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Resumo Nos últimos anos, o uso de robôs móveis autónomos que operam em am-
bientes interiores aumentou significativamente. Eles são usados não apenas
em contexto de indústria, mas estão a surgir nas nossas casas e em ambientes
de escritório. Eles são tipicamente usados para transporte, telepresença e
limpeza. A perceção para propósito de navegação autónoma do robô geral-
mente depende de medidor de distâncias a laser, sensores de profundidade
de infravermelho ou a típica câmara. No entanto, os recentes avanços na
tecnologia de radar de onda contínua modulada em frequência permitem
uma nova solução para o problema de perceção. O foco principal deste tra-
balho é avaliar o Radio Detection And Ranging (radar) Frequency-Modulated
Continuous-Wave (FMCW) como sensor para navegação autónoma interior.
Para isso iremos comparar com o Light Detection And Ranging (LiDAR) 2D
que é muito comum quando se toca a robôs autónomos.

Primeiro, será apresentado um estudo entre cada tecnologia, incluindo o
princípio operacional de cada uma, o trabalho em que estão ser usados e
quais as suas limitações que cada uma tem. Depois descobriremos como
podemos usar o Robot Operating System (ROS) e algoritmos de última
geração para combater o problema de navegação autónoma. Depois, de-
screveremos os componentes de hardware e software e como eles estão inter-
conectados produzir uma plataforma robótica adequada que será usada para
executar tarefas de navegação. Várias experiencias foram implementadas
para o uso de radar em navegação. Os resultados obtidos comprovam a val-
idade do radar FMCW como sensor de obstáculos. Eles também mostram
que existem casos onde o LiDAR não deteta ou detata mal vários objec-
tos onde são melhor detetados pelo radar. Também mostram que menos
densidade nos dados não afeta significativamente a atualização do mapa de
custos.
Finalmente, será realizado um trabalho exploratório que tenta usar o leituras
de canal doppler do radar para ajudar em trajetórias de percurso mais seguras
para ambientes interiores sociais.





Abstract Over the past few years the use of autonomous mobile robots that operate
in indoor environments has grown significantly. They are used not only in
industry settings but are creeping in on our homes and office environments.
They are commonly used for application such as transportation, telepres-
ence and cleaning. The robot’s perception for navigation purposes usually
depends on laser range finders, infra red depth sensors or the typical cameras.
However recent advancements on Frequency Modulated Continuous Wave
radar technology permits a new solution for this navigation task. The main
focus of this dissertation is the evaluation of the FMCW radar as a sensor
for indoor navigation. To do that we will compare it with the 2D-LiDAR,
that is the very common when it comes to robotic sensors.

First, a study between each technology will be presented including the oper-
ating principle of each one, applications and what limitations they have. Af-
ter that we will uncover how we can use the Robot Operating System (ROS)
framework and state of the art algorithms to address the autonomous naviga-
tion problem. Afterwords we will describe the robot’s hardware and software
components and how they are interconnected to produce a suitable robotic
platform that will be used to do navigation tasks. Several experiments were
devised and implemented to evaluate the usage of the radar in navigation.
The results obtained proved the validity of using the FMCW radar as an
obstacle detector sensor device. They showed some type of objects not or
poorly detected by a LiDAR can be better detected by the radar. They
also showed that the less dense data produced by the radar does not have
a significant impact in keeping the navigation costmaps updated. Finally
an exploratory work will be conducted that tries to use the doppler channel
readings of the radar to aid in more safe pathing trajectories for social indoor
environments.
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Chapter 1

Introduction

1.1 Context

The use of autonomous mobile robots has been rapidly expanding over the last few years.
Whether it is in industry, our homes or in an o�ce like environment, they provide endless
applications. A few examples are the use in healthcare, military, agriculture, cleaning, con-
struction and space. By de�nition a robot is a device able to perform human activities [1].
It can ful�ll a wide variety of tasks that require the link between perception and action. A
mobile autonomous robot is a system that has total mobility in its environment, that has
limited human interaction and has the ability of perceiving what is around it. In terms of
navigation purposes robots usually rely on LiDAR technology which has some limitations in
accurately perceiving what is around them. This is usually the case when the mobile robot
is exposed directly to sunlight, smoke, or when trying to detect objects of low height. Radar
technology has constantly been upgraded and is not a�ected by the previous conditions. Due
to recent advancements in terms of hardware and software, new high bandwidth low power
radars are now available for the use in perception capabilities for the robot. Speci�cally the
FMCW radar technology has been constantly improving in terms of being an obstacle detector
and is a candidate to be used to address the past mentioned problems by being a supportive
sensor in the robotic navigation module.

1.2 Objectives

The main idea behind this dissertation is to assess the use of radar technology in navigation,
either as complement technology or by being the sole sensor component used for perception.
Since LiDAR technology is one of the most common approach to sense the environment for
navigation purposes, it was decided to use it for comparison. Thus, a primary objective of
this work is to construct a robotic mobile platform equipped with a LiDAR and an FMCW
radar to support the evaluation. Also a proper software architecture must be de�ned and
implemented. Subsequently, a set of experiments must be planned and implemented, the
results of which can provide the desired evaluation. The radar sensor provides Doppler data
representing the radial velocity of objects in relation to the sensor. This data can be possible
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used to enhance the navigation capabilities of the robot. As a �nal objective, the use of this
Doppler data must be studied.

1.3 Overview

The work started with a study of the FMCW radar, focused on the operating principles
and on typical applications. Since from the beginning is was decided LiDAR will be used
for comparison purposes, the same kind of study was also conducted in this techonology.
Almost at the same time, a deep study of the Robot Operating System (ROS) was also
performed. ROS is nowadays a quite popular environment to develop robotics applications
and so it was decided to use it. A TurtleBot 2 was chosen as the basis for constructing the
evaluation robotics platform. In terms of hardware, it was equipped with an FMCW radar,
a Hokuyo URG-04LX-UG01 Scanning Laser Range�nder, and a computer unit. In terms of
software, on top of ROS, several modules were developed. Several experiments were devised
and implemented to evaluate the usage of the radar in navigation. Finally, an exploratory work
was done to evaluate the use of the Doppler data provided by the radar. Also an adaptation
of the ROS navigation stack is proposed in order to take advantages of the Doppler data.

1.4 Document Structure

The dissertation is arranged as follow. In Chapter 2 a comparative study is done between
the LiDAR technology and the FMCW radar. It will give a brief overview of what work is
being done using this sensors and what operating principle they rely on as well as describe their
limitations. We will also explore the use of ultrasonic sensors and cameras. Chapter 3 will
provide a brief overview of some basic concepts regarding this dissertation's work regarding
ROS framework, navigation concepts and �nally the description of the ROS navigation stack.
In Chapter 4 we will discuss what hardware and software will be used in this work and how
they are interconnected to create a suitable platform for indoor navigation using the previous
highlighted sensors. In Chapter 5 we show the results of various experiments that try to
compare the use of LiDAR and the FMCW radar as obstacle detectors. In Chapter 6 we
will discuss how we can use the relative radial velocity of targets given by the FMCW radar
to manipulate the costmaps of the navigation module in order to avoid incoming obstacles.
Finally in Chapter 7 we will make a summary of the work done in this dissertation and what
conclusions we found along the way. We will also discuss what future work can be done using
this type of sensors for indoor autonomous navigation.
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Chapter 2

Range Sensing

In order to do complex tasks and compute di�erent complex algorithms robots require some
type of information that relates to its state and environment. This information comes from its
sensor sources. The most typical type of sensors used for perception are proximity sensors such
as laser range �nders (LiDAR), ultrasonic sensors or the use of a camera. However robots may
have to deal with a wide variety of changing environments like variation in luminosity, weather
conditions, presence of dust and smoke, object proprieties, etc. The previous highlighted
sensors may show di�culty or be completely ine�ective under these conditions.

The new emerging Millimeter Wave (mmWave) FMCW radar technology with high fre-
quency and bandwidth of 77-81 GHz is now beginning to be suitable for use in robotic appli-
cations, and it may provide a solution for the previous conditions. In this chapter we will give
a brief overview of current work being done using LiDAR and FMCW radar, how they work,
and what limitations each sensor has. We will also evaluate the use of cameras and ultrasonic
sensors.

2.1 LiDAR

LiDAR is a remote sensing technology (acquires information of an object without making
physical contact) , that measures the distance to objects. It has been a staple in sensing
technology in recent history. It has almost an unlimited number of applications [2] due to its
generation of dense data. Some of the most standing out ones are in autonomous vehicles and
robotics.

2.1.1 Applications

2.1.1.1 Autonomous Vehicles

The use of LiDARs in autonomous vehicles has been a common trend for a while now.
Fig. 2.1 ilustrates how several of these sensors are used to provide full road environment
perception. The LiDARs accurate depth information combined with a high �eld of view
enables the development of advanced navigation systems that are able to perform self-driving.
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Figure 2.1: Example of LiDAR technology being used for road perception [3]

One application example of this is the work done by Dominguez et al [4] where a perception
system for ground vehicles was implemented using segmentation, clustering and tracking tech-
niques. However, it was noted by the authors that it was hard to distinguish between closely
separated obstacles adding that a movement detection algorithm should be implemented to
solve this problem.

Catapamga and Ramos [5] proposed a low cost solution for object detection, classi�cation
and ranging by the use of an inexpensive 2D pulsed light LiDAR. The system was able to
provide reliable detection of 1 meter wide obstacles at distances less than 10 meters.

However there are some concerns about this type of technology. The CEO of Tesla, Elon
Musk, has been very critical of it. Recently, at Tesla's �rst Autonomy Day event, he said
"Anyone relying on LiDAR is doomed. Doomed!" [6]. He believes that cameras, radar and
ultrasonic sensors are the future for car perception systems.

2.1.1.2 Robotics

LiDAR is also one of the major sensory components for robotics. Various robots rely
on it for autonomous navigation. Fig. 2.2 shows an example of two robots (ROSbot and
Knightscope) that use this type of sensors for perception.

In one of the most popular works with robotic navigation called"The O�ce marathon" [9],
the PR2 robot was able to navigate autonomously for 26.2 miles in an o�ce like environment.
During the task, the robot was able to avoid shelves, tables, chairs and people as well as
go through narrow spaces. The sensor device used in this case was the Hokuyo UTM-30LX
Scanning Laser Range�nder and the navigation system developed is now known as the ROS
navigation stack. However it was noted that the robot had di�culty detecting low height and
long width obstacles.

In a more recent case study [10], two di�erent systems are proposed for the implementation
of an autonomous mobile robot, both using a 2D LiDAR sensor under ROS. Various trials in an
indoor environment were conducted with both of them. It was concluded that both performed
reasonably well but had some di�culty detecting objects with lower or higher height from
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(a) ROSbot - Autonomous Robot with Laser scan-
ner RPLiDAR A2 [7]

(b) Knightscope autonomous security robot with
a Velodyne LiDAR Puck [8]

Figure 2.2: Example of two robots equipped with LiDAR

the sensor, objects that are transparent, or even dark obstacles with high absorption of light
waves.

2.1.2 Operating Principle

The way LiDAR technology works is straightforward: it emits a laser beam and it waits for
it to bounce back. Based on the propriety of the re�ected signal it can determine the distance
of the obstacle it hits. By constantly spinning the mirrors at di�erent angles (scanning) it
gets angle and depth information about the environment by a set of points or in other words
a point cloud. There are two main di�erent operating principles to do this, Time of Flight
and Phase Based , which are described bellow.

2.1.2.1 Time of Flight

In this approach a pulse of light is transmitted and, when it is done, an internal clock
is started. The re�ected pulse is captured by a photodetector which triggers the clock to
stop. Being � the time taken by the re�ected signal to comeback and assuming it traveled at
approximately the speed of light (c) then the distance to the object d is given by:

d =
�c
2

(2.1)

This method produces very accurate results for a long range but requires high precision clocks.
However, greater range capability leads to slower update rates since it has to wait more time
for the pulse to comeback. It is typically not used for robotics since this type of systems
has very high cost ranging from a few thousand dollars to upwards hundreds of thousands of
dollars [11].

2.1.2.2 Phase Based

A more a�ordable approach is based on modulating the intensity of the laser at a speci�c
frequency. Figure 2.3 showcases the resulting sinusoidal wave that is sent and the respective
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