, u(t) =
1

Γ(3− α(t))
t2−α(t)e−t − 1

2
et2−t,

which minimize the performance index J with the minimum value J = 0. In [26], a numerical method based on
the Legendre wavelet has been used to solve this problem with α(t) = 1. For solving this problem with α(t) = 1,
according to our methods, we have n = 1. In this case, both approaches introduced in Section 4 give the same
result. By setting M = 1, we suppose that

x′(t) = AT B(t) = a1

(
t− 1

2

)
+ a0,

where

A = [a0, a1]
T and B(t) =

[
1, t− 1

2

]T
.

The operational matrix of variable-order fractional integration is given by

P1
t =

[
t 0
− t

4
t
2

]
.

Therefore, we have

x(t) = AT P1
t B(t) = a0t +

1
2

a1(t− 1)t. (38)

Moreover, using the control-affine dynamical system, we get

u(t) =
1
2

e−t
(

AT B(t)− eAT P1
t B(t)

)
=

1
2

e−t
(

a1

(
t− 1

2

)
+ a0 − ea0t+ 1

2 a1(t−1)t
)

. (39)

By substituting (38) and (39) into (37), using the Gauss–Legendre quadrature for computing J,
and, finally, setting

∂J
∂a0

= 0,
∂J
∂a1

= 0,

we obtain a system of two nonlinear algebraic equations in terms of a0 and a1. By solving this system, we find

a0 = 1, a1 = 2,

which gives the exact solution

x(t) = t2 and u(t) = te−t − 1
2

et2−t.

As it is seen, in the case of α(t) = 1, our approaches give the exact solution with M = 1 (only two basis
functions) compared to the method introduced in [26] based on the use of Legendre wavelets with m̂ = 6 (six
basis functions).

Since the optimal state function is a polynomial of degree 2, Approach I gives the exact solution with M = 1

for every admissible α(t). On the other hand, if α(t) 6= 1, then C
0 Dα(t)

t x(t) ∈ H1(0, 1). Therefore, according
to the theoretical discussion and the error bound given by (35), the numerical solution given by Approach II
converges to the exact solution, very slowly, that can be confirmed by the results reported in Table 1 obtained
with α(t) = sin(t) and different values of M. Furthermore, by considering a different α(t), and by applying the
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two proposed approaches with M = 5, the numerical results for the functions x and u are displayed in Figures 1
and 2. Figure 1 displays the numerical results obtained by Approach I, while Figure 2 shows the numerical
results given by Approach II. For these results, we have used

α1(t) = 1, α2(t) = sin(t), α3(t) =
t
2

, α4(t) =
t
3

. (40)

Moreover, the numerical results for the performance index, obtained by our two approaches, are shown in
Table 2. It can be easily seen that, in this case, Approach I gives higher accuracy results than Approach II. This is
caused by the smoothness of the exact optimal state function x.

Table 1. (Example 1.) Numerical results obtained by Approach II for the performance index with
different M and α(t) = sin(t).

M 1 2 3 2 5

J 6.80× 10−3 2.33× 10−3 1.76× 10−3 1.57× 10−3 1.56× 10−3

α1(t)

α2(t)

α3(t)

α4(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

x
(t
)

0.30 0.32 0.34 0.36 0.38 0.40

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

α1(t)

α2(t)

α3(t)

α4(t)

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

-0.4

-0.3

-0.2

-0.1

t

u
(t
)

Figure 1. (Example 1.) Comparison between the approximate state (left) and control (right) functions
obtained by Approach I with M = 5 and different α(t) (40).

α1(t)

α2(t)

α3(t)

α4(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

x
(t
)

0.30 0.32 0.34 0.36 0.38 0.40

0.10

0.12

0.14

0.16

0.18

α1(t)

α2(t)

α3(t)

α4(t)

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

-0.4

-0.3

-0.2

-0.1

t

u
(t
)

Figure 2. (Example 1.) Comparison between the approximate state (left) and control (right) functions
obtained by Approach II with M = 5 and different α(t) (40).

Table 2. (Example 1.) Numerical results for the performance index with M = 5 and different α(t) (40).

Method α1(t) α2(t) α3(t) α4(t)

Approach I 3.05× 10−33 3.26× 10−33 6.89× 10−33 2.08× 10−33

Approach II 2.74× 10−33 1.56× 10−3 1.71× 10−4 2.50× 10−5
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Example 2. Consider now the following FOC-AP borrowed from [32]:

min J =
∫ 1

0

[(
x(t)− t

5
2

)4
+ (1 + t2)

(
u(t) + t6 − 15

√
π

8
t
)2
]

dt (41)

subject to
C
0 D

3
2
t x(t) = tx2(t) + u(t) (42)

and the initial conditions x(0) = x′(0) = 0. For this problem, the state and control functions

x(t) = t
5
2 , u(t) = −t6 +

15
√

π

8
t

minimize the performance index with the optimal value J = 0. We have solved this problem by both approaches.
The numerical results of applying Approach I to this problem, with different values of M, are presented in
Figure 3 and Table 3. Figure 3 displays the approximate state (left) and control (right) functions obtained by
M = 1, 3, 5, 7, together with the exact ones, while Table 3 reports the approximate values of the performance
index. Here, we show that Approach II gives the exact solution by considering M = 1. To do this, we suppose that

C
0 D

3
2
t x(t) = AT B(t) = a1

(
t− 1

2

)
+ a0

with

A = [a0, a1]
T and B(t) =

[
1, t− 1

2

]T
.

Therefore, we have

x(t) = AT P
3
2

t B(t) =
2

3
√

π
(2a0 − a1)t

3
2 +

8
15
√

π
a1t

5
2 , (43)

where

P
3
2

t =

 4
3
√

π
t

3
2 0

− 2
5
√

π
t

3
2 8

15
√

π
t

3
2

 .

Using the dynamical control-affine system given by (42), we get

u(t) = a1

(
t− 1

2

)
+ a0 − t

(
2

3
√

π
(2a0 − a1)t

3
2 +

8
15
√

π
a1t

5
2

)2

= −
64a2

1
225π

t6 +

(
32a2

1
45π

− 64a0a1

45π

)
t5 +

(
16a0a1

9π
−

16a2
0

9π
−

4a2
1

9π

)
t4 + a1t + a0 −

a1

2
.

(44)

By substituting (43) and (44) into (41), the value of the integral can be easily computed. Then, by taking
into account the optimality condition, a system of nonlinear algebraic equations is obtained. Finally, by solving
this system, we obtain

a0 =
15
√

π

16
, a1 =

15
√

π

8
.

By taking into account these values in (43) and (44), the exact optimal state and control functions are
obtained. Lotfi et al. have solved this problem using an operational matrix technique based on the Legendre
orthonormal functions combined with the Gauss quadrature rule. In their method, the approximate value of the
minimum performance index with five basis functions has been reported as 7.82× 10−9 while our suggested
Approach II gives the exact value only with two basis functions.
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Figure 3. (Example 2.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach I with different values of M.

Table 3. (Example 2.) Numerical results for the performance index obtained by Approach I with
different M.

M 1 3 5 7

J 5.24× 10−4 7.59× 10−6 4.65× 10−7 5.86× 10−8

As we see, in this example, Approach II yields the exact solution with a small computational cost, while the
precision of the results of Approach I increases by enlarging M. Note that here the optimal state function is not
an infinitely smooth function.

Example 3. As our last example, we consider the following FOC-AP [32]:

min J =
∫ 1

0

et
(

x(t)− t4 + t− 1
)2

+ (1 + t2)

u(t) + 1− t + t4 − 8000

77Γ
(

1
10

) t
21
10

2
 dt

subject to

C
0 D

1.9
t x(t) = x(t) + u(t),

x(0) = 1, x′(0) = −1.

For this example, the following state and control functions minimize the performance index J with minimum
value J = 0:

x(t) = t4 − t + 1, u(t) = −t4 +
8000

77Γ
(

1
10

) t
21
10 + t− 1.

This problem has been solved using the proposed methods with different values of M. By considering
M = 1, the numerical results of Approach I are shown in Figure 4. In this case, an approximation of the
performance index is obtained as J = 7.21× 10−1. By choosing M = 2, according to our numerical method,
we have n = 2. Therefore, we set

x′′(t) = AT B(t),

where

A = [a0, a1, a2], B(t) =
[

1, t− 1
2

, t2 − t +
1
6

]T
.

Hence, using the initial conditions, the state function can be approximated by

x(t) = AT P2
t B(t)− t + 1 =

a2

12
t4 +

a1 − a2

6
t3 +

( a0

2
− a1

4
+

a2

12

)
t2 − t + 1,
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where

P2
t =


t2

2 0 0
− t2

6
t2

6 0
t2

36 − t2

12
t2

12

 .

In the continuation of the method, we find an approximation of the control function u using the control-affine
dynamical system. Then, the method proceeds until solving the resulting system, which yields

a0 = 4, a1 = 12, a2 = 12.

These values give us the exact solution of the problem. This problem has been solved in [32] with five basis
functions and the minimum value was obtained as J = 5.42× 10−7 while our suggested Approach I gives the
exact value with only three basis functions.

In the implementation of Approach II, we consider different values of M and report the results in Table 4
and Figure 5. These results confirm that the numerical solutions converge to the exact one by increasing the
value of M. Nevertheless, we see that since the exact state function x is a smooth function, it takes much less
computational effort to solve this problem by using Approach I.

Table 4. (Example 3.) Numerical results for the performance index obtained by Approach II with
different M.

M 2 4 6 8

J 3.79× 10−4 5.42× 10−7 1.21× 10−8 7.36× 10−10
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8

10

t

u
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)

Figure 4. (Example 3.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach I with M = 1.

Exact

M=2

M=4

M=6

M=8

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

t

x
(t
)

0.4 0.405 0.41

0.618

0.620

0.622

0.624

0.626

Exact

M=2

M=4

M=6

M=8

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

t

u
(t
)

0.4 0.405 0.41

0.96

0.98

1.00

1.02

1.04

1.06

Figure 5. (Example 3.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach II with different values of M.
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7. Conclusions

Two numerical approaches have been proposed for solving variable-order fractional optimal
control-affine problems. They use an accurate operational matrix of variable-order fractional
integration for Bernoulli polynomials, to give approximations of the optimal state and control functions.
These approximations, along with the Gauss–Legendre quadrature formula, are used to reduce the
original problem to a system of algebraic equations. An approximation of the optimal performance
index and an error bound were given. Some examples have been solved to illustrate the accuracy and
applicability of the new techniques. From the numerical results of Examples 1 and 3, it can be seen that
our Approach I leads to very high accuracy results with a small number of basis functions for optimal
control problems in which the state function that minimizes the performance index is an infinitely
smooth function. Moreover, from the results of Example 2, we conclude that Approach II may give

much more accurate results than Approach I in the cases that the smoothness of C
0 Dα(t)

t x(t) is more
than x(n)(t).
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