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Resumo Nos últimos anos, o uso de robôs móveis autónomos que operam em am-
bientes interiores aumentou significativamente. Eles são usados não apenas
em contexto de indústria, mas estão a surgir nas nossas casas e em ambientes
de escritório. Eles são tipicamente usados para transporte, telepresença e
limpeza. A perceção para propósito de navegação autónoma do robô geral-
mente depende de medidor de distâncias a laser, sensores de profundidade
de infravermelho ou a típica câmara. No entanto, os recentes avanços na
tecnologia de radar de onda contínua modulada em frequência permitem
uma nova solução para o problema de perceção. O foco principal deste tra-
balho é avaliar o Radio Detection And Ranging (radar) Frequency-Modulated
Continuous-Wave (FMCW) como sensor para navegação autónoma interior.
Para isso iremos comparar com o Light Detection And Ranging (LiDAR) 2D
que é muito comum quando se toca a robôs autónomos.

Primeiro, será apresentado um estudo entre cada tecnologia, incluindo o
princípio operacional de cada uma, o trabalho em que estão ser usados e
quais as suas limitações que cada uma tem. Depois descobriremos como
podemos usar o Robot Operating System (ROS) e algoritmos de última
geração para combater o problema de navegação autónoma. Depois, de-
screveremos os componentes de hardware e software e como eles estão inter-
conectados produzir uma plataforma robótica adequada que será usada para
executar tarefas de navegação. Várias experiencias foram implementadas
para o uso de radar em navegação. Os resultados obtidos comprovam a val-
idade do radar FMCW como sensor de obstáculos. Eles também mostram
que existem casos onde o LiDAR não deteta ou detata mal vários objec-
tos onde são melhor detetados pelo radar. Também mostram que menos
densidade nos dados não afeta significativamente a atualização do mapa de
custos.
Finalmente, será realizado um trabalho exploratório que tenta usar o leituras
de canal doppler do radar para ajudar em trajetórias de percurso mais seguras
para ambientes interiores sociais.





Abstract Over the past few years the use of autonomous mobile robots that operate
in indoor environments has grown significantly. They are used not only in
industry settings but are creeping in on our homes and office environments.
They are commonly used for application such as transportation, telepres-
ence and cleaning. The robot’s perception for navigation purposes usually
depends on laser range finders, infra red depth sensors or the typical cameras.
However recent advancements on Frequency Modulated Continuous Wave
radar technology permits a new solution for this navigation task. The main
focus of this dissertation is the evaluation of the FMCW radar as a sensor
for indoor navigation. To do that we will compare it with the 2D-LiDAR,
that is the very common when it comes to robotic sensors.

First, a study between each technology will be presented including the oper-
ating principle of each one, applications and what limitations they have. Af-
ter that we will uncover how we can use the Robot Operating System (ROS)
framework and state of the art algorithms to address the autonomous naviga-
tion problem. Afterwords we will describe the robot’s hardware and software
components and how they are interconnected to produce a suitable robotic
platform that will be used to do navigation tasks. Several experiments were
devised and implemented to evaluate the usage of the radar in navigation.
The results obtained proved the validity of using the FMCW radar as an
obstacle detector sensor device. They showed some type of objects not or
poorly detected by a LiDAR can be better detected by the radar. They
also showed that the less dense data produced by the radar does not have
a significant impact in keeping the navigation costmaps updated. Finally
an exploratory work will be conducted that tries to use the doppler channel
readings of the radar to aid in more safe pathing trajectories for social indoor
environments.
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Chapter 1

Introduction

1.1 Context

The use of autonomous mobile robots has been rapidly expanding over the last few years.
Whether it is in industry, our homes or in an office like environment, they provide endless
applications. A few examples are the use in healthcare, military, agriculture, cleaning, con-
struction and space. By definition a robot is a device able to perform human activities [1].
It can fulfill a wide variety of tasks that require the link between perception and action. A
mobile autonomous robot is a system that has total mobility in its environment, that has
limited human interaction and has the ability of perceiving what is around it. In terms of
navigation purposes robots usually rely on LiDAR technology which has some limitations in
accurately perceiving what is around them. This is usually the case when the mobile robot
is exposed directly to sunlight, smoke, or when trying to detect objects of low height. Radar
technology has constantly been upgraded and is not affected by the previous conditions. Due
to recent advancements in terms of hardware and software, new high bandwidth low power
radars are now available for the use in perception capabilities for the robot. Specifically the
FMCW radar technology has been constantly improving in terms of being an obstacle detector
and is a candidate to be used to address the past mentioned problems by being a supportive
sensor in the robotic navigation module.

1.2 Objectives

The main idea behind this dissertation is to assess the use of radar technology in navigation,
either as complement technology or by being the sole sensor component used for perception.
Since LiDAR technology is one of the most common approach to sense the environment for
navigation purposes, it was decided to use it for comparison. Thus, a primary objective of
this work is to construct a robotic mobile platform equipped with a LiDAR and an FMCW
radar to support the evaluation. Also a proper software architecture must be defined and
implemented. Subsequently, a set of experiments must be planned and implemented, the
results of which can provide the desired evaluation. The radar sensor provides Doppler data
representing the radial velocity of objects in relation to the sensor. This data can be possible
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used to enhance the navigation capabilities of the robot. As a final objective, the use of this
Doppler data must be studied.

1.3 Overview

The work started with a study of the FMCW radar, focused on the operating principles
and on typical applications. Since from the beginning is was decided LiDAR will be used
for comparison purposes, the same kind of study was also conducted in this techonology.
Almost at the same time, a deep study of the Robot Operating System (ROS) was also
performed. ROS is nowadays a quite popular environment to develop robotics applications
and so it was decided to use it. A TurtleBot 2 was chosen as the basis for constructing the
evaluation robotics platform. In terms of hardware, it was equipped with an FMCW radar,
a Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder, and a computer unit. In terms of
software, on top of ROS, several modules were developed. Several experiments were devised
and implemented to evaluate the usage of the radar in navigation. Finally, an exploratory work
was done to evaluate the use of the Doppler data provided by the radar. Also an adaptation
of the ROS navigation stack is proposed in order to take advantages of the Doppler data.

1.4 Document Structure

The dissertation is arranged as follow. In Chapter 2 a comparative study is done between
the LiDAR technology and the FMCW radar. It will give a brief overview of what work is
being done using this sensors and what operating principle they rely on as well as describe their
limitations. We will also explore the use of ultrasonic sensors and cameras. Chapter 3 will
provide a brief overview of some basic concepts regarding this dissertation’s work regarding
ROS framework, navigation concepts and finally the description of the ROS navigation stack.
In Chapter 4 we will discuss what hardware and software will be used in this work and how
they are interconnected to create a suitable platform for indoor navigation using the previous
highlighted sensors. In Chapter 5 we show the results of various experiments that try to
compare the use of LiDAR and the FMCW radar as obstacle detectors. In Chapter 6 we
will discuss how we can use the relative radial velocity of targets given by the FMCW radar
to manipulate the costmaps of the navigation module in order to avoid incoming obstacles.
Finally in Chapter 7 we will make a summary of the work done in this dissertation and what
conclusions we found along the way. We will also discuss what future work can be done using
this type of sensors for indoor autonomous navigation.
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Chapter 2

Range Sensing

In order to do complex tasks and compute different complex algorithms robots require some
type of information that relates to its state and environment. This information comes from its
sensor sources. The most typical type of sensors used for perception are proximity sensors such
as laser range finders (LiDAR), ultrasonic sensors or the use of a camera. However robots may
have to deal with a wide variety of changing environments like variation in luminosity, weather
conditions, presence of dust and smoke, object proprieties, etc. The previous highlighted
sensors may show difficulty or be completely ineffective under these conditions.

The new emerging Millimeter Wave (mmWave) FMCW radar technology with high fre-
quency and bandwidth of 77-81 GHz is now beginning to be suitable for use in robotic appli-
cations, and it may provide a solution for the previous conditions. In this chapter we will give
a brief overview of current work being done using LiDAR and FMCW radar, how they work,
and what limitations each sensor has. We will also evaluate the use of cameras and ultrasonic
sensors.

2.1 LiDAR

LiDAR is a remote sensing technology (acquires information of an object without making
physical contact) , that measures the distance to objects. It has been a staple in sensing
technology in recent history. It has almost an unlimited number of applications [2] due to its
generation of dense data. Some of the most standing out ones are in autonomous vehicles and
robotics.

2.1.1 Applications

2.1.1.1 Autonomous Vehicles

The use of LiDARs in autonomous vehicles has been a common trend for a while now.
Fig. 2.1 ilustrates how several of these sensors are used to provide full road environment
perception. The LiDARs accurate depth information combined with a high field of view
enables the development of advanced navigation systems that are able to perform self-driving.
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Figure 2.1: Example of LiDAR technology being used for road perception [3]

One application example of this is the work done by Dominguez et al [4] where a perception
system for ground vehicles was implemented using segmentation, clustering and tracking tech-
niques. However, it was noted by the authors that it was hard to distinguish between closely
separated obstacles adding that a movement detection algorithm should be implemented to
solve this problem.

Catapamga and Ramos [5] proposed a low cost solution for object detection, classification
and ranging by the use of an inexpensive 2D pulsed light LiDAR. The system was able to
provide reliable detection of 1 meter wide obstacles at distances less than 10 meters.

However there are some concerns about this type of technology. The CEO of Tesla, Elon
Musk, has been very critical of it. Recently, at Tesla’s first Autonomy Day event, he said
"Anyone relying on LiDAR is doomed. Doomed!" [6]. He believes that cameras, radar and
ultrasonic sensors are the future for car perception systems.

2.1.1.2 Robotics

LiDAR is also one of the major sensory components for robotics. Various robots rely
on it for autonomous navigation. Fig. 2.2 shows an example of two robots (ROSbot and
Knightscope) that use this type of sensors for perception.

In one of the most popular works with robotic navigation called "The Office marathon" [9],
the PR2 robot was able to navigate autonomously for 26.2 miles in an office like environment.
During the task, the robot was able to avoid shelves, tables, chairs and people as well as
go through narrow spaces. The sensor device used in this case was the Hokuyo UTM-30LX
Scanning Laser Rangefinder and the navigation system developed is now known as the ROS
navigation stack. However it was noted that the robot had difficulty detecting low height and
long width obstacles.

In a more recent case study [10], two different systems are proposed for the implementation
of an autonomous mobile robot, both using a 2D LiDAR sensor under ROS. Various trials in an
indoor environment were conducted with both of them. It was concluded that both performed
reasonably well but had some difficulty detecting objects with lower or higher height from
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(a) ROSbot - Autonomous Robot with Laser scan-
ner RPLiDAR A2 [7]

(b) Knightscope autonomous security robot with
a Velodyne LiDAR Puck [8]

Figure 2.2: Example of two robots equipped with LiDAR

the sensor, objects that are transparent, or even dark obstacles with high absorption of light
waves.

2.1.2 Operating Principle

The way LiDAR technology works is straightforward: it emits a laser beam and it waits for
it to bounce back. Based on the propriety of the reflected signal it can determine the distance
of the obstacle it hits. By constantly spinning the mirrors at different angles (scanning) it
gets angle and depth information about the environment by a set of points or in other words
a point cloud. There are two main different operating principles to do this, Time of Flight
and Phase Based, which are described bellow.

2.1.2.1 Time of Flight

In this approach a pulse of light is transmitted and, when it is done, an internal clock
is started. The reflected pulse is captured by a photodetector which triggers the clock to
stop. Being τ the time taken by the reflected signal to comeback and assuming it traveled at
approximately the speed of light (c) then the distance to the object d is given by:

d =
τc

2
(2.1)

This method produces very accurate results for a long range but requires high precision clocks.
However, greater range capability leads to slower update rates since it has to wait more time
for the pulse to comeback. It is typically not used for robotics since this type of systems
has very high cost ranging from a few thousand dollars to upwards hundreds of thousands of
dollars [11].

2.1.2.2 Phase Based

A more affordable approach is based on modulating the intensity of the laser at a specific
frequency. Figure 2.3 showcases the resulting sinusoidal wave that is sent and the respective
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returned signal. Being Φ the phase difference between the transmitted signal and the reflective

Figure 2.3: Phase based method for measuring range [12]

signal, and λm the wavelength of the sinusoid then the distance of the object is given by

d =
Φλm
4π

(2.2)

This means that the maximum unambiguous distance that can be measured is λm
2 , and its

range resolution depends upon the resolution of the phase difference measurement as well as
the wavelength used. Almost all robots use this type of LiDAR since it is usually cheaper.

2.1.3 Limitations

LiDAR technology has some problems associated with it:

• Even the most cheap devices have relative high operation costs that limit their use for
small applications.

• Limited maximum detection range compared to radar technology (radar can achieve
more than 100 meters).

• The sensor’s moving parts are fragile when compared to a radar board

• Direct exposure to sunlight may negatively impact the sensor maximum range and ac-
curacy or even prevent it from functioning properly.

• If it is a 2D-LiDAR it only senses in a horizontal plan

The last item on the list proves to be a significant problem because the sensor cannot detect
objects that are above or bellow the height of the sensor (Fig. 2.4). The inability of detecting
this type of objects may be crucial for the success rate of the robot being able of doing a
certain navigation task safely.
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Figure 2.4: 2D LiDAR only detects objects in one plane (this plane is usually parallel to the
ground (taken from [13])

2.2 MIMO Linear FMCW Radar

The use of radar technology has been around since the 19th century when it was first
discovered that radio waves reflected off metallic surfaces, but serious development of this type
systems only truly began in the 1930’s for military applications [14]. This include the range
and angle detection of ship and aircraft engines by measuring incoming signal fluctuations off
an oscilloscope.

Nowadays there are various configuration types of radar systems [15], each one providing
different types of applications. This usually include air traffic control, remote sensing, ground
traffic control, space, etc. However we will focus on a specific configuration called Multiple
Input Multiple Output (MIMO) linear (sawtooth) FMCW radars which are able to measure
distance, velocity and also angular information.

2.2.1 Applications

2.2.1.1 Pedestrian detection

In [16] three systems are implemented, the first one using a single radar measurement, the
second using multiple, and the final one with additional tracking algorithms. Each system
had the objective of distinguishing between people walking, vehicles and other objects. In the
end it was concluded that that FMCW radar can be used for classification of inroad objects
with relatively good accuracy in all systems.

Another case study is presented in [17] where by pre-processing the raw radar data and
then using data processing pipeline, the system proposed was able to detect and track people
in indoor environments using a 77 GHz MIMO FMCW radar.
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2.2.1.2 Localization of Land Vehicles

Vehicle localization is often done using Global Navigation Satellite System (GNSS) ac-
companied by Reduced Inertial Sensor System (RISS). But is often the case in which GNSS
signal can not be received correctly. This is often due the land vehicle being in an indoor
environment or high rise building blocking the signal. In [18] it is proposed a radar based
RISS that not only seeks odometer information but also radar readings. This proved to make
the localization system of the vehicle more robust.

2.2.1.3 Monitoring of human vital signs

Monitoring vital signs of a patient such as the breathing rate or hearth rate may be critical
in some situations. In [19] a system for detecting this type of signals using FMCW radar is
proposed. By doing a phase analysis of the radar signal it was concluded that the proposed
system measurement was in tune with a reference ground truth signal. It was also concluded
that by increasing the Signal Noise Ratio (SNR) of radar it could estimate the heartbeat
(electrocardiogram (ECG)) waveform of multiple targets.

2.2.2 Operating principle

The MIMO FMCW radar can retrieve range, velocity and angle of multiple targets. The
following sections will explain how to calculate each one of these components.

An FMCW radar transmits a signal called a “chirp”. A chirp is an electromagnetic sinusoid
whose frequency increases linearly with time. A chirp is characterized by a start frequency
(fc), bandwidth (B) and duration (Tc). The slope (S) of the chirp is the rate at which the
frequency of the chirp increases and is given by:

S =
B

Tc
(2.3)

Figure 2.5a shows the plot of the amplitude in function of time for the described chirp. It
shows that the frequency of the sinusoid is increasing with time. Another way of illustrating
the chirp is by its frequency plot (Fig. 2.5b). The latter version is often preferred because it
is simpler and more intuitive.

Object detection follows these steps:

1. The chirp is transmitted by the TX antenna

2. The chirp is reflected off an object and the reflected chirp is received at the RX antenna

3. The RX signal and TX signal are ‘mixed’ and the resulting signal is called an ‘Intermediate
Frequency (IF) signal’

Figure 2.6 shows how the IF signal is generated through both the RX and TX signals for one
target detection.
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(a) Representation of the chirp, with amplitude as
function of time

(b) Representation of the chirp, with frequency as
function of time

Figure 2.5: Representation of a chirp

Figure 2.6: IF signal creation to retrieve range information of the target

2.2.2.1 Range Detection

The RX signal is a sum of delayed versions of the TX signal. This means that the resulting
IF signal will be a combination of sinusoids, each one corresponding to the reflection on an
object. For object i the corresponding frequency fi is given by:

fi = Sτi (2.4)

where τi is the round trip delay of the wave and is given by:

τi =
2di
c

(2.5)
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where di corresponds to the distance of the object to the radar and c is the speed of light.
Putting this together the distance to the object i is given by:

di =
fic

2S
(2.6)

To determine the range of all objects detected, we need to find the according frequency
components in the IF signal. To do this the analog signal is first sent to an Analog Digital
Converter (ADC) and with the resulting digital output the Fast Fourier transform (FFT) is
computed by a Digital Signal Processor (DSP). Each peak in the FFT that meets a certain
SNR threshold corresponds to a different range detection.

However since the ADC has a limited sampling rate, the valid range of frequencies in the
FFT is also limited, this meaning there is a maximum amount of ranges the radar can detect.
The range resolution is also finite since the FFT has a limited amount of samples. In short,
the higher the bandwidth of the chirp the better resolution we get.

2.2.2.2 Velocity Detection

This type of radar also provides an estimate on the radial velocity for each detected range.
To do this more than one chirp is needed. A set of N chirps is called a frame. The radar
constantly sends these frames, each one corresponding to an observation. Since the time
between frames is low the corresponding range (or first) FFTs will have identically located
peaks (the same obstacle is in the same range for all chirps in a frame) . However this set of
peaks have different phases between each other. By calculating a second FFT (Doppler-FFT)
of this vector of phases we can extrapolate a set of relative radial velocities for each range
detection. Radial velocity information is given by:

vi =
λωi

4πTc
(2.7)

where λ is the wavelength of the chirp, ωi is the phase difference between chirps for the
respective objects in the Doppler FFT and Tc is the time required to send a single chirp.
In the end we get a matrix that relates radial velocity and range. Figure 2.7 illustrates this
process.

2.2.2.3 Angle Detection

Finally, to determine the angle for each target more than one receiver antenna is needed.
This is where the MIMO configuration comes in. Figure 2.8 shows that for the same target
the distances to the two antennas is different. This difference makes it so for the same peak
in the range FFT and doppler FFT the phase of the received IF signal is different in the two
antennas. If we know this phase difference we can retrieve angle of arrival of the target. The
phase difference ∆φ is given by:

∆φ =
2π∆d

λ
(2.8)

By basic geometry we know that ∆d = Lsin(θ), where L is the distance between the antennas
and θ is the angle of arrival.
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Figure 2.7: At the same range peaks the sinusoid has different phases, by calculating the 2D
FFT (or doppler FFT) the radial velocity information can be retrieved (taken form [20])

Figure 2.8: More than one antenna is required to estimate the angle of arrival (adapted form
[21])

∆φ =
2πLsin(θ)

λ
(2.9)

Then the angle of arrival is given by

θ = sin−1(
λ∆φ

2πL
) (2.10)

The above equation makes it possible to estimate the angle of arrival. But since φ has a non
linear dependency of sin(θ) then the angle of arrival accuracy depends on the angle of arrival.
The closer it is to 0o the more accurate is the result.
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2.2.3 Limitations

FMCW radar technology has some problems associated with it, some of them being:

• Limited range and angular resolution when compared to LiDAR which make difficulty
to distinguish between two close targets

• Low pointcloud density

• Radar cannot provide the exact geometry of an object because of the longer wavelength

• Can have intermodulation products that result in ghost objects

2.3 Ultrasonic Sensors

One of the various ways of sensing the range of an obstacle, is by using ultrasonic sensors.
Using sound waves, an ultrasonic sensor is able to measure range. These type of sensors have
high reliability and outstanding versatility and can be used for wide variety of applications.

2.3.1 Applications

2.3.1.1 Robotics

One examples of robotic applications is the work done by Byoung-hoon Kim [22] where by
using a multi modulation processing of the ultrasonic sensors the proposed system was able
to estimate the 3D coordinates of a moving object while being robust for noisy environments.

2.3.1.2 Ground Vehicles

Ultrasonic sensors is also widely used for ground vehicles. On the work proposed by Enas
Odat [23], a traffic sensing system is constructed using Passive infrared (PIR) sensors and
ultrasonic range finders. It was able to calculate vehicle detection, speed estimation, and
vehicle type classification. However the variability of the sensors readings, thermal noise and
environmental conditions may produce unwanted reading errors.

2.3.1.3 Medicine

Ultrasonic sensors are also used in medicine. For example in the work done by Ibrahim
AlMohimeed et al [24], a wearable and flexible ultrasonic sensor was developed for monitoring
of skeletal muscle contraction. The tissue thickness variations were successfully measured in
accordance with the muscle contraction performed.

2.3.2 Operating Principle

To retrieve range information about the environment the ultrasonic sensors work similarly
as the Time of flight LiDAR. But instead of light waves the sensor uses sound waves. A
transducer sends and receives ultrasonic pulses that relay back information about an object’s
proximity.
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Figure 2.9: Ultrasonic wave operating principle (taken form [25])

2.4 Cameras

Besides the previous highlighted sensors, cameras can be used to determine the distance
of obstacles. There are three image based object distance measurement techniques, (1) using
two cameras i.e stereovision, (2) using a single camera and (3) time-of-flight camera [26]. The
first method is highly accurate but is costly when compared to the monovision and it is not
accurate for high distances. In the time of flight technique the distance is obtained using
the time it took for the light to be reflected back. This method is a simple way to retrieve
range from obstacles and it is also very fast that can reach up to 160 frames per second. It
is also efficient having lower computation needs when compared to stereovision. However this
technique comes with the problems of background lighting, interference from other time of
flight cameras and multiple reflections.

2.5 Summary

In this chapter we presented various types of proximity sensor technologies. First, for the
FMCW radar and LiDAR, we discussed on what contexts this sensors are used for and what
current work is being done with them. Then we explain the operating principle of each one of
them to retrieve information from the environment as well as simulating the range and velocity
estimation provided by the radar. We also showed which limitations each sensor has. Finally
we also provide an overview about ultrasonic sensors and cameras. In appendix A we provide
a simulation code on how to estimate range and velocity using the operating principles of
FMCW radar. This simulation serves as an additional contribution for better understanding
of how these principles work.
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Chapter 3

Robot Navigation using ROS

When it comes to navigation we need a wide variety of modules that interconnected pro-
duce an intelligent system that makes the robot go from one point to another while avoiding
obstacles. The first problem that needs to be taken into account is where the robot is and
where it is trying to go, for that we require a localization system and a map for a global
reference. The second issue is finding the best route to a predefined goal. For that various al-
gorithms and systems are already proposed and ready for use. ROS [27] is the most indicative
place for the use or construction of software for our robot.

3.1 Robot Operating System

Creating software for robotic applications is not an easy task to do from scratch. It usually
involves very complex code to achieve even the simplest applications due to the wide variety
of hardware and data that robots rely on. ROS fixes this issue by being a general purpose
framework for robotics. Despite its name, it is not an operating system, being more a kind of
middleware, since it handles communication between programs in a distributed system. You
can either construct a program that does all the computation needed in your application or
you can have sub programs with each one having a specific functionality, the latter being often
preferred.

ROS provides hardware abstraction, tools for introspection, message-passing and more.
Also it is open source which means we can use them for virtually any means which we deem
necessary for the development of our application, for example adapting pre established code
for a specific case. This greatly facilitates the entrance of new developers to learn and do
research in the field of robotics.

3.1.1 ROS architecture

The ROS architecture is based on a peer to peer network between processes usually referred
to as Computation Graph [28]. This architecture is comprised by different concepts that we
define bellow:

• Nodes - A node can be defined as a process or piece of software that performs some
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type of computation. In ROS, for a typical application there are various nodes running
in parallel that pass information between each other. For example, controlling the robot
movement given the input image of a camera, can be done by a node acting as a driver
between the camera firmware and the ROS environment, a node that processes the
image using ROS pre established software and finally a node that uses the processed
information to calculate the velocity of the robot and transmit it to the locomotion
system of the robot.

• Messages - ROS uses defined data structures called messages to represent information.
This makes it so ROS tools can generate the appropriate source code in the selected
language (C++ or phyton in this case). Each message can be broken down into more
messages and so one and so forth until we arrive at the primitive data types of the given
programming language.

• Topics - Nodes can send messages by conceptually publishing to a topic or receive them
by subscribing to a topic. For example a node can be subscribed a velocity message and
then after some data processing publish a smoothed version of it into another topic.

• Master - Provides registration and naming for each node (helps nodes find each other).
It is also responsible for organizing communication between nodes. Finally it also pro-
vides the Parameter service (described bellow).

• rosout - This can be viewed as the ROS equivalent of stdout. This acts as a log reporting
mechanism which is useful when debugging large amounts of code.

• Paramater Server - This server ROS tracks different paramater values defined by the
running application. It is useful for setting or getting different parameters dynamically
without having to restart the application. Parameter values can also be uploaded using
roslaunch files.

Figure 3.1 gives a brief overview of how each of these concepts are put together and generate
the ROS computation system.

Figure 3.1: ROS communication architecture overview adapted from [29]
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3.1.2 ROS tools

Now that we described the inner workings of ROS we can use its tools to retrieve and
analyze information regarding it.ROS provides a wide range of tools for development and
debugging. We will use the following ROS tools:

• rviz - A graphical interface that enables a 3D visualization environment that allows
the view of the different components of ROS like the robots frame transforms, the map,
pointclouds, visualization markers etc...

• rosbag - Rosbag will subscribe to one or more topics and the serialized message data will
be stored in a file as it is received. These files are called "bags" and contain information
about all the ROS topics chosen and can be played back at a predefined rate and can
be started in any moment we want.

• rqt_graph - To visualize how the various nodes and topics are interconnected the use
of rqt_graph is the best for this case. It can be used to produce a graph of all of them
and how they communicate between each other

• roscore - This launches a process that the ROS System needs in order to properly setup
communication between nodes. It starts the ROS Master, Paramater Server and rosout.
Using roslaunch will automatically run a roscore if it was not initiated before.

• roslaunch - Used for running multiple ROS nodes as well as setting parameters in the
server. This is done by launching ".launch" files that tell which nodes to load, which
paramaters to set and what machines it will be used on.

• rosrun - Allows you to run a specific exacutable in a predetermined package.

• rostopic - Is used for displaying debug information and interact with a given topic.
This may be the messages published by a topic, finding a topic by its type, showing
information about a topic, listing all the topics in the ROS system. among other things.

• rosnode - Can be used to display debug information about a node, regarding publica-
tions, subscriptions and connections.

• rosparam - Used for manage paramaters in the Paramater Server.

3.2 Navigation Concepts

There are four main problems associated with robotic autonomous navigation. They are
Mapping, Localization, Path Planning and Motion Control [30], as shown in Fig. 3.2 .

Various algorithms have been developed over the years to address these problems.
In regards to creating a suitable map, The most popular approach available in ROS is

an improved version of Rao-Blackwellized particle filters such as the ones described in [31].
This approach has proven to be an effective way to solve the Simultaneous localization and
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Figure 3.2: Problems regarding autonomous navigation

mapping (SLAM) problem and will be used later on in this work to produce a valid map of
our indoor environment.

With the grid map built we now need to estimate the robot’s position in said map. An
easy solution to this problem is relying on the robot’s odometry information inferred by the
robot’s encoders and inertial sensors such as accelerometers and gyroscopes. This is called
dead reckoning and is an easy and low cost solution for the localization problem. However
since the sensor data is integrated over time, this leads to the accumulation of errors which
make this approach not feasible for long navigation tasks. To fix this issue various algorithms
were developed being the most popular ones based on particle filters. The Adaptive Monte
Carlo Localization (AMCL) [32] algorithm is the standard choice in this case. It takes into
account a group of particles, each one corresponding to a certain robot state (position and
orientation in this case). As the robot moves the least probable states are filtered out and the
particles should over time converge to the actual position of the robot.

Assuming the robot can localize itself on the map with a reasonable error we can start
sending navigation goals to the robot. To reach the goal the robot must be able to find a
path that optimizes the travel cost while avoiding obstacles. The outputted plan can vary
depending on the algorithm used. This type of planning is often referred to as a global path
planning that will be discussed further in a section 3.3 .

After an optimal plan is computed the final step is to determine the best velocity command
that will be sent to the locomotion system. The ROS navigation system follows a similar
approach to the one used in [33]. A set of velocities are simulated during a given set of time
and the corresponding predicted trajectories are computed. This subject is often referred to
as local path planner methods that will also be further detailed in the following section.

3.3 Path Planning and Motion Control

Obstacle avoidance is a major subject in robotics, as failure in this systems may result in
crashes that have catastrophic consequences such as hardware being badly damaged or being
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completely nonfunctional. This subject is usually separated into two categories local path
planning and global path planning [34].

Global methods assume the environment is completely known a priori and can therefore
compute an optimal safe path around known obstacles using a variety of different strategies.
These models prove to be very reliable for static environments. However these models are
usually computational expensive which lead to very slow update times. For fast changing
environments such as is in the case for highly populated indoor scenarios they prove to be
insufficient. To improve the quality of navigation capabilities, local path planning techniques
are added to increase the responsiveness of the robot. These techniques have a much faster
update time since they use a smaller version of the world around them. However this type of
approaches have trouble with local minimum cases where the robot can get stuck (for example
the U-shape case).

3.3.1 Global Methods for Path Planning

Path planning is crucial for the robot to handle safe trajectory around obstacles. In this
work the information regarding this obstacles is based on a grid map built by SLAM and
new observations retrieved by the robot’s sensors. Planning an optimal safe path can be done
using a wide variety of methods like Visibility Graphs, Generalized Voronoi Diagram, and
Probabilistic Roadmaps (PRM) [35]. However in this work we will use the PRM method.
This method samples its environment and creates an occupancy graph. Then by inserting the
initial position and the goal position the path can be computed using dijkstra, A* or Rapidly
exploring Random Trees search algorithms. However, the ROS navigation packages only use
the first two so we will only focus on these ones.

3.3.1.1 Dijkstra algorithm

Assuming we have an occupancy map we can now start to explain how does a robot
compute the shortest path between the starting position and the end goal. Edsgar W. Dijkstra
proposed an algorithm that solves this problem by computing the shortest cost path for a
given graph. In our case we have cells on an occupancy grid map. The shortest path can be
calculated executing the algorithm described in Figure 3.3. Each cell is numbered with the
number of steps it needs to get to the starting position. This continues until we reach the goal
cell and we get the minimum path to reach it. However if we have a map with cells that have
variable cost in the algorithm above we do not iterate n with plus one, but with the cell cost.
This makes it so for this case that shortest path geometrically may not be the shortest path
when the costs are taken into account.

3.3.1.2 A* algorithm

In the previous case we search for cells in all directions, however there is a more efficient
way of doing it by adding more information. The A* algorithm besides the cost from the steps
to the start position g(x, y), it takes into account an extra heuristic function h(x, y) that gives
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Figure 3.3: Dijkstra algorithm taken form [36]

a preferred direction for the search. The cost function in this case can be shown as:

f(x, y) = g(x, y) + h(x, y) (3.1)

3.3.2 Local Methods for Motion Control

In contrast to global path planning where a large portion of the environment is generally
assumed to be known, local methods take into account a partial world view for motion planning
capabilities. The most popular of this type of methods are [37]:

Dynamic Window Approach (DWA) - [34] Takes into account a subset of admissible
velocities and the robot’s dynamic constraints and simulates them for a given time
frame outputting various trajectories. Then using these trajectories derives the best
trajectory given a certain cost function.

Trajectory Rollout [33] - Similar to the DWA planner except the sampling method for the
control space is different.

Elastic Band - [38] In this case bubbles are formed that are defined as the maximum local
subset of free space around a given robot configuration that can be travelled without
collision. Given these bubbles a set of "elastic bands" are connected to form a collision
free trajectory from the initial position to the goal without collision. When it comes to

20



avoid an obstacle that obstructs the global plan, this technique tends to deviate from it
minimizing the bubble band tension.

Timed elastic band - [39] This planner is an extension of the "elastic band" that takes into
account time intervals in between the robot’s configurations (position and orientation).

By utilizing a multiple objective optimization function, that takes into account the
robot’s acceleration and velocity limits as penalties and taking into account execution
time, shortest path and clearance of obstacles, it determines an optimal trajectory. With
this a suitable local planner that is appropriate for avoiding dynamic obstacles is created.

Clothoid Tentacles - [40] This is an empirical approach to the local path planning problem.
It generates various "tentacles" and take the form of clothoids. It then chooses the best
one taking into account the best obstacle clearance, curvature and distance to the global
path planner.

Vector Field Histogram (VFH)+ [38] - For this approach a histogram of the ammount
of obstacles in a certain direction is first created. Then using a cost function that takes
into account the alignment of the robot towards the goal, the difference between the new
direction and the current wheel orientation and the difference between the previously
selected direction and the new direction is computed. The best trajectory is then chosen
taking into account this information.

For our case study we will only study in detail the first two since they are already implemented
in ROS.

3.3.2.1 DWA planner

The DWA planner is the most standard approach when it comes to local path planning in
ROS. It outputs rotational and translational velocities by generating multiple trajectories for
different types of velocity sample search space and choosing the best one. The algorithm goes
as follows [37]:

• Start with a set of velocities pairs (translational and rotational) {(RvRx , Rωz)} that are
obtainable by the robot.

• Genarate in the form of arcs the projected trajectories obtained using the previous
velocity sample space.

• Dismiss velocities that result in the robot colliding with an object in a given time frame.
With this we are left of a subset of admissible velocities Va = (RvRa , Rωa) in which:

Va = (RvRa , Rωa)⇒

{
RvRx ≤

√
2 ∗ dist(RvRx , Rωz) ∗Rv̇xb .

Rωz ≤
√

2 ∗ dist(RvRx , Rωz) ∗Rω̇zb .
(3.2)

Where Rv̇xb and Rω̇zb are the braking accelerations of the robot and dist the distance
to the closest obstacle found in the trajectory.
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• Dismiss velocities that don’t respect the robot’s acceleration limits in a given simulated
time frame. With this we are left of with a subset of velocities called dynamic window
Vd = (RvRd , Rωd) in which:

Vd = (RvRd , Rωd)⇒

{
RvRx ∈ [Rva −R ˙vRx

∗ t, Rva +R ˙vRx
∗ t].

Rωz ∈ [Rωa −Rω̇z ∗ t, Rωa +Rω̇z ∗ t].
(3.3)

• Finally we choose the most optimal trajectory and in consequence velocity pair taking
into account a given objective cost function.

3.3.2.2 Trajectory Rollout

The Trajectory Rollout planner follows the same logic as above but in this case the sampling
method for the control space is different. In this a set permissible velocities in each simulation is
calculated including acceleration limits for the entire simulation time [37]. Instead of searching
the space of feasible trajectories, we search the space of feasible controls. In Trajectory Rollout
set of permissible velocities in each simulation is calculated including acceleration limits for
the entire simulation time, while in Dynamic Window Approach it is limited to one simulation
step.

3.4 ROS Navigation stack

The ROS navigation stack is a set of software packages that properly combined can make
a robot navigate autonomously. Figure 3.4 shows an example of turtlebot2 using the navi-
gation stack to drive autonomously.

Figure 3.4: Rviz displaying the ros navigation stack components while turtlebot2 is navigat-
ing.
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3.4.1 Requirements

Before running the ROS navigation stack we first need to properly setup the robot to meet
its requirements.

3.4.1.1 Transform Configuration

The Navigation stack requires that the relationships between the different frames must be
published in tf or tf_static topic. This makes it so the robot perceives what is around it
correctly. Figure 3.5 shows all the frames and their transforms with each other for turtlebot2.
However the main transforms that we need to worry about are between the sensors and the
base link frame.

Figure 3.5: Example of the transform relationships

3.4.1.2 Sensor sources

To avoid obstacles we need some type of sensors that can detect them. Before running the
stack we need to make sure they are publishing information. This information needs to be
in either a PointCloud2 or LaserScan message format. Figure 3.6 shows an example of the
published data from both in rviz.
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Figure 3.6: Obstacle detections by both radar and lidar

3.4.1.3 Odometry

We need to have a rough estimation of the robot localization. Therefore we require a topic
that publishes odometry information.

3.4.1.4 Base Controller

This module will subscribe to the velocity message outputted by the navigation stack
and convert them into the appropriate motor commands to send to the mobile base that will
actually make the robot move.

3.4.1.5 Map

This part is not mandatory but it helps to have some sort of map being published to use as
a global reference for the robot. It is used by amcl node to correctly localize the robot and to
mark previously detected static obstacles when the map was built. Fig. 3.7 shows an example
of a map that might be used by the ROS navigation stack. If the setup is done correctly we
can now run the navigation stack.

3.4.2 Navigation Node

Now that we have all the things we need for navigation we need an entity that actually
processes all this information in an intelligent way to determine the best velocity command
for the robot. This is done by the move_base node and its peripherals. Figure 3.8 shows an
overview of the different components of the navigation stack [41].
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Figure 3.7: Example of a map created in the IRIS laboratory

Figure 3.8: Navigation stack block diagram taken from [41]

The move base node links together the global and local planner as well as a local and
global costmap to achieve the end goal provided by an action server. It also loads a set of
determined recovery behaviors if the planners fail to produce a valid path.

The global and local planners are plugins specified by the user. This choice will affect the
behavior of the robot depending on the planners architecture and parameters. It is integrated
in ROS two global planners, the navfn and global_planner, and three local planners the
TrajectoryPlannerROS, DWAPlanner and carrot_planner.

In this work it will be used navfn as our global planner and TrajectoryPlannerROS as
our local planner.
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3.4.2.1 Global Planner

The job of this component is to produce the best trajectory for a robot to take with the
amount of information given by the global costmap. This plan can be updated when the
robot gets stuck or by using a user specific frequency, the latter being usually preferred. The
algorithms used to get this path are usually Dijkstra or A* that are described in the previous
sections 3.3.1.1 and 3.3.1.2.

3.4.2.2 Local Planner

The local planner takes into account the trajectory given by the global planner and tries
to compute velocity commands that follows it. However, the given path may be to close to a
detected obstacle and in order to avoid it the robot must deviate from the given plan to avoid
collision. The function of the local planner is to avoid dynamic obstacles that appear while
still trying to follow the global plan and goal. This type of local planner is usually Trajecto-
ryPlannerROS or DWAPlanner that were explained in the previous sections 3.3.2.1 and
3.3.2.2 and uses the local costmap to do so. Bellow, we explain how TrajectoryPlannerROS
generates the best trajectory using a determined cost function.

The algorithm to get the best trajectory goes as follows:

1. Discreetly sample the velocity space (dvx and dvtheta)

dvx = (max_vel_x− min_vel_x)/vx_samples

dvtheta = (max_vel_theta− min_vel_theta)/vtheta_samples

2. For each sampled velocity predict its trajectory in a given time frame (sim_time).

3. Evaluate the cost of each trajectory by using the value cost function

4. Pick the one with lowest cost and publish the associated velocity.

5. Repeat for a given rate (controller_frequency)

The cost function used to evaluate a trajectory is given by:

cost =pdist_scale ∗ path_dist + gdist_scale ∗ goal_dist

+ occdist_scale ∗max_obs_cost

where path_dist is the distance from the endpoint of the trajectory to the global path in
map cells, goal_dist is the distance from the endpoint of the trajectory to the local goal
(goal that is withing the local costmap taking into account the global plan) in map cells, and
max_obs_cost is equal to the maximum obstacle cost (given by the local costmap) of all
the points along the trajectory. Fig. 3.9 displays an example of this values when the robot is
navigating.
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Figure 3.9: Cost cloud published in rviz. Red cells correspond to low cost and green cells
correspond to a high cost

3.4.2.3 Local and Global Costmaps

The global and local costmaps share the same class, the Costmap2DROS. This class consists
of a layered costmap that takes into account various layers defined by the user.

Available Layers

• Static Layer - Retrieves static information from the /map topic and marks them has
lethal objects (Typically only used in global costmap).

• Obstacle Layer - Marks objects retrieved from our sensor sources with lethal value. It
also raytraces observations to clear out space.

• Inflation Layer - Inflates the detected obstacles taking into account the robot radius
and inflation radius. The closer the cells are from a lethal obstacle the more value they
will have.

Figure 3.10 shows how the combined layers produce the master costmap that will be used
by the planners [42].
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Figure 3.10: Update Algorithm - In (a), the layered costmap has three layers and the master
costmap. The obstacles and static layers maintain their own copies of the grid, while the
inflation layer does not. To update the costmap, the algorithm first calls the updateBounds
method (b) on each layer, starting with the first layer in the ordered list, shown on the
bottom. To determine the new bounds, the obstacles layer updates its own costmap with new
sensor data. The result is a bounding box that contains all the areas that each layer needs to
update. Next, each layer in turn updates the master costmap in the bounding box using the
updateValues method, starting with the static layer (c), followed by the obstacles layer (d)
and the inflation layer (e). from [42]

3.5 Summary

In this chapter we described the inner workings of the ROS framework and what tools can
be used in order to develop a certain application. We also discussed what types of problems
exist in regards to autonomous navigation. Finally we showed how the ROS navigation stack
tackles these issues in order to construct a safe navigation module for a robot.
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Chapter 4

Evaluation Platform

In this chapter we will describe the principal components in terms of hardware and software
and how they are interconnected to create a suitable robotic platform that will later be used
for evaluating the performance of LiDAR and FMCW radar as obstacle avoidance sensors.

4.1 Hardware

The basic hardware used in this work is a modified version of the turtlebot2 platform.
The platform was modified in order to include a processing unit, a 2D scanning LiDAR and
a FMCW radar. The modified version is displayed in Fig.4.1.

Figure 4.1: Modified Turtlebot2 used in this work
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4.1.1 Turtlebot2

TurtleBot 2 (Fig. 4.2) is one of the most popular low cost personal robots around. It is
completely run by open source software which makes it exceptional for research and educa-
tional purposes. The robot has been developed by the Korean company Yujin Robotics in
collaboration with Willow Garage. Its differential kinematics mobile platform can be used for
multiple applications, due to the huge number of available ROS packages.

Figure 4.2: Turtlebot 2 platform

When it comes to technical specifications the robots dimension is 354 x 354 x 420 mm
as shown in Fig. 4.3, its weight is 6.3 Kg with a max payload of 5 Kg which means it is
able to attach lots of sensor devices with if needed. Its maximum translational speed is 0.7
m/s and the maximum rotational speed is 180o/s . It is equipped with a gyroscope with 1
axis(110o/s), an odometer at 52 ticks/encoder and bumpers on left, right and center among
other components.

Figure 4.3: Turtlebot 2 dimension specifications

4.1.2 FMCW radar

The radar board chosen for this work is the mmWave Texas Instruments (TI) AWR1642BOOST
(Fig.4.4). This is a recently distributed FMCW radar appropriate for short range applications.
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It is an easy-to-use evaluation board for the AWR1642 automotive radar sensor which is con-
nected to the micro-controller unit (MCU) LaunchPad. To develop software it has on-chip
C67x DSP core and low-power ARM Cortex-R4F controllers which include onboard emulation
for programming and debugging. It requires a 5V @ 2.5A supply brick with a 2.1-mm barrel
jack to run. The device supports a wide RF bandwidth of 77-81 GHz that permits good range,
velocity and angle resolution. These last parameters depend on the configuration fed to the
device.

Figure 4.4: Texas Instruments AWR1642BOOST evaluation board

The radiation pattern of the antenna in the horizontal plane (H-plane Phi = 0 degrees)
and elevation plane (E-plane Phi= 90 degrees) is shown by Figure 4.5.

Figure 4.5: Radiation pattern of the antenna from [43]
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4.1.3 LiDAR

Besides the FMCW radar the Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder (Fig.
4.6a) is also attached to the platform.

This sensor is an inexpensive 2D-LiDAR that is based on phase difference measurement. It
retrieves information of the surrounding environment by scanning an area of 240o with 0.36o

angular resolution. Its maximum range is about 4 meters and its range resolution is 1mm. Its
scan update time is 100ms/scan and its weight is 360 g. As for the power supply it only needs
a 5V DC provided by the USB connection as shown in Figure 4.6b.

(a) Hokuyo URG-04LX-UG01 Scan-
ning Laser Rangefinder

(b) Hokuyo URG-04LX-UG01 specifications diagram

Figure 4.6: Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder overview

4.2 Software

Figure 4.7 shows the block diagram describing the different modules used to have a proper
autonomous navigation platform.

First of, a map of the surrounding environment must first be created. There are multiple
packages for doing this in ROS, but in our case we used the package gmapping with 2D-LiDAR
as input. The robot also needs to be able to localize itself, for that we will use again the 2D-
LiDAR for input in the package amcl. This will update the localization of the robot taking
into account the odometry information and the observable environment. With localization
and mapping problem taken care of we now must feed the Navigation Module with obstacle
detectors. For that we use the 2D-LiDAR and the radar data as sensor sources. However
the radar data is not compatible with the ROS navigation module. It sends Type Length
Value (TLV) data that must be decoded and converted to a ROS message format. To do
this conversion we have a block called ROS Interface. After this is done we encountered false
positive obstacles detected by the radar so we added a new module that processes the radar
message to combat this issue, we calll it an Intensity Filter. Finally, with this processing
done, we feed the Navigation Module with the processed radar data in ROS format or/and
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Figure 4.7: Block diagram of the software architecture designed for this work

the 2D-LiDAR as obstacle detectors.

4.2.1 ROS Interface

In order to use the radar for obstacle detection we must first convert the TLV data of the
robot to the ROS message format. To do this Texas Instruments provides a ROS package that
interfaces radar data to the ROS framework [44]. The incoming radar TLV data from the radar
is decoded in order to create a PointCloud2 type ROS message. This point cloud follows
the detected objects frame described in the mmWave demo data structure [45] represented in
Fig. 4.8. Each point has 6 fields:

• x (m) - position x of the detected object in the frame of the radar.

• y (m) - position y.

• z (m) - position z (for 2D devices this is equal to zero).

• range (m) - range of the object relative to the radar frame.

• doppler (m/s) - radial velocity of the object relative to the radar frame.

• intensity - power of the received signal corresponding to that object.

The characteristics of the radar data, such as publishing rate, range resolution, maximum
range, velocity, resolution and maximum velocity depends on the chirp profile configuration
file loaded in the radar. The easiest way to create a chirp configuration file is using the
mmWave Demo Visualizer. With it you can auto generate a configuration file given a set of
specifications. Another way of doing this is manually. This however requires the understanding
of the radar operating principle and the configuration commands.
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Figure 4.8: Part of the mmwave demo packet containing object detection information. This
fields will be used to construct the ROS PointCloud2 [45].

4.2.2 Visualization of the radar point cloud

Plotting the points in the XYZ space is not enough to fully visualize the radar data sent
since each point also gives velocity and intensity information. We can better visualize it by
using markers such as arrows or text in rviz. Figure 4.9a displays the radial velocity of each
point with an arrow. The width of the arrow indicates how fast in the direction of the radar
the object is going. Figure 4.9b shows the intensity values of each object in text. This type
of visualization will be useful when we want to filter the cloud.

(a) Arrow markers displaying the points radial ve-
locity

(b) Text markers displaying the points inten-
sity values

Figure 4.9: Visualization markers displaying radar data information
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4.2.3 Intensity Filter

Since we are dealing with point clouds coming from the FMCW radar and the 2-DLiDAR
than we need some type of ways to handle and manipulate them. For that the open source
libraries called Point Cloud Library (PCL) is the more indicated place to process and ma-
nipulate this type of information. A pointcloud is a collection of multi-dimensional points
and is commonly used to represent three-dimensional data [46]. These points are often just
designed to locate points in x,y,z but more dimensions can be added as is for the FMCW
radar which has 6 dimensions. PCL provides open source, state of the art library modules
that enables filtering, feature estimation, surface reconstruction, registration, model fitting
and segmentation.

In the point cloud there may be some points that have undesirable characteristics, such as
points with low intensity that lead to false detections or outside of the radar operating range.
To remove these points we use passthrough filters that specify the range of values a given
field can have in order for a point to be kept in the point cloud.

For example, if we are only interested in obstacles that are moving between 0.5 m/s and 1.0
m/s (radial velocity), this can be done by using a passthrough filter on the doppler channel.
Figure 4.10 shows an example where we delete detections close to the radar by filtering the
point cloud by intensity. After various tests it was decided that we will use an intensity filter
of 16, which means all target points that have an intensity bellow that will be filtered out due
to having a low SNR.

(a) Non filtered pointcloud (b) Filtered pointcloud by intensity

Figure 4.10: Example of filtering the pointcloud

4.2.4 Navigation Module

The navigation module first needs a map in order to have a global frame as reference.
After that we need to localize the robot in said map, for that we use the AMCL node. Finally
we need range sensors that detect obstacles. With the processed radar data we can now feed
it to our navigation system. We can either feed the LiDAR or/and FMCW radar as obstacle
detectors. The navigation module will then use all this information to compute the velocity
command that will make the turtlebot2 move.
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4.3 Summary

In this chapter we overviewed the technical specifications of each hardware component in
the navigation platform that will be used on in this work. We also overview what software
and how it is interconnected to properly setting up the turtlebot2 robot for indoor navigation.
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Chapter 5

Results

With the configuration described in the previous chapter we can now start to experiment
with the robotic platform to execute certain navigation tasks. In this chapter we present
various experiments that were conducted to evaluate the performance of the FMCW radar.
The experiments were divided into three groups. In the first, we try to evaluate the detection
capabilities of objects that are poorly or not even detected by the LiDAR. In the second we
try to evaluate the performance of the FMCW radar for dynamic obstacles in a controlled
space. In the third experiment we try to evaluate how the robot handles dynamic obstacles
in a an uncontrolled environment using the FMCW radar as an obstacle detector.

5.1 Static Obstacles in controlled environment

The 2D-LiDAR has trouble detecting objects that are above or bellow the plane where
the sensor is. So low height obstacles are difficult to detect. Also obstacles that are highly
reflective or highly absorbent are also not appropriate for detection using this sensor. However
the FMCW radar may show better performance at detecting this type of obstacles. Taking
this into consideration a test was devised in a controlled environment that compares the
performance of each sensor for these types of obstacles. The objects evaluated were two types
of chairs, a garbage bin, a low height box, a transparent acrylic tube and finally a robot (in
this case another tutlebot2) that is certainly going to be detected by both. The list of objects
used as obstacles are displayed in Fig. 5.1.

To ensure the experiment is done in a controlled way the scenario shown in Figure 5.2a
was constructed. This is approximately a 4 by 4 meter area with 1 meter high walls with the
addition of a half a meter wall in length in the middle. This environment optimizes the robots
localization system (AMCL) as well as make sure we only concentrate with one specific object
at a time. Using a SLAM package developed at IRIS [47] a map is first created (Figure 5.2b)
that will later be used for localization purposes.
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(a) Office chair (b) Four legged chair (c) Low height box

(d) Another turtlebot (e) Garbage Bin (f) Acrylic tube

Figure 5.1: Different obstacles used for the experiment

(a) Foto of the scenario [7] (b) Map created using SLAM package developed at
IRIS

Figure 5.2: Scenario Constructed for the experiment

5.1.1 Experimental setup

With the described scenario we setup the robots path to make five loops between two
goals, positions A and B, positioning in between an obstacle as illustrated in Figure 5.3. If the
obstacle detection system fails then the robot should collide with said object; if it succeeds
the robot should go around the object leaving in between a relatively safe distance. The
navigation data was recorded in a rosbag file in order to be analyzed later.
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Figure 5.3: Demonstration of the course of test, the robot will go back and forth from position
A to position B 5 times while trying to avoid the obstacle in the middle

5.1.2 Results

In this section we show the results of how the robot performed in avoiding the previous
obstacles using the FMCW radar and the 2D-LiDAR.

5.1.2.1 Office Chair

In the LiDAR’s case the robot disregarded the chair going in a straight line and pushing it
until it was away from the experimental setup has shown in Figure 5.4. This was due to the

(a) Robot collision with office chair number 1 (b) Robot collision with office chair number 2

Figure 5.4: Robot colliding multiple times with office chair

2D LiDAR only detecting the leg of the chair and not the wheels. This means that the robot
only perceived a single point as being occupied and not the full area of the chair. Figure 5.5
shows two instances of the experiment in rviz. As we can see the robot only perceives a single
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(a) Robot only perceiving a single point as
an obstacle

(b) Robot only perceiving a single point as an ob-
stacle

Figure 5.5: Rviz display of the navigation data with the office chair as an obstacle and the
LiDAR as an obstacle detector

point as being occupied.
With the FMCW radar the chair is detected almost immediately, this makes the global

planner and motion controller to be able to adjust in a very comfortable way and with it the
robot is able to avoid collision. Figure 5.6 shows some instances of the experiment. Since the
radar has small field of view (120 degrees) the robot might not detect the obstacle when it
is passing by it that in fact happens once, leading the robot to scrape the chair. Figure 5.7

(a) Robot avoiding office chair number 1 (b) Robot avoiding office chair number 2

Figure 5.6: Robot avoiding with office chair

shows two instances of the experiment in rviz. Analysing the navigation data we can clearly
see that the robot detects multiple points in the office chair’s case. Figure 5.8 shows the robot
trajectories in the LiDAR and the FMCW radar cases as well as an approximation of the
invalid space the center of the robot can not go through in dimmed red. As we can see the
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(a) Robot circumventing the office chair 1 (b) Robot circumventing the office chair 2

Figure 5.7: Rviz display of the navigation data with the office chair as an obstacle and the
FMCW radar as the obstacle detector

robot flat out ignores the obstacle with LiDAR while in the FMCW radar case it avoids it at
all times.

Figure 5.8: Trajectory of the robot for the office chair’s case
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5.1.2.2 Four Legged Chair

Using LiDAR the robot did not succeed in producing a safe trajectory. First off it went in
a straight line just as the previous case almost hitting the legs of the chair. However when it
got to close to it, it came to a halt and kept oscillating for a long time until it either collided
with the leg or scraped it. This was due to the LiDAR only detecting this type of obstacle at
small distances. This behavior repeated itself throughout the task, leading to the chair being
pushed several times. Figure 5.9 shows two instances where the robot gets stuck near the
chair. This type of behavior is indicative that the robot’s motion controller is stuck in local
minimum, in other words computing a safe trajectory around the obstacle is countered by its
force to follow the goal and path. Figure 5.10 shows three instances of the experiment in rviz

(a) Robot getting stuck in chair number 1 (b) Robot getting stuck in chair number 2

Figure 5.9: Robot getting stuck in four legged chair

where the robot uses the 2-DLiDAR has an obstacle detector. As we can see the robot only

(a) Robot not perceiving any
type of obstacle in its way

(b) Robot detecting 2 legs of the
chair

(c) Robot getting stuck in
chair due to being to close to
it

Figure 5.10: Rviz display of the navigation data with the four legged chair as an obstacle and
with the 2D-LiDAR as an obstacle detector

detects the chair’s legs when it got close to it. This made the robot get stuck in between the
chair’s legs.
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Using the FMCW radar proved to be much better with the robot safely circumventing
around the chair at safe distance for all duration of the task. Figure 5.11 shows two instances
of the turtlebot avoiding the chair at a safe distance. Figure 5.12 shows an instance of the

(a) Robot avoiding four legged chair number 1 (b) Robot avoiding four legged chair number 2

Figure 5.11: Robot avoiding the four legged chair

experiment in rviz where the robot uses the FMCW radar has an obstacle detector. In this

Figure 5.12: Rviz display of the navigation data with the four legged chair with the FMCW
radar as an obstacle detector. The robot circumvents the four legged chair

case the legs of the chair are detected immediately which makes the robot circumvent safely
without getting stuck. Analysing the data we see that when the robot is facing it it detects
almost all legs immediately. This makes it so the robot is aware of it at all times and planning
around it.

Figure 5.13 shows the trajectory of the robot for the LiDAR and FMCW radar and an
approximate position of the invalid space the four legs of the chair create coloured in dimmed
red. The center of the robot should not passtrough this area since it will lead to collision. As
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we can see the trajectory produced by the FMCW radar case is much less susceptible to the
object than in the LiDAR case.

Figure 5.13: Trajectory of the robot for the four-legged chair’s case

5.1.2.3 Garbage Bin

In the LiDAR’s case the robot went in a straight line as in the wheeled chair’s case pushing
the garbage bin until it reached its first goal. This happened because the LiDAR was unable
to properly detect the garbage bin at a certain angle. Figure 5.14 shows two instances of the
turtlebot hitting the garbage bin.

(a) Robot crashing into garbage bin (b) Robot pushing garbage bin

Figure 5.14: Two instances of the robot’s navigation with the garbage bin as an obstacle

44



Using the FMCW radar, the robot properly detected the garbage bin and went around
it easily. Figure 5.15 shows two instances of the turtlebot avoiding the garbage bin at a safe
distance. Figure 5.16 shows three instances of the experiment in rviz where the robot uses the

(a) Robot avoiding garbage bin number 1 (b) Robot avoiding garbage bin number 2

Figure 5.15: Robot avoiding garbage bin

FMCW radar has an obstacle detector. Analysing the navigation data we see that the robot

(a) Robot avoiding the
garbage bin 1

(b) Robot avoiding the
garbage bin 2

(c) Robot avoiding the garbage
bin 3

Figure 5.16: Rviz display of the navigation data with the garbage bin as an obstacle and with
the FMCW radar as an obstacle detector

perceives the grabage bin correctly but it also detects obstacles behind it. However the robot
still made its course without any trouble.

5.1.2.4 Low height box

In the LiDAR’s case the robot did not detect the low height box throughout all the course.
This makes sense since this sensor is built to detect objects that are the same height as the
sensor. In other words it detects only the horizontal plane of the 2D-LiDAR. This failure of
detection made it so the robot could not replan its course and in consequence it collided with
said box. Figure 5.17 shows two instances where the robot collided with the box using LiDAR
as a sensor source.
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(a) Robot collision with box number 1 (b) Robot collision with box number 2

Figure 5.17: Robot collision with box

For the FMCW radar case, initially the robot also did not detect the box. However by
decreasing the threshold of the passthrough filter of intensity to 14 we made it so it can detect
it. With this modification the robot was able to complete the test without colliding with the
box. Figure 5.18 shows two instances of the robot performing the course while avoiding the
box with the previous modification. However this change may result in the FMCW radar
having false detections due to now having a lower level of SNR. Figure 5.19 shows an instance

(a) Robot avoiding box number 1 (b) Robot avoiding box number 2

Figure 5.18: Robot avoiding box

of the experiment in rviz where the robot uses the FMCW radar as an obstacle detector. As
we can see with the change the robot perceives the box with the threshold change. This made
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Figure 5.19: Rviz display of the navigation data with the low height box as an obstacle and
the FMCW radar as an obstacle detector

it so the robot successfully finished the course without hitting it.

5.1.2.5 Acrylic tube

When it comes to the Acrylic tube using the 2-D LiDAR it falsely detected targets where
there where none. This is due to the physical proprieties of the object being unsuitable for
LiDAR technology to handle. The robot in its course got stuck near the obstacle due to think
it had crashed into it. However this was not the case and the robot did not succeed in the
experiment. Figure 5.20 shows two instances of the robot getting stuck in the acrylic tube.
Figure 5.21 shows an instance of the experiment in rviz where the robot uses the 2D-LiDAR

(a) Robot getting stuck acrylic tube number 1 (b) Robot getting stuck in acrylic tube number 2

Figure 5.20: Robot getting stuck in acrylic tube

as an obstacle detector. As we can see the robot perceives obstacles where there are none.
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Figure 5.21: Rviz display of the navigation data with acrylic tube as an obstacle and the
2D-LiDAR as an obstacle detector

This made the robot behave in a strange way that was not the behavior we want to see for
the experiment.

In the FMCW radar case the robot was able to properly detect the tube and thus avoiding
it all the course. The behavior of the robot was better than the previous case since it went
through all course without hitting the tube in any way. Figure 5.22 shows two instances of
the robot avoiding the acrylic tube. Figure 5.19 shows three instances of the experiment in

(a) Robot avoiding acrylic tube number 1 (b) Robot avoiding acrylic tube number 2

Figure 5.22: Robot avoiding acrylic tube box

rviz where the robot uses the FMCW radar as an obstacle detector. As shown in the figure
we see that the robot avoids the obstacle without any problem.
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(a) Robot avoiding the acrylic
tube 1

(b) Robot avoiding the acrylic
tube 2

(c) Robot avoiding the acrylic
tube 3

Figure 5.23: Rviz display of the navigation data with the acrylic tube as an obstacle and with
the FMCW radar as an obstacle detector

5.1.2.6 Robot (turtlebot2)

In this last case both the FMCW radar and the 2D-LIDAR performed reasonably well
avoiding the obstacle with ease for all the trajectory.

5.1.3 Discussion

In this experiment we conclude that there are multiple types of obstacles that the 2-D
LiDAR is unable to properly detect. This poor detection led to the robot crashing into the
objects making it so the navigation task presented ended in failure. However using the FMCW
radar proved to have a better perception of all the obstacles in the experiment and with it the
indoor navigation tests were concluded with success with the robot circumventing them in a
safe manner. We conclude that there are advantages in using the FMCW radar as an obstacle
detector.

5.2 Dynamic Obstacles in controlled environment

In the previous experiment we only dealt with static objects. In this new test we want
to see how the FMCW radar handles dynamic objects in a controlled space. For that we
send multiple goals to the robot and use an additional turtlebot2 or a person to obstruct its
path. In other words we have the robot trying to reach multiple goals multiple times and the
dynamic obstacle will try to make more difficult by obstructing the planned paths of the robot.
The main goal of this experiment is to see if the robot can handle unstructured environments
that are often the case in indoor scenarios.

5.2.1 Experimental Setup

For this test we send four goals to the robotic platform, A,B,C,D in zigzag fashion and we
will place a dynamic obstacle obstructing it as shown in Figure 5.24.
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Figure 5.24: Demonstration of the course of test, the robot will run through A-B-C-D while
trying to avoid the dynamic obstacle obstructing its path

For the dynamic obstacles we will use firstly a person and in a second trial a mobile robot.
These obstacles will try to obstruct the path of the robot throughout the course. For this case
we will only use the FMCW radar as an obstacle detector.

5.2.2 Results

In the following sections we show the results for the person and the mobile robot as
obstacles for the experiment.

5.2.2.1 Person

Throughout all the test the robot successfully avoided the person only using the FMCW
radar as an obstacle detector. Figure 5.25 shows two instances of the robot avoiding the person
in the experiment.

However the robot was only able to perceive the legs of said person and not its feet. This
may lead to cases where the robot shocks in the person if it is to close.

Figure 5.26 shows three instances of the experiment in rviz. Analysing the navigation
data we see that the robot perceives the person and goes around it easily most of the time.
However when the person got too close to the robot, it stopped completely and its recover
behaviors were activated. We conclude that using the FMCW radar, the robot is able to avoid
moving people which may indicate that this sensor can be used for social environments. We
also conclude that it is better suited for detecting obstacles that are at least half a meter away
from the robot and that are facing it directly due to small field of view (120o).
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(a) Robot avoiding the person number 1 (b) Robot avoiding the person number 2

Figure 5.25: Robot avoiding the person

(a) Robot avoiding the person
1

(b) Robot avoiding the person
2

(c) Robot avoiding the person
3

Figure 5.26: Rviz display of the navigation data with the person as a dynamic obstacle and
with the FMCW radar as an obstacle detector

5.2.2.2 Mobile Robot

For the mobile robot case the results were similar to the previous case. The robot was
able to detect and avoid the other robot when it is facing it.

Figure 5.27 shows two instances of the robot avoiding the dynamic robot.

Figure 5.28 shows three instances of the experiment in rviz. As we can see from the figures
our robot is able to avoid the mobile robot at all times in the experiment.

5.2.3 Discussion

The robot was able to handle dynamic obstacles using only the FMCW radar, this meaning
that it might be feasible to use this sensor for obstacle avoidance in ever changing indoor
environments.
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(a) Robot avoiding dynamic robot 1 (b) Robot avoiding dynamic robot 2

Figure 5.27: Robot avoiding dynamic robot

(a) Robot avoiding the robot 1 (b) Robot avoiding the robot 2 (c) Robot avoiding the robot 3

Figure 5.28: Rviz display of the navigation data with the robot as a dynamic obstacle and
with the FMCW radar as an obstacle detector

5.3 Dynamic Obstacles in uncontrolled environment

In the previous section we used a small confined space for the robot to operate in. This
made it so the robot localization was easy to determine. It also was in an almost closed space,
which means he can raytrace the enviornment to clean previous detected obstacles. However
in this next experiment we seek to analyse how the robot behaves when it is exposed to an
open space. For that we make an experiment in the IRIS laboratory. In the following test
we want to answer if the FMCW radar is able to clear previously obstructed spaces (by the
person in this case) by raytracing its environment.

5.3.1 Experimental Setup

First a map was created of the IRIS laboratory using the package gmapping provided
by ROS (Fig. 3.7). Then using the map and the package AMCL we ensure that the robot
localization is fairly reasonable. After that we set up the robot to do a certain navigation
task. The robot starting position and goal were set as shown in Figure 5.29 in the IRIS
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laboratory.

Figure 5.29: Experimental setup showing the initial position and the goal sent to the robot.
A person will be put to obstruct the path of the robot

In this case a single person was instructed to actively obstruct the robot’s forward move-
ment until the robot reaches its first goal. After reaching it the person gets out of the environ-
ment and the robot is instantaneously given a second goal which in this case is its the starting
position. The experiment was repeated five times with the FMCW radar and the 2D-LiDAR.

5.3.2 Results

As expected, using the 2D-LiDAR, the robot was able to detect and avoid the person in
all 5 cases. However it should be noted that in one of these cases the robot tried to avoid it by
going through an obstructed space (that was not the person) due to a missed detection. This
lead to collision. The robot was also able to clear the previously obstructed spaces, getting to
the starting position without avoiding past marked obstacles.

The FMCW radar was also able to detect the obstructing person and managed to plan
around it in all cases as shown in Figures 5.30a, 5.30b and 5.30c. Since the radar cloud is less
dense, clearing marked obstacles was slower than in the LiDAR case. However this did not
impact the overall performance of the navigation task in a significant way since it still went
to the starting position in an almost straight line (Figure 5.30d).
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(a) Robot avoiding planning around the person
blocking it

(b) Robot replanning around the person blocking
it

(c) Turtlebot stopping and adjust velocity to avoid
person

(d) Turtlebot returning to initial position in a
straight line with no obstacles obstructing it

Figure 5.30: Four instances of the robot in the experiment

5.3.3 Discussion

The FMCW radar was able to perform obstacle avoidance of dynamic obstacles (in this case
a person) that continuously obstructed its path at 5 different times in the same environment
which may suggest the use of the FMCW radar as an alternate sensory unit over the LiDAR.
We also found that the FMCW radar is able to clean the dynamic obstacle presented.
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5.4 Summary

In this chapter we presented various experiments used to evaluate the performance of
the FMCW radar as an obstacle detector and using in some of them the 2-DLiDAR as a
comparative source. In the first experiment we concluded that there are various objects in
which the 2-DLiDAR is unable to detect due to the height or proprieties of the object. However
this obstacles were correctly detected by the FMCW radar. This means that this type of
sensors are advantageous for scenarios in which this type of obstacles are commonly used
(office environments). We also verified how the FMCW radar handles dynamic obstacles, as
we successfully made the robot avoid them only using the FMCW radar as an obstacle detector.
Finally we conducted an experiment in an unstructured environment with a dynamic obstacle
(person). It terminated with success in all cases. With this we conclude that the FMCW
radar is a viable sensor to support obstacle avoidance.
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Chapter 6

Towards The Use Of Doppler To
Enrich Obstacle Avoidance

If the velocities of objects relative to the (moving) robot are available, this information can
be used to compute better paths. In this chapter we present an exploratory work on how this
can be implemented, using the doppler data provided by the radar. The approach proposed
is based on adapting the layered costmap, at the inflation layer by substituting it by another
that takes into account velocity information.

6.1 Layered Costmaps

As said before the global and local costmaps used in ROS Navigation Stack are both
layered costmaps. This means that they are composed by independent components with each
one affecting the resulting master layered costmap for specific environmental contexts. For
example the classic static layer takes information from a published map topic and based on the
position of the robot marks some pre-determined obstacles while the inflation layer propagates
the cost of obstacles radially. Figure 6.1 show some different layers for different contexts.

The set of layers used follows a specific hierarchy that determines what order and how they
overwrite the master costmap. This is an important part to take into consideration because
the priority of the different layer plugins will determine the final costmap that will be used by
each planner (global or local).

6.2 Inflation Layer

When it comes to define values for the costmap occupancy grid the inflation layer is usually
the case in the ROS navigation stack. Inflation is the process of propagating cost values out
from occupied cells that decrease with distance [48]. Figure 6.2 shows an overview of the
different values each cell can have (0 to 254) and what they mean when it comes to the robot
perception.

All cells in the costmap further than the inscribed radius distance and closer than the
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Figure 6.1: A stack of costmap layers, showcasing the different contextual behaviors achievable
with the layered costmap approach from [42]

inflation radius distance away from an actual obstacle is given by:

cellcost = 253 ∗ e(−k∗(dist−r)) (6.1)

where k is the cost scaling factor that determines how fast the decaying of the function is, dist
is the distance from the obstacle to the robot and finally r is the robot radius. This means
that cells near obstacles will have a value that will tend to 253 while cells far away from the
obstacle will have values trending to 0. Note that dist most be always greater than r because
if it isn’t than it means the robot collided with said obstacle. This inflation is only taking into
account distance from the obstacle as input which means that the values of the cells will be
propagated radially.

6.3 Doppler Layer

In the previous case, inflation only took into account the distance of obstacles for computing
what value each cell in the costmap will have. In unstructured environments there may be
obstacles that have negative relative radial velocity in regards to the robot, or in other words
incoming obstacles. This obstacles may crash into the robot since the velocity information is
not considered by the robot. To surpass this we want to design a layer that not only takes
into account the distance but also the relative radial velocity of the object to determine the
value of cells in the costmap. To do this we designed a layer that adjusts the cell values of the
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Figure 6.2: Inflation layer specifications from [48]

master costmap taking into account the radial velocity of said objects taken from the FMCW
radar. Taking into account the relative radial velocity vr the cell value of the surrounding
cell’s is given by:

cellcost = Ae
−( x

2

2σ2x
+ y2

2σ2y
)

σ2x = cov ∗ factor ∗ |vr|
σ2y = cov

x = dist ∗ cos(θ)
y = dist ∗ sin(θ)

(6.2)

where cov, factor and A are parameters adjusted by the user, θ is the angle between the
cell where we want to calculate its value and the direction of the velocity vector of the target
object, and finally dist is the distance between the two previous cells. This function is a
gaussian distribution that takes into account velocity and distance from the obstacle. With
this cost function we can manipulate the costmap cell values to have higher values in the
direction of incoming objects. Figure 6.3 shows an example of the doppler layer changing the
2D master costmap taking into account the velocity and distance of the target obstacle.
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Figure 6.3: Example of doppler layer manipulation of the master costmap with the parameters
A=253, factor=20 and cov=0.1

6.4 Discussion

By using the doppler layer we have concluded that the trajectory of the robot can be
altered taking into consideration the relative radial velocity of the target obstacles. This may
be useful for high populated indoor environments where people constantly are shifting from
one place to another. This makes the robot safe from incoming obstacles and therefore is a
good support for our navigation system. There are some limitations for this layer however,
the first one being that the velocity resolution of the radar is limited which may produce bad
results when the radial velocity of the objects is low. Another limitation is that the global
costmap update is usually around 1 Hz, and a big amount of information may be outdated
when the control loop occurs which may lead on late replanning by the global planner. For
the local planner another problem is that its limited dimensions do not allow the prediction
of long range obstacles since it only works in the vicinity of the robot.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

LiDAR technology is one of the most common approach to sense the environment for navi-
gation purposes. However, new radar devices are appearing that, by their cost and dimensions,
could be an appealing alternative or complementary technology for the same purpose. In this
work, the FMCW radar was evaluated as a potential sensing device for navigation purposes.

To support the evaluation, a Turtlebot2 platform was adapted in order to equip it with
a LiDAR and an FMCW radar. Afterwards, a software arquitecture was defined allowing
the evaluation. A set of experiments were devised and implemented and the results obtained
proved the validity of using the FMCW radar as an obstacle detector sensor device. In one
hand, they showed some type of objects not or poorly detected by a LiDAR can be better
detected by the radar. In the other hand, problems that could arise from the fact that the radar
produce less dense data does not showed to be significant in keeping the costmap updated.

As a final work, an exploratory work on the use of the Doppler data provided by the radar
was conducted. It was proposed a manipulation of the layered costmap approach used by the
navigation stack in ROS to define a new way of inflacting the obstacles taking into account
its relative radial velocity in relation to the robot.

7.2 Future Work

Taking into account the work done in this dissertation there are multiple objectives that
we can try to perform in the near future. Firstly, in the first experiment we only experiment
with a small amount of different obstacles. The number of objects can be expanded to try and
find more where FMCW radar detects and where the 2D LiDAR does not detect. Another
objective to take in mind is the further improvement of the plugin costmap layer proposed in
this work. The parameterization and optimization may be key factor for the successful use of
this layer to addresss unstructured dynamic environments. Lastly in this work we only tackled
the obstacle avoidance capabilities of the FMCW radar, in the future we can try to use it for
mapping or even localization purposes.
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Appendix A

Simulation of radar range and velocity
estimation

A.1 Simulating range detection

In this section we try to simulate in MATLAB the process of retrieving the range from
different targets using the FMCW radar operating principle. . Table A.1 shows the paramaters
used for the radar and the vector of distances of the supposed objects to be retrieved, where
Tc is the time of chirp and Fs is the sampling frequency of the ADC. Figure A.1 shows the

Table A.1: Parameters used for simulation for range estimation.

Paramater Value
fc 77 GHz
Bandwidth 4 GHz
Tc 40us
Fs 8 MHz
Object distance [0.2345 0.0469 1.1 3.0 5 5.3] m

TX signal in blue and RX signal as the other colors in a plot of time vs frequency. Mixing
both signals and passing the resulting IF signal by a low pass filter we then compute the FFT
of the IF signal. Fig A.2a shows the result. By using equation 2.6 we can retrieve the distance
vs power of the signal plot (Fig. A.2b). As we can see the power of the signal is stronger in
the distances that were chosen a priori. To extract them we must choose a certain threshold
of SNR. Note that the sampling frequency limits the maximum distance of detection. The
code used to generate the simulation is shown bellow.

1 % RETIOT Range Detect ion : S imulat io o f ob j e c t range de t e c t i on
2

3 %% I n i t i a l i z a t i o n
4 c l e a r ; c l o s e a l l ; c l c
5

6 f c =77∗10^9; % 77 GHz
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Figure A.1: TX signal in blue and RX signal in other colours, each strip corresponds to a
different range detection

(a) FFT of IF signal (b) Frequencies converted to distances plot

Figure A.2: Range detection using FMCW radar

7 BW=4∗10^9; % 4 GHz
8 Tc=40∗10^−6; % 40 us
9 S=BW/Tc ; %

10

11 dist_obj =[0.0469+0.0469/2 1 .1 3 .0 5 5 . 3 ] ; %m
12 n_objects=length ( d ist_obj ) ;
13 c=3∗10^8; %m/ s
14 round_trip_delay=2∗dist_obj /c ; % s
15

16 N=10000000; % # samples
17 dt=Tc/N; % Ts
18 t =[0 : dt : Tc ] ; % time vec to r
19

20 %%
21 f 1=f c+S∗ t ;
22 TX_signal=s i n ( 2 .∗ pi .∗ f 1 .∗ t ) ;
23

24 n_zeros=round ( round_trip_delay/dt ) ; % # samples
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25 %%
26 p lo t ( t ( 1 : 1 0 : 1 0000 ) , f 1 ( 1 : 1 0 : 1 0000 ) ) ;
27 RX_signal=ze ro s (1 , l ength ( TX_signal ) ) ;
28 f o r i =1: n_objects
29 tmp=length ( TX_signal )−n_zeros ( i ) ;
30 f 2 =[ z e ro s (1 , n_zeros ( i ) ) f 1 ( 1 : tmp) ] ;
31 RX_signal_i=0.1∗ s i n ( 2 .∗ pi .∗ f 2 .∗ t ) ;
32 RX_signal=RX_signal+RX_signal_i ;
33 p lo t ( t ( 1 : 1 0 : 1 0000 ) , f 2 ( 1 : 1 0 : 1 0000 ) ) ;
34 hold on ;
35 end
36

37 ax i s ( [ 0 4∗10^−8 f c f c +4∗10^6]) ;
38 %%
39

40 IF_signal=RX_signal .∗ TX_signal ;
41

42 %%
43 B = f i r 1 ( 7 0 , 0 . 1 , ’ low ’ ) ;
44 IF_signal_F=f i l t e r (B, 1 , IF_signal ) ;
45 Fs_ADC=8∗10^6;
46 Ts_ADC=1/Fs_ADC;
47 n_skip=round (Ts_ADC/dt ) ;
48 tmp=1:n_skip : l ength ( t ) ;
49 IF_signal_sampled=IF_signal_F (tmp) ;
50 %plo t ( IF_signal_sampled (1 : 1000 ) ) ;
51

52 L = length ( IF_signal_sampled ) ; % Length o f s i g n a l
53 N=256;
54

55 F=f f t ( IF_signal_sampled ,N) ;
56 P2 = abs (F) ;
57 P1 = P2 ( 1 :N/2+1) ;
58 %P1 ( 2 : end−1) = 2∗P1 ( 2 : end−1) ;
59

60 f 3 = Fs_ADC∗ ( 0 : (N/2) ) /N;
61 f i g u r e ;
62 stem ( f3 /10^6 ,P1) ;
63 t i t l e ( ’ S ing l e−Sided Amplitude Spectrum of IF ’ )
64 x l ab e l ( ’ f (MHz) ’ )
65 y l ab e l ( ’ | P1( f ) | ’ )
66 f 3 (2 )
67 dres=f3 (2 ) ∗c /(2∗S)
68 fmax=Fs_ADC/2
69 dmax=fmax∗c /(2∗S)
70

71 Threshold =3.5 ;
72 idx=f i nd (P1>Threshold ) ;
73 number_objects_found=length ( idx ) ;
74 f o r i =1:number_objects_found
75 dcalc_obj ( i )=f3 ( idx ( i ) ) ∗c /(2∗S) ;
76 end
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77 %%
78 dres=f3 (2 ) ∗c /(2∗S) ;
79 d=[0: dres : dres ∗ l ength ( f 3 )−dres ] ;
80 f i g u r e ;
81 stem (d , P1) ;

A.2 Simulating velocity detection

In this section we try to simulate in MATLAB the process of retrieving the velocity from
different targets using the FMCW radar operating principle. Table A.2 shows the parameters
used for the radar and the velocity and range of the supposed object to be retrieved, where
Nc is the number of chirps used.

Table A.2: Parameters used for simulation of velocity estimation

Paramater Value
fc 77 GHz
Bandwidth 4 GHz
Tc 40us
Fs 8 MHz
Nc 64
Object distance 5 m
Radial velocity 7 m/s

By computing the FFT of the Nc phase differences we get the 2-D doppler FFT for the
object at 5 m. Fig A.3a shows the resulting 2D-Doppler FFT that displays which phases are
stronger. By using equation 2.7 we can retrieve the velocity vs power of the signal plot (Fig.
A.3b). As we can see there is a peak near the 7m/s velocity that means this parameters can

(a) FFT of IF signal (b) Phase differences converted to velocity plot

Figure A.3: Velocity detection using FMCW radar

be used to compute the radial velocity of the target with fairly good precision. The code used
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to generate the simulation is shown bellow.

1 % RETIOT Ve loc i ty Detect ion : S imulat ion o f v e l o c i t y de t e c t i on
2

3 %% I n i t i a l i z a t i o n
4 c l e a r ; c l o s e a l l ; c l c
5 %%
6 %
7 %
8

9 f c =77∗10^9; % 77 GHz
10 BW=4∗10^9; % 4 GHz
11 Tc=40∗10^−6; % 40 us
12 S=BW/Tc ; %
13 c=3∗10^8; %m/ s
14 N=20000000; % # samples
15 dt=Tc/N; % Ts
16 t =[0 : dt : Tc ] ; % time vec to r
17

18 my_vector = [ ] ;
19

20 N_chirps=64;
21 velocityMax=c∗ pi /( f c ∗4∗ pi ∗Tc) ;
22 d i s tance_sta r t =5.0 ;
23 ve l o c i t y_ob j e c t =7.0 ; %m s
24

25 dist_obj (1 )=d i s tance_sta r t ;
26 f o r i =2:N_chirps
27 dist_obj ( i )=dist_obj ( i −1)+ve l o c i t y_ob j e c t ∗Tc ;
28 end
29

30 %% N Chirps
31

32 f 1=f c+S∗ t ; %TX s i g n a l f requency
33 TX_signal=s i n ( 2 .∗ pi .∗ f 1 .∗ t ) ;
34

35 f o r i =1:N_chirps
36 round_trip_delay=2∗dist_obj ( i ) /c ; % s
37 n_zeros=round ( round_trip_delay/dt ) ; % RX s i g n a l
38 tmp=length ( t )−n_zeros ;
39 f 2 =[ z e r o s (1 , n_zeros ) f 1 ( 1 : tmp) ] ;
40 o f f s e t =2∗pi ∗ f c ∗dt∗n_zeros ;
41 RX_signal=0.1∗ s i n ( 2 .∗ pi .∗ f 2 .∗ t−o f f s e t ) ;
42 RX_signal ( 1 : n_zeros ) =0;
43 IF_signal=RX_signal .∗ TX_signal ;
44

45 %% IF_signal sampling
46 B = f i r 1 ( 7 0 , 0 . 1 , ’ low ’ ) ;
47 IF_signal_F=f i l t e r (B, 1 , IF_signal ) ;
48 Fs_ADC=4306∗10^4;
49 Ts_ADC=1/Fs_ADC;
50

51 n_skip=round (Ts_ADC/dt ) ; %sk ip some samples
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52 tmp=1:n_skip : l ength ( t ) ;
53 IF_signal_sampled=IF_signal_F (tmp) ;
54

55 %% FFT IF s i g n a l
56 N=256;
57 F=f f t ( IF_signal_sampled ,N) ;
58 P2 = abs (F) ;
59 P1 = P2 ( 1 :N/2+1) ;
60 P2_ang = angle (F) ;
61 P1_ang = P2_ang ( 1 :N/2+1) ;
62

63 Threshold =3.5 ;
64 idx=f i nd (P1>Threshold ) ;
65

66 phasor ( i )= F( idx ) ;
67 end
68

69 %% FFT IF s i g n a l
70 doppler_FFT=f f t ( phasor ) ;
71

72 dw=2∗pi / l ength ( phasor ) ;
73 w=[0:dw:2∗ pi−dw ] ;
74

75 stem (w, abs ( doppler_FFT) ) ;
76 x l ab e l ( ’ \omega ( rad/ s ) ’ ) ;
77 y l ab e l ( ’ Amplitude FFT ’ ) ;
78 t i t l e ( ’ Doppler FFT phase d i f f e r a n c e s ’ ) ;
79

80 vre s=c∗dw/( f c ∗4∗ pi ∗Tc)
81 vmax=c∗ pi /( f c ∗4∗ pi ∗Tc)
82 idx=f i nd ( abs ( doppler_FFT)==max( abs ( doppler_FFT) ) ) ;
83 v_calc=c∗w( idx ) /( f c ∗4∗ pi ∗Tc)
84 v=[0: v re s : 2∗vmax−vre s ] ;
85

86

87 f i g u r e ;
88 stem (v , abs ( doppler_FFT) ) ;
89 x l ab e l ( ’ v e l o c i t y (m/ s ) ’ ) ;
90 y l ab e l ( ’ Amplitude FFT ’ ) ;
91 t i t l e ( ’ Doppler FFT v e l o c i t y e s t imat i on ’ ) ;
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