

Tânia Filipa Lopes Vicente

Diversity of fungi associated with macroalgae from Ria de Aveiro

Diversidade de fungos associados a macroalgas da Ria de Aveiro

DECLARAÇÃO

Declaro que este relatório é integralmente da minha autoria, estando devidamente referenciadas as fontes e obras consultadas, bem como identificadas de modo claro as citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de textos publicados, qualquer que seja o meio dessa publicação, incluindo meios eletrónicos, quer de trabalhos académicos.

Tânia Filipa Lopes Vicente

Diversity of fungi associated with macroalgae from Ria de Aveiro

Diversidade de fungos associados a macroalgas da Ria de Aveiro

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Microbiologia, realizada sob a orientação científica do Doutor Artur Jorge da Costa Peixoto Alves, Professor Auxiliar com Agregação do Departamento de Biologia da Universidade de Aveiro.

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less."

Marie Curie

Dedico este trabalho aos meus pais, pelo incansável apoio e confiança depositados em mim, desde o princípio!

o júri

presidente	Prof. Doutora Tânia Isabel Sousa Caetano Investigadora auxiliar do Departamento de Biologia da Universidade de Aveiro
Arguente Principal	Prof. Doutor António Manuel Santos Carriço Portugal professor auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Orientador	Prof. Doutor Artur Jorge da Costa Peixoto Alves professor auxiliar com agregação do Departamento de Biologia da Universidade de Aveiro

agradecimentos Começo por agradecer à primeira pessoa envolvida no meu trabalho e que contribuiu em muito para o conhecimento obtido ao longo deste percurso, o professor, e também orientador, Doutor Artur Alves. Obrigada, também, por aceitar ser o meu "mentor" neste projeto. Devo, também, um enorme "obrigada" ao doutorando Micael Gonçalves, um

bom "mini-chefe" em laboratório que me ensinou muitas técnicas práticas e acompanhou bastante o meu progresso. A ele, um sincero e grande obrigada. Pelo conhecimento transmitido, agradeço à Doutora Ana Sofia Duarte, à Doutora Isabel Henriques, à Doutora Marta Tacão, à Doutora Cláudia Oliveira e à Doutora Cristina Esteves. Agradeço à Dona Helena, Engenheiro Armando e Engenheiro Fernando Cozinheiro pela sua disponibilidade e paciência nas mais variadas situações. Um grande "obrigada" à Lísia Lopes que me ensinou e me mostrou o quanto as algas (por si só) são organismos espantosos. Agradeço, também, à Doutora Glória Pinto pelo espaço disponibilizado, bem como os equipamentos.

Como seria de esperar, agradeco toda a ajuda a nível laboratorial, bem como o apoio incondicional e amizade do trio maravilha: a Carina, a Cátia e o Cláudio. A eles um mega obrigada. Nunca será possível transmitir a minha enorme gratidão para com vocês nestas simples palavras. Assim bem como, à "Patty" (uma grande amiga), que nos mostrou como é importante manter a calma em situações menos positivas. Um enorme obrigada ao Fred, ao Rafael e à minha "maninha" Vanny, três das pessoas mais importantes neste percurso porque estiveram comigo desde o início, e três grandes amigos que sabem o guanto pode ser chato aturar-me (por vezes): muito obrigada. Agradeco, também, ao restante "squad" do Microlab: à Sara, à Isabel, à Rita e à Sandra. Um grande "obrigada" ao Eduardo e à Joana, sempre positivos e bem-humorados, dispostos a ajudar e a animar quem quer que seja. Obrigada à Marta Alves e à Patrícia Benito, que apesar da sua curta "passagem" no Microlab, foram pessoas que me marcaram positivamente. Agradeço à Doutora Liliana e à Doutora Anabela pela sabedoria e conhecimentos transmitidos, que foram sempre úteis para o bom sucesso do trabalho.

Um "obrigada" à Nana, à Ânia, ao Rúben, à Rita, ao Carlos, ao Góis, ao Ricardo, ao "patrãozinho" Hélder, ao Caires e à Catarina, por toda a ajuda, amizade e compreensão, que, apesar da sua distância geográfica de alguns, não deixaram de mostrar o seu importante apoio. Obrigada, amigos! Agradeço também o apoio dos "amigos de sempre", que já há muito tempo me acompanham!

Por fim, mas não menos importante, agradeço aos meus pais, as pessoas responsáveis por tudo o que alcancei até hoje. Obrigada à minha família, que sempre mostrou o seu apoio e um enorme esforço para perceber o meu trabalho: um obrigada muito, muito especial!

palavras-chave

resumo

Fungos associados a algas, Filogenia, Sapal, Taxonomia, Diversidade fúngica, *Cladosporium rubrum, Hypoxylon aveirense*.

A Ria de Aveiro tem sido explorada com o intuito de desvendar a comunidade

microbiana albergada pelas plantas aqui presentes. As algas, um grupo bem presente, são ainda organismos pouco explorados nesta lagoa. Os fungos são

organismos que conseguem estabelecer diferentes relações de simbiose com as algas. Além disso, sabe-se que produzem compostos bioativos com capacidades interessantes como atividade antioxidante, antialgas, antiviral, anti-insectos e antifúngica. Este trabalho teve por objetivo caracterizar a diversidade de fungos associados a diferentes tipos de macroalgas existentes na Ria de Aveiro. A partir de 7 locais escolhidos, aleatoriamente, foram recolhidas 26 amostras de algas pertencentes aos géneros Ulva, Fucus, Enteromorpha, Gracilaria, Cladophora, Ceramium, Codium e Scinaia. Após isolamento e tipagem molecular, foi feita a identificação de 486 isolados através da seguenciação da região ITS (Internal Transcribed Spacer) pertencente ao cluster ribossomal. Verificou-se que os principais grupos taxonómicos identificados correspondiam aos géneros Cladosporium, Leptobacillium, "Acremonium-like species", Alternaria, Penicillium, entre outros ascomicetes. Todos estes géneros (excetuando Leptobacillium) foram já referenciados em ambientes marinhos. Leptobacillium, um fungo típico de solo, surge neste trabalho como um novo registo presente em comunidades de algas. Neste estudo foi ainda realizada a caracterização detalhada e descrição taxonómica de duas novas espécies: Cladosporium rubrum sp. nov. e Hypoxylon aveirense sp. nov. A diversidade das comunidades fúngicas de cada amostra foi avaliada recorrendo aos Índices de Shannon, Simpson e Pielou. Estes demonstraram que uma amostra de alga vermelha (não identificada) e duas de Fucus revelaram os valores de diversidade mais elevados. Com a finalidade de apurar se existia alguma influência do local de recolha e/ou hospedeiro, recorreu-se a testes paramétricos (ANOVA) e/ou nãoparamétricos ("Kruskal-Wallis rank sum"). Apenas foram observadas diferenças significativas no que toca à uniformidade dos isolados pertencentes às comunidades encontradas em algas vermelhas onde este valor é significativamente superior quando comparado com as comunidades das algas verdes. Análises posteriores dos dados obtidos (função *multipatt*) permitiram detetar uma distribuição preferencial de isolados do grupo Exophiala pelas algas identificadas como Ceramium sp. e Scinaia sp., e Emericellopsis pelas algas verdes e vermelhas. Em relação aos locais de colheita, verificou-se a associação de alguns géneros fúngicos com determinados locais onde a sua

expressão era maior. Estas diferenças poderão estar associadas a fatores abióticos (diferenças de salinidade) ou fatores bióticos (influência antropogénica). Em suma, este estudo contribuiu para o conhecimento da micobiota de algas da Ria de Aveiro, enquanto reforça a necessidade de mais estudos taxonómicos em ambientes marinhos de Portugal. keywords

Algicolous fungi, Phylogeny, Salt Marsh, Taxonomy, Fungal Diversity, *Cladosporium rubrum*, *Hypoxylon aveirense*.

abstract

Ria de Aveiro has been explored with the aim of unveiling the microbial community sheltered by the plants in this habitat. Algae, a group well established, are organisms little explored in this lagoon. Fungi are organisms which can establish different relations of symbiosis with algae. Beyond this, it is known that these fungi produce bioactive compounds with interesting properties such as antioxidant activity, antialgal, antiviral, antiinsect and antifungal. This study aimed to the characterize the diversity of algicolous fungi associated with different macroalgae in Ria de Aveiro. From the 7 sites randomly selected, it was chosen 26 algae samples belonging to Ulva, Fucus, Enteromorpha, Gracilaria, Cladophora, Ceramium, Codium and Scinaia. After fungal isolation and molecular typing, it was made the identification of 486 isolates through the sequencing of ITS (Internal Transcribed Spacer) belonging to ribosomal cluster. The main fungal groups detected belonged to the genera Cladosporium, Leptobacillium, "Acremonium-like species", Alternaria, Penicillium and other ascomycetes. All these (except Leptobacillium) were already described in marine environments. Leptobacillium, a soil fungus, appears here as a new record in algicolous communities. In addition, this study included the complete characterization and taxonomic description of two new species: Cladosporium rubrum sp. nov. and Hypoxylon aveirense sp. nov. The diversity of fungial communities of samples was analysed using the Shannon's, Simpson and Pielou indices. Results demonstrated that a red alga (unidentified) and two samples belonging to genus Fucus were the ones with highest diversity. With the aim of investigate if there is some influence of the site sampling and/or host, it was performed parametric tests (ANOVA) and/or non-parametric ("Kruskal-Wallis rank sum") to determine the presence of significant differences between the samples. It was only detected significant differences between the evenness of the samples belonging to red algae, where the evenness is significantly higher than the green algae. Posterior analysis of the data obtained (using the multipatt function) allowed the detection of a preference distribution of the isolates belonging to Exophiala sp. in samples of Ceramium sp. and Scinaia sp, and Emericellopsis spp. by red and green algae. Considering the sampling sites, it was observed the association of some fungal genera with specific sites where their expression was higher. Such differences between communities can be related with abiotic factors (salinity differences), as well as biotic factors (anthropogenic influence). Concluding, this study contributed for the knowledge about the algicolous fungi communities from Ria de Aveiro, while reinforces the necessity for more taxonomic studies in Portuguese marine environments.

Table of Contents

TABLE OF CONTENTS

LIST OF ABBREVIATIONS iii
LIST OF FIGURES iv
LIST OF TABLES
INTRODUCTION1
Marine Environment2
Marine Fungi <i>vs</i> . Marine-derived fungi3
FUNGI ASSOCIATIONS WITH OTHER ORGANISMS AND THEIR IMPORTANCE IN THE "AQUATIC WORLD"5
FUNGI POTENTIAL
Fungi Records in Mediterranean and Atlantic Portuguese Beaches7
References9
CHAPTER I: FUNGI DIVERSITY IN ALGAE FROM RIA DE AVEIRO18
1. INTRODUCTION
1.1. Algae role in Marine Ecosystems19
1.2. Fungi Association with algae19
1.3. Endosymbiotic Fungal Communities
1.4. MARINE-DERIVED FUNGI IN PORTUGUESE COAST AND AVEIRO
2. OBJECTIVE
3. MATERIAL AND METHODS24
3.1. Culture Media24
3.1.1. Algicolous Fungi Isolation24
3.2. Sample collection24
3.3. Fungal Isolation
3.4. Fungi Conservation27
3.5. Fungal Isolates Identification

	3.5.1. DNA Extraction	27
	3.6. MOLECULAR TYPING	
	3.6.1. PCR FINGERPRINTING	
	3.7. DNA Sequencing	29
	3.8. PURIFICATION OF THE PCR PRODUCTS	
	3.9. IDENTIFICATION OF THE FUNGAL ISOLATES	31
	3.10. DIVERSITY ANALYSIS	31
	3.11. CHARACTERIZATION OF TWO NEW SPECIES	32
	3.11.1. MOLECULAR ANALYSIS AND PHYLOGENETIC INFERENCE	32
	3.11.2. GROWTH, MORPHOLOGY AND MICROSCOPIC ANALYSIS	34
4.	. RESULTS & DISCUSSION	41
	4.1. Sampling and Fungal Isolation	41
	4.2. PCR FINGERPRINTING AND ITS IDENTIFICATION	42
	4.3. COMMUNITY STRUCTURE AND MULTIVARIATE ANALYSES	61
	4.3.1. MEASURE OF COMPLEMENTARY OR DISSIMILARITY OF THE FUNGAL COMMUNITIES	77
	4.4. CHARACTERIZATION OF PUTATIVE NEW SPECIES	80
5.	. CONCLUSION	89
6.	. FUTURE WORKS	90
7.	. References	91
8.	SUPPLEMENTARY INFORMATION	101

LIST OF ABBREVIATIONS

"stat" - statistical significance actA – actin gene Adonis – Permutational Multivariate Analysis of Variance Using Distance Matrices **ANOVA** – Analysis of Variance **BCRC** – Bioresource Collection and Research Center **BLAST – Basic Local Alignment Search Tool CBS** – Westerdijk Fungal Biodiversity Institute, German CGMCC – Centre for Microbiological Culture Collection cmdscale - Classical (Metric) Multidimensional Scaling **CMG** – Collection Micael Goncalves CPC - Collection Pedro Crous CTAB – Cetyl trimethylammonium bromide dNTPs - deoxy-nucleotide-tri phosphate EDTA – Ethylenediaminetetraacetic acid EtBr - Ethidium bromide indicspecies – "Relationship Between Species and Groups of Sites" package **ITS** – Internal Transcribed Spacer region M – Molar MgCl₂ – Magnesium chloride ML - Maximum likelihood MSP-PCR – Microsatellite-primed polymerase chain reaction MUCL – Mycothèque de l'Université catholique de Louvain multipatt – Multi-Level Pattern Analysis MUM – Micoteca da Universidade do Minho NaCl – Sodium chloride NH₄OAc – Ammonium acetate **nt** – nucleotide(s) ø – diameter OA – Oatmeal agar medium PCoA – Principal Coordinate analysis PCR – Polymerase chain reaction PDA – Potato dextrose agar medium **PERMANOVA -** Permutational Multivariate Analysis of Variance Using Distance Matrices PMCMR - Pairwise Multiple Comparisons of Mean Rank Sums p-value - probability value **rpm** – revolutions per minute **SDS** – Sodium dodecyl sulfate SNP - Synthetic nutrient-poor agar sp./spp. – species (singular)/ species (plural) **TAE –** Tris-acetate-EDTA buffer **TE** – Tris-EDTA buffer tef1- α – translation elongation factor 1- α gene TES - Tris-EDTA-SDS buffer **U** - enzyme unit **UPGMA - Unweighted Pair Group Method** with Arithmetic Mean UTHSC - Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio. Texas. USA. UV – ultraviolet radiation V - Volts **β-tubulin** – Beta-tubulin gene

LIST OF FIGURES

Figure 1 - Map of the area of samples collection. I - Ria de Aveiro; II – Ria de Aveiro with indication
of sampling sites; A, B, C, D, E, F and G – sampling sites25
Figure 2 - Overall fungal diversity distributed by genera53
Figure 3 - Fungi community distributed by algae hosts. A-G refers to the sampling sites61
Figure 4 - Fungi community distributed by green, red and brown algae
Figure 5 - Fungi community of each site in this study68
Figure 6 - Proportional distribution of each genus by the sites where they were isolated
Figure 7 - Principal coordinates analysis (PCoA) of the samples used in the current study
Figure 8 - Cladosporium rubrum. A, B – Culture in PDA (obvers and reverse view, respectively), after
14 days at 25° C (in the dark). C, D – Culture in SNA (obvers and reverse view, respectively), after
14 days at 25 ^o C (in the dark). E, F – Culture in OA (obvers and reverse view, respectively), after 14
days at 25° C (in the dark). G-I – Conidiophores, ramoconidia and conidia. J - Ramoconidia and
conidia chain. K – Conidia chain. Scale bars = 10 μm82

LIST OF TABLES

Table 1 - Composition of the medium used for algae sampling. Quantities necessary for a final volume of 1 L
Table 2 - Composition of the medium used for fungi cultivation. Quantities necessary for a final volume of 1 L
Table 3 - Identification of sampling sites and algae. The two left columns identify the sampling site
(letters and coordinates of the site) and the two right columns identify the algae samples (each
number correspond to each alga sample). Red alga 1 – algae samples belonging to the same genus.
*- unknown algae genus26
Table 4 - Composition of TES buffer for a final volume of 100 mL 27
Table 5 - Composition of TE buffer for a final volume of 100 mL 27
Table 6 - Solutions used in DNA extraction procedure
Table 7 - Solution for MSP-PCR using the (GTG) ₅ primer. All the components were included in all
PCR reactions except for negative control, where the DNA was changed by sterilized water28
Table 8 - PCR conditions adopted for MSP-PCR amplification 29
Table 9 - Nucleotide sequences of the primers used for ITS amplification
Table 10 - PCR composition adopted for each tube used in ITS amplification. All the components
were included in all PCR reactions except for negative control, where the DNA was changed by
sterilized water
Table 11 - PCR conditions used for ITS amplification
Table 12 - Nucleotide sequences of the primers used for actin, <i>tef1-</i> α and β -tubulin reactions
amplification
Table 13 - PCR conditions used for actin, <i>tef1-</i> α and β -tubulin amplifications
Table 14 – Parameters defined in ClustalX to perform the sequences alignments
Table 15 – GenBank and culture collection accession numbers for ITS, tef1- α and actin of
Cladosporium species used to infer the phylogeny of this group (*- type species)
Table 16 – GenBank and culture collection accession numbers for ITS and β -tubulin of <i>Hypoxylon</i>
species used to infer the phylogeny of this group (*- type species)40

Table 17 – Number of fungal isolates obtained from each algae sample. Red alga 1 – algae samples
belonging to the same genus. *- unknown algae genus41
Table 18 - Results from ITS Blastn analysis against Genbank database. The identity was registered
in percentage. Gen. nov. – new genus record belonging to Didymosphaeriaceae family
Table 19 - Phylogenetic organization of the fungal isolates found in this work (Mycobank
information, May 2019; * - Chen <i>et al.</i> , 2017)55
Table 20 - Relative abundance (%) of the families and respective abundance of the genera in the
respective family
Table 21 – Richness, diversity and evenness indices from algae samples (sample = alga sample). Red
alga 1 – algae samples belonging to the same genus. *- unknown algae genus63
Table 22 - Results of the p-values obtained from Nemenyi-Test, exhibiting the groups with
significative differences between algae groups (green, red and brown algae)65
Table 23 - Results obtained from Adonis analysis 77

Introduction

Fungi are organisms with a remarkable versatility which allows them to adapt to different environmental conditions (namely temperature differences), and sometimes to extreme conditions (Klein & Tebbets, 2007; Ogaki *et al.*, 2019). So, they have the capacity to inhabit a wide range of environments such as, the aquatic habitats (Urien *et al.*, 2019). Beyond this, the fungi can present a huge diversity with recurrent species description (Kavanagh, 2017; Phookamsak *et al.*, 2019). In ecosystems they play a key role in organic matter decomposition (Koivusaari *et al.*, 2019). One of the most important characteristics of fungi is their ability to degrade diverse compounds due to excreted products like enzymes, which could be useful in industrial applications for human purposes (Duan *et al.*, 2019; Venkatachalam *et al.*, 2018). There are evidences that the symbiotic relationship established by fungi with other organisms promotes the excretion of products with medical benefits. Such compounds can possess antimicrobial or anti-inflammatory properties (Chen *et al.*, 2018; Stierle & Stierle, 2016).

MARINE ENVIRONMENT

The ocean fills most of the Earth surface and comprises about 96.5 % of total water (Shiklomanov, 2009; Singhal & Gupta, 1999), and can reach 97.5 % with the brackish water inclusion (Bärlocher & Boddy, 2016). Despite the big dimension of the ocean, the expected fungal diversity in this environment is lower than in freshwater habitat (Shearer et al., 2007), which comprise only 2.53 % of the world hydrosphere (Singhal & Gupta, 1999), and less than the fungal diversity from soils (Azevedo et al., 2010). This situation could be explained by the high amount of biomass in coastal systems, which is higher than in open ocean, limiting the fungi distribution to these peripheric habitats where the organic substrata (like seaweeds) is more available for further degradation by their saprophytic activity (Azevedo et al., 2010; Kutty & Philip, 2008; Ogaki et al., 2019; Ragukhumar, 2017). In fact, it is this fungal property (degradation of organic matter) what makes these organisms so important in the marine environment. This way, fungi play an important role in biogeochemical cycles and food web (Sridhar, 2017). In addition, other factors can affect the spread of fungi. The distribution of determinate marine fungi can be affected by marine agitation, ionic composition and concentration (namely the hydrogen ion activity), hydrostatic pressure and osmotic response, availability of oxygen and substrata for growth, salinity variations (Fan et al, 2002; Pang et al., 2011), type of vegetation and geographic characteristics (Azevedo et al., 2010). There is a possibility that external contaminants such as metals and fungicides may affect the

marine fungi distribution, since this situation has been observed with soil fungal communities (Azevedo *et al.*, 2010).

The proximity between sand and sea, the influence of abiotic factors such as wind and rain, and animal colonization could contribute to the transport of fungal spores between the different environments and lead to discovery of the same species in distinct places. The genus *Lulworthia* is a good example of this situation because species belonging to this group have been found in a wide range of marine substrates such as plants and wood (floating or fixed in plants) (Azevedo *et al.*, 2017). This versatility makes difficult the definition for a geographic distribution for marine (related) fungi (Garzoli *et al.*, 2018). They can be found in all the extension of marine environment, since Antarctic hosts and ice (Ogaki *et al.*, 2019) to hydrothermal vents, being present in marine substrata located at different depths, as well as, in different salinities (Gladfelter *et al.*, 2019).

MARINE FUNGI VS. MARINE-DERIVED FUNGI

It is important to understand *what* a marine fungus is and *what* makes it different from other fungal organisms. It is known that the detection of a mycological community collected from a certain marine substrate does not mean that the fungi found are in their optimal conditions of activity or in their ideal niche. Frequently, the fungi isolated on a Petri dish are a result of the presence of spores or some remaining hyphal portion from a non-typical marine fungus "waiting for the suitable conditions to germinate" (Kohlmeyer & Kohlmeyer, 1979). As referred above, the fungal diversity in this habitat is low, even including the microorganisms which are just in a transition environment (facultative marine fungi) (Ragukhumar, 2017). Hereupon we enter in a conflictual theme in mycology: the definition of "marine fungi" (Sarma, 2018).

The first most consensual and ecological definition for marine fungi was suggested by Kohlmeyer & Kohlmeyer, in 1979. These authors introduced the term "obligate marine fungi", to define the fungi capable to "grow and sporulate exclusively in a marine or estuarine habitat". On the other hand, they also labelled the fungal organisms natives "from freshwater or terrestrial milieu able to grow (and possibly also to sporulate) in the marine environment" as "facultative marine fungi" (Kohlmeyer & Kohlmeyer, 1979; Walker *et al.*, 2017). However, the definition of marine substrata is unclear which can lead to a misclassification of fungi isolated from the respective substrata. This situation is visible when the mangrove fungi are included in obligate

marine fungi, even occurring in portions of the tree not submerged or in situations where fungi from marine sediment are grouped with terrestrial fungi or marine facultative fungi, being totally unnoticed by marine mycologists (Jones *et al.*, 2009; Pang *et al.*, 2016).

Currently, for a correct label of marine fungi, it is necessary to classify the substratum where it was collected as marine. Then, the fungi species can be classified as "marine-fungi" if they are "repeatedly recovered from marine habitats". A species which is recurrently isolated from this habitat is a species with the capacity of developing (grow and/or produce fruiting bodies) in marine habitats; have the capacity to create symbiotic relationships with other organisms inhabiting marine ecosystem and is a "species in evolution" or adaptation at genetic/metabolically level (Pang *et al.*, 2016). The group of marine fungi "expands" when it is added the "marine-derived fungi" (Sarma, 2018). Marine-derived fungi is a term widely spread, and sometimes can be misunderstood and wrongly defined as fungi isolated from a marine ecological niche. When a fungus is isolated from marine environment or marine substrates, the sporulation process and vegetative growth are unknown. This means that, the fungi found could also survive without the substrate where they were isolated and their origin are unknown (it can also be terrestrial or from freshwater) (Pang *et al.*, 2016).

There are more than 1100 fungal species described in marine environment and the marine fungal diversity has been estimated in 10 000 species (Garzoli *et al.*, 2018). This number includes obligate, facultative and marine-derived fungi, with distinct diversity levels depending of substrate (Azevedo *et al.*, 2012; Ragukhumar, 2017). The main groups of fungi found in marine substrates belong to taxa of Ascomycota, Basidiomycota (Jones & Pang, 2012), Blastocladiomycota and Chytridiomycota (Garzoli *et al.*, 2018). Although these organisms can be considered a group of low diversity in marine habitats, the use of improved experimental molecular protocols has shown a larger fungal diversity than it was expected (Azevedo *et al.*, 2013), extending from coastal areas to the deep-sea (Corinaldesi *et al.*, 2017), including coral reefs (Wainwright *et al.*, 2017) and even the Arctic environment (Hassett *el al.*, 2016).

Since early, the ascomycetes fungi were dominant among the fungal species found in marine environment, followed by the anamorphic fungi and basidiomycetes (Kohlmeyer & Volkmann-Kohlmeyer, 1991). After almost 30 years later of Kohlmeyer & Volkmann-Kohlmeyer study (1991), the fungal species found triplicated and reached 1112 species described in marine environment (Sarma, 2018). The predominant fungal genera remained in the Ascomycota (mainly

belonging to Sordariomycetes class) and reached a total of 805 species spread by 352 genera. After, it is verified the presence of fungi belonging to Basidiomycota (21 species spread by 17 genera) and other phyla related with Chytridiomycota, which include 26 species (Jones *et al.*, 2015; Pang *et al.*, 2016). Beyond these filamentous groups, it was possible the detection of 213 unicellular members of ascomycetous yeasts and basidiomycetous yeasts (Sarma, 2018).

FUNGAL ASSOCIATIONS WITH OTHER ORGANISMS AND THEIR IMPORTANCE IN THE "AQUATIC WORLD"

Although the existence of fungi in the ocean has been recognized since the 1850s, their role in the marine ecosystem remained unknown until later, as well as their potential use for human purposes (Ogaki et al., 2019; Pang et al., 2016; Sparrow, 1936; Zuccaro et al., 2008). Currently it is known that fungi are responsible for the degradation of plant and algae matter in marine environment contributing for the biodeterioration of organic substrates in the ocean (Balabanova et al., 2018). In addition, fungi can establish interactions with other organisms in the marine environment, which can be beneficial or prejudicial to the hosts. The versatility and plasticity of fungi allow them to establish associations with other organisms in the trophic web, under symbiosis (Hassett et al., 2016; Wainwright et al., 2017), as parasites (Garzoli et al., 2018) or saprotrophic (Raghukumar, 2017). Parasitism is the most common association found between fungi and marine hosts, which favours the fungi development while the host does not receive any rewarding for this relation (Wainwright et al., 2017; Ragukhumar, 2017). For example, the association of the parasitic fungus Aspergillus sydowii can be prejudicial for their host, the sea fan coral Gorgonia ventalina (Yarden, 2014), due to the necrotic lesions on the tissues of the host. This disease is denominated as "Aspergillosis") which can lead to an epidemy affecting these organisms (Burge et al., 2013). On the other hand, it arises an example of a beneficial association: the mycophycobiose established between the fungus Mycosphaerella ascophylli and the alga Ascophyllum nodosum can avoid the desiccation of the host (Garbary & MacDonald, 1995).

Sometimes, some fungi are undetectable by observation in algae external tissues. In fact, the associations between algae and fungi were considered uncommon in the past (Garbary & MacDonald, 1995). Currently, it is known that algae shelter a huge diversity of endophytic fungi (Ragukhumar, 2017). However, the main source of marine-derived fungi in coastal areas are corals (Ogaki *et al.*, 2019), representing the marine organism with which fungi mostly establish associations. After corals, algae are the second biggest source of marine fungi. In addition, marine

sponges are also a great source of fungi producers of interesting bioactivities (Henríquez *et al.*, 2013).

FUNGI POTENTIAL

Fungi are amazing organisms which can support extreme environmental conditions. A good example is their ability to support a wide range of different temperatures (Ragukhumar, 2017), since the ice in Antarctic (Ogaki *et al.*, 2019) to hot deserts (Sterflinger *et al.*, 2012). To survive to these stress conditions, filamentous fungi can produce resistant spores or compounds which support their survival in extreme habitats, such as carotenoids, melanin, polyols (Sterflinger *et al.*, 2012) and cold-adapted enzymes (Ogaki *et al.*, 2019). Another point of interest for the exploration of marine fungi is their capacity to produce such compounds with interesting properties. The associations between fungi and other organisms from marine environments also can promote the synthesis of products with pharmaceutical applications (Oliveira *et al.*, 2012).

There is a large range of "ways" for humans to take advantage from the fungi characteristics. The research of bioactive compounds from marine fungi reached a bigger attention when it was isolated products with anticancer and antiviral potential, from a sponge (Tectitethya crypta) (Oliveira et al., 2012). There are fungal species already described reporting antimicrobial activity against bacteria, against other fungi (mostly against phytopathogenic species) and against viruses. These species belong to genera Aureobasidium (Chi et al., 2009; Garay et al., 2018; Jiang et al., 2016), Colletotrichum (Lu et al., 2000), Nigrospora (Carvalho et al., 2012; Rukachaisirikul et al., 2010), Leptosphaerulina (Cui et al., 2011), Arthrinium (Bloor, 2008; El-Gendy et al., 2018; Vijayakumar et al., 1996), Epicoccum (Baute et al., 1978; Madrigal et al., 1991; Qian et al., 2013) or Trichoderma (Calvet et al., 1989; Chet et al., 1981; Cotxarrera et al., 2002; De la Cruz & Llobell, 1999; Jin et al., 2017; Leelavathi et al., 2014; Liss et al., 1985; Oh et al., 2002; Yedidia et al., 2003; Zhang et al., 2015). Trichoderma, Epicoccum and Arthrinium species are also used as biocontrol agents to control infections in plants (Bloor, 2008; Chet et al., 1981; Elad et al., 1980; Larena et al., 2005; Leelavathi et al., 2014). In addition, there is a possibility of marine mycota to display antiallergic activity (Kimura et al., 2007), antidiabetic (El-Gendy et al., 2018), anticoagulant (Chi et al., 2009), antioxidant (Chandra et al., 2013; Chi et al., 2009; Fernandez-Acero, 2007; Hashem et al., 2014; Jiang et al., 2016; Saravanakumar et al., 2018; Tianpanich et al., 2011) or antitumoral properties (Dubourdieu et al., 1981; El-Rahman et al., 2014; Garay et al., 2018; Jiang et al., 2016; Oh et al., 2002; Pejin & Kamaran, 2017; Pokrovsky et al., 2013). It was reported the importance of marine fungal compounds when it was detected the production of epolactaene by a marine-derived *Penicillium* sp. Such compound is used in the treatment of neurodegenerative diseases (Kakeya *et al.*, 1995).

Also, it is verified great potential come from the algicolous fungi, associated with any macroalgae. These organisms are important sources of enzymes, and they can release essential minerals to the ocean (Ogaki *et al.*, 2019). In addition, other reports about algicolous communities have highlighted their antimicrobial, anti-plasmodial (Sridhar, 2017), antioxidant, antialgal, antiviral, antiinsect and selective antifungal abilities, promoted by their bioactive compounds produced (Ogaki *et al.*, 2019).

FUNGI RECORDS IN MEDITERRANEAN AND ATLANTIC PORTUGUESE BEACHES

The potential presented by marine fungi has promoted the research aiming at the identification of endophytic fungal communities from seaweeds. In Europe and Mediterranean regions, the marine mycota is well known (Sridhar *et al.*, 2012). However, in Portugal the marine fungi remain little explored in coastal areas. The fungal communities assessed are mainly derived from sands of beaches due to the growing concern about public health.

There are mycological studies of Portugal and Mediterranean coasts mainly focusing on sand samples of the beaches. These surveys concluded that in the Mediterranean, the main mycological genera found belonged to *Penicillium, Aspergillus, Cladosporium, Alternaria, Mucor, Monilia, Cephalosporium, Verticillium, Chrysosporium* (Azevedo *et al.,* 2010), *Acremonium, Fusarium* and *Candida* (WHO, 2003). Some of these fungi can represent a problem for the human health safety, due their pathogenicity to infect human being (WHO, 2003). Then, the microbiological tests made in Portugal were intensified in order to find more pathogenic species in the beaches. Samples recovered from sand resulted in the identification of dermatophytes (possibly with keratinophilic capacity) such as *Trichophyton mentagrophytes, T. rubrum* and *Microsporum nanum* among others (Azevedo *et al.,* 2010). Also recovered from sand, São José *et al.* (1994) detected fungi belonging to genera *Acremonium, Alternaria, Arthrobotrys, Aspergillus, Aureobasidium, Beauveria, Chrysosporium, Cladosporium, Epicoccum, Fusarium, Geotrichum, Stemphylium, Trichosporon, Trichothecium and Verticillium (Azevedo <i>et al.,* 2010). *Penicillium* is a group which remains very present in our coast, because it was recently found in sea water,

driftwood and macroalgae (Gonçalves *et al.*, 2019¹). Besides this report, Sridhar *et al.* (2012) analysed the fungal community in seaweed litter in seven beaches of the northwest coast of Portugal and concluded that majority of the species belonged to ascomycetes genera. This fungi group has been reported in different substrata collected in Portugal, such as, wood samples (Sridhar *et al.*, 2012), plants (Calado *et al.*, 2015) and driftwood in coastal areas (Azevedo *et al.*, 2012) and Mira River estuary (Barata, 2006). Basidiomycota is poorly represented, while *anamorphic* fungi seems to be moderately present also in the same samples indicated above (Azevedo *et al.*, 2012; Sridhar *et al.*, 2012).

Despite these surveys, the fungi communities associated with algae in Portugal remain little explored (Gladfelter *et al.*, 2019). So, it is necessary the development of studies aiming at characterising the mycobiotaof seaweeds, due the potential presented by these fungal communities.

REFERENCES

REFERENCES

Azevedo E, Barata M, Marques MI, Caeiro MF. *Lulworthia atlantica*: a new species supported by molecular phylogeny and morphological analysis. Mycologia. 2017;109(2):287-295.

Azevedo E, Caeiro MF, Barata M. Portuguese marine fungi and the contribution of differential interference contrast (DIC) microscopy for their morphological identification. Microsc Microanal. 2013;19(S4):17–8.

Azevedo E, Figueira D, Caeiro MF, Barata M. Biodiversity of filamentous fungi on soils and sands. In Progress in mycology. 2010 (pp. 233-257). Springer, Dordrecht.

Azevedo E, Rebelo R, Caeiro MF, Barata M. Use of drift substrates to characterize marine fungal communities from the west coast of Portugal. Mycologia. 2012;104(3):623-32.

Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol. 2018;1–15.

Barata M. Marine fungi from Mira river salt marsh in Portugal. Rev iberoam micol. 2006;23(3):179-184.

Bärlocher F, Boddy L. Aquatic fungal ecology - How does it differ from terrestrial? Fungal Ecol. 2016; 19:5–13.

Baute MA, Deffieux G, Baute R, Neveu A. New antibiotics from the fungus *Epicoccum nigrum*. The journal of Antibiotics. 1978;31(11):1099-101.

Bloor S. Arthrinic acid, a novel antifungal polyhydroxyacid from *Arthrinium phaeospermum*. J Antibiot (Tokyo). 2008;61(8):515–7.

Burge CA, Kim CJS, Lyles JM, Harvell CD. Special Issue Oceans and Humans Health: The Ecology of Marine Opportunists. 2013;869–79.

Calado M da L, Carvalho L, Pang KL, Barata M. Diversity and Ecological Characterization of Sporulating Higher Filamentous Marine Fungi Associated with *Spartina maritima* (Curtis) Fernald in Two Portuguese Salt Marshes. Microb Ecol. 2015;70(3):612–33.

Calvet C, Pera J, Bar JM. Interactions of *Trichoderma* spp. With *Glomus Mosseae* and two wild pathogenic fungi. Agric Ecosys. Environ. 1989;29:59–65.

Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TMA, Rabello A, Sobral MEG, Zanu CL, Rosa CA, Rosa LH. The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant *Stryphnodendron adstringens* (Mart.) Coville (*Fabaceae*) from the Brazilian savannah. Symbiosis. 2012;57(2):95–107.

Chandra M, Kalra A, Sangwan NS, Sangwan RS. Biochemical and proteomic characterization of a novel extracellular β-glucosidase from T*richoderma citrinoviride*. Mol Biotechnol. 2013;53(3):289–99.

Chen Y, Liu Z, Liu H, Pan Y, Li J, Liu L, *et al*. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus *Ascomycota* sp. CYSK-4. Mar Drugs. 2018;16(2):1–10.

Chet I, Harman GE, Baker R. *Trichoderma hamatum*: Its hyphal interactions with *Rhizoctonia solani* and *Pythium* spp. Microb Ecol. 1981;7(1):29–38.

Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T. Bioproducts from *Aureobasidium pullulans*, a biotechnologically important yeast. Appl Microbiol Biotechnol. 2009;82(5):793–804.

Corinaldesi C, Barone G, Marcellini F, Dell'Anno A, Danovaro R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs. 2017;15(4):1–21.

Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem. 2002;34(4):467–76.

Cui J, Guo S, Xiao P. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of *Aquilaria sinensis*. J Zhejiang Univ Sci B. 2011;12(5):385–92.

De la Cruz J, Llobell A. Purification and properties of a basic endo- β -1, 6-glucanase (BGN16. 1) from the antagonistic fungus *Trichoderma harzianum*. Eur J Biochem. 1999;265(1):145-51.

Duan Y, Awasthi SK, Liu T, Chen H, Zhang Z, Wang Q, Ren X, Tu Z, Awasthi MK, Taherzadeh MJ. Dynamics of fungal diversity and interactions with environmental elements in response to wheat straw biochar amended poultry manure composting. Bioresour Technol. 2019;274:410–7.

Dubourdieu D, Ribereau-Gayon P, Fournet B. Structure of the extracellular β -d-glucan from *Botrytis cinerea*. Carbohydr Res. 1981;93(2):294–9.

Elad, Y., Chet, I., Katan J. *Trichoderma harzianum*: a biocontrol agent effective against *Sclerotium rolfsii* and *Rhizoctonia solani*. Phytopathology. 1980;70(2):119.

El-Gendy MM, Yahya SM, Hamed AR, Soltan MM, El-Bondkly AM. Phylogenetic Analysis and Biological Evaluation of Marine Endophytic Fungi Derived from Red Sea sponge *Hyrtios erectus*. Appl Biochem Biotechnol. 2018;185(3):755-77.

El-Rahman AA, El-Shafei SM, Ivanova EV, Fattakhova AN, Pankova AV, El-Shafei MA, El-Morsi EM, Alimova FK. Cytotoxicity of *Trichoderma* spp. cultural filtrate against human cervical and breast cancer cell lines. Asian Pacific J Cancer Prev. 2014;15(17):7229–34.

Fan KW, Vrijmoed LLP, Jones EBG. Physiological studies of subtropical mangrove thraustochytrids. Bot Mar. 2002;45(1):50–7.

Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, Garrido C, López JÁ, Jorrin J, Cantoral JM. Proteomic analysis of phytopathogenic fungus *Botrytis cinerea* as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol. 2007;187(3):207–15.

Garay LA, Sitepu IR, Cajka T, Xu J, Teh HE, German JB, Pan Z, Dungan SR, Block DE, Boundy-Mills KL. Extracellular fungal polyol lipids: A new class of potential high value lipids. Biotechnol Adv. 2018;36(2):397–414.

Garbary DJ, MacDonald KA. The *Ascophyllum / Polysiphonia / Mycosphaerella* Symbiosis IV. Mutualism in the *Ascophyllum / Mycosphaerella* Interaction. Bot Mar. 1995;38(1–6):221–6.

Garzoli L, Poli A, Prigione V, Gnavi G, Varese GC. Peacock's tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga *Padina pavonica*. Fungal ecol. 2018;35:87-97.

REFERENCES

Gladfelter AS, James TY, Amend AS. Marine fungi. Curr Biol. 2019;29(6):191–5.

Gonçalves MFM, Santos L, Silva BMV, Abreu AC, Vicente TFL, Esteves AC & Alves A. Biodiversity of *Penicillium* species from marine environments in Portugal and description of *Penicillium lusitanum* sp. nov., a novel species isolated from se water. Int J Syst Evol Microbiol. 2019¹; 69 (10).

Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D. Alleviation of abiotic salt stress in *Ochradenus baccatus* (Del.) by *Trichoderma hamatum* (Bonord.) Bainier. J Plant Interact. 2014;9(1):857–68.

Hassett BT, Ducluzeau AL, Collins RE, Gradinger R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ microbiol. 2017;19(2):475-84.

Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P, Araya I, Chávez R, San-Martín A, Darias J, Darias MJ. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World journal of microbiology and biotechnology. World J Microbiol Biotechnol. 2013;30(1):65–76.

Jiang H, Liu NN, Liu GL, Chi Z, Wang JM, Zhang LL, *et al*. Melanin production by a yeast strain XJ5-1 of *Aureobasidium melanogenum* isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles. 2016;20(4):567–77.

Jin Z, Li D, Liu T, Yu F, Zhang Z, Su C, Wang Y, Guo Q, Liu Z. Cultural endophytic fungi associated with *Dendrobium officinale*: Identification, diversity estimation and their antimicrobial potential. Curr Sci. 2017;112(8):1690–7.

Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. Classification of marine Ascomycota, *anamorphic* taxa and Basidiomycota. Fungal Divers. 2009;35:1-187.

Jones EG, Pang KL (editors). Marine fungi: and fungal-like organisms. Walter de Gruyter; 2012:1-532.

Jones EG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;73(1):1-72.

Kakeya H, Takahashi I, Okada G, Isono K, Hiroyuki O. Epolactaene, a novel neuritogenic compound human neuroblastoma cells produced by a marine fungus. J Antibiot. 1995; 48:733–735.

Kavanagh K, editor. Fungi: biology and applications [Internet]. John Wiley & Sons; 2017 [cited 2019 Oct 17]. Available from: https://books.google.pt/books?hl=en&lr=&id=KEozDwAAQBAJ&oi=fnd&p

Kimura Y, Sumiyoshi M, Suzuki T, Suzuki T, Sakanaka M. Inhibitory effects of water-soluble lowmolecular-weight β -(1,3-1,6) d-glucan purified from *Aureobasidium pullulans* GM-NH-1A1 strain on food allergic reactions in mice. Int Immunopharmacol. 2007;7(7):963–72.

Klein BS, Tebbets B. Dimorphism and virulence in fungi. Curr Opin Microbiol. 2007;10(4):314–9.

Kohlmeyer J, Kohlmeyer E. Marine Mycology: The Higher Fungi. NY: Acad. Press; 1979 [cited 2019 June 10]; [about 690 p.]. Available from: https://books.google.pt/books?hl=en&lr=&id=MC7LBAAA

Kohlmeyer J, Volkmann-Kohlmeyer B. Illustrated key to the filamentous higher marine fungi. Bot Mar. 1991;34(1):1-61.

Koivusaari P, Tejesvi M V., Tolkkinen M, Markkola A, Mykrä H, Pirttilä AM. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front Microbiol. 2019. Vol. 10:651.

Kutty SN, Philip R. Marine yeasts—a review. Yeast. 2008;25(7):465-83.

Larena I, Torres R, De Cal A, Liñán M, Melgarejo P, Domenichini P, Bellini A, Mandrin JF, Lichou J, De Eribe XO, Usall J. Biological control of postharvest brown rot (*Monilinia* spp.) of peaches by field applications of *Epicoccum nigrum*. Biol Control. 2005;32(2):305–10.

Leelavathi MS, Vani L, Reena P. Antimicrobial activity of *Trichoderma harzianum* against bacteria and fungi. Int J Curr Microbiol Appl Sci. 2014;3(1):96-103.

Liss SN, Brewer D, Taylor A, Jones GA. Antibiotic activity of an isocyanide metabolite of *Trichoderma hamatum* against rumen bacteria. Can J Microbiol. 1985;31(9):767-72.

Lu H, Zou WX, Meng JC, Hu J, Tan RX. New bioactive metabolites produced by *Colletotrichum* sp., an endophytic fungus in *Artemisia annua*. Plant Sci. 2000;151(6):67–73.

Madrigal C, Tadeo JL, Melgarejo P. Relationship between flavipin production by *Epicoccum nigrum* and antagonism against *Monilinia laxa*. Mycol Res. 1991;95(12):1375–81.

Ogaki MB, de Paula MT, Ruas D, Pellizzari FM, García-Laviña CX, Rosa LH. Marine Fungi Associated with Antarctic Macroalgae. The Ecological Role of Micro-organisms in the Antarctic Environment. 2019;239-255.

Oh SU, Yun BS, Lee SJ, Kim JH, Yoo ID. Atroviridins AC and neoatroviridins AD, novel peptaibol antibiotics produced by *Trichoderma atroviride* F80317. J. Antibiot. 2002;55(6):557-64.

Oliveira AL, Felício RD, Debonsi HM. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. Rev Bras Farmacogn. 2012;22(4):906-20.

Pang KL, Chow RK, Chan CW, Vrijmoed LP. Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res. 2011;30(1):5859.

Pang KL, Overy DP, Jones EG, da Luz Calado M, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF. 'Marine fungi' and 'marine-derived fungi' in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev. 2016;30(4):163-75.

Pejin B, Karaman M. Antitumor natural products of marine-derived fungi. Fungal Metabolites. 2017:1-28.

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, *et al*. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019;95(1):1-273.

Pokrovsky VS, Treshalina HM, Lukasheva E V, Sedakova LA, Medentzev AG, Arinbasarova AY, Berezov TT. Enzymatic properties and anticancer activity of L-lysine α -oxidase from *Trichoderma* cf. *aureoviride* Rifai BKMF-4268D. Anti-cancer Drug. 2013;24(8):846–51.

Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L. Biosynthesis of silver nanoparticles by the endophytic fungus *Epicoccum nigrum* and their activity against pathogenic fungi. Bioprocess Biosyst Eng. 2013;36(11):1613–9.

Raghukumar S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast Ocean Mar Ecosyst Mar Fungi. 2017;1–378.

Rukachaisirikul V, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Graidist P, *et al*. Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi *Nigrospora* sp. PSU-F11 and PSU-F12. Arch Pharm Res. 2010;33(3):375–80.

São José C, Costa MJ, Almeida MJ. Isolamento de fungos queratinofilicos a partir da areia de praias, Revista de Bioi. Lisboa. 1994;15:161-71.

Saravanakumar K, Chelliah R, Ramakrishnan SR, Kathiresan K, Oh DH, Wang MH. Antibacterial, and antioxidant potentials of non-cytotoxic extract of *Trichoderma atroviride*. Microb Pathog. 2018;115:338–42.

Sarma VV. Obligate Marine Fungi and Bioremediation. Mycoremediation and Environmental Sustainability. Springer, Cham. 2018; 307-323.

Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H. Fungal biodiversity in aquatic habitats. Biodivers Conserv. 2007;16(1):49–67.

Shiklomanov IA, editor. The hydrological cycle. Eolss Publishers Company Limited. 2009. Vol. 1.

Singhal BBS, Gupta RP. Assessment and management of groundwater resources. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands; 1999. p. 329–367.

Sparrow FK. Biological observations on the marine fungi of Woods Hole waters. Biol Bull-US. 1936;70(2):236-63.

Sridhar KR, Karamchand KS, Pascoal C, Cássio F. Assemblage and diversity of fungi on wood and seaweed litter of seven northwest Portuguese beaches. Biology of Marine Fungi. Springer, Berlin, Heidelberg. 2012; 209-228.

Sridhar KR. Marine filamentous fungi: Diversity, distribution and bioprospecting. Dev Fungal Biol Appl Mycol. 2017;59–73.

Sterflinger K, Tesei D, Zakharova K. Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal ecol. 2012;5(4):453-462.

Stierle AA, Stierle DB. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers. HHS Public Access. 2016;118(24):6072–8.

Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Radical scavenging and antioxidnt activities of isocoumarins and a phthalide from the endophytic fungus *Colletotrichum* sp. J Nat Prod. 2011;74(1):79–81.

Urien C, Legrand J, Montalent P, Casaregola S, Sicard D. Fungal Species Diversity in French Bread Sourdoughs Made of Organic Wheat Flour. Front Microbiol. 2019; 10:201.

Venkatachalam M, Magalon H, Dufossé L, Fouillaud M. Production of pigments from the tropical marine-derived fungi *Talaromyces albobiverticillius*: New resources for natural red-colored metabolites. J Food Compos Anal. 2018; 70:35–48.

Vijayakumar EK, Roy K, Chatterjee S, Deshmukh SK, Ganguli BN, Fehlhaber HW, Kogler H. Arthrichitin. A new cell wall active metabolite from *Arthrinium phaeospermum*. J Org Chem. 1996;61(19):6591-6593.

Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS. Fungi associated with mesophotic macroalgae from the 'Au'au Channel, west Maui are differentiated by host and overlap terrestrial communities. PeerJ. 2017;5:e3532.

Walker AK, Vélez P, González MC. Marine Fungi. Chichester, UK: eLS. John Wiley & Sons, Ltd. 2017: 1–6.

WHO. Microbial aspects of beach sand quality. Guidel safe Recreat water Environ. 2003;118–27.

Yarden O, Gruber-vodicka HR. Fungal association with sessile marine invertebrates. Front Microbiol. 2014;5:228.

Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I. Concomitant Induction of Systemic Resistance to *Pseudomonas syringae* pv. *lachrymans* in Cucumber by *Trichoderma asperellum* (T-203) and Accumulation of Phytoalexins. Appl Environ Microbiol. 2003;69(12):7343–53.

Zhang X, Harvey PR, Stummer BE, Warren RA, Zhang G, Guo K, Li J, Yang H. Antibiosis functions during interactions of *Trichoderma afroharzianum* and *Trichoderma gamsii* with plant pathogenic *Rhizoctonia* and *Pythium*. Funct Integr Genomics. 2015;15(5):599–610.

Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI. Detection and identification of fungi intimately associated with the brown seaweed *Fucus serratus*. Appl Environ Microbiol. 2008;74(4):931–41.

Chapter I Fungi Diversity in Algae from Ria de Aveiro

1.1. ALGAE ROLE IN MARINE ECOSYSTEMS

The geographic distribution of algae is predominantly located in coastal areas, with emphasis on macroalgae communities. These organisms represent the second largest source of marine-derived fungi, next to corals, and are crucial to maintain the stability of coastal ecosystems due to their ability to promote nutrient cycling. Macroalgae can be classified, based on their photosynthetic pigmentation: green algae, brown algae and red algae, the most important groups of organization (Pereira, 2009). Within the macroalgae groups, the green algae are widely distributed in littoral area (intertidal zone, where the sun exposition is better), while red and brown algae are easily found in subtidal zone (area with restricted sunlight) (Ogaki *et al.*, 2019).

"Algicolous fungi" refers to the fungal species associated with algae hosts. In the last years, these communities have gained more attention due to the potential of their bioactive compounds (Ogaki *et al.*, 2019; Raghukumar, 2012; Raghukumar, 2017). These fungal assemblages can act like endophytes (mainly parasites), saprobes, mycophycobionts and/or lichenicolous fungi in the hosts tissues adapted to marine habitats (Sridhar, 2017; Raghukumar, 2012).

1.2. FUNGI ASSOCIATION WITH ALGAE

Early on, it was already understood that microscopic fungi were abundant in algae tissues (Cotton, 1907) giving origin to algicolous fungi communities, previously, considered parasites or symbionts in the host tissues (Kohlmeyer & Volkmann-Kohlmeyer, 2003; Ogaki *et al.*, 2019). There are records of fungi associated with algae described in 1869 (Nave, 1869), and in the 1900, studies regarding marine fungi were intensified (Cotton, 1907; Sparrow, 1936; Sutherland, 1916).

Microscopic fungi are an important component of fungal assemblage in macroalgae (Kohlmeyer & Volkmann-Kohlmeyer, 2003; Ogaki *et al.*, 2019). However, their expression in the external tissues of the host is not always visible in situations of asymptomatic associations between algae and fungi (Jones *et al.*, 2008; Raghukumar, 2012). Thus, it can difficult the fungal detection (Raghukumar, 2012) due to the lack of visible evidences of fungi presence in external algae tissues (Jones *et al.*, 2008). The introduction of molecular techniques and improvement of protocols allowed the detection and description of the filamentous fungi in the alga genus *Fucus*, specifically localized in algae thalli. Using the technique LSU rRNA PCR-DGGE (Polymerase Chain Reaction-

Denaturing Gradient Gel Electrophoresis), the researchers mostly found species belonging to Halosphaeriaceae, Lulworthiaceae, Hypocreales, and Dothideomycetes groups (Raghukumar, 2012).

In addition, the importance of microbiota (where are included the fungi) is also related with the benefits conferred to the algae host (Loos *et al.*, 2019), as the nitrogen capture promoted by the fungi association (Du *et al.*, 2019). Another example of an advantageous association between the host and the endophyte is the relation established between the alga *Fucus serratia* and *Corollospora marina* (previously identified as *Sigmoidea marina*). *C. marina* seems to have an apparent nutritional dependence from the host, because it was only found associated with *Fucus serratia* thalli, when this organism was alive. On the other hand, this association confers to the alga, protection against desiccation (Zuccaro *et al.*, 2008).

1.3. ENDOSYMBIOTIC FUNGAL COMMUNITIES

It is unknown *what* exactly promotes differences in endosymbiont fungal communities between different algae and/or environments. It has been suggested that this fungi distribution can be affected by abiotic and/or biotic conditions and does not depend only on the host (Calado *et al.*, 2015; Raghukumar, 2012). In 2010, it was suggested that the geographic factor was determinant in the endosymbiont assemblage, independently from the algae host where it was recovered (Harvey & Goff, 2010; Raghukumar, 2012). In 2015, Calado *et al.*, reinforced the importance of abiotic factors in determining the fungal community in *Spartina maritima*, where the researchers defend a scenario of species-specific ecological patterns. In addition, this study, carried out in Ria de Aveiro, concluded that abiotic conditions could affect the origin of fungi, as well as their physiological and morphological adaptation (Calado *et al.*, 2015). Salinity, air exposure and water submersion were considered the minor influencers in changes verified in fungal community of *S. maritima*, while substrate availability was proposed as the main determinant factor in fungi plant arrangement (Calado *et al.*, 2015; Sridhar, 2017).

As happen in peatlands (Artz *et al.*, 2007), the fungal communities in marine environment and/or associated with seaweeds also undergo changes promoted by the climate phenomena (Du *et al.*, 2019; Loos *et al.*, 2019). The distribution of fungal communities as well as their changes and analysis of richness patterns and species dominance, could be important to realize the consequences of climate changes in Antarctic Peninsula marine biota, where the temperature

increases faster. Ogaki (2019) explain this situation based on the proportions between endemic (fungi capable of grow and reproduce only in Antarctica, also denominated "true psychrophilic"), indigenous (species "substrata-specific") and cosmopolitan fungal species (microorganisms capable of grow and reproduce under different abiotic conditions and inhabit a wide range of ecological niches). The climate changes in Antarctic can provoke an increase of cosmopolitan species in algicolous fungi and this way exhibit a scenario resulting from these climate changes (Ogaki *et al.*, 2019), allowing the prediction of futures consequences came from global warming.

1.4. MARINE-DERIVED FUNGI IN PORTUGUESE COAST AND AVEIRO

Ria de Aveiro is a salt marsh estuarine environment near the coast on the northwest of Portugal and connects to the sea through one single transition channel (Pereira *et al.*, 2009). This lagoon is permanently in contact with the Atlantic Ocean.

Calado *et al.* (2015) studied the filamentous marine fungi associated with the decomposition of *S. maritima* in Ria de Aveiro (salt marsh). In addition to salinity level, this study detected the "substrate factor", as an important parameter to define the fungal community on dead vegetal matter in saline environment. Despite the salinity preferences verified for the growth of some species in this experiment, all the species tested in culture media with different sodium chloride concentration exhibited a great capacity of adaptation, even in low salinity concentration. The main fungal community found in this survey belong to Ascomycota group, highlighting species belonging to the Pleosporales, Microascales and Capnodiales orders (Calado *et al.*, 2015). Once again, the active role played in the decomposition of this plant suggest a great importance of the fungi community in algal biodeterioration in marine environments as well as, exhibits a fungal arrangement well adapted to the habitat (Calado *et al.*, 2015).

The mycobiota belonging to plants of Ria de Aveiro also was investigated (Aleixo, 2013). In a study performed in 2013 in the Ria de Aveiro, which aimed at characterising the fungal endophytic community of a halophyte, *Halimione portulacoides*, it was detected mostly fungi of orders Pleosporales and Hypocreales (Aleixo, 2013). In less abundancy, it was also identified fungi belonging to orders Xylariales, Botryosphaeriales, Trichosphaeriales, Eurotiales and Pezizales distributed by three different sites in a central area of the Ria de Aveiro. For the first time, this study reported a high diversity and abundance of *Neocamarosporium* associated with this plant in Ria de Aveiro, a genus belonging to Pleosporales and well adapted to saline environment (from saline
water to hypersaline soils) (Aleixo, 2013). In addition, *Neocamarosporium* sp. was also recently detected in a dead tissue of the seagrass *Zostera noltii* (from Ria de Aveiro) and saline water of a south beach (Vila Real de Santo António) (Gonçalves *et al.*, 2019²).

2. OBJECTIVE

The mycobiota of plants collected from Ria de Aveiro has been analysed over the years (Aleixo, 2013; Calado *et al.*, 2015). However, an interesting substrate still unexplored are the macroalgae present in this lagoon. Algal-derived fungi can produce bioactive compounds with interesting activities beneficial for the ecosystems where they are inserted (antifungal and antialgal activities) or useful for the human (antibiotic and antioxidant activities) (Ogaki *et al.*, 2019). Although the importance of algicolous fungi is "settled", the diversity of these communities is little explored. This way, this study aimed to explore the mycobiota of algae collected from Ria de Aveiro, an estuarine and coastal lagoon.

The aim of this study was to assess the fungal community of algae from Ria de Aveiro, using a culture-dependent approach.

3. MATERIAL & METHODS

3.1. CULTURE MEDIA

Two culture media were used throughout the work and their compositions are given below. The quantities of the components of each medium are given for a final volume of 1L. After hydration, all media were sterilized by autoclaving at 121 °C for 20 minutes.

3.1.1. Algicolous Fungi isolation

PDA ("Potato Dextrose Agar"), with sea salts and antibiotics addition

 TABLE 1 | Composition of the medium used for algae sampling. Quantities necessary for a final volume of 1 L.

Potato Dextrose agar, (Merck)		
Potato Dextrose Agar	39 g	
Sea salts	30 g	
Tetracycline	0.1 g	
Streptomycin	0.1 g	

PDA ("Potato Dextrose Agar"), with sea salts

TABLE 2 | Composition of the medium used for fungi cultivation. Quantities necessary for a final volume of 1 L.

Potato Dextrose agar, (Merck)			
Potato Dextrose Agar 39 g			
Sea salts	30		

3.2. SAMPLE COLLECTION

Algae were collected (manually), from randomly selected sites in the Ria de Aveiro (Figure 1). All the locations of samples collection were recorded, and all the algae were individually stored (4 ^oC) in sterilized 50 mL falcon tubes and identified. A total of 26 algae samples were obtained from 7 different sites. To facilitate the algae identification, the sampling site was identified with a letter and each alga was identified with a different number (Table 3).

TABLE 3 Identification of sampling sites and algae. The two left columns identify the sampling site (letters and
coordinates of the site) and the two right columns identify the algae samples (each number correspond to
each alga sample). Red alga 1 – algae samples belonging to the same genus. *- unknown algae genus.

Sample colle	ction identification	Algae		
Sampling site Site coordinates		Algae Identification	Genus identification	
А	40.629352, -8.724269	1	Ulva sp.	
А	40.629352, -8.724269	2	Red alga 1*	
A	40.629352, -8.724269	3	Ulva sp.	
A	40.629352, -8.724269	4	Red alga 1*	
A	40.629352, -8.724269	5	Fucus sp.	
A	40.629352, -8.724269	6	Fucus sp.	
В	40.659237, -8.724269	7	Fucus spiralis	
В	40.659237, -8.724269	8	Fucus spiralis	
В	40.659237, -8.724269	9	Enteromorpha sp.	
В	40.659237, -8.724269	10	Fucus sp.	
В	40.659237, -8.724269	11	Fucus sp.	
В	40.659237, -8.724269	12	Fucus sp.	
С	40.677377, -8.705795	13	Filamentous green algae*	
С	40.677377, -8.705795	14	Fucus sp.	
С	40.677377, -8.705795	15	Gracilaria gracilis	
С	40.677377, -8.705795	16	Ulva sp.	
С	40.677377, -8.705795	17	Ulva sp.	
D	40.709662, -8.699279	18	Cladophora sp.	
D	40.709662, -8.699279	19	Cladophora sp.	
E	40.716893, -8.701211	20	Ceramium sp.	
E	40.716893, -8.701211	21	Red algae*	
E	40.716893, -8.701211	22	Ulva sp.	
E	40.716893, -8.701211	23	Enteromorpha intestinalis	
F	40.648426, -8.739905	24	Fucus sp.	
G	40.641766, -8.757844	25	Codium sp.	
G	40.641766, -8.757844	26	Scinaia sp.	

3.3. FUNGAL ISOLATION

Plates with PDA medium, including 3 % sea salts and antibiotics [streptomycin and tetracycline at 100 mg/L (final concentration)], were prepared and stored at 4 °C until algae processing. For this medium, antibiotics were added to prevent bacterial contaminations. In the laboratory, sample processing was performed under aseptic conditions. First, the algae were

identified at genus level (whenever possible) and washed with sterile sea water. Then, all the algae samples were cut into small pieces with a scalpel and placed on the petri dish containing the medium. Twenty small pieces of each alga were cut and distributed by two Petri dishes. The culture media plates were sealed with Parafilm[®] and incubated for five days at 25 °C, to promote fungal growth.

After 48h, 62h and 86h, mycelia growing from algae tissues were transferred to a novel Petri dish containing PDA and incubated at 25 °C. The process was repeated, in sterile conditions, until pure cultures were obtained.

3.4. FUNGI CONSERVATION

After obtaining growth of the filamentous fungi on PDA supplemented with sea salts, a "cutting disc" was used to obtain four plugs (5 mm Ø) for each isolate which were then stored in 1 mL of sterilized glycerol (15 %), and kept at room temperature overnight before being transfer for -80 °C. All plugs were taken from the margins of the cultures.

3.5. FUNGAL ISOLATES IDENTIFICATION

3.5.1. DNA EXTRACTION

After 7-30 days of incubation in PDA supplemented with sea salts at 20°C or 25°C, the total genomic DNA was extracted from fresh mycelium scrapped from the petri dish, according to Möller *et al.*, 1992 (see supplementary information S1). In order to perform the DNA extraction, several stock solutions (Table 4, 5 and 6) were prepared and sterilized by autoclaving at 121 °C, for 20 min.

Solutions for DNA extraction procedure

TES buffer (100 ml)				
1 M Tris (pH = 8)	10.0 mL			
0.5 M EDTA (pH = 8)	2 mL			
10 % SDS	20 mL			

Table 4	Composition	of TES buffer f	or a final	volume of	100 mL.
---------	-------------	-----------------	------------	-----------	---------

TABLE 5	Composition of TE buffer for a final volume of 100 mL.	

TE Buffer (100 mL)		
1 M Tris (pH = 8)	1 mL	
0.5 EDTA (pH = 8)	0.2 mL	

 TABLE 6 | Solutions used in DNA extraction procedure.

3.6. MOLECULAR TYPING

3.6.1. PCR FINGERPRINTING

A genome analysis, using genetic markers, was carried out to discriminate between fungal species (Alves *et al.*, 2007). For this purpose, a microsatellite-primed polymerase chain reaction (MSP-PCR) was performed in order to obtain DNA fingerprints, using a set of primers specific for the simple repetitive DNA (GTG)₅ described in Table 8 (Alves *et al.*, 2007; Meyer *et al.*, 1993; Meyer *et al.*, 1997).

Microsatellite-primed polymerase chain reaction (MSP-PCR)			
NZYTaq 2× Green Master Mix 6.25 μL			
(GTG)₅ primer	2 μL (10 pmol/μL)		
DNA template	1 μL		
Sterile Mili-Q water	15.75 μL		

TABLE 7 | Solution for MSP-PCR using the (GTG)₅ primer. All the components were included in all PCR reactions except for negative control, where the DNA was changed by sterilized water.

For each PCR reaction, the following reagents were used: NZYTaq 2× Green Master Mix, sterile Milli-Q water, $(GTG)_5$ primer and DNA template (in a dilution of 1:10), making up a total volume of 25 µL (Table 7). PCR reactions started by an initial denaturation at 95 °C for 5 minutes, followed by 30 cycles of denaturation at 94 °C for 1 minute, annealing at 53 °C during 1 minute and extension at 65 °C for 8 minutes, concluding with an elongation step at 72 °C, at 10 minutes (Alves *et al.*, 2007). The Bio-Rad C1000 touchTM Thermal Cycler (USA) was used.

Microsatellite-primed polymerase chain reaction conditions				
Primer	Sequence (5' \rightarrow 3')		PCR conditions	
	-	Denaturation	Annealing	Extension
(GTG)₅	GTGGTGGTGGTGGTG	94 °C, 1 min	50 °C, 1 min	72 °C, 2 min

 TABLE 8 | PCR conditions adopted for MSP-PCR amplification.

After microsatellite-primed PCR, a 1.5 % agarose gel was prepared and loaded with 5 μ L of each sample. A DNA ladder was loaded on the first and last well of each gel (GeneRuler DNA Ladder Mix 0.5 μ g/ μ L, 50 μ g, Thermo Scientific TM, USA). Electrophoresis was performed at 80 V, during 5 h in TAE 1× buffer (40 mM Tris, pH 7.6; 20 mM acetic acid; 1 mM EDTA). The gel was stained with a solution of ethidium bromide (5 μ l/mg) for 20-30 minutes, washed in distilled water for 20-30 minutes and image captured under UV light using a GELDOC XR+ system (Bio-Rad, USA).

All fingerprint profiles were stored for further analysis with the GelCompar II software (Applied Maths, Belgium). The Pearson correlation coefficient was applied to assess the relationship between the genetic profiles. In addition, the unweighted pair group method with arithmetic mean (UPGMA) algorithm was used for cluster analysis. This analysis produced a dendrogram which was carefully examined in order to obtain groups of isolates with at least 80 % similarity. All the representative isolates were randomly selected for further identification. This cut-off resulted in 213 isolates selected.

3.7. DNA SEQUENCING

In order to identify the fungal isolates, the Internal Transcribed Spacer (ITS) region of the rDNA cluster was amplified by PCR using the set of primers ITS5 and NL4 (Table 9).

All PCR reactions were prepared for a final volume of 25 μ L, including NZYTaq 2× Green Master Mix, sterile Milli-Q water, primers combinations (ITS5 and NL4) and DNA template (diluted 1:10). All components were applied according the proportions stated in the Table 10. For negative control, the components of the reaction were the same, but 1 μ L of Milli-Q water was added instead of DNA template.

PCR reactions started with an initial denaturation at 95 °C, for 5 minutes, followed by the conditions indicated in Table 10, and ended with a final elongation of 10 minutes, at 72 °C (Table 11). The Bio-Rad C1000 touch[™] Thermal Cycler (USA) was used for ITS amplification.

29

Primers DNA sequences used				
Locus	Primer	DNA sequence $(5^{\prime} \rightarrow 3^{\prime})$		
ITC	ITS5	GGAAGTAAAAGTCGTAACAAGG		
	NL4	GGTCCGTGTTTCAAGACGG		

 TABLE 9 | Nucleotide sequences of the primers used for ITS amplification.

TABLE 10 | PCR composition adopted for each tube used in ITS amplification. All the components were included in all PCR reactions except for negative control, where the DNA was changed by sterilized water.

PCR composition for ITS amplification				
NZYTaq 2× Green Master Mix	6.25 μL			
Forward primer (ITS5)	1 μL (10 pmol/μL)			
Reverse primer (NL4)	1 μL (10 pmol/μL)			
DNA template (diluted 1:10)	1 μL*			
Milli-Q water	15.75 μL			

 TABLE 11 | PCR conditions used for ITS amplification.

•		PCR conditions				
Locus	Primers set	Denaturation	Annealing	Extension	Cycles	Reference
ITS	ITS5 (forward) NL4 (reverse)	94 °C, 30 s	50 °C, 30 s	72 °C, 90 s	×30	Hilário, 2017

After amplification, the DNA fragments were separated by electrophoresis in 1.5 % agarose gel in 1× TAE (40 mM Tris, pH 7.6; 20 mM Acetic acid; 1 mM EDTA), at 80 V for 60 minutes. It was added 5 μ L of each sample and a DNA ladder (GeneRuler DNA Ladder Mix 0.5 μ g/ μ L, 50 μ g, Thermo Scientific TM, USA) and applied for each electrophoresis running. After that, the gels were stained with ethidium bromide for 10 minutes, washed in distilled water for 20 minutes and visualised under UV light using a GELDOC XR+ (BioRad, USA), to confirm amplification success.

3.8. PURIFICATION OF THE PCR PRODUCTS

The NZYGelpure kit (Nzytech[™], Portugal) was used for amplicons purification and applied according to manufacturer's instructions. The purified amplification products were sequenced by GATC Biotech (Germany) (see supplementary information S2).

3.9. IDENTIFICATION OF THE FUNGAL ISOLATES

The nucleotide sequences were read and edited using FinchTV v.1.4 (Geospiza Inc. http://www.geospiza.com/finchtv). All sequences were submitted to a first analysis using the Basic Local Alignment Search Tool (BLAST), which compared the sequences against others known sequences in the database. The values resulting from "Query cover" and "Identity" were recorded. Higher query cover and higher identity mean the best match of the sequence and the sequence of database.

This analysis allowed for species/genus assessment of the isolates selected for ITS sequencing, as well as other isolates which presented high similarity with them.

3.10. DIVERSITY ANALYSIS

The richness and the co-occurrence of different genera in the same algae sample (host) were expressed using the Shannon's H' and Simpson diversity indices (Motwani *et al.*, 2014; Pielou, 1966). Also, the measure of Pielou's evenness was assessed to analyse the relative abundance of the different species within a community of the samples (Motwani *et al.*, 2014; Pielou, 1966).

All the diversity measures (indicated above) and statistical analyses were performed using R version 3.6.0 (R Core Team, 2019). Default R packages were used for the analyses, unless otherwise mentioned. The richness and diversity (Shannon's H' and Simpson's indices) and Pielou's evenness indices were calculated using the *vegan* package version 2.5 - 4 (Oksanen *et al.*, 2019). In order to find if there are some fungal genera associated with determined factor (sampling site or host) it was used the *multipatt* function from package *indicspecies* version 1.7.6 (De Caceres & Jansen, 2016), using a 10 % of significance level and the parameter "IndVal.g" to correct the unequal group sizes.

The normality and homoscedasticity of variances were assessed for all diversity and evenness indices, using Shapiro-Wilk and Bartlett tests, respectively (p-value > 0.05). Parametric tests (ANOVA) were then used when normality and homoscedasticity of variances were observed. When these conditions were not met, the respective nonparametric tests [Kruskal-Wallis rank sum (R *stats* package; R Core Team, 2019) and post-hoc Kruskal Nemenyi test (*PMCMR* package, version 4.3; Pohlert, 2018)] were performed.

31

The community-level relationships among samples were assessed using functions from the package *vegan*: the Bray-Curtis dissimilarity index for Community Ecologists (function *vegdist* in R) was used to assess the relationships between samples, through the analysis of a dissimilarity matrix. Then, the PERMANOVA (Permutational Multivariate Analysis of Variance Using Distance Matrices; function *adonis* from *vegan* package in R) was applied to Bray-Curtis results in order to analyse variances between communities according to sampling site or algae host. The data obtained from Bray-Curtis dissimilarity was used to create a Principal Coordinate analysis (PCoA) through the *cmdscale* function (*vegan* package in R). PCoA results in a "graphic bidimensional representation" of distribution of the samples, where are chosen the two axis which more contributed for the data variances (Anderson & Willis, 2003). These two variables with the highest significance were used to perform the axis 1 and 2.

3.11. CHARACTERIZATION OF TWO NEW SPECIES

3.11.1. MOLECULAR ANALYSIS AND PHYLOGENETIC INFERENCE

After the ITS identification, it was noted the presence of five and one isolates belonging to *Cladosporium* and *Hypoxylon* genera, respectively, without an identification to species level. In order to assess the species identification, it was amplified three additional loci.

In addition to ITS, it was performed the partial amplification and sequencing of translation elongation factor $1-\alpha$ (*tef1-a*) and actin (*actA*) loci for *Cladosporium* isolates (Table 12). For *tef1-a* amplification it was used the primers set EF1-728F/EF1-986R and ACT-512F/ACT-783R were used to amplify the actin gene (Bensch *et al.*, 2012; Sandoval-Denis *et al.*, 2016). For *tef1-a* amplification, it was performed an initial denaturation at 95 °C for 3 min, followed by 35 cycles of denaturation temperature of 94 °C for 30 s, primer annealing at 52 °C for 30 s and primer extension at 72 °C

Primers DNA sequences used				
Locus	Locus Primer DNA sequence (5´-)			
Actin	ACT-512F	ATGTGCAAGGCCGGTTTCGC		
Actin	ACT-783R	TACGAGTCCTTCTGGCCCAT		
	EF1-728F	CATCGAGAAGTTCGAGAAGG		
τεj1-α	EF1-986R	TACTTGAAGGAACCCTTACC		
0 tubulin	T1	AACATGCGTGAGATTGTAAGT		
p-tubulin	Bt2b	ACCCTCAGTGTAGTGACCCTTGGC		

TABLE 12 | Nucleotide sequences of the primers used for actin, $tef1-\alpha$ and β -tubulin reactions amplification.

during 45 s, ending with an elongation of 72 °C for 10 minutes. The PCR conditions for actin gene amplification were the same described by Bensch *et al.* (2012) (Table 13).

For *Hypoxylon* species analysis part of the β -tubulin gene was amplified using the primers set T1/Bt2b (Kuhnert *et al.*, 2014) (Table 12). The conditions were as follows: initial denaturation at 95 °C during 3 min, 35 cycles of primers denaturation at 94 °C for 30 s, primer annealing at 50 °C for 30 s and primer extension at 72 °C during 1 min. After that, it was made one step of elongation at 72 °C for 10 min (Table 13).

Locus	Primers set	PCR conditions				
		Denaturation	Annealing	Extension	Cycles	
Actin	ACT-512F/ACT-783R	94 °C, 45 s	52 °C, 30 s	72 °C, 90 s	×40	
tef1-α	EF1-728F/EF1-986R	94 °C, 30 s	52 °C, 30 s	72 °C, 45 s	×35	
β-tubulin	T1/Bt2b	94 °C, 30 s	50 °C, 30 s	72 °C, 60 s	×35	

TABLE 13 | PCR conditions used for actin, *tef1-\alpha* and β -tubulin amplifications.

Both the PCR solutions were prepared for a final volume of 25 μ l: 6.25 μ l of NZYTaq 2× Green Master Mix, 1 μ L (10 pmol/ μ L) of each primer used, 15.75 μ L of sterile Milli-Q water and 1 μ L of DNA template.

The amplification of *tef1-* α and actin genes for *Cladosporium* species and β -tubulin gene for *Hypoxylon* were confirmed by electrophoresis, before their sequencing at GATC Biotech (Cologne, Germany). The sequences obtained were analysed and edited using the FinchTV v.1.4.0 (Geospiza Inc. www.geospiza.com/finchtv), and it was made a BLASTn search against the nucleotide records in the databases (nr/nt). To determine the phylogenetic affiliation of *Cladosporium* species it was added the ITS, *tef1-* α and actin closest matching sequences to the sequence alignment (Table 15); Also, to define the phylogenetic affiliation for *Hypoxylon* species, the closest matching sequences resulted from the BLASTn search using the ITS and tubulin genes were included in the sequence alignment (Table 16).

All the sequences were aligned using the program ClustalX v. 2.1 and the parameters indicated in the Table below (Table 14). The alignments were edited using the BioEdit v.7.2.5, and the phylogenetic analyses were performed in MEGA7 v.7.0. (Kumar *et al.*, 2016). All the gaps were included in these analyses. Also, MEGA7 v.7.0 was used to define the most suitable substitution

model for *Cladosporium* and *Hypoxylon* sequences alignment to build the Maximum Likelihood (ML) Tree. To perform the *Cladosporium* tree inference it was used the General Time Reversible model as the heuristic method with 1000 bootstrap replicates. Kimura 2-parameter model was the heuristic model used to build the *Hypoxylon* tree inferences, also using 1000 bootstrap replicates. *Cercospora beticola* and *Creosphaeria sassafras*, were the species chosen as outgroup for *Cladosporium* and *Hypoxylon* alignments, respectively.

Alignment parameters	Pairwise Alignment	Multiple Alignment
Gap opening	10	10
Gap extension	0.1	0.2
Transition weight	-	0.5
Delay divergent sequences	-	25 %

 TABLE 14 | Parameters defined in ClustalX to perform the sequences alignments.

3.11.2. GROWTH, MORPHOLOGY AND MICROSCOPIC ANALYSIS

The morphological characteristics were observed using a SMZ1500 stereoscopic microscope and a Nikon Eclipse 80i microscope equipped with differential interference contrast (DIC) (Nikon, Japan). The fungal structures were mounted in a solution of 100 % lactic acid and photographed with a Nikon DSRi1 camera (Nikon, Japan). All fungal structures were measured using the NIS-Elements D program (Nikon, Japan).

CLADOSPORIUM SP. NOV.

The new record belonging to *Cladosporium* genus was incubated for 14 days at 25 °C, on Petri dishes (55 ϕ), in triplicate, on oatmeal agar (OA), potato dextrose agar (PDA) and synthetic nutrient-poor agar (SNA) (Sandoval-Denis *et al.*, 2016). To characterize the culture colors (obvers and reverse) it was used the color charts of Rayner (Rayner, 1970). The micromorphology of the isolate was carried in SNA incubated at 30 °C.

Cardinal temperatures of *Cladosporium* sp. nov. were determined by cultivation of the isolate at 15 $^{\circ}$ C, 20 $^{\circ}$ C, 25 $^{\circ}$ C, 30 $^{\circ}$ C and 35 $^{\circ}$ C, for 14 days.

TABLE 15 | GenBank and culture collection accession numbers for ITS, *tef1-α* and actin of *Cladosporium* species used to infer the phylogeny of this group (*- type species).

Creation	Chuoin	Strain Hast/Substrata		GenBank accession numbers		
Species	Strain	Host/Substrate	Origin	ITS	tef1-α	act
Cercospora beticola	CBS 116456*	Beta vulgaris	Italy	NR_121315	AY840494	AY840458
Cladosporium acalyphae	CBS 125982*	Acalypha australis	South Korea	HM147994	HM148235	HM148481
Cladosporium alboflavescens	UTHSC DI-13-225	Homo sapiens	USA	LN834420	LN834516	LN834604
Cladosporium angulosum	CBS 140692*	Homo sapiens	USA	LN834425	LN834521	LN834609
Cladosporium angustisporum	CBS 125983*	Alloxylon wickhamii	Australia	HM147995	HM148236	HM148482
Cladosporium angustiterminale	CBS 140480*	Banksia grandis	Australia	КТ600379	KT600476	KT600575
Cladosporium anthropophilum	CBS 140685*	Homo sapiens	USA	LN834437	LN834533	LN834621
	CBS 117483	-	USA	HM148007	HM148248	HM148494
Cladosporium asperulatum	CBS 126340*	Protea susannae	Portugal	HM147998	HM148239	HM148485
Cladosporium australiense	CBS 125984*	Eucalyptus moluccana	Australia	HM147999	HM148240	HM148486
Cladosporium austroafricanum	CBS 140481*	Leaf litter	South Africa	КТ600381	KT600478	KT600577
Cladosporium chalastosporoides	CBS 125985*	Teratosphaeria proteae-arboreae	South Africa	HM148001	HM148242	HM148488
Cladosporium chubutense	CBS 124457*	Pinus ponderosa	Argentina	FJ936158	FJ936161	FJ936165
Cladosporium cladosporioides	CBS 112388*	"Indoor air"	Germany	HM148003	HM148244	HM148490
	CBS 113738	Grape	USA	HM148004	HM148245	HM148491
	CPC 14292	Soil from pea field	Denmark	HM148046	HM148287	HM148533
	CBS 101367	-	Brazil	HM148002	HM148243	HM148489
	CBS 113739	Crested wheat grass	USA	HM148005	HM148246	HM148492
	CBS 113740	Berry of grape	USA	HM148006	HM148247	HM148493
	CBS 126341	Spinacia oleracea	USA	HM148009	HM148250	HM148496
	CBS 143.35	Pisum sativum	South Africa	HM148011	HM148252	HM148498

	CBS 144.35	-	USA	HM148012	HM148253	HM148499
	CBS 145.35	Pisum sativum	Germany	HM148013	HM148254	HM148500
	CPC 11120	Viola mandshurica	South Korea	HM148017	HM148258	HM148504
	CPC 11121	Celosia cristata	South Korea	HM148018	HM148259	HM148505
	CPC 11161	Eucalyptus sp.	India	HM148022	HM148263	HM148509
	CMG 43	Fucus spiralis	Portugal	MN053016	MN066642	MN066637
Cladosporium colocasiae	CBS 386.64*	Colocasia esculenta	Taiwan	NR_119840	HM148310	HM148555
	CBS 119542	Colocasia esculenta	Japan	HM148066	HM148309	HM148554
Cladosporium colombiae	CBS 274.80B*	Cortaderia sp.	Colombia	FJ936159	FJ936163	FJ936166
Cladosporium crousii	UTHSC DI-13-247*	Homo sapiens	USA	LN834431	LN834527	LN834615
Cladosporium cucumerinum	CBS 171.52*	Cucumis sativus	Netherlands	HM148072	HM148316	HM148561
Cladosporium delicatulum	CBS 126344	Tilia cordata	Germany	HM148081	HM148325	HM148570
	CBS 126342	"Indoor air"	Denmark	HM148079	HM148323	HM148568
Cladosporium exasperatum	CBS 125986*	Eucalyptus tintinnans	Australia	HM148090	HM148334	HM148579
Cladosporium exile	CBS 125987*	Phyllactinia guttata	USA	HM148091	HM148335	HM148580
Cladosporium flabelliforme	CBS 126345*	Melaleuca cajuputi	Australia	HM148092	HM148336	HM148581
Cladosporium flavovirens	CBS 140462*	Homo sapiens	USA	LN834440	LN834536	LN834624
Cladosporium funiculosum	CBS 122129*	Phaseolus chrysanthos	Japan	NR_119845	HM148338	HM148583
Cladosporium gamsianum	CBS 125989*	<i>Strelitzia</i> sp.	South Africa	HM148095	HM148339	HM148584
Cladosporium globisporum	CBS 812.96*	"Meat stamp"	Sweden	HM148096	HM148340	HM148585
Cladosporium grevilleae	CBS 114271*	Grevillea sp. (leaves)	Australia	JF770450	JF770472	JF770473
Cladosporium hillianum	CBS 125988*	Leaf mold of Typha orientalis	New Zealand	HM148097	HM148341	HM148586
Cladosporium inversicolor	CBS 401.80*	Triticum aestivum (leaf)	Netherlands	HM148101	HM148345	HM148590
Cladosporium ipereniae	CBS 140483*	<i>Puya</i> sp.	Chile	KT600394	KT600491	KT600589
Cladosporium iranicum	CBS 126346*	Citrus sinensis (leaf)	Iran	HM148110	HM148354	M148599
Cladosporium licheniphilum	CBS 125990*	Phaeophyscia orbicularis and Physcia sp	Germany	HM148111	HM148355	HM148600
Cladosporium lonaicatenatum	CBS 140485*	"Unknown" plant	Australia	KT600403	KT600500	KT600598

Cladosporium lycoperdinum	CBS 126347	Apiosporina morbosa	Canada	HM148112	HM148356	HM148601
	CBS 574.78C	Aureobasidium caulivorum	Russia	HM148115	HM148359	HM148604
Cladosporium montecillanum	CBS 140486*	Pine <i>needles</i>	Mexico	KT600406	KT600504	KT600602
Cladosporium myrtacearum	CBS 126350*	Corymbia foelscheana	Australia	HM148117	HM148361	HM148606
Cladosporium needhamense	CBS 143359*	"Indoor air"	USA	MF473142	MF473570	MF473991
Cladosporium neerlandicum	CBS 143360*	-	Netherlands	KP701887	KP701764	KP702010
Cladosporium neopsychrotolerans	CGMCC 3.18031	Rhizosphere soil of <i>Saussurea</i> involucrate	China	KX938383	KX938400	KX938366
Cladosporium oxysporum	CBS 125991*	Soil (terracotta gravene)	China	HM148118	HM148362	HM148607
	CBS 126351	"Indoor air"	Venezuela	HM148119	HM148363	HM148608
Cladosporium paracladosporioides	CBS 171.54*	-	-	HM148120	HM148364	HM148609
Cladosporium _parapenidielloides	CBS 140487*	<i>Eucalyptus</i> sp.	Australia	KT600410	KT600508	KT600606
Cladosporium perangustum	CBS 125996*	<i>Cussonia</i> sp.	South Africa	HM148121	HM148365	HM148610
	CBS 126365	Phyllactinia guttata	USA	HM148123	HM148367	HM148612
	CPC 13870	Teratosphaeria fibrillosa	South Africa	HM148142	HM148386	HM148631
	CPC 12216	Morus rubra	Germany	HM148135	HM148379	HM148624
	CPC 13730	Protea caffra	South Africa	HM148140	HM148384	HM148629
	CMG 44	Enteromorpha sp.	Potugal	MN053017	MN066643	MN066638
	CMG 45	Filamentous Green alga	Potugal	MN053019	MN066645	MN066640
	CMG 46	Fucus sp.	Potugal	MN053020	MN066646	MN066641
Cladosporium phaenocomae	CBS 128769*	Phaenocoma prolifera	South Africa	JF499837	JF499875	JF499881
Cladosporium phyllactiniicola	CBS 126355*	Phyllactinia guttata	USA	HM148153	HM148397	HM148642
Cladosporium phyllophilum	CBS 125992*	<i>Taphrina</i> sp.	Germany	HM148154	HM148398	HM148643
Cladosporium pini- ponderosae	CBS 124456*	Pinus ponderosa	Argentina	FJ936160	FJ936164	FJ936167
Cladosporium pseudochalastosporoides	CBS 140490*	Pine needles	Mexico	KT600415	KT600513	KT600611

Cladosporium pseudocladosporioides	CBS 125993*	"Outside air"	Netherlands	HM148158	HM148402	HM148647
	CBS 667.80	Malus sylvestris	Italy	HM148165	HM148409	HM148654
Cladosporium rectoides	CBS 125994*	Vitis flexuosa	South Korea	HM148193	HM148438	HM148683
Cladosporium rubrum	MUM 19.39/CMG 28*	Enteromorpha sp.	Portugal	MN053018	MN066644	MN066639
Cladosporium rugulovarians	CBS 140495	Leaf sheaths of unidentified Poaceae	Brazil	KT600459	KT600558	KT600656
Cladosporium scabrellum	CBS 126358*	Ruscus hypoglossum	Slovenia	HM148195	HM148440	HM148685
Cladosporium silenes	CBS 109082	Silene uniflora	UK	EF679354	EF679429	EF679506
Cladosporium subuliforme	CBS 126500*	Chamaedorea metallica	Thailand	HM148196	HM148441	HM148686
Cladosporium tenuissimum	CPC 14253*	Lagerstroemia sp.	USA	NR_119855	HM148442	HM148687
Cladosporium varians	CBS 126362*	Catalpa bungei	Russia	HM148224	HM148470	HM148715
Cladosporium verrucocladosporioides	CBS 126363*	Rhus chinensis	South Korea	HM148226	HM148472	HM148717
Cladosporium xantochromaticum	CBS 140691*	<i>Homo sapiens</i> (bronchoalveolar lavage fluid)	USA	LN834415	LN834511	LN834599
	CBS 126364	Erythrophleum chlorostachys	Australia	HM148122	HM148366	HM148611
Cladosporium xylophilum	CBS 125997*	Picea abies	Russia	HM148230	HM148476	HM148721

HYPOXYLON SP. NOV.

The isolate belonging to *Hypoxylon* genus was cultivated on PDA and OA (triplicate in both the media) on Petri dishes (55 ø), for 14 days at 25 °C temperature (in the dark), in order to analyse the cultural and micromorphological characterization (Ulloa-Benítez *et al.*, 2016). Colony colours (obvers and reverse) were determined based on the color charts of Rayner (Rayner, 1970).

Cardinal temperatures of *Hypoxylon* sp. nov. were determined by cultivation of the isolate at 5 $^{\circ}$ C, 10 $^{\circ}$ C, 20 $^{\circ}$ C, 25 $^{\circ}$ C, 30 $^{\circ}$ C and 35 $^{\circ}$ C, for 14 days.

	Studio	llest/Substrate	Origin	GenBank acce	ssion numbers
Species	Strain	Host/Substrate	Origin	ITS	tub2
Hypoxylon aveirense	MUM 19.40/CMG 29*	Fucus sp.	Portugal	MN053021	MN066636
Hypoxylon begae	BCRC 34051	Myoporum sandwicense (branch)	Hawaii	JN660820	AY951704
Hypoxylon griseobrunneum	CBS 331.73*	Soil from Piper betle orchard	India	KC968918	KC977303
	BCRC 34050	Wood	Mexico	JN660819	AY951703
	CBS 129346	-	Guadeloupe	KC968928	KC977281
	MUCL 53754	-	Martinique	KC968909	KC977289
	CBS 117742	Halfburned piece of wood, in brush pile	Ecuador	KC968917	KC977271
Hypoxylon vinosopulvinatum	BCRC 34101*	Wood	Taiwan	JQ009321	AY951761
Hypoxylon addis	MUCL 52797*		Ethiopia	KC968931	KC977287
Hypoxylon cercidicola	CBS 119009	Fraxinus excelsior	France	KU683766	KU684189
Hypoxylon hypomiltum	MUCL 51845	-	Guadeloupe	KY610403	KX271249
Hypoxylon isabellinum	CBS 129035*	-	Martinique	KC968935	KC977295
Hypoxylon munkii	MUCL 53315	-	Martinique	KC968912	KC977294
Hypoxylon musceum	MUCL 53765	-	Guadeloupe	KC968926	KC977280
Hypoxylon ochraceum	MUCL 54625*	-	Martinique	KC968937	KC977300
Hypoxylon perforatum	CBS 115281	Fraxinus excelsior	France	KY610391	KX271250
Hypoxylon petriniae	CBS 114746*	Fraxinus excelsior	France	KY610405	KX271274
Hypoxylon rubiginosum	MUCL 52887*	-	Germany	KC477232	KY624311
Hypoxylon samuelsii	MUCL 51843*	-	Guadeloupe	KC968916	KC977286
Hypoxylon investiens	CBS 118185	-	Ecuador	KC968924	KC977269
	MUCL 53307	-	Martinique	KC477239	KC977293
	CBS 118183	-	Malaysia	KC968925	KC977270
Hypoxylon lateripigmentum	CBS 129031*	-	Martinique	KC968933	KC977290
Hypoxylon pulicicidum	CBS 122622*	-	Martinique	JX183075	JX183072
Creosphaeria sassafras	CBS 119001	Lauraceae sp.	Spain	KU683754	KU684126

TABLE 16 | GenBank and culture collection accession numbers for ITS and β-tubulin of *Hypoxylon* species used to infer the phylogeny of this group (*- type species).

4. RESULTS & DISCUSSION

4.1. SAMPLING AND FUNGAL ISOLATION

From the 7 sites chosen in Ria de Aveiro, 26 samples were collected from seaweeds belonging to genera *Ulva*, *Fucus*, *Enteromorpha*, *Gracilaria*, *Cladophora*, *Ceramium*, *Codium* and *Scinaia*. Four algae samples could not be identified at genus level (samples 2,4, 13 and 21). It is important to

TABLE 17 | Number of fungal isolates obtained from each algae sample. Red alga 1 – algae samples belongingto the same genus. *- unknown algae genus.

Algae samples			Fungi
Local		Algae identification	Number of isolates
	1	<i>Ulva</i> sp.	12
	2	Red algae 1*	12
Α	3	<i>Ulva</i> sp.	12
	4	Red algae 1*	18
	5	<i>Fucus</i> sp.	15
	6	Fucus sp.	11
	7	Fucus spiralis	21
	8	Fucus spiralis	18
В	9	Enteromorpha sp.	20
	10	<i>Fucus</i> sp.	14
	11	<i>Fucus</i> sp.	29
	12	Fucus sp.	24
	13	Filamentous Green algae*	22
-	14	<i>Fucus</i> sp.	24
C	15	Gracilaria gracilis	10
	16	<i>Ulva</i> sp.	13
	17	<i>Ulva</i> sp.	34
D	18	Cladophora sp.	35
	19	Cladophora sp.	20
	20	Ceramium sp.	10
E	21	Red algae*	21
	22	<i>Ulva</i> sp.	40
	23	Enteromorpha intestinalis	26
F	24	Fucus sp.	9
G	25	Codium sp.	8
	26	Scinaia sp.	8
	Total	26 samples	486 isolates

highlight that the algae samples collected depended of the species available in each site. The algae collection and respective fungal community isolation resulted in a total of 486 isolates (Table 17).

Considering Table 17 it is possible to conclude that the green algae are the hosts with the highest number of fungal isolates obtained, as happen with the hosts belonging to *Ulva* and *Cladophora* genera. On the other hand, in the red algae it was obtained the lowest fungal isolates, namely, in the case of *Scinaia* alga.

4.2. PCR FINGERPRINTING AND ITS IDENTIFICATION

All 486 isolates were characterized by MSP-PCR using the GTG₅ sequence (see supplementary Figure S3). After electrophoresis and visualization under UV light, the DNA profiles obtained were analysed based on their similarity and resulted in a dendrogram. After analysis, 213 representative isolates were chosen for ITS amplification and further sequencing. Using the Standard Nucleotide BLAST, it was possible to obtain a primary identification of fungal isolates (Table 18).

TABLE 18 | Results from ITS Blastn analysis against Genbank database. The identity was registered in percentage. Gen. nov. – new genus record belonging to Didymosphaeriaceae family.

Local	Seaweed	Isolates identification		Phylogenetic affiliation	ldentity (%)
		A_1_F1	1	Penicillium sp.	99 %
		A_1_F2	2	Leptobacillium leptobactrum	100 %
		A_1_F3	3	Paraphaeosphaeria sp.	99 %
		A_1_F4	4	Leptobacillium leptobactrum	100 %
		A_1_F5	5	Leptobacillium leptobactrum	100 %
	1	A_1_F6	6	Leptobacillium leptobactrum	100 %
	-	A_1_F7	7	Leptobacillium leptobactrum	100 %
		A_1_F9	8	Simplicillium lamellicola	100 %
		A_1_F10	9	Leptobacillium leptobactrum	100 %
		A_1_F11	10	Leptobacillium leptobactrum	100 %
		A_1_F14	11	Leptobacillium leptobactrum	100 %
А		A_1_F15	12	Leptobacillium leptobactrum	100 %
		A_2_F1	13	<i>Fusarium</i> sp.	100 %
		A_2_F2	14	<i>Botrytis</i> sp.	100 %
		A_2_F4	16	Penicillium sp.	100 %
		A_2_F5	17	Cladosporium cladosporioides	100 %
		A_2_F7	18	Paraphaeosphaeria sp.	99 %
	2	A_2_F8	19	Leptobacillium leptobactrum	100 %
	-	A_2_F11	20	Paraphaeosphaeria sp	99 %
		A_2_F13	21	Aspergillus niger	100 %
		A_2_F15	22	Paraphaeosphaeria sp.	99 %
		A_2_F16	23	Cladosporium sp.	99 %
		A_2_F17	24	Leptobacillium leptobactrum	100 %
		A_2_F18	25	Cladosporium sp.	99 %

	A_3_F1	28	Cladopsporium sp.	100 %
	A_3_F2	29	Leptobacillium leptobactrum	100 %
	A_3_F3	30	Leptobacillium leptobactrum	100 %
	A_3_F4	31	Leptobacillium leptobactrum	100 %
	A_3_F6	32	Leptobacillium leptobactrum	100 %
3	A_3_F7	33	Leptobacillium leptobactrum	100 %
5	A_3_F8	34	Leptobacillium leptobactrum	100 %
	A_3_F9	35	Leptobacillium leptobactrum	100 %
	A_3_F10	36	Leptobacillium leptobactrum	100 %
	A_3_F12	37	Leptobacillium leptobactrum	100 %
	A_3_F16	38	Leptobacillium leptobactrum	100 %
	A_3_F17	39	Leptobacillium leptobactrum	100 %
	A 4 F1	40	Fusarium sp.	99 %
	A_4_F2	41	Penicillium expansum	99 %
	A_4_F4	42	Penicillium grabrum	99 %
	A_4_F5	43	Gen. nov.	-
	A_4_F6	44	Parasarocladium radiatum	97 %
	A_4_F7	45	Diaporthe sp.	99 %
	A_4_F8	46	Stagonospora sp.	99 %
	A_4_F9	47	Leptobacillium leptobactrum	100 %
4	A_4_F10	48	Leptobacillium leptobactrum	100 %
	A_4_F11	49	Cladosporium sp.	99 %
	A_4_F12	50	Leptobacillium leptobactrum	100 %
	A_4_F14	51	Leptobacillium leptobactrum	100 %
	A_4_F15	52	Leptobacillium leptobactrum	100 %
	A_4_F16	53	Paraphaeosphaeria sp.	99 %
	A_4_F17	54	<i>Fusarium</i> sp.	99 %
	A_4_F18	55	Leptobacillium leptobactrum	100 %
	A_4_F19	56	<i>Fusarium</i> sp.	99 %
	A_4_F20	57	Diaporthe sp.	99 %
	A_5_F1	58	Botrytis eucalypti	100 %
	A_5_F5	61	Cladosporium sp.	100 %
	A_5_F6	62	Leptobacillium leptobactrum	100 %
	A_5_F7	63	Cladosporium sp.	100 %
	A_5_F9	64	Cladosporium sp.	99 %
	A_5_F10	65	Acremonium potronii	99 %
	A_5_F11	66	Penicillium brevicompactum	99 %
5	A_5_F12	67	Leptobacillium leptobactrum	100 %
	A_5_F13	68	Cladosporium sp.	100 %
	A_5_F14	69	Parasarocladium radiatum	96 %
	A_5_F15	70	Botrytis eucalypti	100 %
	A_5_F16	71	Parasarocladium sp.	96 %
	A_5_F17	72	Botrytis eucalypti	100 %
	A_5_F18	73	Paraphaeosphaeria sp.	99 %
	A_5_F19	74	Leptobacillium leptobactrum	100 %
6	A 6 F1	75	Penicillium brocae	100 %
U		-		

		A_6_F3	77	Paradendryphiella salina	100 %
		A_6_F4	78	Cladosporium cladosporioides	100 %
		A_6_F6	79	Aspergillus fumigatus	100 %
		A_6_F7	80	Paraphaeosphaeria sp.	99 %
		A_6_F9	81	Leptobacillium leptobactrum	100 %
		A_6_F11	82	Leptobacillium leptobactrum	100 %
		A_6_F12	83	Paradendryphiella salina	100 %
		A_6_F13	84	Paraphaeosphaeria sp.	99 %
		A_6_F15	85	Paraphaeosphaeria sp.	99 %
		B_7_F1	86	Trichoderma alni	99 %
		B_7_F2	87	Cladosporium sp.	100 %
		B_7_F3	88	Epicoccum nigrum	100 %
		B_7_F4	89	Cladosporium cladosporioides	99 %
		B_7_F6	90	Fusarium solani	100 %
		B_7_F7	91	Acremonium potronii	99 %
		B_7_F8	92	Epicoccum nigrum	99 %
		B_7_F9	93	Aspergillus sp.	99 %
		B_7_F10	94	Alternaria sp.	100 %
		B_7_F11	95	Fusarium solani	100 %
	7	B_7_F12	96	Fusarium solani	100 %
		B_7_F13	97	Aspergillus sp.	100 %
		B_7_F14	98	Cladosporium sp.	100 %
		B_7_F15	99	Epicoccum nigrum	100 %
		B_7_F16	100	Diaporthe pyracanthae	99 %
		B_7_F17	101	Leptobacillium leptobactrum	99 %
		B_7_F18	102	Leptobacillium leptobactrum	100 %
		B_7_F19	103	Cladosporium sp.	98 %
В		B_7_F20	104	Epicoccum nigrum	100 %
		B_7_F21	105	Cladosporium sp.	99 %
		B_7_F22	106	Exophiala oligosperma	100 %
		B_8_F1	107	Cladosporium sp.	100 %
		B_8_F2	108	Arthrinium kogeibergense	100 %
		B_8_F3	110	Mortierend sp.	99 % 00 %
		B_8_F4 B_8_F5	110	Cladosporium sp.	99 % 00 %
			112	Cladosporium sp.	99 % 00 %
		D_O_FU D_O_F7	112	Mortioralla sp	99 %
		D_O_F7 D 0 E0	115	Nortierend sp.	99 %
	8		114	Cladosporium sp	99 %
	0	D_O_F9 D 0 E10	115	Cladosporium sp.	99 %
		D_0_FIU D 0 E11	110	Ciudosponum sp.	99 %
		D_O_FII D_0_E10	110	Cladosporium sp	99 % 00 %
		D_0_F12 D 0_E12	110	Cladosporium sp.	33 %
		D_O_F13	120	Cladochorium cladochoricidae	37 % 100 %
		в_8_F14 в 0_F1C	120	Ciuuosporium ciuuosporiolaes	100 %
		R_Q_LT0	121		99 % 100 %
		B_8_F1/	122	Cladosporium sp.	100 %
		R_8_F18	123	ciaaosporium sp.	100 %

		B_8_F19	124	Leptobacillium leptobactrum	100 %
		B_9_F1	125	Cladosporium sp.	99 %
		B_9_F2	126	Cladosporium sp.	100 %
		B_9_F3	127	Cladosporium sp.	99 %
		B_9_F4	128	Gen. nov.	-
		B_9_F6	129	Pithomyces chartarum	100 %
		B_9_F8	130	Gen. nov.	-
		B_9_F9	131	Epicoccum nigrum	99 %
		B_9_F10	132	Cladosporium sp.	100 %
		B_9_F11	133	Cladosporium sp.	100 %
	9	B_9_F12	134	Epococcum nigrum	99 %
	5	B_9_F13	135	Cladosporium sp.	100 %
		B_9_F14	136	Alternaria alternata	100 %
		B_9_F15	137	Cladosporium sp.	100 %
		B_9_F16	138	Phaeosphaeria sp.	99 %
		B_9_F18	139	Emericellopsis sp.	97 %
		B_9_F19	140	Cladosporium cladosporioides	100 %
			141a	Cladosporium sp.	99 %
		B_9_F20	141b	Cladosporium sp.	99 %
		B_9_F22	142	Cladosporium sp.	99 %
		B_9_F23	143	Cladosporium sp.	99 %
		B_10_F1	144	Cladosporium sp.	100 %
		B_10_F2	145	Cladosporium sp.	99 %
		B_10_F3	146	Cladosporium sp.	100 %
		B_10_F4	147	Stemphylium vesicarium	100 %
		B_10_F5	148	Alternaria sp.	99 %
		B_10_F6	149	Botryosporium longibrachiatum	100 %
	10	B_10_F7	150	Alternaria sp.	100 %
		B_10_F8	151	Alternaria sp.	100 %
		B_10_F9	152	Neocamarosporium sp.	98 %
		B_10_F10	153	Botryosporium longibrachiatum	99 %
		B_10_F12	154	Stemphylium globuliferum	100 %
		B_10_F13	155	Botryosporium longibrachiatum	99 %
		B_10_F14	156	Botryosporium longibrachiatum	100 %
i		B_10_F15	157	Botryosporium longibrachiatum	99 %
		B_11_F1	158	Alternaria sp.	99 %
		B_11_F3	160	Fusarium solani	100 %
		B_11_F4	161	Botrytis eucalypti	100 %
		B_11_F6	162	Cladosporium sp.	100 %
		B_11_F7	163	Cladosporium sp.	100 %
	11	B_11_F8	164	Alternaria sp.	100 %
		B_11_F9	165	Pestalotiopsis sp.	99 %
		B_11_F10	166	Pestalotiopsis sp.	99 %
		B_11_F11	167	Cladosporium sp.	100 %
		B_11_F12	168	Alternaria sp.	100 %
		B_11_F14	170	Epicoccum nigrum	100 %
		B_11_F15	171	Penicillium brevicompactum	99 %

		B_11_F16	172	Fusarium solani	100 %
		B_11_F17	173	<i>Epicoccum</i> sp.	99 %
		B_11_F18	174	Alternaria sp.	99 %
		B_11_F19	175	Alternaria sp.	99 %
		B_11_F20	176	Alternaria sp.	99 %
		B_11_F21	177	Diaporthe sp.	99 %
		B_11_F22	178	Fusarium solani	100 %
		B_11_F24	179	Epococcum nigrum	99 %
		B_11_F25	180	Epococcum nigrum	99 %
		B_11_F26	181	Penicillium sp.	100 %
		B_11_F27	182	Alternaria sp.	99 %
		B_11_F28	183	Botryosporium longibrachiatum	99 %
		B_11_F29	184	Hypoxylon sp.	99 %
		B_11_F30	185	Cladosporium sp.	100 %
		B_11_F31	186	Fusarium solani	100 %
		B_11_F32	187	Alternaria infectoria	99 %
		B_11_F33	188	Cladosporium sp.	99 %
		B_12_F1	189	Cladosporium cladosporioides	99 %
		B_12_F2	190	Cladosporium sp.	100 %
		B_12_F3	191	Gen. nov.	-
		B_12_F4	192	Penicillium sp.	100 %
		B_12_F5	193	Penicillium sp.	99 %
		B_12_F6	194	Cladosporium cladosporioides	99 %
		B_12_F7	195	<i>Periconia</i> sp.	100 %
		B_12_F8	196	Cladosporium sp.	100 %
		B_12_F9	197	Cladosporium sp.	100 %
		B_12_F10	198	Cladosporium sp.	99 %
		B_12_F11	199	Cladosporium sp.	100 %
	12	B_12_F12	200	Cladosporium cladosporioides	100 %
		B_12_F13	201	Cladosporium sp.	100 %
		B_12_F14	202	Cladosporium sp.	99 %
		B_12_F15	203	Cladosporium sp.	99 %
		B_12_F16	204	Talaromyces cecidicola	99 %
		B_12_F17	205	Cladosporium sp.	99 %
		B_12_F18	206	Stagonospora sp.	99 %
		B_12_F19	207	Cladosporium sp.	100 %
		B_12_F20	208	<i>Lecanicillium</i> sp.	99 %
		B_12_F21	209	<i>Penicillium</i> sp.	100 %
		B_12_F22	210	Periconia sp.	100 %
		B_12_F23	211	Phaeosphaeria halima	100 %
		B_12_F24	212	Cladosporium sp.	99 %
		C_13_F1	213	Cladosporium cladosporioides	100 %
		C_13_F2	214	Cladosporium sp.	100 %
С	13	C_13_F3	215	Cladosporium sp.	100 %
		C_13_F4	216	Fusarium solani	100 %
		C_13_F5	217	Cladosporium sp.	99 %

	C_13_F6	218	<i>Botrytis</i> sp.	100 %
	C_13_F7	219	Cladosporium cladosporioides	100 %
	C_13_F8	220	Emericellopsis pallida	100 %
	C_13_F9	221	Cladosporium sp.	99 %
	C_13_F10	222	Cladosporium cladosporioides	100 %
	C_13_F11	223	Cladosporium sp.	99 %
	C_13_F12	224	Acremonium potronii	99 %
	C_13_F13	225	Stemphylium globuliferum	100 %
	C_13_F14	226	Cladosporium sp.	99 %
	C_13_F15	227	Cladosporium cladosporioides	100 %
	C_13_F16	228	Acremonium potronii	99 %
	C_13_F17	229	Epicoccum nigrum	100 %
	C_13_F18	230	Acremonium potronii	99 %
	C_13_F20	231	Cladosporium cladosporioides	100 %
	C_13_F21	232	Cladosporium sp.	99 %
	C_13_F23	234	Cladosporium sp.	100 %
	C_13_F24	235	<i>Botrytis</i> sp.	100 %
	C_14_F1	236	Cladosporium sp.	100 %
	C_14_F2	237	Acremonium potronii	99 %
	C_14_F3	238	Stagonospora sp.	99 %
	C_14_F4	239	Cladosporium sp.	100 %
	C_14_F5	240	Cladosporium sp.	99 %
	C_14_F6	241	Cladosporium sp.	99 %
	C_14_F7	242	Acremonium potronii	99%
	C_14_F8	243	Fusarium solani	100 %
	C_14_F9	244	Cladosporium sp.	100 %
	C_14_F10	245	Parasarociaaium radiatum	97%
	C_14_F11	246	Stagonospora sp.	99 % 100 %
14	C_14_F12	247	Cladosporium ciddosporiolaes	100 %
	C_14_F13	248	Stempnyllum Vesicarium	99 % 00 %
	C_14_F14	249	Stagonospora sp.	99 % 100 %
	C_14_F15	250	Cladosportum sp.	100 %
	C_14_F16	251	Stagonospora sp.	99 % 00 %
	C_14_F17	252	Stugonosporu sp.	99 %
	C_14_F18	200	Penicinium Drevicompacium	99 % 00 %
	C_14_F19	254	Example a diagonarma	99 % 100 %
	C_14_F21	255	Exoprilate ongosperinte	100 %
	C_14_F25	250	Stagonospora sp.	99 %
	C_14_F24	257	Bhacosphaeria halima	99 %
	C_14_F23	250	Stomphylium yosicarium	99 %
	C_14_F20	259		99 %
	C_15_F1 C_15_F2	260 261	Acremonium potronii Trichoderma koningii	99 % 100 %
	C_{15}^{12}	262	Acremonium notronii	99 %
15	C_15_F5	263	Cladosporium cladosporioides	100 %
	C 15 F6	264	Gen. nov	-
	C 15 F7	265	Emericellopsis maritima	99 %
				-

		C_15_F8	266	Penicillium brevicompactum	99 %
		C_15_F9	267	Acremonium potronii	99 %
		C_15_F10	268	Penicillium brevicompactum	99 %
		C_15_F11	269	Penicillium brevicompactum	99 %
		C_16_F1	270	Emericellopsis maritima	99 %
		C_16_F2	271	Acremonium potronii	99 %
		C_16_F3	272	Gen. nov.	-
		C_16_F4	273	Cladosporium sp.	100 %
		C_16_F5	274	Gen. nov.	-
		C_16_F6	275	Emericellopsis pallida	99 %
	16	C_16_F7	276	Acremonium potronii	99 %
		C_16_F8	277	Acremonium potronii	99 %
		C_16_F9	278	Acremonium potronii	99 %
		C_16_F10	279	Trichoderma sp.	100 %
		C_16_F11	280	Parasarocladium radiatum	96 %
		C_16_F12	281	Acremonium fuci	99 %
		C_16_F13	282	Cladosporium cladosporioides	98 %
		C_17_F1	283	Cladosporium sp.	99 %
		C_17_F2	284	Penicillium brevicompactum	99 %
		C_17_F3	285	Stagonospora sp.	99 %
		C_17_F4	286	Penicillium brevicompactum	99 %
		C_17_F5	287	Penicillium brevicompactum	99 %
		C_17_F6	288	Acremonium potronii	99 %
		C_17_F7	289	Emericellopsis sp.	98 %
		C_17_F8	290	Gen. nov.	-
		C_17_F9	291	Alternaria sp.	99 %
		C_17_F10	292	Alternaria burnsii	100 %
		C_17_F11	293	Fusarium oxysporum	99 %
		C_17_F12	294	Fusarium solani	100 %
		C_17_F13	295	Fusarium solani	100 %
		C_17_F14	296	Cladosporium sp.	100 %
	17	C_17_F15	297	Alternaria sp.	100 %
		C_17_F17	298	Alternaria sp.	99%
		C_17_F18	299	Gen. nov.	-
		C_17_F19	300	Fusarium solari	100 %
		C_17_F20	301	Cladosporium sp.	99 % 100 %
		C_17_F21	302	Cladosporium sp.	100 %
		C_17_F22	303	Cladosporium sp.	100 %
		C_17_F23	304	Cladosporium sp.	99 % 00 %
		C_17_F24	305	Cladosporium sp.	99 % 00 %
		C_17_F25	306	Cladosporium claaosporiolaes	99 % 100 %
		C_17_F26	307	Cladosportum sp.	100 %
		C_17_F27	308	Epicoccum nigrum	100 %
		C_17_F28	309	restaiotiopsis sp.	99 % 100 %
		C_17_F29	310	Epicoccum nigrum	100 %
		C_17_F30	311	Claaosporium sp.	100 %
		C_17_F32	313	Alternaria sp.	100 %

		C_17_F33	314	Alternaria sp.	100 %
		C_17_F34	315	Alternaria sp.	100 %
		C_17_F35	316	Cladosporium sp.	100 %
		 C_17_F36	317	Alternaria sp.	100 %
		D_18_F1	318	Cladosporium sp.	100 %
		D_18_F2	319	Cladosporium sp.	100 %
		D_18_F3	320	Alternaria sp.	99 %
		D_18_F4	321	Cladosporium sp.	100 %
		D_18_F5	322	Stagonospora sp.	99 %
		D_18_F6	323	Alternaria alternata	100 %
		D_18_F7	324	Cladosporium sp.	100 %
		D_18_F8	325	Alternaria sp.	100 %
		D_18_F9	326	Alternaria sp.	100 %
		D_18_F10	327	Cladosporium sp.	100 %
		D_18_F11	328	Parasarocladium radiatum	97 %
		D_18_F12	329	Aspergillus sp.	100 %
		D_18_F13	330	Stagonospora sp.	99 %
		D_18_F14	331	Stagonospora sp.	99 %
		D_18_F15	332	<i>Cladosporium</i> sp.	100 %
		D_18_F16	333	Stagonospora sp.	99 %
	18	D_18_F17	334	Cladosporium sp.	100 %
		D_18_F18	335	Alternaria sp.	100 %
		D_18_F19	336	Alternaria sp.	100 %
		D_18_F20	337	<i>Cladosporium</i> sp.	100 %
D		D_18_F21	338	<i>Cladosporium</i> sp.	100 %
		D_18_F22	339	Cladosporium sp.	100 %
		D_18_F23	340	Cladosporium sp.	100 %
		D_18_F24	341	Stagonospora sp.	99 %
		D_18_F25	342	Cladosporium sp.	100 %
		D_18_F26	343	Epicoccum nigrum	100 %
		D_18_F27	344	Epicoccum nigrum	100 %
		D_18_F28	345	Stagonospora sp.	99 %
		D_18_F29	346	Leptobacillium leptobactrum	100 %
		D_18_F30	347	Leptobacillium leptobactrum	100 %
		D_18_F31	348	Phaeosphaeria halima	99 %
		D_18_F32	349	Geosmithia sp.	99 %
		D_18_F33	350	Acremonium potronii	99 %
		D_18_F34	351	Alternaria sp.	100 %
		D_18_F35	352	Stagonospora sp.	99 %
		D_19_F1	353	Botrytis sp.	100 %
		D_19_F2	354	Stagonospora sp.	99 % 00 %
	19	D 10 F4	333	Stagonospora sp.	33 % 00 %
	1.5	D_19_F4	350	Cladosporta sp.	33 % 100 %
		D 10 FC	35/	Stagonosnorg sn	100 %
		D_10_C2	320	Stuyonospora sp.	33 % 100 %
	l i i i i i i i i i i i i i i i i i i i	D_19_F/	359	Emericellopsis pallida	100 %

		D_19_F8	360	Cladosporium sp.	100 %
		D_19_F9	361	Cladosporium sp.	100 %
		D_19_F10	362	Stagonospora sp.	99 %
		D 19 F11	363	Stagonospora sp.	99 %
		D 19 F12	364	Leptobacillium leptobactrum	100 %
		D 19 F13	365	Parasarocladium radiatum	97 %
		D 19 F14	366	Stagonospora sp.	99 %
		D 19 F15	367	Stagonospora sp.	99 %
		D 19 F16	368	Cladosporium sp.	100 %
		D 19 F18	369	Phaeosphaeria halima	99 %
		D 19 F19	370	Phaeosphaeria spartinicola	99 %
		D 19 F20	371	Leptobacillium leptobactrum	100 %
		D 19 F21	372	Botrvtis sp.	100 %
		<u> </u>	272	Cladochorium ch	100 %
		E_20_F1	373	Ciudosportum sp.	100 %
		E_20_F2	374		100 %
		E_20_F3	375	Exoprilaid oligosperma	100 %
		E_20_F4	370	Exophiala oligosperma	100 %
	20	E_20_F5	3//	Exoprilaid oligosperma	100 %
		E_20_F6	378	Exopriala oligosperma	100 %
		E_20_F7	379	Penicillium sp.	99%
		E_20_F9	380	Exophiala oligosperma	100 %
		E_20_F10	381	Penicillium sp.	100 %
I		E_20_F12	382	Exophiala oligosperma	100 %
		E_21_F1	383	Aspergillus sp.	100 %
		E_21_F2	384	Penicilium sp.	100 %
		E_21_F3	385	Arthrinium sp.	99%
		E_21_F5	387	Cladosporium sp.	99%
		E_21_F6	388	Acremonium potronii	99%
F		E_21_F7	389	Acremonium potronii	99%
L		E_21_F8	390	Parasarocladium radiatum	98 %
		E_21_F9	391	Parasarocladium radiatum	98%
		E_21_F10	392	Penicillium sp.	99%
	21	E_21_F11	393	Trichoderma asperellum	100 %
	21	E_21_F12	394	Cladosportum sp.	99%
		E_21_F13	395	Prasarocladium radiatum	96 %
		E_21_F14	396	Sarocladium subulatum	97 %
		E_21_F15	397	Parasarocladium radiatum	95 %
		E_21_F16	398	Acremonium potronii	99 %
		E_21_F17	399	<i>Botrytis</i> sp.	100 %
		E_21_F18	400	Cladosporium sp.	99 %
		E_21_F19	401	Acremonium potronii	99 %
		E_21_F20	402	<i>Botrytis</i> sp.	100 %
		E_21_F21	403	<i>Botrytis</i> sp.	100 %
		E_21_F22	404	Penicillium sp.	100 %
	22	E_22_F1	405	Alternaria alternata	100 %
		E_22_F2	406	Alternaria sp.	100 %

	E_22_F3	407	Cladosporium sp.	99 %
	E_22_F4	408	Aspergillus sp.	100 %
	E_22_F5	409	Parasarocladium radiatum	96 %
	E_22_F6	410	Trichoderma sp.	100 %
	E_22_F7	411	Trichoderma sp.	100 %
	E_22_F8	412	Trichoderma sp.	100 %
	E_22_F9	413	Parasarocladium radiatum	96 %
	E_22_F10	414	Acremonium potronii	99 %
	E_22_F11	415	Cladosporium sp.	100 %
	E_22_F12	416	Alternaria alternata	100 %
	E_22_F13	417	Parasarocladium radiatum	96 %
	E_22_F14	418	Parasarocladium radiatum	96 %
	E_22_F15	419	Parasarocladium radiatum	96 %
	E_22_F16	420	Parasarocladium radiatum	96 %
	E_22_F17	421	Prasarocladium radiatum	96 %
	E_22_F18	422	Cladosporium sp.	100 %
	E_22_F19	423	Cladosporium sp.	100 %
	E_22_F20	424	Parasarocladium radiatum	96 %
	E_22_F21	425	Cladosporium cladosporioides	100 %
	E_22_F23	426	Parasarocladium radiatum	98 %
	E_22_F24	427	Arthrinium arundinis	99 %
	E_22_F25	428	Arthrinium arundinis	99 %
	E_22_F26	429	Cladosporium sp.	99 %
	E_22_F27	430	Acremonium potronii	99 %
	E_22_F28	431	Cladosporium sp.	99 %
	E_22_F29	432	Cladosporium sp.	99 %
	E_22_F30	433	Cladosporium sp.	99 %
	E_22_F31	434	Cladosporium sp.	99 %
	E_22_F32	435	Acremonium potronii	99 %
	E_22_F33	436	Cladosporium cladosporioides	100 %
	E_22_F34	437	Cladosporium sp.	99 %
	E_22_F35	438	Cladosporium sp.	100 %
	E_22_F36	439	Cladosporium sp.	100 %
	E_22_F37	440	Aspergillus sp.	99 %
	E_22_F38	441	Trichoderma sp.	100 %
	E_22_F39	442	Acremonium potronii	97 %
	E_22_F40	443	Emericellopsis pallida	100 %
	E_22_F43	445	Trichoderma sp.	100 %
	E_23_F1	446	Cladosporium cladosporioides	99 %
	E_23_F2	447	Acremonium potronii	99 %
	E_23_F3	448	Acremonium potronii	99 %
	E_23_F4	449	Parasarocladium radiatum	96 %
23	E_23_F5	450	Cladosporium sp.	100 %
	E_23_F6	451	Cladosporium sp.	100 %
	E_23_F7	452	Parasarocladium radiatum	98 %
	E_23_F8	453	Cladosporium sp.	100 %
	E_23_F9	454	Cladosporium sp.	100 %

		E_23_F10	455	Cladosporium sp.	99 %
		E_23_F11	456	Acremonium potronii	99 %
		E_23_F12	457	Parasarocladium radiatum	98 %
		E_23_F13	458	Cladosporium sp.	99 %
		E_23_F14	459	Emericellopsis maritima	99 %
		E_23_F15	460	Acremonium potronii	99 %
		E_23_F16	461	Acremonium potronii	99 %
		E_23_F17	462	Cladosporium sp.	99 %
		E_23_F18	463	Penicillium crustosum	100 %
		E_23_F19	464	Acremonium potronii	99 %
		E_23_F20	465	Acremonium potronii	99 %
		E_23_F21	466	Acremonium potronii	99 %
		E_23_F22	467	Acremonium potronii	99 %
		E_23_F23	468	Parasarocladium radiatum	96 %
		E_23_F24	469	Acremonium potronii	99 %
		E_23_F25	470	Gen. nov.	-
		E_23_F26	471	Penicillium sp.	100 %
		F_24_F1	472	Stemphylium vesicarium	99 %
		F_24_F2	473	Cladosporium sp.	100 %
		F_24_F3	474	Stemphylium globuliferum	100 %
		F_24_F4	475	Cladosporium sp.	100 %
F	24	F_24_F5	476	Botryosporium longibrachiatum	99 %
		F_24_F6	477	Stemphylium vesicarium	99 %
		F_24_F7	478	Cladosporium sp.	100 %
		F_24_F9	479	Cladosporium sp.	100 %
		F_24_F10	480	Cladosporium sp.	100 %
		G_25_F1	481	Penicillium sp.	99 %
		G_25_F2	482	Penicillium brocae	100 %
		G_25_F3	483	Cladosporium sp.	100 %
	25	G_25_F4	484	Cladosporium sp.	100 %
		G_25_F5	485	Leptobacillium leptobactrum	100 %
		G_25_F6	486	Penicillium brevicompactum	99 %
		G_25_F11	488	Cladosporium sp.	100 %
G		G_25_F12	489	<i>Meira</i> sp.	100 %
		G_26_F2	490	Exophiala oligosperma	100 %
		G_26_F3	491	Exophiala oligosperma	100 %
		G_26_F4	492	Exophiala oligosperma	99 %
	26	G_26_F5	493	Cladosporium sp	100 %
		G_26_F6	494	Exophiala oligosperma	100 %
		G_26_F7	495	Cladosporium sp.	100 %
		G_26_F8	496	Cladosporium sp.	100 %
		G_26_F9	497	Aspergillus sp.	97 %

The sequencing of ITS has a reliable discriminatory power inter- and intraspecific in the fungal species (Schoch *et al.*, 2012). Internal Transcribed Spacer has been indicated as the "primary fungal

barcode marker" due its higher discrimination power. In addition, ITS has superior PCR amplification success rate than other ribosomal markers (such as the large subunit and the small subunit of the nuclear ribosomes) (Schoch *et al.*, 2012).

The 213 representative isolates allowed the genus/specie identification of the remaining fungal individuals (Table 18). The overall diversity of the fungi isolates resulted in 486 individuals distributed by two subkingdoms, three phyla, seven classes, 11 orders, more than 24 families (due the polyphyletic genera) and 33 different genera (Table 19). It is important to highlight the existence of some genera which can be included in more than one family, due their polyphyletic property as happens with *Acremonium* and *Emericellopsis* species. These two genera have species which can be introduce in distinct families.

The most abundant genus was *Cladosporium* (\approx 30.25 %), followed by *Leptobacillium* (\approx 8.64 %), *Alternaria* (\approx 6.38 %) and *Penicillium* (\approx 6.17 %), all of them included in the phylum Ascomycota. Together, the ascomycetes represented 99.59 % of the overall diversity (Figure 2). Within Ascomycota, the class Dothideomycetes was the most abundant (53.93 %), followed by

Sordariomycetes (30.99%), Eurotiomycetes (10.74%) and Leotiomycetes (2.69%). Cladosporiaceae was the most abundant family, composing 30.25 % of the overall diversity and 56.32 % within the Dothideomycetes group. Only one genus was observed in this family: *Cladosporium*. The second most abundant family, Pleosporaceae, represented 16.86 % of the Dothideomycetes class, and it was populated by isolates belonging to the genera Alternaria, Paradendryphiella and Stemphylium. The Sordariomycetes class was also well represented, mainly due to the high occurrence of the genus Leptobacillium (family Cordycipitaceae), Emericellopsis and Acremonium species (polyphyletic groups in the Hypocreales order) and Parasarocladium (included in family Sarocladiaceae) which corresponded to 28 %, 18.67 %, 11.33 % and 14.67 % of genera abundance inside the class, respectively. In the class Eurotiomycetes, two genera were highlighted with 57.69 % and 23.08 %, Penicillium (belonging to Aspergillaceae) and Exophiala (in the Herpotrichiellaceae family), respectively. Classes Sordariomycetes and Eurotiomycetes have been reported in marine environments in works aiming the endophytic mycobiota of a Mediterranean green alga (Gnavi *et* al., 2017), supporting our data. The class Leotiomycetes, which was the least abundant class, was entirely populated by Botrytis species in our collection. Unexpectable, the information about Botrytis species associated with marine environment is very scarce. The only reference found that links this genus to marine environment is registered in a compiled list of 2001, organized by Nicholas Clipson and colleagues about the European marine fungi community, where the species Botrytis cinerea was included (Costello et al., 2001). In this work, Botrytis spp. was detected spread by various algae samples from different sampling sites and represents 2.67 % of the overall diversity (13 isolates).

The less represented genera are composed by single species (fill only 0.21 % of the overall diversity for each genera) belong to *Geosmithia*, *Hypoxylon*, *Lecanicillium*, *Leptosphaerulina*, *Meira*, *Neocamarosporium*, *Sarocladium* and *Talaromyces*.

Phylum	Sub-phylum	Class	Subclass	Order	Family	Genus	Isolates
			Dikarya				
			Dothideomycetidae	Capnodiales	Cladosporiaceae	Cladosporium	147
					Astrosphaeriellaceae	Pithomyces	1
				Didymellaceae	Epicoccum	15	
				Didumente entre entre	Putative new genus	10	
					Paraphaeosphaeria	9	
	Dathidaamycatac			Massarinaceae	Stagonospora	25	
	DotindeoInycetes	Pleosporomycetidae	Pleosporales	Neocamarosporiaceae	Neocamarosporium	1	
				Phaeosphaeriaceae	Phaeosphaeria	7	
		na			Periconiaceae	Periconia	2
					Pleosporaceae	Alternaria	31
Ascomycota	Pezizomycotina					Paradendryphiella	2
						Stemphylium	11
			Chaetothyriomycetidae	Chaetothyriales	Herpotrichiellaceae	Exophiala	12
		F unctions and a				Aspergillus	9
		Eurotiomycetes	Eurotiomycetidae	Eurotiales	Aspergiliaceae	Penicillium	30
					Trichocomaceae	Talaromyces	1
		Leotiomycetes	Leotiomycetidae	Helotiales	Sclerotiniaceae	Botrytis	13
					Delanka lette energi	Acremonium	17
		Candania			Polyphyletic group	Emericellopsis	28
		Sordariomycetes	Hypocreomycetidae	нуростеаles		Leptobacillium	42
					Cordycipitaceae	Lecanicillium	1*

 TABLE 19 | Phylogenetic organization of the fungal isolates found in this work (MycoBank information, May 2019; * - Chen et al., 2017).

 TABLE 19 | Phylogenetic organization of the fungal isolates found in this work (continued).

				_	Hypocreaceae	Trichoderma	9
	Pezizomycotina			_	Nectriaceae	Fusarium	17
		Sordariomycetes	Hypocreomycetidae	Hypocreales	Sarocladiaceae	Parasarocladium	22
				_	Suroclaulaceae	Sarocladium	1
Ascomycota					Incertae sedis	Geosmithia	1
			Sordariomycetidae	Diaporthales	Diaporthaceae	Diaporthe	4
				Xylariales	Apiosporaceae	Arthrinium	4
			Xylariomycetidae	, Aylanaico	Hypoxylaceae	Hypoxylon	1
				Amphisphaeriales	Sporocadaceae	Pestalotiopsis	3
		A	scomycota incertae sed	lis		Botryosporium	7
Basidiomycota	Ustilaginomycotina	Exobasidiomycetes	Exobasidiomycetidae	Exobasidiales	Brachybasidiaceae	Meira	1
			Mucoromycet	a			
Mortierellomycota	Mortierellomycotina	Mortierellomycetes	-	Mortierellales	Mortierellaceae	Mortierella	2

Apart from the detection of isolates belonging to Dikarya (Ascomycota and Basidiomycota fungi), it was detected two isolates belonging to a genus included in a different subkingdom, Mucormycota. These two individuals (0.41 % of diversity) belong to the genus *Mortierella* (Table 19). Usually, *Mortierella* species are isolated from soil (Hyde *et al.*, 2017), decomposing matter (Hyde *et al.*, 2016), but some species were already associated with marine environment (Costello *et al.*, 2001) and Antarctic red and green algae (Ogaki *et al.*, 2019). This survey is the first report of *Mortierella* species associated to *Fucus spiralis*, in Portugal. However, our data are not strong enough to say that this genus is adapted to algae hosts. It was found only two isolates in the same site at the same host, without previous references which establish an association of *Mortierella* species exhibited a better adaptation to the absence of nutrients in the medium when in the presence of the alga *Nannochloropsis oceanica*. Although being isolated from soil substrate, *Mortierella elongata* was the only fungus capable of integrate the algal cells in their hyphae, promoting the nitrogen and carbon shifts between both organisms (Du *et al.*, 2019).

In Table 20, a relation between families is established in order to include the less represented genera in the analysis. Table 20 also presents the distribution of each family and the proportion of the genera inside of the respective group. This analysis allowed us to observe that the majority of the families are represented by a single genus. Of a total of more than 23 families, only 5 families included more than one genus, namely Didymosphaeriaceae, which included a putative new genus (Gen. nov., to be characterised and taxonomically described in a future study) and *Paraphaeosphaeria*; Aspergillaceae, which comprised two related genera, *Penicillium* and *Aspergillus*; Sarocladiaceae, a recently introduced family, which includes *Sarocladium* and *Parasarocladium* isolates; Cordycipitaceae which incorporates the genera *Leptobacillium* and *Lecanicillium*; and family Pleosporaceae, with a considerable presence, including species from the genera *Alternaria, Stemphylium* and, less extensively, the marine genus *Paradendryphiella* (previously, identified as *Dendryphiella* species) (Woudenberg *et al.*, 2013).

The absence of species belonging to Halosphaeriaceae and Lulworthiaceae families is noteworthy, since it contradicts the results obtained by PCR-DGGE approach in previous studies using algae hosts belonging to *Fucus* genus (Raghukumar, 2012). It is important to highlight that these fungal families were detected by independent cultivation methods, while this survey was performed through dependent cultivation methods (Zuccaro *et al.*, 2008). Such differences like the variability of the conditions of fungi isolation e.g. the composition of media used, can lead to the

57
recovery of distinct elements of the fungal community (Fan *et al.*, 2019). In addition, the growth time of the fungi also can influence the results obtained. It is also important to highlight that this survey only includes the isolates which appeared after five days of cultivation at 25 °C (in the dark). **TABLE 20** | Relative abundance (%) of the families and respective abundance of the genera in the respective family.

Family	Total of isolates	Relative abundance (%)	Genera	Isolates	Abundance in the family (%)
Apiosporaceae	4	0.82	Arthrinium	4	100
Asporgillasoaa	20	8.02	Aspergillus	9	23,08
Aspergillaceae	29	8.02	Penicillium	30	76,92
Astrosphaeriellaceae	1	0.21	Pithomyces	1	100
Brachybasidiaceae	1	0.21	Meira	1	100
Cladosporiaceae	147	30.25	Cladosporium	147	100
Corducinitação	43	8.85	Leptobacillium	42	97.67
Cordycipitaceae			Lecanicillium	1	2.33
Diaporthaceae	4	0.82	Diaporthe	4	100
Didymellaceae	15	3.09	Epicoccum	15	100
Didymocrhaoriacoao	19	3.91	Paraphaeosphaeria	9	47,37
Didymosphaenaceae			Gen. nov.	10	52,63
Herpotrichiellaceae	12	2.47	Exophiala	12	100
Hypocreaceae	9	1.85	Trichoderma	9	100
Hypoxylaceae	1	0.21	Hypoxylon	1	100
Incertae sedis	1	0.21	Geosmithia	1	100
Incertae sedis	7	1.44	Botryosporium	7	100
Massarinaceae	25	5.14	Stagonospora	25	100
Mortierellaceae	2	0.41	Mortierella	2	100
Nectriaceae	17	3.5	Fusarium	17	100
Neocamarosporiaceae	1	0.21	Neocamarosporium	1	100
Periconiaceae	2	0.41	Periconia	2	100
Phaeosphaeriaceae	7	1.44	Phaeosphaeria	7	100
	44	9.05	Paradendryphiella	2	4,55
Pleosporaceae			Stemphylium	11	25
			Alternaria	31	70,45
Polyphyletic group	17	3.50	Acremonium	17	100
Polyphyletic group	28	5.76	Emericellopsis	28	100
Saradadiacaaa	23	4.73	Sarocladium	1	4,35
Salociaulaceae			Parasarocladium	22	95,65
Sclerotiniaceae	13	2.67	Botrytis 13		100
Sporocadaceae	3	0.62	Pestalotiopsis	3	100
Trichocomaceae	1	0.21	Talaromyces	1	100

At the order level, Pleosporales was the most diverse order found, exhibiting a distribution of the isolates by 8 distinct families and 12 genera. Although this group comprises 23.46 % of the whole isolates, it is not the most abundant order. Capnodiales (which it is entirely composed by *Cladosporium* species) and Hypocreales (mainly composed by *Leptobacillium* isolates) are the two orders most representatives, corresponding to 30.25 % and 28.40 % of the fungal isolates collection, respectively. The following orders are composed by low amounts of isolates, exhibiting a big difference with the most representative fungal groups. Eurotiales (8.23 %) is the fourth most abundant order and, in addition with the Chaetothyriales (2.47 %), both make part of the Eurotiomycetes class, commonly found in marine environments in other similar works (Gnavi *et al.*, 2017).

Representing 53.93 % of Ascomycota, Dothideomycetes was the most prevailing class of fungi found in this work, being divided by *Cladosporium*, *Epicoccum*, *Paraphaeosphaeria*, Gen. nov., *Stagonospora*, *Neocamarosporiunm*, *Periconia*, *Alternaria*, *Paradendryphiella* and *Stemphylium*. All these genera belong to Pleosporales order, except *Cladosporium* genus, which is included in Capnodiales order. It makes sense the high presence of this group in Ria de Aveiro because it is an environment characterized as intertidal with mangrove zones (Suetrong *et al.*, 2009), representing a favourable environment for the marine Dothideomycetes. This class, in addition with an order belonging to Sordariomycetes class, Hypocreales, already had been referred as endophytes in algae hosts (*Fucus* sp.) in previous studies (Raghukumar, 2012; Zuccaro *et al.*, 2008). So, it is not a surprise that they possess a large presence in the fungi algicolous assemblages of algae from Ria de Aveiro. According to the data obtained, the Hypocreales order is well represented through the genera *Acremonium*, *Leptobacillium*, *Trichoderma*, *Fusarium*, *Parasarocladium* and *Emericellopsis*.

In addition to the genera indicated before, other fungal groups can be highlighted in the present survey, such as the three genera related belonging to the Eurotiales order (*Penicillium*, *Talaromyces* and *Aspergillus*); *Exophiala* species from Chaetothyriales; *Botrytis*, *Diaporthe*, *Arthrinium*, *Hypoxylon* and *Pestalotiopsis* belonging to Sordariomycetes class; and one "unclassified" Ascomycota fungus, the *Botryosporium* isolate.

Our data reinforced the phylum Ascomycota as the most common endophytes in algaeinhabiting fungi (Gnavi *et al.*, 2017). The very rare presence of basidiomycetes in this study can be supported by the inability of this fungal group to colonize the algal cellulose present in the thalli

59

(Gnavi *et al.*, 2017). In fact, *Meira*, belonging to the family Brachybasidiaceae, was the only basidiomycete found.

4.3. COMMUNITY STRUCTURE AND MULTIVARIATE ANALYSES

FIGURE 3 | Fungi community distributed by algae hosts. A-G refers to the sampling sites.

Figure 3 gives a general scenario about the distribution of fungal genera according to algae samples and reveals the absence of a common fungal genus across all seaweeds collected. Cladosporium was the most widespread genus by across all hosts, being absent in just one alga collected from site A, (sample 1: Ulva sp.). Although Cladosporium is a strongly represented genus in our isolates collection, its distribution did not occur equally for all the hosts and/or sites. Penicillium was the second most widespread genus, being observed in 15 algae samples and 11 different hosts. This genus was abundant in Gracilaria sp. (site C) and Codium sp. (site G). Leptobacillium was the third genus most disseminated, being mostly presented in the hosts collected from the site A, where it is also dominant along the fungi community of the hosts collected from this site. In addition, the order Hypocreales was also mainly represented by two distinct genera: Emericellopsis in Ulva sp. and Gracilaria sp. (both collected from site C) and Parasarocladium isolated from an unidentified red alga (site E). There is a solid presence of genera belonging to order Pleosporales, including Alternaria species (very abundant in Fucus hosts collected from site B) and Stagonospora in Cladophora sp. (site D). Species belonging to Exophiala genus were well represented in Ceramium algae (site E) and Scinaia sp. (site G). One sample collected from site B, identified as Fucus sp., showed high abundance of Botryosporium sp., an "Ascomycete incertae sedis". This last genus has been associated with mangrove in another studies (Zhao & Zhou, 2005).

Samples were also analysed for their richness (as number of species), diversity (using Shannon's *H*['] diversity and Simpson's diversity) and evenness (Pielou) (Table 21). The Pielou's evenness calculates the relative abundance of the different species within a community (in this case, in the samples), and measures the "ratio of the observed diversity to the maximum possible in a collection having the same number of species". This value is obtained using a formula derived from Shannon's diversity index and it is a complement for the diversity analysis (Motwani *et al.*, 2014; Pielou, 1966).

62

Site	Sample	Algae Host	Richness (R)	Shannon diversity index (H)	Simpson diversity index (S)	Evenness Pielou index (J)
A	1	Green alga: Ulva sp.	4	0.84	0.417	0.604
	2	Red alga 1*	7	1.82	0.819	0.935
	3	Green alga: Ulva sp.	2	0.29	0.153	0.414
	4	Red alga 1*	9	1.96	0.821	0.89
	5	Brown alga: Fucus sp.	7	1.81	0.818	0.928
	6	Brown alga: Fucus sp.	7	1.85	0.826	0.949
В	7	Brown alga: Fucus spiralis	10	2.11	0.857	0.916
	8	Brown alga: Fucus spiralis	6	1.27	0.593	0.709
	9	Green alga: Enteromorpha sp.	7	1.37	0.61	0.702
	10	Brown alga: <i>Fucus</i> sp.	5	1.49	0.755	0.929
	11	Brown alga: <i>Fucus</i> sp.	10	2.04	0.842	0.885
	12	Brown alga: <i>Fucus</i> sp.	8	1.44	0.628	0.694
	13	Filamentous green alga*	7	1.39	0.62	0.712
	14	Brown alga: <i>Fucus</i> sp.	9	1.87	0.802	0.851
С	15	Red alga: Gracilaria gracilis	6	1.64	0.78	0.917
	16	Green alga: Ulva sp.	5	1.3	0.651	0.81
	10	Green alga: Ulva sp.	9	1.88	0.806	0.855
_	18	Green alga: Cladophora sp.	10	1.85	0.792	0.802
D	19	Green alga: Cladophora sp.	7	1.68	0.765	0.863
	20	Red alga: Ceramium sp.	4	1.09	0.58	0.785
Е	21	Red alga*	10	2.15	0.871	0.935
	22	Green alga: Ulva sp.	9	1.88	0.802	0.855
	23	Green alga: Enteromorpha intestinalis	6	1.57	0.766	0.879
F	24	Brown alga: Fucus sp.	3	0.94	0.568	0.853
6	25	Green alga: Codium sp.	4	1.26	0.688	0.906
G	26	Red alga: Scinaia sp.	3	0.97	0.594	0.887

TABLE 21 | Richness, diversity and evenness indices from algae samples (sample = alga sample). Red alga 1 - algae samples belonging to the same genus. *- unknown algae genus.

The highest richness value observed, in the samples represented in Table 21, was 10 in four samples: two brown algae (2 samples belonging to *Fucus* sp.), one red alga (unknown genus) and one green algae (*Cladophora* sp.). In opposition to these results, the lowest richness value was observed for *Ulva* sp., collected in site A, where only two unique species were isolated.

The measures of both diversity indices (Shannon and Simpson) follow similar patterns to those of the richness, although there are slight differences between samples which have the same number of unique species. The sample with the highest value of Shannon diversity index (H) is a red

alga collected from site E (H = 2.15), while the lowest diversity value corresponded to an *Ulva* sp., collected in site A (H = 0.29). Shannon's H diversity values higher than 2.0 were found in red and brown algae, suggesting that these hosts are the "richest" samples possessing more different fungal species than the remaining hosts. Regarding the values obtained by Simpson diversity index (S), it is possible to conclude that there is in concordance with the results obtained in Shannon diversity index. The highest value reached was 0.871 from a red alga (site E), and the lowest value was also verified in site A, in *Ulva* sp. (S = 0.153). Grouping host by algae groups, the red and brown algae are the samples with the highest diversity values for the both indices. This situation can be explained by the shorter life cycle of the green algae in comparison with red and brown algal species, avoiding the growth and development of slowest fungi in green algae. In addition, the slow growth of typical endophytes of these hosts can be another reason for the lower diversity verified in green algae (Raghukumar, 2012).

Analysis of Pielou's evenness (J) allowed us to determine that the most even sample in species distribution was a brown alga from site A (J = 0.949), while the most diverse only had 0.89 of evenness. This means that the most diverse sample exhibits more differences between the relative abundance of each fungi in the community sheltered. Once again, red and brown algae are the hosts with the highest values, presenting a more even distribution of their fungal species. Higher values of evenness indicate an equative distribution of fungal community in the algae tissues. It is important to highlight the results obtained in site E, where the highest value of evenness and richness indices correspond exactly to the same sample (a red alga). However, this situation only allows us to affirm that this sample presents a high fungal diversity, and a uniform distribution of each species in their community. On the other hand, two green algae are the hosts with more discrepancies between the fungi abundance that they shelter (*Ulva* sp. and a filamentous green algae). Site G presents a well distributed fungi community (J = 0.90), followed by E (0.86), F (0.85), D (0.83) and C (0.83). The lowest value of evenness is from site A (0.79).

The most important factors implicated in the fungi assemblage community of the hosts are a controversial topic between mycologists. Physico-chemical conditions such as temperature, salinity and pH are environmental influencers for the fungi assemblage. However, when considering a "host" and "fungi community", more variables can be suggested as influencers beyond the environmental conditions (Abdel-Gawad *et al.*, 2014). In spite of the importance given to geographical localization, as a determinant influencer of the fungi community composition, it is important do not depreciate studies where the host genera are present as an influencer with equivalent importance (Abdel-Gawad *et al.*, 2014; Harvey & Goff, 2010; Ogaki *et al.*, 2019).

The influence of the host algae in richness, Shannon's H diversity, Simpson's dominance index and Pielou's evenness of the samples was then tested, and no significant differences were found. These results indicate that the host algae are not an influencer in the fungal diversity of the algicolous communities in this study.

In a posterior analysis, after grouping algal hosts in green, brown and red algae, significant differences were detected between these three groups (Kruskal-Wallis: p-value = 0.0417; p-value < 0.05). The post-hoc Nemenyi-Test revealed significant differences in Pielou's evenness between the red and green algae samples (p-value < 0.05) (Table 22).

 TABLE 22 | Results of the p-values obtained from Nemenyi-Test, exhibiting the groups with significative differences between algae groups (green, red and brown algae).

Pairwise comparisons	Brown	Green
Green	0.216	-
Red	0.652	0.044

This result suggests that the species distribution does not present the same fungi uniformity level between these two macroalgae divisions. Considering the data present in Table 21, it can be observed that the Pielou's evenness values are higher for red than for green algae. This result indicates a more even distribution of the fungal species in red algae, while the fungi species in green algae present a situation of dominance of some or several species.

In Figure 4, when the fungi are distributed according to macroalgae group, it is possible to observe that the *Cladosporium* abundance in green algae is dominant. Comparing *Cladosporium* abundance with the quantity of other taxonomic groups present in green algae, a noteworthy discrepancy is verified. This difference can account for the lowest Pielou's evenness index value verified in green algae. On the other hand, the community fungi of red algae are more quantitatively distributed, resulting in a higher Pielou's evenness index values. The significative difference observed between the evenness of these two algae groups can be a result from a non-padronized algae collection (11 samples of green algae vs. 6 samples of red algae).

FIGURE 4 | Fungi community distributed by green, red and brown algae.

Multi-level pattern analysis ("multipatt") demonstrated some relations established between fungi genera and algae hosts. A posterior analysis showed an association of *Exophiala* genus with two hosts groups, *Ceramium* sp. and *Scinaia* sp. ("stat" = 0.989, p-value = 0.025), and *Emericellopsis* spp. with green and red algae ("stat" = 0.752, p-value = 0.04). *Exophiala* is a marine algal-derived endophytic, common in red algae, so their association with two genera of the red algae is not a surprise (Li *et al.*, 2011). Despite its presence in *Fucus* sp. (brown algae), a higher number of *Exophiala* isolates were found in the red algae, in this work, which is supported by other studies (Li *et al.*, 2011). On the other hand, the lowest quantity of isolates identified as "*Emericellopsis* sp." in brown algae is an unexpected result. This situation can be associated with the medium used for fungal isolation from endophytes of *Fucus* sp. A survey by Fan *et al.* (2019) demonstrated that PDA is not always the best suitable method to obtain isolates of *Emericellopsis* species endophytes from *Fucus* spp. Since, *Fucus* spp. are the only genus composing the group of brown algae in this work, the medium can be inappropriate, which accounts for the low quantity of *Emericellopsis* spp. obtained.

Exophiala sp. was the only group associated with some algae genus. All the remaining fungi genera seems not to be related with specific algae hosts. All the statistical results corroborate the independence verified between fungi community's species and respective hosts. This is a situation already proved in other similar work of Harvey & Goff (2010) where they demonstrated that the host is not a determinant factor in the mycobiota assemblage. Although, this situation does not invalidate a slight preference of some fungi group for defined algae host or group (Abdel-Gawad *et al.*, 2014; Gnavi *et al.*, 2017).

FIGURE 5 | Fungi community of each site of our study.

Figure 5 shows the differences between the mycobiota communities of each sampling site. These differences could be observed at genera presence and/or abundance. Except for sampling site A (where *Leptobacillium* is the dominant genus), *Cladosporium* genus is dominant in the remaining sites though its distribution was not equally distributed by them. The dominance of Ascomycota species in all these sampling sites can be related with the capacity of these species to inhabit sites with different salinity concentrations, being always widely spread by brackish and salt marsh environments (Mohamed & Martiny, 2011). In site A, the fungal community is clearly dominated by isolates belonging to Sordariomycetes class (*Leptobacillium* and *Parasarocladium*), followed by Dothideomycetes (*Cladosporium, Paradendryphiella* and *Stagonospora*) and lastly by isolates from Eurotiomycetes (*Aspergillus* and *Penicillium*).

In sites C and D (central zones of Ria de Aveiro), where the salinity is lower than in B and E (Vaz *et al.*, 2005), a different dominant fungal group was observed: *Stagonospora* sp. This facultative marine fungus does not require a specific amount of sodium chloride to grow. It can grow in the presence or absence of salt (Calado *et al.*, 2015), which justifies their presence in sites with a low salinity concentration, such as the sites C and D.

In site E, another genus stands out, *Parasarocladium*, a group recently created to accommodate some *Acremonium* species, that previously belonged to *Radiatum* complex (Crous *et al.*, 2018; Summerbell *et al.*, 2018). Upon cultivation in laboratory, we noticed a better developing and growth in culture medium supplemented with sea salts. This shows a "positive" influence of sodium chloride in the growth of *Parasarocladium* species which supports their occurrence in site E. In this site, the salinity concentration is the least variable between tides, remaining constant and always above 10 (Vaz *et al.*, 2005), which can promote the establishment of species with a better growth in the presence of salt, such as *Parasarocladium*.

In site G, the noteworthy fungi are the isolates belonging to the algal-derived endophytic *Exophiala* genus. This site presents a high salinity level since it is located in a marine environment (sea) (Vaz *et al.*, 2005). Their association to inner tissues of red algae (*Scinaia* sp.) collected in this site, can be supported by other studies of *Exophiala* in associations to marine algae, *Laurencia similis* (Li *et al.*, 2011). In addition, there are records of association of this genus with other algae hosts collected from oceanic coast environments (Li *et al.*, 2011). In addition, *Exophiala* sp. can also act as a human pathogenic agent (Listemann & Freiesleben, 1996) responsible for various skin diseases, such as mycoses, and can even infect the human brain (Hoog *et al.*, 2003).

Regarding the sites under study, the highest value of Shannon's and Simpson diversity indices (resulting from the mean of the samples) was in site D (mean = 1.77 and 0.78, respectively), which agree to the richness in this site (R = 8.5). Also, in sites E, B and C, Shannon's Diversity index presented high values (1.67, 1.62 and 1.62, respectively) as well as Simpson index (0.75, 0.71 and

69

0.73, respectively). On the other hand, the lowest Shannon and Simpson diversity indices values are verified in site F (mean = 0.94 and 0.57, respectively), followed by site G (1.12 and 0.64, respectively) and A (1.43 and 0.64, respectively). Regarding the evenness of the sites, the site G is the one where the fungal community is more uniform due to the high Pielou index (0.90). On the other hand, the site A has the least even fungal community.

Further statistical analyses were performed in order to understand the influence of the collecting site in fungi community composition (richness, diversity and evenness). To understand these relations of fungal community with the sampling sites, the differences of the indices of the samples across sampling sites were evaluated.

Once again, it is verified the absence of significant differences between the values of richness (Kruskal-Wallis Rank Sum Test: Chi-squared = 8.2577, p-value = 0.2198), Shannon's diversity Index (Kruskal-Wallis test: p-value = 0.4759), Simpson's diversity index (Kruskal-Wallis Rank Sum Test: Chi-squared = 3.2399, p-value = 0.7782, p-value > 0.05) and Pielou's evenness (Kruskal-Wallis: p-value = 0.47) between the samples collected from different sites.

Despite the absence of significant differences between the algae samples from different sampling sites, there are some fungal genera that seem to be more related with some sampling sites (Figure 6).

The distribution of the genera in Figure 6, shows that the genus *Cladosporium* was the only one, of the 33 genera, which was observed in all sampling sites. Twenty-six genera were observed in site B and seven of these were exclusive to this site. This was the case for the genera *Hypoxylon*, *Lecanicillium*, *Mortierella*, *Neocamarosporium*, *Periconia* and *Pithomyces*. Notably, all these groups included only one or two isolates in the overall distribution (Table 19).

Leptobacillium spp., the second most abundant group occurred frequently in sampling site A (78.57 % of the total of *Leptobacillium* isolates was observed in this site), while in local B, D, E and G only have, respectively, 7.14 %, 9.52 % and 2.38 % (site E and G).

Alternaria and *Penicillium*, two of the most abundant genera, were present in four and five sampling sites, respectively. *Penicillium* presents an approximately equitable distribution along the sites while *Alternaria* is predominantly in local B.

70

Further analysis of the isolates distribution across sampling sites suggested a "site-genus association". Genera as *Paradendryphiella* and *Paraphaeosphaeria* were observed only in sampling site A. *Hypoxylon, Lecanicillium, Mortierella, Neocamarosporium, Periconia, Pithomyces* and *Talaromyces* are genera that appeared only in sampling site B and *Geosmithia* in site D. The Basidiomycota species belonging to *Meira* appeared only in site G, while the sampling site B sheltered the isolates belonging to the Mortierellomycota phylum, in the Mucoromyceta subkingdom.

Site A Site B Site C Site D Site E Site F Site G

Multi-level pattern analysis allowed the detection of some fungal groups associated with some sampling sites. Results from this analysis suggested an association of *Paraphaeosphaeria* spp. and site A ("stat" = 0.913, p-value = 0.025), Stemphylium spp. and site F ("stat" = 0.812, p-value = 0.035), while in site D there was an association with *Stagonospora* spp. ("stat" = 0.892, p-value = 0.015) and Phaeosphaeria spp. ("stat" = 0.820, p-value = 0.050). Also, Leptobacillium spp. was linked to sites A and D ("stat" = 0.926, p-value = 0.005), and *Emericellopsis* spp. was associated with sites C, D and E ("stat" = 0.882, p-value = 0.025). These results are a possible consequence of the unequal distribution of the fungi abundance over the sampling sites. The connection established between the mycoparasite Paraphaeosphaeria and Leptobacillium with local A are, probably, justified by the proximity of this local to the soil and intense anthropogenic activity. Both fungi groups represent new records in marine environment, due their characteristics as plant endophytes (Nicot et al., 2019) and soil inhabitants (Zare & Gams, 2016). However, biotic factors such as wind and rain, or biotic factors like transition organism and humans, can promote the dispersion of the respective fungi spores. In addition, Leptobacillium also was associated to local D. Despite their association to this site (using the multi-level pattern analysis), it is important to consider only one alga species was recovered from this site. The abundance of Leptobacillium in this site can be considered "accidental", because 4 isolates are not enough to ensure this sampling site as a niche to the fungi genus. Stagonospora is a fungal group with a stronger presence in this site, as demonstrated by the statistical analysis (above). This genus is associated with their relative Phaeosphaeria (teleomorph of Stagnospora), also linked with D site in this survey in the multi-level pattern analysis (Solomon et al., 2006). Phaeosphaeria is a genus that has the capacity to inhabit a wide type of hosts, such as plants (cereals and grasslike plants) and some marine substrata, including salt marsh (Calado et al., 2015; Shoemaker & Babcock, 1989). Some *Phaeosphaeria* spp. are endolichenic and can produce compounds with cytotoxic activity against human tumor cells by photoactivation (Li *et al.*, 2012). In addition to Phaeosphaeria, also their relative Stagonospora, can include marine species (facultative) (Calado et al., 2015; WoRMS Editorial Board, 2019). In this work carried out with algae collect from Ria de Aveiro, both genera (Phaeosphaeria and Stagonospora) were detected in a site with a lower salinity concentration than the remaining sites. It is known that Stagonospora has the capability to grow in the absence of salt (Calado et al., 2015), and their relative Phaeosphaeria also can possess the same ability, explaining their high abundance in site D, where the salinity is low. Stemphylium, a genus statistically relevant in site F, situated in the coast near of vegetation, only had three isolates in this site. These isolates can be present in the algae accidently, because this genus has phytopathogenic species included, and the near vegetation can shelter some individuals belonging to this group, and their spores can reach the marine environment through environment factors (Marin-Felix *et al.*, 2019).

Cladosporium genus is the fungal group dominant in the samples collected from the study sites B to G in this survey (Figure 5 and 6). This genus is characterized as "cosmopolitan in distribution" because of its great adaptation ability which allows it to inhabit a wide range of different substrates in distinct environments (Bensch et al., 2012). A hypothesis for this successful dissemination could be related with the morphological characteristics of their conidia, which are usually small and branched, allowing for an easier dispersal distribution by distinct ecological niches (Bensch et al., 2012). In addition, their dominance in the analysed algae was expected since this genus is well documented as an endophyte in algae hosts (Bensch et al., 2012; Thirumalanadhuni & Palempalli, 2018). Species belonging to the genus *Cladosporium* have been reported in brown, red and green algae (Ding et al., 2008; Thirumalanadhuni & Palempalli, 2018; Trivedi et al., 2015) and have been investigated for their potential to produce antimicrobial, antitumoral and antioxidant substances (Ding et al., 2008; Henríquez et al., 2013). Also, the considerable presence of *Cladosporium* species in fungal communities where the salinity levels vary under tides, can be explained by their high adaptation to different abiotic conditions in the marine environment (Bensh et al., 2012; Raghukumar, 2012). These properties of Cladosporium species support their widespread and "dominance" in the sites B, C, D, E, F and G, under different salinities gradient (Bensh et al., 2012). This way, our data reinforce Cladosporium, as a group with a common presence in a wide range of algae hosts in the marine environment, as well as ecological niches very distinct, which relates to their cosmopolitan character.

The genus *Alternaria* is another group well represented in our samples (Figures 5 and 6). This group belongs to a class widespread and well established in aquatic and marine substrata, the Dothideomycetes (Gnavi *et al.*, 2017). Usually, *Alternaria* is a genus "strong" connected with the marine environment but their presence in the algae hosts has not been indicated (Woudenberg *et al.*, 2013). On the other hand, the existence of *Alternaria* marine-derived species with antibiotic properties against bacteria has been reported in association with marine corals and sediments (Kim *et al.*, 2009; Shaaban *et al.*, 2012). As happen to *Alternaria* species, also *Penicillium* is a common endophyte found in similar proportions, in this work (Woudenberg *et al.*, 2013; Gonçalves *et al.*, 2019¹). In the present work, *Penicillium* sp. was the most abundant fungi group in *Fucus* sp. (brown algae), red algae and, in less extension, in green algae. *Penicillium* is a large and complex group, sheltering about 1500 different species, organized in subgenera and sections (Visagie *et al.*, 2014).

Due the complexity of these species group, it is required a polyphasic approach based on morphological characters, extrolites produced and genetic information (Visagie *et al.*, 2014). In addition, it can be found in a wide range of different substrata from terrestrial habitats to marine environments including intertidal habitats, saline waters (including the hypersaline) (Gonçalves *et al.*, 2019¹; Raghukumar, 2008; Visagie *et al.*, 2014). This genus is mainly explored due to the potential of its secondary metabolites (such as antibiotic activity), especially the marine-derived species (Edrada *et al.*, 2002; Komatsu *et al.*, 2019¹). There are few studies in Portugal that focus on marine fungal communities (Gonçalves *et al.*, 2019¹). However, a recent project has detected a set of *Penicillium* species present in a wide range of substrata, in the Portuguese coast (Gonçalves *et al.*, 2019¹). These results agree with the observations made in the current study.

The second most abundant fungal group in algae from Ria de Aveiro was *Leptobacillium*. This genus was recently introduced in 2016 to include the species previously identified as Verticillium leptobactrum. This group is poorly described, and it is frequently associated with decomposing matter in the soil, as saprobic (Zare & Gams, 2016). It is very common in serpentine soils (described as Verticillium leptobactrum in the past) and in Portugal, it was found in association with bats (Daghino et al., 2012; Paiva-Cardoso et al., 2014). Leptobacillium leptobactrum has been extensively studied because of its potential as biocontrol agent due to its nematicidal capacity against the plant nematode, Meloidogyne incognita (Regaieg et al., 2011). Verticillium species (the genus which L. leptobactrum was associated before) were found in marine habitats in association with sponges in Helgoland, Germany (Höller et al., 2000). However, there are no records of this fungus being associated with algae in this habitat, which is surprising considering the results of this work, where we observed a high abundance of isolates identified as Leptobacillium leptobactrum, mainly distributed in the hosts of site A. In spite of the absence of Leptobacillium in marine environments, this genus is included in an order which shelter another fungal species described as secondary inhabitants of marine environment (Kohlmeyer, 1986). A hypothesis for their high abundance in the algae from Ria de Aveiro is related with the strong anthropic influence and their proximity to the terrestrial environment. The human influence can promote the transport of Leptobacillium *leptobactrum* spores from the terrestrial environment (soil) to the marine environment, and this way the establishment of this species in the algae present there. This is the most plausible explanation to justify the strong presence of a fungus typically isolated from soil in a marine habitat, Leptobacillium species

The fungal community also included species attributed to the genus Acremonium and three related genera: Emericellopsis, Parasarocladium and Sarocladium. Parasarocladium and Sarocladium are the only genera well defined in the Sarocladiaceae family, while the remaining genera are polyphyletic due to their multiple ancestries in different families or orders (Giraldo et al., 2017; Summerbell et al., 2011). Acremonium-like species are a widely spread group, with ability to inhabit a sizeable range of substrates and niches, including marine habitats (Grum-Grzhimaylo et al., 2013; Giraldo et al., 2017; Perdomo et al., 2011). The group comprises common soil saprobes, and there are also marine species belonging to Acremonium or Emericellopsis, which were found associated with algae (Konovalova & Logacheva, 2016). The group of Acremonium-like species was also observed in the present survey, where it amounts to 14 % of the overall diversity. *Emericellopsis* species contributed for that value by their strong connection with the algae samples collected from the sites C and E (Figure 4 and 5). Species of *Emericellopsis* are known to occur in different environments: marine, terrestrial and soda soils. For this reason, the occurrence of these fungi in our work isolated from different sites is not surprising, even with distinct salinity levels and variations. Emericellopsis species do not require a specific level of salinity to grow, as well as, are capable to tolerate high levels of sodium chloride, which can explain their widespread in algae from Ria de Aveiro (Grum-Grzhimaylo et al., 2013; Vaz et al., 2005). In addition, the ability to produce compounds with interesting properties, such as antibiotics, has been observed in Acremonium related taxa (Carreira et al., 2015; Rogozhin et al., 2018). In addition to being relevant phytopathogenic fungi, some individuals can cause opportunistic infections in humans (Grum-Grzhimaylo et al., 2013; Summerbell et al., 2011).

Oliveira and colleagues collected information about fungi community associated with algae. A collection of studies demonstrated the presence of *Penicillium* sp. in *Ulva* sp. and *Epicoccum* sp. in *Fucus* sp. (Oliveira *et al.*, 2012). Also, isolates belonging to *Aspergillus* sp. has been detected in brown and red algae and, *Exophiala oligosperma* and *Acremonium* sp. in red algae, as verified in our work. However, the analysis of our fungi collection revealed an interesting result regarding the low abundance of *Aspergillus* sp. in algae communities. In the seaweeds collected in this work, species of this genus had an incidence of only 1.85 % in the overall diversity. This is an unexpected situation because species belonging to this genus usually have a great ability to adapt to different environments (especially the marine) and are dominant in endophytic mycobiota of seaweeds (Raghukumar, 2012), which is denied by the results obtained in this study.

4.3.1. MEASURE OF COMPLEMENTARY OR DISSIMILARITY OF THE FUNGAL COMMUNITIES

To analyse the community composition, it was applied a measure of dissimilarity between pairs of the samples (Ricotta & Podani, 2017). Then, the abundance of each fungal group in the samples was explore using the Bray-Curtis index (Faith *et al.*, 1987), which allowed to obtain a "robust" result in "unstandardized data" (Bray & Curtis, 1957).

In order to understand if there was some significant influence of sampling sites, host genera and host phyla in the pairs of comparisons obtained it was applied the Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA) analysis. "Host genera" and "algae phyla" did not influence in a significative way the samples [(PERMANOVA: $R^2 = 0.43984$, Pr(>F) =0.13, Pr(>F) > 0.05) and (PERMANOVA: $R^2 = 0.11589$, Pr(>F) = 0.08, Pr(>F) > 0.05), respectively]. However, the results demonstrated an influence of the sampling sites in the samples communities [PERMANOVA: $R^2 = 0.43101$, Pr(>F) = 0.001, Pr(>F) < 0.05].

 TABLE 23 | Results obtained from Adonis analysis.

Number of comparisons	Sub	ojects of compari	sons	p.value	p.adjusted
1	А	VS.	В	0.00700000	0.147
2	А	VS.	С	0.00300000	0.063
3	А	VS.	D	0.03000000	0.630
4	А	VS.	Е	0.01100000	0.231
5	А	VS.	F	0.14400000	1.000
6	А	VS.	G	0.07200000	1.000
7	В	VS.	С	0.31100000	1.000
8	В	VS.	D	0.23400000	1.000
9	В	VS.	Е	0.08900000	1.000
10	В	VS.	F	0.72500000	1.000
11	В	VS.	G	0.09900000	1.000
12	С	VS.	D	0.14400000	1.000
13	С	VS.	E	0.60000000	1.000
14	С	VS.	F	0.50000000	1.000
15	С	VS.	G	0.08800000	1.000
16	D	VS.	E	0.06666667	1.000
17	D	VS.	F	0.33333333	1.000
18	D	VS.	G	0.33333333	1.000
19	Е	vs.	F	0.4000000	1.000
20	Е	vs.	G	0.40000000	1.000
21	F	vs.	G	0.33333333	1.000

Then, a post-hoc test "Pairwise.adonis" (see supplementary information S4) was performed. The pairwise Adonis analysis (Table 23), without a Bonferroni correction (column of "p.value"), showed four pairs of sampling sites with significant differences (p-value < 0.05): site A differed significantly from sites B, C, D and E. However, after the Bonferroni p-value correction (column of "p.adjusted"), these differences were no longer significative. This happened because Bonferroni correction is very conservative, and consequently, the capacity to detect differences undergoes a great reduction (Narum, 2006).

A Principal Coordinates Analysis (PCoA) was performed based on data obtained from Bray-Curtis distances (Figure 7). Despite the low variance represented in the graphic axes (26.9 % and 14.1 % for PCoA1 and PCoA2, respectively), it is possible to observe a clear separation of the samples from site A in relation to the remain samples distributed. This ecological pattern of the samples supported the differences verified between fungal community of site A and sites B, C, D and E.

FIGURE 7 | Principal coordinates analysis (PCoA) of the samples used in the current study.

Site A is the one which more differs from the remaining sampling sites (Figure 7). Its proximity with the coast (localized in a marina), places this site under a considerable anthropogenic influence. All the remaining sites are localized further away from the coast and, consequently, suffer a lesser human-derived impact. This situation, in addition to high salinity (when compared with sites B, C, D and E, which have a very distinct community) can be conditions which promote differences in fungal diversity of the algae. In sites F and G, where salinity reaches similar levels of the salinity in site A, the fungal community does not differ from the site A (Abdel-Gawad *et al.*, 2014; Calado *et al.*, 2015). As shown by the results of *multipatt* analysis, the two genera which exhibit a preference for the colonization of the algae from site A are *Leptobacillium* and *Paraphaeosphaeria* fungi, where they were found in high abundance. Despite their endophytic characteristic, both fungi groups represent new records in marine environment (Nicot *et al.*, 2019) and as algae ihnabitants. Usually, the mycoparasite *Paraphaeosphaeria* and *Leptobacillium* are typically soil inhabitants and/or endophytic of plants (Nicot *et al.*, 2019; Zare & Gams, 2016). It is possible that, abiotic factors such as wind and rain, or biotic factors like transition organisms and the humans, be the factors responsible for the dispersion of the respective fungi spores to marine environment. After that, the high salinity and their endophytic characteristic promote the colonization of the algae present in that site. This situation suggests an explanation for the fungal diversity results obtained in the algae collected in this current study.

The analysis of Bray-Curtis index indicated a similar fungal community between the local B and F. These two places are geographically close, which suggests that the fungi distribution between them must be similar or less variable. In addition, the salinity factor can be applied in this situation because the sodium chloride concentrations are similar (Vaz *et al.*, 2005). The remaining comparisons between places using the Bray-Curtis index did not demonstrate significant differences of the fungi community assemblages of each local.

These results support the salinity and anthropogenic presence, as the possible influencers which determine the fungal community distribution by algae from Ria de Aveiro, in this survey.

Some authors defend the idea that the geographical localization has a higher impact in fungi community than the host where the organisms are present (Raghukumar, 2012). In addition to salinity and anthropogenic pressures, there are other factors responsible for the fungi distribution in algae. Vegetation composition of the sites (Calado *et al.*, 2015; Mohamed & Martiny, 2011) and others environmental stressors (elevated atmospheric CO₂ concentration leading to the increase of acidification and temperature of the seawater) can affect the availability of the substrates and pollution (Loos *et al.*, 2019). However, the lack of information about these factors in Ria de Aveiro did not allow the establishment of relation between them and our results.

79

4.4. CHARACTERIZATION OF PUTATIVE NEW SPECIES

It is known that the current fungal diversity registered only represents a small piece of the entire fungi existing. As mentioned before, algae represent the second biggest source of fungi. However, these organisms are little explored in Portugal. During this survey, it was found six novel species belonging to *Acremonium*-like species: *Emericellopsis cladophorae* sp. nov., *E. enteromorphae* sp. nov., *E. phycophila* sp. nov., *Parasarocladium aestuarinum* sp. nov., *P. alavariense* sp. nov. and *P. fusiforme* sp. nov. (Gonçalves *et al.*, 2019³).

During the results examination, it was noted a set of isolates which were not discriminated at genus level, indicating the presence of one single species of a putative new genus, belonging to Didymosphaeriaceae family in the Pleosporales order. This putative new genus was described as *Neptunomyces aureus* gen. et sp. nov. (Gonçalves *et al.*, 2019⁴).

In addition, it was found one putative new record belonging to the genus *Cladosporium* (*C. rubrum*) and another belonging to *Hypoxylon* group (*H. aveirense*). These two new records description and characterization are presented in the section below.

TAXONOMY

Cladosporium rubrum T. Vicente, M. Gonçalves & A. Alves

Etymology. Name refers to the color of a red pigment produced by this fungus in the culture medium.

Colonies on OA reaching 2.9 cm (Ø) after 14 days of incubation at 25 °C, presenting aurora red and flesh red on the margin of the colony (A; obverse); reverse presenting a scarlet red mixed with vermilion red, with occasional black spots of mycelium; margin slightly irregular. On PDA attaining 2.9 cm, the culture presents a hair brown to greyish white on the border (C and D; obverse and reverse, respectively); On SNA reaching 3.2 cm, the culture is wine yellow to scarlet red on the margin (E and F; obverse and reverse, respectively) with some white mycelium spots on the obverse and dark points on the reverse view.

Mycelium at surface and submerged in culture medium. Hyphae septate, branched, $2.02 - 4.36 \mu$ m wide, smooth - and thick-walled, subhyaline to pale brown.

Conidiophores erect, septate, cylindrical, smooth - and thick-walled, subhyaline to "hair brown" in the extremities, presenting occasional nodules, simple or branched, $36.77 - 165.53 \mu m$ long and $2.34 - 5.03 \mu m$ wide.

Ramoconidia occasional, smooth- and thick-walled, subglobose, $7.08 - 15.72 \mu m$ long and $2.55 - 5.55 \mu m$ wide, subhyaline to pale brown on the borders. **Conidia** obovate to oblong-elliptical, $5.27 - 11.28 \mu m$ long and $2.13 - 4.62 \mu m$ wide (av. (± SD) 7.78 (±1.33) and (3.18 (± 0.54)), forming chains, smooth- and thick-walled, subhyaline to pale golden with a protuberant and darker conidial hilum.

Cardinal temperatures for growth – Optimum 20° C, Maximum 30° C, minimum 10° C (in PDA).

Specimen examined. Portugal, Aveiro, recovered from an alga (Ceramium sp.), Sep.2018.

Notes. A multi-locus analysis placed *Cladosporium rubrum* as a new and distinct species, but closely related to *Cladosporium flavovirens*. Morphologically, these two species are very similar, but *C. flavovirens* presents non-nodulose and longer conidiophores than *C. rubrum*. In addition, there was observed some differences in the size of the fungal structures analyzed for this group: *C. rubrum* has larger hyphae, smaller ramoconidia (long) and bigger conidia than *C. flavovirens*. This new taxonomic group is inserted in the complex Cladosporioides, in a small group well defined, where are included *C. flavovirens* and *C. flabelliforme*.

FIGURE 8 | Cladosporium rubrum. **A**, **B** – Culture in PDA (obvers and reverse view, respectively), after 14 days at 25° C (in the dark). **C**, **D** – Culture in SNA (obvers and reverse view, respectively), after 14 days at 25° C (in the dark). **E**, **F** – Culture in OA (obvers and reverse view, respectively), after 14 days at 25° C (in the dark). **G**-I – Conidiophores, ramoconidia and conidia. **J** - Ramoconidia and conidia chain. **K** – Conidia chain. Scale bars = 10 μ m.

Cladosporium is a very large genus of fungi organized (phylogenetically and morphologically) in three complexes: *C. herbarum*, *C. sphaerospermum* and *C. cladosporioides* (Bensch *et al.*, 2012; Bensch *et al.*, 2018). *C. rubrum* is included in the last one mentioned: Cladosporioides complex, a well-established group, which is phylogenetically individualized from the remaining complexes (Bensch *et al.*, 2012). All the species belonging to this group have similarities with *C. cladosporioides*, presenting slightly morphological differences, but resolved by a polyphasic analysis using a combination between the genes of ITS, actin and translation elongation factor $1-\alpha$ (Bensch *et al.*, 2010; Bensch *et al.*, 2018). Since early, these species have demonstrating a huge ecological versatility which allow them to inhabit soil, textiles, indoor/outdoor environments, decaying vegetal matter and possibly involved in human superficial infections (Bensch *et al.*, 2010; Bensch *et al.*, 2016). The *Cladosporium* species are also usual endophytes in algae (Ding *et al.*, 2008; Thirumalanadhuni & Palempalli, 2018; Trivedi *et al.*, 2015).

FIGURE 9 | Maximum likelihood (ML) tree obtained from the phylogenetic relationships of *Cladosporium* species (*Cladosporioides* complex) based on combined ITS, actin and translation elongation factor 1- α , under the General Time Reversible model. The tree is rooted with *Cercospora beticola* CBS 116456 and it is drawn to scale, which branches size represent the number of substitutions per site. Bootstrap values are shown at the nodes. All the extype species are highlighted in bold and the new species is represented in marine blue.

0,50

FIGURE 9 | (continued).

Cladosporium species also can be saprobes, cosmopolitan and their conidia have a great "power" of dissemination (Bensch *et al.*, 2012). This survey carried out in Ria de Aveiro, adds a new record species to the large group composing the genus *Cladosporium*, but it represents a pioneer investigation of these endophytes' fungi sheltered by algae in this environment.

Hypoxylon aveirense T. Vicente, M. Gonçalves & A. Alves

Etymology. Named after the city where it was recovered for the first time, Aveiro.

Holotype. Portugal, Ria de Aveiro, Fucus sp.

Known distribution. Portugal, Ria de Aveiro, algae hostc (current information).

Colony on PDA attaining 3.8 cm, after 7 days of incubation at 25 °C (in the dark). The colony presenting yellowish grey/skimmed milk white in the margin and hair brown/broccoli brown in the centre (A; obvers) and skimmed milk white in the margin, being yellowish in the middle and asparagus green in the centre of the colony (B; reverse). Colony on OA reaching 2.8 cm after 7 days of incubation at 25 °C, presenting purplish white (C, D; obvers and reverse).

FIGURE 10 | *Hypoxylon aveirense*. **A**, **B** – Culture in PDA (obvers and reverse view, respectively), after 7 days at 25^o C (in the dark). **C**, **D** – Culture in OA (obvers and reverse view, respectively), after 7 days at 25^o C (in the dark). **E** – Close-up view of the culture cultivated in PDA (wood brown). **F** - Conidiogenous structure nodulisporium-like. **G** – Conidia. Scale bars = 10 μ m.

The conidiogenous structures of the asexual state of *Hypoxylon aveirense* is characterized by a Nodulisporium-like asexual morph. *Conidiophores* are hyaline, pale brown to gold, smooth and thin wall. *Conidiogenous cells* terminal, hyaline and gold color with thin wall, $3.93 - 13.18 \times 0.59 - 3.30 \mu$ m. *Conidia* ellipsoid or obovate, gold, smooth and thick wall, $3.98 - 6.96 \times 2.11 - 3.58 \mu$ m.

Cardinal temperatures for growth – Optimum 25° C, Maximum 35° C, minimum 10° C (in PDA). In OA: optimum 30° C, maximum 35° C and minimum 10° C.

Specimen examined. Portugal, Aveiro, recovered from an alga (Ceramium sp.), Sep.2018.

Notes. Hypoxylon aveirense is phylogenetically isolated from the remaining species reported of this group. The species closest is *H. griseobruneum*, which presenting a vigariella-like structure, different from the nodulisporum-like structure of *H. aveirense* (Kuhnert *et al.*, 2014). Other discrepancies are verified in the size of the structures: *H. aveirense* has the conidiogenous cells and conidia smaller than *H. griseobrunneum*. Conidia shapes and colony colours are characterists which place *H. aveirense* close to *H. griseobrunneum*, in addition the combined phylogenetic information in the ITS and β -tubulin sequences.

Hypoxylon is a genus widely disseminated by world, being reported in "Yungas" of Argentina (Sir *et al.*, 2016), Martinique (French Caribbean) (Kuhnert *et al.*, 2014), France, Portugal and United Kingdom (Fournier *et al.*, 2010). In addition, *Hypoxylon* is inserted in a group denominated *Nodulisporium* species, phytopathogens (production of a phytotoxic compound by *Hypoxylon* spp.) and typical endophytes of putrefying vegetal matter. This group only comprises anamorphic fungi and beyond being associated with algae, they have the potential to produce compounds presenting algicidal properties (Ulloa-Benítez *et al.*, 2016). *Hypoxylon* is a group already found in Portugal, when *H. lusitanicum* was described in association with wood in aquatic environment (Fournier *et al.*, 2010). However, *H. aveirense* is the first report of this genus in algae from Ria de Aveiro. Further studies aiming the chemotaxonomy profile and teleomorphic morphology are necessary to reinforce the phylogenetic placement of this species. In addition, it is interesting the study about the potential of this new species due the possibility of to possess traits as antimicrobial, cytotoxic and insecticidal (Fournier *et al.*, 2010).

FIGURE 11 | Maximum likelihood (ML) tree obtained from the phylogenetic relationships of *Hypoxylon* species based on combined ITS and β -tubulin genes, under the Kimura two-parameter model. The tree is rooted with *Creosphaeria sassafras* CBS 119001 and it is drawn to scale, which branches size represent the number of substitutions per site. Bootstrap values are shown at the nodes. All the ex-type species are highlighted in bold and the new species is represented in blue. In the right side of the tree is indicate the clades of the species.

5. CONCLUSION

This thesis represents the first report of the fungal diversity of algae collected from Ria de Aveiro. Also, it is important to highlight that this study represents only a small portion of the overall diversity which can inhabit this habitat. Most fungi identified belong to Ascomycota, a very abundant group in marine environment. The absence of some species different of Ascomycota can be related with the incapacity of other fungi, such as Basidiomycota, of inhabit the algae tissues. In addition, the use of methods dependent of fungi culture, the time given for the fungi to growth and the standard temperature used for the incubation can represent barriers for species with a slow growth and/or have preference for other temperatures.

The main fungal groups detected in the seaweeds are marine-derived fungi instead of true marine fungi, as supported by Raghukumar (2012). Our data represents a typical scenario of fungi community because it includes species that accidently reached the marine environment, transients, and facultative marine species, with capacity to grow outside the marine or freshwater habitats (Ólafsson, 2017). Genera as *Cladosporium*, *Penicillium*, *Alternaria* and *Acremonium*-like species are expected groups and their high abundance in this work supported their association with the marine environment. However, this work also introduces uncommon inhabitants' fungi groups of algae, in the marine environment, such as the *Leptobacillium* spp. More studies must be done to ensure this fungal group as an algae colonizer of Ria de Aveiro. Also, the fungal communities of the samples present little differences, mainly between different sampling sites. Such diversity differences and the huge quantity of unexpectable isolates, can be related with the anthropogenic pressure in association with another abiotic factors, such as the salinity of the sampling sites.

In addition, this work allowed the introduction of unidentified fungal species, as the *Cladosporium rubrum* and *Hypoxylon aveirense*. The addition of species never referred in the literature emphasizes the necessity to perform more surveys aiming the algicolous fungal communities in Portugal and, possibly, the discovery of more putative new species.

6. FUTURE WORKS

It is known that the use of methods dependent of fungi culture, limits the microbial diversity found, reducing to only 1 % of the total diversity expected (Goecke & Imhoff, 2017).

To complement this work about fungi diversity from seaweed collected on the Ria de Aveiro it would be advisable to perform methods independent of culture to assess the fungal microorganism not cultivable, but also present in the study subject.

Based on the definition of marine fungi on the "repetitive isolation of the same fungi from the same site", the continuation of this project would be a good support for this work. The useful of future works also is related with the fungi genera of low occurrence in the mycobiota of algae, to define if that fungi have an occasional (accidental) presence or not (Raghukumar, 2017).

This survey contributed to the overall knowledge about fungi present in algae of Ria de Aveiro, Portugal, a study area that should be further explored. Additionally, the potential that these microorganisms can possess should be explored, mainly in association with other organisms, which can amplify these characteristics. The antimicrobial activity against bacteria is a property very important, nowadays, due the increasing of resistance of bacteria against the current antibiotics used. Also, some products produced by fungi exhibited antifungal activities against other pathogenic species. In addition, fungi are also responsible to produce compounds with can help in human disturbances such as anti-allergic, anticoagulant, antidiabetic and antitumoral. All these activities shown, suggest the huge potential of marine fungal microorganisms, already little explored. For this, it is important a continuous work aiming the search by these amazing characteristics.

7. References

Abdel-Gawad KM, Hifney AF, Issa AA, Gomaa M. Spatio-temporal, environmental factors, and host identity shape culturable-epibiotic fungi of seaweeds in the Red Sea, Egypt. Hydrobiologia. 2014;740(1):37-49.

Aleixo AMF. Biodiversidade de fungos endofíticos em *Halimione portulacoides* (master's thesis). Aveiro: Universidade de Aveiro; 2013. 76 p.

Alves A, Phillips AJ, Henriques I, Correia A. Rapid differentiation of species of *Botryosphaeriaceae* by PCR fingerprinting. Res Microbiol. 2007;158(2):112–21.

Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84(2):511-25.

Artz RR, Anderson IC, Chapman SJ, Hagn A, Schloter M, Potts JM, Campbell CD. Changes in fungal community composition in response to vegetational succession during the natural regeneration of cutover peatlands. Microb Ecol. 2007;54(3):508-22.

Bensch K, Braun U, Groenewald JZ, Crous PW. The genus *Cladosporium*. Stud Mycol. 2012; 72:1–401.

Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol. 2010;67:1–94.

Bensch K, Groenewald JZ, Meijer M, Dijksterhuis J, Jurjević Ž, Andersen B, Houbraken J, Crous PW, Samson RA. *Cladosporium* species in indoor environments. Stud Mycol. 2018;89:177-301.

Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol monogr. 1957;27(4):325-49.

Calado M da L, Carvalho L, Pang KL, Barata M. Diversity and Ecological Characterization of Sporulating Higher Filamentous Marine Fungi Associated with *Spartina maritima* (Curtis) Fernald in Two Portuguese Salt Marshes. Microb Ecol. 2015;70(3):612–33.

Carreira C, Staal M, Falkoski D, Vries RP De, Middelboe M, Brussaard CPD. Disruption of photoautotrophic intertidal mats by filamentous fungi. 2015;17:2910–21.

Chen W, Han Y, Liang Z, Jin D. *Lecanicillium araneogenum* sp. nov., a new araneogenous fungus. Phytotaxa. 2017;305(1):29-34.

Costello MJ, Emblow C and White R (editors). European Register of Marine Species A check-list of the marine species in Europe and a bibliography of guides to their identification. *Patrimoines naturels*. 2001; 501–502.

Cotton AD. Notes on marine Pyrenomycetes. Trans Br Mycol Soc. 1907;3:92-9.

Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP et al. Fungal Planet description sheets: 785–867. Persoonia. 2018;41:238.

Daghino S, Murat C, Sizzano E, Girlanda M, Perotto S. Fungal Diversity Is Not Determined by Mineral and Chemical Differences in Serpentine Substrates. PLoS One. 2012;7(9).

De Caceres M, Jansen F. Package 'indicspecies'. Relationship between species and groups of sites. R package version. 2016;1(6).

Ding L, Qin S, Li F, Chi X, Laatsch H. Isolation, antimicrobial activity, and metabolites of fungus *Cladosporium* sp. associated with red alga *Porphyra yezoensis*. Curr Microbiol. 2008;56(3):229–35.

Du ZY, Zienkiewicz K, Pol NV, Ostrom NE, Benning C, Bonito GM. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife. 2019;8.

Edrada RA, Heubes M, Brauers G, Wray V, Berg A et al. Online analysis of Xestodecalactones A-C, novel bioactive metabolites from the fungus *Penicillium* cf. *montanense* and their subsequent isolation from the sponge *Xestospongia exigua*. J Nat Prod 2002; 65:1598–1604.

Faith DP, Minchin PR, Belbin L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio. 1987;69(1-3):57-68.

Fan B, Parrot D, Blümel M, Labes A, Tasdemir D. Influence of OSMAC-Based Cultivation in Metabolome and Anticancer Activity of Fungi Associated with the Brown Alga *Fucus vesiculosus*. Mar drugs. 2019;17(1):67.

Fournier J, Köpcke B, Stadler M. New species of *Hypoxylon* from western Europe and Ethiopia. Mycotaxon. 2010;113(1):209-35.

92

Giraldo A, Gené J, Sutton DA, Wiederhold N, Guarro J. New acremonium-like species in the Bionectriaceae and Plectosphaerellaceae. Mycol prog. 2017;16(4):349-68.

Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G, Varese GC. The culturable mycobiota of *Flabellia petiolata*: First survey of marine fungi associated to a Mediterranean green alga. PloS one. 2017;1-20.

Goecke FR, Imhoff JF. Microbial biodiversity associated with marine macroalgae and seagrasses. Marine Macrophytes as Foundation Species. 2016;1.

Gonçalves MFM, Aleixo A, Vicente TFL, Esteves AC, Alves A 2019 – Three new species of *Neocamarosporium* isolated from saline environments: N. *aestuarinum* sp. nov., N. *endophyticum* sp. nov. and N. *halimiones* sp. nov. Mycosphere. 2019²;10(1), 608–621, Doi 10.5943/mycosphere/10/1/11.

Gonçalves MFM, Santos L, Silva BMV, Abreu AC, Vicente TFL, Esteves AC & Alves A. Biodiversity of *Penicillium* species from marine environments in Portugal and description of *Penicillium lusitanum* sp. nov., a novel species isolated from se water. Int J Syst Evol Microbiol. 2019¹; 69 (10).

Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. *Neptunomyces aureus* gen. et sp. nov. (*Didymosphaeriaceae*, *Pleosporales*) isolated from algae in Ria de Aveiro, Portugal. MycoKeys. 2019⁴.

Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. Novel halotolerant species of *Emericellopsis* and *Parasarocladium* associated with macroalgae in an estuarine environment. Mycologia. 2019³.

Grum-Grzhimaylo AA, Georgieva ML, Debets AJM, Bilanenko EN. Are alkalitolerant fungi of the *Emericellopsis* lineage (Bionectriaceae) of marine origin? IMA fungus. 2013;4(2):213–28.

Harvey JB, Goff LJ. Genetic covariation of the marine fungal symbiont *Haloguignardia irritans* (Ascomycota, Pezizomycotina) with its algal hosts *Cystoseira* and *Halidrys* (Phaeophyceae, Fucales) along the west coast of North America. Fungal biol-UK. 2010;114(1):82-95.

Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P, Araya I, Chávez R, San-Martín A, Darias J, Darias MJ, Vaca I. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol. 2013;30(1):65–76.
Hilário SCC. Espécies de *Botryosphaeriaceae* e *Diaporthaceae* associadas a plantas de mirtilo em Portugal (master's thesis). Aveiro: Universidade de Aveiro. 2017:105.

Höller G, Wright AD, Matthée GF, Konig GM, Draeger S, Aust HJ, Schulz B. Fungi from marine sponges: Diversity, biological activity and secondary metabolites. Mycol Res. 2000;104(11):1354–65.

Hoog GS De, Vicente V, Caligiorne RB, Kantarcioglu S, Tintelnot K, van den Ende AG, Haase G. Species diversity and polymorphism in the *Exophiala spinifera* clade containing opportunistic black yeast-like fungi. J Clin Microbiol. 2003;41(10):4767-78.

Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, et al. Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80(1):1–270.

Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Chethana KT, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S. et al. Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017;87(1):1-235.

Jones EG, Stanley SJ, Pinruan U. Marine endophyte sources of new chemical natural products: a review. Bot mar. 2008;51(3):163-70.

Kim M, Sohn JH, Ahn JS, Oh H. Alternaramide, a Cyclic Depsipeptide from the Marine-Derived Fungus *Alternaria* sp. SF-5016. J Nat Prod. 2009;72:2065–8.

Kohlmeyer J, Volkmann-Kohlmeyer B. Marine ascomycetes from algae and animal hosts. Bot Mar. 2003;46(3):285–306.

Kohlmeyer, J. 18 Taxonomic studies of the marine ascomycotina. The biology of marine fungi. 1986:199.

Komatsu K, Shigemori H, Mikami Y, Kobayashi J. Sculezonones A and B, two metabolites possessing a phenalenone skeleton from a marine-derived fungus *Penicillium* species. J Nat Prod 2000;63: 408– 409.

Konovalova O, Logacheva M. Mitochondrial genome of two marine fungal species. Mitochondrial DNA Part A. 2016;27(6):4280-1.

Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJ, Stadler M. New *Hypoxylon* species from Martinique and new evidence on the molecular phylogeny of *Hypoxylon* based on ITS rDNA and β -tubulin data. Fungal Divers. 2014;64(1):181-203.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874.

Li F, Li K, Li X, Wang B. Chemical constituents of marine algal-derived endophytic fungus *Exophiala oligosperma* EN-21. Chinese J Oceanol Limnol. 2011;29(1):63–7.

Li G, Wang H, Zhu R, Sun L, Wang L, Li M, Li Y, Liu Y, Zhao Z, Lou H. Phaeosphaerins A-F, Cytotoxic Perylenequinones from an Endolichenic Fungus, *Phaeosphaeria* sp. Journal of Natural Products. 2012;75(2):142-7.

Listemann H, Freiesleben H. *Exophiala mesophila* spec. nov. *Exophiala mesophila* spec. nov. Mycoses. 1996;39(1-2):1-3.

Loos LM Van Der, Eriksson BK, Salles JF. The Macroalgal Holobiont in a Changing Sea. Trends Microbiol. 2019;27(7):635–50.

Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol. 2019;92:47-133.

Meyer W, Latouche GN, Daniel H-M, Thanos M, Mitchell TG, Yarrow D, Schönian G, Sorrell TC. Identification of pathogenic yeasts of the imperfect genus *Candida* by polymerase chain reaction fingerprinting. Electrophoresis. 1997;18(9):1548–1559.

Meyer W, Mitchell TG, Freedman EZ, Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of *Cryptococcus neoformans*. J Clin Microbiol. 1993;31(9):2274–80.

Mohamed DJ, Martiny JBH. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 2011;5(3):379–88.

Möller, EM, Bahnweg, G, Sandermann, H, and Geiger, HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992; 20:6115-6116.

Motwani G, Raman M, Matondkar P, Parab S, Pednekar S, Solanki H. Comparison between phytoplankton bio-diversity and various indices for winter monsoon and inter monsoon periods in north-eastern Arabian Sea. Indian J Geo-Marine Sci. 2014;43(8):1513–8.

Narum SR. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv genet. 2006;7(5):783-7.

Nave J. A Handy-book to the Collection and Preparation of Freshwater and Marine Algae: Diatoms, Desmids, Fungi, Lichens, Mosses and Other of the Lower Crytogamia with Instructions for the Formation of an Herbarium. R. Hardwicke; 1869.

Nicot PC, Avril F, Duffaud M, Leyronas C, Troulet C, Villeneuve F, Bardin M. Differential susceptibility to the mycoparasite *Paraphaeosphaeria minitans* among *Sclerotinia sclerotiorum* isolates. Trop Plant Pathol. 2019;44(1):82-93.

Ogaki MB, de Paula MT, Ruas D, Pellizzari FM, García-Laviña CX, Rosa LH. Marine Fungi Associated with Antarctic Macroalgae. The Ecological Role of Micro-organisms in the Antarctic Environment. 2019;239-255.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H, Oksanen MJ. Package 'vegan'. Community ecology package, version. 2019;2(9):1-295.

Ólafsson E. Marine Macrophytes as Foundation Species. Spain – CRC Press; 2017. 19 p.

Oliveira AL, Felício RD, Debonsi HM. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. Rev Bras de Farmacogn. 2012;22(4):906-20.

Paiva-Cardoso M das N, Morinha F, Barros P, Vale-Gonçalves H, Coelho AC, Fernandes L, Travassos P, Faria AS, Bastos E, Santos M, Cabral JA. First isolation of *Pseudogymnoascus destructans* in bats from Portugal. Eur J Wildl Res. 2014;60(4):645–9.

Perdomo H, Sutton DA, Garcia D, Fothergill AW, Cano J, Gené J, Summerbell RC, Rinaldi MG, Guarro J. Spectrum of clinically relevant *Acremonium* species in the United States. J Clin Microbiol. 2011; 49:243–256.

Pereira L. Guia ilustrado das Macroalgas. Imprensa da Universidade de Coimbra/Coimbra University Press; 2009; 92.

Pereira ME, Lillebø AI, Pato P, Válega M, Coelho JP, Lopes CB, Rodrigues S, Cachada A, Otero M, Pardal MA, Duarte AC. Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environ monit assess. 2009;155(1-4):39-49.

Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13(0):131–44.

Pohlert T. PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version. 2018;1(0).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2019. Vienna, Austria. URL http://www.R-project.org/

Raghukumar C, editor. Biology of marine fungi. Springer Science & Business Media. 2012; 1-333.

Raghukumar C. Marine fungal biotechnology: an ecological perspective. Fungal Divers 2008; 31:19–35.

Raghukumar S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast Ocean Mar Ecosyst Mar Fungi. 2017;1–378.

Rayner RW. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society. Kew. 1970.

Regaieg H, Ciancio A, Raouani NH, Rosso L. Detection and biocontrol potential of *Verticillium leptobactrum* parasitizing *Meloidogyne* spp. World J Microb Biot. 2011;27(7):1615-23.

Ricotta C, Podani J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol Complex. 2017;31:201–5.

Rogozhin E, Sadykova V, Baranova A, Vasilchenko A, Lushpa V, Mineev KS, Georgieva ML, Kul'ko AB, Krasheninnikov ME, Lyundup AV, Vasilchenko AV, Andreev YA. A novel lipopeptaibol Emericellipsin A with antimicrobial and antitumor activity produced by the extremophilic fungus *Emericellopsis alkalina*. Molecules. 2018;23:2785.

Sandoval-Denis M, Gené J, Sutton DA, Wiederhold NP, Cano-Lira JF, Guarro J. New species of *Cladosporium* associated with human and animal infections. Persoonia. 2016;36: 281-98.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109(16):6241-6.

Shaaban M, Shaaban KA, Abdel-Aziz MS. Seven naphtho-γ-pyrones from the marine-derived fungus *Alternaria alternata*: structure elucidation and biological properties. Org Med Chem Lett. 2012;2(1):6.

Shoemaker RA, Babcock CE. Phaeosphaeria. Canadian Journal of Botany. 1989; 67(5):1500-99.

Sir EB, Kuhnert E, Lambert C, Hladki AI, Romero AI, Stadler M. New species and reports of *Hypoxylon* from Argentina recognized by a polyphasic approach. Mycol prog. 2016;15(4):42.

Solomon PS, Lowe RG, TAN KC, Waters OD, Oliver RP. *Stagonospora nodorum*: cause of *Stagonospora nodorum* blotch of wheat. Mol plant pathol. 2006;7(3):147-56.

Sparrow FK. Biological observations on the marine fungi of Woods Hole waters. The Biological Bulletin. 1936;70(2):236-63.

Sridhar KR. Marine filamentous fungi: Diversity, distribution and bioprospecting. Dev Fungal Biol Appl Mycol. 2017;59–73.

Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 2009; 64:155–73.

Summerbell RC, Gueidan C, Guarro J, Eskalen A, Crous PW, Gupta AK, Gené J, Cano-Lira JF, Iperen A van, Starink M, Scott JA. The Protean *Acremonium*. *A. sclerotigenum /egyptiacum*: Revision, Food Contaminant, and Human Disease. Microrganisms. 2018;6(3):88.

Summerbell RC, Gueidan C, Schroers H, Hoog GS De, Starink M, Rosete YA, Guarro J, Scott JAI. *Acremonium* phylogenetic overview and revision of *Gliomastix, Sarocladium*, and *Trichothecium*. Stud Mycol. 2011; 68:139–62.

Sutherland GK. Marine fungi imperfecti. New Phytol. 1916:35-48.

Thirumalanadhuni V, Palempalli UD. Molecular Characterization and Endophytic Life Style Pattern of *Cladosporium uredinicola* Derived from Marine Brown Alga *Dictyota dichotoma*. J Pure Appl Microbiol. 2018;12(3):1661–6.

Trivedi N, Reddy CRK, Radulovich R, Jha B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed *Ulva* for bioethanol production. Algal Res. 2015;9:48–54.

Ulloa-Benítez Á, Medina-Romero YM, Sánchez-Fernández RE, Lappe-Oliveras P, Roque-Flores G, Duarte Lisci G, Herrera Suárez T, Macías-Rubalcava ML. Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte *Hypoxylon anthochroum* strain Blaci isolated from *Bursera lancifolia* (Burseraceae). J appl microbiol. 2016;121(2):380-400.

Vaz N, Dias JM, Leitão P, Martins I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 2005;55(5–6):416–29.

Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, et al. *Aspergillus*, *Penicillium* and *Talaromyces* isolated from house dust samples collected around the world. Stud Mycol. 2014;78(1):63–139.

World Register of Marine Species. 2019. Available from: http://www.marinespecies.org. (Accessed 2019-11-08). Doi: 10.14284/170.

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. *Alternaria* redefined. Stud Mycol. 2013;75:171–212.

Zare R, Gams W. More white *verticillium*-like anamorphs with erect conidiophores. Mycol Prog. 2016;15(10–11):993–1030.

Zhao X, Zhou M. Studies on Mangrove Mycoflora in Yueqing Bay. Journal of Wenzhou University. 2005;4.

Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI. Detection and Identification of Fungi Intimately Associated with the Brown Seaweed *Fucus serratus*. Appl Environ Microbiol. 2008;74(4):931–41.

8. SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION S1. DNA EXTRACTION PROTOCOL (BASED ON MÖLLER *et al.*, 1992).

- 1. Grow fungus on suitable media to ensure adequate development of mycelia;
- 2. Transfer fungal mycelia to 2.2 mL Eppendorf and add 500 μ L TES buffer;
- 3. Mix boil for 3 minutes and then place on ice water for 10 minutes;
- 4. Add 10 μL of proteinase K (20 mg/mL);
- 5. Incubate at 65 °C for 30 minutes (swirl occasionally):
- 6. Increase the salt concentration by adding 140 μL 5M NaCl;
- **7.** Add 65 μL 10 % CTAB;
- 8. Incubate at 65 °C for 30 minutes (swirl occasionally);
- Add 1 mL of chloroform: isoamylalcohol (24:1) and mix carefully by inversion for 1 minute;
- 10. Incubate for 30 minutes at 12 000 rpm at 4 °C;
- **11.** Transfer supernatant (800 μL) to a new 1.5 mL tube;
- **12.** Add 225 μ L 5 M NH₄OAc and mix carefully;
- 13. Incubate for 30 minutes on ice water;
- 14. Centrifuge for 10 minutes at 12 000 rpm at 4 °C;
- **15.** Transfer supernatant (1 000 μL) to a new tube;
- **16.** Add 0.55 volume ice-cold isopropanol (500 μL) and mix carefully;
- **17.** Incubate directly for 10 minutes at 12 000 rpm at 4 °C;
- 18. Discard the supernatant;
- **19.** Wash 2X with 1 000 μ L ice-cold 76 % ethanol (centrifuge for 10 minutes, discard supernatant);
- 20. Dry DNA pellet on bench;
- 21. Dissolve pellet in 30 μL 100 μL TE buffer + RNase (1.5 μL of 10 mg/mL plus 48.5 μL TE buffer). Store DNA dilutions at 4 or -20 °C and original stocks at -20 °C.

SUPPLEMENTARY INFORMATION S2. DNA PURIFICATION PROTOCOL.

Protocol for PCR clean-up or DNA purification from enzymatic reactions (manufacturer instructions: NZYTech)

 Transfer the volume of the reaction mixture into a 1.5 mL microcentrifuge tube and add five volumes of Binding Buffer. Mix by inverting the tube a few times. Centrifuge briefly to collect the sample. All purification steps including centrifugation should be carried out at room temperature.

Note (sequencing of PCR products):

When cleaning up PCR products for subsequent sequencing processes, if using an amplification primer for sequencing avoid primers larger than 22-25 bp. In this case it is recommended to use a maximum of 0.25 μ M of primers during the PCR amplification and 2.5 μ M of the sequencing primer in the sequencing reaction. In case residual peaks appear in sequencing chromatograms, due to the presence of traces of the second amplification primer, dilute Binding Buffer to a 60-50 % solution in water and proceed as above. Use NZYTech sequencing services for maximum efficiencies.

- Add the above mixture to the NZYTech spin column. The maximum loading volume of the column is 700 μL. For sample volumes greater than 700 μL simply load again. Centrifuge for 30 s to 1 minute and discard the flow-through in the tube.
- 3. Add 600 μ L of Wash Buffer and centrifuge for 30 s to 1 minute. Discard the flow-through in the collection tube.
- 4. Centrifuge for 1 minute to dry NZYTech spin membrane of residual ethanol.
- 5. Place the NZYTech spin column into a clean 1.5 mL microcentrifuge tube. Add 50 μL of Elution Buffer to the centre of the column and incubate at room temperature for 1 minute. Centrifuge for 1 minute to elute DNA. Ultrapure water may be used in place of elution buffer. However, DNA recovery with acidic waters may be significantly reduced.
- 6. Centrifuge for 1 minute to elute the DNA.
- 7. Store the purified DNA at -20 °C.

SUPPLEMENTARY FIGURE S3. RESULT FROM MOLECULAR TYPING.

D

В

G

G

С

С

С

В

D

в

В

В

В

G

G

В

G

С

А

А

A B

Е

Е

А

С

С

в

D

D

Е

D

Е

D

В

А

A C

С

С

19

8

25

25

17

17

13

11

18

9

9

9

9

26

26

9

26

13

5

5

5

11

21

21

2

13

13

8

19

19

21

18

21

18

7

2

2

15

13

G 25 С 14 Е 23 Е 23 Е 23 Е 23 Е 23 Е 21 А 1 Е 20 В 10 В 7 Е 22 Е 22 Е 22 Е 23 Е 22 Е 21 Е 22 А 5 С 16 Е 22 Е 22 Е 23 Е 22 А 5 D 18 D 18 С 13 В 11 В 11 В 7 В 7 В 9 В 7 Е 22 Е 22 В 12 В 9 С 16


```
SUPPLEMENTARY INFORMATION S4. FUNCTION PAIRWISE.ADONIS.
```

```
pairwise.adonis <- function(x,factors, sim.method = 'bray', p.adjust.m ='bonferroni')
```

```
{
library(vegan)
co = combn(unique(factors),2)
pairs = c()
F.Model =c()
R2 = c()
```

p.value = c()

```
for(elem in 1:ncol(co)){
```

```
ad = adonis(x[factors %in% c(co[1,elem],co[2,elem]),] ~ factors[factors %in%
```

```
c(co[1,elem],co[2,elem])] , method =sim.method);
```

```
pairs = c(pairs,paste(co[1,elem],'vs',co[2,elem]));
```

```
F.Model =c(F.Model,ad$aov.tab[1,4]);
```

```
R2 = c(R2,ad$aov.tab[1,5]);
```

```
p.value = c(p.value,ad$aov.tab[1,6])
```

```
}
```

```
p.adjusted = p.adjust(p.value,method=p.adjust.m)
```

```
pairw.res = data.frame(pairs,F.Model,R2,p.value,p.adjusted)
```

```
return(pairw.res)
```

}