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ABSTRACT. This work is devoted to the analysis of the
mixed impedance-Neumann-Dirichlet boundary value prob-
lem (MIND BVP) for the Laplace-Beltrami equation on a
compact smooth surface C with smooth boundary. We prove,
using the Lax-Milgram Lemma, that this MIND BVP has a
unique solution in the classical weak setting H1(C) when con-
sidering positive constants in the impedance condition. The
main purpose is to consider the MIND BVP in a nonclassi-
cal setting of the Bessel potential space Hs

p(C), for s > 1/p,
1 < p < ∞. We apply a quasilocalization technique to the
MIND BVP and obtain model Dirichlet-Neumann, Dirichlet-
impedance and Neumann-impedance BVPs for the Laplacian
in the half-plane. The model mixed Dirichlet-Neumann BVP
was investigated by R. Duduchava and M. Tsaava (2018).
The other two are investigated in the present paper. This
allows to write a necessary and sufficient condition for the
Fredholmness of the MIND BVP and to indicate a large
set of the space parameters s > 1/p and 1 < p < ∞ for
which the initial BVP is uniquely solvable in the nonclassical
setting. As a consequence, we prove that the MIND BVP
has a unique solution in the classical weak setting H1(C)
for arbitrary complex values of the nonzero constant in the
impedance condition.

1. Formulation of the problem. Let S ⊂ R3 be some smooth,
closed, orientable surface, bordering a compact inner Ω+ and outer
Ω− := R3 \ Ω+ domains. By C we denote a subsurface of S, which
has two faces C− and C+ and inherits the orientation from S: C+
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borders the inner domain Ω+ and C− borders the outer domain Ω−.
The subsurface C has a smooth boundary Γ := ∂C, which is decomposed
into three closed, simply connected parts Γ = ΓD ∪ ΓN ∪ ΓI , having
in common only their endpoints. In particular, the common end point
of ΓN and ΓI will be denoted by PIN . A generalization to the case
where each part consists of a finite number of smooth nonintersecting
arcs would be immediate and is not carried out here for simplicity.

Let ν(ω) = (ν1(ω), ν2(ω), ν3(ω))
>

, ω ∈ C be the unit normal vector
field on the surface C and

∂ν :=

3∑
j=1

νj∂j

be the normal derivative. We will consider the surface divergence divC ,
the surface gradient∇C and the Laplace-Beltrami operator on C written
in terms of the Günter’s tangent derivatives (see [18, 22, 23] for more
details):

divCU = D1U1 +D2U2 +D3U3, ∇Cϕ = (D1ϕ,D2ϕ,D3ϕ)>,

U = (U1, U2, U3)>(1.1)

∆C := divC∇C = D2
1 +D2

2 +D2
3, Dj := ∂j − νj∂ν , j = 1, 2, 3.

Moreover, let νΓ(t) = (νΓ,1(t), νΓ,2(t), νΓ,3(t))>, t ∈ Γ, be the unit
normal vector field on the boundary Γ, which is tangential to the surface
C and directed outside of the surface. Let, finally,

∂νΓ
:=

3∑
j=1

νΓ,jDj

denote the corresponding normal derivative on the boundary Γ.

We will study the mixed impedance-Neumann-Dirichlet boundary
value problem (MIND BVP) for the Laplace-Beltrami equation in
different space settings

∆Cu(t) = f(t), t ∈ C,

u+(τ) = g(τ), τ ∈ ΓD,

(∂νΓ
u)+(τ) = h(τ), τ ∈ ΓN ,

(∂νΓ
u)+(τ) + cu+(τ) = κ(τ), τ ∈ ΓI ,

(1.2)
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where u+ and (∂νΓ
u)+ denote respectively the Dirichlet and the Neu-

mann traces on the boundary and c is a constant (the impedance coef-
ficient).

Throughout the paper we will consider c 6= 0 since otherwise
our problem would be simply the Dirichlet-Neumann boundary value
problem already analysed in [23, Theorem 14], in [27, § 5.1] in the
classical Hilbert space setting (see (3.1) below) and in [19] in the
nonclassical Lebesgue space setting (see (3.3) below).

A rigorous analysis of the solvability of the above and similar
problems with Dirichlet, Neumann, mixed and impedance boundary
condition for the Helmholtz and other elliptic equations is very helpful
for understanding the properties of solutions to elliptic boundary value
problems in conical domains (see [28, 30, 40]).

In [24, 25] the authors suggest another approach to the investiga-
tion of the model mixed problem for the Helmholtz equation in two-
dimensional cones by writing an explicit formula for a solution with
two different methods. But the setting is classical only (i.e., in Hilbert
spaces) and the approach applies only to Dirichlet and Neumann but
not to impedance conditions. Other known results are either limited
to special situations such as the case of rectangles and depend strongly
on the geometry of the domain [4, 5, 6, 7, 9, 10, 12, 13, 14, 38]
or rather sophisticated analytical methods are applied [29, 50], or
precise settings of appropriate function spaces are missing (see, e.g.,
[33, 47]). For a historical survey and for further references we recom-
mend [8, 48, 50].

There exists yet another approach, which can also be applied – the
limiting absorption principle. It is based on a variational formulation,
the Lax-Milgram Lemma and its generalizations. Such approach is
presented, e.g., in [1, 2]. But again, these results are for the classical
setting only.

In the 1980s there was suggested to solve canonical diffraction prob-
lems in Sobolev spaces, based on the recent development of pseudodif-
ferential equations in domains with corners and, more generally, with a
Lipschitz boundary. It was popularized by E. Meister and F.-O. Speck
[13, 14, 34, 35, 36, 37, 43], W.L. Wendland [49], A. Ferreira dos
Santos [41] and their collaborators in various publications from which
we cited just a few.
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In [15, 19] a different approach was suggested, which allows in-
vestigation of boundary value problems for elliptic partial differential
equations in the nonclassical Lebesgue space setting (3.3). The inves-
tigation is based on the boundary integral equation method and the
solvability results for Mellin convolution equations in the Bessel po-
tential spaces. We apply this approach to the MIND BVP (1.2) and
derive its solvability properties in the nonclassical setting. It is worth
to note that the derived result is new even for classical Hilbert space
case when the constant c in the impedance condition is an arbitrary
complex number (see Theorem 1 below).

2. Auxiliary material. Throughout the paper S denotes a closed,
sufficiently smooth, orientable surface in Rn and C ⊂ S denotes a
subsurface with a smooth boundary Γ = ∂C.

We will work with the Bessel potential spaces Hsp(S), Hsp(C), H̃sp(C)
and Sobolev-Slobodečkii spaces Ws

p(S), Ws
p(C), W̃s

p(C), where 1 < p <
∞, s ∈ R. Let us commence with the definition of the Bessel potential
space on the Euclidean space Hsp(Rn), defined as a subset of the space
of Schwartz distributions S′(Rn) endowed with the norm (see [46])

||u
∣∣Hsp(Rn)|| := ||〈D〉su

∣∣Lp(Rn)||,

where 〈D〉s := F−1(1 + |ξ|2)
s
2 · F is the Bessel potential operator, and

F and F−1 are the Fourier transformation and its inverse, respectively.
For the definition of the Sobolev-Slobodečkii space Ws

p(Rn) = Bsp,p(Rn)
see [46].

The spaces Hsp(S) and Ws
p(S) are defined, in general, by a partition

of the unity {ψj}`j=1 subordinated to some covering {Yj}`j=1 of S and
local coordinate diffeomorphisms (see [46, 27] for details)

κj : Xj → Yj , Xj ⊂ R2 , j = 1, . . . , `.

The space Ws
p(S) coincides with the trace space of H

s+ 1
p

p (R3) on S.
In the case p = 2, we shall use the common simpler notation Hs(S)
and Ws(S) for the spaces Hs2(S) and Ws

2(S), and it is known that
Ws(S) = Hs(S) for s ≥ 0, 1 < p <∞ (see [46]).

For p = 2, the same simplification in the spaces notation will occur
in all the other spaces that we will be using in this paper.
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The space H̃sp(C) is defined as the subspace of Hsp(S) of those
functions ϕ ∈ Hsp(S), which are supported in the closed subsurface

(i.e., suppϕ ⊂ C), whereas Hsp(C) denotes the quotient space Hsp(C) :=

Hsp(S) / H̃sp(Cc), and Cc := S \ C is the complemented subsurface. For
s > 1/p − 1 the space Hsp(C) can be identified with the space of those

distributions ϕ on C which admit extensions `ϕ ∈ Hsp(S), while H̃sp(C)
is identified with the space rCHsp(S), where rC is the restriction to the
subsurface C of S.

For s < 0, those spaces can be defined by duality, e.g., Hsp(C) =

(H̃−sq (C))′, where
1

p
+

1

q
= 1. The spaces W̃s

p(C) and Ws
p(C) are defined

similarly.

The Bessel potential Hsp(Γ), Hsp(Γ0), H̃sp(Γ0) and Sobolev-Slobodečkii

Ws
p(Γ), Ws

p(Γ0), W̃s
p(Γ0) spaces on a closed contour Γ and an open arc

Γ0 are also defined similarly. In particular, we shall also use H̃sp,Γ1
(Γ0)

and W̃s
p,Γ1

(Γ0) to denote the Hsp(Γ1) and Ws
p(Γ1) distributions, respec-

tively, with support on Γ0 ( Γ1 ( Γ. This means that, e.g., the dis-

tributions of rΓ0
H̃sp,Γ1

(Γ0) are extensible by zero to Γ1 within Hsp(Γ1)

(where rΓ0 denotes the corresponding restriction operator to Γ0).

It is worth noting that for an integerm = 1, 2, . . . the Bessel potential
Hmp (S) and Sobolev Wm

p (S) spaces coincide and an equivalent norm in
both spaces may be defined with the help of the Günter’s derivatives
(see [17, 18, 22] and see (1.1) for the Günter’s derivatives D1,D2,D3):

||u
∣∣Wm

p (S)|| :=

 ∑
|α|6m

||Dαu
∣∣Lp(S)||p

 1
p

, Dα := Dα1
1 D

α2
2 D

α3
3 .

Let us also consider H̃−1
0 (C), a subspace of H̃−1(C), orthogonal to

H̃−1
Γ (C) :=

{
f ∈ H̃−1(C) : 〈f, ϕ〉 = 0 for all ϕ ∈ C1

0 (C)
}
.

H̃−1
Γ (C) consists of those distributions from H̃−1(C) which are supported

on Γ and H̃−1(C) decomposes into the direct sum of the subspaces:

H̃−1(C) = H̃−1
Γ (C)⊕ H̃−1

0 (C).
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The space H̃−1
Γ (C) is nontrivial (see [27, § 5.1]) and if the right-hand

side f in (1.2) is chosen from the orthogonal subspace, we are able to
guarantee the unique solvability of the corresponding BVPs (cf. [27]
and (3.3)).

3. Main results. For some (sufficiently small) ε > 0 we shall
consider the ε-ball Bε(PIN ) centered at PIN . Moreover, considering

ΓI,ε := ΓI ∩ Bε(PIN ), we will make use of a one-to-one smooth
transformation ϑ : ΓI,ε → ΓN which produces the overlapping of
ΓI,ε onto ΓN,εϑ := ϑ(ΓI,ε) ⊂ ΓN and such that ϑ(PIN ) = PIN .
Additionally, we will use the notation ΓIN,ε := ΓI,ε ∪ ΓN,εϑ and the

map Tϑ given by (Tϑϕ)(x) = ϕ(ϑ−1(x)), for x ∈ ΓN,εϑ .

Theorem 1. The MIND BVP (1.2) has a unique solution in the
classical weak setting

u ∈ H1(C), f ∈ H̃−1
0 (C), g ∈ H1/2(ΓD),

(3.1)
h ∈ H−1/2(ΓN ), κ ∈ H−1/2(ΓI),

for all complex values of the nonzero impedance parameter c ∈ C if and
only if the following compatibility condition is satisfied:

rΓ
N,εϑ

h− Tϑ(rΓI,εκ) ∈ rΓ
N,εϑ

H̃−1/2
ΓIN,ε

(ΓN,εϑ).(3.2)

For some very natural and detailed interpretation of the necessity
of having compatibility conditions on the data, we refer the reader to
[27, 37, 42, 39, 45].

The just formulated theorem will be proved first for positive param-
eters c > 0 (see Theorem 3), based on the Lax-Milgram Lemma (see
Lemma 1). Then, the result is extended to arbitrary nonzero complex
numbers c ∈ C with the help of Theorem 2 (see the proof, concluding
Section 7).

From Theorem 1 we cannot even conclude the continuity of a
solution, while from the existence of a nonclassical weak solution in
the space H1

p(C) for some 2 < p < ∞, we can even prove the Hölder
continuity of u. It is very important to know the maximal smoothness
of a solution as, for example, in designing approximation methods. To
this end we will investigate the solvability properties of the MIND BVP
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(1.2) in the nonclassical setting

u ∈ Hsp(C), f ∈ H̃s−2
p (C) ∩ H̃−1

0 (C), g ∈Ws−1/p
p (ΓD),

(3.3)

h ∈Ws−1−1/p
p (ΓN ), κ ∈Ws−1−1/p

p (ΓI), 1 < p <∞, s >
1

p
,

subjected to the compatibility condition

rΓ
N,εϑ

h− Tϑ(rΓI,εκ) ∈ rΓ
N,εϑ

W̃−1/2
p,ΓIN,ε

(ΓN,εϑ),(3.4)

and find necessary and sufficient conditions of solvability. Note that
the constraint s > 1/p is necessary to ensure the existence of the trace
u+ on the boundary (in the sense of the trace theorem [46]).

Besides the practical usefulness of a nonclassical solution to the
MIND BVP (1.2), the solvability conditions are much more interest-
ing and far non-trivial, which is seen by comparing Theorem 1 and
Theorem 2.

We recall that a bounded linear operator acting between Banach
spaces is said to satisfy the Fredholm property (or, in short, is Fred-
holm) if the dimension of its kernel is finite, the operator has a closed
image, and the codimension of the image is also finite. We will
say that the MIND BVP (1.2), (3.3)–(3.4) is Fredholm if the opera-
tor which characterizes (1.2), (3.3)–(3.4) has the Fredholm property.
More precisely, this operator associated with the BVP is defined by
u 7→ (f, g, h, κ) as a bounded linear operator in the Banach space set-
ting of (3.3)–(3.4), cf. [42]. Its inverse, if it exists, is known as the
resolvent operator.

The following theorem will be proved in the concluding part of
Section 7.
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that violate the condition (3.5).

Theorem 2. Let 1 < p < ∞, s > 1/p. The MIND BVP (1.2) with
the compatibility condition (3.4) is Fredholm in the nonclassical setting
(see (3.3)) if and only if

cos2 π s−
∣∣∣∣sin 2π

(
s− 1

p

)∣∣∣∣ 6= 0.(3.5)

In particular, the MIND BVP (1.2) has a unique solution u in the
nonclassical setting (3.3) if the point (s, 1/p) belongs to the open curved
quadrangle ABCD in Figure 1.

The function in the inequality (3.5) is 1-periodic with respect to the
variable s and the condition means that the curves in Figure 1 do not
cross the point (s− k, 1/p), where k = 0, 1, . . . is an integer such that
1

2
< s− k 6 3

2
.

Remark 1. From (3.5) we derive that the MIND BVP (1.2) with (3.4)
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is Fredholm for p = 2 (see points G1, G2, G3, G4 in Figure 1) if:

s 6∈
{

1

2
,

3

2
, . . .

}
+

{
0, π − arctan 2

π
,

arctan 2

π

}
.

4. Solvability of the MIND BVP in the weak classical set-
ting. In the present section we will prove the unique solvability of the
MIND BVP (1.2) in the classical weak setting (3.1)–(3.2), based on the
Lax-Milgram Lemma [31, 32].

Lemma 1. (Lax-Milgram) Let B be a Banach space, A(ϕ,ψ) be a
continuous, bilinear form

(4.1) A(·, ·) : B×B→ R

and positive definite

(4.2) A(ϕ,ϕ) ≥ C‖ϕ
∣∣B‖2 ∀ϕ ∈ B, C > 0.

Let L(·) : B→ R be a continuous linear functional.

The linear equation

(4.3) A(ϕ,ψ) = L(ψ)

has a unique solution ϕ ∈ B for arbitrary ψ ∈ B.

We need the following two auxiliary lemmata, which are proved in
[17, Lemma 4.8] and in [18], respectively.

Lemma 2. Let s > 0, s 6∈ N, 1 < p <∞, B(D) be a normal differential
operator of the first-order defined in the vicinity of the boundary Γ = ∂C
and A(D) be a normal differential operator of the second order defined
on the surface C. Then there exists a continuous linear operator

B : Ws
p(Γ)⊗Ws−1

p (Γ) −→ H
s+ 1

p
p (C)(4.4)

such that

(4.5) (BΦ)+ = ϕ0, (B(D)BΦ)+ = ϕ1, A(D)BΦ ∈ H̃
s−2+ 1

p
p (C)

for an arbitrary pair of functions Φ = (ϕ0, ϕ1)> where ϕ0 ∈Ws
p(Γ) and

ϕ1 ∈Ws−1
p (Γ).
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Lemma 3. For the Laplace-Beltrami operator ∆C on the open surface
C with the boundary Γ = ∂C, the following Green formula is valid

(4.6) (∆Cv, w)C = ((∂νΓ
v)+, w+)Γ − (∇Cv,∇Cw)C , v, w ∈W1(C),

where (ϕ,ψ)C denotes the scalar product of vector-functions and

∇Cv := (D1v,D2v,D3v)>

denotes the Günter’s gradient on the surface C.

Now we can prove the main result of the present section.

Theorem 3. If c > 0,then the MIND BVP (1.2) has a unique solution
in the classical weak setting (3.1)–(3.2).

Proof: We commence by reduction of the BVP (1.2), (3.1)–(3.2) to an
equivalent one with the homogeneous Dirichlet condition. For this,
we extend the boundary data g ∈ W1/2(ΓD) up to some function
g0 ∈ W1/2(Γ) on the entire boundary Γ and apply Lemma 2: there
exists a function G ∈ W1(C) such that G+ = g0 almost everywhere
on the boundary (in particular, G+(t) = g(t) for t ∈ ΓD) and

∆CG ∈ W̃−1(C).
For a new unknown function v := u − G we have the following

equivalent reformulation of the MIND BVP (1.2):

(4.7)



∆Cv(t) = f0(t), t ∈ C,

v+(τ) = 0, τ ∈ ΓD,

(∂νΓ
v)+(τ) = h0(τ), τ ∈ ΓN ,

(∂νΓ
v)+(τ) + cv+(τ) = κ0(τ), τ ∈ ΓI .

where
(4.8)

f0 := f −∆CG ∈ W̃−1(C), h0 := h− (∂νΓG)+ ∈W−1/2(ΓN ),

κ0 := κ− (∂νΓ
G)+ − cG+ ∈W−1/2(ΓI), v+ ∈ W̃1/2(ΓIN ),

and

rΓ
N,εϑ

h0 − Tϑ(rΓI,εκ0) ∈ rΓ
N,εϑ

W̃−1/2
ΓIN,ε

(ΓN,εϑ).(4.9)
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To justify the inclusion v+ ∈ W̃1/2(ΓIN ) note that, due to our con-
struction, the trace of a solution on ΓD vanishes v+ |ΓD= 0.

Note that this reduction of the BVP is a reduction in the sense
of [44], i.e., the operators associated to the full BVP and the semi-
homogeneous BVP, respectively, are equivalent after extension. Con-
sequently, the two BVPs have the same “regularity properties” such
as the Fredholm property, invertibility etc. The equivalence after ex-
tension relation results from the fact that the extension operator in
(4.8) is right invertible, a standard conclusion that makes use of the
compatibility condition (3.2). Hence the compatibility condition is suf-
ficient. Its necessity is a consequence of the representation formulas
together with the trace theorem. See analogous considerations for
boundary-transmission problems for the Helmholtz equation in half-
planes [42, 43, 45].

Let Γ0 ⊂ Γ be a part of the boundary and by W̃s(Γ0, C), s > 1/2,
denote the space of functions ϕ ∈Ws(C) which have their trace on the

boundary supported in Γ0, i.e., ϕ+ ∈ W̃s−1/2(Γ0). Since the traces of

functions ϕ ∈ W̃s(Γ0, C) vanish on a part of the boundary, the Poincaré
inequality

‖ϕ|L2(C)‖ 6 ‖∇Cϕ|L2(C)‖

holds and, therefore, ‖∇Cϕ|L2(C)‖ defines an equivalent norm on this
space
(4.10)

‖∇Cϕ|L2(C)‖ 6 ‖ϕ|W1(C)‖ 6 C1‖∇Cϕ|L2(C)‖ ∀ϕ ∈ W̃1(Γ0, C).

Let us rewrite the Green formula (4.6) as follows

(∇Cv,∇Cw)C + c(v+, w+)ΓI
= ((∂νΓv)+, w+)ΓD

+ ((∂νΓv)+, w+)ΓN

+((∂νΓ
v)+ + cv+, w+)ΓI

− (∆Cv, w)C

and insert the data (4.7) from the reformulated boundary value problem
(4.8)–(4.9) into it, also take w = v:
(4.11)

(∇Cv,∇Cv)C + c(v+, v+)ΓI
= (h0, v+)ΓN

+ (κ0, v+)ΓI
− (f0, v)C .

The bilinear form in the left-hand side of the equality (4.11) is sym-
metric and, since c > 0, also positive definite (at the last step we apply



12 L.P. CASTRO, R. DUDUCHAVA AND F.-O. SPECK

the inequality (4.10))

(∇Cv,∇Cv)C + c(v+, v+)ΓI
> ‖∇Cv|L2(C)‖2

> C2‖v|W1(C)‖2 ∀ v ∈ W̃1(ΓIN , C).

The functionals (h0, v+)ΓN
, (κ0, v+)ΓI

and (f0, v)C from the right-

hand side of the equality (4.11) are correctly defined and continuous,

because h0 ∈ W−1/2(ΓN ), κ0 ∈ W−1/2(ΓI), f
0 ∈ W̃−1(C), while their

counterparts in the functional belong to the dual spaces v+ ∈ W̃1/2(ΓN )

and v ∈ W̃1(ΓN , C) ⊂W1(C).

By applying the Lax-Milgram Lemma 1 we accomplish the proof. �

5. Model mixed BVPs and reduction to boundary pseudo-
differential equations. Let us consider three model mixed bound-
ary value problems for the Laplace equation on the upper half-plane
R2

+ := R× R+: the Dirichlet-Neumann
∆u(x) = f(x), x ∈ R2

+,

u+(t) = g1(t), t ∈ R− := (−∞, 0),

−(∂2u)+(t) = h1(t), t ∈ R+ := (0,∞),

(5.1)

the Dirichlet-impedance
∆u(x) = f(x), x ∈ R2

+,

u+(t) = g1(t), t ∈ R−,

−(∂2u)+(t) + cu+(t) = κ1(t), t ∈ R+

(5.2)

and the Neumann-impedance
∆u(x) = f(x), x ∈ R2

+,

−(∂2u)+(t) = h2(t), t ∈ R−,

−(∂2u)+(t) + cu+(t) = κ1(t), t ∈ R+,

(5.3)

boundary value problems. Here ∂νΓ = −∂2 is the normal derivative on
the boundary R of R2

+.
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The BVPs (5.1)–(5.3) will be treated in the nonclassical setting:
(5.4)

g1 ∈Ws−1/p
p (R−), h1, κ1 ∈Ws−1−1/p

p (R+), h2 ∈Ws−1−1/p
p (R−),

f ∈ H̃−1
0 (R2

+), 1 < p <∞, s >
1

p

and in (5.3) we also have the compatibility condition

h2 − Jκ1 ∈ r−W̃s−1−1/p
p,R (R−) := r−W̃s−1−1/p

p (R−),(5.5)

where J denotes the reflection operator Jϕ(x) = ϕ(−x).

We say that an operator A : Ws
p(Ω) → Wr

q(Ω), Ω ⊂ Rn,
between Besov spaces (or between Bessel potential or, also, between
direct products of such spaces) is locally invertible at some point
x0 ∈ Ω := Ω∪∂Ω if there exists an operator Bx0

and a smooth function
vx0
∈ Cm(Ω), m > max{|s|, |q|}, with a compact support, which is the

identity vx0
(x) = 1 in some neighbourhood |x − x0| < ε of x0, such

that ABx0vx0I = vx0I, vx0Bx0A = vx0I, where I denotes the identity
operator in the appropriate space.

More details about locally invertible operators can be found in [26,
Chapter 5] and in [3, Appendix C].

It is clear, that if A : Hsp(Ω) → Hrq(Ω) is invertible or even

Fredholm, then it is locally invertible at all x0 ∈ Ω. The inverse
statement is obviously false.

Let under invertibility, Fredholmness and local invertibility of bound-
ary value problems (e.g. of (5.1), (5.2) and (5.3)) understand the in-
vertibility, Fredholmness and local invertibility of the corresponding
boundary integral operators (of the operators in (5.12), (6.5) and in
(6.9), respectively).

Lemma 4. The MIND BVP (1.2) is Fredholm in the nonclassical set-
ting (3.3)–(3.4) if all the three model mixed BVPs Dirichlet-Neumann
(5.1), Dirichlet-impedance (5.2) and Neumann-impedance (5.3) are lo-
cally invertible at 0 in the nonclassical setting (5.4)–(5.5).

Proof: We refer to [19, Lemma 2.5] for the proof, which applies
localization. �
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Let us recall the main results about the mixed Dirichlet-Neumann
BVP (5.1), obtained in [19].

Consider the Newton, single and double layer potentials for the
Laplace equation (see (5.1), (5.2), (5.3))

NR2
+
v(x) :=

1

4π

∫
R2

+

ln
[
(x1 − y1)2 + (x2 − y2)2

]
v(y1, y2) dy1dy2

V Rv(x) :=
1

4π

∫
R

ln
[
(x1 − τ)2 + x2

2

]
v(τ)dτ,(5.6)

W Rv(x) :=
x2

2π

∫
R

v(τ)dτ

(x1 − τ)2 + x2
2

, x = (x1, x2)> ∈ R2
+,

which have the standard boundedness properties

NR2
+

: Hsp(R2
+) −→ Hs+2

p (R2
+) ,

V R : Hsp(R) −→ H
s+1+ 1

p
p (R2

+) ,

W R : Hsp(R) −→ H
s+ 1

p
p (R2

+).

Any solution to one of the model BVP (5.1)–(5.3) in both, the weak
classical and nonclassical setting is represented as follows:

u(x) = NR2
+
f(x) +W Ru

+(x) + V R(∂2u)+(x)(5.7a)

= NR2
+
f(x) + (W R + cV R)u+(x)

−V R
[
−(∂2u)+ + cu+

]
(x)

u(x) = NR2
+
f(x) +

(
1

c
W R + V R

)
(∂2u)+(x)(5.7b)

+
1

c
W R[−(∂2u)+ + cu+](x)

u(x) = NR2
+
f(x) + (1− c)W Ru

+(x) + (W R + V R) (∂2u)+(x)(5.7c)

+W R[−(∂2u)+ + cu+](x), u ∈W1(R2
+), x ∈ R2

+

(see [20, 21, 19, 17]). The densities in (5.7a)–(5.7b) represent the
Dirichlet u+, the Neumann −(∂2u)+ and the impedance −(∂2u)++cu+

traces of a solution u on the boundary.
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Let us remind the Plemelji formulas

(W Rϕ)±(t) = ±1

2
ϕ(t),

(−∂2V Rψ)±(t) = ∓1

2
ψ(t),

(−∂2W Rψ)±(t) = V R,+1ψ(t),

(V Rϕ)±(t) = V R,−1ϕ(t), t ∈ R := ∂R2
+,

(5.8)

where the pseudodifferential operators

V R,−1v(t) :=
1

2π

∫
R

ln |t− τ |v(τ)dτ,

V R,+1ϕ(t) := − 1

2π

∫
R

v(τ)dτ

(t− τ)2
, t ∈ R,

of orders −1 and +1, respectively, have the following standard mapping
properties (see [20, 21, 17, 27]):

V R,−1 : Hsp(R) −→ Hs+1
p (R),

V R,+1 : Hsp(R) −→ Hs−1
p (R), s ∈ R, 1 < p <∞.

Note that the direct values of the double layer potential WR and its
adjoint are zero WR,0 = W ∗R,0 = 0.

Fix some extensions g0 ∈ Ws−1/p
p (R) and h0 ∈ Ws−1−1/p

p (R) of

the boundary data g1 ∈ Ws−1/p
p (R−) and h1 ∈ Ws−1−1/p

p (R+). The
difference between such two extensions belong to the spaces
(5.9)

ϕ0 := u+− g0 ∈ W̃s−1/p
p (R+), ψ0 := (−∂2u)+− h0 ∈ W̃s−1−1/p

p (R−),

respectively, and it is sufficient to know the functions ϕ0 and ψ0 to solve
the problem. Indeed, by introducing the boundary values of a solution
(5.9) to the BVP (5.1) into the formula (5.7a) we get the representation:

(5.10) u(x) = NR2
+
f(x)+W R(g0 +ϕ0)(x)−V R(h0 +ψ0)(x), x ∈ R2

+.

To find the unknown functions ϕ0 and ψ0 in (5.10), in [19] the
following system of pseudodifferential equations was derived, which is
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equivalent with the BVP
1

2
ϕ0 + r+V R,−1ψ0 = G1 on R+

1

2
ψ0 − r−V R,+1ϕ0 = H1 on R−,

(5.11)

ϕ0 ∈ W̃s−1/p
p (R+), ψ0 ∈ W̃s−1−1/p

p (R−),

where

G1 := r+

[
(NR2

+
f)+ − 1

2
g0 − V R,−1h0

]
∈Ws−1/p

p (R+),

H1 := r−

[
(−∂2NR2

+
f)+ − 1

2
h0 + V R,+1g0

]
∈Ws−1−1/p

p (R−),

and r+, r− are the restriction operators from R to R+ and R−,
respectively.

The system (5.11) can be written in the operator form

ADN

(
ϕ0

ψ0

)
=

(
G1

H1

)
, ADN :=


1

2
I r+V R,−1

−r−V R,+1
1

2
I


ADN :

W̃s−1/p
p (R+)

W̃s−1−1/p
p (R−)

→ Ws−1/p
p (R+)

Ws−1−1/p
p (R−)

.(5.12)

6. Investigation of the model boundary pseudodifferential
equations. The first result has been proved in [19, Theorem 1.5,
Theorem 1.6].

Theorem 4. Let 1 < p <∞, s > 1/p.

The system of boundary pseudodifferential equations (5.11) is an
equivalent reformulation of the mixed Dirichlet-Neumann BVP (5.1)
in the setting (5.4)–(5.5).

The operator associated to the system of boundary pseudodifferential
equations (5.11) is locally invertible at 0 if and only if the following
condition holds

cos2 π s−
∣∣∣∣sin 2π

(
s− 1

p

)∣∣∣∣ 6= 0.(6.1)
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Note that the expression “equivalent reformulation” is used here
(and in the following) in the very strong sense that the two associated
operators are equivalent after extension, see [44] for details.

Now let us consider the mixed Dirichlet-impedance BVP (5.2).

Let g0 ∈ Ws−1/p
p (R) and κ0 ∈ Ws−1−1/p

p (R) be arbitrary but

fixed extensions of the boundary data g1 ∈ Ws−1/p
p (R−) and κ1 ∈

Ws−1−1/p
p (R+). The difference between such two extensions belong to

the spaces

ϕ0 := u+ − g0 ∈ W̃s−1/p
p (R+),

(6.2)
v0 := (−∂2u)+ + cu+ − κ0 ∈ W̃s−1−1/p

p (R−)

respectively and it is sufficient to know the functions ϕ0 and v0 to
solve the problem. Indeed, by introducing the boundary values u+ and
(−∂2u)+ +cu+ from (6.2) into the representation formula (5.7a) we get
the representation formula of a solution to the BVP (5.2):

u(x) = NR2
+
f(x) + (W R + cV R)(g0 + ϕ0)(x)− V R(κ0 + v0)(x),(6.3)

x ∈ R2
+.

By applying the Plemelji formulas (5.8) to (6.3), we get the following:



u+ = g0 + ϕ0

= (NR2
+
f)+ +

(
1

2
I + cV R,−1

)
(g0 + ϕ0)− V R,−1(κ0 + v0)

−(∂2u)+ + cu+ = κ0 + v0 = −(∂2NR2
+
f)+ + c(NR2

+
f)+

+ (V R,+1 + cV R,−1) (g0 + ϕ0) +

(
1

2
I − cV R,−1

)
(κ0 + v0).

Next we apply the restriction operators r+ to the first equation and
r− to the second one and obtain the following system of boundary
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pseudodifferential equations
(

1

2
I − cr+V R,−1

)
ϕ0 + r+V R,−1v0 = G1 on R+,(

1

2
I + cr−V R,−1

)
v0 − (r−V R,+1 + cr−V R,−1)ϕ0 = K1 on R−,

(6.4)

ϕ0 ∈ W̃s−1/p
p (R+), v0 ∈ W̃s−1−1/p

p (R−), G1 ∈Ws−1/p
p (R+),

K1 := r−

[
c(NR2

+
f)+ − (∂2NR2

+
f)+ + (V R,+1 + cV R,−1)g0

−
(

1

2
I + cV R,−1

)
κ0

]
∈Ws−1−1/p

p (R−).

The system (6.4) can be written in the operator form

ADI

(
ϕ0

v0

)
=

(
G1

K1

)
,

ADI :=


1

2
I − cr+V R,−1 r+V R,−1

−r−V R,+1 − cr−V R,−1
1

2
I + cr−V R,−1

(6.5)

ADI :
W̃s−1/p
p (R+)

W̃s−1−1/p
p (R−)

→ Ws−1/p
p (R+)

Ws−1−1/p
p (R−)

.

Theorem 5. Let 1 < p <∞, s > 1/p.

The system of boundary pseudodifferential equations (6.4) is an
equivalent reformulation of the mixed Dirichlet-impedance BVP (5.2)
in the setting (5.4)–(5.5).

The operator associated to the system of boundary pseudodifferential
equations (6.4) is locally invertible at 0 if and only if the condition (6.1)
holds.

Proof: The operator
1

2
I − r+cV R,−1 is locally equivalent at 0 to

1

2
I, since the second summand has lower order. Similarly, the operator

1

2
I + cr−V R,−1 is locally equivalent at 0 to

1

2
I and the operator

r−V R,+1 + cr−V R,−1 is locally equivalent at 0 to r−V R,+1. Then
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the operators associated to the systems (6.4) and (5.11) are locally
equivalent at 0 and Theorem 5 follows from Theorem 4. �

Now let us consider the mixed Neumann-impedance BVP (5.3).

Let h0 ∈ Ws−1−1/p
p (R) and κ0 ∈ Ws−1−1/p

p (R) be arbitrary but

fixed extensions of the boundary data h2 ∈ Ws−1−1/p
p (R−) and κ1 ∈

Ws−1−1/p
p (R+). The difference between such two extensions belong to

the spaces

ψ0 := −(∂2u)+ − h0 ∈ W̃s−1−1/p
p (R+),

(6.6)
v0 := −(∂2u)+ + cu+ − κ0 ∈ W̃s−1−1/p

p (R−)

and it is sufficient to know the functions ψ0 and v0 to solve the
problem. Indeed, by introducing the boundary values (−∂2u)+ and
(−∂2u)+ + cu+ from (6.2) into the representation formula (5.7b), we
get the representation formula of a solution to the BVP (5.3):

u(x) = NR2
+
f(x)−

(
1

c
W R + V R

)
(h0 + ψ0)(x)

+
1

c
W R(κ0 + v0)(x), x ∈ R2

+.(6.7)

By applying the Plemelji formulas (5.8) to (6.7), we get the following:

−(∂2u)+ = h0 + ψ0 = −(∂2NR2
+
f)+ −

(
1

c
V R,+1 −

1

2
I

)
(h0 + ψ0)

+
1

c
V R,+1(κ0 + v0),

cu+ = −(∂2u)+ + cu+ + (∂2u)+ = κ0 + v0 − h0 − ψ0 = c(NR2
+
f)+

−
(

1

2
I + cV R,−1

)
(h0 + ψ0) +

1

2
(κ0 + v0)

Thus, we have obtained the following system of boundary pseudodif-
ferential equations

1

c
V R,+1(ψ0 − v0) +

1

2
Iψ0 = G,

1

2
I(ψ0 − v0)− cV R,−1ψ0 = K,

(6.8)

ψ0 ∈ W̃s−1−1/p
p (R+), v0 ∈ W̃s−1−1/p

p (R−),
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G := (−∂2NR2
+
f)+ − 1

2
h0 +

1

c
V R,+1(κ0 − h0) ∈Ws−2−1/p

p (R),

K := 1
2κ0 − 1

2h0 − c(NR2
+
f)+ + cV R,−1h0 ∈Ws−1−1/p

p (R).

Theorem 6. Let 1 < p <∞, s > 1/p.

The system of boundary pseudodifferential equations (6.4) is an
equivalent reformulation of the mixed Neumann-impedance BVP (5.3)
in the setting (5.4)–(5.5).

The operator associated to the system of boundary pseudodifferential
equations (6.4) is locally invertible at 0.

Proof: Since c 6= 0, the system (6.8) can be rewritten in the
following form

ANI

(
ψ0

v0

)
=

(
G
K

)
, ANI := A0

NI + T,(6.9)

A0
NI :=


1

c
V R,+1 −1

c
V R,+1

1

2
I 0


:

W̃s−1−1/p
p (R+)

W̃s−1−1/p
p (R−)

→ Ws−2−1/p
p (R)

Ws−1−1/p
p (R),

where the first and second rows of the operator

T :=


1

2
I 0

−cV R,−1 −1

2
I

 :
W̃s−1−1/p
p (R+)

W̃s−1−1/p
p (R−)

→ Ws−2−1/p
p (R)

Ws−1−1/p
p (R)

have orders 0 and −1, respectively and, therefore, T is locally compact
(recall that here I is a compact operator due to the Rellich–Kondrachov
compact embedding theorem). Then T is locally equivalent to 0 at 0.

On the other hand the operator V R,+1 is Fredholm: it has non-trivial
kernel but there exists regularizer R−1 such that

R−1V R,+1 = I + T 1, V R,+1R−1 = I + T 2,
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where T 1 is a compact operator in W̃s−1−1/p
p (R+) while T 2 is compact

in Ws−2−1/p
p (R+). Since T 1 and T 2 are locally equivalent to 0 at 0, the

regularizerR−1 turns out to be a local inverse to V R,+1 at 0. Therefore

the local inverse to ANI at 0 is the operator

(
0 2I

−cR−1 2I

)
. �

Remark 2. In all the three cases, the operator associated to the BVP
is equivalent after extension to the operator associated to the corre-
sponding semi-homogeneous problem, and that one is equivalent to the
operator associated to the corresponding system of boundary pseudo-
differential equations. The transitivity of equivalent after extension
relations and of the local equivalence relations give the full result, in
combination of [11] and [44].

7. Proofs of the main theorems. We are now in a position to
prove Theorem 2 and Theorem 1, based on the following auxiliary
proposition.

Proposition 7 ([16, 20, 21]). Let two pairs of parameter-dependent

Banach spaces Bs
1 and Bs

2, s1 < s < s2, have intersections Bs′

j ∩Bs′′

j

dense in Bs′

j and in Bs′′

j for all j = 1, 2, s′, s′′ ∈ (s1, s2).

If a linear bounded operator A : Bs
1 → Bs

2 is Fredholm for all
s ∈ (s1, s2), it has the same kernel and cokernel for all values of this
parameter s ∈ (s1, s2).

In particular, if A : Bs
1 → Bs

2 is Fredholm for all s ∈ (s1, s2) and is
invertible for one value s0 ∈ (s1, s2), then it is invertible for all values
of this parameter s ∈ (s1, s2).

Consider the following equation on the two-dimensional Euclidean
space

(7.1) ∆u = f0 on R2, u ∈ Hsp(R2), f0 ∈ Hs−2
p (R2),

and the model boundary value problems for the Laplace equation on
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the upper half-plane R2
+ := R× R+: the model Dirichlet ∆u(x) = f0(x), x ∈ R2

+,

u+(t) = g0(t), t ∈ ∂R2
+ = R,(7.2)

the model Neumann{
∆u(x) = f0(x), x ∈ R2

+,

−(∂2u)+(t) = h0(t), t ∈ ∂R2
+ = R

(7.3)

and the model impedance BVP{
∆u(x) = f0(x), x ∈ R2

+,

−(∂2u)+(t) + cu+(t) = κ0(t), t ∈ ∂R2
+ = R,

(7.4)

The BVPs (7.1)-(7.4) will be treated in the nonclassical setting:

(7.5)

f0 ∈ H̃s−2
p (R2

+) ∩ H̃−1
0 (R2

+), g0 ∈Ws−1/p
p (R),

h0, κ0 ∈Ws−1−1/p
p (R), 1 < p <∞, s >

1

p
.

Proposition 8. The Laplace equation (7.1) and the BVPs (7.2)-(7.4)
have unique solutions in the setting (7.5).

Proof: For p = 2, s = 1, the assertion is a well-known classical
result, available in many books on partial differential equations (see,
e.g., [27]). It can be proved similarly to Theorem 3 by applying the
Lax-Milgram Lemma 1.

Now let p 6= 2. Note that the BVPs (7.2)-(7.4) and the corresponding
boundary integral equations (BIEs) are equivalent (their solutions are
related one-to-one). The BIEs on R have unique solutions for p = 2,
s = 1 and are Fredholm in the spaces Hsp(R) for all −∞ < s < ∞,
1 < p <∞. Therefore, due to Proposition 7 BIEs have unique solutions
in the spaces Hsp(R) for all −∞ < s < ∞, 1 < p < ∞, which means
that the corresponding BVPs (7.2)-(7.4) also have unique solutions in
the setting (7.5). �

Proof of Theorem 2: The MIND BVP (1.2) is Fredholm in the
nonclassical setting (3.3) if and only if all three model mixed BVPs
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Dirichlet-Neumann (5.1), Dirichlet-impedance (5.2) and Neumann-
impedance (5.3) are locally invertible at 0 in the nonclassical setting
(5.4)–(5.5) (cf. Lemma 4). Due to Theorems 4-6 this is the case if and
only if the condition (3.5) holds.

Now let c > 0. Due to the proved part of the present theorem the
MIND BVP (1.2) is Fredholm if the point (s, 1/p) belongs to the open
curved quadrangle ABCD in Figure 1. On the other hand, for the
particular space parameters p = 2, s = 1, which is the center of the
open curved quadrangle ABCD in Figure 1, the MIND BVP (1.2) has
a unique solution (see Theorem 3). Then, due to Proposition 7, the
MIND BVP (1.2) has a unique solution in the nonclassical setting (3.3)
for all those s and p for which the point (s, 1/p) belong to the open
curved quadrangle ABCD in Figure 1. �

Proof of Theorem 1: Since the point (1, 1/2) (i.e., s = 1, p = 2)
is the center of the quadrangle ABCD in Figure 1, due to Theorem 2
the corresponding BVP has a unique solution for all real and complex
values of the nonzero parameter c ∈ C. �

Remark 3. One may ask: why we did not derive also Theorem 3 from
Theorem 2? The answer is simple: we apply Theorem 3 (but not
Theorem 1) in the proof of Theorem 2 (see the proof of Theorem 2
above).
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