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ABSTRACT
Time series of (small) counts are common in practice and appear in a wide variety
of fields. In the last three decades, several models that explicitly account for the dis-
creteness of the data have been proposed in the literature. However, for multivariate
time series of counts several difficulties arise and the literature is not so detailed. This
work considers Bivariate INteger-valued Moving Average, BINMA, models based on
the binomial thinning operation. The main probabilistic and statistical properties
of BINMA models are studied. Two parametric cases are analysed, one with the
cross-correlation generated through a Bivariate Poisson innovation process and an-
other with a Bivariate Negative Binomial innovation process. Moreover, parameter
estimation is carried out by the Generalized Method of Moments. The performance
of the model is illustrated with synthetic data as well as with real datasets.

KEYWORDS
Bivariate discrete distributions, bivariate models, generalized method of moments,
moving average, time series of counts

1. Introduction

This paper aims at contributing to integer-valued bivariate time series modelling. The
analysis of integer-valued and, in particular, count time series has recently become
an active area of research. In fact, time series of counts of certain events or objects
in specified time intervals arise in many different contexts such as social science, bi-
ology and environmental processes, economics and finance, telecommunications and
insurance, see inter alia [2, 6, 8, 11, 16, 21, 25, 29, 40, 46]. In many cases the discrete
variates are large numbers and it may make sense to approximate them by continuous
variates. Often, however, this is not possible or even desirable and it is necessary to
develop appropriate modelling strategies for the statistical analysis of time series of
counts. A popular approach to model time series of counts is based on the binomial
thinning operation proposed by [39] and defined as follows.

Let X be a non-negative integer-valued random variable. Then, for any α ∈ [0, 1]
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define the binomial thinning operation as

α ◦X :=

{ ∑X
i=1 Yi, X > 0,

0, X = 0,
(1)

where {Yi}i is a sequence of independent and identically distributed Bernoulli random
variables with P(Yi = 1) = α, called the counting series of α ◦ X, which is also
independent ofX.Note that givenX, α◦X has a binomial distribution with parameters
(X,α), α ◦X|X ∼ Bi(X,α). The main properties of the binomial thinning operation
are stated in [35].

Models based on the binomial thinning operation were proposed by [3, 26, 27],
giving rise to the class of (univariate) INteger-valued ARMA (INARMA) models. The
literature on these models has been mainly focused in the study of AR (INAR) models
and contributions to the study of MA models based upon binomial thinning operation
(INMA) are mainly due to [4, 5, 27]. There are several reasons for this seemingly lack
of interest in models with moving average (MA) components, one of which is that MA
models are not Markovian.

The (univariate) INMA(q) process satisfies

Xt = β0 ◦t εt + β1 ◦t εt−1 + · · ·+ βq ◦t εt−q, (2)

with β0 = 1 and the index t in ◦t emphasizing the fact that the thinning operations
are performed at each time t (in general, this time index is omitted if there is no risk
of misunderstanding). Note that in this model each εt has a fixed limited maximum
life time of q + 1 time units, at times t, t+ 1, . . . , t+ q. In order to completely define
the INMA(q) model, it is necessary to introduce a dependence structure between the
thinning operations. This dependence may occur between the thinning operations at
time t (that is, βi◦t εt−i and βj ◦t εt−j , for all i 6= j) or between the thinning operations
involving the same variable at times t+ i and t+ j, (that is, βi ◦t+i εt and βj ◦t+j εt, )
for all i 6= j. For a detailed discussion, see [5, 41].

In the model proposed by [4], also denominated changing states model, at each time
t (that is, in the time interval ] t− 1, t]), εt elements enter the system, comprising the
generation t : Et, 1, Et, 2, . . . , Et, εt . These elements can be active or inactive during
each of their q + 1 time units of total life time (that is, the elements can come and go
several times during their life times) according to a certain set of probabilities defined

by the following Bernoulli random vector
(
Y

(t)
(i,1), Y

(t)
(i,2), ..., Y

(t)
(i,q)

)
, where Y

(t)
(i,k) = 1

if the ith element of εt is active in the system at time t + k, for i ∈ N; t ∈ Z and

k = 1, . . . , q (naturally, Y
(t)

(i,r) = 0, otherwise). Moreover, at time t each element of

generation t− i, 0 ≤ i ≤ q, has the probability βi of being active (independently of the

other elements in the system), that is, βk = Pr
(
Y

(t)
(i,k) = 1

)
, for k = 1, . . . , q. Then,

βk ◦t εt−k denotes the number of elements of generation t− k which are active in the

system at time t. Thus, Pr
(
Y

(t)
(i,k1) = 1, Y

(t)
(i,k2) = 1, . . . , Y

(t)
(i,kj) = 1

)
=
∏j
m=1 βkm−km−1

,

for all k0 = 0 ≤ k1 < k2 < · · · < kj ≤ q, generates a dependence structure for
(β0 ◦t εt, β1 ◦t+1 εt, β2 ◦t+2 εt, . . . , βq ◦t+q εt) , conditional to εt. All the other thinning
operations are independent.

The INMA models have been extended to threshold INMA models, [47], INMA
models with structural changes, [44] and Poisson combined INMA(q) models, [45].
Furthermore, a new INMA(1) model based on the negative binomial thinning op-
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eration was proposed in [36]. Additionally, likelihood-based inference was efficiently
implemented by [42, 43] and diagnostic tests regarding the marginal distribution and
the autocorrelation structure of INMA(1) models were proposed in [1].

In several application areas, the need for developing statistical modelling approaches
for time series of multivariate count responses is increasing. In the multivariate con-
text, once again, the focus of the literature has been almost solely on AR specifications,
see [13, 14, 17, 19, 24, 29, 30, 33, 34, 38] and references therein. A noteworthy excep-
tion is the bivariate integer-valued moving average, BINMA, model proposed by [31]
and the work of [22, 23, 36–38]. Quoreshi in [31] proposed a model for the number
of transactions in equidistant time intervals with contemporaneous cross-correlation
(which may be positive or negative), assuming independence between and within the
thinning operations.

In this paper we consider an extension of Quoreshi’s BINMA model which builds on
the univariate INMA model of [4] introduced above. To motivate this model, consider
counting the occurrence of a certain phenomenon (with a finite maximum life-time) in
two different locations. There is dependence between the counts at the two locations
and, on the other hand, there is serial correlation between counts within the same
location. The BINMA model proposed in this work is a bivariate discrete time process
that comprises a wide range of auto and cross-correlation structures. Furthermore, can
also account for overdispersion when the innovations follow a Bivariate Negative Bino-
mial distribution. Probabilistic and statistical properties are studied and estimation is
accomplished by Generalized Method of Moments (GMM), [9, 10, 12]. We examine the
finite sample behaviour of GMM in bivariate INMA time series models using Monte
Carlo methods. Finally, we illustrate the application of the BINMA model to a real
dataset.

2. Bivariate INteger-valued Moving Average, BINMA(q1, q2), model

This section introduces a bivariate INMA model which entertains the dependence
structure proposed by [4], thus extending the BINMA model proposed by [31].

Let {Xt} = {(X1,t, X2,t)}, t ∈ Z, be a non-negative integer-valued bivariate random
variable. Then {Xt} is a Bivariate INteger-valued Moving Average model of order
(q1, q2), BINMA(q1, q2), if satisfies the following recursions

X1,t = ε1,t + β1,1 ◦ ε1,t−1 + · · ·+ β1,q1 ◦ ε1,t−q1 ,

X2,t = ε2,t + β2,1 ◦ ε2,t−1 + · · ·+ β2,q2 ◦ ε2,t−q2 ,
(3)

where “◦” denotes the binomial thinning operation defined in (1), βj,r ∈ [0, 1], βj,qj 6= 0,
for r = 1, . . . , qj ; j = 1, 2, and {εεεt} = {(ε1,t, ε2,t)}, t ∈ Z, is an i.i.d. sequence of
bivariate random variables, usually called innovation process, with E[εεεt] = µµµ =
(µ1, µ2), Var[εεεt] = ΣΣΣεεε with diagonal elements Var[εj,t] = σ2

j and off diagonal elements
Cov(ε1,t, ε2,t) = Λ ∈ R.

In (3), each equation is a changing states INMA(qj) model, as defined by (2). There-
fore, the serial correlation (within each equation) arises from the special dependence
structure between the binomial thinning operations explained in Section 1 while the
cross-correlation (between equations) is induced by the bivariate innovation process
{εεεt}. As a consequence, β1,k1 ◦ ε1,t−k1 and β2,k2 ◦ ε1,t−k2 are independent for k1 6= k2.
Note that the special case q1 = q2 = 1 corresponds to the BINMA(1, 1) model proposed
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in [31].
The mean and variance of this changing states BINMA model are given by (for

j = 1, 2)

E[Xj,t] = µXj
= µj

(
1 +

∑qj

i=1
βj,i

)
,

Var[Xj,t] = σ2
Xj

= σ2
j

(
1 +

∑qj

i=1
β2
j,i

)
+ µj

∑qj

i=1
βj,i(1− βj,i).

The autocovariance function, γ
Xj

(k) = Cov(Xj,t−k, Xj,t), j = 1, 2, can be written as:

γ
Xj

(k) = σ2
j

(
βj,k +

∑qj−k

i=1
βj,iβj,k+i

)
+ µj

∑qj−k

i=1
βj,i(βj,k − βj,k+i),

for k = 1, . . . , qj , being zero after lag qj + 1.
Finally, the cross-covariance function of the model is defined as (proof in the Ap-

pendix A),

γ
X1,X2

(0) = Cov(X1,t, X2,t) = Λ

(
1 +

∑min (q1,q2)

i=1
β1,iβ2,i

)
,

γ
X1,X2

(k) = Cov(X1,t, X2,t−k) =

{
Λ
(
β1,k +

∑q1−k
i=1 β1,k+iβ2,i

)
, k = 1, . . . , q1,

0, k ≥ q1 + 1,

γ
X2,X1

(k) = Cov(X1,t−k, X2,t) =

{
Λ
(
β2,k +

∑q2−k
i=1 β2,k+iβ1,i

)
, k = 1, . . . , q2,

0, k ≥ q2 + 1.

Note that both the contemporaneous and the lagged cross-correlation may be pos-
itive or negative.

3. Parametric Cases

We now present two parametric cases for the innovation process in the BINMA(q1, q2)
model.

3.1. BINMA(q1, q2) model with Bivariate Poisson innovations

Lets consider that the innovation process, {εεεt}, follows a Bivariate Poisson (BP)
distribution. One of the approaches to generate the Bivariate Poisson distribution
is the trivariate reduction method (see [18]). Let X1, X2 and X0 be independently
distributed Poisson variables with means λ1, λ2 ∈ R+ and φ ∈ [ 0,min (λ1, λ2)[, re-
spectively and define X = X1 + X0 and Y = X2 + X0. Then, the bivariate ran-
dom variable (X,Y ) has a Bivariate Poisson distribution with parameters λ1, λ2

and φ, (X,Y ) ∼ BP(λ1, λ2, φ). Marginally, X ∼ P (λ1 + φ) and Y ∼ P (λ2 + φ)
and the covariance of X and Y is φ. The joint probability function of (X,Y ) is

given by Pr[X = x, Y = y] = e−(λ1+λ2+φ)
∑min(x,y)

i=0
λx−i
1 λy−i

2 φi

(x−i)!(y−i)!i! . The joint prob-

ability generating function (pgf) of the Bivariate Poisson distribution is given by
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G(s1, s2) = exp ((λ1 + φ)(s1 − 1) + (λ2 + φ)(s2 − 1) + φ(s1 − 1)(s2 − 1)) . For a com-
prehensive treatment of the Bivariate Poisson distribution see [18].

Now, assuming that εεεt ∼ BP(λ1, λ2, φ), for λ1, λ2 > 0 and φ ∈ [ 0,min (λ1, λ2)[,
in the BINMA model defined in (3), the mean and variance simplify to E[Xj,t] =
Var[Xj,t] = (λj + φ)

(
1 +

∑qj
i=1 βj,i

)
. The autocovariance and cross-covariance func-

tions are given by

γ
Xj

(k) = (λj + φ)

(
βj,k +

∑qj−k

i=1
βj,iβj,k

)
,

γ
X1,X2

(0) = φ

(
1 +

∑min (q1,q2)

i=1
β1,iβ2,i

)
,

γ
X1,X2

(k) = φ

(
β1,k +

∑q1−k

i=1
β1,k+iβ2,i

)
,

γ
X2,X1

(k) = φ

(
β2,k +

∑q2−k

i=1
β2,k+iβ1,i

)
,

for k = 1, . . . , qj , respectively; being zero after lag qj + 1. Note that now the cross-
correlation is always positive.

Remark 1. The simplest model is the first-order BINMA model with Bivariate Pois-
son innovations:

X1,t = ε1,t + β1 ◦ ε1,t−1,

X2,t = ε2,t + β2 ◦ ε2,t−1,
(4)

where “◦” denotes the binomial thinning operation defined in (1), βj ∈ ] 0, 1], for
j = 1, 2, and the innovation process follows a Bivariate Poisson distribution with
parameters (λ1, λ2, φ). Following [4] we obtain the conditional mean and variance for
the marginal processes,

E[Xj,t|Fj,t−1] = (λj + φ) +
βjXj,t−1

1 + βj
, Var[Xj,t|Fj,t−1] = (λj + φ) +

βjXj,t−1

(1 + βj)2
, (5)

for j = 1, 2 and where Fj,t−1 be the σ-algebra generated by {Xj,1, . . . , Xj,t−1}.

3.2. BINMA(q1, q2) model with Bivariate Negative Binomial innovations

It is well known that Poisson distribution is not suitable for modelling and anal-
ysis of integer-valued time series when equidispersion condition is not satisfied. In
an attempt to overcome this problem, a BINMA(q1, q2) model with Bivariate Nega-
tive Binomial innovations is now defined. Consider then that the innovation process,
{εεεt}, follows a Bivariate Negative Binomial (BNB) distribution. As in the univari-
ate case, there are several ways to construct the BNB distribution. In what follows
it was considered a BNB distribution that is obtained by a gamma mixture of two
independent Poisson random variables, proposed by [7, 20], called BNB-type I distri-
bution. Let θ ∼ Gamma

(
τ−1, τ−1

)
and Xi|θ ∼ P(θλi), i = 1, 2. Then, the bivariate

random variable (X1, X2) has BNB-type I distribution with parameters λ1, λ2 and
τ, (X1, X2) ∼ BNB(λ1, λ2, τ). Note that the marginal distribution of Xj is univariate
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Negative Binomial with parameters τ−1 and pj = τ−1/(λj + τ−1), j = 1, 2, and the
covariance of X1 and X2 is λ1λ2τ. The joint probability function of (X1, X2) is given by

Pr[X1 = x1, X2 = x2] = Γ(τ−1+x1+x2)
Γ(τ−1)Γ(x1+1)Γ(x2+1)λ

x1

1 λ
x2

2 τ
−τ−1

(λ1 + λ2 + τ−1)−(x1+x2+τ−1),

where λ1, λ2, τ > 0 (τ is a dispersion parameter) and Γ(·) is the gamma function. For
a comprehensive treatment of the Bivariate Negative Binomial-type I distribution see
[7, 20].

Now, assuming that εεεt ∼ BNB(λ1, λ2, τ), λ1, λ2, τ > 0 in the changing states
BINMA model (3), the mean and variance are given by E[Xj,t] = λj

(
1 +

∑qj
i=1 βj,i

)
,

and Var[Xj,t] = λj
(
1 +

∑qj
i=1 βj,i

)
+ τλ2

j

(
1 +

∑qj
i=1 β

2
j,i

)
, respectively. The autoco-

variance and cross-covariance functions can be written as

γ
Xj

(k) = λj

(
βj,k +

∑qj−k

i=1
βj,iβj,k

)
+ τλ2

j

(
βj,k +

∑qj−k

i=1
βj,iβj,k+i

)
,

γ
X1,X2

(0) = λ1λ2τ

(
1 +

∑min (q,q2)

i=1
β1,iβ2,i

)
,

γ
X1,X2

(k) = λ1λ2τ

(
β1,k +

∑q1−k

i=1
β1,k+iβ2,i

)
,

γ
X2,X1

(k) = λ1λ2τ

(
β2,k +

∑q2−k

i=1
β2,k+iβ1,i

)
,

for k = 1, . . . , qj , respectively; being zero after lag qj + 1.

Note that, for this model, the index of dispersion is given by
σ2
Xj

µXj

= 1 +

τλj
1+

∑qj
i=1 β

2
j,i

1+
∑qj

i=1 βj,i

> 1, which means that this model accounts for overdispersion.

4. Parameter Estimation and Monte Carlo Simulation Results

In this section, we discuss a Generalized Method of Moments (GMM) approach to the
estimation of the BINMA (q1, q2) model from an estimating functions perspective. In
fact, estimating functions provide a very general framework for statistical inference
and are particularly useful in non-Gaussian settings such as count data. We further
illustrate the small sample properties in the particular case of Bivariate Poisson and
Bivariate Negative Binomial innovations.

4.1. Generalized Method of Moments

To estimate the parameters of the proposed model, we opt for the Generalized Method
of Moment (GMM) methodology based on first- and second-order moments of the
process. The GMM estimator (see Appendix B) was firstly introduced by [9] into the
econometric literature and, since then, has been widely applied in several fields.

Suppose that we have an observed sample {Xt} = {(X1,t, X2,t)}, t = 1, . . . , n, of
a BINMA(q1, q2) process defined as in (3) with (5 + q1 + q2) unknown parameters
θθθ = (β1,1, ..., β1,q1 , µ1, σ

2
1, β2,1, ..., β2,q2 , µ2, σ

2
2,Λ). The GMM estimator is defined as

θ̂θθn = arg min
θθθ

{
hn(θθθ,Xn)′Wn hn(θθθ,Xn)

}
,
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where hn(θθθ,Xn) = [h1 h2 h3 h4 h5 h6]′ is a (5 + 2(q1 + q2))−dimensional vector based
on the summary statistics concerning the (unconditional) first- and second-order mo-
ments: mean, variance, autocovariance and the cross-covariance up to lag qj , (j = 1, 2).
Letting

µ′Xj1
,Xj2

(τ) = E[Xj1,t−τ Xj2,t] = γ
Xj1

,Xj2
(τ) + µXj1

µXj2
,

for τ = 0, 1, . . . , γXji
,Xji

= γ
Xji

and j1, j2 ∈ {1, 2}, the elements of h are as follows:

h1 and h2 are 2-dimensional vectors with components h1k = 1
n

∑n
t=1(Xk,t − µXk

) and

h2k = 1
n−1

∑n
t=1 (X2

k,t − µ′Xk,Xk
(0)), for k = 1, 2, respectively; h3 and h4 are q1− and

q2−dimensional vectors with components h3k = 1
n

∑n
t=1+k (X1,t−kX1,t − µ′X1,X1

(k)),

for k = 1, . . . , q1, and h4k = 1
n

∑n
t=1+k (X2,t−kX2,t − µ′X2,X2

(k)), for k = 1, . . . , q2,

respectively; and finally h5 and h6 are (q2 + 1)− and q1−dimensional vectors with
components, respectively, h5k = 1

n

∑n
t=1+k(X1,t−kX2,t − µ′X1,X2

(k)), for k = 0, . . . , q2,

and h6k = 1
n

∑n
t=1+k(X1,tX2,t−k − µ′X1,X2

(k)), for k = 1, . . . , q1. Wn is a symmetric
and positive definite weight matrix which is obtained as the inverse of the covariance
matrix of hn(θθθ,Xj,t), that is Wn = (Cov(hn(θθθ,Xj,t)))

−1 .
The GMM estimator thus defined is asymptotically consistent with the smallest

attainable asymptotic variance, see theorems B.1 and B.2 in Appendix B and [12] for
additional details.

Remark 2. Note that, in general is not possible to find an analytical solution for
the minimization of the quadratic form hn(θθθ,Xn)′Wnhn(θθθ,Xn) and we have to re-
sort to numerical procedures. In order to obtain an efficient GMM estimator we can
reformulate the GMM criteria as

Qn(θθθ,Xn) = hn(θθθ,Xn)′ Wn(θθθ) hn(θθθ,Xn), (6)

where the weight matrix, which depends on the parameters, is obtained via plug-in or
empirical estimation as the covariance matrix of hn and minimize this quadratic form
with respect to θθθ. This procedure is called the continuously updated GMM estimator.
Details and alternative approaches for the estimation of the optimal weight matrix
can be found in [10, 28].

[31] also used a GMM approach to the estimation of the BINMA (q1, q2) based
on prediction errors. Thus, the summary statistics as well as the quadratic forms to
be minimized are different. Note that the weight matrix in [31] is fixed while in our
approach it is updated between iterations.

4.2. Monte Carlo Simulation Results

To illustrate the estimation procedure and to analyse the small sample properties of
the GMM estimators for the parameters we focus on the BINMA(1,1) model with
BP and BNB innovation processes, respectively. Thus, 5000 independent replicates
of time series of length n = 200, 500 and 1000 are generated from each model. The
mean estimate and the standard errors of the estimates are obtained from the 5000
replications. The practical implementation of GMM explained in last section is adapted
to each model, with q1 = 1 and q2 = 1.

The minimization in (6) is performed by the R function optim, which accomplished
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Table 1. Sample mean and standard errors (in brackets) of the estimates for BINMA(1,1) models

with Bivariate Poisson innovations.

θθθ = (β1, λ1, β2, λ2, φ) n β1 λ1 β2 λ2 φ

200 0.142 2.963 0.469 1.125 0.440
(0.129) (0.396) (0.217) (0.279) (0.176)

θθθ = (0.1, 3.0, 0.5, 1.0, 0.5) 500 0.111 3.009 0.493 1.049 0.473
(0.082) (0.277) (0.150) (0.198) (0.125)

1000 0.104 3.006 0.501 1.017 0.491
(0.059) (0.202) (0.113) (0.152) (0.093)

200 0.135 2.966 0.671 2.577 0.934
(0.109) (0.429) (0.256) (0.727) (0.317)

θθθ = (0.1, 3.0, 0.9, 2.0, 1.0) 500 0.109 2.999 0.781 2.264 0.976
(0.070) (0.298) (0.188) (0.471) (0.215)

1000 0.102 3.013 0.824 2.165 0.985
(0.049) (0.224) (0.149) (0.341) (0.157)

200 0.600 2.149 0.650 2.241 0.920
(0.243) (0.520) (0.249) (0.548) (0.269)

θθθ = (0.6, 2.0, 0.7, 2.0, 1.0) 500 0.609 2.055 0.691 2.091 0.966
(0.186) (0.379) (0.198) (0.394) (0.190)

1000 0.606 2.033 0.707 2.035 0.981
(0.152) (0.310) (0.164) (0.307) (0.142)

200 0.594 2.073 0.662 2.123 0.492
(0.240) (0.445) (0.243) (0.458) (0.235)

θθθ = (0.6, 2.0, 0.7, 2.0, 0.5) 500 0.611 2.019 0.696 2.045 0.492
(0.177) (0.305) (0.185) (0.312) (0.156)

1000 0.609 2.009 0.704 2.018 0.493
(0.133) (0.224) (0.147) (0.237) (0.112)

200 0.297 1.073 0.320 2.058 0.449
(0.165) (0.230) (0.191) (0.392) (0.159)

θθθ = (0.3, 1.0, 0.3, 2.0, 0.5) 500 0.302 1.023 0.305 2.024 0.484
(0.104) (0.161) (0.121) (0.259) (0.113)

1000 0.302 1.005 0.304 2.007 0.496
(0.075) (0.119) (0.085) (0.181) (0.082)

144 0.285 0.209 0.685 0.173 0.065
(0.209) (0.056) (0.224) (0.076) (0.031)

200 0.265 0.209 0.709 0.164 0.069
θθθ = (0.221, 0.181, 0.740, 0.109, 0.109)a (0.173) (0.047) (0.193) (0.067) (0.028)

500 0.239 0.206 0.755 0.147 0.078
(0.097) (0.030) (0.129) (0.038) (0.018)

1000 0.232 0.205 0.769 0.141 0.082
(0.057) (0.021) (0.096) (0.017) (0.013)

aThis set of parameters corresponds to the one obtained in the real data illustration and given in
Table 4.

a general-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-
gradient algorithms and includes an option for box-constrained optimization [32]. The
initial estimates for the minimization of the quadratic form are obtained from the
method of moments.

BINMA(1,1) model with Bivariate Poisson innovations

The minimization in (6) is subject to βj ∈] 0, 1 [, λj > 0 and φ ∈] 0,min (λ1, λ2)[
for j = 1, 2. The results are summarized in Table 1 by the (mean) estimates and
corresponding standard errors. The results indicate that the bias and standard errors
decrease as n increases as expected from the GMM estimators properties. Furthermore,
even in small samples, the distributions of the estimators is fairly symmetric. Note that
the estimates present large variability as indicated by the standard errors specially for
small values of β and small sample sizes.
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Table 2. Sample mean and standard errors (in brackets) of the estimates for BINMA(1, 1) model

with Bivariate Negative Binomial innovations.

θθθ = (β1, λ1, β2, λ2, τ) n β1 λ1 β2 λ2 τ

200 0.116 2.935 0.501 0.997 0.478
(0.085) (0.308) (0.180) (0.152) (0.110)

θθθ = (0.1, 3.0, 0.5, 1.0, 0.5) 500 0.103 2.978 0.495 1.001 0.486
(0.052) (0.203) (0.115) (0.099) (0.071)

1000 0.101 2.987 0.498 1.000 0.490
(0.037) (0.141) (0.078) (0.069) (0.050)

200 0.117 2.864 0.863 1.996 0.937
(0.121) (0.373) (0.171) (0.290) (0.217)

θθθ = (0.1, 3.0, 0.9, 2.0, 1.0) 500 0.110 2.924 0.892 1.981 0.977
(0.089) (0.287) (0.104) (0.175) (0.144)

1000 0.108 2.950 0.901 1.983 0.988
(0.066) (0.224) (0.080) (0.130) (0.100)

200 0.620 1.940 0.685 1.991 0.915
(0.163) (0.256) (0.195) (0.295) (0.199)

θθθ = (0.6, 2.0, 0.7, 2.0, 1.0) 500 0.618 1.958 0.705 1.985 0.962
(0.104) (0.168) (0.142) (0.201) (0.130)

1000 0.610 1.978 0.702 1.992 0.981
(0.067) (0.114) (0.103) (0.147) (0.092)

200 0.618 1.970 0.685 2.020 0.469
(0.172) (0.252) (0.193) (0.281) (0.108)

θθθ = (0.6, 2.0, 0.7, 2.0, 0.5) 500 0.621 1.972 0.701 2.003 0.486
(0.118) (0.167) (0.148) (0.198) (0.069)

1000 0.610 1.985 0.700 2.003 0.491
(0.076) (0.114) (0.111) (0.146) (0.050)

200 0.321 0.990 0.320 1.970 0.508
(0.148) (0.147) (0.147) (0.263) (0.133)

θθθ = (0.3, 1.0, 0.3, 2.0, 0.5) 500 0.311 0.996 0.306 1.991 0.519
(0.078) (0.085) (0.084) (0.164) (0.079)

1000 0.310 0.996 0.299 2.006 0.517
(0.055) (0.060) (0.065) (0.122) (0.053)

144 0.223 0.175 0.764 0.140 0.254
(0.211) (0.053) (0.208) (0.042) (0.386)

200 0.194 0.183 0.756 0.146 0.218
θθθ = (0.137, 0.203, 0.687, 0.165, 0.228)a (0.172) (0.043) (0.197) (0.037) (0.309)

500 0.152 0.196 0.727 0.157 0.207
(0.090) (0.027) (0.150) (0.025) (0.212)

1000 0.146 0.200 0.708 0.160 0.208
(0.053) (0.019) (0.114) (0.018) (0.166)

aThis set of parameters corresponds to the one obtained in the real data illustration and given in
Table 4.

BINMA(1,1) model with Bivariate Negative Binomial innovations

The minimization in (6) is subject to βj ∈] 0, 1 [, λj > 0 and τ > 0. The results are
summarized in Table 2 by the (mean) estimates and corresponding standard errors.
Once again, the sample bias and standard errors decrease as the sample size increases,
indicating that the distribution of the estimators is consistent and symmetric. The
results show that, in general, λ̂1 and τ̂ are underestimated. Also for this model, even
in small samples, the distribution of the estimators is fairly symmetric. The estimates
present a larger variability than expected, specially for small sample sizes.
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Figure 1. Time series of the monthly number of vagrancy offences, from 1991 to 2001, registered in Pittsburgh.

0 5 10 15 20

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF BeatP12

0 5 10 15 20

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF BeatP51

Figure 2. Sample autocorrelation for the vagrancy dataset.

5. Real data illustration

The model is now used to fit a bivariate dataset consisting on the aggregated monthly
number of vagrancy offences registered by two police car beats, called beats plus
(number 12 and 51), in Pittsburgh (Pennsylvania, USA), from January of 1990 to
December of 2001, in a total of n = 144 observations per series (see Figure 1). Vagrancy
can be defined as the state of wandering from place to place without permanent home
or regular employment. The dataset is available from the Forecasting Principles site
http://www.forecastingprinciples.com/index.php/crimedata.

A preliminary analysis of the sample mean, variance and cross-correlation of the
data, presented in Table 3, indicates that marginally the Poisson distribution might
be suitable. Furthermore, the values of the sample autocorrelation function (ACF) in
Figure 2, which are nearly zero after the first lag, suggest that a first-order model is
appropriate to the dataset, while the sample cross-correlation indicates dependence
between the two series (Figure 3). Therefore, we opt for a BINMA(1, 1) process with
Bivariate Poisson innovations to model these data. On the other hand, it is expected
that vagrants stay a limited time in the system and that these individuals can come
and go several times during their life times in the system.

The GMM estimates were obtained numerically as in (6), with starting value θθθ∗ =
(β1, λ1, β2, λ2, φ) = (0.4, 0.5, 0.5, 0.5, 0.2). The estimates and corresponding standard
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Figure 3. Sample cross-correlation for the vagrancy dataset.

Table 3. Sample measures for the vagrancy dataset.

Mean Variance ACF(1) CCF(0)

BeatP12 BeatP51 BeatP12 BeatP51 BeatP12 BeatP51
Sample 0.347 0.431 0.354 0.387 0.215 0.253 0.255
BP innov. 0.354 0.379 0.354 0.379 0.181 0.425 0.346
BNB innov. 0.230 0.278 0.240 0.287 0.137 0.687 0.032

errors are given in Table 4.
In order to assess the adequacy of the fitted model, we use several model diagnostic

tools, namely validation based on residual analysis, parametric resampling, predictive
distributions (PIT histogram) [15] and the dispersion test of [1] .

The Pearson residuals (or standardized residuals) are defined as Rj,t =
Xj,,t−E[Xj,t|Fj,t−1]

Var[Xj,t|Fj,t−1]1/2
, for j = 1, 2, where Fj,t−1 is the σ-algebra generated by

{Xj,1, . . . , Xj,t−1}, and the conditional mean and variance are defined in (5). Note
that in practice population parameters are replaced by their estimated counterparts.
If the model is well-chosen then the Pearson residuals should exhibit zero mean and
unit variance and no (significant) serial correlation. In this case, the sample mean
and variance for the residuals are R̄1 = −0.023, R̄ 2 = −0.084, ŝ 2

R1
= 0.979 and

ŝ2
R2

= 1.267. Additionally, the analysis of the sample autocorrelation and sample par-
tial autocorrelation of the residuals, as well as the usual tests of randomness, do not
reject the hypothesis of uncorrelated random variables for the residual series. For the
Ljung-Box test, the values of the test statistic and the corresponding p-values are 5.667
and 0.842, respectively, for the BeatP12 residuals and 8.063 and 0.623, respectively,
for the BeatP51 residuals.

To assess the adequacy of the model to represent specific features of interest of
the data, in this case auto- and cross-correlation (ACF and CCF) we use parametric
bootstrap: the fitted model is used to generate 5000 (bivariate) time series samples, all
with the same number of observations as the original data set which are then used to

Table 4. GMM estimates for the vagrancy dataset (standard errors in brackets).

BINMA (1, 1) BeatP12 BeatP51 Cross-Corr.

BP innov. β̂1 λ̂1 β̂2 λ̂2 φ̂
0.221 (0.165) 0.181 (0.058) 0.740 (0.386) 0.109 (0.058) 0.109 (0.032)

BNB innov. β̂1 λ̂1 β̂2 λ̂2 τ̂
0.137 (0.156) 0.203 (0.050) 0.687 (0.414) 0.165 (0.059) 0.228 (0.566)

11



5 10 15 20

−
0

.2
0

.0
0

.2
0

.4

Lag

A
C

F

BeatP12 ACF

BP BINMA(1, 1)

5 10 15 20

−
0

.2
0

.0
0

.2
0

.4

Lag

A
C

F

BeatP51 ACF

BP BINMA(1, 1)

Figure 4. Acceptance envelope for the autocorrelation function for the BINMA(1, 1) model with BP inno-

vations.
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Figure 5. Acceptance envelope for the cross-correlation function for the vagrancy dataset for the BINMA(1,

1) model with BP innovations.

construct empirical distributions for the ACF and CCF. Figures 4 and 5 represent the
acceptance envelopes computed from the 2.5% and 97.5% quantiles of the empirical
distribution for the ACF and CCF. It is clear that the model represents adequately
both the autocorrelation and the cross-correlation.

Finally, to check the adequacy of the distributional assumptions we construct the
PIT (probability integral transform) histogram, which can be defined (in the dis-
crete context) as the conditional cumulative distribution function given the observed
count. Figure 6 represents the (nonrandomized) PIT histogram and the approximate
100(1−α)% confidence intervals (α = 0.05) obtained from a standard χ2 goodness-of-
fit test of the null hypothesis that the bins of the histogram are drawn from a uniform
distribution, as in [15]. As we can see, the PIT histogram is close to an uniform
distribution, specially for the first series. Besides, the uniformity test does not re-
ject the hypothesis of uniform distribution (p−values larger than .99 for each series).

Additionally, the dispersion indexes are ÎBeatP12 = 1.020 and ÎBeatP51 = 0.898,
respectively. Using the dispersion test of [1], the Poisson distribution is not refuted

(ÎBeatP12 ∈ ]0.752, 1.229[ and ÎBeatP51 ∈ ]0.718, 1.257[).
Note that the standard errors of the estimates indicate that the β’s parameters

may be zero, a characteristic of the GMM estimates also observed in the simulation
study, as can be seen for instance at the bottom part of Table 1, where 5000 repli-
cates of BINMA(1, 1) model with BP innovations with 144 observations and parameter
values given in Table 4 were used. However, the detailed model assessment suggests
that the fitted BINMA(1, 1) model with BP innovations suitably describes the depen-
dence structure. Furthermore, Table 3 indicates that the model approximates well the
empirical values for the marginal means, variances and ACF(1)’s.
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Figure 7. Acceptance envelope for the autocorrelation function for the vagrancy dataset for the BINMA(1,1)

model with BNB innovation process.

The residual analysis indicates that for the second series, BeatP51, the Pearson
residual variance is larger than one and the PIT histogram shows a U-shape, indicating
that the fitted model does not completely explain the slight under-dispersion present in
this series. Although beyond of the scope of this work, this issue might be addressed
using copulas for the specification of a joint distribution for the innovations with
equidispersion in the first series and overdispersion in the second series, as in [17].

Just as an illustration, we have also fitted a BINMA(1,1) model with BNB innova-
tion distribution. The GMM estimates were obtained numerically, with starting value
θθθ∗ = (β1, λ1, β2, λ2, τ) = (0.9, 0.5, 0.2, 1.0, 1.0). The estimates and corresponding stan-
dard errors are given in Table 4 and the acceptance envelopes computed from the 2.5%
and 97.5% quantiles of the empirical distribution for the ACF and CCF are shown
in Figures 7 and 8. In this case, as expected, it can be seen that the model does not
completely capture both the autocorrelation and the cross-correlation.

6. Final remarks

Thinning based models, usually denoted as INARMA, have become popular in the
literature on univariate time series of counts. These models are, in fact, nonlinear
models (the nonlinearity is induced by the random operation) and their extension to
the multivariate context is not straightforward. In this work we considered a bivariate
INMA, BINMA, model which extends INMA models previously proposed in the lit-
erature. This BINMA process is able to model time series negatively correlated. The
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Figure 8. Acceptance envelope for the cross-correlation for the vagrancy dataset for the BINMA(1,1) model

with BNB innovation process.

Bivariate Poisson distribution is characterised not only by equi-dispersion, just as the
univariate case, but also by a covariance that is bounded by the marginal means (and
variances) hindering its application in presence of over-dispersion and strong covari-
ance. A BINMA model with Bivariate Negative Binomial innovations is also presented.
This model can account for overdispersion. Further study of bivariate INMA models
will be reported elsewhere.
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Appendix A. Cross-covariance function of the BINMA(q1, q2) process

The cross-covariance function, γ
X1,X2

(k), for k = 0, ..., q1, of the BINMA(q1, q2) process
defined in (3), can be written as,

γ
X1,X2

(k) = Cov(X1,t, X2,t−k) =

q1−k∑
i=0

Cov (β1,k+i ◦ ε1,t−k−i, β2,i ◦ ε2,t−k−i). (A1)

By the independence of the random variables εtεtεt, which follows from the definition of
the model (3), it is possible to write

γ
X1,X2

(k) =

q1−k∑
i=0

Cov (β1,k+i ◦ ε1,t, β2,i ◦ ε2,t),
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since all the other addends in (A1) are zero. Conditioning,

Cov (β1,k+i ◦ ε1,t, β2,i ◦ ε2,t) = E [Cov (β1,k+i ◦ ε1,t, β2,i ◦ ε2,t|εεεt)] +

+ Cov [E (β1,k+i ◦ ε1,t|ε1,t) ,E (β2,i ◦ ε2,t|ε2,t)]

= 0 + Cov (β1,k+i ε1,t β2,i ε2,t)

= β1,k+i β2,i Cov (ε1,t, ε2,t)

= β1,k+i β2,i Λ.

Thus,

γ
X1,X2

(k) =

q1−k∑
i=0

β1,k+i β2,i Λ = Λ

(
β1,k +

q1−k∑
i=1

β1,k+i β2,i

)
.

For k ≥ q1 + 1, it follows that Cov(X1,t, X2,t−k) = 0, since all addends in (A1) are
zero. The proofs for γ

X2,X1
(k) are analogous.

Appendix B. Generalized Method of Moment Estimation

Suppose we have an observed sample Xn = {Xt : t = 1, ..., n} from which we want to
estimate an unknown q×1 parameter vector θθθ with true value θθθ0 and consider a vector
Tn = Tn(Xn) of k ≥ q summary statistics with expectation ααα(θθθ) = E[Tn] (where ααα(θθθ)
are the theoretical counterparts) under the model. The so called moment condition
is defined by

E[hn(θθθ;Xn)] = 0, (B1)

where hn(θθθ;Xn) is a continuous k × 1 vector function of θθθ given by hn(θθθ;Xn) =
Tn − ααα(θθθ), and E[hn(θθθ;Xn)] exists and is finite for all t and θθθ. In practice, equation

(B1) is replaced by its sample analogous 1
n

∑n
t=1 hn(θθθ;Xt) = 0, and an estimator θ̂θθ

can be obtained as the solution of the last equation.
Note that when k = q, we obtain the Method of Moments (MM) estimator and we

say that θθθ is just-identified. The Generalized Method of Moments estimator is
obtained when k > q and then we say that θθθ is over-identified. In this case, since we
have more equations than parameters in the GMM estimation we cannot guarantee a
unique solution to the equation in (B1), for this reason the estimation of the parameters
can be done by minimizing the distance from hn(θθθ;Xn) to zero. This distance could
be measured by the quadratic form

Q∗n(θθθ;Xn) = hn(θθθ;Xn)′ Wn hn(θθθ;Xn), (B2)

where [·]′ denotes transpose and Wn is a k× k is any symmetric and positive definite
weight matrix that may depend on the data but that converges in probability to a
positive definite matrix W. Therefore, the GMM estimator of θθθ is given by

θ̂θθn = arg min
θθθ

{
hn(θθθ;Xn)′ Wn hn(θθθ;Xn)

}
.
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The consistency and asymptotic distribution of the GMM estimator is given in the
following theorem (see [12] for additional details).

Theorem B.1. Assume the existence of a sequence (ηηηn) such that h̃n(θθθ;Xn) =
ηηηn hn(θθθ;Xn) has a limiting covariance matrix S, and suppose that there exists a se-
quence (δδδn) of invertible q × q matrices, that do not depend on θθθ, such that:

(1) limn→∞δδδn = 0, the zero matrix;
(2) Within a neighbourhood of θθθ0, for all r ∈ {1, ..., k} , the matrices H̃n(θθθ)δδδn =

∂h̃n(θθθ;Xn)
∂θθθ δδδn and ΩΩΩ

(r)
n (θθθ)δδδn =

∂2h̃(r)

∂θθθ∂θ′θ′θ′ δδδn (where h̃(r) is the rth element of h̃n(θθθ;Xn))

converge to limiting matrices H(θθθ) and ΩΩΩ(r)(θθθ), respectively, all elements of which
are continuous functions of θθθ and where H(θθθ) is invertible.

Let θ̂̂θ̂θn be the value of θθθ that minimize

Qn(θθθ;Xn) = h̃n(θθθ;Xn)′ Wn h̃n(θθθ;Xn). (B3)

Then, the expected value of θ̂θθn converges to θθθ0 and the covariance matrix of δδδ−1
n θ̂θθn

converges to C =
(
M(θθθ0)

)−1
Σ̃ΣΣ
(
M′(θθθ0)

)−1
, where Σ̃ΣΣ = H′(θθθ0)Wn SW′

nH(θθθ0) and

M(θθθ) = H′(θθθ)WH(θθθ).

The variance of the estimator depends on the weight matrix, Wn. In order to obtain
the estimator with the smallest possible asymptotic variance, we can use the following
theorem.

Theorem B.2. Under the conditions set in Theorem B.1, the smallest attainable

limiting covariance matrix of δδδ−1
n θ̂θθn is Cmin =

(
H′(θθθ0)S−1 H(θθθ0)

)−1
and is achieved

by setting Wn = S−1 in equation (B3).
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