
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2019

António Lúıs
Ferreira Marques

Métodos Eficientes para Recuperação de Erros no
Doḿınio Temporal em Sistemas Flexible
Time-Triggered

Efficient Time-Domain Error Recovery Methods for
Flexible Time-Triggered Systems

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2019

António Lúıs
Ferreira Marques

Métodos Eficientes para Recuperação de Erros no
Doḿınio Temporal em Sistemas Flexible
Time-Triggered

Efficient Time-Domain Error Recovery Methods for
Flexible Time-Triggered Systems

Tese apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Doutor em Engenharia
Eletrotécnica, realizada sob a orientação cient́ıfica do Professor Doutor
Paulo Bacelar Reis Pedreiras, Professor Auxiliar do Departamento de
Electrónica, Telecomunicacões e Informática da Universidade de Aveiro e
do Professor Doutor Lúıs Miguel Pinho de Almeida, Professor Associado
do Departamento de Engenharia Eletrotécnica e de Computadores da
Faculdade de Engenharia da Universidade do Porto

Este trabalho foi apoiado por:
Fundação para a Ciência e a Tecnologia, que me concedeu uma Bolsa ao
abrigo do Programa de Apoio à Formação Avançada de Docentes do
Ensino Superior Politécnico (PROTEC) - ref.
SFRH/PROTEC/49837/2009

Universidade de Aveiro, que me proporcionou as condições técnicas e
humanas para a prossecução dos trabalhos realizados no âmbito desta tese.

Instituto de Telecomunicações de Aveiro, que apoiou financeiramente a
minha participação em conferências internacionais para apresentação de
resultados parciais obtidos no âmbito desta tese.

Instituto Superior de Engenharia de Coimbra/Coimbra Engineering
Academy que me proporcionou as condições técnicas e humanas para a
prossecução dos trabalhos realizados no âmbito desta tese, assim como
apoio financeiro para apresentação de resultados parciais obtidos no
âmbito desta tese.

Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário
de Apoio.

o júri / the jury

presidente / president Professor Doutor Vitor José Babau Torres
Professor Catedrático, Universidade de Aveiro

(por delegação do Reitor da Universidade de Aveiro)

vogais / examiners committee Professor Doutor Petru Ion Eles
Professor Catedrático, Linkoping University

Professor Doutor Julián Proenza Arenas
Professor Associado, Universitat de les Illes Balears

Professor Doutor António Casimiro Ferreira da Costa
Professor Associado, Faculdade de Ciências da Universidade de Lisboa

Professor Doutor Valter Filipe Miranda Castelão da Silva
Professor Adjunto, Universidade de Aveiro

Professor Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar, Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

This work would not be accomplished without the support and
contribution of many people and institutions. To all of them, I would like
to express my deepest gratitude.

First and foremost, I would like to thank my advisor Professor Paulo
Pedreiras and co-advisor Professor Lúıs Almeida for their support, fruitful
exchange of ideas, patience, friendship and constant encouragement over
the years.

To the Coimbra Institute of Engineering in particular to the Department of
Electrotechnical Engineering for the excellent work environment they
provide me and for the motivation to finish this work. To my colleagues,
especially those who worked in VEIL project - João Trovão, Paulo
Pererinha, Marco Silva and Frederico Santos.

I want to thank my whole family for their love and support.

The last thoughts go to my beloved wife and daughter, who have always
been my safe haven and who shared all the ups and downs of this long
journey.

Palavras chave Sistemas Distribúıdos, CAN, Flexible Time-Triggered, Recuperação de Er-
ros, Fiabilidade, Eficiência no uso de Largura de banda

Resumo Atualmente, há um uso omnipresente de sistemas embebidos distribúıdos,
controlando todos os tipos de equipamentos, máquinas ou processos, que
têm um impacto positivo no nosso dia-a-dia, e.g. carros, transportes
públicos, equipamentos médicos e sistemas HVAC. Dependendo da
natureza das tarefas executadas, juntamente com os requisitos de
desempenho, podem ainda existir questões relativas à segurança que
também devem ser tidas em consideração.

Devido à natureza distribúıda desses sistemas, os nós de computação
necessitam trocar mensagens de modo ao sistema executar as tarefas
pretendidas. Isto é conseguido usando uma rede de comunicação
subjacente, que implementa protocolos espećıficos para o tipo de tráfego
que tem requisitos de pontualidade rigorosos, sendo estes herdadas dos
requisitos de tempo real ao ńıvel do sistema.

O ambiente em que a rede é implementada nunca está isento de
interferências, por exemplo rúıdo devido a interferência eletromagnética.
Estas podem corromper as mensagens, o que pode levar à degradação do
desempenho ou até mesmo impedindo o funcionamento correto do sistema
distribúıdo e, no limite, produzir resultados catastróficos no caso de
sistemas de segurança cŕıtica.

Claramente, este problema tem de ser resolvido, existindo diversos modos
de o alcançar, geralmente através da utilização de métodos tolerantes a
falhas. A tolerância a falhas pode ser obtida usando redundância
temporal, redundância espacial ou uma combinação de ambas, onde a
escolha depende de requisitos diversos, como por exemplo custo, consumo
de energia, peso, espaço ocupado, complexidade ou tipo de falhas a serem
toleradas.

Para lidar com sistemas de tempo real de segurança cŕıtica, a escolha mais
comum é utilizar redes baseadas no paradigma Time-Triggered, que usam
um escalonamento das comunicações definidas na fase de projeto, pelo
que são estáticas.

Estas redes permitem uma deteção rápida de erros, mas a latência na
recuperação dos erros só pode ser minimizada pela reserva excessiva de
largura de banda, transmitindo proactivamente várias instâncias da mesma
mensagem, apresentando então um uso ineficiente da largura de banda
dispońıvel.

Uma alternativa posśıvel é a utilização de redes baseadas no paradigma
Flexible Time-Triggered (FTT), pois este usa escalonamento on-line do
tráfego, possibilitando uma reacção rápida aos erros, integrando o
escalonamento das retransmissões com o das mensagens regulares
Time-Triggered, apresentando o potencial para usar significativamente
menos largura de banda do que a opção Time-Triggered.

De facto, esta tese defende que é posśıvel garantir ńıveis elevados de
fiabilidade na transmissão de mensagens em redes Time-Triggered através
da recuperação de erros no doḿınio temporal, utilizando um mecanismo
de escalonamento das retransmissões controlado centralmente e dinâmico.

Para apoiar a tese, propõe-se um método direcionado para recuperar
mensagens com transmissão falhada numa rede CAN Time-Triggered, com
base no paradigma Flexible Time-Triggered, ou seja, FTT-CAN.

O mecanismo de recuperação de erros é executado no nó Master da rede
FTT-CAN, ao qual deve ser adicionado um módulo detector de erros, um
servidor para gestão de erros e a integração dos pedidos de retransmissão
no escalonador on-line.

A escolha do servidor de erros, que implica a escolha de tipo, capacidade e
peŕıodo, é fundamental para atingir os objectivos de fiabilidade pretendida
e também limitar a interferência em mensagens regulares Time-Triggered.
No projeto deste, são considerados os cenários de erro de pior caso, que
são limitados probabilisticamente por um processo de Poisson que modela
a taxa de chegada de falhas.

A avaliação da proposta é feita por um estudo de simulação que utiliza
diversos benchmarks de sistemas reais e outros gerados aleatoriamente,
utilizando diferentes cenários de falhas, primeiramente utilizando um limite
de uma falha por ciclo elementar e depois removendo essa restrição. Em
qualquer caso, mostra uma redução de duas ordens de grandeza no valor
médio da largura de banda utilizada obtido pelo mecanismo de
recuperação de erros proposto, quando comparado com as abordagens
tradicionais dispońıveis na literatura e que são baseados na colocação de
slots adicionais de transmissão definidos estaticamente.

A aplicabilidade da tese não se encontra restrita a redes FTT-CAN, pelo
que é analisada a aplicação a outros protocolos Time-Triggered, em
particular a TTCAN e FlexRay, mostrando melhor eficiência na utilização
da largura de banda do que as versões Time-Triggered clássicas.

Keywords Distributed Systems, CAN, Flexible Time-Triggered, Error recovery, Relia-
bility, Bandwidth Efficiency

Abstract Nowadays there is an ubiquitous use of distributed embedded systems
(DES), controlling all kinds of equipment, machinery or processes, that
have a positive impact on our daily lives, e.g. cars, public transportation,
medical equipment and HVAC systems. Depending on the nature of the
tasks performed, along with performance requirements, there could be
safety issues that must also be taken in consideration.

Due to the distributed nature of these systems, the computing nodes must
exchange information/messages for the system to perform its intended
function. They achieve this using an underlying communication network
that implements specific protocols for the type of traffic that exhibits
stringent timeliness characteristics, which are inherited from real-time
requirements at the system level.

The environment where the network is deployed is never free of
interferences, e.g. EMI noise. These can corrupt the messages, which
leads to performance degradation or even preventing correct functioning of
the corresponding distributed system and, in the limit, produce
catastrophic results in case of safety critical systems.

Clearly this problem must be tackled, and there are diverse ways to
achieve it, commonly through use of fault tolerant techniques. Fault
tolerance can be obtained using temporal redundancy, spatial redundancy
or a combination of both, and the choice depends on different
requirements, as for instance cost, power, weight, space, complexity or
type of faults to handle.

When dealing with safety-critical real time systems the most common
choice is to use Time-Triggered networks, which use communication
schedules defined at design-time, being therefore static. These networks
present prompt error detection, but the latency in error recovery can only
be minimized by bandwidth overprovisioning, proactively transmitting
multiple instances of the same message, which makes it bandwidth
inefficient.

A possible alternative is to use networks based on the Flexible
Time-Triggered (FTT) paradigm, since it uses online traffic scheduling,
which enables a prompt reaction to errors, integrating retransmissions
among the regular Time-Triggered messages and having the potential to
use significantly less bandwidth than the common Time-Triggered option.

In fact, the thesis states that it is possible to guarantee high-reliability of
message transmission in Time-Triggered networks by performing error
recovery in the time domain, using a centrally controlled and dynamically
scheduled retransmission mechanism.

To support the thesis we propose a method tailored to recover failed
message transmissions in a time-triggered Controller Area Network (CAN),
based on the Flexible Time-Triggered paradigm, namely FTT-CAN. The
error recovery mechanism will run in the FTT Master node, which must be
enhanced with an error detector, a server for error management and
integrating the retransmission requests in the online scheduler.

The error handling server design, implying the choice of type, capacity and
period, is crucial for attaining the intended reliability goal and also limit
the interference on regular Time-Triggered messages. In the design
process the worst case error scenarios are considered, which are bounded
probabilistically by a Poisson process that models the fault arrival rate.

The assessment of the proposal is done by an extensive simulation study
that uses several practical benchmarks and randomly generated ones,
within different fault scenarios, firstly using a limit of one fault per
Elementary Cycle and afterwards removing this restriction. In any case it
shows a reduction of two orders of magnitude in the average bandwidth
taken by the proposed error recovery mechanism, when compared with
traditional approaches available in the literature based on adding extra
pre-defined transmission slots.

To show that the thesis is not solely applicable to FTT-CAN networks, the
applicability to other Time-Triggered protocols is also discussed, in
particular, to TTCAN and FlexRay, showing better bandwidth efficiency
than pure Time-Triggered versions.

Contents

Contents i

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 1

1.2 Thesis and Contributions . 2

1.3 Published works . 3

1.4 Thesis Outline . 4

2 Background 7

2.1 Real-time Systems . 7

2.1.1 Distributed Systems and Networks . 7

2.1.1.1 Physical Topologies . 7

2.1.1.2 Medium Access Control - MAC 8

2.1.2 Communication Paradigms . 9

2.2 Fault Tolerance and Reliability . 11

2.2.1 Dependability . 11

2.2.1.1 Threats . 11

2.2.1.2 Attributes . 12

2.2.1.3 Means . 12

2.2.1.3.1 Fault-Tolerance . 13

2.2.1.4 Reliability in the message transmission subsystem 13

2.3 Fault Models . 14

2.3.1 Deterministic Model . 14

2.3.2 Probabilistic Model . 15

2.3.3 Experimental BER characterization in CAN networks 15

2.4 Scheduling Algorithms . 16

2.4.1 Scheduling Policies . 16

2.4.1.1 Shedulability Bounds . 16

2.4.1.2 Response Time Analysis . 17

2.4.1.3 Processor Demand Test for EDF 17

2.5 Servers . 18

2.5.1 Polling Server . 18

2.5.2 Deferrable Server . 19

2.5.3 Sporadic Server . 19

2.5.3.1 Summary of Servers . 20

i

Contents

2.6 Summary . 20

3 Networks for Embedded Systems 21

3.1 Controller Area Network . 21

3.1.1 Introduction . 21

3.1.2 Bus Signal Levels . 22

3.1.3 Bit time . 24

3.1.3.1 Bit rate versus Bus length 24

3.1.4 CAN Data-Link Layer . 25

3.1.4.1 CAN Data Frame . 26

3.1.4.2 Remote Frame . 27

3.1.4.3 Error Frame . 27

3.1.4.4 Overload Frame . 28

3.1.5 Non-destructive arbitration mechanism CSMA/CR 28

3.1.6 Bit Stuffing mechanism . 29

3.1.7 Error detection, signaling and recovery 30

3.1.8 Fault confinement . 32

3.1.9 Frame Filtering (Acceptance Filtering) 33

3.1.10 Possible Inconsistent Scenarios . 33

3.1.11 CAN with Flexible Data Rate - CAN FD 35

3.1.11.1 CAN FD Data Frame . 35

3.2 Other Communication Protocols . 37

3.2.1 TTP/C . 39

3.2.2 Ethernet . 41

3.2.3 Proposals for Real-Time/Industrial Ethernet 42

3.2.3.1 Avionics Full-DupleX Switched Ethernet (AFDX) 42

3.2.3.2 TTEthernet . 44

3.2.3.3 FTT-Ethernet . 45

3.2.3.4 FTT-SE and HaRTES . 46

3.2.3.5 Fault Tolerance for FTT Architecture 48

3.2.4 Other Real-Time protocols and Industrial Internet 48

3.3 Time-Triggered Protocols for Operational Flexibility 48

3.3.1 TTCAN . 49

3.3.1.1 Timing Synchronization and Fault Tolerance 50

3.3.1.2 Scheduling Algorithms . 51

3.3.1.3 Inconsistency Scenarios in TTCAN networks 51

3.3.2 FTT-CAN protocol . 52

3.3.2.1 Schedulability tests . 53

3.3.2.1.1 Synchronous Messages tests 53

3.3.2.2 Asynchronous Messaging System Scheduling Analysis 55

3.3.2.2.1 Asynchronous traffic scheduling 55

3.3.2.3 Additional information on FTT-CAN 55

3.3.2.3.1 The Trigger Message 55

3.3.2.3.2 Slave Messages . 56

3.3.2.3.3 Inside the Master 56

3.3.2.3.4 Operational Flexibility 57

3.3.2.3.5 Master Replication 57

3.3.2.3.6 Multibus Solution Replication 58

3.3.2.3.7 Slotted FTT-CAN 59

ii

Contents

3.3.3 FlexRay Protocol . 59
3.3.3.1 Basic description . 59
3.3.3.2 Physical Topology . 60
3.3.3.3 Communications Organization 62

3.3.3.3.1 Communication Cycle - Static Segment, Dynamic
Segment and others 64

3.3.3.3.2 Fault Tolerance and Dual Bus configuration 67
3.4 Summary . 67

4 Error Recovery in TT Systems 69
4.1 Fault-tolerance with Hardware Redundancy 69

4.1.1 Slave Replication with Single Bus . 69
4.1.2 Bus Redundancy . 70
4.1.3 Bus and Node Redundancy . 70

4.2 Fault-tolerance with Temporal Redundancy 71
4.2.1 Real-Time Event Channels in CAN . 71
4.2.2 Message Retransmission and Acknowledgement in FlexRay 72
4.2.3 Message Replication in the Static Segment of FlexRay 72

4.2.3.1 CLP Formulation . 74
4.2.3.2 Optimization objective . 75

4.2.4 Heuristic Approach . 75
4.2.5 Windowed Transmission in TDMA CAN 76
4.2.6 Temporal Replicas in FTT-CAN - Locally Controlled 77

4.2.6.1 Retransmission in the Asynchronous Window by the Sender 77
4.2.7 FTT-CAN Static Error Recovery . 78

4.3 Summary . 79

5 Error Recovery in FTT-CAN - Dynamic Approach 81
5.1 ReScheduling by the Master . 82
5.2 Error Recovery in the Time Domain - Single Replica Version 83

5.2.1 Motivational Example . 84
5.2.2 The Recovery Server . 86

5.2.2.1 Server Type . 86
5.2.2.2 Obtaining Server Capacity and Period 87

5.2.3 Message Response Time . 88
5.2.3.1 Message Response Time with Indirect Interference 89
5.2.3.2 Message Response Time with Direct Interference 91
5.2.3.3 Obtaining Response Time with Both Type of Interference’s . 92

5.2.4 Priority Assignment and Scheduling Policies for the Server 93
5.2.4.1 Server with Maximum Priority 93
5.2.4.2 Server with Same Priority . 94
5.2.4.3 Server with Same Priority and Deadline Miss Protection . . 97
5.2.4.4 Server with EDF policy . 99

5.2.5 Limits on the recovery success . 101
5.3 Error Recovery in the Time Domain - Multiple Replica Version 103

5.3.1 Limitations and Motivating for an Improved Recovery Method 103
5.3.2 Update on Server Capacity Computation 104
5.3.3 Obtaining Worst Case Response Time of Messages with Server Inter-

ference . 104
5.3.3.1 Updating the Message Response Time Computation 104

iii

Contents

5.3.3.2 Obtaining the Number of Replicas 105

5.3.3.2.1 Replica Level . 107

5.3.3.3 Building the Interference Patterns 114

5.3.3.4 Server Interference . 116

5.3.3.4.1 Indirect Interference 116

5.3.3.4.2 Direct Interference 118

5.3.3.5 System Schedulability Test 120

5.3.4 Resource Optimization - Obtaining Minimum LSW 120

5.4 Summary . 122

6 Simulation Study and Partial Experimental Validation 123

6.1 Simulator - Single Replica Version . 123

6.1.1 Used benchmarks . 127

6.1.1.1 Updated SAE benchmark 127

6.1.1.2 PSA benchmark . 127

6.1.1.3 VEIL benchmark . 127

6.2 First Results with Poisson Model (limit of 1 fault per EC) 129

6.2.1 Server Policy . 132

6.2.1.1 Assessing the Polling Server 132

6.2.1.2 Assessing the Sporadic Server 134

6.2.2 Priority Assigning to the Deferrable Server 134

6.2.2.1 Recovered Errors and Interference 135

6.2.2.2 Final remarks on priority assigning policies 138

6.3 Recovery Method with Multiple-Replica Retransmission 138

6.3.1 Updated Simulator Description . 139

6.4 Assessing the Error Recovery Method with Compound Fault Model and Mul-
tiple Message Retransmission . 142

6.4.1 Assessing by Simulation the Design Method 145

6.4.2 Comparison with other Methods . 146

6.4.3 LSW Optimization and BW Required by the Error Recovery Mechanism149

6.4.3.1 LSW Optimization with Random Sets 149

6.5 Issues in Master Implementation . 153

6.5.1 First experiments . 153

6.5.2 Optimizing the Scheduler to Obtain Minimum Latency 154

6.6 Summary . 157

7 Generic Model and Applicability to TT Protocols 159

7.1 Generic Model . 159

7.2 Error Recovery Applied to TTCAN . 160

7.2.1 Windows Placement and Size . 161

7.2.1.1 RetM Message and Window 161

7.2.1.2 Retransmissions Window . 162

7.2.2 Application Example and Additional Comments 163

7.3 Error Recovery Applied to FlexRay Protocol 165

7.3.1 Segment Choosing and Slot Configuration 167

7.3.2 Application Example and Protocol Efficiency Assessment 169

7.4 Summary . 170

8 Conclusions and Future work 173

8.1 Future work . 174

iv

Contents

Bibliography 177

A Benchmarks 184
A.1 SAE . 184
A.2 Updated SAE . 184
A.3 PSA . 185
A.4 VEIL . 186

B Other Simulation Results 189
B.1 First Results With Poisson Model . 189

B.1.1 Polling Server . 191
B.1.2 Sporadic Server . 191

B.2 Simulation Results for Priority Assignment of Deferrable Server 192
B.3 Recovery Method with Multiple copy retransmission 194

B.3.1 Controlled Retransmission vs Automatic Retransmission - Average and
WCRT . 197

C Resolving IMO Scenarios in the Master Node 199

D Acronyms List 201

v

Contents

vi

List of Figures

2.1 Physical topologies: Bus, Ring, Star and Mesh. 8

2.2 Dependability tree (adapted from [ALRL04]). 11

2.3 Polling Server (adapted from [But11]). 18

2.4 Deferrable Server (adapted from [But11]). 19

2.5 Sporadic Server (adapted from [But11]). 20

3.1 A CAN network. 21

3.2 Possible physical topologies in CAN. 23

3.3 Voltage levels in CAN bus. 23

3.4 Bit time - division in segments. 24

3.5 Standard data frame in CAN. 26

3.6 Extended data frame in CAN. 27

3.7 Active Error Frame, minimum size and with superposition of error flags. . . . 28

3.8 Example of arbitration process with 4 nodes. 29

3.9 Bit stuffing mechanism . 30

3.10 Bits subject to the bit stuffing mechanism (standard frame) 30

3.11 CAN controller - Error state machine. 32

3.12 Last time consistency. 33

3.13 Scenario of Inconsistent Message Duplicate. 34

3.14 Scenario of Inconsistent Message Omission. 34

3.15 Frame transmission, including arbitration between 4 nodes 35

3.16 CAN-FD Data frame. 36

3.17 Comparison between transmission time of standard CAN Data frame and CAN
FD with speedup factor of 8. 37

3.18 Example of TTP/C cluster. 39

3.19 Node internal structure . 39

3.20 TTP/C round. 40

3.21 Ethernet Frame . 41

3.22 Switched Ethernet . 42

3.23 AFDX mapping on Ethernet frame . 43

3.24 Addressing in AFDX . 43

3.25 AFDX Virtual Link Scheduling. 44

3.26 TTEthernet architecture: Standard vs Safety-Critical (adapted from [KAGS05]). 44

3.27 Defining a TTEthernet cycle. 45

3.28 Ethernet and TTEthernet frames. 45

3.29 Elementary Cycles in FTT-Ethernet (adapted from [Ped03]). 46

3.30 FTT-Ethernet Trigger message (adapted from [Ped03]). 46

3.31 FTT-Ethernet Data Message (adapted from [Ped03]). 46

3.32 FTT-SE Architecture (adapted from [Mar09]). 47

vii

List of Figures

3.33 HaRTES Architecture (adapted from [San11]). 47

3.34 FTTRS architecture (adapted from [BDBP06]). 48

3.35 TTCAN System Matrix. 49

3.36 Reference message payload . 50

3.37 Elementary Cycle (EC) and Trigger Message (TM) encoding in Flexible Time-
Triggered Controller Area Network (FTT-CAN). 52

3.38 Inserted Idle Time in FTT-CAN. 53

3.39 TM internal structure. 55

3.40 Slave messages internals. 56

3.41 Master node internal structure. 56

3.42 Format for request from slaves. 57

3.43 Timing for Master replacement due to permanent hardware fault. 58

3.44 Bus redundancy. 59

3.45 Possible physical topologies in FlexRay network - Hybrid Network with passive
bus, passive star and active star. 60

3.46 Inside a FlexRay node. 61

3.47 Voltage levels in communication lines. 62

3.48 Timing Hierarchy in FlexRay (adapted from [Fle10]). 62

3.49 Communication cycle in FlexRay. 63

3.50 Message transmission with macrotick alignment in the Static Segment. 63

3.51 Message transmission and minislots in the Dynamic Segment. 63

3.52 FlexRay data frame. 64

3.53 Frame transmission in the Static Segment. 66

3.54 Frame transmission in the Dynamic Segment. 66

4.1 Using slave node redundancy, two scenarios: with replica transmission not
necessary (aborted for messages SM1 and SM2) and replica message success
(for SM3). 70

4.2 Full and partial node replication . 70

4.3 Bus redundancy in FTT-CAN (with two buses). 71

4.4 Using bus redundancy, transmission success in bus2 for message M2. 71

4.5 FlexCAN architecture - possible node configuration. 71

4.6 Error recovery in TT window (adapted from [KCM05]). 72

4.7 Proposed method (adapted from [TBEP10]). 73

4.8 Proposed heuristic (adapted from [TBEP10]). 76

4.9 Short windowed transmission concept (adapted from [SS10]). 76

4.10 Error recovery process in the Asynchronous Window. 77

5.1 Rescheduling by the Master. 83

5.2 No Error, Indirect and Direct example interference scenarios. 85

5.3 Probability of finding k or more errors, function of server period. 88

5.4 Example scenarios for indirect interference, with 1 to 4 errors. 89

5.5 Example scenarios for response time calculation with Direct Interference, with
increasing number of errors, from 1 to 4. 91

5.6 MaxPriority vs SamePriority in server policy, for message set of Table 5.2. . 95

5.7 MaxPriority vs SamePriority server policy, for message set of Table 5.3. . . . 97

5.8 The four rescheduling politics compared for a particular system. 101

5.9 Two errors in consecutive ECs leads to message failing deadline (LEC = 10
time units). 102

viii

List of Figures

5.10 Three errors in consecutive ECs and message still meets its deadline (LEC =
5 time units). 102

5.11 Recovery with multiple replicas. 103

5.12 Message and replica hit by errors. 106

5.13 One error and recovery with 1 to 4 replicas in following cycle. 107

5.14 Two error and recovery with 1..4 replicas in following cycle - all fail scenarios
with minimum number of errors. 108

5.15 All scenarios for 2 errors and single replica that fails recovery (1 or 2 errors in
recovery EC). 109

5.16 All scenarios for 2 errors and 2 replicas per message that fails recovery, con-
sidering scenarios from 2 to 4 errors in the recovery cycle. 110

5.17 Three errors and recovery with 1..3 replicas in following cycle. 111

5.18 Four errors and recovery with 1..2 replicas in following cycle. 111

5.19 Possible error sequences in consecutive cycles. 116

5.20 Possible error and recovery scenarios for indirect interference. 117

5.21 Possible error and recovery scenarios for Direct Interference. 119

6.1 Simulator in MatLab. 125

6.2 Limitation on achieving full error recovery 132

6.3 Simulator in MatLab - Multiple Error and Replica version. 140

6.4 Error generation with compound fault model. 141

6.5 Average requirement for minimum LSW vs message set bandwidth utilization,
in Aggressive environment. 151

6.6 LSW required in Normal (left) and Aggressive Ambient (right) for Controlled
Retransmisison: minimum, average and maximum values. 151

6.7 Minimum required LSW value (average) used by each method in different
ambients. Methods from left to right: Static TT, Controlled Retransmission
and Automatic Retransmission. 152

6.8 Minimum required LSW value (average): method comparison by ambient.
From left to right Benign, Normal and Aggressive 152

6.9 Bandwidth required by each method, with LEC=2.5ms and λ=0.26. 153

6.10 Small network architecture for first experiments. 154

6.11 Observing transmission and detection timings in oscilloscope. 154

6.12 Scheduler timing inside EC. 155

6.13 Scheduler running in PIC32 µcontroller with 80 MHz clock. 157

7.1 Proposed method for error recovery in FTT-CAN scope. 159

7.2 Proposal for error recovery in TTCAN protocol, with central RetNode. a) Net-
work architecture; b) Basic Cycles with windows for message retransmissions
and RetM message. 161

7.3 Error recovery in TTCAN, using payload of TTCAN Reference message to
transmit RetM message. 164

7.4 Example of FlexRay network with 3 nodes plus Master R. 165

7.5 Error recovery in next cycle, using retransmission in the Dynamic Segment. . 166

7.6 Error recovery in next cycle - maximum overhead for the example considered. 169

7.7 Constraints to obtain in-cycle recovery. 170

A.1 PSA prototype network. 186

A.2 VEIL - Small Electric Vehicle Prototype. 187

A.3 Power and communication network in VEIL. 188

ix

List of Figures

C.1 Inconsistent Message Omission scenario. 199
C.2 Proposed solution. 200

x

List of Tables

2.1 Bit Error Rate (BER) measurements in Controller Area Network (CAN) . . . 16

2.2 Example for Polling Server . 18

2.3 Message set used in SS example . 19

2.4 Fixed-Priority servers comparison . 20

3.1 Relation between OSI model, ISO-11898 standard and implementation. . . . 22

3.2 Implemented function per layer . 22

3.3 Relation bit rate vs bus length . 25

3.4 Number of bytes in standard CAN data frame 31

3.5 Error types . 31

3.6 IMO’s and IMD’s in CAN, for the diverse ambients 35

3.7 Possible value of DLC field and payload size in CAN-FD 37

3.8 Transmission time of CAN-FD Frame, with speedup factor equal to 8 and bit
rate 1 Mbps . 38

3.9 IMO scenarios in TTCAN, for the diverse environments 51

3.10 Bit rate and bit duration in FlexRay . 61

4.1 Available time for SW (bit rate = 1 Mbps), as a % of LEC 78

5.1 Message set used in following examples . 84

5.2 First message set to illustrate server scheduling policy and priority assignment 95

5.3 Second Message set to illustrate server scheduling policy 97

5.4 Example message set for comparison of the four policies. 100

5.5 Message set used in following examples . 102

5.6 Number of replicas needed for a target reliability level in an Aggressive envi-
ronment . 113

5.7 Same as Table 5.6, but for a Normal environment 113

5.8 Same as Table 5.6, but with LEC = 25 ms and LSW = 12.5 ms 114

5.9 Maximum consecutive cycles (max cycles) with single error and maximum
number of errors in one cycle (max 1cycle), for various values of LSW and λ
using pε = 10−16 . 115

6.1 Updated SAE benchmark message set . 128

6.2 PSA Benchmark message set . 128

6.3 VEIL benchmark message set . 129

6.4 Simulation results with a Deferrable Server for the Updated SAE benchmark
- CS/CMAX varying from 1 to 10 . 129

6.5 Message recovery ratio with different (CS , TS) combinations for Updated SAE
benchmark. 130

xi

List of Tables

6.6 Error recovery ratio as a function of the server capacity for higher than Ag-
gressive environment (10 runs with 10 Mcycles each, TS/LEC = 1500 and
λ = 2.6 faults/second) . 131

6.7 Polling server TS choosing, with Updated SAE benchmark, bit rate = 1000
kbps, BER = 2.6 · 10−7 and 10 million cycles, LEC = 2.5ms. 133

6.8 Error recovery ratio as a function of the server capacity of a Sporadic server,
with Updated SAE benchmark, bit rate = 1000 kbps, TS/LEC = 1500, λ=2.6
and 10 million cycles, LEC = 2.5ms. 134

6.9 Deadline misses in messages hit by errors with Updated SAE benchmark (LSW=36.5%),
average with 10 simulation runs . 135

6.10 WCRT for all tested policies . 137

6.11 Server average response time - all policies . 138

6.12 The interference pattern . 143

6.13 WCRT of all messages in Updated SAE benchmark, for each rare scenario of
Indirect and Direct Interference. 144

6.14 Comparing analytic WCRT with the one observed in simulations for the Up-
dated SAE message set with LSW = 55.1% of LEC, considering an Aggressive
environment . 145

6.15 Minimum LSW configuration value by design and simulation in Agressive En-
vironment . 146

6.16 Comparison of minimum LSW and BW requirement with different design
methods . 147

6.17 Comparing average response time of for the Updated SAE benchmark with
LSW=60.0% of LEC, considering an Aggressive environment - Controlled Re-
transmission vs Automatic Retransmission . 148

6.18 Comparing worst case response time of for the Updated SAE benchmark with
LSW = 60.0% of LEC, considering an Aggressive environment - Controlled
Retransmission vs Automatic Retransmission 149

6.19 Main characteristics of the 3 benchmarks, in different environments 150

6.20 Reduction in number of possible scheduled messages function of the bit rate
(considering 8 bytes of payload and maximum bit-stuffing). 156

6.21 Penalty for displacing scheduler in time (Reduction in available time for mes-
sage transmission vs EC Length) . 156

6.22 Characteristics comparison between microcontrollers - 8 bit vs 32 bit 156

A.1 SAE benchmark message set . 184

A.2 Updated SAE benchmark message set . 185

A.3 PSA Benchmark message set (original) . 186

A.4 PSA Benchmark message set (adapted) . 187

A.5 VEIL benchmark message set . 187

B.1 Error recovery ratio for PSA benchmark - CS/CMAX varying from 1 to 10. . 189

B.2 Error recovery ratio for VEIL benchmark - CS/CMAX varying from 1 to 10. . 189

B.3 Message recovery ratio with different (CS , TS) combinations for PSA benchmark189

B.4 Message recovery ratio with different (CS , TS) combinations for VEIL benchmark190

B.5 PSA benchmark - Error recovery ratio as a function of the server capacity. . . 190

B.6 VEIL benchmark - Error recovery ratio as a function of the server capacity. . 190

B.7 Polling server TS choosing, with PSA benchmark. 191

B.8 Polling server TS choosing, with VEIL benchmark. 191

xii

List of Tables

B.9 Sporadic Server, PSA benchmark - Error recovery ratio as a function of the
server capacity. 191

B.10 Sporadic Server,VEIL benchmark - Error recovery ratio as a function of the
server capacity. 192

B.11 Deadline misses in message hit by errors of PSA benchmark (average) 192
B.12 Deadline misses in message hit by errors of VEIL benchmark (average). . . . 192
B.13 PSA benchmark - WCRT for all tested policies. 193
B.14 VEIL benchmark - WCRT for all tested policies. 193
B.15 PSA benchmark - Server average response time 194
B.16 VEIL benchmark - Server average response time 194
B.17 Updated SAE benchmark - Response time with all interference patterns and

RepLevel={4, 3, 2, 1}. 195
B.18 PSA benchmark - Response time with all interference patterns 195
B.19 VEIL benchmark - response time with all interference patterns. 196
B.20 Comparing analytic WCRT with the one observed in simulations for the PSA

message set with LSW = 28.0% of LEC, considering an Aggressive environ-
ment. 196

B.21 Comparing analytic WCRT with the one observed in simulations for the VEIL
message set with LSW = 23.8% of LEC, considering an Aggressive environ-
ment. 196

B.22 Comparing average response time of for the PSA benchmark with LSW =
28.0% of LEC, considering an Aggressive environment - Controlled Retrans-
mission vs Automatic Retransmission . 197

B.23 Comparing WCRT of the PSA benchmark with LSW = 28.0% of LEC, con-
sidering an Aggressive environment - Controlled Retransmission vs Automatic
Retransmission . 197

B.24 Comparing Average RT of the VEIL benchmark with LSW = 23.8% of LEC,
considering an Aggressive environment - Controlled Retransmission vs Auto-
matic Retransmission . 197

B.25 Comparing WCRT of the VEIL benchmark with LSW = 23.8% of LEC, con-
sidering an Aggressive environment - Controlled Retransmission vs Automatic
Retransmission . 198

xiii

List of Tables

xiv

Chapter 1

Introduction

The way we live and the well-being in the twenty first century society is dependent on

automatic systems and machines, ranging from very simple ones, e.g. toasters, to complex

ones, as for instance cars, airplanes or trains. The control of these systems depends heavily

in computing devices, that often have a distributed nature, termed distributed embedded

systems (DES). Then, the nodes of these systems need to exchange messages in order that

they cooperate and the system can full-fill its intended function, being this accomplished by

an underlying communication network.

Many of these systems have real-time constraints, so the top level requirements for system

performance translate to requirements on the communication network, which must assure

a reliable and timely delivery of the messages, to achieve correct system functioning. As

interferences are always present in real systems then, at the network level, the existence of

mechanisms to guarantee that the messages are timely delivered in the presence of faults,

facilitates the implementation of fault tolerant mechanisms at system higher-levels.

1.1 Problem Statement

The communication network is subject to interferences, that can induce failed transmis-

sions, which depending on critically level, can produce catastrophic failures at the system

level, in economic terms or, in the limit, in human life’s losses. To cope with the unavoid-

able faults, one (or more) fault-tolerant mechanism must be deployed, to guarantee adequate

system performance and reliability levels.

A common way to implement networks in high-reliability DES is to use the Time-Triggered

paradigm, where the message transmission is controlled by the passage of time, being trans-

mitted in precise time instants. By using a clock with high precision, they present determin-

istic message transmit times and very low jitter. They typically use a static schedule, that

is determined before the system startup, being therefore not operational flexible. Also, the

integration of event-triggered traffic limits bandwidth efficiency severely, as an overprovision

of reserved bandwidth/slots is necessary to attain prompt reaction to these events, which due

to their nature can happen in any time instant.

1

Chapter 1. Introduction

The occurrence of errors happens in random instants of time, having then an event nature.

Its recovery can be attained using spatial, time (or both) redundancy, having each one their

questions relating the necessary resources and the efficiency in their use. In what concerns

error-recovery using time redundancy, which is a way to guarantee message transmission

reliability, the common approach is to use extra windows/slots, which are unused when

there are no errors (most of the time), presenting then a low bandwidth efficiency. This

limits severely the maximum utilization bandwidth, being this more notorious when the

available bandwidth is already scarce for the current systems, e.g. CAN in automobiles, and

is previewed an increase in future generation of DES.

This dissertation presents a method to obtain fault-tolerance in DES networks, which show

very good bandwidth utilization efficiency in error recovery, in the time-domain, obtaining

adequate level of message transmission reliability, with prompt error recovery and giving also

guarantees on real-time timeliness.

The method is firstly presented for the FTT-CAN protocol and uses a module in the

Master node that listens to the messages sent in each EC, detects failed messages, inserts

this information in a error server queue, being the dynamic scheduling for the next cycle done

jointly with the regular TT traffic.

The developed mechanism is afterwards generalized and shown that is applicable to other

Time-Triggered protocols, namely TTCAN and FlexRay, still presenting considerable band-

width efficiency gains.

1.2 Thesis and Contributions

The thesis supported by the present dissertation argues that:

It is possible to guarantee high-reliability of message transmission in Time-Triggered

networks, combining an error detector with a server for online error management and message

re-scheduling. This method results in small error recovery latency and a significant gain in

bandwidth efficiency when compared to traditional time domain methods in common Time-

Triggered networks.

The major contributions of this thesis are as follows:

• New method for error recovery in the time domain in FTT-CAN networks that allows

meeting a desired reliability goal with small recovery latency and significantly lower

associated bandwidth when compared to static pro-active retransmissions;

• Error injector and simulator for FTT-CAN networks, including error pattern generator;

• Optimizer for LSW parameter, considering multiple replica retransmission and global

reliability target, in FTT-CAN networks;

• Application of same method to obtain high-reliability in TTCAN and FlexRay networks,

using active time redundancy;

2

Chapter 1. Introduction

• Generalization of the method and abstraction of the network technology to obtain high-

reliability in a time and bandwidth-efficient way in any Time-Triggered network that

supports online traffic scheduling or a dynamic traffic phase.

1.3 Published works

The contributions in the scope of this dissertation, briefly presented in the previous sec-

tion, were published in the following conference proceedings and journal article:

• L. Marques, V. Vasconcelos, P. Pedreiras, L. Almeida, and V. Silva. Towards Efficient

Transient Fault Handling in Time-Triggered Systems. In Proceedings of the INFO-

RUM11 - Simpósio de Informática, Coimbra, Portugal, September 2011.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Tolerating Transient Com-

munication Faults with Online Traffic Scheduling. In Proceedings of the IEEE Interna-

tional Conference on Industrial Technology (ICIT2012), pages 396-402, Athens, Greece,

March 2012.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Error Recovery in Time-

Triggered Communication Systems Using Servers. In Proceedings of the 8th IEEE Inter-

national Symposium on Industrial Embedded Systems (SIES13), Porto, Portugal, June

2013.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Schedulability Analysis

of Server-Based Error-Recovery Mechanisms for Time-Triggered Systems. In Proceed-

ings of the IEEE 18th Conference on Emerging Technologies and Factory Automation

(ETFA’13), Cagliary, Italy, September 2013.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Comparing Scheduling

Policies for a Message Transient Error Recovery Server in a Time-Triggered Setting. In

Proceedings of the IEEE Conference in Emerging Technology and Factory Automation

(ETFA14), Barcelona, Spain, September 2014.

• L. Marques, V. Vasconcelos, P. Pedreiras, L. Almeida, and V. Silva. Efficient Transient

Error Recovery in FlexRay Using The Dynamic Segment. In Proceedings of the IEEE

Conference in Emerging Technology and Factory Automation (ETFA14) , Barcelona,

Spain, September 2014.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Reactive Error Recovery in

Time-Triggered Networks using Online Traffic Scheduling. In Proceedings of Inforum

17, Aveiro, October 2017.

• L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Error Recovery in the

Time-Triggered Paradigm with FTT-CAN. Sensors Journal, 18(1), January 2018.

3

Chapter 1. Introduction

1.4 Thesis Outline

The thesis supported by this dissertation is organized as follows:

Chapter 2 is a generic and diversified chapter, intended as a compact introduction to

several topics that are fundamental to understand distributed and real-time systems, which

will be used in this and later chapters. It starts with the communication paradigms, the

physical and logic topologies and the types of medium access control available in communica-

tion protocols. Following, real-time systems are briefly characterized, along with scheduling

policies and ways to evaluate the system schedulability, namely the response-time analysis.

Servers definition and characterization and the fault models are also described in this chapter,

along with the main aspects on dependability.

In what concerns protocols used in real-time systems, Chapter 3 firstly describes thor-

oughly the CAN protocol, along with the new CAN FD version. Other protocols that are con-

tending to dominate the future DES are presented next, including AFDX, TT-Ethernet, and

also the ones that use the FTT paradigm - FTT-Ethernet, FTT-SE, HaRTES and FT4FTT.

Protocols aiming at flexible Time-Triggered systems are afterwards presented. An in depth

description of the FTT-CAN protocol, including all protocol details and the schedulability

analysis for real-time functioning, referring also complementary works in FTT-CAN (e.g.

multiple bus). The TTCAN and FlexRay protocols are presented here, as they will be used

in Chapter 7, when the adaptation of our proposal to these protocols is presented.

In Chapter 4 a detailed presentation of other works that use time redundancy is done,

with a small introduction to spatial one. These works are the most relevant in what concerns

error-recovery in Time-Triggered systems, that will be used later for comparison with the

proposed method.

Chapter 5 describes the proposed error recovery method, firstly the single replica version,

including the rational behind it, how it integrates failed transmissions in the scheduling

process, how to obtain the server parameters and the response time of messages, along with

their algorithms. To overcome the limitation on achievable transmission reliability when

single replica is used, a second version is then presented, that essentially repeats the previous

steps, but now defining new error and recovery scenarios, the number of replicas per error

detected, with the ultimate goal of obtaining a global transmission reliability goal. The

description of the optimization process to choose the LSW FTT-CAN key parameter finalizes

this chapter.

Chapter 6 starts by presenting the simulator and the used benchmarks (Updated SAE,

PSA and VEIL) used in the simulation study. Correct functioning, server type choosing and

server policies are assessed. The multiple replica version is also simulated using the same

benchmarks and afterwards the chapter presents a comparison of the bandwidth efficiency

of our proposal with the methods referenced in Chapter 4. This chapter concludes with an

analysis and tests of some critical implementation issues in the Master node, namely the

modifications necessary to implement the method proposed in this thesis.

Chapter 7 presents first the abstracted generic model of the proposed method, that

4

Chapter 1. Introduction

retains the essential characteristics. It follows an analysis on its applicability to two Time-

Triggered protocols - TTCAN and FlexRay - discussing the adaptations necessary and pre-

senting some practical considerations and values on the achievable bandwidth efficiency use.

Finally, Chapter 8 concludes the document, resuming the dissertation, presenting the

main conclusions and also pointing possible ways for future work.

In Appendix A a more detailed description of benchmarks SAE, Updated SAE, PSA and

VEIL are presented, followed by Appendix B with additional results from the simulation

work. In Appendix C a proposal is presented that tries to detect and resolve inconsistent

message omission scenarios in the Master node.

5

Chapter 1. Introduction

6

Chapter 2

Background

2.1 Real-time Systems

The control of all kind of physical functions is increasingly done by real-time systems,

being these systems ubiquitous in so many areas of modern societies. These span from

industrial process control, automotive, aviation or robotics, just to name a few.

A real-time system can be described as a computer system where the correctness of a

computation is dependent on both the logical results of the computation and the time at

which these results are produced [Kop11].

In real-time systems the timeliness of the results is mandatory, otherwise it is considered

that a system failure occurred. If a result produced after its deadline has some utility to the

system (no impact on the safety), the system is said to be soft real-time. On the other side,

if a deadline miss can cause catastrophic consequences, then its called hard real-time system.

So, when the consequences of system failure are severe or catastrophic, in terms of loss of

value or even human lives, these are termed safety-critical systems.

2.1.1 Distributed Systems and Networks

A Distributed System (DS) is defined in [ST16] as ”a collection of autonomous computing

elements that appears to its users as a single coherent system”. So a distributed system is

composed by at least two computing elements, generally referred as nodes, where each one

may behave independently of the others and, to the system user, are viewed as a single entity.

So, the nodes need to cooperate to perform the intended function, doing that by exchanging

messages through and underlying communication network. A Distributed Embedded System

(DES) is a DS that has an embedded nature. They typically have real-time requirements,

and are widespread in all fields and industries.

2.1.1.1 Physical Topologies

The network topology refers to the arrangement of the elements (e.g. nodes, links) of a

communication network. The basic topologies, from the physical point of view, are repre-

7

Chapter 2. Background

sented in figure 2.1, being referred as Bus, Star, Ring and Mesh. Depending on deployment

details, some distributed systems can use mixed topologies, that combines two or more of the

basic topologies.

Figure 2.1: Physical topologies: Bus, Ring, Star and Mesh.

The bus uses a shared transmission medium, where all participants may listen all trans-

mitted messages. This topology allows easy insertion and removal of nodes and lowers cabling

length.

In the ring topology each message is passed from node to node, until reaching destination.

In single rings the messages travels in one direction and with double ring messages can

travel simultaneously in opposite directions. This can be used to increase throughput or to

implement spatial redundancy.

The star topology uses a central equipment that has a dedicated link (half-duplex or

duplex) to each node. This way, any communication between nodes always traverses the

central equipment.

The used links are typically copper cables, the air or optical fibers. In this thesis the

focus is in cabled networks and bus topology.

2.1.1.2 Medium Access Control - MAC

A key aspect, namely in topologies that use a shared transmission medium, is how they

are allowed to transmit. The medium access control defines a set of rules that regulate when

the nodes can transmit any pending messages. The most common are:

• CSMA/CD - Carrier Sense Multiple Access with Collision Detection - any node that

finds the medium free can start transmitting, listening simultaneous to the electrical

levels on the bus and if a collision is detected the node transmits a jam signal to guar-

antee that all nodes also detect signal corruption and stops transmission; afterwards it

refrains from trying the transmission for a period of time (depends on specific imple-

mentation or protocol), and the process repeats again, until successful transmission; an

example of a protocol that uses this MAC is (Shared) Ethernet [MB76];

8

Chapter 2. Background

• CSMA/CR or /CA (or /DCR)- Carrier Sense Multiple Access with Collision Reso-

lution or Collision Avoidance (or Deterministic Collision Resolution) - the arbitration

method consists in writing bit-by-bit the message ID and simultaneous listen to the

resultant bit in the bus; then if the value is different from the written one, the node

stops transmitting and the arbitration proceeds to the next bit with the nodes that

have listen same value; this process repeats until only one node is a transmitter, that

then proceeds and sends the message; an example of a protocol that uses this MAC is

CAN [BG91], which will be detailed in Section 3.1;

• TDMA - Time-Division Multiple Access - it uses a global clock that permits each node

to know the time instant where it is allowed to transmit; the time is divided in slots

or windows, being each one assigned to a specific node; the sequence of pairs node/slot

corresponds to the transmission schedule, that is fixed at system startup and repeats

in cycles; as only one node has access to the medium in a particular time instant, the

message transmission is done without collisions, being the transmission deterministic;

examples of protocols that uses this MAC are TTP/C [KB03] and FlexRay (in the

Static Segment) [Par07];

• FTDMA - Flexible TDMA - each node allocates one or more slots, referred as minislots

due to the small duration (when compared with normal message) and when the slot

counter of a particular node coincides with an allocated slot then it has permission to

transmit the message, using the time of several minislots; examples of protocols that

uses this MAC are Byteflight [BPG00] and FlexRay (in the Dynamic Segment).

2.1.2 Communication Paradigms

Messages, depending on the nature of their transmission instants, can be classified as

[Obe05]:

• periodic - there is a constant time interval between successive message transmissions;

• sporadic - the transmission times are not known, but it is known that a minimum time

interval exists between successive transmissions;

• aperiodic - the transmission times are not known nor a minimum time interval between

successive transmissions exists.

In the Time-Triggered communication paradigm all the communication activities take

place in precise time instants. Typically the time is divided in cycles and each cycle has a

known number of windows or slots, being the schedule global and obtained off-line, there it is

static. As advantages, it is deterministic and predictable, since that at any time instant it is

known what message is being transmitted, which also facilitates the detection of transmission

failures. Also the message jitter is minimum.

9

Chapter 2. Background

The integration of event-triggered traffic, e.g. alarms, is possible but poses efficiency

limitations in bandwidth usage. This kind of traffic can be regarded as sporadic messages

with a large average time between message transmissions, but much lower minimum time

between messages. In this case the network slots to transmit these messages have to be

configured for the minimum interval, but they will be empty most of the time, thus the low

bandwidth efficiency. There are also some inflexibility to system evolution, as for instance

when messages need to be added or removed. If flexibility in regards to add new messages

(new system functionalities) is sought, then this must be previewed in the global schedule,

adding spare slots to the schedule, that remains unused until the system is updated, which

represents then wasted bandwidth.

Clock synchronization is mandatory, since each message must be transmitted in precise

time instants. One good example of this paradigm implementation is the TTP/C protocol

[KB03].

In the Event-Triggered paradigm, the messages are sent based on their occurrence and

not in predefined instants in time. Being so, a mechanism must exist to resolve the conflict

when two or more messages try to access the communication medium at the same time. Two

well-known implementations are Ethernet [MB76] and CAN [BG91] protocol, for instance.

Due to the importance to support both types of traffic in DES networks more efficiently,

protocols have emerged that divide the communication cycle in different segments or windows,

as is for instance the TTCAN [LH02] and FlexRay [Fle05] protocols. Nevertheless, the time-

triggered part is still static and defined offline. These protocols will be described further in

Chapter 3.

The Flexible Time-Triggered paradigm tries to reconcile the previous paradigms where

the event-triggered and time-triggered traffic share the available bandwidth. Bandwidth

sharing between traffic type is done by splitting each cycle, termed elementary cycle, in two

disjoint windows (or phases) - Synchronous and Asynchronous Window. Moreover, the time-

triggered traffic is scheduled centrally in a special node, the Master, that sends a specific

message, Trigger Message, that triggers the transmission of Time-Triggered messages for

the current cycle. As the schedule is performed online, the scheduler can use any desired

scheduling policy. Moreover, taking advantage of the dynamic scheduling, it is possible to

change the messages and/or they characteristics, still guaranteeing message schedulability.

This last characteristic, grants the protocol a operational flexibility that is not available in

other Time-Triggered protocols, where the schedule is static.

The FTT paradigm has been implemented over CAN, the FTT-CAN protocol [APF02],

shared Ethernet [PAG02] and switched Ethernet [Mar09], [San11]. The FTT-CAN protocol

is presented in detail in Chapter 3, Section 3.3.2.

10

Chapter 2. Background

2.2 Fault Tolerance and Reliability

2.2.1 Dependability

In real-time systems the dependability requirements are of utmost importance, since fail-

ing to provide services in a timely and predictable manner may cause important economic

losses or even put human life in risk.

Such systems must be dependable, i.e., it must be possible to place justifiable reliance on

the service they deliver [Lap95].

As described by Aviziënis [ALRL04], Dependability is an integrating concept that in-

cludes what is described in the dependability tree (Figure 2.2).

Figure 2.2: Dependability tree (adapted from [ALRL04]).

2.2.1.1 Threats

There is a causal sequence defined for the threats, defined as

... fault −→ error −→ failure ...

that can be defined at various-levels, as a failure in a low-level can constitute the fault

for the next level.

Laprie in [Lap95] defines that a system failure occurs when the delivered service no

longer complies with the specification, the later being an agreed description of the system’s

expected function and/or service. An error is that part of the system state that is liable to

lead to subsequent failure; an error affecting the service is an indication that a failure occurs

or has occurred. The adjudged or hypothesized cause of an error is a fault. This can also be

put in the following form:

• fault - is a defect within the system (error cause);

• error - refers to difference between actual output and expected output;

• failure - it is the inability of a system or component to perform required function

according to its specification.

11

Chapter 2. Background

Fault types

Faults can be classified according to their persistence in:

• Permanent faults - remain in the system until they are repaired; e.g., a broken wire

or a software design error;

• Transient faults - starts at a particular time, remains in the system for some period

and then disappears, e.g. EMI;

• Intermittent faults - are transient faults that occur from time to time, e.g. a hardware

component that is heat sensitive, it works for a time, stops working, cools down and

then starts to work again.

2.2.1.2 Attributes

Dependability includes the following attributes [Lap95]:

• Reliability - continuity of correct service;

• Availability - readiness for correct service;

• Safety - absence of catastrophic consequences on the user(s) and the environment;

• Integrity - absence of improper system alterations;

• Maintainability - ability for a process to undergo modifications and repairs;

• Confidentiality - absence of unauthorized disclosure of information.

More precisely Reliability can be defined as the probability that a system can perform

its intended function, under given conditions, for a given time interval. In fact reliability com-

prises three aspects: hardware reliability, software reliability and communication reliability,

being the system reliability obtained by multiplying these factors.

2.2.1.3 Means

Fault Prevention aims to prevent the introduction of faults, e.g., by constraining the

design processes by means of rules.

Fault Tolerance aims to ensure that the presence of faults does not lead to system

failure. Fault tolerance relies primarily on error detection and error correction, with the latter

being either backward recovery (e.g., retry), forward recovery (e.g., exception handling) or

compensation recovery (e.g., majority voting).

Fault Removal tolerates faults without compromising correct functioning.

Fault Forecasting aims to quantify the confidence that can be attributed to a system.

Measures of the forecasted dependability can be obtained, for example, through stochastic

modelling or through extrapolation of field experience from previously deployed systems.

12

Chapter 2. Background

2.2.1.3.1 Fault-Tolerance Fault tolerance [ALRL04] is intended to preserve the deliv-

ery of correct service in the presence of active faults. It is generally implemented by error

detection and subsequent system recovery.

Redundancy types

In fact a fault tolerant system can be obtained including some sort of redundancy in

the system. Redundancy can be classified in several types: spatial, time, informational

(presentation, version). In all these types, redundancy does not necessarily mean identical

functionality, but just performing the same work.

Redundancy can also be classified as static or dynamic. Static redundancy implements

fault masking, meaning that the fault does not show up, since it is transparently removed.

Examples are voting mechanisms, correcting codes, N-modular redundancy (NMR), (4-2)

concept, TMR with duplex. In Dynamic redundancy after fault detection, the system is

reconfigured to avoid a failure. Examples include backup sparing, duplex and share, pair and

spare.

Hybrid approaches are also possible.

Redundancy has always a cost. For instance:

• Hardware: additional components, area, power consumption, shielding;

• Software: development costs, maintenance costs;

• Information: extra hardware for decoding / encoding;

2.2.1.4 Reliability in the message transmission subsystem

Let’s concentrate our focus on the message transmission and how to obtain the reliability

in the defined time period of working.

Message reliability in a mission time, MT, can be obtained by assessing the probability

of success of sending each message in that period of time.

The message transmission can be regarded as a Bernoulli process, where each bit trans-

mitted successfully has probability (1− ber) and fail probability ber, in an environment with

known bit error rate ber. So, the success probability of sending one time the message with

nbits, can be obtained using Equation (2.1),

psuccess = (1− ber)nbits (2.1)

and the corresponding failure probability of message i is

pi = 1− psuccess = 1− (1− ber)nbits (2.2)

Considering single-shot transmission and independent faults, then the success probability

of sending all instances of a particular message, in the considered mission time - MT -, with

13

Chapter 2. Background

a total number of MT
Ti

messages sent, is obtained by the product of the success probabilities,

as expressed in equation (2.3), where Ti represents the message i period.

psucess(MT) =

MT
Ti∏
k=1

(1− pi) = (1− pi)
MT
Ti (2.3)

Extending this reasoning to all messages in the set, allows us to write an equation that

reflects the transmission reliability of all N messages in the set, in the MT .

RM =
N∏
i=1

(1− pi)
MT
Ti (2.4)

Fault tolerant transmission

We are specifically interested in obtaining fault tolerance using time redundancy, by

transmitting a predefined number of message replicas in the time domain, so the probability

of a failure in message transmission, using m copies per message period, is given by Equation

(2.5), where pi as in Equation (2.2). Here, it is considered a successful transmission when

at least one copy is delivered to the receiver or equivalently a message transmission failure

occurs if and only if all instances of the message are not delivered.

pFTi = pi · pi · . . . · pi = (pi)
m (2.5)

Then this equation corresponds to the new failure probability of message i with the fault-

tolerant message set, obtaining finally Equation (2.6), simply substituting pi by pFTi .

RFTM =

N∏
i=1

(
1− pFTi

)MT
Ti (2.6)

As the RM should be a value near unity, to have a better insight is preferable to use

(1 − RM) instead, since is more ”informative” to refer a value of 1 · 10−6 of unreliability

against referring a reliability equal to 0.999999. It is also easier to make comparisons this

way.

2.3 Fault Models

2.3.1 Deterministic Model

A fault model for an event-triggered CAN network is presented in [TB94]. Firstly, during

t seconds exactly one burst of errors with size nerror happens. Except for this burst, errors

happen with period equal to TS seconds, according to Equation (2.7).

toterrors(t) = nerror + d t

terror
e − 1 (2.7)

This allows to obtain the worst case response time of each message recovered and presents

14

Chapter 2. Background

an error recovery overhead that is directly proportional to the number of errors in the time

interval t. This model is referred as deterministic since it is a model in which a bounded

worst-case scenario is characterized.

In [PHN00] a generalization of this model is presented, that includes several interference

sources,which using single source corresponds to the model presented in Tindell [TB94].

This is a simple model to use as it defines a concrete number of error per time interval,

but gives pessimistic results as is normally used an upper bound for the error number.

2.3.2 Probabilistic Model

The logic behind probabilistic models is that the fault level can be low, with long inter-

arrival times (most of the time) but sometimes the system experiences much higher loads

with much lower inter-arrival time. A random distribution, like the Poisson distribution, as

in Equation (2.8), seems to be a good match for the model. This distribution presents an

average equal to 1/λ arrivals per second, where smaller distance between arrivals can occur,

but with a much lower probability, so they occur less frequently.

Pλ
(
k; τ
)

= e−λτ
(
λτ
)k

k!
(2.8)

Navet in [NSS00] presents a probabilistic fault model that considers both fault frequency

and gravity. It uses a generalized Poisson process where the faults can be single-bit faults

or a burst (more than one single bit sequence) according to a random distribution. Then

deadline failure probabilities are then computed.

Navas in [BBRN02] also use a Poisson distribution for the fault arrival, providing worst

case response times for message frames, not as a single value, but as a probability distribution.

The probabilities are obtained using a probability tree of scenarios that are pruned when

branch probabilities are below a threshold. Due to computational cost, in [BBRN04], an

enhanced version was presented, and also a comparison between CAN and TTCAN was

performed, analyzing the probability of successful delivery.

2.3.3 Experimental BER characterization in CAN networks

The work reported in [FAFF04] have characterized the BER in diverse types of environ-

ments. Measures were performed in a factory with arc-welding machines two meters away

(Agressive environment). The Normal environment was a factory production line, and lastly

the Benign environment a laboratory at the University of Aveiro. The experimental setup

used a CAN network configured with a bit rate of 1000 kbps.

The values reported are the ones presented in Table 2.1 that will be used in this disser-

tation to guide the parameter choosing in the proposed method.

15

Chapter 2. Background

Table 2.1: Bit Error Rate (BER) measurements in Controller Area Network (CAN)

Environment BER

Benign 3.0 · 10−11

Normal 3.1 · 10−9

Agressive 2.6 · 10−7

2.4 Scheduling Algorithms

The process of choosing the next task to execute is termed scheduling. There are diverse

ways to make these choices, which depends on particular characteristics of the tasks or the

relation between them. In the following description it is assumed that the tasks are preemptive

and the time taken to exchange tasks is negligible. The task set is given by Equation (2.9).

Γ = {τ1, τ2, . . . , τn} (2.9)

where each task is characterized by its Period, Deadline, Offset and Execution Time - Ti,

Di, Oi and Ci.

Depending on the task periodicity, in real-time systems we can define three tasks types.

The periodic task has many instances or iterations and a fixed period exists between two

consecutive instances of the same task. A sporadic task has zero or more activations, and

a minimum interval must elapse before other activation occurs. The aperiodic task can

occur at any instant in time and the instant of next activation is not defined, with no known

minimum interarrival value.

2.4.1 Scheduling Policies

One of the simplest algorithms is the Fixed Priority (FP), where a priority is assigned

to each message. If the priority is assigned according to the period, with the biggest priority

attributed to the fastest task, than this policy is called Rate Monotonic (RM). Using the

task deadline, in an analog way to RM, the Deadline Monotonic (DM) policy is defined.

The Earliest Deadline First (EDF) assigns the priority according to the distance to

the message deadline, implying that at each moment the task with the shortest distance to its

deadline is the one chosen to be executed. Least Laxity First (LLF) is a dynamic priority

scheduling algorithm that assigns priorities according to the laxity at any instant, the least

laxity the greater the priority.

2.4.1.1 Shedulability Bounds

If all the deadlines are met then the task set is said to be schedulable. This can be evalu-

ated using different techniques, as for instance bounds. These are based on task utilization,

that is the ratio between execution time and period. In the FP case, Liu and Layland in their

seminal work [LL73], proved that a safe bound to guarantee the scheduling of a task set using

16

Chapter 2. Background

RM policy is given by Equation (2.10). This equation is sufficient only. Another simple test

for RM is the Hyperbolic Bound [BBB03], as given by Equation (2.11). Any of these tests

can be used to rapidly evaluate the task set schedulability, offline as online, for instance as

an acceptance test to accept new tasks. For DM policy, with Di ≤ Ti, the Equation (2.10)

can be used substituting Ti by Di, gives guarantees in schedulability.

ULL(RM) =

n∑
i=1

Ci
Ti

< n ·
(

21/n − 1
)

(2.10)

UHyper(RM) =

n∏
i=1

(Ci
Ti

+ 1
)
≤ 2 (2.11)

The EDF is a dynamic scheduling technique, being the bound given simply by Equation

(2.12) [LL73].

UEDF =
n∑
i=1

Ci
Ti

< 1 (2.12)

2.4.1.2 Response Time Analysis

Considering a system with a FP scheduling policy and n preemptive tasks, as defined by

Equation (2.9), the response time can be obtained using Equation (2.13), where Ri is the

response time of task i, Tk is the period of task k and hp(i) is the set of tasks with higher

priority than task i.

Ri = Ci +
∑

k∈hp(i)

⌈
Ri
Tk

⌉
· CK (2.13)

Since the term Ri appears in both sides of this equation, then an iterative resolution can

be applied, as in Equation (2.14), since the Ri is monotonically non-decreasing. Applying

this to each message, the process stops when Rm+1
i = Rmi or Rm+1

i is greater than the task

deadline. In the latter case, the system is non-schedulable.

Rm+1
i = Ci +

∑
k∈hp(i)

⌈
Rmi
Tk

⌉
· CK (2.14)

2.4.1.3 Processor Demand Test for EDF

The processor demand in interval [0, L] is the total time needed for completing all jobs

with deadlines no later than L, given by Equation (2.15) [But11].

Cp(0, L) =

n∑
i=1

⌊
L

Ti

⌋
· Ci (2.15)

To guarantee schedulability of all messages under EDF scheduling, then for all L ≥ 0,

17

Chapter 2. Background

Equation (2.16) must be verified.

L ≥
n∑
i=1

⌊
L

Ti

⌋
· Ci (2.16)

2.5 Servers

Servers are software entities that act as proxies for associated aperiodic requests, shaping

their arrival pattern and allowing for their integration in periodic/sporadic systems. Many

server types can be found in the literature [But11], being typically characterized by a certain

capacity CS that can be provided over a given interval TS to serve arriving requests. However,

they differ in the rules on how and when their capacity can be used and replenished.

2.5.1 Polling Server

The Polling Server (PS) [But11] becomes active with periods equal to TS and serves any

aperiodic pending requests, with a maximum value equal to its capacity CS . Any pending

request must wait for next activation, so there is no aperiodic activity. Also, any unused

capacity is lost. In terms of schedulability, its interference is bounded as a strictly periodic

message of period TS and execution time CS .

A working example is given in Figure 2.3, which uses the task set of Table 2.2, having

sporadic tasks arriving at instants 2, 9 and 12.5 which require 3, 1 and 1 time units of

execution time. The server uses intermediate priority.

Table 2.2: Example for Polling Server

Ti Ci

τ1 4 1
τ2 8 2
PS 5 2

Figure 2.3: Polling Server (adapted from [But11]).

18

Chapter 2. Background

2.5.2 Deferrable Server

A Deferrable Server (DS) [LSS87, SLS95] replenishes its capacity strictly periodically

and allows for consuming its remaining capacity at any point of its period. The server is

marked as ready and scheduled whenever it has pending requests to serve and has enough

capacity. The capacity is decremented by the exact amount of requested execution time that

was actually served. Despite presenting a penalization in terms of the schedulability of lower-

priority periodic tasks, when compared to other servers, like Polling and Sporadic Servers,

the simplicity, small overhead, and responsiveness of DSs make them a good practical option

as referred in [BB99]. Figure 2.4 presents the response of a DS, using the previous message

set and server with equal TS and CS .

Figure 2.4: Deferrable Server (adapted from [But11]).

2.5.3 Sporadic Server

The Sporadic Server (SS), proposed in [SSL89], presents similar values in the average

response time of aperiodic tasks when compared with the DS, but without the penalization

in schedulability bound due to possible back-to-back execution that this last server presents.

The SS algorithm is a preserving capacity one that can use available capacity when need.

The replenishment rule, forces that capacity replenished should be of equal value of the used

one and should occur in TS time. This way, the capacity is used and replenished in chunks,

and from the schedulability point of view the server never uses more capacity than CS in any

considered period of time.

Table 2.3: Message set used in SS example

Ti Ci

τ1 5 1
τ2 15 4
SS 10 5

19

Chapter 2. Background

Figure 2.5: Sporadic Server (adapted from [But11]).

2.5.3.1 Summary of Servers

Table 2.4 is adapted from the one presented in [But11] that compares the various servers,

according to the criteria presented there. First line corresponds to Background Service, which

schedules the aperiodic or sporadic tasks only when there is no periodic task executing (uses

only free time), presenting tipically long response times and no guarantees on schedulability

of aperiodic messages that it serves.

Table 2.4: Fixed-Priority servers comparison

Performance Computational Memory Implementation
Complexity Requirement Complexity

Background Service

Polling Server

Deferrable Server

Sporadic Server

A final remark to point out that similar algorithms exists for dynamic scheduling policies,

e.g. the Dynamic Priority Exchange Server, Dynamic Sporadic Server or the Earliest Deadline

Late Server, which are thoroughly described in reference [But11].

2.6 Summary

In this chapter general background information was presented that intended to give a

briefly presentation on diverse topics related to real-time systems.

20

Chapter 3

Networks for Embedded Systems

This chapter starts by presenting in detail the CAN protocol, followed by diverse proto-

cols based on Ethernet. Afterwards it presents in detail three protocols intended to obtain

operational flexibility in Time-Triggered settings, namely TTCAN, FTT-CAN and FlexRay.

3.1 Controller Area Network

3.1.1 Introduction

With more than 1000 million CAN nodes installed in 2016, CAN is the dominant network

in the auto industry[Zel17]. It is also used in medical equipment, in military vehicles, boats,

planes and also in all types of industrial machinery. An example of a CAN network is depicted

in Figure 3.1. CAN is still one of most used protocols, namely in the automotive industry, and

functionalities that need more bandwidth can be tackled using CAN FD [BG12], prolonging

this way the CAN protocol dominance in cars.

There are several options for the Application layer implementation, e.g. CANOpen

[PAK08], [iA15], DeviceNet [Law13] or J1939 [Vos08], just to name a few.

Figure 3.1: A CAN network.

The functions performed by the Physical and the Data-Link layers are listed in Table 3.2,

and will be detailed in the following sections.

The Linear Bus as Physical Medium

21

Chapter 3. Networks for Embedded Systems

Table 3.1: Relation between OSI model, ISO-11898 standard and implementation.

Data-Link
Logic Link Control

ISO 11898-1 CAN ControllerMedium Access Control

Physical

Physical Layer Signaling

Physical Medium Attachment ISO 11898-2 CAN Transceiver

Physical Medium Specification ISO 11898-3 Bus (Physical Medium)

Medium Dependent Interface Connector

OSI Model Standards Implementation

Table 3.2: Implemented function per layer

LLC Logic Link Control

Acceptance Filtering
Overload Notification
Recovery Management

MAC Medium Access Control

Data Encapsulation/Decapsulation
Data Link Layer Frame Coding (Stuffing/Destuffing)

Medium Access Management
Error Detection/Signaling
Acknowledgment
Serialization/Deserialization

Physical Layer

Bit Encoding/Decoding
Bit Timing/Synchronization
Driver/Receiver Characteristics

The bus is defined in standard 11898-2 (High-speed Medium Access Unit) as a linear bus

and uses a twisted pair with characteristic impedance equal to 120Ω, having a propagation

speed of 4 to 5 ns/meter. As any electrical signal suffers reflections in the cable end, leading

to signal distortions, the bus must be terminated by the cable characteristic impedance in

a way to minimize these reflections. The termination resistor is placed in the bus ends and

must be equal to 120Ω, as depicted in Figure 3.1

The accepted topology can present some variations, and can be a star, a twin star or a

hybrid (mixed) topology, which are represented in Figure 3.2. These variations of the linear

bus present additional limitations, namely on the maximum distance between nodes, the

stub/dropline length or the allowed maximum bit rate.

3.1.2 Bus Signal Levels

CAN bus uses a differential signal to encode the logical levels that are termed Dominant

and Recessive, corresponding to logical value 0 and 1, respectively. The CAN transceiver

translates the logical level in two electric signals applied to the two bus wires, termed CAN Hi

and CAN Lo. Applying a nominal voltage of 2.5V in both wires corresponds to the recessive

level and the dominant level is obtained by applying a nominal voltage of 3.5V in CAN Hi

and 1.5V in CAN Lo, that translates to a differential voltage equal to 2 V. These values are

represented in Figure 3.3, including admissible limits for transmitter and receiver.

22

Chapter 3. Networks for Embedded Systems

Figure 3.2: Possible physical topologies in CAN.

Figure 3.3: Voltage levels in CAN bus.

23

Chapter 3. Networks for Embedded Systems

3.1.3 Bit time

The bit time is divided in four segments, as depicted in Figure 3.4. The temporal definition

is measured in TQ (Time Quanta), being this value obtained dividing the controller clock

period. The bit duration is then given in TQ. The segments are the following:

• Synchronization Segment - in this segment a transition is expected; duration is 1 TQ;

• Propagation Time Segment - this segment compensates the delays introduced by the

signal propagation on the bus, delays in the input comparator and also in the output

driver of the transceiver; the duration can be configured between 1 and 8 TQ;

• Phase Segment 1 and Phase Segment 2 compensates for phase errors, by adding TQ to

the Phase Segment 1 or subtracting from the Phase Segment 2, to align the following

transitions with the Synchronization Segment; the duration is between 1 and 8 TQ.

Figure 3.4: Bit time - division in segments.

As can be seen in Figure 3.4 the sample point is located between the last two segments.

For instance, the microcontroller PIC18F2680 data-sheet [Inc07] refers that the optimum

position of the sample point should be equal to 80% of the bit duration.

At the bit level, a hard synchronization can only occur once per frame and corresponds

to the recessive to dominant edge transition of the SOF bit, where all the receivers will

synchronize with the transmitter node (reset the bit time counter to the Synchronization

Segment). Due to oscillator drift in the nodes, the bit clock varies and the nodes can lose the

achieved synchronization. To maintain it, a resynchronization is performed in every recessive

to dominant edge transition, adjusting the local bit time as necessary, based on the difference

between the expected and the measured position of this transition edge (if this edge falls in

the Synchronization segment, before or after).

3.1.3.1 Bit rate versus Bus length

When contending for bus access, each CAN controller must be able to read the bus level

and compare it with the written value, to evaluate the outcome of current bit arbitration.

This fact imposes a limitation on the maximum bus length for a defined bit rate (or nominal

bit time).

The bus level is defined by the contributions of all nodes, so the sample point must

be located inside the nominal bit time duration and must take into account all the delays

24

Chapter 3. Networks for Embedded Systems

introduced by the hardware and transmission medium, as in Equation (3.1). Firstly we must

consider the delay due to signal propagation on the bus tbus, considering the greatest distance

between any two nodes. Secondly thw accounts for delays introduced by the output and input

stages of the controllers and also the transceiver delays in writing/reading the signal on the

bus.

τdelay = tbus + thw (3.1)

In the bit time definition, the propagation segment duration must account the time nec-

essary from the bit transmission start in one node to reach the most distant node plus the

time necessary to the contribution of the second node to be sensed by the first one. So, this

duration must be at the least twice the value of τdelay, as in Equation (3.2).

tprop seg ≥ 2 · τdelay (3.2)

Due to this relation, for each bit rate value there is a maximum bus length that can be

used, as illustrated in Table 3.3 [DNGG12]. We can observe that the bus can be several km

long for very low bit rate (2.5 km for 20 kbps) but for 1 Mbps the bus length can only be

25 meters. The values presented in this table are somehow conservative, as for instance by

choosing superior quality hardware it is possible to use a longer bus for a specified bit rate,

e.g. 40 meters at 1 Mbps [Par07].

Table 3.3: Relation bit rate vs bus length

bit rate bit time Maximum bus length

(kbps) (µs) (m)

20 50 2500

62.5 16 1000

125 8 500

250 4 250

500 2 100

1000 1 25

3.1.4 CAN Data-Link Layer

The CAN standard defines the following frames, according to their content and aim: Data,

Remote, Error and Overload.

25

Chapter 3. Networks for Embedded Systems

3.1.4.1 CAN Data Frame

The standard data frame (2.0A, 11 bit identifier), is represented in Figure 3.5, and is

divided as follows.

Figure 3.5: Standard data frame in CAN.

• SOF - any node that detects the medium free and has a pending message to transmit,

try to send the frame by putting the bus in dominant level. If other nodes also possess

messages to transmit, then this bit synchronizes the transmission process in all nodes;

• CAN ID or ID Message Identifier - it’s an 11 bit number that identifies the frame,

allowing a total of 2048 different identifiers. There cannot be two frames with the same

ID. This value is utilized in the arbitration phase as a mean to control access to the

bus. The node with the lowest ID frame will win the arbitration phase, proceeding with

the frame transmission and others nodes switch to receiver mode (see section 3.1.5 for

details).

• RTR - 1 bit set to dominant level;

• IDE bit (Extended ID bit) - bit set to dominant level for standard frame identifier (11

bits);

• Reserved bit - reserved for future use (see CAN FD section);

• DLC (Data Length Code) - 4 bits that represent the number of bytes in the Data Field;

• Data Field - this is the frame payload and can have between 0 and 8 bytes of data;

• CRC Field - this is a 15 bit field that contains the Cyclic Redundancy Check value that

is calculated using the Arbitration Field, Control Field and Data Field. It is followed

by a recessive bit termed CRC Delimiter;

• ACK Field - this is a 2 bit field; the first bit (ACK slot bit) is written with recessive

level by the transmitter and any receiver that sees a correct frame should put the bus

in dominant level and the second bit (ACK delimiter bit) must have a recessive level

and is the ACK Field terminator;

• EOF (End-Of-Frame) - this field contains 7 bits, all with recessive level and ends the

frame transmission.

26

Chapter 3. Networks for Embedded Systems

After the EOF field and before the next frame transmission start there must be three

recessive bits, named IFS (InterFrame Space) or Intermission, which must exist between any

successful and successive frame transmissions.

CAN Data Frame 2.0B (29 bit identifier) The extended frame, represented in Figure

3.6, possesses the same base format as the standard one, being different in the following fields:

• SRR (Substitute Remote Request) - renames standard frame RTR bit; must have a

recessive level;

• IDE bit - one bit with recessive value;

• Extended ID - 18 bits of length; with the first 11 bits of IDE (Base ID in the figure)

constitutes the remaining bits of the 29 bits identifier;

• R1, R0 - reserved for future use; must have dominant level.

Figure 3.6: Extended data frame in CAN.

3.1.4.2 Remote Frame

This frame is used to request the transmission by other node of a specific data frame

(with the same ID). The format is the same of the correspondent data frame, except for:

• The RTR bit must have a recessive level;

• There is no payload in the Data field.

In case of simultaneous transmission of the data frame and the remote frame there is no

unresolvable arbitration conflict due to same ID number, because the RTR bit is also used in

the arbitration mechanism and has different values for the two frames. Since the data frame

has this bit with dominant level then this one is transmitted firstly.

3.1.4.3 Error Frame

When the transmitter node or any one of the receiving nodes detects an error they start,

in the following bit, a transmission of an error frame, signaling and globalizing the detected

transmission error. The error frame is composed by the Error Flag (6 dominant bits), and the

Error Delimiter (8 recessive bits) that must be followed by the Interframe Space (3 recessive

bits), as depicted in Figure 3.7. Other nodes that have not detected the original error will

now detect the bit stuffing error imposed by the error flag and will also transmit their error

flag, resulting in the superimposed error flag, that can last for another 6 bits, imposing an

inaccessibility time of at most 23 bits.

27

Chapter 3. Networks for Embedded Systems

Figure 3.7: Active Error Frame, minimum size and with superposition of error flags.

3.1.4.4 Overload Frame

The overload frame has the same format as error frame, and the fields are termed overload

flag (6 dominant bits) and overload delimiter (8 recessive bits). This frame is sent in the

following situations:

• A dominant bit is detected during intermission period;

• Internal receiver conditions that needs extra time before processing next frame.

The overload frame is transmitted in the bit after the first situation is detected. When is

the second situation that triggers the sending of the overload frame, the frame is transmitted

in the first bit of the intermission time. After that, other nodes detect a dominant bit in the

intermission time (overload condition) and also transmit their overload frame.

3.1.5 Non-destructive arbitration mechanism CSMA/CR

In CAN, the MAC (Medium Access Control) method uses a deterministic mechanism

named CSMA/CR or CSMA/DCR (Carrier Sense Multiple Access with Collision Resolution

or DCR- Deterministic Collision Resolution). In the arbitration phase, when two or more

nodes are writing to the bus, the bus level is recessive only if all nodes have written this

value and have a dominant level if at least one of them has written a dominant level. From

the logical level point of view, we can consider the bus as an AND logical gate, where each

node corresponds to an input, where the logical 0 corresponds to the dominant level and the

logical 1 to the recessive level. The frame priority for bus access is defined by the CAN ID

field, where a lower value stands for higher priority. We must remember that there are no

two frames with the same ID, so each frame has a unique priority.

The arbitration phase starts when a node that has a pending message to transmit and

encounters the bus idle, starts by issuing a dominant SOF bit. Any other node that has also

a message to transmit synchronizes with it. Afterwards, each node writes its own bit and

listens to the present bus bit level. If it is different from the one that he has written then he

28

Chapter 3. Networks for Embedded Systems

knows that other message contending for the bus access has higher priority (dominant level)

and then switches to receiver mode. This process continues until only one node considers

himself the transmitter and afterwards transmits its message. An example of this process is

depicted in Figure 3.8.

Figure 3.8: Example of arbitration process with 4 nodes.

In this example, after some node writes the SOF bit, all other nodes with pending trans-

missions will be synchronized. In the first ID bit all nodes write a recessive value, the bus

has this value and they all read a recessive level and proceed to transmit the next bit. This

happens again in ID bit 2 and 3. In the fourth ID bit, the nodes 2 to 4 write a dominant value

and node 1 a recessive one, the bus level is dominant. Then, node 1 reads a dominant value,

different from the one he has written and removes himself from the arbitration process and

assumes from now on a listening mode. Nodes 2, 3 and 4 proceed by transmitting their fifth

ID bit and by the same comparison process, on a bit-by-bit basis, a node that encounters a

different level than the written one will withdraw from the arbitrating process (node 3 on the

seventh ID bit and node 4 on the 10th ID bit). So, in the end, only one of the nodes wins

the arbitrating process and will proceed by transmitting its frame.

3.1.6 Bit Stuffing mechanism

The line code used in CAN standard is NRZ (Non-Return to Zero), where the nominal

bit time is simply the inverse of the bit rate. By using this code it is possible that a large

number of bits with the same value will be transmitted on the bus and due to this fact the

bit synchronism can be lost. To overcome this situation, the CAN standard mandates that

whenever five consecutive bits with the same level exist in a sequence, a bit with different

polarity should be placed in the following position, being this process named bit stuffing. In

Figure 3.9 an example is presented, firstly for typical scenario where 2 stuff bits are inserted

right after two sequences of 5 bits of the same polarity, marked in yellow. The third line shows

the destuffing operation in the receiver, where the detection of 5 consecutive bits imply the

removal of the following received bit. In (B) the worst case scenario is presented, where an

initial inserted stuff bit imply additional insertion of stuff bits. This is the situation that

gives rise to maximum bit stuffing in a CAN frame.

The frame bits subject to the bit stuffing mechanism are the ones presented in Figure

29

Chapter 3. Networks for Embedded Systems

Figure 3.9: Bit stuffing mechanism

3.10, from the SOF bit until the last bit of the CRC. The number of transmitted bits in the

bus depends on the bit pattern of each frame, bounded by a situation with zero stuff bits

and the one with maximum stuff bits. The number of bits varies between 34 and 98 (34

control bits plus 0 to 8 bytes of data), so the maximum number of bits can be calculated

using Equation (3.3), where DLC stands for the number of bytes in the Data field.

Figure 3.10: Bits subject to the bit stuffing mechanism (standard frame)

bitsMAX = g + 13 + 8 ·DLC +

⌊
g + 8 ·DLC − 1

4

⌋
(3.3)

where g equals 34 for standard frames with 11 bits in ID field and 54 for the extended

format (29 bits ID). Then, for the standard identifier, the total number of bits in a data frame

with minimum stuff bits (meaning zero) and with maximum stuff bits are the ones presented

in Table 3.4, where the values presented include the 3 bits of IFS [Nol03].

3.1.7 Error detection, signaling and recovery

CAN standard defines powerful mechanisms for error detection, used by the transmitter

and receivers, as listed in Table 3.5. Error detection is followed by the transmission of an

error flag that has a format that violates the bit stuffing rule (6 consecutive dominant bits),

globalizing this way any error detected by at least one node.

The errors and scenarios that leads to it are described next:

30

Chapter 3. Networks for Embedded Systems

Table 3.4: Number of bytes in standard CAN data frame

DLC 0 stuff bits Maximum stuff bits

0 47 55
1 55 65
2 63 75
3 71 85
4 79 95
5 87 105
6 95 115
7 103 125
8 111 135

Table 3.5: Error types

Error detection mechanism who ?

Bit monitoring Sender
Acknowledgement Sender
Cyclic Redundancy Check Receiver
Bit Stuffing Receiver
Form Error Receiver

• Bit Monitoring Error - a transmitter always checks if each transmitted bit has the same

value as the value read from the bus. If a difference is detected an error frame follows

and the message is marked for retransmission. This mechanism must be disabled in the

arbitration phase and also in the Acknowledgment slot;

• Acknowledgment Error - the sender writes a recessive bit in the Ack slot and expects

that any node that receives correctly the message will re-write this bit with a dominant

value. If the sender reads a recessive level an Acknowledgment error is detected, then

it transmits an error frame and marks the message for retransmission;

• Cyclic Redundancy Check Error - the transmitter, using the bits from the frame be-

ginning until the last bit of the data field, calculates a 15 bits CRC vector, which is

transmitted right after the Data field. Each receiver, based on the same received bits

also calculates the CRC vector using the same algorithm. The two CRC’s are then

compared and if any difference exists a CRC error is present. The nodes that detect

this kind of error, transmit an error frame in the following bit;

• Bit Stuffing Error - the bit stuffing mechanism, previously described, guarantees that

between the SOF and the CRC delimiter there are no more than five consecutive bits

with the same level. So, whenever more than 5 bits with the same value are read, we say

that a bit stuffing violation has occurred. Any node that detects this error, transmits

an error frame;

• Form Error - a CAN frame has in certain positions a fixed level (recessive), which

31

Chapter 3. Networks for Embedded Systems

are End-Of-Frame, Interframe Space, Acknowledge delimiter and CRC Delimiter. Any

node detecting a dominant level in one of these bits has found a Form Error and will

send immediately an Error Frame. A particular case occurs when the dominant level is

detected in the last but one bit of the EOF field, which could lead to inconsistent error

scenarios, which is presented in Section 3.1.10.

3.1.8 Fault confinement

Since the bus is a broadcast medium, a faulty node can interfere severely in the message

exchange process and possibly disrupt the functioning of the whole system. The extreme

case is known as the babbling idiot [BB03], where a node transmits frames continuously,

making it impossible for other nodes to exchange any messages. The CAN standard defines

a mechanism to prevent that faulty controllers degrade significantly the communications and

does this by auto excluding nodes with error counters with values above specified thresholds.

In what regards the error status, a node can be in one of three states: error-active, error-

passive and bus-off. The controller state is determined by the values present in two error

counters: TEC (Transmit Error Counter) and REC (Receive Error Counter), as depicted in

Figure 3.11, which also details the transition thresholds between states.

Figure 3.11: CAN controller - Error state machine.

In Error Active state, the controller is assumed to be fully functional, been allowed to

transmit and participle actively in error detection and error signaling using the active error

flag. This state is attained after a reset and whenever the REC and TEC counters both have

a value less than 128. When suspect of faulty behavior the controller transits to the error-

passive state, being still able to transmit frames but its error signaling capabilities are now

restricted since it can only use passive error flags. The controller transits to this state if any

of these counters have a value greater than 127 and less than 256. The controller continues

to update the error counters and if both fall for a value less than 128 then it transits back to

error active state. In the bus-off state the node is not allowed to transmit any type of frames,

since considers itself already corrupted. It can only return to active error state after a reset

or on receiving 128 consecutive correct frames. The rules used to increment/decrement the

32

Chapter 3. Networks for Embedded Systems

counters update these counters in a way that their current value gives a good indication of

the controller state-of-health. On successful frame transmission both error counters (TEC

and REC) are decremented by 1 unit. An error detection and subsequent transmission of the

error flag implies the increment by 8 in the sender. On the receiver side, the same situation

implies that the REC counter is incremented by one. If the node that firstly detected the

error sees a dominant level after the sixth bit of the error flag (due to secondary error flags

by other nodes) then it acknowledges that by incrementing the REC counter by 8 units.

In error-passive status the transmission of passive error flag does not force other nodes to

acknowledge that this node has detected an error, being this way a source of error detection

inconsistency. Nevertheless, in the CAN controller a warning condition exists and a flag is

set if any of the counters exceeds 96, which can be used to trigger measures at higher-levels.

3.1.9 Frame Filtering (Acceptance Filtering)

The CAN controller implements a mechanism that filters all the received frames, places

the contents in the receiver buffers and signalize the reception to the application if the frame

ID matches a specific ID or a set of IDs. This way, the microcontroller only has to process

the messages of interest and not all messages sent in bus. This is especially important in

many distributed systems that use small microcontrollers, which possess limited resources in

terms of available memory and computing power.

3.1.10 Possible Inconsistent Scenarios

In normal operation, all nodes in the CAN bus, being it the transmitter or the receivers,

share the same view of the message status - error free or with error. Nevertheless, in some

particular scenarios this is not true.

From the transmitter point of view, a successful transmission happens if no error is de-

tected until the last bit of EOF field. On the other hand, a receiver considers the frame correct

and will accept it as valid if no error is detected until the last but one bit of EOF field. Figure

3.12, defines these bits. Because of this different validation rule used by transmitter and re-

ceiver there are some very particular scenarios that lead to inconsistent scenarios, being this

flaw first presented by [RVA+98], being referred as Inconsistent Message Duplicate (IMD)

and Inconsistent Message Omission (IMO).

Figure 3.12: Last time consistency.

If an incorrect level, meaning a dominant one, is detected by a node in the EOF field (as

this field is composed of 7 recessive bits), then an error frame is transmitted in the next bit

33

Chapter 3. Networks for Embedded Systems

forcing all the nodes to reject the frame. This is achieved in a consistent way until the bit

prior to the last but one bit. But if the last but one bit is perceived as a dominant level,

e.g. induced by EMI, by one or more nodes then consistency on error detection and frame

discarding is not guaranteed, being this a serious impairment to attain the desired reliability.

In Figure 3.13 the A set of receivers detect an incorrect level in the last but one bit of EOF,

so they discard the frame and start error signalling in the last bit of EOF. The transmitter

observing a dominant bit here (last bit) will mark the transmission as failed and will try

to retransmit the message. The nodes pertaining to the B set already have accepted the

frame (as they have not detected any incorrect bit value until last but one bit), interpreting

a dominant bit in the last bit of EOF as an overload frame. After retransmission of the

message, the nodes in set B will get two copies of the same message, being this described as

Inconsistent Message Duplicate (IMD).

Figure 3.13: Scenario of Inconsistent Message Duplicate.

A different case occurs if before retransmission the transmitter crashes or suffers some

malfunction that temporarily takes it out of work (that at least lasts beyond the message

deadline). Then, as depicted in Figure 3.14, the nodes pertaining to the A set, that, as

described in the previous situation, have already rejected the message, due to the transmitter

not retransmitting the message, will not get it, being this an Inconsistent Message Omission

(IMO).

Figure 3.14: Scenario of Inconsistent Message Omission.

Using the same formulation as in [RVA+98], considering a failure rate for the microcon-

troller (including the CAN controller), λp equal to 10−5/hour and the BER’s for the various

environments from [FAFF04] we obtain the values for IMD and IMO presented in Table 3.6.

In [RVA+98] the authors propose the fault-tolerant broadcasts protocols EDCAN (Eager

Diffusion), RELCAN (Reliable Broadcast) and TOTCAN (Totally Ordered) to obtain con-

sistency. All these protocols need extra-rounds of message exchanging to attain consistency,

not being well suited to Time-Triggered settings.

34

Chapter 3. Networks for Embedded Systems

Table 3.6: IMO’s and IMD’s in CAN, for the diverse ambients

Environment BER IMD/hour IMO/hour

Benign 3.0 · 10−11 8.60 · 10−4 1.19 · 10−14

Normal 3.1 · 10−9 8.89 · 10−2 1.23 · 10−12

Agressive 2.6 · 10−7 7.45 · 100 1.04 · 10−10

To resolve IMO, Kayser[KL99] proposes a solution based in hardware redundancy, de-

scribed as the SHAdow REtransmitter or simply SHARE, where the dedicated hardware

detects specific error patterns, the ones that leads to IMO, and if found it retransmits the

frame. This solution is tailored to Event-Triggered networks.

Proenza [PMJ00], propose the MajorCAN protocol, which would resolve the consistency

problem on a frame basis. However this solution does not comply with the standard protocol

and its use would imply building specific controllers, which is not cost effective.

The IMD can be circumvented by using a message counter, so whenever the receiver gets

a message with the same counter value it can safely discard it, as the pertinent information

that the message carries is the same.

3.1.11 CAN with Flexible Data Rate - CAN FD

As bandwidth requirements in the automotive industry keep on increasing, Bosch in close

cooperation with car makers and CAN specialists developed an improved CAN Data-Link

protocol [BG12]. The major enhancements are an increased bit rate in the data phase and

bigger payload, with a maximum of 64 bytes instead of only 8 of standard CAN.

In figure, taken from [Lin12], a complete CAN-FD frame transmission, with 4 nodes

competing for bus access, that shows clearly the speedup used in the data phase.

Figure 3.15: Frame transmission, including arbitration between 4 nodes
[Lin12].

3.1.11.1 CAN FD Data Frame

The CAN FD frame has some bits redefined and with some new fixed levels.

35

Chapter 3. Networks for Embedded Systems

Figure 3.16: CAN-FD Data frame.

Looking at Figure 3.16 we can identify,

• reserved bit, r1 - 1 bit, dominant level;

• Identifier Extension Flag, IDE - 1 bit, dominant level;

• Extended Data Length, EDL - identifies this as CAN FD frame, recessive level (in

CAN2.0A this was the r0 bit, dominant level);

• r0 (reserved) - dominant level;

• Bit Rate Switch, BRS - the value defines if a different bit rate should be used or not

in data field transmission. With a recessive level the bit rate is higher, else it uses the

same bit rate as in the arbitration phase;

• Error State Indicator, ESI - has dominant level if the controller is in Error Active state

and recessive for Error Passive state.

• Data Length Code, DLC - represents the number of bytes in the data field. For the first

eight combinations is the same as CAN 2.0 and the remaining 8 the coding is presented

in Table 3.7, being the maximum value 0xF that corresponds to 64 bytes of payload;

• CRC - to guarantee the same Hamming distance as in CAN 2.0, the CRC polynomial

is different depending on the data field length. CRC vector uses 17 bits (DLC ≤ 16) or

21 bits (all other cases). The CRC vector calculation now includes the stuff bits, unlike

the CAN2.0 that does not use them. In this field the stuff bit insertion rule is different,

being now static and one stuff bit is inserted each 4 bits, which translates to a total of

21 bits and 25 bits effectively transmitted in the bus, respectively.

The CAN data frame now includes the ESI bit (Error State Indicator) that informs the

other nodes of the current error state of the transmitter node. Also, remote frames are

not supported anymore, being the RTR bit renamed r1 and has always a dominant level.

Considering the minimum and maximum bit stuff insertion, a CAN-FD transmission time

can be calculated using equations (3.4) and (3.5), where τarb and τdata corresponds to the

36

Chapter 3. Networks for Embedded Systems

Table 3.7: Possible value of DLC field and payload size in CAN-FD

DLC Data bytes

0000 ... 1000 0 ... 8

1001 12

1010 16

1011 20

1100 24

1101 32

1110 48

1111 64

bit time in arbitration and data phase, repectively, and DLC is the number of payload bytes

[BS14].

Ci(min) = 29 · τarb +

(
27 + 5 ·

⌈
DLC − 16

64

⌉
+ 8 ·DLC

)
· τdata (3.4)

Ci(MAX) = 32 · τarb +

(
28 + 5 ·

⌈
DLC − 16

64

⌉
+ 10 ·DLC

)
τdata (3.5)

Figure 3.17 presents an interesting comparison, showing that we can send a 64 bytes CAN

FD frame, with a speedup factor equal to 8, in less time than an 8 byte data-frame that uses

CAN 2.0 standard.

Figure 3.17: Comparison between transmission time of standard CAN Data frame and CAN
FD with speedup factor of 8.

3.2 Other Communication Protocols

A description is made of several available communication networks and protocols, detailing

the ones that we are somehow related to this thesis.

37

Chapter 3. Networks for Embedded Systems

Table 3.8: Transmission time of CAN-FD Frame, with speedup factor equal to 8 and bit rate
1 Mbps

DLC 0 stuff bits Maximum stuff bits

(bytes) (µs) (µs)

0 32.375 35.500

1 33.375 36.750

2 34.375 38.000

3 35.375 39.250

4 36.375 40.500

5 37.375 41.750

6 38.375 43.000

7 39.375 44.250

8 40.375 45.500

12 44.375 50.500

16 48.375 55.500

20 53.000 61.125

24 57.000 66.125

32 65.000 76.125

48 81.000 96.125

64 97.000 116.125

38

Chapter 3. Networks for Embedded Systems

3.2.1 TTP/C

TTP/C is a communication protocol [KB03] specifically designed for safety-related auto-

motive applications, being its development led by Prof. Hermann Kopetz of the Technical

University of Vienna, spanning for a period that lasts more than two decades.

From the architectural point of view it has dual passive bus, as represented in Figure 3.18.

To obtain fault tolerance the nodes can be replicated and grouped to form a Fault-Tolerant

Units (FTU), being diverse configurations possible, depending on the type and severity of

faults to tolerate. In this figure there are 3 FTUs, where two of them have 2 node replicas,

that perform the same functions, and one of them is non-replicated (has cardinality equal to

one).

Figure 3.18: Example of TTP/C cluster.

In TTP/C terminology a node in a FTU is also called Smallest Replaceable Unit (SRU),

and the internal structure is presented in Figure 3.19.

Figure 3.19: Node internal structure

A bus guardian is a module that regulates the access to the bus, restricting the access to

determinate time intervals. In TTP/C, the bus guardians ensure transmission only during

the correct timeslot, in all cases, guaranteeing a fail silent behaviour. The guardian can be

local, as in the case of bus topology, or central when a star is used.

39

Chapter 3. Networks for Embedded Systems

The protocol permits also star topologies, being possible to have single star with central

bus guardians, replicated star and mixed bus/star topologies.

The bus access scheme uses TDMA, with a fixed assignment of slots to nodes and every

node must send a message periodically, so there are guaranteed delivery times, with known

jitter. Each TDMA round is divided in slots, that can have different sizes. Due to fault

tolerant considerations, the messages in both buses follow the same sequence in each TDMA

round. In each TDMA round, each node has a slot allocated, meaning that the number of

slots is equal to the number of nodes that pertains to the network.

Figure 3.20 represents the cluster cycle for the network represented in Figure 3.18, where

message with number 1 refers to SRU1 and 2 for the SRU2. In this figure we can observe that

a slot is a window allocated to a node to transmit a message, a TDMA round is a sequence

of slots, where each station transmits exactly one per round and a cluster cycle is a sequence

of different TDMA rounds.

Figure 3.20: TTP/C round.

In each slot a frame must be transmitted, even if there is no new data to transfer. There

are three types of frames: Normal, Initialization and Extended. The normal frames (N-

frames) carry user data, with a maximum payload equal of 16 bytes including also protocol

related field (header) and 3 bytes of CRC [MBSP02]. Initialization frames (I-frames) are

protocol specific that carries specific state information, allowing nodes to integrate an op-

erational cluster, being composed by header, the C-State with maximum of 6 bytes and 2

bytes CRC. The C-State is the Communication Controller state that includes information on

current mode, the time field that denotes current global time and the membership field that

contains activity information on all nodes of the cluster. Both protocol and user data can be

transmitted in extended frames (X-frames).

For correct TDMA access is of utmost importance that each node has the same notion of

global time. This is provided by a distributed clock synchronization service, that implements

a fault-tolerant average algorithm, with and achievable precision of 1 µs.

The possible bus data rate are 500 kbps, 1 Mbps, 2 Mbps, 5 Mbps or 25 Mbps.

Every TTP/C controller possesses a data structure, the Message Descriptor List (MEDL),

that describes the complete communication pattern, corresponding to a static schedule. So

each node, has knowledge of all the messages (sent and received) and their encoding and also

the complete message dispatching table. It is possible to have mode changes, that are also

described in the MEDL.

40

Chapter 3. Networks for Embedded Systems

Also, the protocol includes a Membership Service, being every node’s membership status

made available in each TDMA round, explicitly in I-frames or embedded in the message CRC

field of N-frames. By analyzing this information a node can determine the correct functioning

status of each node in the cluster.

Event channels can be defined by a priori reservation of a specified number of bits in a

message, which are reserved for that particular node and for this reason cannot be shared

among nodes. So, in what concerns asynchronous traffic, the bandwidth efficiency is low.

3.2.2 Ethernet

Ethernet is defined by standard IEEE802.3, was proposed by Metcalfe in 1976 [MB76],

being nowadays one of the most used networks in the world, in practically every area. Re-

ferring to shared Ethernet, it uses as transmission media a bus, being the access control

via CSMA/CD. A station with pending messages to transmit that finds the bus free, starts

transmitting and simultaneous listen to the channel signals. If it senses a collision (that can

happen if two or more nodes starts transmitting simultaneously), its stops transmitting its

data and sends a jamming signal. After it delays the message retransmission, being the delay

given by random exponential backoff algorithm, which is different for each node. Due to the

algorithm used, the bus access is non-deterministic, being this a reason to be considered, as

is, unsuitable for real-time network, despite the large bandwidth available.

Ethernet as in IEEE802.3 standard, defines the two lower layers (Data Link and Physical)

of the seven-layer OSI networking reference model. Shared Ethernet was initially available,

circa 1983, with date rates of 10 Mbps over coaxial, followed by twisted unshielded/shield

cable using star-wired cabling topology with a central hub. Other speeds were standardized,

100 Mbps referred as Fast Ethernet and 1000 Mbps as Gigabit Ethernet, along with multiple

variants of each.

The bus constitutes a single collision domain, limiting the communication between net-

work nodes to half-duplex.

A Ethernet frame is divided in the fields described next, being represented in Figure 3.21.

Figure 3.21: Ethernet Frame

• preamble - 56 alternating 0 and 1 bits to synchronize receiver clocks, 7 bytes;

• Start of Frame Delimiter, SFD - marks the end of preamble, with binary sequence

10101011, 1 byte;

• MAC Destination Address - 6 bytes;

41

Chapter 3. Networks for Embedded Systems

• MAC Source Address - 6 bytes;

• Length/Type - defines the payload size, and with values greater than 1536 signalizes

EtherType, 2 bytes;

• Data - user data, 46 to 1500 bytes;

• Frame Check Sequence, FCS - frame CRC, 4 bytes.

After each frame transmission an idle time between packets must exist, referred as inter-

packet gap, which comprises the time need to send 12 bytes (idle line state).

3.2.3 Proposals for Real-Time/Industrial Ethernet

In Switched Ethernet the hub is substituted by a switch, granting this way full-duplex

communication between nodes. The topology used is an active star, where the center point

is a switch that connects each node with two links - uplink and downlink, as represented in

Figure 3.22.

Figure 3.22: Switched Ethernet

The switch type can be classified as Store and Forward and Cut Trough, where the first

stores the incoming frame and checks it for validity before forwarding it to its destination

ports. The later, starts forwarding the frame as soon as the destination MAC is decoded,

presenting lower latency but may forward frames that contain errors, contrary to the first

type.

3.2.3.1 Avionics Full-DupleX Switched Ethernet (AFDX)

Predictability is a mandatory requirement in the aviation industry, as it is necessary to

obtain system certification. Also due to demands in bandwidth due to the deploying of fly-

by-wire systems, the use of Integrated Modular Avionics (IMA) modules and the need to

replace point-to-point connections, along with demand for lower costs and use proven and

widespread technology, lead to the introduction of Ethernet in this demanding field.

The Avionics Full-DupleX Switched Ethernet (AFDX) is based on switched Ethernet with

a bit rate of 100 Mbps [AFD05]. The point-to-point communication links are substituted in

42

Chapter 3. Networks for Embedded Systems

the AFDX network by the uses of Virtual Links. These are defined as 1-to-many distribution

list, so the switch receiving the frame, inspects it and delivers the frame to the n end nodes

that possess the VLID (Virtual Link ID). An AFDX frame is presented in Figure 3.23 and

its relation to standard Ethernet frame.

Figure 3.23: AFDX mapping on Ethernet frame

Figure 3.24: Addressing in AFDX

To guarantee predictability a rate-constrained strategy is used. Since the message traffic

share the same physical links, the use of virtual links prevents the traffic of different virtual

links to interfere. To enforce this traffic isolation is necessary to limit the rate and size of the

Ethernet frames per virtual link. Then, each virtual link has the following parameters:

• BAG - Bandwidth Allocation Gap - is the minimum time between sending 2 consecutive

frames. This value must be between 1 and 128ms, being a power of 2;

• Lmax - the largest Ethernet frame that can be transmitted in the virtual link (in bytes);

• Jitter - an upper bound on frame transmit latency, measured from the BAG start

instant (in µs).

The flow in the node, is regulated by the Virtual Link Scheduler, that multiplexes the

frames from each virtual link queue, based in individual BAG and Lmax, transmitting it at

the predefined time instants for the specified Virtual Link. An example is presented in Figure

3.25.

The virtual links are defined statically and their parameters, BAG and Lmax, should

be optimized to minimize bandwidth use, guaranteeing the timeliness of all messages. One

example of this process is presented in [SBCH13].

To guarantee fault tolerance to permanent faults, AFDX can be used with replicated

switches, nodes and links, where the two networks transmits exactly the same data. In the

end system a Redundancy Management module is responsible for discarding the redundant

frames.

43

Chapter 3. Networks for Embedded Systems

Figure 3.25: AFDX Virtual Link Scheduling.

3.2.3.2 TTEthernet

The TTEthernet protocol was developed by TTTech to enable time-triggered communi-

cation over Ethernet, being inspired by the TTP/C protocol, targeting the auto industry,

avionics systems and industrial automation [KAGS05].

This protocol is constructed on top of switched Ethernet, adding an adaptation layer

termed Time-Triggered Extension, on top of the 802.3 standard. The standard and the

safety-critical architecture, where the last one uses replicated TTEthernet switches and links,

central bus guardians and enhanced TTEthernet controller, are presented in Figure 3.26.

Figure 3.26: TTEthernet architecture: Standard vs Safety-Critical (adapted from [KAGS05]).

Time-Triggered (TT) messages are sent in precise time instants, according to a predefined

communication schedule, obtained off-line and static. Virtual links (VLs) are obtained in the

scheduling process, defining the logical connection between sender and one or more receivers

and is identified by the critical traffic identier (CTID). The switch is loaded with a statically

defined forwarding table that associates the VLs obtained in the scheduling process with

the corresponding output ports. As the network configuration is static, the messages always

follow the same VLs, they present a predictable behaviour, guaranteeing the timeliness of the

44

Chapter 3. Networks for Embedded Systems

TT messages.

In TTEthernet three traffic classes are defined: Time-Triggered, Rate-Constrained and

Best-Effort, trying to give adequate QoS to messages used in processes with diverse require-

ments. Rate-Constrained (RC) messages always have minimum time interval between frames

pertaining to the same stream, so there is a maximum bandwidth assigned, with delays and

jitter with known limits. Best-Effort (BE) traffic is intended for classical Ethernet frames,

without any temporal guarantees and, in the limit, no guarantee of message delivery.

An example of a TTEthernet communication cycle is presented in Figure 3.27.

Figure 3.27: Defining a TTEthernet cycle.

The TTEthernet frame is presented and compared with the standard frame in Figure

3.28. The destination address is substituted by the CT Marker (4 bytes) which is a static

identifier used to distinguish time-triggered frames from other traffic and CTID (2 bytes)

that is used by the switches to route time-triggered frames through the network.

Figure 3.28: Ethernet and TTEthernet frames.

TTEthernet defines a fault-tolerant clock synchronization mechanism (SAE AS6802) that

is used to synchronize network components, necessary to obtain timeliness and low jitter of

TT messages.

3.2.3.3 FTT-Ethernet

The FTT-Ethernet is an instantiation of the FTT paradigm over shared Ethernet, using

COTS Ethernet controllers, that are enhanced with a software layer so they conform to the

TM message requests, which are sent by the Master node [PAG02].

The time is divided in Elementary cycles and each EC in the Synchronous Window is

followed by the Asynchronous one, being an example presented in Figure 3.29.

The Master has a database with the characteristics of real-time messages, synchronous

and asynchronous and also non real-time messages. The scheduling of synchronous messages

is performed online in the Master node and can use any scheduling algorithm.

The TM message is represented in Figure 3.30, having the broadcast as destination ad-

dress, to reach all nodes. The frame Ethernet data field carries the FTT frame that includes

45

Chapter 3. Networks for Embedded Systems

Figure 3.29: Elementary Cycles in FTT-Ethernet (adapted from [Ped03]).

the message type (MST ID for TM message), the number of data messages that should be

transmitted in the current EC (#Msgs). For each message, the identifier and transmission

duration (Msg ID & Len) follows.

Figure 3.30: FTT-Ethernet Trigger message (adapted from [Ped03]).

At the slave side, there is a modified DLL with a transmission control layer put on top

of the Ethernet layer, both for real-time and non real-time traffic. This is necessary to avoid

collisions in the synchronous window, in order to maintain the timeliness of messages, and

confine each traffic type to the respective window. A synchronous data message is an Ethernet

frame where the Data field is composed by Mesg ID, Counters & Flags and the real-time data

and is represented in Figure 3.31.

Figure 3.31: FTT-Ethernet Data Message (adapted from [Ped03]).

3.2.3.4 FTT-SE and HaRTES

Moving from shared to switched Ethernet brings important efficiency gains as the protocol

can take advantage of features like the absence of collisions and the existence of parallel

transmission paths. Due to to the inherent absence of collisions for each port leads to a major

simplification of the protocol implementation in the slave nodes, as they do not need anymore

to enforce a collision-free medium access. As the message serialization is performed by the

switch, the slaves can transmit the messages immediately after decoding the TM, instead

of waiting for a specific moment to transmit (that they must calculate and time precisely),

46

Chapter 3. Networks for Embedded Systems

as was the case with shared Ethernet. This way, the contents of the TM are simplified,

needing only to convey the ID of the messages to transmit. Moreover, it is possible to take

full advantage of multiple transmission paths by abandoning the pure broadcast architecture

of FTT-Ethernet. This can be achieved by building optimized schedules that exploit this

parallelism, increasing the aggregated throughput.

The new communication system architecture, where the FTT Master is attached to one

switch port and sends the TM to other stations is presented in Figure 3.32 [Mar09].

Figure 3.32: FTT-SE Architecture (adapted from [Mar09]).

The HaRTES - Hard Real-Time Ethernet Switching [San11] - represents the evolution of

FTT-SE, and it now uses a modified Ethernet switch that is based on the FTT paradigm.

The use of the FTT-enabled Ethernet switch overcomes structural limitations in the

FTT-SE protocol, as for instance the ones that require that all participating nodes are FTT-

compliant, which implies the deployment of specific device drivers in the nodes that might

not be readily available. The participation of legacy nodes not conforming to FTT rules may

completely jeopardize timeliness of real-time messages

By adding traffic confinement capabilities to the switch the above limitations can be

overcome, resulting then in the FTT-Enabled Ethernet switch, represented in Figure 3.33.

Figure 3.33: HaRTES Architecture (adapted from [San11]).

47

Chapter 3. Networks for Embedded Systems

The new architecture allows gains in key aspects, as for instance an increase in system

integrity as unauthorized transmissions can be promptly blocked, seamless integration of non

FTT-compliant traffic without compromising real-time timeliness of synchronous messages,

transmission of TM with higher precision or a simplification in handling asynchronous traffic.

3.2.3.5 Fault Tolerance for FTT Architecture

The FT4FTT intends to be an architecture that conforms to the FTT paradigm for a

distributed embedded system which supports applications that are real-time, highly-reliable

and adaptive [GPBB19]. It uses a communication subsystem, called Flexible Time-Triggered

Replicated Star for Ethernet (FTTRS), which is based on Hard Real-Time Ethernet Switching

(HaRTES). The FTTRS communication subsystem is presented in Figure 3.34.

Figure 3.34: FTTRS architecture (adapted from [BDBP06]).

The FTTRS intends to increase the reliability by overcoming vulnerabilities of HaRTES.

This is achieved by eliminating the single points of failure of HaRTES with critical components

replication. It ensures the replica determinism of these replicated components, it restricts the

failure semantics of the components, and it makes message exchanges capable of tolerating

transient and permanent channel faults.

3.2.4 Other Real-Time protocols and Industrial Internet

Other Ethernet proposals exists, but with very specific characteristics, as they modify

standard Ethernet to attain real-time. The more popular industrial Ethernet protocols are

Profinet, EtherNet/IP, EtherCAT, SERCOS III, and PowerLink [WI11].

3.3 Time-Triggered Protocols for Operational Flexibility

This section presents in detail three protocols: TTCAN, FTT-CAN and FlexRay.

48

Chapter 3. Networks for Embedded Systems

3.3.1 TTCAN

The TTCAN introduces a time-triggered framework on top of CAN protocol, is described

in 11898-4 ISO standard [STA04] and corresponds to a Layer 5 (Session Layer) of the OSI

model.

In TTCAN the communications are organized in a system matrix, as depicted in Figure

3.35, being this divided in basic cycles, with a maximum number of 64 and always a power of

2. In this matrix the row represents a basic cycle (BC) and the column, termed Transmission

Column (TC), refers to the window duration. Each basic cycle is composed by time slots

or windows of fixed duration, being possible to transmit one message in each window. The

cycle always start with a Reference message. This message contains the cycle counter (and

possibly other data), so each node prepares the messages to send, if any, that will be sent in

the specified time window. There are three different types of windows:

• Exclusive/Reserved - in this window only the message with the specified ID can be

transmitted, typically used for periodic messages;

• Arbitration - in this window any node can transmit, being the native CAN arbitration

mechanism used for medium access, but anyway the message cannot end after the

defined window boundary;

• Free - window not available for message transmission, being reserved for future use.

Figure 3.35: TTCAN System Matrix.

Each matrix column must have the same size in every basic cycle, implying that if different

messages are sent in different basic cycles then the column size is defined by the longest

message, implying a waste in used bandwidth. Since the columns have a fixed size, the

retransmission mechanism in case of error is disabled in a way to not compromise the defined

time schedule.

At the start of each window (except for the Reference message window) a time interval is

defined, where the message scheduled for this TC/window must start transmission, as long

as it finds the medium free. This requirement ensures that the assigned message for this

TC will not overflow to the next time window, guaranteeing timeliness of messages in the

matrix cycle. This time interval is Transmission Enable Window (TEW) and in the case of

49

Chapter 3. Networks for Embedded Systems

arbitrating windows it will start at the beginning of the first TC and ends at the end of the

TEW of the last merged window.

3.3.1.1 Timing Synchronization and Fault Tolerance

The reference message payload is depicted in Figure 3.36. For level 1, the Control Infor-

mation byte uses 6 bits to define de Cycle Count (0 ... 63), 1 bit is reserved and the eighth bit

(MSB) indicates if the next BC starts immediately after the current one or if it is triggered

by some event. The remaining bytes could be used to transmit user data. Using Level 1

timing the nodes use a clock implemented by a 16 bit counter that is reset with the reception

of the SOF bit of each reference message. The counter is incremented each Network Time

Unit (NTU), obtained from the CAN protocol engine, being one NTU equal to the nominal

bit time (e.g., 1µs for 1 Mbps bit rate).

Figure 3.36: Reference message payload

In level 2 timing the nodes uses at least a 19 bit wide counter as the node clock (at

least 8 times faster than the nominal bit rate) and the reference message now contains the

cycle count and a three byte vector with the global time that is held by the current time

master node. The remaining 4 bytes can be used to transfer user data. Using the received

global time and comparing it with the local node time, an offset and rate are obtained that

is afterwards used to adjust the local clock to the master clock. Additional details on the

clock synchronization algorithm can be found in [HMFH02]. The attainable clock precision

using Level 2 timing is equal or less than 1 µs. The normal functioning of a TTCAN network

implies the regular transmission of reference messages, which are sent by a time master.

The absence of this message stops all communications, as is this messages that triggers all

other message transmissions. So, to guarantee that the reference message is transmitted it

is possible to define up to eight potential time masters. Each master is configured with a

reference message ID and a time-out value, defining a hierarchy of time masters, where the

highest priority is for lower message ID and time-out. If the current time master fails to send

the reference message, then the next potential time master will send it. If this one also fails,

then the next in the hierarchy will try and so on. On detection of reference message in the

bus, any potential time master will abort their pending transmission, guaranteeing that only

a reference message is transmitted per basic cycle.

50

Chapter 3. Networks for Embedded Systems

3.3.1.2 Scheduling Algorithms

The matrix cycle must be defined before system start and loaded in the microcontroller

so the system can conform to it.

This is obtained by executing a scheduling process, that takes into account the character-

istics of the system message set and the protocol constraints. For instance, all transmission

columns must have same duration, despite messages with different transmissions times can

be allocated to it, in different basic cycles.

The scheduling process is then an highly complex optimization process that can be tackled

recurring to heuristic methods, as for instance the ones described by Schmitd [SS07], or even to

stochastic algorithms, as in [CBF01]. The final objective is, of course, to obtain a schedulable

system, but also to leave as much as possible free bandwidth/windows for eventual future

upgrades or having low jitter.

3.3.1.3 Inconsistency Scenarios in TTCAN networks

TTCAN is built on top of the CAN protocol, inheriting the generic characteristics of

it. The inconsistency scenarios presented for CAN in Section 3.1.10 are still present with a

major difference, all the IMD scenarios are now transformed in IMO scenarios. This happens

since the sender when detects an error is prevented from retransmitting the message, due to

the use of single shot transmission. Then, this corresponds to the IMO scenario previously

referred.

So, with a similar characterization of the system as the one used to derive Table 3.6, and

noting that now there is not possible to have IMD scenarios, for the same environments the

number of IMO scenarios per hour for a TTCAN network are presented in Table 3.9.

Table 3.9: IMO scenarios in TTCAN, for the diverse environments

Environment BER IMO/hour

Benign 3.0 · 10−11 8.60 · 10−4

Normal 3.1 · 10−9 8.89 · 10−2

Agressive 2.6 · 10−7 7.45

This constitutes a serious impairment to use this protocol in high-reliability and safety-

critical applications, as the number of IMO scenarios or transmissions failures per hour is far

to great, even in benign scenarios.

The TTCAN protocol did not get general acceptance by the industry, despite the good

characteristics and the initial enthusiasm about this protocol extension. In fact, the number

of hardware chips that implement this protocol is very low, with the exception of a couple of

51

Chapter 3. Networks for Embedded Systems

microcontrollers from Microchip, Texas Instruments and Infineon , which is scarce compared

with the generalized offering of microcontrollers with CAN 2.0 controllers, from multiple

vendors.

3.3.2 FTT-CAN protocol

According to the FTT paradigm [APF02], the network time is divided in a succession of

ECs, with a preconfigured fixed duration, which constitutes the temporal resolution of the

traffic, as represented in Figure 3.37.

Figure 3.37: Elementary Cycle (EC) and Trigger Message (TM) encoding in Flexible Time-
Triggered Controller Area Network (FTT-CAN).

FTT-CAN that corresponds to an instantiation of the FTT paradigm over CAN, is a

Master-Slave protocol and the master node schedules the TT traffic online, for each EC,

communicating the schedule to the slave nodes using a Trigger Message (TM) transmitted

at the beginning of each EC. FTT-CAN also supports ET messages, which are triggered

autonomously by each node. The EC is composed of two windows, designated Asynchronous

Window (AW) and Synchronous Window (SW), which carry the ET and TT traffic (respec-

tively). The duration of each SW depends on the TT traffic scheduled for that EC and is

communicated to the nodes in the respective TM.

The FTT paradigm was already implemented and demonstrated using several underly-

ing technologies, such as CAN [APF02], shared Ethernet [PAG02], and switched Ethernet

[Mar09], [San11].

The FTT-CAN protocol implementation uses a simplex bus and the TM encodes in its

payload the messages to be transmitted in that EC using one bit per message request (see

Figure 3.37). Each slave decodes the TM, and, at the beginning of the SW, triggers the

transmission of scheduled messages, for which it is the producer. FTT-CAN only controls

which messages are transmitted within the SW, not defining a particular order, which tends

to follow the native CAN arbitration scheme, with possible priority inversions due to practical

technological issues, like the nodes latency.

The Master uses an online scheduler that can implement any scheduling policy, e.g., FP

(Fixed Priority), RM (Rate Monotonic), or EDF (Earliest Deadline First), being indepen-

dent of the arbitration process of the underlying network technology. This node possesses a

52

Chapter 3. Networks for Embedded Systems

database, the System Requirements Database (SRDB), with the attributes of the messages

and other system operational parameters, e.g., EC duration. The message set can be up-

dated online using special control messages, e.g., to add and remove messages or modify their

attributes. All such requests are directed to the Master node and subject to an admission

control mechanism, being accepted only if they result in feasible system configurations. Event

messages are triggered autonomously by the end-nodes, relying on the native CAN arbitration

mechanism to prioritize and serialize concurrent transmissions. End-nodes are responsible

for confining the event traffic in the AW. To do so, they use the information contained on

the TM to determine the AW duration and suspend transmission at the appropriate times.

3.3.2.1 Schedulability tests

Communication services are delivered to the application by two subsytems, the Syn-

chronous Messaging System (SMS) and the Asynchronous Messaging System (AMS). As

there are requirements on real-time functioning in both types of messages, there is a need to

evaluate them.

3.3.2.1.1 Synchronous Messages tests The Synchronous Requirement Table (SRT) is

defined in Equation (3.6), where DLCi is the number of bytes in the message payload, Ci

the transmission time (with maximum bit stuffing), Phi the relative phase, Ti the period, Di

the relative deadline and Pri the message priority.

SRT ≡ {SMi(DLCi, Ci, Phi, Ti, Di, P ri), i = 1 · · ·NS} (3.6)

In FTT-CAN, when scheduling the synchronous messages for the next EC, some idle time

may appear at the end of the SW, as presented in Figure 3.38.

Figure 3.38: Inserted Idle Time in FTT-CAN.

This Inserted Idle Time (IIT) is essential to allow for the transmission of the TM without

any blocking. The actual amount of IIT added in each EC depends on the traffic scheduled

for that SW and it can be upper bounded by the length of the longest ready message whose

transmission must be postponed to a future EC to avoid a TM overrun, as would be the case

of message m9 in Figure 3.38. Using as upper bound of the IIT the greatest of all transmission

times, we obtain X as in Equation (3.7).

X = max
j=1..NS

(Cj) (3.7)

53

Chapter 3. Networks for Embedded Systems

The scheduling model with IIT that is used is the Non-Preemptive Blocking-Free schedul-

ing model [AF01]. Traffic schedulability in this model can be assessed as if the scheduling

was fully preemptive, as long as the message transmission times are inflated as in Equation

(3.8), where LEC represents the EC duration and LSW the maximum SW duration. This

value can then be used in the known schedulability bounds, to assess the schedulability of

the message set. Then inflating all transmission times, we obtain the inflated message set.

Then, Liu and Layland bound for Rate Monotonic [LL73] scheduling policy can be applied,

as in Equation (3.10). The synchronous real-time messages are then schedulable with RM

under any phasing if Equation (3.10) is verified [APF02].

CEi = Ci ·
LEC

LSW −X
(3.8)

U(LSW −X) = ULL ·
LSW −X
LEC

(3.9)

U =

NS∑
i=1

(
Ci
Ti

)
< NS ·

(
21/NS − 1

)
· LSW −X

LEC
(3.10)

The sufficient schedulability condition for EDF policy, under any phasing, is given by

Equation (3.11).

U =

NS∑
i=1

(
Ci
Ti

)
<
LSW −X
LEC

(3.11)

Response Time Analysis of Synchronous Messages in FTT-CAN

The message set described by the SRT can also be checked using common Response Time

Analysis (RTA) [ABR+93], as long the transmission times are inflated as previously referred.

Therefore, when considering an FTT-CAN system with a message set M where each

message is described by the n-tuple mi = {Ti, Oi, Di, Ci}, schedulability can be guaranteed if

an upper bound to message i response time (Ri) when considering the inflated transmission

time (CEi), as in Equation (3.12), is lower than or equal to the respective deadline (Di) for

all n messages. As usual, Equation (3.12) can be solved with a common fixed-point iteration

method and hpe(i) stands for the set of messages having higher or equal priority than message

mi.

Ri = CEi +
∑

k∈hpe(i)

⌈
Ri
Tk

⌉
· CEK (3.12)

This equation and test is for error-free scenarios.

54

Chapter 3. Networks for Embedded Systems

3.3.2.2 Asynchronous Messaging System Scheduling Analysis

3.3.2.2.1 Asynchronous traffic scheduling The Asysnchronous requirement table is

defined in Equation (3.13)

ART ≡
{
AMi(DLCi, Ci,miti, Di, P ri), i = 1 · · ·NRT

A

}
(3.13)

where DLCi, Ci, Di and Pri are defined the same way as in the SRT and mit stands

for minimum interarrival time, being NRT
A the number of real-time asynchronous messages

in the system. There could be other asynchronous messages, without real-time requirements,

generically referred as AMNRT .

The analysis of schedulability is detailed in [APF02].

3.3.2.3 Additional information on FTT-CAN

3.3.2.3.1 The Trigger Message TM internal coding is presented in Figure 3.39 [Sil10],

where the 4 most significant bits of the CAN ID field are fixed with the bit combination

0001, guaranteeing that TM has higher priority than all other messages in the system. The

Master ID sub-field identifies the active Master node, disseminating to the slaves the ID of

the current Master (3 bits - 0 .. 7 identifiers). The 3 LSB in the CAN ID are used has a

sequence number, from 0 to 7 and repeating afterwards, which allows the slave nodes to infer

if they are receiving all TM’s and by the correct order.

Figure 3.39: TM internal structure.

The TM payload is divide in three parts:

• 1st byte - Length of Synchronous Window, LSW - as the LEC is a global system

parameter, the slaves use the LSW value to synchronize the release of periodic messages

at the start of the synchronous window. It also allows to define the time instant of

sending and aborting the transmission of asynchronous messages, imposing this way

temporal isolation between traffic types. The LSW is coded in FTT Time Quantum’s,

where 1 FTTTQ represents the the number of bits in one EC divided by 250;

• 2nd byte - Master response to slave requests, that would imply changing operational

parameter (e.g. add new periodic message to the system);

• 3rd to 8th byte - Trigger Flags - instruct the slaves on synchronous messages to send or

tasks to activate in the current EC, where a 1 in a particular bit position defines that

the message coded in that bit should be sent (or task activation).

55

Chapter 3. Networks for Embedded Systems

The maximum number of bytes in the payload of a CAN message limits the maximum

number of distinct periodic messages that can be triggered to 48, since two of the eight bytes

are reserved, as described previously.

3.3.2.3.2 Slave Messages The coding of the messages sent by slaves are depicted in

Figure 3.40, presenting the same format, where the four most significant bits define the

message type: Synchronous or Asynchronous (Real-Time or Non-Real Time). The sub-IDs

assigned give greater priority to Synchronous messages, followed by Asynchronous Real-time

messages and lastly by Asynchronous Non Real-time messages, following the standard CAN

ID priorities, where lower ID’s means bigger priority.

Figure 3.40: Slave messages internals.

3.3.2.3.3 Inside the Master The master internal structure is presented in Figure 3.41

[Fer05]. All periodic message characteristics (period, deadline, offset and DLC) and tasks

definitions are recorded in the Synchronous Requirements Database (SRDB). The scheduler

implements the scheduling algorithm/policy - Rate Monotonic (RM), Deadline Monotonic

(DM), Earliest Deadline First (EDF) or other - and runs on a EC-by-EC basis.

Figure 3.41: Master node internal structure.

56

Chapter 3. Networks for Embedded Systems

The message priority used in the scheduling process is independent of the CAN ID, being

this ID relevant only inside the window where it is transmitted (defines transmission order

inside EC).

3.3.2.3.4 Operational Flexibility The online scheduler allows a high degree of opera-

tional flexibility, as it is possible to add, remove or change parameters of periodic messages,

without any interruption in the system service. The requested changes are subject to schedu-

lability verification by an admission control module, to guarantee that any change introduced

will not jeopardize the schedulability guarantees given, namely the ones of real-time traffic.

The intended changes are requested by the slave nodes using specific asynchronous mes-

sages and do not disrupt the normal functioning of the system. The format of these messages

are depicted in Figure 3.42.

Figure 3.42: Format for request from slaves.

These messages, sent by the slaves with requests to the Master node, have been assigned

lower priority than all other message types, being also defined a hierarchy: High and Low

priority. This functionality allows, if needed, that the system starts with a minimum con-

figuration (with no periodic messages in the SRDB), being the slaves, after start up, that

request the insertion of periodic messages, using the messages just described.

This is a very important characteristic of FTT-CAN, that distinguishes from other TT

protocols. So, this protocol presents highly operational flexibility, which contrasts for instance

with protocols like TTCAN or TTP/C, where all the synchronous messages are statically

defined.

3.3.2.3.5 Master Replication The master node constitutes a single point of failure and

any malfunction may render the system non-operational. To make it fault tolerant they pro-

pose to replicate the node, with the number of physical replicas depending on the intended

system reliability, with a maximum of seven [FPAF02]. The master substitution process is

depicted in Figure 3.43. The backup masters must use the single shot transmission mecha-

nism. In the available implementations of FTT-CAN [FTT18], the CAN controllers does not

support this functionality, so adaptations were implemented. By placing the TM message

in the CAN controller buffer and issuing an abort instruction, the message transmission is

effectively aborted if it has not started yet, being also removed from the transmission buffer

(that means that the active Master was transmitting its TM message). On the other way,

if message already started transmission, then the abort request has no effect and the TM

backup message transmission proceeds (corresponding to a situation where the TM message

57

Chapter 3. Networks for Embedded Systems

of the active Master is absent from the bus).

Figure 3.43: Timing for Master replacement due to permanent hardware fault.

In fact, Figure 3.43 presents three scenarios for the functioning of active and backup

Masters, that are further described:

• EC(1) - The active master sends the TM and the backup Master tries to send its own

TM with a slight delay (at time instant tA). As the backup Master encounters the

bus occupied by the TM message transmission, the abort request is successful and this

node starts a timer, with value equal to Retry Delay, to make another transmission try

in case the ongoing TM message transmission fails. In the meanwhile (at time instant

tB), the TM is received by the backup node that clears the retry timer and initiates

a new timer to trigger the TM message transmission in the next cycle (again with a

small delay relative to the active TM).

• EC(2) - at first, the backup TM aborts its TM transmission and the timer retry delay

remains active, as the backup master does not receive the active TM, due to TM error

transmission. When this timer expires (at time instant tC), the bus is occupied by the

active TM transmission and the sequence described in EC(1) repeats; thus this node

maintains its backup status;

• EC(3) - the active master suffer a permanent failure and does not transmit the TM.

Then the backup Master finds the bus idle (at time instant tD) and succeeds in sending

its TM, with a small delay, assuming this instant forward the role of active master.

Master replication raises several question concerning consistency and synchronization of

their databases, being this problem description and solutions presented in [FAF+06], [Fer05],

[MAF+06].

3.3.2.3.6 Multibus Solution Replication The bus also constitutes a single point of

failure that can be eliminated by using multiple buses. In the FTT-CAN scope, a solution

58

Chapter 3. Networks for Embedded Systems

was proposed that allows the use of N buses ([SF06], [SFF06]), using the architecture depicted

in Figure 3.44, where each node can be connected to one or more buses.

Figure 3.44: Bus redundancy.

The proposed scheme allows sending the same message in several buses, increasing this

way the transmission reliability. On the other hand, if different messages are transmitted in

the buses, then the available bandwidth increases with the number of buses, in comparison

with the single bus configuration. Of course, intermediate situations can be found where

bandwidth and reliability can be increased simultaneously. When a bus permanent failure

is detected, the master can use one of the other buses to send critical messages, possibly

dropping some non-critical messages and working in degraded mode. Using more than one

bus also raises other questions, different from the ones found for single bus. Firstly the

Master must be updated to schedule messages in more than one bus [SFF07a], perform bus

failure detection and master node substitution [SFF07c], and also the management of the

operational buses [SFF07b].

3.3.2.3.7 Slotted FTT-CAN Ataide et al. [APL+06] have proposed a static TDMA

scheme to transmit messages in the SW. Each slot is defined for the longest message, including

also a guard window to guarantee that messages sent in one slot will not overlap to the next

slot and compromise timeliness of other messages.

This scheme resolves eventual priority inversion problems and minimizes jitter in message

reception. The penalty is in bandwidth use, as the slots are defined for the largest message

(8 bytes) plus guard window, implying a wasted time per slot when messages with lower

payload are used.

3.3.3 FlexRay Protocol

3.3.3.1 Basic description

New challenges in the automotive industry are imposed by the introduction of new func-

tionalities in automobiles, namely X-by-wire systems (also known as Drive-by-wire) or active

safety systems, as for instance ADAS (Advanced Driver-Assistance Systems), that impose

higher bandwidth, a deterministic and fault-tolerant functioning, which was not considered at

the time attainable by the current network protocols, namely the omnipresent CAN protocol.

So, a consortium composed of several car manufacturers (initially BMW, Mercedes, Volkswa-

gen and Audi, later joined by others) and semiconductor companies (Motorola/Freescale,

Siemens/Infineon, Philips/NXP), developed the FlexRay specification. The first version was

59

Chapter 3. Networks for Embedded Systems

publicly presented in a conference in April 2002 (Munich) and the first FlexRay Product Day

happened in September 2004 [Par07].

The main characteristics are, according to the proponents:

• scalable flexibility;

• possibility of various physical topologies;

• maximum raw data rate equal to 10 Mbps, per channel;

• double channel, for increased fault-tolerance.

3.3.3.2 Physical Topology

The possible physical topologies include point-to-point, passive bus, active and passive

star or any combination of the previous ones, exemplified in Figure 3.45.

Figure 3.45: Possible physical topologies in FlexRay network - Hybrid Network with passive
bus, passive star and active star.

FlexRay Communications System Electrical Physical Layer Specification (Version 3.0.1)

document refers several limits that are imposed to the various topologies [Fle10]. In a point-

to-point connection, the maximum distance between nodes is 24 meters. Using a bus topology,

the number of nodes is limited to 22. Active stars can only be connected by a point-to-point

link and the number of active stars in the path between two nodes is limited to two for bit

rates of 2.5 and 5 Mbps and to only one if 10 Mbps are used.

A FlexRay node is presented in Figure 3.46, including the Host processor, a communi-

cation controller, that implements the protocol stack, bus guardians (not mandatory) and

60

Chapter 3. Networks for Embedded Systems

bus drivers. The bus guardians can be local to the node, in case of bus topology, or cen-

trally placed if an active star is used. These guardians restrict the controller access to the

transmission medium in predefined time intervals, preventing this way that a babbling idiot

behaviour compromises communications.

Figure 3.46: Inside a FlexRay node.

Communication bit rate

The 3.0 standard defines three possible bit rate values, 2.5, 5 and 10 Mbps, corresponding

to nominal bit duration gdBit of 0.4, 0.2 and 0.1 µs. The maximum clock deviation

(gClockDeviationMax) is defined in FlexRay specification as 1500 ppm, corresponding to the

maximum and minimum gdBit values presented in Table 3.10 calculated by Equations (3.14)

and (3.15), respectively.

adBitMax =
gdBit

1− gClockDeviatioMAX
(3.14)

adBitMin =
gdBit

1 + gClockDeviatioMAX
(3.15)

Table 3.10: Bit rate and bit duration in FlexRay

bit rate (Mbps) 2.5 5 10

gdBit(µs) 0.4 0.2 0.1

adBitMax(µs) 0.3994 0.1997 0.09985

adBitMin(µs) 0.4006 0.2003 0.10015

Physical Level Signaling

The bus signal is differential, being the two lines referred as BP (Bus Plus) and BM (Bus

Minus), and the difference between the two is uBus. There are four possible values in the

61

Chapter 3. Networks for Embedded Systems

Bus: Idle LP, Idle, Data 0 and Data 1, as presented in Figure 3.47. The level present in the

bus is dependent on the differential signal between the lines BP and BM. If the differential

signal is zero the level is Idle, if positive (above a defined threshold) the level is High and the

other way a Low level is present. If a time greater than 11 gdBit (cChannelIdleDelimiter)

in High state is detected on the bus, then the bus is considered to be in Idle state. Also, the

Idle level minimizes the used power by the FlexRay nodes (or Bus Drivers).

Figure 3.47: Voltage levels in communication lines.

3.3.3.3 Communications Organization

The timing hierarchy in FlexRay defines the microtick, macrotick, segment and cycle,

being these represented in Figure 3.48.

Figure 3.48: Timing Hierarchy in FlexRay (adapted from [Fle10]).

At the lowest level, the microtick is directly obtained from the node oscillator clock and

can be different in each node, being thus a local value. Since the medium access is TDMA,

every communication action must start at a precise moment in time, being each instance

defined in macroticks (MT). So, the macroctick represents the lower level of common time,

being its duration equal for all nodes in the cluster. The duration of slots, minislots, segments

and cycles are also defined in macroticks.

At the communication cycle level the cycle is divided in four segments: Static Segment

(SS), Dynamic Segment (DS), Symbol Window (SW) and Network Idle Time (NIT), being

mandatory to have at least two segments, the SS and NIT, being the other two optional.

This is depicted in Figure 3.49.

62

Chapter 3. Networks for Embedded Systems

Figure 3.49: Communication cycle in FlexRay.

The SS is composed of static slots and the access method is TDMA, with a static schedule,

defined off-line before the system starts. The slots are all of the same size and each one is

associated to a particular node on the network. The minimum number of slots in this segment

is equal to 2. It is mandatory that the node sends a message in his allocated slot, no matter

if it possesses or not new data to send. The macrotick alignment in this segment is presented

in Figure 3.50.

Figure 3.50: Message transmission with macrotick alignment in the Static Segment.

The medium access control in the DS is done by a mini-slotting scheme, also referred

as Flexible TDMA, being this segment composed by minislots, all with the same (small)

duration. Each one of the minislots is owned by a node that has the chance to send a

message starting in his allocated minislot or let the time elapses if it does not have a message

to send. If the node transmits a message then it is called a Dynamic Slot, being the minislot

enlarged and its duration dependent on the message payload. If the node has a pending

message to send that does not fit in the current segment, then it must wait for the next cycle

to try to send the message. Details on timing on the DS segment can be observed in Figure

3.51.

Figure 3.51: Message transmission and minislots in the Dynamic Segment.

The Symbol Window is used for signaling when the network is started and also for network

maintenance. In the he Network Idle Time segment there is no communication activities. This

63

Chapter 3. Networks for Embedded Systems

last segment is used by the cluster nodes to adjust the cycle duration, making adjustments

in each node clock offset, by adding or removing a particular number of macroticks, in a way

to achieve a global clock synchronization. This continuous adjustment is necessary due to

the fact that is virtually impossible to have exactly the same macrotick duration in all nodes

and also a drift as time evolves. Due to fabrication tolerances, variations in temperature

or aging, for instance, the node crystal frequency can change as times passes, and the clock

synchronization can be lost.

3.3.3.3.1 Communication Cycle - Static Segment, Dynamic Segment and others

Communications are performed based on cycles that repeat after the hyperperiod. Defined as

minimum of 2 and maximum of 64, and must be o power of 2 number. Access method in the

Dynamic Segment is FTDMA, a technique based on the access method used in Bytefligth.

At the frame level, the smallest time particle is the macrotick, being defined and based

on the local node clock that each macrotick is composed of n microticks. The definition of

these values is mandatory to achieve good performance.

A FlexRay frame, represented in Figure 3.52 is composed of Header, Payload and

Trailer, as described.

Figure 3.52: FlexRay data frame.

The Header segment is 5 bytes long and its composition is the following:

• Flags (5 bit flag)

– Reserved bit - must be a logical 0 and is reserved for future use;

– Payload Preamble Indicator - a logical 1 indicates the presence of a special vector

in the beginning of the Payload. For a frame in the static segment it means that

a management vector is present there and if the frame pertains to the dynamic

segment then it is the message ID, which is a 16 bit identifier. This message ID

can be used by the receiver to decide to store the frame content, after applying a

filtering process on the message ID. A logical 0 in this indicator means that there

isn't a special vector placed there.

– Null Frame Indicator - a logical 0 implies that the payload possesses meaningful

data. A logical 1 indicates that there is no valid data in the Payload, which must

be ignored by the receivers.

– Sync Frame Indicator - if this bit is set (logical 1) then the current frame is a Synch

Frame, which should be used by the cluster nodes in the clock synchronization

mechanism, else this bit must be 0;

64

Chapter 3. Networks for Embedded Systems

– Startup Frame Indicator - with a logical 1 value it indicates that it is a startup

frame, being this a special frame only used in the startup process of the cluster

by the so called coldstart nodes. In this case the Synch Frame Indicator must be

also logical 1.

• Frame ID (11 bits) - defines the frame identifier, and with 11 bits this identifier can

a have a value between 1 and 2047, being the ID 0 invalid. Each frame must have a

unique ID value.

• PL - Payload Length (7 bits) - defines the Payload size in number of words, being a word

equal to two bytes. The minimum value is 0 and the maximum is 127 (254 bytes). This

value is fixed and identical for all the frames in the Static Segment. In the Dynamic

Segment, these value can be different for messages and can also present distinct values

in different cycles.

• Header CRC (11 bits) - is the 11 bit-field that contains the Cyclic Redundancy Check

applied to the all other bits of the Header section. On reception, this CRC must be

recalculated by the receivers to check the Header correctness.

• CC - Cycle Count (6 bits) - defines the current cycle number (value between 0 and 63).

The Payload segment, with a size between 0 and 254 bytes, follows the Header segment

and is composed of the data to be transmitted. Depending on the Payload Preamble bit value,

the first bytes of this segment can be used as a network management vector (0 to 12 bytes,

only in the Static Segment) or the message ID (2 bytes, only in the Dynamic Segment), used

by the receivers to filter messages and give it specific treatment (e.g. discard it based on

ID). The last one is the Trailer Segment, which is 3 bytes long, containing a 24 bit Cyclic

Redundancy Code, being this value computed over the two previous segments.

FlexRay uses Non-Return to Zero (NRZ) coding to transmit bits in the communication

channel. Before transmission, the frame content is decomposed in bytes and afterwards con-

verted in a bit stream, which is transmitted in the serial link. The frame transmission starts

by sending the TSS (Transmission Start Sequence), imposing a low bit value for gdTSSTrans-

miter, immediately followed by a high bit termed FSS (Frame Start Sequence). Afterwards

each byte of the Header, Payload and Trailer segments are sent preceded by the BSS (Byte

Start Sequence), which is made of a Low plus a High bit, used for bit synchronization be-

tween transmitter and receivers. This way each byte is coded in 10 bits. Finally the frame

transmission end is marked with the FES (Frame End Sequence), which is composed of one

low and one high bit. This coding is represented in Figure 3.53. and 3.54

A frame transmitted in a static slot has the coding explained before and one transmitted

in the Dynamic Segment follows exactly the same coding until the FES. After the FES a

DTS (Dynamic Trail Sequence) follows, being composed of specific number of Low bits and

terminated by a High bit, as seen in Figure 3.54. The number of bits in DTS must be chosen

in order to the frame ending coincides with the mini-slot action point. In the receiver the

inverse operation is applied by removing the inserted bits and the frame content is restored.

65

Chapter 3. Networks for Embedded Systems

Figure 3.53: Frame transmission in the Static Segment.

Figure 3.54: Frame transmission in the Dynamic Segment.

The frame size, meaning the number of bits in each frame, in the Static Segment, is then

given by Equation (3.16) and a frame in the Dynamic Segment is increased by the number

of bits in the DTS field, as in Equation 3.16.

frame Size = nTSS + nFSS + Payload · (nBSS + 8) + nFES

= nTSS + 1 + Payload · 10 + 2

= nTSS + Payload · 10 + 3

(3.16)

frame Size = nTSS + nFSS + Payload · (nBSS + 8) + nFES + nDTS

= nTSS + Payload · 10 + 3 + nDTS
(3.17)

The transmission time of a frame obtained simply by multiplying the total number of bits

by the bit duration, gdBit, that corresponds to the transmission time of one bit, e.g., 0.1 µs

for 10 Mbit/s bit rate.

transmit timeframe = gdBit · frame Size (3.18)

To define the slot size - gdStaticSlot - we must also take into account the clock impre-

cision and propagation delay times. So, each frame transmission starts at the action point

inside the slot (see Figure 3.50), being this value defined using the clock precision and the

estimated maximum delay in signal propagation. After the FES bits, an idle time must be

present, being this time equal or bigger than the action point time [MGL+12].

Regarding Clock Synchronization, as the MAC mechanism uses a TDMA, is of utmost

importance to guarantee that all communication controllers share a common global notion

of time, with adequate precision. Each node has a local view of the global time, which must

be continuously corrected to maintain the global clock synchronization. It uses the Fault

Tolerant Midpoint Algorithm [WL88] that is used to calculate the offset correction value,

and adjust the node clocks.

66

Chapter 3. Networks for Embedded Systems

3.3.3.3.2 Fault Tolerance and Dual Bus configuration For critical messages, a dual

bus configuration can be used to increment fault-tolerance, by sending the same message in

both channels in the same slot. If the messages sent in the channels differ, then the second

channel provides more bandwidth, allowing in the limit to duplicate it. Any intermediate

solution is also possible.

3.4 Summary

This chapter presented the details on CAN, Ethernet and derivatives, TTCAN, FTT-CAN

and Flexray protocols, that are essential in following chapters.

67

Chapter 3. Networks for Embedded Systems

68

Chapter 4

Error Recovery in TT Systems

The approaches used to obtain fault tolerance in TT systems are various, being sev-

eral ones described next. Fault tolerance can be obtained with time redundancy, spatial

redundancy or both, and each one with different arrangements. Depending on the type of

redundancy use, it is possible to cope with temporary and permanent faults, and obtain the

intended reliability level.

It is assumed that the underlying communication network uses a shared medium, namely

one or more buses.

4.1 Fault-tolerance with Hardware Redundancy

Fault-tolerance can be achieved using spatial redundancy, with hardware replication -

nodes, buses or both.

4.1.1 Slave Replication with Single Bus

The transmission of messages can be done with replicated nodes, where each node tries

to transmit one message, being the nodes referenced as primary and backup and messages

termed primary and replica. The backup node tries to transmit the same message, with a

small delay to guarantee that this node fails entering the arbitration process with the primary

node. As depicted in Figure 4.1 in case of successful transmission of the primary message,

the backup node aborts its transmission, which is the most common scenario. If an error

occurred while trying to transmit the primary message, after error signalling, the backup

node has a pending frame in the output buffer of the CAN controller, so it tries to transmits

the replica message. To be able to use this mechanism in FTT-CAN, a slotted version [AP12]

must be used. It is also assumed that single-shot mode is used by the CAN controllers.

There is a need to extend each slot duration to allow transmission of the replica message.

As the error can happen at the end of the data frame, each slot must be extended by (CMAX+

Cerror). If this mechanism is applied to all messages, then the necessary bandwidth would be

more than doubled. Nevertheless, this mechanism can deal also with permanent node faults,

69

Chapter 4. Error Recovery in TT Systems

Figure 4.1: Using slave node redundancy, two scenarios: with replica transmission not nec-
essary (aborted for messages SM1 and SM2) and replica message success (for SM3).

which is not the case with other alternatives, since one node remains active in case of failure

of the other one.

This approach would rise costs significantly, as each node has to be replicated. An unde-

sired increased software complexity (to guarantee replica determinism) is also necessary and

there is a significantly increase in bus bandwidth use.

A node with two (or more) embedded CAN controllers would alleviate cost concerns and

software complexity, but the system would not be tolerant to permanent failures anymore.

The two variants of slave replication (total and partial) are depicted in Figure 4.2, left side

and right side, respectively.

Figure 4.2: Full and partial node replication

4.1.2 Bus Redundancy

Another alternative is to use replicated buses, with messages (primary and replicas) always

transmitted in each bus. In the FTT-CAN scope this can be achieved using the proposal in

[SF06], as briefly described in Section 3.3.2.3.6 and represented again in Figure 4.3, with two

buses. The messages with transmission reliability requirements are transmitted in both buses,

being a successful transmission obtained if at least one of the messages replicas is delivered

to the recipient node. This method is represented in Figure 4.4, where the simultaneous

transmissions of messages in both buses allows correct reception of message M2, despite the

error occurred in bus1 (in this picture only the messages in the SW are shown). This scheme

can cope with bus permanent failures, which is not the case of the previous approach.

4.1.3 Bus and Node Redundancy

Finally, to cope with simultaneous permanent bus and node failures, the previous replica-

tion schemes can be made even more robust if a combination of node and bus redundancy is

70

Chapter 4. Error Recovery in TT Systems

Figure 4.3: Bus redundancy in FTT-CAN (with two buses).

Figure 4.4: Using bus redundancy, transmission success in bus2 for message M2.

used, as for instance is presented for FlexCAN architecture [PF04], which share some common

design characteristics with FTT-CAN.

Figure 4.5: FlexCAN architecture - possible node configuration.

4.2 Fault-tolerance with Temporal Redundancy

4.2.1 Real-Time Event Channels in CAN

The work in [KCM05] presents the COSMIC middleware applied to a Time-Triggered

CAN network, implementing a TDMA access scheme. It shows a method to recover errors

in real-time messages. These messages are sent in dedicated offline-scheduled slots that are

enlarged to allow for retransmissions using the CAN native error recovery method. This is

represented in Figure 4.6. The slot enlargement is then dependent on the number of faults

foreseen by the fault model. For instance, if the fault model previews two possible errors

when a message is transmitted, then all messages protected by retransmissions should have

a reserved time slot equal to the duration of 3 messages. This corresponds to tripling the

necessary bandwidth when compared with no error recovery.

This method is still inflexible, since the slots are scheduled at pre-runtime. Nevertheless,

at runtime, the bandwidth assigned to retransmissions but not effectively used can be re-

71

Chapter 4. Error Recovery in TT Systems

claimed to carry sporadic and non-real-time traffic, to allow for a more efficient bandwidth

utilization. This is done simply by assigning higher CAN IDs (lower priority) to event-

triggered or sporadic messages.

Figure 4.6: Error recovery in TT window (adapted from [KCM05]).

4.2.2 Message Retransmission and Acknowledgement in FlexRay

The work presented by Li et al [LNZ+09] was the first one that targeted schedulability

in FlexRay networks, having fault tolerance as a goal. The proposal tackles fault tolerance

aspects by introducing an acknowledgment and retransmission scheme, defined in the Static

Segment and that works at the application level. A previously defined static schedule, built

without fault-tolerance in mind, acts as starting point. Then, unused static slots and also

available time in assigned slots are configured to be used to transmit acknowledgments and

to retransmit frames found with errors or simply omitted.

The fault recovery rate is defined as the percentage of faulty messages guaranteed to be

retransmitted before their deadlines.

Using Mixed Integer Linear Programming optimization to minimize the extra bandwidth,

the experiments reported there show a case in which about 50% of the messages can be

recovered. The results also showed that, for the same system, as used bandwidth increases,

thus with less available empty slots, the efficiency of the mechanism drops and the authors

conjecture that better results can be obtained if the proposed mechanism is optimized with

the initial scheduling process.

The limitation of this proposal is on the achievable reliability levels and its specific appli-

cation to already defined schedules.

4.2.3 Message Replication in the Static Segment of FlexRay

In FlexRay networks the TT traffic is allocated statically to slots in the Static Segment

(SS). One way to guarantee the reliability in message transmission is to send several copies of

the same message proactively, per message period. Tanasa et al. [TBEP10] propose a method

to recover errors in the SS that basically defines the number of copies of each message that

must be sent to obtain a global success probability (GP) that must be greater than the

intended system reliability, for a given mission time. The proposed method can be described

by Figure 4.7.

72

Chapter 4. Error Recovery in TT Systems

Figure 4.7: Proposed method (adapted from [TBEP10]).

First the reliability constraints are defined. The reliability goal ρ, is defined by Equation

(4.1), that is constrained by γ, which corresponds to the maximum probability of a system

failure in the mission time.

ρ = 1− γ (4.1)

With a known BER, the probability of failure of message i is given by equation (4.2),

where Wi is the number of transmitted bits of message mi in the Static Segment.

pi = 1− (1−BER)Wi (4.2)

If more than one copy per period is sent, then a transmission failure can only occur if

the original message and all its ki copies fail. So the probability of transmission failure of

message i is given by Equation (4.3).

PFi(ki) = pki+1
i (4.3)

Conversely, the probability of at least one instance of the message is successfully trans-

mitted is given by the complementary of the previous equation, as in Equation (4.4).

PFi success(ki) = 1− pki+1
i (4.4)

Considering a mission time MT , the message mi occurs MT
Ti

times, so Equation (4.4)

should be iterated for all instances, leading to the success probability of message mi, as in

Equation (4.5).

PSi(ki) =
(

1− pki+1
i

)MT
Ti (4.5)

73

Chapter 4. Error Recovery in TT Systems

For the message set that is composed of N elements, all messages have to be considered,

along the mission time (all instances). The global success probability can be obtained, being

this termed GP , as in Equation (4.6).

GP =
N∏
i=1

PSi(ki) =
N∏
i=1

(
1− pki+1

i

)MT
Ti (4.6)

4.2.3.1 CLP Formulation

The previous formula to obtain GP assumes that the number of retransmissions for each

message, ki, is known. So the question that must be firstly answered is what should these

values be? The authors propose that the ki’s values can be obtained by formulating an

optimization problem in Constraint Logic Programming (CLP), that will find an optimal

solution.

The constraints are the following:

The Reliability Constraint in Equation (4.7) that basically states that the goal to attain

should be greater than the intended reliability.

GP =
N∏
i=1

(
1− pki+1

i

)MT
Ti > ρ (4.7)

The minimum number of retransmissions constraint in Equation (4.8), where kLi is the

smallest value that satisfies Equation (4.9). Since PSi(ki) is a sub-unitary value, when

calculating the GP, which is the product of all PSi’s, to obtain at least a reliability greater

than ρ, then all individual values must be greater ρ.

ki ≥ kLi (4.8)

PSi(ki) ≥ ρ (4.9)

The protocol also places a limit on available resources, namely the maximum number of

slots, as in Equation (4.10) and the Scheduling Constraints in Equation (4.12).

N∑
i=1

(ki + 1) ≤ NS (4.10)

The slot function takes a message as parameter and returns the slot assigned to it. The

domain for this function, represented by D, is thus, the set of messages including the ni

instances in the hyperperiod H, as defined in Equation (4.11), and their retransmissions. It

follows that the constraints for the domain D are then given by Equations (4.12) and (4.13).

H = lcm{T1, T2, . . . , Tn, FC} (4.11)

74

Chapter 4. Error Recovery in TT Systems

Di = {M j,1
i ,M j,2

i , . . . ,M j,ki+1
i },∀1≤j≤ni

D = D1 ∪D1 ∪ . . . ∪DN

(4.12)

and slot : D −→ {1, 2, . . . , NC} × {1, 2, . . . , NS}

slot(M j,l
i) = (cj,li , s

j,l
i)

(4.13)

Other constraints are defined regarding deadlines, instant of message production and

finish and also slot occupations closes the list of scheduling constraints.

4.2.3.2 Optimization objective

The objective of the CLP optimization is to minimize the total number of used slots in the

FlexRay cycle, FC, or equivalently, minimize the bandwidth use to guarantee the reliability

level.

minimize :

N∑
i=1

(ki + 1) (4.14)

4.2.4 Heuristic Approach

The author’s state that the CLP method is computing intensive and does not scale, so

they propose in this same article to use heuristics to overcome these limitations. The heuristic

approach is depicted in Figure 4.8 and can be described as follows:

• Stage I: compute ki values, using the reliability constraints;

• Stage II: generate the schedule, using the constraints defined by CLP;

• Stage III, is necessary if stage II does not find a feasible schedule.

The main results of this article are presented to show that the CLP method is correct and

can generate synthesized schedules that meet the reliability goal. Also, the alternative heuris-

tic methods are also effective in generating a feasible schedule, being more computationally

efficient, but might be sub-optimal.

Little information was given on the ki’s values for the tested message sets. Nevertheless,

in one of the sets they show that using messages with ki equal to 1 and 2, that means that

the necessary bandwidth to achieve a transmission reliability equal to (1−10−5), in a mission

time of one hour, was more than doubled, using a BER equal to 10−7.

The authors have proposed the fault-tolerant approach tailored to the Static Segment of

FlexRay networks, but this approach can be applied to any network that uses static scheduling

and TDMA access, as is for instance TTP/C and TTCAN. To achieve this, it is necessary

to update namely the schedule generating module, as the constraints are different for each

protocol.

75

Chapter 4. Error Recovery in TT Systems

Figure 4.8: Proposed heuristic (adapted from [TBEP10]).

4.2.5 Windowed Transmission in TDMA CAN

The idea behind the concept of windowed transmission enlargement/reduction is depicted

in Figure 4.9. In the top timeline the classic temporal replication scheme with two slots for

transmitting 2 copies of a message is presented, in this case both are successful. In the middle

timeline two error occur and due to slotted arrangement and single shot transmission, the

message suffers a transmission failure. In the bottom timeline the slots are merged with

retransmissions allowed and considering the same faults as in center timeline a success is

attained. The authors suppose then that is possible to use smaller merged slots and attain

the same reliability goal.

Figure 4.9: Short windowed transmission concept (adapted from [SS10]).

The recovery mechanism is presented by Short et al in [SS10], to guarantee the message

transmission in TDMA based CAN networks. Messages are transmitted in specific windows

or slots, which are enlarged to make room for CAN native automatic message retransmissions

76

Chapter 4. Error Recovery in TT Systems

upon errors, but only if the retransmissions fit in the defined window. The paper presents a

method to calculate the window size together with a simulation study that points to a band-

width utilization reduction between 3% and 30%, on average, depending on the environment

type (from Benign/Normal to Aggressive/Hostile, respectively), when compared with the

case where a predefined number of message copies is sent to attain the same reliability level.

The article includes a test case where the mechanism is applied to a critical message with 8

bytes payload, a period of 100 ms and an intended transmission reliability of 10−9 errors per

hour and using an Aggressive environment with BER equal to 2.6 · 10−7, showing that using

the windowed method the intended reliability level is obtained with a window 26.4% shorter

than using multiple copies, which in this case, implies the transmission of four copies.

The implementation of this mechanism implies building specific hardware (FPGA based)

for the nodes and is still inflexible in what concerns modifying the message set dynamically,

as the schedule is built offline. The use of special hardware, makes it not compatible with

COTS CAN controllers, which is a negative point of this proposal.

4.2.6 Temporal Replicas in FTT-CAN - Locally Controlled

In FTT-CAN networks to cope with transient message transmission failures, time redun-

dancy can be used. Different schemes can be devised, depending on where inside the EC (in

what window), who controls retransmission (central or local) and also if done on-demand (on

error detection).

4.2.6.1 Retransmission in the Asynchronous Window by the Sender

In FTT-CAN the existence of the Asynchronous Window, opens the opportunity for

message retransmission placing. So, a node detecting an error in one of its synchronous

messages can perform message retransmission in the EC following the one where the error

occurred, inside the AW. There is a guarantee that the message is effectively retransmitted

in the AW, being the first one transmitted, as the rule for CAN IDs choosing for messages,

in FTT systems, always assigns higher priorities (lower values) to the synchronous messages.

This method is graphically depicted in Figure 4.10, where message SM3 suffers an error and

is retransmitted in the AW of the next EC, before any asynchronous message.

Figure 4.10: Error recovery process in the Asynchronous Window.

In any case, there will be interference on the asynchronous traffic, being this limited by

the maximum number of errors occurring per EC.

This approach, despite interesting in its working principle, breaks the timing isolation

between synchronous and asynchronous traffic, removing also from the Master sphere of

77

Chapter 4. Error Recovery in TT Systems

control the triggering of the synchronous messages that need to be retransmitted.

4.2.7 FTT-CAN Static Error Recovery

Using the native error recovery of CAN (automatic retransmission in case of error), slack

time is reserved in all SW to allow the retransmission of recovery messages [Fer05], including

also a maximum error frame (equal to 23 bits) per retransmitted message. This corresponds

to an automatic retransmission by the Sender in the SW.

This approach gives very fast recovery time, as the error is recovered immediately, in

the same cycle where it occurred, contrary to previous approaches, where the recovery only

happens in the following cycle.

It is also more bandwidth efficient than for instance the one presented in Section 4.2.1,

since the extra-time allocated in the synchronous window is shared by all the TT messages

sent in the current EC. The amount of slack time is dependent on the maximum number of

errors considered in each EC and is always wasted when there are no errors, thus limiting

the efficiency of the approach.

This mechanism will not succeed in case of temporary failure in the node (controller or

transceiver) that prevents it from transmitting the message (message is absent in the bus).

As the Master has no intervention in the recovery process, he is unaware of this failure, and

does not take any further measures to recover the missing message, even if there is still time

available before the deadline, leading to an effective message transmission failure.

The reserved slack also puts a limit on available time for the SW, the LSWmax. Then

considering m errors the maximum number of errors previewed by the fault model, Equation

(4.15) gives the slack time that must be reserved in each SW. This time is completely wasted

when there are no errors, and cannot be reclaimed by other messages.

slack SW =
(
CMAX + Cerror) ·m errors = (CMAX + 23) ·m errors (4.15)

Table 4.1 gives the largest SW possible, for various possible values of LEC and considering

LTM with duration equal the longest CAN frame (payload equal to 8 bytes).

Table 4.1: Available time for SW (bit rate = 1 Mbps), as a % of LEC

LEC

merrors 2.5 5 10

0 94.6% 97.3% 98.7%

1 88.3% 94.1% 97.1%

2 82.0% 91.0% 95.5%

3 75.6% 87.8% 93.9%

4 69.3% 84.7% 92.3%

78

Chapter 4. Error Recovery in TT Systems

As can be observed the penalty on the available time for the SW is very high for small

values of LEC, specially with more expected errors, reducing as LEC grows.

4.3 Summary

In this chapter several methods were described for error recovery in the time domain, for

TT networks. Bandwidth and latency were discussed and compared, along with bandwidth

efficiency.

79

Chapter 4. Error Recovery in TT Systems

80

Chapter 5

Error Recovery in FTT-CAN -

Dynamic Approach

This chapter details a proposal to obtain adequate reliability levels of the message trans-

mission subsystem, in the scope of FTT-CAN networks. It starts by describing the rational

behind the proposal, that uses time-domain redundancy to obtain fault-tolerance with ade-

quate reliability level, using online scheduling and a retransmission server, attaining higher

bandwidth efficiency when compared with state-of-the-art approaches.

The synchronous message transmissions, in the FTT-CAN protocol, are centrally con-

trolled by a Master node, on a EC-by-EC basis, using an online scheduler with any scheduling

policy. By inserting a new module that detects message transmission errors it is possible to

include the message retransmissions requests in the scheduling process. The message retrans-

mission will be managed by a Server (a new module), being the server type, capacity and

period defined according the fault model used and the desired reliability target.

Firstly it is introduced the single replica version of the error recovery method. This ap-

proach assumes that the fault model is restricted to a maximum of one error per EC and

also that the server permits a single replica, allowing this way to maintain full compatibil-

ity with FTT software in the slave nodes. With these two restrictions, an analytic model

for obtaining worst case response time of synchronous messages is presented, including the

identification of limit error and recovery scenarios. Other aspect analyzed are the different

politics implemented by the server and possible implications in terms of interference and

message timeliness.

After identifying limitations on the achievable reliability target posed by the previous

approach, due to single replica retransmission, using the Poisson fault model (with the one

error per EC restriction removed), new error and recovery scenarios are identified that permit

the definition of the minimum number of replicas to send per error detected, to attain a

predefined reliability target. Then, including multiple replica transmission, a new formulation

for response time calculation is obtained, together with new server characteristics (namely

the updated server capacity). The implementation of this new recovery method implies that

the FTT software in the slave nodes must be modified.

81

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.1 ReScheduling by the Master

In the previous chapter several methods to achieve fault-tolerance were described, which

use diverse forms of redundancy.

When using hardware or spatial redundancy - nodes, buses or both - the software com-

plexity (e.g. to guarantee replica determinism), the energy consumption and specially the

cost rise. Nevertheless, this kind of redundancy is mandatory if we must tolerate permanent

errors, either in the nodes or in the buses. Due to the prevalence of transient errors versus

permanent ones, with a ratio greater than 100 [PKOS04], our aim is at first to recover errors

of transient nature. Anyway, if permanent errors must also be tolerated, our proposal can

be complemented with spatial redundancy techniques, as the ones presented in the previous

chapter.

The other possibility is to use time redundancy, by transmitting more messages in the

time domain than the strictly necessary if there were no errors. In a TT system, this kind

of redundancy can be applied in proactive or in reactive mode. The proactive mode implies

sending several replicas of each message instance, without the factual knowledge of error oc-

currence. This is typically the approach used in classic TDMA systems, where the schedule

is static and obtained off-line. This implies that the used bandwidth will grow significantly

(e.g., with two replicas per message the necessary BW doubles) and that due to slot reserva-

tion, the allocated BW to message replica transmission is wasted when there are no errors,

as no other messages can use these static slots.

A better use of the available bandwidth is possible if the slots/windows used for replica

transmission are shared by a set or all messages. In this case, the slot/window duration is

proportional to the expected number of errors in the communication cycle, being statically

allocated per cycle. The retransmission is only triggered on message error detection, so the

protocol must possess a mechanism for error signalling. This approach is the one used in

FTT-CAN by reserving slack time in the Synchronous Window [Fer05], but can also be used

in TTCAN by assigning an arbitration window to message retransmissions. The BW waste

is smaller than in classic TT systems, but again is completely lost in no-error scenarios.

An even better bandwidth efficiency can be attained if there is no static allocation of

slots/windows and all the available bandwidth is managed altogether for all messages - normal

and retransmissions. This can be achieved using an online scheduler that has as input a list

of failed message transmissions. Then the scheduler will integrate the message retransmission

requests, managed by a server, with normal messages in the scheduling process. The scheduler

must also guarantee the message timely delivery with an adequate reliability level. This can

be done with FTT-CAN, including new modules in the master node, as described in the

following paragraphs.

In the FTT-CAN protocol it is the Master node that controls the EC where each syn-

chronous message is transmitted. This node implements a message scheduler and transmits

the Trigger Message (TM), which instructs the slave nodes to send the corresponding mes-

sages. By listening to all the transmitted messages in the SW, in each cycle, and recording

82

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

which messages were successfully transmitted, it can, by comparing to the scheduled mes-

sages for each EC with the ones correctly received, determine the messages that have failed

transmission. Using this information, these messages can re-enter the scheduler and will be

scheduled together with the remaining messages, being recovered in a latter cycle.

The central control by the Master node has other advantages, as for instance allowing

different recovery levels for distinct messages, where some messages are subject to the recovery

process and others are simply ignored (no recovery for non-critical messages, for instance) or

limit the number of recovery attempts to limit the bandwidth used by the recovery process,

inducing this way less interference in the remaining traffic (or the use of less resources).

This corresponds to a dynamic approach, which is in contrast to the passive approach of

simply reserving slack time in the SW to allow for message retransmissions, as proposed in

[Fer05], using the CAN native error recovery mechanism.

This method corresponds to the one proposed in this thesis, that will be further detailed

in the following sections.

5.2 Error Recovery in the Time Domain - Single Replica Ver-

sion

As already stated, in FTT-CAN networks the master node is responsible for all the

scheduling decisions concerning the synchronous traffic, which are then disseminated to the

slave nodes by the Trigger Message, in each cycle. Since CAN uses a broadcast bus, configur-

ing the CAN controller filter in the master node to accept all messages sent by other nodes,

makes it a listener of all messages. So, by listening to all bus traffic, the master may build a

list of all successfully transmitted messages. Then, at the end of the synchronous window, a

Bus Error Detector block compares the list of scheduled messages with the messages actually

received in that EC, thus identifying eventual errors and omissions. The IDs of such mes-

sages are then put in the Error Server Queue. Afterwards, the scheduling for the next EC is

performed, considering both the active synchronous messages (described in the SRDB) and

the messages affected by errors, contained in the Error Server Queue. This process is shown

in Figure 5.1, where it can be seen the introduction of the two additional blocks in the new

version of the master.

Figure 5.1: Rescheduling by the Master.

The failed messages in the error queue are managed by a server, that is defined by its

83

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

policy, capacity and period. Of course, the server policy must be compatible with the syn-

chronous traffic scheduler.

For compatibility reasons, to use the slaves without changing the protocol stack, it is

mandatory that the coding of the TM remains the same (as described in Section 3.3.2.3.1),

since the slaves are instructed by the TM on what messages they should send in the current

EC. This limits the number of copies of a particular message to be sent per cycle to one, since

the TM encodes in only one bit the identifier of each message that has to be transmitted (see

Figure 3.37). This was an important restriction, as we want to introduce the fault tolerant

mechanism with minimal (or no) updates to the FTT stack software in the slave nodes.

Depending on implementation details, namely where, inside the EC, the scheduler is run

(due for instance to hardware limited processing power, as is the case of 8 bit microcon-

trollers), the recovery latency can vary, with minimum value equal to one EC. In Figure 5.1

we have considered the fastest implementation approach, that presents a latency equal to one

EC. This topic will be further discussed in Section 6.5.2.

5.2.1 Motivational Example

In this example we assume that the arrival of faults can be modelled by a Poisson process

with arrival rate equal to λ and restricting the number of faults per EC to one, due to small

values of elementary cycle length and even smaller fault probabilities.

The system has the message set described in Table 5.1, where the messages with lower

identifier have higher priority, Ci and Ti are the transmission time and period of message i,

in time units, being U the message utilization value. Messages are recovered by a Deferrable

Server with maximum priority assigned, capacity equal to 4 maximum size messages and

period equal to 4 ECs. The issues related with the server type, capacity and period will be

discussed later on.

Table 5.1: Message set used in following examples

i Ci Ti Ti(EC) U

1 1 8 2 12.500%
2 1 8 2 12.500%
3 1 12 3 8.333%

4..13 1 24 6 10*4.167%

75.0%

Figure 5.2 depicts several scenarios, without and with errors, in the message set hyper-

period, where the first timeline (top), shows the sequence of message transmissions per EC,

without errors and assuming a rate-monotonic policy scheduler. This corresponds to a base

scenario, that will be used in comparisons with other scenarios that present errors. In this

figure the numbers on top indicate when the messages become ready and need to be trans-

mitted, being sent in the following ECs subject to the available capacity and according to

84

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

their priority.

Figure 5.2: No Error, Indirect and Direct example interference scenarios.

The second timeline illustrates the behaviour of the error recovering process, considering

that we are interested in obtaining the response time of message m12, that corresponds to one

message that does not suffer any error. The lightning bolt symbol represents a fault in the

bus and the S letter a server activation on behalf of the message with its number indicated

between parentheses. At last, a yellow background means that the message suffers an error.

Comparing with the no-error scenario it is easily observable the effect of server execution,

on behalf of different messages, that pushes message m12 transmission to EC(6), delaying

its transmission 2 ECs, increasing its response time to 6 ECs against 4 ECs in the no error

scenario. Other messages, also not hit by errors, suffer different interference, depending on

its priority. For instance, message m8 increases its response time from 2 to 3 ECs. On the

other hand, messages m1, m2 and m3, when not hit by errors, present the same response

time, as the server execution does not push none of them to latter ECs, as they still fit in

the EC where they were scheduled.

When determining the response time of a particular message and considering that no

error hits it, we term this the additional scheduling latency due to the server execution as

Indirect Interference.

A different interference is perceived by the messages when hit by errors. For instance

consider message m2 in the second timeline. We observe that this message (or m6 for in-

stance) is scheduled in the same EC as in the no-error scenario and we also observe that it is

successfully recovered in the following cycle (remember that server uses maximum priority).

This does not correspond to the worst case scenario, as with errors in consecutive ECs the

message recovery can be further delayed if the retransmission is also hit by additional errors.

This scenario is depicted in the bottom timeline of Figure 5.2, where it is clear that message

m4 and the retransmissions, represented by S(4), are sucessively delayed to the next cycle,

resulting in a response time equal to 5 ECs, instead of only one in the no-error scenario.

When computing the response time of a particular message and considering that this

message is hit by an an initial error and all recovery tries were also hit by additional errors,

85

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

then we call this a Direct Interference scenario.

5.2.2 The Recovery Server

A message transmission error occurrence is an event that can be regarded by the schedul-

ing process as an aperiodic request to retransmit that message. This request must be somehow

answered in conjunction with all other periodic messages requests.

So, as message retransmissions require bus time, it surely has an impact on the response

time of the remaining messages. As the assumed fault arrival model is random by nature,

being the instants of errors occurrence unpredictable, it is necessary to bound the interfer-

ence of retransmitted messages, at least when message timeliness guarantees are a system

requirement.

The question that arises then is how to deal with such events and still guarantee the

timeliness of all messages, including the one that has to be retransmitted. We decided to use

a server to manage the retransmissions because, in addition to the functionality to bound the

interference of retransmitted messages, a server:

• is resource-efficient, since it consumes bandwidth only when activated, i.e., in the pres-

ence of errors;

• allows controlling the reactivity to errors via its associated priority and budget/period;

• is predictable and analyzable.

5.2.2.1 Server Type

The system scheduling policy uses fixed priorities, being the aperiodic server types and

characteristics already described in Section 2.5. Due to their simple implementation an low

execution overhead the two obvious candidates were the Polling Server and the Deferrable

Server. The reactivity of the Polling Server is closely tied with its period, since its executions

are scheduled independently of the occurrence of errors. As such, in the aperiodic case, the

error response time may approach two server periods, even when the server has full capacity.

As the assumed fault model implies that an error can occur anywhere, to guarantee a prompt

recovery the server must be activated as soon as possible (in the next cycle). This is essential

to messages with short deadlines, or else these messages will loose its deadline while waiting in

the error server queue, even if there is slack time in the schedule. Considering, e.g., a system

with a SW that can transmit 10 maximum messages, the BW use of the Polling Server, that

must be configured to have TS equal to 1 EC to ensure a response time of one EC, would

be equivalent to one message per EC (remember that we are considering a maximum of one

error per EC) or 10% of the available BW. Note that the server period is independent of the

average error rate or even the considered bound on maximum number of errors per server

period.

On the other hand, the Deferrable Server can be activated anywhere in time, as long as

there is available capacity. This way, the server capacity can be configured based on the

86

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

maximum error assumption that may happen in the server period. This characteristic allows

allocating much lower bandwidth to the server. As an example, considering a maximum

of 10 errors per 1000 ECs, the Deferrable Server can then be configured to recover 10 er-

rors in this period, which corresponds to 0.1% of the available BW. This values compare

favourably against the 10% that a Polling Server would require in the same circumstances.

The simulation results presented in Section 6.2.2 confirm this observation.

Since the implementation cost is basically the same of the Polling Server, from now on,

when referring to the recovery server, the Deferrable type is the one considered. There is,

however, a potential penalty in terms of schedulability, due to back-to-back execution.

5.2.2.2 Obtaining Server Capacity and Period

After choosing the server type, as described previously, two other server key parameters

must be defined: capacity CS and period TS . These two parameters are intertwined and

together define the server allocated bandwidth, that should be as small as possible.

The recovery mechanism implies that when an error is detected by the Master node, a

retransmission can only occur if there is sufficient remaining capacity in the server. If not,

the retransmission will be put on hold, until the replenishment at the start of next server

period. In this case, delaying the recovery try increases the probability of missing deadlines,

which can became too high, specially in the case of messages with short deadlines.

So, to be effective, the capacity assigned to the server must be at least equal to the

maximum expected number of errors that can happen in each server period. This way, when

an error is detected a prompt recovery try can be performed.

As a Poisson process is used to model the error arrival, we can use Equation (5.1) to

compute the probability of having n or more faults in a time interval equal to τ . For the server

we are interested in a bound for the expected number of errors in its period, with adequate

probability assurance. In fact, it is preferable to use as system design metric the probability

of non-recovery, in the server period, designated pεs , which can be computed with Equation

(5.2). The choosing of the pεs is closely related with the message transmission global reliability

target that we intend to achieve. Resuming, we are saying that the probability of exhausting

the server capacity, in one server period, must be lower than the defined threshold. In Figure

5.3 the probability Pλ(≥ nerrors;TS) is plotted for several values of TS , with TS = α·(1/λ) and

α = 0.25, 0.5, 1 and 2, always for an Aggressive environment (Table 2.1). The α parameter

is a value that permits to adjust the period in multiples/fractions of the 1/λ reference value.

Pλ(≥ n; τ) =
∞∑
k=n

e−λτ
(
λτ
)k

k!
(5.1)

Based on this equation, it is then possible to determine the number of errors that must be

accommodated by the error-handling mechanism for a particular period TS , and from this,

compute the minimum server capacity for its specified period TS (as presented in [MVPA13]).

The server capacity is then equal to the minimum nerrors value that verifies Equation (5.2),

87

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.3: Probability of finding k or more errors, function of server period.

when single retransmission replica is considered.

Pλ(≥ nerrors;TS) ≤ pεs (5.2)

For example, looking at the graph in Figure 5.3, considering α = 1, (TS = 1/λ), and a

target pεs = 10−7, the minimum value of nerrors that satisfies Equation (5.2) is 10, so the

server is configured with a capacity equal to 10 maximum messages. This represents a server

bandwidth of only 0.035% of the total system bandwidth (considering CMAX = 135 bits,

TS = 1/λ = 3.85 seconds and a 1000 kbps bit rate), in the worst case, which represents a

negligible fraction of the available bandwidth. A quick check for the TS = 0.25 · (1/λ) curve,

shows that for the same pεs, the server must be configured with CS equal to 7, that represents

a bandwidth of 0.098% of the total available BW. If the server period is further reduced we

observe that the server allocated BW grows, so there is no advantage in attributing smaller

values to TS , as the reactivity to errors is granted by the server type chosen (Deferrable type).

So, choosing a server period equal to 1/λ, where λ is the average error arrival rate, giving

an average of one error recovery per TS , seems an appropriate choice.

Note that the server allocated BW for TS ’s of the order presented in Figure 5.3 always

represents a negligible fraction of the available bandwidth. Nevertheless, as we will see in

the following section, the interference caused by the server execution on the scheduling of

the remaining messages is non-negligible, and must be accounted for in the schedulability

analysis.

5.2.3 Message Response Time

In this section we will derive equations to calculate the response time of messages, con-

sidering Indirect and Direct Interference.

88

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.2.3.1 Message Response Time with Indirect Interference

Figure 5.4 shows four scenarios with increasing number of errors. The first timeline is the

scenario without errors, to establish the base case. The used message set is the one described

in Table 5.1.

Figure 5.4: Example scenarios for indirect interference, with 1 to 4 errors.

The timeline with one error shows that messages m8, m10 and m13 (in gray background)

suffer a delay of one EC due to server execution on behalf of message m2. All other messages

are not delayed, in spite of server execution. As more errors are considered, in the following

timelines, more messages are delayed, being observable that in the fourth timeline (with

3 errors) there is one message (m13) that is already delayed 2 ECs, meaning a worst case

response time increased by this value. In the bottom timeline (4 errors in consecutive ECs),

message m8, m9, m10 and m11 have response times increased by one EC and m12 and m13

by two ECs. We also note that there are messages that, despite the interference imposed

by the server execution, do not get an increase in their response time, e.g. m1, m2, m3.

So, the interference caused by the server execution increases with the number of errors (and

recoveries), being the response time increase also function of message priority.

To obtain the response time we consider a message set M , extended with a Deferrable

Server, with capacity equal to NS maximum size messages and period equal to 1/λ. We as-

sume that its capacity is never exhausted in each server period, being configured as explained

in section 5.2.2.2. The number of errors is limited by maxerrors within the server period and

at most one error per EC. Then, by applying the Non-Preemptive Blocking-Free scheduling

model [AF01], all the execution times are inflated, as in Equation (5.3), represented by the

E superscript.

CEi =
LEC

LSW − CMAX
· Ci (5.3)

This allows the use of classic Response Time Analysis of preemptive systems [ABR+93].

The interference of one message per EC, resulting from server execution to recover the error

89

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

in previous EC and also error signalling, results in Equation (5.4),

Rn+1
i = CEi +

ECnumber(R
n
i)∑

j=1

(
CEMAX + CEerror

)
+

i−1∑
k=1

⌈
Rni
Tk

⌉
· CEk (5.4)

where the ECnumber(R
n
i) is limited by the maximum number of errors considered by the

fault model (maxerrors), and is given by Equation (5.5).

ECnumber(R
n
i) =

⌈
Rni
LEC

⌉
(5.5)

The algorithm to perform the response time analysis with Indirect Interference in a mes-

sage set M is Algorithm IndirectInterf.

ALGORITHM IndirectInterf

Message Response Time with Indirect Interference Calculation

Input: M,S,LEC,LSW,maxerrors

Output: REC vector, Schedulable

1. Schedulable = TRUE

2. Compute CMAX in message set M

3. Compute SE and ME (inflate all transmission times using Eq. 5.3)

4. for i = 1 to N do

4.1 Compute Ri considering ME and server interference CEMAX + CEerror added

only once each EC, at most maxerrors times (use Eq. 5.4)

4.2 if (Ri > Di) then

mark message i as unschedulable

Schedulable = FALSE

break

end if

4.3 RECi =
⌈
Ri

LEC

⌉
end for

5. return vector REC , Schedulable

The algorithm starts by assuming that the message set is schedulable, by assigning TRUE

to the Scedulable flag. In Line 2, the longest message in the set is obtained, being then used

in Line 3 to compute the inflated message set ME and SE according to Equation (5.3). In

Line 4, the response time of each message is calculated using Equation (5.4), one at time,

considering a total of maxerrors, one per EC, being the number of messages N. A test for

message schedulability is done inside this cycle, marking the message that violates its deadline

(Line 4.2) and terminating the cycle. In Line 4.3 the response time is converted to an integer

number of ECs, which is the system granularity. Finally in Line 5 the response time of

all messages in the REC vector and a flag that signals schedulability of the message set is

returned.

90

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.2.3.2 Message Response Time with Direct Interference

Figure 5.5 illustrates more clearly the direct interference scenarios, again with increasing

number of errors (from one to four). We are only interested in the message that suffers

transmission errors (message m4 in this example). When more than one error is considered

in the following cycles then the worst case scenario (for the message under analysis) is the

one when retransmissions are consecutively affected by errors. Just by observing the various

scenarios, it is obvious from all the timelines that each error induces a delay of one complete

EC on the response time, so the successful transmission is delayed by maxerrors ECs.

Figure 5.5: Example scenarios for response time calculation with Direct Interference, with
increasing number of errors, from 1 to 4.

So, looking carefully at this example, an intuition can be gained that allows us to state

that the worst case for messages hit by one or more errors is obtained by first calculating the

response time without considering errors, and afterwards add one EC delay per error, since

when a error occurs the recovery is delayed by one full EC. By representing the response time

in number of ECs, Equation (5.6) allows this calculation, where RECi stands for the response

time of message i in number of ECs and RECi (no error) is the response time of message i

when a scenario with no errors is considered.

RECi = RECi (no error) +maxerrors (5.6)

The algorithm DirectInterf obtains the response time with Direct Interference, that con-

siders error in message and afterwards in each recovery try. It checks the schedulability of

message set M , with synchronous window of length LSW and maxerrors in consecutive ECs

(one per EC).

91

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

ALGORITHM DirectInterf

Obtain Message Response Time with Direct Interference

Input: M,S,LEC,LSW,maxerrors

Output: REC vector, Schedulable

1. Compute CMAX in message set M

2. Compute ME (inflate all transmission times using Eq. 5.3)

3. Schedulable = TRUE

4. for i = 1 to N do

4.1 Compute Ri considering ME

4.2 RECi =
⌈
Ri

LEC

⌉
4.3 RECi = Ri +maxerrors

4.4 if (RECi > Di) then

mark message i as unschedulable

Schedulable = FALSE

break

end if

end for

5. return vector REC , Schedulable

Lines 1, 2 and 3 are the same ones as in the preceding algorithm. In Line 4 we have

a cycle to compute response time per message, composed of the two following steps: Line

4.1 starts by calculating the response time of the inflated message set, without considering

errors (uses Equation (5.4) , without the middle term); in Line 4.2 the obtained values are

converted to ECs, permitting to calculate in Line 4.3 the response time considering the errors

by adding one additional EC per error. A schedulability test is performed in Line 4.4, similar

to previous algorithm. Finally in Line 5 the response time, accounted in number of ECs, and

the flag Schedulable that signals the set schedulability are returned.

5.2.3.3 Obtaining Response Time with Both Type of Interference’s

The impact on schedulability of a specific message is more penalizing in case of Direct

Interference, as the response time is always increased by one EC per suffered error, while

Indirect Interference causes only the interference of one message with maximum transmission

time equal to CMAX per cycle (per error), not necessarily leading to an additional EC delay.

This should be most noticeable when more than one error in consecutive cycles is considered.

This is the reason why with this error model and recovery mechanism the correct response

time is obtained considering the scenario for Direct Interference, with maximum number of

errors in successive ECs. Finally, remember that these calculations are performed for a

Deferrable server with highest priority and enough capacity per period to recover all errors.

92

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.2.4 Priority Assignment and Scheduling Policies for the Server

The system under consideration uses fixed priorities to schedule the messages. So, the

scheduling policy and priority used by the Server have an impact on response time of all

messages, both regular and under recovery. For instance, if the lowest priority is assigned to

the server, then the recovery is delayed by any message ready for transmission, inducing long

recovery times and large jitter, and possibly delaying the recovery beyond message deadline

(specially for messages with small periods). This choice would promote the recovery service

to background level, as the recovery process runs only when there are no regular messages

ready [But11]. On the other hand, if the highest priority is used, then the lowest possible

latency in recovery would be achieved, but with greater interference on the remaining traffic.

To discuss these aspects with more detail, we will consider the following hypotheses on server

policy and priority assignment:

• MaxPriority - maximum priority, higher than any message, is assigned to the Server;

• SamePriority - the server inherits the message priority;

• SameDMP - Same Priority with Deadline Miss Protection, meaning that this scheme is

almost equal to the previous one, except that when the message deadline is close, the

server priority is raised to the highest value;

• ServerEDF - the server priority is deadline aware, like Earliest Deadline First policy.

As each scheme implies a different algorithm, there is an impact on software complexity

and run-time overhead of each one of the options.

5.2.4.1 Server with Maximum Priority

The first hypothesis considered was to assign the server with the highest priority, above

any regular message. The rationale behind this option was scheduling the server immediately,

to allow the retransmissions to occur with the smallest latency possible. This maximizes the

probability of retransmission success before the message deadline.

This corresponds to Algorithm MaxPriority, that has as inputs the message set, M ,

the Ready Queue (RQ) of all messages ready for dispatching ordered by priorities and the

Server attributtes. These consist on the Server Error Queue (Server.EQ), that includes

information on messages that have failed transmission and are waiting, and on the server

remaining capacity, CS , that is replenished with period equal to TS .

93

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

ALGORITHM MaxPriority

Server with Maximum Priority assigned

Input: M, RQ (Ready Queue) , Server

Output: SchNextEC (schedule for Next EC), RQ(updated), Server(updated)

1. for i = 1 to Server.waiting do

mSize = message size(Server.EQ[i])

if (Server.Cs ≥ mSize) then

1.1 Move message Server.EQ[i] to the head of RQ

1.2 Server.Cs = Server.Cs - mSize

end if

end for

2. Build the schedule for next EC (SchNextEC) and Update Server

3. return SchNextEC, RQ, Server

Firstly all the messages in the Server.EQ are moved to the RQ, provided that the Server

capacity is not exhausted (Line 1.1), being the server remaining capacity updated accordingly.

Under this scheme, retransmissions are added at the head of the RQ, giving them higher

priority than all other messages, as intended. In Line 2 the scheduling is performed and

since these messages are on the head of the RQ they are the first ones to be scheduled and

dispatched, minimizing their recovery time. In Line 3 the EC schedule is returned, along

with the updated RQ and Server.

5.2.4.2 Server with Same Priority

Despite being intuitive, assigning the highest priority to the server is not the only option

as already stated, and in some scenarios it may impose more interference than strictly nec-

essary. For example, consider that a message instance with a far deadline is affected by an

error. Assigning the highest priority to the server would cause the retransmission to occur in

the following EC, possibly delaying unnecessarily the transmission of messages with shorter

deadlines.

In order to gain some insight into this problem, we show some example scenarios, with

and without errors, to observe the behavior of the recovery mechanism and the different types

of interference produced by different server scheduling policies and priorities. The message

set used in the following scenarios is detailed in Table 5.2, where message deadlines are equal

to periods and priorities are assigned using the Rate Monotonic policy. The EC size is 5 time

units and the transmission time of all messages is one time unit, resulting an utilization of

55%.

Figure 5.6 shows the timelines corresponding to the maximum priority policy, without and

with errors (top and middle, respectively). This example illustrates the scenario described

above, in which an error in a message with a longer period (message m6) causes a delay of

one EC on a message with a shorter period (message m5). This kind of interference can

94

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Table 5.2: First message set to illustrate server scheduling policy and priority assignment

n Ci Ti Ti(EC) U

1 1 10 2 10.0%

2 1 10 2 10.0%

3 1 10 2 10.0%

4 1 10 2 10.0%

5 1 10 2 10.0%

6 1 20 4 5.0%

55.0%

Figure 5.6: MaxPriority vs SamePriority in server policy, for message set of Table 5.2.

95

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

be avoided since message message m6 could be retransmitted in the following EC, without

violating its deadline.

So, an alternative policy, which prevents the priority inversion scenario just described,

consists in preserving the messages priority during retransmissions, by assigning the server

with the priority of the message to be retransmitted. In terms of implementation, such policy

is easily accomplished, since it consists in handling retransmissions in the same way as regular

messages.

The corresponding algorithm is presented next, where the changes introduced were inside

the cycle of Line 1, to insert the messages present in the error server queue in the correct

position of the Ready Queue. Also an additional check has to be performed to verify if the

message was included in the schedule for the next cycle. If the response is negative, the

messages not dispatched must go back to the error server queue, but only if the deadlines

can still be met in the following cycle, else they are discarded. This corresponds to Line 3.

With these changes the new algorithm was termed SamePriority.

ALGORITHM SamePriority

Server Inherits Message Priority

Input: M, RQ (Ready Queue) , Server

Output: SchNextEC (schedule for Next EC), RQ (updated), Server (updated)

1. for i = 1 to Server.waiting do

mSize = message size(Server.EQ[i])

if (Server.Cs ≥ mSize) then

Move message Server.EQ[i] from Server.EQ to the the proper

position in the RQ, according to its priority

server.Cs = Server.Cs - mSize

end if

end for

2. Build the EC Schedule (TM) and update Server

3. Put all retransmissions not dispatched (with feasible deadlines)

back on Server.EQ & adjust server capacity accordingly

4. return SchNextEC, RQ, Server

Since, in this case, the messages in the Server.EQ are scheduled together with the re-

maining messages, following a system-wide fixed-priority scheduling policy, message retrans-

missions do not interfere with higher priority messages, as desired. This can be observed in

Figure 5.6, bottom timeline.

With this priority assignment to the server, the error recovery latency is not minimized

anymore, being dependent on the priority of the message affected by the error and on the

instantaneous system load. Consequently, this scheduling policy has a behavior that is dual

of the MaxPriority scheme.

On the other hand, there could be some undesirable side-effects, as inheriting the message

96

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Table 5.3: Second Message set to illustrate server scheduling policy

n Ci Ti Ti(EC) U

1 1 10 2 10.0%

2 1 10 2 10.0%

3 1 10 2 10.0%

4 1 10 2 10.0%

5 1 10 2 10.0%

6 1 15 3 6.7%

56.7%

priority could lead to unnecessary delays and possibly to deadline misses. The message set

in Table 5.3, that is based on the one in Table 5.2, except in what concerns the period of

message m6, which is reduced from 4 ECs to 3 ECs, increasing only slightly the utilization

factor, can be used to illustrate this point. In the scenario illustrated in Figure 5.7, bottom

timeline, the message retransmission was delayed, leading to a deadline miss. Conversely,

if the MaxPriority scheme was used, no deadline would be missed, as pointed out before

(Figure 5.7, second timeline). Note that in this case the deadline miss is solely due to the

chosen server policy and not to additional errors, being this a negative point attributed to

server configuration only.

Figure 5.7: MaxPriority vs SamePriority server policy, for message set of Table 5.3.

5.2.4.3 Server with Same Priority and Deadline Miss Protection

Reasoning about the scenarios shown above, it can be concluded that both scheduling

schemes have a common problem: the scheduling decisions regarding message retransmissions

97

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

do not take into account the dynamic system state and thus are suboptimal. This observation

suggests that a possible way of improving the system performance may be achieved by using

the message slack as a scheduling decision parameter. One simple way of obtaining this

behavior consists in using the SamePriority scheme by default, in order to prevent priority

inversions as much as possible, and assigning the maximum priority to the server whenever

the message at the head of its error queue has a slack of one EC, in order to reduce the

number of deadline misses affecting retransmissions of low-priority messages. This scheme,

designated SamePriorityDMP, is described in Algorithm SamePriorityDMP. Lines 2, 3 and

4 are the same ones as in Algorithm SamePriority.

ALGORITHM SamePriorityDMP

Server Scheduling with Same Priority and Deadline Miss Protection

Input: M, Ready Queue (RQ), Server

Output: Output: SchNextEC (schedule for Next EC), RQ(updated), Server(updated)

1. for i = 1 to Server.waiting do

mSize = message size(Server.EQ[i])

if (Server.Cs ≥ mSize) then

1.1 if (absolute deadline(Server.EQ[i]) > Next EC) then

Insert message in the RQ, with original priority

else

Insert message at the head of the RQ

end if

server.Cs = Server.Cs - mSize

end if

end for

2. Build the EC Schedule (TM) and update Server.EQ

3. Put all retransmissions not dispatched back on Server.EQ

& adjust server capacity accordingly (Server.Cs)

4. return SchNextEC, RQ, Server

This algorithm adds then and additional test, in Line 1.1, that forces the insertion of

the message present in the Server.EQ in to the head of the RQ, promoting its priority to

the maximum value. This is only done when the next EC is the last one that permits its

retransmission without violating the message deadline, else it inherits the message priority.

This modification guarantees that at least one recovery try is performed, overcoming this

way the identified undesirable side-effect described previously. Though simple and easy to

implement, as it requires only one additional test with respect to the SamePriority scheme,

the SamePriorityDMP policy is still suboptimal as it neglects the messages slack until a

border condition is met, namely the last EC before the deadline.

98

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.2.4.4 Server with EDF policy

The Earliest-Deadline First policy firstly presented in [LL73] is a scheduling policy that

takes into account the dynamic state of the system, giving priority to the tasks with more

urgent deadlines. This is the feature that makes EDF optimal with respect to meeting

deadlines, while allowing higher utilization factors than fixed-priority schemes.

Errors happen in a random way, may affect both messages with short or long deadlines,

so it is not possible to forecast which kind of requests will be submitted to the server, thus

optimum decisions cannot be fixed nor taken off-line. Taking also into account the previous

comments about the SamePriority and SamePriorityDMP policies, this feature seems par-

ticularly well suited for the error server scheduling, as it allows promoting dynamically the

recovery priority.

If this policy is applied to the server, then retransmissions will have a minimum interfer-

ence on other messages when their deadlines are farther away, but gain importance gradually,

i.e., increase their priority, as their deadlines approach, as desired.

Also, related work that proposes hierarchical scheduling using different scheduling policies

at different levels in the scheduling process [HP03], seems to point out that this could be an

interesting strategy for the server scheduling policy (for the messages in the server only).

The operation of the EDF policy for the Server is described in Algorithm ServerEDF. The

inputs and outputs are the same ones as in previous algorithms, being significantly different

in the way that messages waiting in the Server.EQ are included in the schedule.

ALGORITHM ServerEDF

Server Scheduling with EDF Priority

Input: M, RQ (Ready Queue), Server

Output: SchNextEC (schedule for Next EC), RQ(updated), Server(updated)

1. Sort RQ by deadlines

2. Sort Server.EQ by deadlines

3. for i = 1 to Server.waiting do

mSize = message size(Server.EQ[i])

if (Server.Cs ≥ mSize) then

Insert message in the RQ sorted by deadline

server.Cs = Server.Cs - mSize

end if

end for

4. Build the SchNextEC (Schedule for the next cycle) and update Server.EQ

5. Put all retransmissions not dispatched back on Server

& adjust server capacity accordingly (Server.Cs)

6. return SchNextEC, RQ, Server

The algorithm starts by sorting the RQ and Server.EQ by deadlines (lines 1 and 2). In

Line 3, each message waiting in the Server.EQ is deadline compared with the regular messages

99

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

being included in the schedule if their deadline is shorter than the one of any other regular

messages. Line 4 builds the schedule for the next EC, using the RQ built in the previous

step (with deadline ordering). As the schedule is limited by the maximum available time in

the synchronous window, in case the messages in the server queue do not fit, then they go

back to the server queue, being this done in Line 5. Line 6 returns the schedule for the next

EC and the updated versions of RQ and Server.

The EDF scheduling policy has the potential to deliver the best results in terms of in-

terference, outperforming the other policies in many cases. However, it incurs in a relatively

high overhead, since it requires that both the server error queue and the Ready Queue are

sorted by deadline and insertions on the Ready Queue must also be made according to the

deadline. Considering that CAN is often used in embedded systems based on resource-

constrained hardware (e.g., in 8 bit microcontrollers), such overhead can be problematic.

Therefore a fine-grained cost-benefit analysis must be performed, considering namely the use

of optimized solutions for the algorithm implementation.

Figure 5.8 presents the different behavior in terms of recovery latency and interference of

the four proposed server scheduling policies considering the message set defined in Table 5.4.

The timelines show a scenario in which only the EDFServer scheme can recover a message

without causing any deadline miss.

Table 5.4: Example message set for comparison of the four policies.

i Ci Ti Ti(EC) U

1 1 10 2 10.0%

2 1 10 2 10.0%

3 1 10 2 10.0%

4 1 10 2 10.0%

5 1 10 2 10.0%

6 1 15 3 6.7%

7 1 15 3 6.7%

8 1 25 5 4.0%

9 1 25 5 4.0%

10 1 25 5 4.0%

11 1 25 5 4.0%

12 1 25 5 4.0%

13 1 25 5 4.0%

87.3%

100

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.8: The four rescheduling politics compared for a particular system.

Some comments follows:

• Second timeline (MaxPriority): it has the fastest recovery latency, delaying messages

with higher priority; the prompt recovery delays message m13, making it loose its

deadline;

• Third timeline (SamePriorityDMP): the interference with higher priority is avoided,

delaying the recovery one more EC, when compared to previous policy; message m13

still misses deadline. Both SamePriority and SamePriorityDMP show an equivalent

behaviour;

• Bottom timeline (ServerEDF): in EC(3) all the ready messages have lower deadlines

than message in Server.EQ, so the server execution is delayed; in EC(4) the message

in Server.EQ has the lowest deadline, so it is scheduled in this cycle; as the scheduling

decisions are made by deadline, it is message m7 that is postponed (it has the farthest

deadline), giving space to message m13 to be scheduled EC(4) and not loose its deadline,

contrary to the previous two timelines.

5.2.5 Limits on the recovery success

The use of single replica retransmission puts a limit on the guarantees given in message

recovery, in case of errors in consecutive ECs. The scenario, depicted in Figure 5.9, that uses

the message set of Table 5.5, with LEC equal to 10 time units, shows that a message can

fail its deadline if this situation happens. For the messages present in a particular set, the

ones that have smaller deadlines are more prone to this situation, since with the proposed

recovery method a success in transmission can only happen if there is slack time to the

message deadline, as the recovery message is delayed by at least one EC.

101

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Table 5.5: Message set used in following examples

i Ci Ti Ti(EC)

1 1 20 2
2 1 20 2

Figure 5.9: Two errors in consecutive ECs leads to message failing deadline (LEC = 10 time
units).

The obvious solution to overcome this limitation is for the slave to send two copies in

the same EC, possibly using both windows. Due to the single error assumption, a successfull

retransmission would be guaranteed. In case of no error, the slave will get two copies of the

same message and must discard one of them. This approach, when using the asysnchronous

window to transmit the message copy, would maintain all the scheduling control in the Master

node, but includes a penalty in traffic scheduling for the asynchronous traffic, equal to the

interference of the longest synchronous message. The slave code would have to be changed

to identify correctly this situation.

Another possibility to overcome this limiation is to adjust further the EC length, using

smaller than half the value of the fastest messages, so these messages have several opportu-

nities of recovery before reaching their deadlines. The example depicted in Figure 5.10, that

uses the message set in Table 5.5 with LEC reduced to 5 time units (LEC is half the value of

the previous example), shows that even with higher fault rate assumption it still guarantees

success in message delivery.

Figure 5.10: Three errors in consecutive ECs and message still meets its deadline (LEC = 5
time units).

This method implies a schedulability penalty because it increases the number of required

TM messages and inserted idle time.

A third way consists in sending an adequate number of retransmission replicas, each time

an error is detected. This will be further detailed in the next section.

As a concluding remark, we can state that this simple method can effectively increase the

network transmission reliability, but only to a certain degree, as the recovery is compromised

102

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

by errors in consecutive cycles, namely for the messages with short deadlines. Knowing its

limitations, it can be used if the application can deal with the attainable reliability level,

that can be complemented using robust control algorithms in the application, that should

be tolerant to a certain degree of faults (k out of n transmissions errors). Nevertheless, it

allowed a first approach to a new dynamic recovery method (in the time domain), in the

FTT-CAN scope, and also permitted to clearly identify its limitations.

5.3 Error Recovery in the Time Domain - Multiple Replica

Version

5.3.1 Limitations and Motivating for an Improved Recovery Method

The limitations of the basic recovery method were already identified in Section 5.2.5,

considering the simplified fault model with a limit of one error per EC. The solutions proposed

to overcome retransmission failures still do not give guarantees when more realistic scenarios

are considered, namely by considering multiple errors per EC.

So, when designing systems that must provide high reliability, the error scenarios should

include more than one error per EC (per SW). To present enhanced transmission guarantees,

the proposed solution consists in sending several replicas to attain the desired probability of

success in each recovery try and consequently attain the required reliability target. This new

strategy is represented in Figure 5.11.

Figure 5.11: Recovery with multiple replicas.

The example in this figure shows that messages m6, m10, m12 and m13 are correctly

received in EC(i). On the other hand, messages m5 and m7 suffer transmission errors. The

master flags each message received successfully at the end of the SW by comparison with

the planned messages for this cycle. Then the Bus Error Detector module identifies the

failed messages, that consequently are inserted in the Error Server Queue. In EC(i+1) the

retransmitted messages are sent twice, being therefore resilient to additional errors in this

EC.

103

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.3.2 Update on Server Capacity Computation

The Server type, period and capacity for the single replica per error choosing was presented

in Section 5.2.2, being still valid for this recovery version. The main difference now is that

we need to take into account the need for multiple retransmissions to achieve a desired

reliability level, as discussed in the previous section. Noting that it is not possible to foresee

which messages will be affected by errors, the worst-case situation happens when all of them

must be transmitted in the following EC, implying scheduling several replicas at once.

The number of errors foreseen per server period is obtained using Equation (5.2), with

limit probability pεs and depicted in Figure 5.3, as we are still using the Poisson model for

fault arrival. Then, accounting that nreplicas copies must be sent for each found error, the

new server capacity is then given by Equation (5.7), in number of maximum length messages.

CS = nerrors · nreplicas (5.7)

For example, considering one server period (TS = 1/λ) and a target of pεs = 10−10, the

minimum value of nerrors that satisfies Equation (5.1) is 13 (see Figure 5.3). Assuming, for

instance, 3 replicas per error (i.e., 3 replicas allow attaining the desired global reliability),

the server must then have a capacity equal to 13 · 3 = 39 maximum length messages. If

a LEC equal to 2.5 ms is used, then the allocated server capacity is 0.14% of the system

bandwidth (with bit rate of 1 Mbps, CMAX = 135µs and TS = 1/λ = 3.85 seconds), which,

again, represents a negligible fraction of the available bandwidth.

5.3.3 Obtaining Worst Case Response Time of Messages with Server In-

terference

This section presents a method to compute the worst-case response time (WCRT) of

messages, taking into consideration the errors and the interference of the server.

It starts by giving a generic equation to obtain the response time, that must be evaluated

for each considered error scenario and interference pattern (corresponding to server execu-

tion), followed by the identification of the error scenarios and interference patterns, including

the algorithms description.

5.3.3.1 Updating the Message Response Time Computation

In the FTT-CAN scope, the worst case response time of synchronous messages can be

obtained using the classical Response Time Analysis [ABR+93], by applying the Blocking-

Free Non-Preemptive scheduling model [AF01], where all the transmission times are inflated

(see Equation 3.8), as described in Section 3.3.2.1.1. The Equation (3.12) applies to the error

free transmission, that now must be adapted, accounting for all error and recovery scenarios.

To apply the new equation is assumed, as before, that the message set is ordered by decreasing

priority order.

104

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Then, we must consider all the error scenarios and the interference patterns, by including

these terms in Equation (3.12). This updated formulation results in Equation (5.8), where the

server interference is represented by the intermediate term - the summation of Interf Pattern

- and the error signaling by the summation of Err Scenario. Note that this formulation also

implies a recovery try with minimum delay possible, so each error in a particular EC is

recovered in the following EC. So, the first term in the summation depends on the errors that

occurred in the previous SW and on the necessary message replication number and the second

one depends on the errors in the current SW. The response time of each message must be

calculated for each error scenario and server interference, accounted by the l variable, being

the response time of message i the greatest of all the calculated values.

Rn+1
i (l) = CEi +

ECnumber(R
n
i (l))∑

j=1

(
Interf Pattern(l, j) · CEMAX + Err Scenario(l, j) · CEerror

)

+

i−1∑
k=1

⌈
Rni (l)

Tk

⌉
· CEk

(5.8)

The limit on the summation ECnumber(R
n
i (l)) is obtained by Equation (5.9), and repre-

sents the number of ECs that need to be analyzed in iteration n for message i.

ECnumber(R
n
i (l)) =

⌈
Rni (l)

LEC

⌉
(5.9)

In the following sections the number of replicas, the error scenarios and interference

patterns are obtained in order to calculate the response time of all messages and determine

the system schedulability.

5.3.3.2 Obtaining the Number of Replicas

Let’s start by giving a simple example to motivate the generic procedure. Figure 5.12,

represents a case that shows that multiple replica retransmission enhance the probability of

error recovery success. In the top timeline a single copy retransmission is performed, that

suffers an additional error in EC(2), leading to a message deadline miss. On the other way, if

double replica was sent, bottom timeline, a successful message retransmission is obtained. As

fault arrivals are modeled by a Poisson process, it is not possible to upper bound the number

of faults in any given time interval, so a second error in EC(2) can not be ruled out and

in this scenario the retransmission would fail again. So, the question is: how many replicas

should be sent to give guarantees that the retransmission is sucessfull?

Of course, due to the random process of fault arrival, only a probabilistic guarantee can

be given on the recovery success. As the fault arrival is modeled by a Poisson process, for

a fixed time interval, increasing the number of considered faults decreases the corresponding

probability. Therefore, it is possible to compute the number of replicas that guarantees

105

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.12: Message and replica hit by errors.

successful and timely transmissions to attain a global reliability goal ρ > 1− εG, where εG is

the maximum probability of failure or system/global unreliability level.

Usually, the system reliability level is specified in acceptable errors per mission and a

generally accepted mission time is one hour [TBEP10], thus leading to a common metric of

acceptable errors per hour. The system unreliability objective εG can be converted to the

error probability that each individual message may tolerate, when considering the messages’

periods and mission time (MT seconds), being this probability named pεi.

The transmission reliability can be calculated by Equation (5.10), that includes the con-

tributes of all N messages and the number of invocations in the mission time (previously

presented as Equation (4.6), that was repeated here for convenience). As the probabilities of

insuccess, pεi, are extremely small (even for Agressive environments) a good approximation

of this equation can be obtained using the first two terms of the Taylor series expansion,

as in Equation (5.11). The new formulation can be solved by upper bounding the i terms,

using the smallest value of Ti and the biggest pεi (worst GP value will be obtained) and then

making all N elements equal to this bound and applying again Taylor series approximation,

resulting in Equation (5.12).

GP =

N∏
i=1

(
1− pεi

) MT
Ti·LEC (5.10)

GP ≈
N∏
i=1

(
1− MT

Ti · LEC
· pεi

)
(5.11)

GP ≈ 1−N · MT

Ti · LEC
· pεi (5.12)

1−N · MT

Ti · LEC
· pεi = 1− εG (5.13)

pεi =

εG(
MT

Ti·LEC

)
N

(5.14)

106

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Then, by solving Equation (5.13), finally Equation (5.14) is obtained. This equation

defines an acceptable failure probability for the message i, where Ti is the message period (in

number of ECs), MT is the mission time and N is the number of messages subject to the

recovery mechanism. This equation also shows that the most demanding messages, i.e., with

lower pεi, are those with the smallest period. Since the error-handling mechanism will be

used for all messages, design decisions will be made considering the smallest pεi value, that

this point forward will be denoted as pε.

5.3.3.2.1 Replica Level To obtain the replica level we will use a set of error and recovery

scenarios, depicted in Figures 5.13, 5.14, 5.17 and 5.18, to obtain a general expression for

computing the number of replicas needed to attain a given system global reliability level. In

practice, the values of λ, LSW and pε limit the number of scenarios that must be considered.

Let us start with the one error/one replica scenario, shown on the top timeline of Figure

5.13. This event sequence occurs if one error affects a synchronous message, event with

probability Pλ(1;LSW), and the corresponding replica is also affected by an error, event

with probability Pλ(1;Ci). As errors are independent, the resulting probability (p1/1) is

given by the product of both probabilities. Therefore, the probability of this scenario is

given by Equation (5.15), where message transmission times are upper bounded by CMAX ,

to enable the derivation of generic equations.

Figure 5.13: One error and recovery with 1 to 4 replicas in following cycle.

p1/1 = Pλ
(
1;LSW

)
· Pλ

(
1;CMAX

)
(5.15)

p1/2 = Pλ
(
1;LSW

)
· Pλ

(
1;CMAX

)2
(5.16)

p1/3 = Pλ
(
1;LSW

)
· Pλ

(
1;CMAX

)3
(5.17)

p1/4 = Pλ
(
1;LSW

)
· Pλ

(
1;CMAX

)4
(5.18)

p1/nreplicas = Pλ
(
1;LSW

)
· Pλ

(
1;CMAX

)nreplicas (5.19)

If the probability obtained via Equation (5.15) is lower than pε then a single replica

107

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

is enough to guarantee the desired message transmission reliability level. Otherwise, an

additional replica must be sent. This scenario is shown in the second timeline of Figure

5.13. This case is a simple extension of the previous one, in which we consider the combined

probability of both replicas being hit. So, the probability of occurrence of this scenario (p1/2)

is given by Equation (5.16). Following this line of reasoning we obtain (p1/3) and (p1/4),

that also leads to the probability for the scenario one error/nreplicas (p1/nreplicas) given by

Equation (5.19). The smallest number of replicas that makes Equation (5.19) lower than pε

is sufficient to attain the desired global reliability level for this scenario.

Since the error model allows the occurrence of multiple errors in one EC, we will now

consider the scenarios in which two synchronous messages scheduled for the same EC are

affected by errors, as in Figure 5.14, that depicts all recovery failure scenarios with minimum

number of errors. When considering first that a single replica per detected error is sent,

if an error hits one of the replicas the recovery process fails. The probability of failure of

the recovery process (p2/1) is then simply obtained by adding the probabilities of both these

combinations, each one with probability Pλ(2;LSW), probability of having two errors in the

SW, times Pλ(1;CMAX) probability of one replica error, as expressed in Equation (5.20).

Figure 5.14: Two error and recovery with 1..4 replicas in following cycle - all fail scenarios
with minimum number of errors.

p2/1 = 2 · Pλ
(
2;LSW

)
· Pλ

(
1;CMAX

)
(5.20)

Note that the scenario where both replicas fail transmission is also possible, as represented

in the bottom timeline of Figure 5.15, was not accounted in Equation (5.20). So, including this

scenario (with one more error than the minimum number of errors that makes the recovery

process fail), the probability of scenario failure is calculated through Equation (5.21), as it

includes the scenario with two errors, one hitting each recovery try.

108

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.15: All scenarios for 2 errors and single replica that fails recovery (1 or 2 errors in
recovery EC).

p2/1(fail) = Pλ
(
2;LSW

)
·
(
Pλ
(
1;CMAX

)
+ Pλ

(
1;CMAX

)
+ Pλ

(
1;CMAX

)2)
= Pλ

(
2;LSW

)
·
(
Pλ
(
1;CMAX

)
·
(
1 + 1 + Pλ

(
1;CMAX

)))
≈ 2 · Pλ

(
2;LSW

)
· Pλ

(
1;CMAX

) (5.21)

The approximation is valid since the Pλ
(
1;CMAX

)
is much smaller than unity (10−5

order for maximum length CAN message in Agressive environment). So, the probability was

truncated with the two first scenarios, the ones with minimum number of errors that makes

the recovery transmission fail, resulting in Equation (5.20).

When considering now that two replicas per message are sent, a failure of the recovery

process occurs only if both replicas of the same message are affected by errors, event with

probability p2/2, expressed in Equation (5.23), corresponding to the third and fourth timeline

in Figure 5.14.

Again, Equation (5.23), accounts only for error recovery failure with minimum number of

errors. Figure 5.16 represents all scenarios (with two, three and four errors in the recovery

EC) that allow us to write Equation (5.22). Due to the presence of values much lower than

unity resulting from the contribution of the third or fourth error, it is possible to simplify

this equation by accounting only the scenarios with number of failures equal to number of

replicas, since considering more errors has negligible increase in all error scenarios probability.

This approximation of Equation (5.22) results then in Equation (5.23).

p2/2(fail) =

Pλ
(
2;LSW

)
·
(
2 · Pλ

(
1;CMAX

)2
+ 4 · Pλ

(
1;CMAX

)2 · Pλ(1;CMAX

)
+ Pλ

(
1;CMAX

)2 · Pλ(1;CMAX

)2)
= Pλ

(
2;LSW

)
·
(
2 · Pλ

(
1;CMAX

)2 · (1 + Pλ
(
1;CMAX

)
+ 1/2 · Pλ

(
1;CMAX

)2))
≈ Pλ

(
2;LSW

)
·
(
2 · Pλ

(
1;CMAX

)2)
(5.22)

This line of reasoning is also applied in the next scenarios, so from this point on we will

only consider the scenarios with minimum number of errors that make the process of error

recovery fail, since the contribution of scenarios with greater number of errors is negligible.

Iterating the reasoning it is possible to obtain Equations (5.24) and (5.25) for the scenarios

109

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.16: All scenarios for 2 errors and 2 replicas per message that fails recovery, consid-
ering scenarios from 2 to 4 errors in the recovery cycle.

”2 errrors/3 replicas” and ”2 errors/4 replicas”, respectively. Finally Equation(5.26), allows

for computing the probability (p2/nreplicas) of non-recovery for the two errors/nreplicas scenario.

p2/2 = 2 · Pλ
(
2;LSW

)
· Pλ

(
1;CMAX

)2
(5.23)

p2/3 = 2 · Pλ
(
2;LSW

)
· Pλ

(
1;CMAX

)3
(5.24)

p2/4 = 2 · Pλ
(
2;LSW

)
· Pλ

(
1;CMAX

)4
(5.25)

The generic expression for the scenarios with two errors is then:

p2/nreplicas = 2 · Pλ
(
2;LSW

)
· Pλ

(
1;CMAX

)nreplicas (5.26)

The scenarios with 3 errors and recovery try, for increasing number of replicas (from one

to three), with minimum number of errors in the recovery cycle, are depicted in Figure 5.17,

being the corresponding failure probabilities given by the two following equations.

p3/1 = 3 · Pλ
(
3;LSW

)
· Pλ

(
1;CMAX

)
(5.27)

p3/2 = 3 · Pλ
(
3;LSW

)
· Pλ

(
1;CMAX

)2
(5.28)

p3/3 = 3 · Pλ
(
3;LSW

)
· Pλ

(
1;CMAX

)3
(5.29)

A generic equation for the scenario ”3 errors/nreplicas” is then:

p3/nreplicas = 3 · Pλ
(
3;LSW

)
· Pλ

(
1;CMAX

)nreplicas (5.30)

110

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.17: Three errors and recovery with 1..3 replicas in following cycle.

The scenarios with 4 errors followed by recovery try, with one and two replicas are pre-

sented in Figure 5.18.

Figure 5.18: Four errors and recovery with 1..2 replicas in following cycle.

The corresponding scenario failure probabilities for the scenarios ”4 errors/1 replica”, ”4

errors/2 replicas” and ”4 errors/nreplicas” are given by the following equations:

p4/1 = 4 · Pλ
(
4;LSW

)
· Pλ

(
1;CMAX

)
(5.31)

p4/2 = 4 · Pλ
(
4;LSW

)
· Pλ

(
1;CMAX

)2
(5.32)

p4/nreplicas = 4 · Pλ
(
4;LSW

)
· Pλ

(
1;CMAX

)nreplicas (5.33)

111

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

The same methodology can be applied to obtain the generic expression for scenarios

with arbitrary number of errors nerrors and replicas nreplicas, with general format given by

Equation (5.34).

pnerrors/nreplicas = nerrors · Pλ
(
nerrors;LSW

)
· Pλ

(
1;CMAX

)nreplicas (5.34)

The Algorithm Calc RepLevel calculates the necessary replica number for arbitrary

scenarios. This algorithm is based on Equation (5.34), returning vector RepLevel, which

contains the number of replicas necessary to obtain a probability of non-recovery below pε

for i errors in the previous SW.

ALGORITHM Calc RepLevel

Replica Level Calculation

Input: M,LSW,λ, pε

Output: RepLevel vector

1. Determine CMAX in message set M

2. Obtain maximum value of Max Errors in Pλ(Max Errors;LSW) > pε

3. for nerrors = 1 to Max Errors do

4. j = 0

5. do

j = j + 1

P = nerrors · Pλ
(
nerrors;LSW

)
· Pλ

(
1;CMAX

)j
while (P > pε)

RepLevel(nerrors) = j

end for

6. return vector RepLevel

For illustration purposes, Algorithm Calc RepLevel was applied to an FTT-CAN system

with a 1 Mbps bit rate, LEC = 2.5 ms, LSW = 1.25 ms, λ = 0.26 errors per second (Aggressive

environment, Table 2.1) and 15 messages with period 5 ms and size 125 bits (including maxi-

mum bit-stuffing). The desired global unreliability level εG was set to 10−9, which translates

to a pε ≈ 10−16 by applying Equation (5.14). Table 5.6 presents the obtained values. The

vector returned by Algorithm Calc RepLevel for the example above is RepLevel={3,3,2,1}
.

For comparative purposes, we also considered an alternative Normal environment with

a lower BER, leading to the results shown in Table 5.7. As expected, the number of errors

that may affect synchronous messages is, probabilistically, much smaller, thus requiring a

significantly smaller number of replicas to attain the same global reliability level.

FTT-CAN has several configuration parameters that can be tuned to suit the application

requirements. Of particular relevance are the EC duration (LEC) and the maximum length

of the synchronous window (LSW). To get insight about the impact of these parameters on

112

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Table 5.6: Number of replicas needed for a target reliability level in an Aggressive environment

Scenario
replica number

pfail εG = 10−9
overhead

(n msgs) (number msgs)

1 error, single ret 1 1.06 · 10−08 X 1

1 error, double ret 2 3.43 · 10−13 X 2

1 error, triple ret 3 1.12 · 10−17 OK 3

2 errors, single ret 1 3.43 · 10−12 X 2

2 errors, double ret 2 1.12 · 10−16 X 4

2 errors, triple ret 3 3.62 · 10−21 OK 6

3 errors, single ret 1 5.58 · 10−16 X 3

3 errors, double ret 2 1.81 · 10−20 OK 6

4 errors, single ret 1 6.04 · 10−20 OK 4

Table 5.7: Same as Table 5.6, but for a Normal environment

Scenario
replica number

pfail εG = 10−9
overhead

(n msgs) (number msgs)

1 error, single ret 1 1.50 · 10−12 X 1

1 error, double ret 2 5.82 · 10−19 OK 2

2 errors, simple ret 1 5.82 · 10−18 OK 2

113

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

the system reliability, Algorithm Calc RepLevel was applied to an FTT-CAN system like the

one assumed for the results in Table 5.6 but with LEC, LSW and message periods 10 times

bigger. The results are reported in Table 5.8.

Table 5.8: Same as Table 5.6, but with LEC = 25 ms and LSW = 12.5 ms

Scenario
replica number

pfail εG = 10−9
overhead

(number msgs) (number msgs)

1 error, single ret 1 1.05 · 10−07 X 1

1 error, double ret 2 3.42 · 10−12 X 2

1 error, triple ret 3 1.11 · 10−16 OK 3

2 error, single ret 1 3.42 · 10−10 X 2

2 error, double ret 2 1.11 · 10−14 X 4

2 errors, triple ret 3 3.61 · 10−19 OK 6

3 error, single ret 1 5.56 · 10−13 X 3

3 errors, double ret 2 1.81 · 10−17 OK 6

4 errors, single ret 1 6.02 · 10−16 OK 4

5 errors, single ret 1 4.89 · 10−19 OK 5

Since the smallest message period is now 50 ms, pε becomes equal to 10−15 and the

obtained RepLevel vector is {3, 3, 2, 1, 1}. We can also see that for longer LSW we

must consider the possibility of more errors per SW, thus generating higher overhead and a

degradation of the probability of failure for all considered scenarios. Therefore, we expect

longer ECs and SWs to increase error recovery overhead.

5.3.3.3 Building the Interference Patterns

To build the interference patterns we need first to determine the necessary replication

level. Afterwards, we have to compute how many errors must be handled in a single SW

and also the maximum number of single errors that have to be accommodated in consecutive

SWs, which are the two extreme cases (to see this just calculate the scenario probability

by applying Equation (2.8) to all the considered error scenarios). Algorithm Max Errors

computes these values, termed max 1cycle and max cycles, that will be used to build all

possible error scenarios.

114

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

ALGORITHM MaxErrors

Maximum single consecutive errors and maximum errors in one cycle

Input: LSW, λ, pε

Output: max 1cycle,max cycles

1. max cycles = 0, p error = 1.0

2. while (p error > pε) do

max cycles = max cycles+ 1

p error = Pλ
(
1;LSW

)max cycles
end while

3. max cycles = max cycles− 1

4. max 1cycle = 0, p error = 1.0

5. while (p error > pε) do

max 1cycle = max 1cycle+ 1

p error = Pλ
(
max 1cycle;LSW

)
end while

6. max 1cycle = max 1cycle− 1

7. return max cycles,max 1cycle

The algorithm accepts as inputs LSW , λ and pε. Lines 1 to 3 compute the maximum

number of consecutive ECs that may be affected by one single error. The reasoning is similar

to the one used to derive Equation (5.34). As in the Poisson process arrivals are independent,

the probability of having exactly one error in n consecutive cycles is given by the product of

the probability of having exactly one error in one cycle, given by Pλ(1;LSW). Lines 4 to 6

compute the maximum number of errors in one SW, being a direct iteration of the Poisson

probability function applied to one SW. Table 5.9 illustrates the results of the algorithm

for several scenarios of LSW and λ. One can see that max cycles and max 1cycle tend to

increase with higher values of LSW and λ, as expected.

Table 5.9: Maximum consecutive cycles (max cycles) with single error and maximum number
of errors in one cycle (max 1cycle), for various values of LSW and λ using pε = 10−16

LSW(ms); λ max cycles max 1cycle

2.5 ; 0.026 3 3

2.5 ; 0.26 5 4

25 ; 0.026 5 4

25 ; 0.26 7 6

After obtaining these two values, we can build the various error sequences or scenarios,

Error Scenario, that produce maximum interference. These are the result of all combinations

with length max cycles and a maximum of max 1cycle errors per EC. For instance, if we

consider max cycles equal to 4 and max 1cycle equal to 3, then the possible error combina-

tions are the ones presented in Figure 5.19. The horizontal-axis in this figure represents the

115

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.19: Possible error sequences in consecutive cycles.

ECs, while error sequences with probability greater than pε are represented by a solid circle.

These sequences, when combined with the RepLevel vector, allow for us to build the set of

Interf Pattern required for computing Equation (5.8), as explained in the next section.

5.3.3.4 Server Interference

The error server execution may interfere with any message, having different interference

patterns, depending in error sequence and server configuration. As in sections 5.2.3.1 and

5.2.3.2 , we define Indirect Interference on one message when this message does not suffer

errors itself, but is delayed by the server executing on behalf of other messages, and the

Direct Interference corresponds to scenarios where one error affects the message being

analyzed. When calculating the response time with direct interference we must also account,

at first, with the recovery of (n−1) errors (in scenarios of Indirect interference), in a scenario

with n errors in total. The worst-case response time for any message is the maximum of both

types of interference. As we will see later on, direct interference is normally more penalizing

but it is not always the case, thus the need to compute both scenarios.

5.3.3.4.1 Indirect Interference As already stated, the server execution may delay the

dispatching of lower priority messages, thus causing interference on them, that is now bigger

due to multiple replica sending and the possibility of multiple errors in the previous cycle. As

the server is configured to use the highest priority, to minimize retransmissions latency, then

all messages are subject to interference due to server execution. Figure 5.20 illustrates the

indirect interference caused by the error scenarios presented in Figure 5.19. Possible error

sequences in consecutive cycles, including all possible error combinations of max 1cycle errors

that can occur in max cycles cycles, with RepLevel = {3, 3, 2, 1}, are presented there. Using

a smaller number of errors reduces the server load, and consequently, the indirect interference,

thus we just need to consider the combinations depicted in Figure 5.19.

Algorithm Ind Interf MultipleReplicas assesses the schedulability when considering indi-

116

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Figure 5.20: Possible error and recovery scenarios for indirect interference.

rect interference on message set M, having as inputs LSW , LEC, λ, pε and the RepLevel

vector. The parameter cut errors is an auxiliary variable needed to allow for this algorithm

to be used both for the Indirect (cut errors = 0) and Direct (cut errors = 1) Interference

computation. Lines 1 to 4 determine the Interf Pattern array, required to compute the

WCRT of all the messages. Firstly Algorithm Max Errors bounds the number of errors (per

cycle and in consecutive cycles), and then the possible sequences of errors are built. Then

the Error Scenario array (the set of error scenarios) is combined with the vector RepLevel

to obtain Interf Pattern. This vector has size Max Patterns, which corresponds to the

number of error scenarios that must be analyzed. Line 5 computes the values that are needed

for the non-preemptive blocking free model (see section 3.3.2.1.1). Lines 6 to 6.1.3 apply

the extended schedulability test - Equation(5.8) - to the message set, when considering each

one of the error scenarios and interference patterns. If the test fails for any of the patterns,

the algorithm returns Schedulable = FALSE (line 6.1.3). Otherwise the algorithm returns

Schedulable=TRUE together with the response time of each message (line 8), that is ex-

pressed in number of ECs (line 7). In fact, the timing granularity of FTT-CAN is the EC

duration (LEC) and there is no guarantee on where within an EC a given message will be

transmitted, being this done using Equation (5.35), applied to each element in the Resp T ime

vector.

RECesp T ime(i) =

⌈
Resp T ime(i)

LEC

⌉
(5.35)

117

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

ALGORITHM Ind Interf MultipleReplicas

Response Time with Indirect Server Interference

Input: M, LEC, LSW, Replevel, Cut errors, λ, pε

Output: Schedulable (Boolean), RespTime

1. RUN MaxErrors and obtain max cycles and max 1cycle in LSW

2. max cycles = max cycles− Cut errors
3. Build Error Scenario array, considering max cycles and max 1cycle

4. Build Interf Pattern array, by combining the Error Scenario array

and RepLevel vector; Max Patterns = number of Interf Pattern lines

5. Compute CMAX and obtain ME , CEMAX , inflate all transmission times applying Eq. (3.8)

6. for p = 1 to Max Patterns do

6.1. for i=1 to N do

6.1.1. Compute Ri (Equation 5.8) considering ME and with

Interf Pattern(p, j) · CEMAX and Err Scenario(p, j) · CEerror
being added as the cycles progress (j)

6.1.2. if (RespT ime(i) < Ri) then

RespT ime(i) = Ri

end if

6.1.3. if (Ri > Di) then

return Schedulable = FALSE

end if

end for

end for

7. Transform each RespT ime vector value from seconds to number of ECs

8. return Schedulable = TRUE,RespT ime

5.3.3.4.2 Direct Interference In these scenarios, we consider that the WCRT of a given

message occurs when that message suffers the maximum indirect interference from the error

server, assigned with highest priority, and one error hits the message itself. To reach this

conclusion, just consider the following scenario for an arbitrary message mi:

1. Once ready, mi suffers the maximum possible indirect interference (both from high-

priority messages and from the error server), being scheduled for transmission in EC(k);

2. In EC(k):

(a) there are no errors; thus, mi is transmitted at EC(k);

(b) message(s) other than mi are affected by errors; thus, mi is still transmitted in

EC(k) (note that errors in EC(k) are handled in EC(k + 1));

(c) mi is affected by an error; thus, mi and its replicas are scheduled for the following

EC. The WCRT of mi is then k + 1.

118

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

Therefore, to assess the schedulability of the message set and obtain the WCRT of the

messages considering direct interference, we use the procedure described in Algorithm Di-

rect Interf MultipleReplicas.

The Direct Interference scenarios corresponding to the error sequences presented in Figure

5.19 are presented in Figure 5.21, where we have to consider a maximum of 3 errors with

Indirect interference, plus the one that hits the message under consideration. The direct hit

is represented with a ”x” mark, that delays one additional EC the message response time.

Figure 5.21: Possible error and recovery scenarios for Direct Interference.

ALGORITHM Direct Interf MultipleReplicas

Response Time considering errors Direct Interference

Input: M, LEC, LSW, Replevel λ, pε

Output: Schedulable (Boolean), RespTime Direct

1. RUN Algorithm Ind Interf MultipleReplicas with arguments

(M,LEC,LSW,RepLevel, pε, cut errors = 1)

obtaining Schedulable and RespT ime

if (Schedulable == FALSE) then

return Schedulable = FALSE

end if

3. for i=1 to N do

3.1. RespT ime Direct(i) = RespT ime(i) + 1

3.2. if (RespT ime Direct(i) > Di) then

return Schedulable = FALSE

end if

end for

4. return Schedulable = TRUE,RespT ime Direct

Firstly, we execute the Algorithm Ind Interf MultipleReplicas with a value equal to 1

in the parameter cut errors, because firstly the interference due to indirect errors must be

computed with maximum errors minus one, to account for the error directly affecting the

message under analysis (Line 1). Remember that this algorithm already returns the response

time of each message in numbers of ECs. Then, for each message we assess the impact of

119

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

the direct error (Line 3), being necessary to add one EC (Line 3.1) since the message will

be recovered in the next cycle relative to the one where the error happens. The deadline

violation is verified in (Line 3.2). If the message set is schedulable, the response time of all

messages is then returned (Line 4), with the Schedulable flag signalling this.

5.3.3.5 System Schedulability Test

To assess the real-time characteristic of a FTT-CAN system with the proposed error

recovery method (with multiple replica retransmission), Algorithm Schedulability Test can

be used. The inputs are the LEC, LSW , average error arrival rate, mission time MT and

global reliability goal.

It starts by obtaining the acceptable message failure probability, pε (Line 1), immediately

followed by the bounds on maximum error per cycle and in consecutive cycles, max 1cycle

and max cycles (Line 2). Using these two values, the error scenarios are built (Line 3),

being these combined with the RepLevel vector (Line 4) to obtain all the necessary inter-

ference scenarios, both Indirect and Direct (in Line 5). Then, in Line 6, the Algorithms

Indirect Interf MultipleReplicas and Direct Interf MultipleReplicas are used to obtain the

worst case response of each message, that will be stored in the RespT ime vector, along with

the flag Schedulable that is set to TRUE if the message set is schedulable, under the stated

conditions. Finally, in Line 7, these two variables are returned.

ALGORITHM Schedulability Test

Check message set schedulabity for defined LSW

Input: M, LEC, LSW, λ, εG, MT

Output: Schedulable (Boolean), RespTime vector

1. Calculate pε from MT , εG and M

2. Determine max 1cycle and max cycles (use Algorithm Max Errors)

3. Build error scenarios

4. Obtain RepLevel vector (use Algorithm Calc RepLevel)

5. Build Interference Patterns - Direct and Indirect

(Error Scenarios combined with RepLevel)

6. Schedulability tests for ME plus SE (all Indirect and Direct interference scenarios)

- individual check for each interference pattern, calculating RespT ime vector

7. return Schedulable,RespT ime

5.3.4 Resource Optimization - Obtaining Minimum LSW

An algorithm for minimizing the size of the synchronous window, with the objective to

minimize the BW utilization and still achieving the reliability target, is presented next.

The LSW used in the previous algorithms can be optimized, finding a value that makes

the system schedulable, when considering all worst case error scenarios. The optimum LSW

120

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

is then the minimum value that guarantees that the errors are recovered in the following EC,

leaving as much bandwidth as possible to the asynchronous traffic. Algorithm Minimum LSW

carries out this optimization using a binary search approach. The algorithm has as inputs

the message set M , LEC, the TM transmission time (LTM), Guard, λ and Stop criteria.

Guard is a technology-dependent minimum processing time that must be reserved to allow

the slave nodes to decode and process the TM . Stop criteria is the desired precision of the

final result and allows for stopping the iterative process, being expressed as a percentage of

LEC. The output is the minimum LSW necessary for making the system schedulable.

Firstly, the absolute lower and upper bounds for LSW are computed - LSWlow and

LSWHIGH . These are, respectively, CMAX and LEC minus the overheads (LTM and

Guard). Then, in Lines 3 and 4, the system is tested for feasibility, by giving the maxi-

mum time to the LSW . Of course, if the test fails, the system is not schedulable. On the

other hand, if the system is feasible, the Bisection or Binary Search method is used to find a

solution, using as starting point LSWlow and LSWHIGH . As long as the stop criteria is not

met (Line 5), the interval is halved (Line 5.1) and the schedulability assessed with this value

as input, using the Algorithm Schedulability Test (Line 5.2). If this test fails the interme-

diate point becomes the new lower bound for LSW, otherwise it becomes the upper bound

(lines 5.3 and 5.4, respectively). Then, the process is iterated using the new bounds. When

the while loop condition is evaluated FALSE, the cycle finishes and the minimum value that

makes the system schedulable has been found, being returned in Line 6.

ALGORITHM Minimum LSW

Obtain minimum LSW for a schedulable system

Input: M, LEC, LTM, Guard, λ, Stop criteria

Output: LSW

1. LSWlow = CMAX

2. LSWHIGH = LEC − (LTM +Guard)

3. Sch High = Test Schedulability using LSWHIGH

4. if (Sch High == FALSE) then

return −1

end if

5. while (LSWHIGH − LSWlow > Stop criteria · LEC) do

5.1 LSWtest = LSWHIGH+LSWlow

2

5.2 Sch test = Test Schedulability using LSWtest

if (Sch test == FALSE) then

5.3 LSWlow = LSWtest

else

5.4 LSWHIGH = LSWtest

end if

end while

6. return LSWHIGH

121

Chapter 5. Error Recovery in FTT-CAN - Dynamic Approach

5.4 Summary

In this chapter it was described:

• Error recovery with single replica retransmission, describing several policies when con-

figuring the server;

• Error recovery with Multiple replica, server parameter choosing and obtaining RepLevel ;

• Resource optimization - choosing minimum LSW.

.

In next chapter an assessment of the proposals is performed and presented.

122

Chapter 6

Simulation Study and Partial

Experimental Validation

This chapter presents a simulation study of the proposal, describing firstly the simulator

and giving initial results with single replica recovery. Along with the assessment of the

Deferral Server type, that was our first choice for the error server, it was also evaluated

the use of a Polling or a Sporadic Server. The results obtained with the Deferrable Server

confirmed the limit on error recovery ratio obtainable with single replica retransmission,

implying the introduction of multiple replica retransmission. Then, the updated simulator

version, that also includes a fault generator with rare scenarios, is described and the results

obtained are compared with other error recovery methods.

The developed simulator was built from scratch using MatLab and is specifically tailored

for testing the error-recovery mechanisms proposed in this thesis.

6.1 Simulator - Single Replica Version

Simulation is a well-known and widely used technique for assessing and validating an

immense variety of engineering problems, in any field. For the particular case of error recovery

protocols, simulation is invaluable, given the difficulty of reproducing error scenarios that

occur rarely, thus making experiments with real hardware extremely hard, cumbersome and

long. It also has the advantage that the simulation ambient and characteristics, including

the faults, can be reproduced, allowing the evaluation of the different methods in exactly

the same conditions. Finally, the simulation in software can be performed in less time when

compared to a test with hardware subject to a real environment.

The assessment of the proposed methods for error recovery was done using a discrete

event simulator. The time advance is triggered by all system events, that produce changes

in the internal states. For the FTT-CAN simulator the events of interest are:

• scheduling and TM generation;

• TM processing;

123

Chapter 6. Simulation Study and Partial Experimental Validation

• message start;

• message finish;

• bus fault.

The scheduling events have the time instants fixed at the start of the simulation and

are separated from each other by LEC seconds. Each time a scheduling event code is run, it

generates the TM, specifying what messages should be transmitted in the SW of the following

elementary cycle and LSW duration. The scheduling process must also include the scheduling

of messages present in the Error Server Queue, if any.

The TM processing events immediately follow each scheduling event and their execution

will define additional events corresponding to message transmit instants - start and finish -

of each message marked in the TM, that will be inserted in the global event list, ordered

by time instant. Of course, all these new message instants will precede the next scheduling

event. The message start event just sets a flag that signals that a message is currently present

in the bus. The message finish event just clears this flag.

The bus fault events correspond to single bit errors in the bus and are generated before

the simulation starts. The time distance between consecutive events follows a exponential

distribution, with average distance equal to 1/λ seconds. This is derived from the fact that

the fault model considered has Poisson distribution with intensity λ. The processing of

each bus fault event corresponds simply to check if the fault event coincides with a message

transmission and which one it is. Then, the corresponding message ID is inserted in the Error

Server Queue, that will be further processed at the next scheduling event.

The implemented simulator is graphically described in Figure 6.1, and implemented

from scratch in MatLab.

The Algorithm FTT-CAN TimeSimulator presents the simulator major processing steps,

which are further described in the followings paragraphs.

The first step consists in loading a text file that describes the benchmark. This file starts

with the FTT-CAN network configuration parameters, that includes the CAN bit rate (in

kbps), the EC length and LSW (Length of Synchronous Window). Then, it follows the

message set, defined by the number of messages, their periods, deadline, offsets, sizes (DLC

- CAN payload size in bytes). The message characteristics are organized in lines, being

assumed that the messages priorities are sorted by decreasing order.

At step two, the simulator internal structures are initialized, including the simulation

length (in number of ECs), the server type, capacity and period and also the fault intensity.

All other variables necessary to gather statistical information on all the details on error

occurrence and recovery, are also initialized in this step.

124

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.1: Simulator in MatLab.

125

Chapter 6. Simulation Study and Partial Experimental Validation

Algorithm FTT-CAN TimeSimulator

Input: Text file with message set, network configuration, Server type and parameters, BER (or λ)

MaxCycles, number of cycles to simulate (or time)

Output: Text file with collected statistics

1. LOAD network parameters, Server configuration, BER

and message set from the input file

2. Initialize all internal data structures

3. Construct the bus faults event vector according to the error model and λ

4. for EC count = 1 to MaxCycles do

4.1 Obtain schedule for next EC

4.2 Bus processing

end for

5. Write all statistical data gathered to a text file

The bus fault event vector is generated in step three. The fault instants are generated

according to the Poisson distribution, with average fault inter-arrival time equal to 1/λ, as

previously described. To speed up simulation, each position in the bus fault event vector

contains a structure with two fields: the EC number and the time instant, inside each EC,

where the fault instant event occurs.

Step four is repeated MaxCycles times, once for each simulated EC. In this step the

traffic is scheduled (step 4.1) and processed (step 4.2). The traffic is scheduled on a EC-by-

EC basis, according to the rules defined by the FTT-CAN protocol. The scheduling process is

performed by the scheduler module, that in the current implementation uses a Fixed Priority

policy. This module generates the TM for the current EC, including the recovery of any

pending messages inside the ESQ, checking and updating statistics on any deadline misses

in the scheduling process. The bus processing (step 4.2) starts by checking if the next bus

fault event is in the current EC. If this condition is false, a no-error scenario in this EC

happens and the simulation time can be advanced to the next scheduling event. If true, then

the TM data is used to generate the start and finish instants of the transmitted messages

in the current EC. Then by cross-checking the fault instant with each message transmission

start/finish events permits the identification of the message that suffers an error, which ID

enters the Error Server Queue. Also, all relevant statistical counters are updated. In the

current implementation, the errors are managed by a Deferrable Server with period TS and

capacity CS , that are defined in the input file. By gathering all statistical information,

every time a significant event is processed, a report file is built (step 5), which includes all

relevant information about the message set used and statistics, namely: ”measured” BER,

number of errors and missed deadlines and the worst case message response times. It also has

information about error incidence, missed deadline and WCRT per message. Other relevant

information present in this file is: number of errors in consecutive cycles (total and incidence

126

Chapter 6. Simulation Study and Partial Experimental Validation

on messages subject to recovery), distribution on number of errors per server period, server

response time per message (worst case and average). The response time of each message is

counted, for messages subject to direct and indirect interference. An example of one of these

output files is provided as a text file, in the accompanying CD-ROM.

6.1.1 Used benchmarks

To test and assess the error recovery methods, at first, we used three benchmarks. Two of

them were chosen because of relevance first, being a good representation of commercial cars.

The third benchmark, VEIL, belongs to an electrical vehicle prototype, in the development of

which the author of this thesis collaborated. The benchmarks are presented and characterized

in the following sections.

6.1.1.1 Updated SAE benchmark

The original SAE benchmark was firstly presented in [Int93], intended to be representative

of an automotive communication system, in a prototype electric car. Since then this bench-

mark has been used in various studies and papers, but with new functionalities implemented

in modern cars, as for instance Departure Lane, Adaptive Cruise Control and Traction Con-

trol, reveals itself outdated. A modified SAE benchmark was presented in [MN10], that

introduces new functionalities present in modern cars. As this corresponds to a more ”real”

car, we use it instead of the original benchmark, being the corresponding message set the one

presented in Table 6.1. More details on the SAE and Updated SAE benchmarks are given

in Appendix A, tables A.1 and A.2.

This benchmark presents a message set with CMAX = 115 bits, minimum period and

deadline both equal to 5 ms and a utilization of 27.9% when using a bit rate equal to 1 Mbps.

6.1.1.2 PSA benchmark

The PSA benchmark is presented in [CSSLC00] and corresponds to a network of a research

vehicle developed by the PSA Peugeot-Citroën Automobile Company. The message set, is

presented in Table 6.2. In the table A.3 of Appendix A, further details are presented regarding

this benchmark, which are not relevant to our simulation study.

This benchmark message set presents CMAX = 135 bits, minimum period and deadline

both equal to 10 ms and an utilization of 11.9% when a bit rate equal to 1 Mbps is used.

6.1.1.3 VEIL benchmark

A small electric vehicle prototype - the VEIL - was developed in ISEC/IPC, being its

architecture firstly presented in [STM+06]. It uses a single CAN bus, with the FTT-CAN

protocol, to transmit all messages that control and monitor the vehicle functioning. The

message set is presented in Table 6.3. More details on the VEIL project and vehicle power

and communication architecture are presented in Appendix A, in Section A.4.

127

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.1: Updated SAE benchmark message set

DLC T T D DLC T T D

ID (bytes) (ms) (LEC) (ms) ID (bytes) (ms) (LEC) (ms)

1 1 50 20 5 19 6 10 4 10

2 2 5 2 5 20 2 10 4 10

3 1 5 2 5 21 3 10 4 10

4 2 5 2 5 22 2 10 4 10

5 1 5 2 5 23 2 12.5 5 12.5

6 2 5 2 5 24 2 12.5 5 12.5

7 1 5 2 5 25 2 12.5 5 12.5

8 1 5 2 5 26 2 12.5 5 12.5

9 1 7.5 3 7.5 27 4 12.5 5 12.5

10 1 7.5 3 7.5 28 5 12.5 5 12.5

11 1 7.5 3 7.5 29 3 12.5 5 12.5

12 1 7.5 3 7.5 30 1 50 8 20

13 1 7.5 3 7.5 31 4 100 40 100

14 4 7.5 3 7.5 32 1 100 40 100

15 4 7.5 3 7.5 33 1 100 40 100

16 4 7.5 3 7.5 34 3 1000 400 1000

17 1 10 4 10 35 1 1000 400 1000

18 2 10 4 10 36 1 1000 400 1000

Table 6.2: PSA Benchmark message set

Frame DLC T T D Frame DLC T T D

ID (bytes) (ms) (LEC) (ms) ID (bytes) (ms) (LEC) (ms)

1 3 10 2 10 13 8 50 10 50

2 5 10 2 10 14 8 50 10 50

3 5 10 2 10 15 8 50 10 50

4 8 10 2 10 16 1 100 20 100

5 2 15 3 15 17 6 100 20 100

6 4 15 3 15 18 7 100 20 100

7 3 20 4 20 19 7 100 20 100

8 4 20 4 20 20 7 100 20 100

9 5 20 4 20 21 2 150 30 150

10 5 40 8 40 22 4 150 30 150

11 5 50 10 50 23 4 200 40 200

12 5 50 10 50

128

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.3: VEIL benchmark message set

DLC T T D DLC T T D

ID (bytes) (ms) (LEC) (ms) ID (bytes) (ms) (LEC) (ms)

1 2 10 2 10 11 8 100 20 100

2 2 10 2 10 12 1 250 50 250

3 4 10 2 10 13 2 500 100 500

4 1 20 4 20 14 2 500 100 500

5 2 20 4 20 15 1 1000 200 1000

6 4 20 4 20 16 1 1000 200 1000

7 2 50 10 50 17 2 1000 200 1000

8 3 50 10 50 18 8 1000 200 1000

9 4 100 20 100 19 8 1000 200 1000

10 8 100 20 100

This message set presents CMAX = 135 bits, minimum period and deadline both equal

to 10 ms and an utilization of 4.4% when a bit rate equal to 1 Mbps is used.

6.2 First Results with Poisson Model (limit of 1 fault per EC)

The first simulation runs were performed to assess the flawless working of the proposed

method and additionally verify that the bandwidth used by the server is really small.

We started by choosing the Server period equal to the average time between errors, which

is equal to 1/λ seconds and starting with CS equal to one maximum message and increasing

it until no error was observable. Table 6.4 presents the average results of ten simulation runs,

using the Updated SAE benchmark, with a bit rate equal to 1000 kbps, BER of 2.6 · 10−7

(Agressive environment), 10 million ECs and a LEC equal to 2.5 ms (representing roughly

seven working hours per simulation run and a total of 70 hours). It was used a Deferrable

Server with maximum priority.

Table 6.4: Simulation results with a Deferrable Server for the Updated SAE benchmark -
CS/CMAX varying from 1 to 10

Unrecovered Message Error

CS/CMAX Errors Recovery Ratio

1 225.1 87.592%

2 18.5 98.981%

3 1.2 99.934%

4 0.1 99.995%

5...10 0.0 100.000%

From this table it is observable that configuring the server capacity with 5 · CMAX and

a period of 1500 ·LEC (approximately 1/λ), allowed to obtain full error recovery using only

129

Chapter 6. Simulation Study and Partial Experimental Validation

0.0153% of the available bandwidth, (with CMAX = 115 bits and LEC = 2.5 ms) which is

indeed a very small value.

To gain further confidence on the obtained results more simulations were performed, using

a fixed server capacity equal to 5 ·CMAX . Then, using different seeds for the pseudo-random

generator, 10 more simulations were performed (equivalent to an extra 70 working hours)

and full error recovery was always achieved. Looking to the numbers gathered in the output

simulator log files, it was observed that in 19 of them using CS equal to 4 ·CMAX was enough

to attain a 100% recovery ratio and only in one simulation, and only one time, 5 errors in

the server period happened, being this the only case where all server capacity was used. The

two other benchmarks - PSA and VEIL - were also simulated in identical situations and the

CS/CMAX were both 3, corresponding to a server configured bandwidth of 0.0108% (with

CMAX = 135 bits). Tables with simulation information as in Table 6.4 are presented for

these two benchmarks in Appendix B, corresponding to tables B.1 and B.2.

A second point that we want to observe was how the bandwidth allocated to the server

varies with different values of TS and on the heuristic chosen for this parameter value - see

Section 5.2.2.2. We have performed several simulations, for different (TS , CS) pairs, by firstly

fixing TS and increasing CS until full error recovery is reached. The results are presented in

Table 6.5, corresponding each table position to the average value of 10 simulation runs, for

each (TS , CS) pair. The last line presents the minimum server allocated bandwidth, being

represented as a percentage of the system available bandwidth in the same period, where we

can see that the server bandwidth grows with decreasing server periods.

The values presented for the Server BW showed that the proposed method can achieve

very low bandwidth overhead, less than 0.1% of the available bandwidth, in the evaluated

cases. The considered server periods are much greater than the needed server responsivity (re-

covery in the following cycle), showing a decoupling between server period and responsitivity,

as expected for this server type.

Table 6.5: Message recovery ratio with different (CS , TS) combinations for Updated SAE
benchmark.

TS/LEC

CS 250 500 750 1500

1 97.843% 95.806% 93.432% 87.592%

2 99.973% 99.863% 99.700% 98.981%

3 100.000% 99.986% 99.959% 99.934%

4 100.000% 100.000% 99.986% 99.995%

5...10 100.000% 100.000% 100.000% 100.000%

Server BW 0.0552% 0.0368% 0.0307% 0.0153%

Simulations performed for the other benchmarks allow us to obtain similar tables, that

are presented in Appendix B, corresponding to tables B.3 and B.4, showing identical generic

results.

130

Chapter 6. Simulation Study and Partial Experimental Validation

Another interesting question is how the error recovery method behaves in case of higher

BER than the one anticipated by the fault model and by how much it is necessary to raise

the server capacity to be able to deal with a greater number of errors (per server period).

We started by simulating again the Updated SAE benchmark, but now using BER ten times

bigger than what is considered an Aggressive Environment. The obtained results show that

almost full-error recovery is possible using a server capacity at least equal to 12 · CMAX , as

presented in Table 6.6.

This corresponds to more than doubling the server allocated bandwidth, but for a ten fold

increase in the average fault incidence, when compared to the previous results. The increase

in server capacity is necessary since the error arrival is now greater and the server does not

have sufficient capacity to recover all errors, being the more demanding simulation one that

presented 12 errors in one server period, thus imposing a minimum CS equal to 12 · CMAX .

Nevertheless, this value is still small - corresponding to 0.0368% of the available bandwidth -

and could be an acceptable price to pay to cope with situations where the expected scenarios

could be, at least for short periods of time, much worst than the expected ones.

Table 6.6: Error recovery ratio as a function of the server capacity for higher than Aggressive
environment (10 runs with 10 Mcycles each, TS/LEC = 1500 and λ = 2.6 faults/second)

Missed Message Error

CS Deadlines Recovery Ratio

1 11901.0 34.352%

2 6871.8 62.095%

3 3463.6 80.896%

4 1519.1 91.621%

5 589.1 96.751%

6 204.0 98.875%

7 65.1 99.641%

8 18.5 99.898%

9 4.8 99.974%

10 1.6 99.991%

11 0.9 99.995%

12 ... 25 0.8 99.996%

A second observation from these results is that full error recovery is not attained even

for large capacity values, remaining a residual number of non-recovered errors present (it

happened seven times out of 10 simulation runs). This was not observed in the simulations

with the BER of Agressive Environment, where full-error recovery was observed in all the

simulations. Looking carefully to the report files (with a BER 10 times greater than the one

for Aggressive environment), we identified several scenarios where a message under recovery

also suffers an error, leading to an addditional attempt to recover. For messages with short

deadlines (specially for messages with periods/deadlines equal to 2 ECs) this attempt can

not be performed leading to deadline miss for these messages.

131

Chapter 6. Simulation Study and Partial Experimental Validation

On the other hand, in the 20 simulations performed with Updated SAE, with the BER

of Aggressive Environment, the occurrence of errors in consecutive cycles was restricted to

4 occasions and it was not observed any scenario where the second error hits a message

being recovered. This was the reason why we considered that a server with capacity equal to

5 · CMAX was enough to obtain 100% error recovery success, as presented in Table 6.4.

To verify that this situation was not particular to the Updated SAE benchmark, simula-

tions with the other two benchmarks were performed, using a server period equal to 75 ·LEC,

being the error recovery ratio presented graphically in Figure 6.2. Again, the residual fail-

ure in error recovery is present, being its existence justified by successive errors affecting a

message instance and its replicas, as explained before. Also, the obtained results for these

simulations were organized as in Table 6.6, being presented in Appendix B - tables B.5 and

B.6.

Figure 6.2: Limitation on achieving full error recovery

The limitation on obtaining full-error recovery was confirmed and must be overcome if the

error recovery method is to be used in high-reliability systems, as obtaining this reliability

level is clearly hindered by the identified error-and-recovery scenarios.

6.2.1 Server Policy

In this section we analyze the performance of different server types and some possible

tweaking/priority assigning of the Deferrable Server.

6.2.1.1 Assessing the Polling Server

In the previous section a Deferrable Server was used, but other server types can also

be adopted. In virtue of its simplicity and predicted interference pattern on lower priority

messages, Polling Servers have been considered for evaluation. As the fault model limits the

132

Chapter 6. Simulation Study and Partial Experimental Validation

number of faults to one, the simulation study will use a fixed value for the server capacity -

CS = CMAX - and varying the period TS to observe the result in terms of recovered messages.

Using the same configuration as in the previous simulations that led to Table 6.4 (except TS

value and server type), a summary of the results is presented in Table 6.7 corresponding to

the average value of ten simulation runs for the first line and one run for the others.

Table 6.7: Polling server TS choosing, with Updated SAE benchmark, bit rate = 1000 kbps,
BER = 2.6 · 10−7 and 10 million cycles, LEC = 2.5ms.

Missed Message Error

TS/LEC Deadlines Recovery Ratio

1 0 100.00%

2 628 64.2%

5 1313 30.4%

10 1651 10.3%

100 1830 0.7 %

The most striking observation is that ”full” error recovery can only be obtained with small

server period, being equal to one LEC (first line) for the simulated benchmark and degrading

fast with increasing TS . Note that for TS/LEC equal to 100, only less than 1% of the errors

were recovered. This is due to the coupling effect between server activation and message

period/deadlines, as the server must possess a period equal or less than any message period

that needs to be recovered. If this relation is not verified, then a message that suffer an error

is correctly placed in the Error Server Queue but may loose its deadline while waiting in the

queue for the next activation instant of the Polling Server (that will occur too late).

Note also that increasing the server capacity would not solve the problem, as the server

capacity can only be used in the cycle when its activation occurs and not along all of its

period, contrary to the Deferrable Server, which can be activated at any time, as long it has

available capacity.

As a mater of fact, full-error recovery would also be obtained with period equal to 2·LEC,

being in this case necessary to introduce an offset equal to LEC in the server activation instant.

This is only effective if we can guarantee that all the messages with period equal to 2 ECs are

scheduled in the EC where they become ready, and not latter. Simulations were performed

that confirmed these details.

Comparing the necessary bandwidth for the Polling against the Deferrable Server, to

obtain full-error recovery, the value is significantly greater, being equal to 4.6% (CMAX =

115µs, LEC = 2.5 ms) against only 0.0153% for the Deferrable Server type (referring to the

Updated SAE benchmark). Similar results can be drawn for the two other benchmarks, being

the simulation results presented in Appendix B, tables B.7 and B.8.

133

Chapter 6. Simulation Study and Partial Experimental Validation

6.2.1.2 Assessing the Sporadic Server

Another interesting candidate for the Error Server is the Sporadic Server, that has the ad-

vantage of not imposing a penalty on schedulability bound, contrary to the Deferrable Server,

as explained in Section 2.5.3. We have performed simulations with the same parameters as

with the Deferrable Server and the results for the Updated SAE benchmark are presented in

Table 6.8.

Table 6.8: Error recovery ratio as a function of the server capacity of a Sporadic server, with
Updated SAE benchmark, bit rate = 1000 kbps, TS/LEC = 1500, λ=2.6 and 10 million
cycles, LEC = 2.5ms.

Missed Message Error

CS Deadlines Recovery Ratio

1 13344.0 26.402%

2 9977.3 44.971%

3 5732.7 68.382%

4 3207.0 82.312%

5 1467.2 91.908%

6 555.5 96.936%

7 146.7 99.191%

8 31.4 99.827%

9 18.2 99.900%

10 5.1 99.972%

11 2.5 99.986%

12.. 25 1.1 99.994%

For the other benchmarks, similar tables are presented in Appendix B - Tables B.9 and

B.10.

The results shown are slightly worse when compared with the Deferrable Server, namely

when the capacity is not enough to recover all the expected errors per server period. This

suggests that there are time intervals where, due to high error numbers, the Deferrable

Server uses it capacity back-to-back, but the Sporadic one is prevented to do that due to

more strict replenishment rules. The bandwidth allocated, to obtain residual non-recovery

is identical to the one of the Deferrable Server, so it is also a good choice for the Error

Server. Nevertheless, due to the way that the capacity is managed, its implementation is more

complex and computationally demanding than the Deferrable Server one, being necessary to

track every chunk of used capacity separately (see 2.5.2 or [But11] for details).

6.2.2 Priority Assigning to the Deferrable Server

Regarding the error recovery server characteristics, the pair (CS , TS) defines its ability to

recover all the expected errors, but the priority assigned to it should not be overlooked since

it has implications on how fast the messages are recovered, and also on the interference on

134

Chapter 6. Simulation Study and Partial Experimental Validation

regular messages (not hit by errors). In this section we analyze this perspective, trying to

give some clues on the trade-offs on server priority choosing.

Moreover, we present a set of simulation results that aim at evaluating the performance

and correctness of the proposed algorithms, described in Section 5.2.4. To this end, in addition

to the more obvious numeric results regarding the number of recovered and non-recovered

errors, we also include numerical results that allow assessing the response-time and internal

effects of the diverse server scheduling policies.

The simulator used in the previous section was firstly designed to use a Deferrable Server

with maximum priority, only. It was then necessary to update the server code to allow the

use of the new priority assigning schemes, allowing this way to assess and compare them.

The evaluation was done using the three benchmarks already used in previous sections,

that were described in Section 6.1.1. The general results obtained with the various message

sets are analogous so, assuming an approach identical to the one done previously, more details

are given for the Updated SAE benchmark, being presented compact information on the two

other benchmarks. Nevertheless, more details for the two other benchmarks are presented in

Appendix B, Section B.2.

6.2.2.1 Recovered Errors and Interference

For each configuration, we start with the minimum LSW that allows the transmission

of messages within their deadlines, without considering bus faults. Afterwards we generate

the fault pattern, using a BER 10 times greater than the one of Aggressive environment

[FAFF04] and successively increased the LSW until obtaining no errors due to insufficient

bandwidth. The fault intensity was chosen above Aggressive environment in order to stress

the error recovery mechanism, since initial simulations with this environment did not present

a significant number of errors, what would not allow to draw any relevant conclusions.

Table 6.9 presents the deadline misses suffered by messages affected by errors, for the

diverse priority assignment policies. The presented results correspond to the average value

of ten simulation runs, each one done for 10 million ECs, where the BER used in the fault

generator is ten times higher than the one corresponding to Aggressive environment in order

to get a significant number of errors per simulation, as explained. In this case the server was

configured according to the rules exposed in Section 6.2.2, with the fault incidence λ = 2.6

faults/second and choosing TS = 1/λ (close to this value), obtaining the (TS , CS) pair equal

to (150 · LEC, 5 · CMAX). Of course, parameter choosing was done so the capacity is never

completely depleted in each server period.

Table 6.9: Deadline misses in messages hit by errors with Updated SAE benchmark
(LSW=36.5%), average with 10 simulation runs

MaxPriority SamePriority SameDMP ServerEDF

Total misses 1.5 73.6 1.8 1.4

Unrecoverable misses 1.5 1.6 1.7 1.4

135

Chapter 6. Simulation Study and Partial Experimental Validation

The first line shows the total number of deadline misses, while the second one shows the

number of errors that affected messages that had no slack, and thus that were not recoverable

by any of the mechanisms. We can observe that for MaxPriority and ServerEDF priority

assignment policies all misses correspond to unrecoverable messages, i.e. messages that suffer

an error in the EC in which they have their deadlines. For the SamePriority policy, as the

server inherits the original message priority, retransmissions can be delayed by several cycles

and eventually lose their deadlines, as shown in the scenario depicted in Figure 5.7. This

situation happened in fact, as attested by the relatively large number of deadline misses,

when compared to the other policies. In fact, the simulation output files have information

on messages that loose their deadlines while waiting in the error server queue, that accounts

exactly these situations. In the ten simulations performed the SameDMP policy has resolved

this issue, but this is not a guarantee. Clearly, the postponing of the message recovery instant

leads to smallest intervals where the recovery is possible, and error hitting on the last feasible

EC can not be ruled out.

We also performed simulations with larger LSW than the minimum value (that was found

by trial-and-error) and the obtained results are more favorable (less errors with SameDMP

politic). For instance, with an LSW equal to 39.6%, there are no differences in the numbers

of missed deadlines of all the policies.

So it can be inferred that the number of unrecovered errors depends strongly on the

bus load and this could be explained by the fact that the server execution does not cause a

significant interference on normal messages, when there is more slack time (in average, per

EC).

In Table 6.10 the WCRT of every message in this benchmark is shown, separating the

values for messages that suffered errors (Direct Interference) and not hit by errors (Indirect

Interference). To put in perspective the obtained numbers in each situation, the values

corresponding to an error-free environment are also displayed in the first column.

The most noticeable in this table is that for the first 20 messages the Direct Interference

increases the response time by one EC, in all policies, and that this interference increases for

lower priority messages, except for MaxPriority, for which it is always one EC. Regarding

Indirect interference scenarios, for almost all messages with ID lower than 23 there is no

increase in response time, degrading slightly for the remaining messages (1 or 2 ECs for half

of the remaining 14 messages). Generically speaking, this confirms that Direct interference

implies a bigger degradation on the response time than Indirect interference.

Finally, Table 6.11, presents the average server response times for each server scheduling

priority assignment policy. We can see that the MaxPriority policy shows the lowest value,

always equal to one, as expected, since the server has the highest priority, therefore performing

the recovery always in the next cycle. There are a few exceptions, too small to cause visible

effects in this table, which correspond to scenarios in which the first error recovery attempt

is not successful. These cases correspond to scenarios were a message retransmission is also

hit by another error (error in consecutive cycles). On the other hand, the SamePriority

and SameDMP policies show the worst performance, being ServerEDF a good compromise

136

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.10: WCRT for all tested policies

Direct Indirect

msg no Max Same Same Server Max Same Same Server

error Priority Priority DMP EDF Priority Priority DMP EDF

1 1 2 2 2 2 1 1 1 1

2 1 2 2 2 2 1 1 1 1

3 1 2 2 2 2 1 1 1 1

4 1 2 2 2 2 1 1 1 1

5 1 2 2 2 2 1 1 1 1

6 1 2 2 2 2 1 1 1 1

7 1 2 2 2 2 1 1 1 1

8 1 2 2 2 2 1 1 1 1

9 1 2 2 2 2 1 1 1 1

10 1 2 2 2 2 1 1 1 1

11 1 2 2 2 2 1 1 1 1

12 1 2 3 3 3 2 1 1 2

13 1 2 2 2 2 2 1 1 2

14 2 3 3 3 3 2 2 2 2

15 2 3 3 3 3 2 2 2 2

16 2 3 3 3 3 2 2 2 2

17 2 3 3 3 3 2 2 2 2

18 2 3 3 3 3 2 2 2 2

19 2 3 3 3 3 2 2 2 2

20 2 3 3 3 3 2 2 2 2

21 2 3 4 4 3 2 2 2 2

22 2 3 4 4 3 2 2 2 2

23 2 3 4 4 3 3 3 3 3

24 3 4 4 5 5 3 3 3 3

25 3 4 4 4 4 3 3 3 3

26 3 4 5 5 4 3 3 3 3

27 3 4 5 5 4 4 4 4 4

28 3 4 5 5 4 4 4 4 4

29 4 5 5 5 5 4 4 4 4

30 4 5 7 7 7 6 6 6 6

31 4 5 8 8 8 6 6 6 6

32 6 7 8 8 8 6 6 6 6

33 6 7 8 8 8 8 8 8 8

34 6 7 8 8 8 8 8 8 8

35 8 9 10 10 10 8 8 8 8

36 8 9 10 10 10 8 8 8 8

137

Chapter 6. Simulation Study and Partial Experimental Validation

between these two extremes, as this last one shows faster response, but only for a subset of

the messages (with IDs from 21 to 28). We can also observe that all the policies present a

similar behavior regarding the high-priority messages (until message 20), which fit in the LSW

even when the server executes, as expected. With SamePriority, SameDMP and ServerEDF,

messages with lower priority than these ones see their recovery time increasingly degrading.

This behavior was expected since, for these policies, the recovery can be postponed to a later

EC, which is something that can not happen with MaxPriority.

In Appendix B, Section B.2 similar tables are presented for the two other message sets,

with identical generic results.

Table 6.11: Server average response time - all policies

Policy/Message 1...20 21 22 23 24 25 26 27 28

MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SamePriority 1.00 1.07 1.33 1.51 1.50 1.48 1.50 1.50 1.68

SameDMP 1.00 1.07 1.33 1.51 1.50 1.48 1.50 1.50 1.68

ServerEDF 1.00 1.00 1.00 1.15 1.16 1.16 1.16 1.18 1.18

Policy/Message 29 30 31 32 33 34 35 36

MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SamePriority 1.80 2.36 2.65 2.70 2.63 3.03 2.55 2.67

SameDMP 1.67 2.36 2.65 2.70 2.63 3.03 2.55 2.67

ServerEDF 1.16 2.36 2.65 2.70 2.63 3.03 2.55 2.67

6.2.2.2 Final remarks on priority assigning policies

In this section a numerical evaluation of the proposed algorithms, obtained via simulation,

was performed for diverse priority assignment policies of the recovery server. The evalua-

tion assessed the recovery response time, the ratio of the recovered messages, including the

identification of scenarios where obtaining 100% recovery ratio is not possible.

It seems adequate that the error recovery policy that should be used must have a fast

recovery time, give maximum guarantees in recovering all errors and minimize the WCRT

of all messages. From the quantitative results of the previous section and the qualitative

analysis of the preceding chapter, the best compromise seems to be MaxPriority. It also has

the advantage of possessing the simplest algorithm, that also implies that its implementation

is simple, runs fast and uses few resources.

6.3 Recovery Method with Multiple-Replica Retransmission

This section starts by first detailing the updated simulator version, including the new

fault generator/injector and multiple replica retransmission, that allows the assessment of

the proposed method with rare error scenarios, in a reasonable amount of time. The obtained

results allows the comparison of the proposed method against other methods presented in

138

Chapter 6. Simulation Study and Partial Experimental Validation

the literature. A method to optimize the LSW is also presented, assessed and compared with

the results of other contending methods.

6.3.1 Updated Simulator Description

The simulator used in Section 6.1 uses a fault generator which as a restriction on the

number of faults, one per EC, which excludes the possible occurrence of the fault scenarios

that, despite less frequent, have to be considered in high-reliability systems. Even if this

restriction is removed and a Poisson distribution is used, the simulation runs would have to

be carried for a very long time, just to obtain a few instances of these scenarios, which is

impracticable. This is due to the fact that these scenarios have extremely low probabilities,

e.g. the probability of finding four errors in one cycle of 2.5ms is of the order 10−14, thus ap-

pearing in average 1 time each 1014 ECs, making the simulation impractical, due to excessive

simulation time necessary. It is then clear that a new fault generator and injector is necessary

to create a considerable number of these rare fault scenarios in a reasonable amount of time.

The second limitation presented by the previous simulator implementation was that it

only allowed single-replica retransmission (that limits the achievable transmission reliability),

which is not appropriate to assess the updated error recovery method that uses multiple

replicas.

The new simulator version used in this section is an extended version of the original

simulator that was used in Section 6.1, that was extended to adress the limitations above

identified. The updated simulator version includes the following new features:

• error detection process supports multiple errors per EC;

• fault generator and injector include random sequences of rare fault scenarios;

• server and scheduler functions now include the retransmission replication level;

Another addition to the implemented software package is a module for LSW optimiza-

tion using binary search, that can be run separately of the simulator, and implements the

Algorithm presented in Section 5.3.4. A graphical representation of the modified simulator

is presented in Figure 6.3.

Simulation is an effective technique if it allows a significant number of runs in a reason-

able time frame, allowing to assess the system in diverse environments and with different

configurations. In our simulator, a simulation run must encounter multiple occurrences of

the rare scenarios, that we need to verify to give probabilistic guarantees of transmission

high-reliability. This is not true if the fault distribution follows exactly the Poisson distribu-

tion with the intensity derived from the real BER. Just to give an example, consider a system

with LSW equal to 2.5ms, a bit rate of 1000 kbps, working in an Aggressive environment.

One of the rare scenarios that we need to verify is one that presents four errors in one cycle,

but this scenario, in the system just described, has a probability equal to 7.4 ·10−15, meaning

that in average this scenario would occur each 10.7 thousand years. To have confidence in

the results, we must have, for instance, one thousand occurrences of this fault pattern per

139

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.3: Simulator in MatLab - Multiple Error and Replica version.

140

Chapter 6. Simulation Study and Partial Experimental Validation

simulation run, meaning that it needs a total simulation time in the order of ten million

years. Even if our simulator has a speed-up factor equal to 1000 (ratio between simulation

time and real time), we still end up with more than ten thousand years of simulation to test

one particular scenario (ambient and specific characteristics). This is clearly not practical, so

a way was devised to simulate these rare scenarios in a reasonable time, which is described

in the following paragraphs and is depicted graphically in Figure 6.4.

Figure 6.4: Error generation with compound fault model.

It starts by generating a list of fault time instants, according to a Poisson distribution with

intensity equal to λ, meaning that faults are exponentially separated - these are the green

diamonds. Following this, the fault list is transformed in the correspondent EC number where

the fault would occur. Then, by using a compiled vector of the fault scenarios (described

in Section 5.3.3.3), for each element of this derived list a rare scenario is associated, that is

chosen randomly (with uniform distribution), from all the rare scenarios which transforms

each original fault in a sequence of faults, that happens in consecutive cycles. Lastly, to each

fault is attributed a time instant inside the EC, chosen randomly with uniform distribution

inside the EC - red squares in the picture.

Some caution must be taken to not introduce scenarios with a sequential number of errors

beyond the limit defined by the analysis in section 5.3.3.3. Then, if the base distance between

two events is less than max cycles, that value is discarded in the base fault event list. This

has to be done in order to prevent that after the introduction of the rare scenarios the number

of faults be greater then the limit value specified (in one cycle or in consecutive cycles). For

instance if we are considering the limit fault scenarios with 4 faults per EC and maximum

of 4 faults in consecutive cycles, if we accept a base event with separation less than 4, then

141

Chapter 6. Simulation Study and Partial Experimental Validation

we could end up, for example, with a maximum of 8 faults in two consecutive ECs, a value

that is much greater then the intended maximum and the system would be tested beyond

the intended limits, leading possibly to an over-designing of the system, assigning thus more

resources than the ones strictly necessary to obtain the intended transmission reliability level.

So, we end-up with a global fault pattern that has the base ECs distributed according

to Poisson, with superimposed worst case scenarios, just like having bursts of faults for each

base event [NSS00].

So, the simulation can run in a short time to assess the recovery method, as this allows

observing the impact of the rare patterns injected in random positions of the message stream.

The number of found occurrences should be in sufficient large number for each scenario

occurrence, getting this way confidence on the obtained results.

6.4 Assessing the Error Recovery Method with Compound

Fault Model and Multiple Message Retransmission

To assess the recovery methodology presented in Section 5.3 we used the benchmarks

Updated SAE, PSA and VEIL, as previously.

The first benchmark used was Updated SAE, an Aggressive environment was considered,

with BER = 2.6 · 10−7 or equivalently a fault incidence λ = 0.26 faults per second, for a bit

rate of 1000 kbps.

Prior to any simulation run, it is necessary to correctly configure all system characteristic

values. Since the recovery mechanism can only act in the cycle following the error detection,

it is necessary to configure the LEC with a value that is at most half the period of the fastest

messages. So, for this benchmark, choosing 2.5 ms for this parameter allows enough time to

retransmit the message. Concerning the Deferrable Server period and capacity, the (TS , CS)

pair, the guidelines given in Section 5.3.2 where used, being configured with TS = 1500 ·LEC
(round value near TS = 1

λ seconds equal to 1538 ECs) and CS = 3 · 12 · CMAX .

Finally, the LSW value must be obtained, being this typically the minimum LSW that

makes the system schedulable, including the occurrence of all worst case fault scenarios pre-

viewed by the considered fault model. So to compute the LSW, Minimum LSW algorithm

was used, that was described in Section 5.3.4. On his turn, this algorithm triggers the exe-

cution of other algorithms, that produce a set of results that are interesting to analyze and

comment. For instance, the maximum errors in one cycle - max 1cycle - and the maximum

consecutive cycles with single errors - max cycles - are both four, that were obtained using

Algorithm MaxErrors, that runs inside Algorithm Minimum LSW. In these conditions, Algo-

rithm Calc RepLevel returns RepLevel = {3, 3, 2, 1}. Using the combinations for max cycles

with max 1cycle to build a list of rare fault scenarios sequences and after combining it with

RepLevel, the corresponding interference pattern array (with only worst case/rare scenarios,

faults in first cycles) is the one given in Table 6.12.

These interference patterns correspond to the server execution in response to the rare fault

142

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.12: The interference pattern

Interf Pattern = {
3, 3, 3, 3;

3, 3, 6, 0;

3, 6, 3, 0;

3, 6, 0, 0;

6, 3, 3, 0;

6, 6, 0, 0;

6, 3, 0, 0;

4, 0, 0, 0 }

scenario sequences, that were triggered by the the correspondent fault scenario, interfering

with the messages in the scheduling process.

The optimization process leads to a minimum LSW value equal to 55.1% of the LEC to

schedule the message set, including the error server, and the CS value being adjusted to to

12 ·3 ·CMAX . Table 6.13 present the data generated by the LSW optimization process, where

the diverse interference patterns, the response time for each pattern, with Direct and Indirect

interference and WCRT for each message are presented. The 0 errors column is included for

reference, presenting the response times in a fault free environment.

Comparing column WCRT with the Deadline one, we can observe that all messages

present individual WCRT lower than the corresponding deadline, considering all error inter-

ference patterns, guaranteeing real-time behaviour, which is a requirement for the system.

As expected, the results show a degradation of the WCRT in almost all messages, when

compared with the no errors scenario. The first eight messages have a penalty of one EC,

since they fit in the EC, in which they become ready, even when the server executes. Notice

that this is strictly necessary, as these messages must be sent in the EC where they become

ready, if not there is no slack for retransmission in case of error hit, as they possess deadline

equal to 2 ECs. The messages with lower priorities, e.g., 30 to 36, suffer a stronger response

time penalty as they are affected by a higher interference level. Table 6.13 also confirms

that Direct Interference normally dominates Indirect Interference, as WCRT’s with Direct

Interference are greater or equal for all messages.

This last aspect is not always verified. To show this, we re-run the optimization process

but now using RepLevel equal to { 4, 3, 2, 1 }. It was observed that there were messages

in which Indirect Interference dominated. The correspondent table is presented in Table

B.17 in Appendix B, where messages with ID 31, 32 and 33 obtain the WCRT with Indirect

interference scenarios. This confirms the need to always compute both kinds of interference

to determine a safe upper bound to the WCRT.

The design process was repeated for the two other benchmarks and equivalent data results

are presented in Appendix B, in tables B.18 and B.19. This algorithm, implemented in

MatLab and using a Pentium i7-2670QM computer with 6 GB of memory, took less than 1

143

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.13: WCRT of all messages in Updated SAE benchmark, for each rare scenario of
Indirect and Direct Interference.

Indirect Interference Direct Interference

msg 3-3-3-3 3-3-6-0 3-6-3-0 3-6-0-0 6-3-3-0 6-6-0-0 6-3-0-0 4-0-0-0 3-3-3-0 3-6-0-0 6-3-0-0 6-0-0-0 IND DIR WCRT no error Deadline

1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

3 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

4 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

5 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

6 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

7 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

8 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 1 2

9 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

10 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

11 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

12 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3 1 3

13 1 1 2 2 2 2 2 2 2 3 3 3 2 3 3 1 3

14 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

15 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

16 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 3

17 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 4

18 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 2 4

19 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 2 4

20 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 4

21 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 4

22 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 4

23 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 5

24 2 3 3 3 3 3 3 2 3 4 4 3 3 4 4 2 5

25 3 3 3 3 3 3 3 2 4 4 4 4 3 4 4 2 5

26 3 4 4 3 4 4 3 2 4 4 4 4 4 4 4 2 5

27 3 4 4 3 4 4 3 2 4 4 4 4 4 4 4 2 5

28 3 4 4 3 4 4 3 3 4 4 4 4 4 4 4 2 5

29 4 4 4 4 4 4 3 3 4 4 4 4 4 4 4 2 5

30 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 20

31 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 40

32 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 40

33 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 40

34 5 5 5 4 5 5 4 3 5 5 5 4 5 5 5 3 400

35 5 5 5 4 5 5 4 3 5 5 5 5 5 5 5 3 400

36 5 5 5 4 5 5 4 3 5 5 5 5 5 5 5 3 400

144

Chapter 6. Simulation Study and Partial Experimental Validation

second to complete, with 0.1% precision as stopping criterion for the LSW computation.

6.4.1 Assessing by Simulation the Design Method

After correctly configuring the system, we simulated Updated SAE, for 10 million cycles

of operation, corresponding to 7 hours (each simulation run) of system operation. The sim-

ulation runs were repeated 20 times (by simply using different seeds in the pseudo random

generator) for all three benchmarks without observing any missed deadlines, thus with all

errors recovered in time, as expected. These results indicate a correct functioning of the

recovery method and a good choice of parameters.

To assess the tightness of the design process, we compared the WCRT generated analyt-

ically with the maximum observed response-time in all the simulations. Table 6.14 presents

this comparison for the Updated SAE message set, showing that the analytic WCRTs are

tight for the messages with higher priority with the potential pessimism growing for the

lower priority messages. Nevertheless, note that the values obtained from simulation are not

guaranteed to be the absolute maxima, due to the limited simulation time, thus some of the

reported differences between computed and observed values may be smaller. Identical results

were observed in the other benchmarks, being presented the corresponding tables B.18 and

B.19 of Appendix B.

Table 6.14: Comparing analytic WCRT with the one observed in simulations for the Up-
dated SAE message set with LSW = 55.1% of LEC, considering an Aggressive environment

msg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Design 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Simulation 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

msg 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Design 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

Simulation 3 3 4 3 3 3 3 4 3 4 4 4 4 4 4 4 4 4

Another measure of the efficiency of our design method is the tightness of the minimum

LSW needed to schedule the message sets. Thus, we compared the analytic value obtained

from our design approach with the minimum value that we could obtain in simulation, re-

ducing the LSW just until deadline misses started to occur. Table 6.15 presents these values

for the three benchmarks, showing that the analytic minimum value for LSW was roughly

between 12% and 16% larger than the one obtained in simulation. Again, note that these

differences are not upper bounds to the real differences since there is no guarantee that

the simulation captured all of the actual worst-case situations. Table 6.15 also shows the

minimum LSW needed to schedule the messages sets without errors, showing the impact of

error recovery. This impact is particularly large in an Aggressive environment, as considered

here, to guarantee timely error recovery. In fact, the minimum LSW that is generated by

our approach to account for the Aggressive error scenario is 235%, 208%, and 45% larger

than the minimum LSW needed to schedule the corresponding message sets without errors,

145

Chapter 6. Simulation Study and Partial Experimental Validation

respectively,VEIL, PSA, and Updated SAE. We can also observe that the relative impact of

the error recovery mechanism decreases when the message set bandwidth utilization grows.

This last detail should be expected as for the same interference patterns, the time used lo-

cally for error recovery is proportionally larger compared with the configured LSW in an

error free environment. For example, the VEIL benchmark can be configured with an LSW

of 7.1%, equivalent to 355 bits per EC when an error free environment is considered. In an

Aggressive environment the LSW must be enlarged due to errors and server execution, that

can corresponds to sending 6 messages in 2 consecutive cycles. With CMAX = 135 bits, it

demands capacity to schedule a total of 810 bits (in 2 ECs), which is a bigger value than the

base value with no errors.

Table 6.15: Minimum LSW configuration value by design and simulation in Agressive Envi-
ronment

Message set VEIL PSA Updated SAE

LEC (ms) 5 5 2.5

RepLevel 3-2-2-1 3-3-2-1 3-3-2-1

Bandwidth utilization (@1Mbit/s) 4.40% 9.10% 27.90%

Error server bandwidth(configuration) 0.11% 0.11% 0.11%

LSW/LEC without errors (by design) 7.10% 11.90% 37.90%

LSW/LEC with errors+server (by design) 23.80% 28.00% 55.10%

LSW/LEC with errors+server (simulation) 21.10% 24.80% 48.40%

Pessimism (design over simulation) 12.80% 12.70% 13.90%

Nevertheless, we must stress that, thanks to the dynamic scheduling feature, this extra

bandwidth configured is only used when errors do occur. So, the bandwidth effectively used

by the recovery mechanism is not determined by the configured LSW value, but instead by

the average features of the fault model and corresponds to the error server bandwidth, which

in this case is less than 0.11% of the available bandwidth (Table 6.15) e.g., the server for the

Updated SAE message set has TS = 1/λ and CS = 12 ·3 ·CMAX . In a real system, the server

configuration bandwidth is seldom used, because situations where all the server capacity is

consumed or the maximum number of errors occurs in a server period are rare, having in

average one of these situations in every 100 thousand years of system functioning, for this

benchmark and with the configuration parameters derived earlier.

6.4.2 Comparison with other Methods

The work in [Fer05] presented another error recovery method for FTT-CAN, based on

the native CAN automatic retransmission of messages affected by errors - named Automatic

Retransmission. This mechanism reserves extra time in every SW for the recovery of eventual

errors, where the extra time is left unused in the absence of errors, and is thus less efficient

than our proposal - Controlled Retransmission, as shown in Table 6.16. For instance, when

considering the fault model presented in this paper and an Aggressive environment, the

146

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.16: Comparison of minimum LSW and BW requirement with different design methods

Message set VEIL PSA Updated SAE

Minimum LSW

Controlled Retransmission 23.8% 28.0% 55.1%

Automatic Retransmission 19.8% 24.5% 60.0%

Static TT 22.3% 41.4% X

Configuration BW

Controlled Retransmission 0.105% 0.105% 0.108%

Automatic Retransmission 12.6% 12.6% 25.2%

Static TT 15.1% 29.5% X

Updated SAE benchmark message set with the Automatic Retransmission mechanism would

require space for four retransmissions in every EC. This represents a constant bandwidth of

22.1% (or 12.6% for the other message sets, which have LEC equal to 5 ms). Conversely,

our Controlled Retransmission mechanism consumes a maximum bandwidth equal to the

one assigned to the error server (thirty six maximum messages (3 · 12 · CMAX) in the server

period), configured, which is only 0.108% in this case. The average bandwidth consumption

is only 1/12 of this value.

The method presented by Tanasa et al. [TBEP10] implies the use of a fixed number of

replicas per message period, and is applied in a TDMA fashion - Static TT in Table 6.16.

The number of replicas is determined applying Equation (4.6), for a defined mission time

and global reliability goal. For the three referred benchmarks and with a global reliability

equal to 10−9, we need to send always four copies of each message, which corresponds to

more than 300% overhead, accounting also with error signaling. The three extra messages

sent and their transmission time are always wasted when there are no errors, which is the

most common scenario, for the considered BER, e.g. in average there is one error each 1538

ECs, for Updated SAE benchmark. This happens because the scheduling is static and needs

to cope with every error, without knowing when and where they will occur. Thus, enough

message copies are sent to get a probabilistic assurance that the reliability goal is attained.

This is clearly in opposition to Controlled Retransmission proposal where the bandwidth

is only used when needed, i.e., when errors do occur. Observing Table 6.16, we note that

this method requires a minimum LSW similar to our method for the lightest set (VEIL).

However, for a set with medium bandwidth utilization (PSA), our method already requires

a minimum LSW that is 32.4% less than the one required by Tanasa’s method. For the set

with higher utilization (Updated SAE) Tanasa’s method cannot even generate a schedulable

solution, which was expected as this message set has an utilization greater than 25% and

we need to send a total of 4 copies per message to attain the reliability goal. Comparing

the bandwidth overhead of 15.1% and 29.5% for the two other sets (that corresponds always

to more than 300% increase when referenced to each message set utilization bandwidth),

with the reserved bandwidth of less than 0.11% used by our method is even more revealing.

Further, using the results available in the statistic files of the performed simulations just

presented, the bandwidth that was used in the recovery process was also calculated. The

147

Chapter 6. Simulation Study and Partial Experimental Validation

average value found was very low, being 0.00047%, 0.00093%, and 0.0025% of the available

bandwidth for the VEIL, PSA, and Updated SAE benchmarks, respectively. These values

are much lower than the bandwidth configuration server values of 0.105% and 0.108%, as the

full server capacity was not used, most of the time.

Looking at other results, we observe that the message average response time in Controlled

Retransmission and Automatic Retransmission, when configured with the same LSW, are

different. For instance consider the Updated SAE benchmark with a LSW = 60%, that is

the minimum configuration value for these two methods in Agressive environment (see Table

6.16). The average response time obtained by simulation are the ones presented in Table

6.17, which was obtained with 10 simulation runs, each one with 10 million cycles. The

first observation is that for messages with higher priority (ID from 1 to 13) they present an

average response time equal to one, as these messages are scheduled without interference,

as they fit in the EC where they become ready, even when the server executes. The very

small difference between the two methods is due to the recovered messages, that in the

Controlled Retransmission method always suffer one EC delay. All other messages are slower

in Automatic Retransmission, being this increasing difference justified by the fact that in

average the scheduling process uses all the 60% of the LSW in the Controlled Retransmission

where in the Automatic Retransmission only 37.9% can be fully used, as there is a reserve in

every cycle with time length necessary to transmit the maximum number of messages found

with error (plus the error signalling messages), which in this case is four, being a total of

4 · (115 + 23) bits or 22.1% of the LEC.

Table 6.17: Comparing average response time of for the Updated SAE benchmark with
LSW=60.0% of LEC, considering an Aggressive environment - Controlled Retransmission vs
Automatic Retransmission

msg 1 2 3 4 5 6 7 8 9 10 11 12

Automatic 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Controlled 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0001 1.0001 1.0002

msg 13 14 15 16 17 18 19 20 21 22 23 24

Automatic 1.0000 1.0500 1.5000 1.5000 1.3333 1.3333 1.3333 1.3333 1.4667 2.0000 1.3333 1.3333

Controlled 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0003 1.0002 1.3336 1.3335 1.0835 1.0835

msg 25 26 27 28 29 30 31 32 33 34 35 36

Automatic 1.5000 1.6667 1.8333 2.0000 2.0000 3.3333 3.3333 4.0000 4.0000 4.6667 4.6667 4.6667

Controlled 1.0835 1.0835 1.0836 1.3336 1.3336 2.0002 2.0003 2.0002 2.0002 2.0002 2.0002 2.0002

One disadvantage of the method proposed in this thesis is that it detects errors in the

end of the EC and thus the retransmissions can occur at best in the following EC, which

leads to an error recovery latency of one EC. This has clearly an impact on the WCRT,

as for instance no message can present a WCRT lower than 2. Conversely, the other two

methods allow error recovery in the EC in which they occur, but this does not mean that

for the same parameter configuration, namely the same LSW, it has always lower WCRT.

Let’s then compare the WCRT for the Updated SAE benchmark, with the same conditions

148

Chapter 6. Simulation Study and Partial Experimental Validation

as previously, that are presented in Table 6.18. As can be seen there, the messages with

higher priority have lower WCRT (message with ID 1 to 15 and 18 to 24), other present the

same value and for the 7 lower priority messages the situation reverts, despite not having

a cycle delay in error recovery. Just a note on messages with ID 28 and 29, that most of

the time present WCRT equal to 3, being the value 4 present in the table due to only one

occurrence each, where the recovery message was hit by an additional error, so a delay equal

to 2 cycles in the recovery process happened.

Results for the other benchmarks are presented in Appendix B, Section B.3.1.

Table 6.18: Comparing worst case response time of for the Updated SAE benchmark with
LSW = 60.0% of LEC, considering an Aggressive environment - Controlled Retransmission
vs Automatic Retransmission

msg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Automatic 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

Controlled 2 2 2 2 2 2 2 2 2 3 3 2 3 3 3 2 2 3

msg 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Automatic 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 6 6 6

Controlled 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3 3

6.4.3 LSW Optimization and BW Required by the Error Recovery Mech-

anism

The LSW optimization was first applied to the three message sets, being the results

shown in Table 6.19. This table presents the configuration characteristics, RepLevel and

minimum LSW of the 3 benchmarks in the 3 considered ambients, observing the increasing

values of max 1cycle, max cycles and RepLevel as the foreseen error incidence grows, for

the same reliability goal. Another noticeable observation is the poor performance of the

StaticTT method, as it needs a bigger ”equivalent” LSW than the other methods, in almost

all situations.

6.4.3.1 LSW Optimization with Random Sets

Multiple runs of the LSW optimization module were carried out to assess the performance

of the three methods referred in the previous section, concerning the minimum LSW value

required to attain the desired error responsivity, as a function of the message set utilization.

The bandwidth utilization range varied between 5% and 70%, in steps of 1%. Message

payload length varied from 1 to 8 bytes and message periods from 2 to 15 ECs, with implicit

deadline (i.e., equal to period), both with uniform distribution. LEC was set to 2.5 ms and

one thousand message sets were generated for each utilization value.

The results presented in Figure 6.5, represent the requirement for minimum LSW obtained

(average value). There, Static TT shows a better performance than Automatic Retransmis-

149

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.19: Main characteristics of the 3 benchmarks, in different environments

Updated SAE

Ambient max 1cycle max cycles RepLevel Controlled Automatic Static TT

LSW(%) LSW (%) LSW (%)

Error free 37.9 37.9 37.9

Benign 2 2 2-1 42.8 49.0 73.0

Normal 2 3 2-1 44.9 49.9 X

Agressive 4 4 3-3-2-1 55.1 60.0 X

PSA

Ambient max 1cycle max cycles RepLevel Controlled Automatic Static TT

LSW(%) LSW (%) LSW (%)

Error free 11.9 11.9 11.9

Benign 2 2 1-1 14.0 18.2 22.0

Normal 2 2 2-1 16.7 18.2 31.6

Aggressive 4 4 3-3-2-1 28.0 24.5 41.3

VEIL

Ambient max 1cycle max cycles RepLevel Controlled Automatic Static TT

LSW(%) LSW (%) LSW (%)

Error free 7.1 7.1 7.1

Benign 2 2 1-1 10.3 13.4 12.5

Normal 2 2 2-1 13.0 13.4 17.3

Aggressive 4 4 3-2-2-1 23.8 19.8 22.2

sion (smaller minimum required LSW) but only for small utilization values (less than 8%).

The Controlled Retransmission method always shows better performance than all the other

ones. When compared to Automatic Retransmission, it is slightly better for sets with utiliza-

tion lower than 15% and the performance improvement grows for larger utilizations, requiring

up to about 16% less time in the LSW parameter. The picture also shows a very important

aspect, as Controlled Retransmission method allows attaining higher utilization levels than

the competing ones, for the same reliability goal, allowing up to 70% utilization against 20%

and 55% from Static TT and Automatic Retransmission, respectively.

Figure 6.6 also illustrates the average LSW requirement, for the Controlled Retransmis-

sion method, but now including the greatest and the smallest LSW value, for two different

ambients: Normal and Aggressive. As the scenarios for Normal ambient have error and re-

covery scenarios less dense (lower values of max cycles and max 1cycle), that’s the reason

why the difference between maximum and minimum value are smaller, as expected.

150

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.5: Average requirement for minimum LSW vs message set bandwidth utilization, in
Aggressive environment.

Figure 6.6: LSW required in Normal (left) and Aggressive Ambient (right) for Controlled
Retransmisison: minimum, average and maximum values.

151

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.7 presents the average value for the minimum LSW configuration value required

of each method, for each ambient considered. The green line represents this value for the

no-error scenario.

Figure 6.7: Minimum required LSW value (average) used by each method in different am-
bients. Methods from left to right: Static TT, Controlled Retransmission and Automatic
Retransmission.

In Figure 6.8 the same information with different grouping is presented for the minimum

LSW configuration value, where each sub-figure compare the three methods (average value)

in each ambient.

Figure 6.8: Minimum required LSW value (average): method comparison by ambient. From
left to right Benign, Normal and Aggressive

Finally, Figure 6.9 represents the bandwidth required by the different error recovery

mechanisms as a function of the message set utilization, being obtained with random message

sets using LEC equal to 2.5 ms, an Aggressive environment, and the other parameters as in the

previous experiences. In StaticTT, the required bandwidth is proportional to the number of

copies needed for each message, also including error signaling, being always more than 300%

of the corresponding message utilization bandwidth, as a total of four copies per message are

required to attain the desired reliability level. Thus, more than 70% of the total bandwidth

is allocated to the recovery mechanism, even for message sets with a utilization of only 20%.

Automatic Retransmission reserves slack time in each EC to recover the maximum number of

errors considered (equal to max 1cycle), which in the studied cases is 3 or 4, corresponding to

19.0% or 25.3% of the available bandwidth. Therefore, the overhead is essentially constant,

having a step in the utilization transition from 19% to 25%, corresponding to the situation

in which the errors that need to be handled changes from 3 to 4 per EC.

152

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.9: Bandwidth required by each method, with LEC=2.5ms and λ=0.26.

As for the Controlled Retransmission mechanism, the reserved bandwidth is the one of

the error server. The server configuration depends on the fault arrival rate and maximum

RepLevel configuration value, and setting the Server period TS equal to 1/λ, the necessary

capacity varies between 8 ·3 ·CMAX and 14 ·3 ·CMAX , which is only 0.084% and 0.147% of the

1 Mbps available bandwidth. This figure clearly shows the superiority of our method, since

its required bandwidth is at least two orders of magnitude inferior to the other methods.

Again, the value presented in the graph for the Controlled Retransmission method cor-

responds to the maximum value of bandwidth that can be used in one server period, being

the average used bandwidth (considering several cycles) much less, as it only uses it when

errors occur. Otherwise, in the two other methods, the average bandwidth used is fixed,

being always equal to the configured value, as it is reserved for error recovery and cannot be

used for other purposes.

6.5 Issues in Master Implementation

In this section we analyze and test some critical implementation issues in the Master

node, namely the modifications necessary to implement the method proposed in this thesis.

6.5.1 First experiments

We have used a reduced network, with just 3 nodes as represented in Figure 6.10. A 125

kbps bit rate was used and one of the nodes was simply counting messages and displaying it

on a LCD with 2 character lines, for visual feedback of the experience outcome. The nodes

were implemented with a 18F2680 microcontroller from the PIC18 Microchip family [Inc07],

which has an 8 bit architecture, 10 MHz clock, 64 Kbytes of EEPROM, 3Kbytes of RAM and

integrated CAN controller. This microcontroller was used due to low cost, but also because

an FTT-CAN source code implementation was available in [FTT18], that was then modified

by introducing a module that implemented the proposed methodology for error recovery.

Despite simple, this experimental setup allows us to measure several timing characteristics

and verify some requirements to guarantee implementability of the recovery method.

153

Chapter 6. Simulation Study and Partial Experimental Validation

Figure 6.10: Small network architecture for first experiments.

The first experiment carried out aimed at assessing the overhead incurred by the Master

in detecting messages in the bus. The experimental results depicted in Figure 6.11 present in

the first line the 4 CAN messages and the middle line the dispatcher running. The bottom

line corresponds to the processing time of the message reception, that includes adding the

message ID to the vector of received messages. A Tektronix TDS2024 oscilloscope was used,

and the observed duration for the reception processing was equal to 50 µs (worst case),

which is acceptable for baud rates of 500 kbps or lower. For higher baud rates the reception

processing time approaches the transmission time of the shortest data messages (55µs for a

zero data byte message at 1000 kbps) and thus error detection may fail, in cases where more

than one of these messages is sent in sequence. Otherwise, the message signalling process

would work without problems.

Figure 6.11: Observing transmission and detection timings in oscilloscope.

6.5.2 Optimizing the Scheduler to Obtain Minimum Latency

The initial modification introduced maintained the scheduler positioning in the EC, run-

ning during the Asynchronous Window. Because of this, the rescheduling of failed messages

presented a latency equal to 2 ECs, when maximum priority is used. This is clearly disad-

vantageous as it will delay the message recovery by 2 ECs, which is not desirable as we want

to make the recovery as fast as possible. Of course, if we still want to use it this way, then

the LEC value must be chosen so that it is less or equal than 1/3 of the fastest message, or

else the recovery may fail.

In order to reduce the latency to one EC, which is the minimum possible value with this

154

Chapter 6. Simulation Study and Partial Experimental Validation

method, one possibility is to re-write partially the Master’s code in order to run the scheduler

module immediately after the end of the SW, just after the last received message has been

processed. These two versions are presented in Figure 6.12. In a) minimum code change,

implying two ECs delay in recovery, as explained, and in b) the modified version that was

just described and is the one considered in this thesis.

Figure 6.12: Scheduler timing inside EC.

Then, experimental tests have been carried out to evaluate the scheduler and dispatcher

worst-case execution times. The obtained values were a 600 µs for the scheduler and 100 µs

for the dispatcher. The results here obtained are similar to the ones presented in [Sil10], for

a mobile robot of the middle size soccer league with a FTT-CAN network with two Masters

(main plus backup), 6 slave nodes, 9 messages with periods between 20 ms and 1 second

and with and EC duration of 5 ms. The tests presented there showed a scheduler worst-case

execution time of 628 µs.

Considering a network bit rate of 1Mbps, and considering the summation of the three

execution components, with a total of 750 µs (accounts for last message reception, scheduler

and dispatcher execution), which is the slack time necessary at the end of the SW. This

inserted slack corresponds to an impact equivalent to almost six messages with 8 bytes of

payload per EC, which is significant penalty, specially for small LSW’s (e.g., 5 ms). For

lower baud rates, however, the penalty can be tolerable. Tables 6.20 and 6.21 exemplify the

penalties involved, assuming the current implementation based in an 8 bit microcontroller

and also extrapolating the values to a possible code porting to a 32 bit microcontroller, from

the same vendor, with even small retail price, that can run 12 times faster [Inc17].

The characteristics of these microcontrollers are displayed in Table 6.22, that shows that

there is now devices with higher speed, more Flash and RAM memory, more peripheral

including independent CAN controllers, with a small increase in price (PIC32 family) or even

a lower price. For instance, the ATSAME51J18A (ATMEL family), with ARM4 architecture,

120 MHz clock, 2 integrated CAN FD controllers and 4 times the Flash memory, has a cost

155

Chapter 6. Simulation Study and Partial Experimental Validation

Table 6.20: Reduction in number of possible scheduled messages function of the bit rate
(considering 8 bytes of payload and maximum bit-stuffing).

bit rate 8 bit µC (10 MHz) 32 bit µC (120 MHz)

(Kbps) (number of messages) (number of messages)

125 0.69 0.06

250 1.39 0.12

500 2.78 0.23

1000 5.56 0.46

Table 6.21: Penalty for displacing scheduler in time (Reduction in available time for message
transmission vs EC Length)

EC Length 8 bit µC (10 MHz) 32 bit µC (120 MHz)

(ms) PIC18F2680 ATSAME51J18A

2.5 30.0% 2.50%

5 15.0% 1.25%

10 7.5% 0.63%

20 3.8% 0.31%

100 0.8% 0.06%

even almost 30% lower than the 8 bit counterpart. This also opens the possibility to use

the new CAN-FD standard, with minor code modifications, as this family of microcontrollers

already possesses two internal CAN-FD controllers. Moreover, even if the price is higher it

only affects one module (the Master node). So, it seems that there is no reason to not use

these new devices in a near future.

Table 6.22: Characteristics comparison between microcontrollers - 8 bit vs 32 bit

µcontroller PIC18F2680 PIC32MX775F512H ATSAME51J18A

Architecture (bits) 8 32 32

CAN Controllers 1 2 2

Type CAN 2.0B CAN 2.0B CAN FD

Clock (MHz) 10 80 120

Flash (KB) 64 512 256

Price (>5K) 4.10e 5.16e 2.97e

Cost? (comp PIC18F) - +26% -28%

?prices obtained in MicrochipDirect website, on 15.april.2018.

From the analysis of the tables it can be concluded that if the scheduler is placed at the

end of the synchronous window, in order to reduce the scheduling latency from two to one

EC, there is clearly a bandwidth penalty. For small EC lengths and 8 bit microcontrollers

such penalty in unbearable (up to 30% of the LEC). However, using a 32 bit microcontroller

156

Chapter 6. Simulation Study and Partial Experimental Validation

the penalty becomes small, or even negligible, for any EC length and baud rate.

An implementation of the scheduler was done for a PIC32 microcontroller, that was com-

piled with MikroC for PIC32 compiler and run on a EasyPIC FUSION v7 MCUcard with

PIC32MX460F512L and 80 MHz clock. By monitoring the scheduler, including the reschedul-

ing process, a execution time less than 61µs for a message set with a total of 32 messages was

obtained. In Figure 6.13 the pink line represents the time taken by the scheduling process,

accumulating diverse situations in the number and priority of messages being recovered.

Figure 6.13: Scheduler running in PIC32 µcontroller with 80 MHz clock.

This confirms the extrapolation referenced before, concluding that this modification is

feasible using a fast microcontroller, which is available in mass market and with low cost tag

price.

6.6 Summary

This chapter presented an assessment of the Controlled Retransmission method, perform-

ing a simulation study and comparing it against other methods. It started by presenting the

first version of the simulator, which uses single replica when recovering errors and afterwards

three benchmarks that will be used in the simulation study. Using this simulator version a

correct functioning of the proposed method was observed, validating also the error server type

initially chosen - the Deferrable Server. For the same goals, the Polling Server presents much

higher bandwidth use and the Sporadic Server shows a much greater execution overhead. In

what concerns the priority choosing for the server, the assignment of maximum priority to the

retransmissisons, allows the fastest response with minimal execution overhead. However, the

single replica retransmission limits the achievable reliability, as scenarios with errors in con-

secutive cycles makes probable that messages with short deadlines may loose their deadlines,

which was observed. It is followed by the presentation of the second simulator version, with

multiple replica retransmission, where the number of replicas is chosen according to the fault

scenario, to attain a global goal on transmission reliability. The assessment starts by simulat-

ing the three benchmarks, showing a correct behaviour and very low average bandwidth use.

The proposed method, was then compared with other methods, Automatic Retransmission

and Classic TT, presenting globally a lower bandwidth in the allocated resources and much

157

Chapter 6. Simulation Study and Partial Experimental Validation

lower in execution time, as the proposed method uses resources only when errors occur and

the other two, reserve the resources for worst case scenarios. Nevertheless, the Controlled

Retransmission has a recovery latency of 2 cycles and the other ones have in-cycle recovery.

Finally, a small study was performed to determine the necessary characteristics required by

the Master node to implement the proposed method, namely in terms of used resources to

detect and reschedule the failed message transmissions in one cycle.

158

Chapter 7

Generic Model and Applicability to

TT Protocols

The method presented and assessed in the previous chapters was based on the FTT-CAN

protocol. Despite being tailored for this particular protocol, the fundamental characteristics

of the recovery method can be abstracted and generalized to other TT based protocols. So,

this chapter firstly describes the generic model and after this its applicability to TTCAN and

to FlexRay protocols.

7.1 Generic Model

The proposed method has a module inside the Master that listens to all messages sent

and builds a list of failed message transmissions, that are stored in an error queue. When

the scheduler is executed, the schedule for the next EC is obtained, taking into account

the messages that are stored in the error queue, being the recovery dynamically controlled

together with all the other regular messages. The dissemination of the message transmission

triggering is done by the TM message, having a Master/multi-slave control, on a EC-by-EC

basis. Figure 5.11, presents and overview of the error recovery process.

Figure 7.1: Proposed method for error recovery in FTT-CAN scope.

Some of the above procedures are specific to FTT-CAN. In fact, the fundamental oper-

ating principles of the protocol, which translates to requirements that must be satisfied by

159

Chapter 7. Generic Model and Applicability to TT Protocols

any target protocol, are:

(i) on-line scheduling, permitting a dynamic control of message retransmissions;

(ii) message transmission organized in cycles, with schedule dissemination each cycle;

(iii) failed message transmission detector, requiring then a broadcast medium.

Additional resources and processing power are also necessary, namely for the error detec-

tion module execution and inclusion of queued messages in the scheduling process, that are

relatively easy to find in modern microcontrollers.

In the next two sections we show that the presented generic method can be applied to

other protocols. These possess some specificities and then the recovery mechanism must be

adapted accordingly.

When describing the necessary adaptations it is considered that is possible to obtain

max 1cycle, max cycles and the RepLevel vector in a way similar to the one described in

Chapter 5 for FTT-CAN, that will limit the possible error and recovery scenarios.

7.2 Error Recovery Applied to TTCAN

In TTCAN (Section 3.3.1) the schedule is obtained off-line, being fixed at system startup

and cannot change during normal operation. Each message must be transmitted in a reserved

time window, with fixed duration, and the message must be transmitted in single-shot mode

to guarantee the strict windows timing. The sequence of windows is arranged in basic cycles,

that always start with a special message, the Reference message, that sets a time reference

with adequate resolution. A sequence of basic cycles, that repeats itself, forms the TTCAN

Matrix.

The TTCAN protocol also includes Arbitration Windows, which use the native CAN

arbitration scheme, and thus do not require a pre-defined message allocation. Thus, these

windows allow scheduling event-triggered messages, as the ones associated with the error

recovery mechanism.

To comply with the requirements stated on Section 7.1 the following adaptations must be

made:

(i) introduction of a new node, termed RetNode, responsible for online scheduling of mes-

sage retransmissions. The limitation here is that this scheduling cannot be integrated

with the regular message scheduling, as this one is static;

(ii) the organization in basic cycles already fulfills this requirement, being nevertheless

necessary to introduce a new window to transmit a message that triggers message

retransmissions, that is termed RetM ;

(iii) as the transmission medium is a bus, this guarantees that the bus error detector that

resides in the RetNode listens to all transmitted messages and promptly detects any

failed transmission, assuming consistent message receptions.

160

Chapter 7. Generic Model and Applicability to TT Protocols

A graphical representation of the network architecture and the new windows placement

is represented in Figure 7.2, that will be further discussed next.

Figure 7.2: Proposal for error recovery in TTCAN protocol, with central RetNode. a) Network
architecture; b) Basic Cycles with windows for message retransmissions and RetM message.

7.2.1 Windows Placement and Size

The original message set must be extended with one or more windows to send the RetM

message and the messages that need to be retransmitted, referred above.

We start by analyzing the characteristics of the RetM message and window, that will be

followed by the window for messages retransmission.

7.2.1.1 RetM Message and Window

Due to the random nature of faults, errors can happen in any instant, in any cycle. As it

is desirable to promptly recover the errors, before the correspondent message deadlines, the

request to retransmit must be done as soon as possible. Considering that the fast messages

have periods/deadlines equal to 2 basic cycles, then to have a prompt response, a window

specific to RetM message transmission must exist in every basic cycle. This is the supposition

that we will use in the following analyses, which constitutes an upper bound, since considering

that the fastest messages present larger periods, this requirement for window placement could

be relaxed.

We assume that it is possible to transmit the RetM in the same basic cycle where the

error is detected, placing it at the end of the cycle which will allow sufficient time to the

RetNode to process the error information, to build the RetM message and place it in the

CAN controller transmission buffer on time to be transmitted in the predefined window.

This can place a restriction on the messages that can be recovered in the following cycle,

as for instance the messages that are transmitted in the window immediately before the

161

Chapter 7. Generic Model and Applicability to TT Protocols

RetM window may not have errors processed and subsequent operations done on time, so

to be included in the RetM message. One possible solution to overcome this is to grow the

last window with the time needed by the RetNode to do all error processing work and still

transmit RetM in the current cycle, otherwise this message would have a recovery latency

equal to two cycles. This detail must be analyzed for the particular microcontroller used, as

different families can have very different computing capacities.

The RetM conveys the information on what messages should be retransmitted, its iden-

tifier (part of CAN ID) and the number of copies that must be sent in the next cycle. This

can be accomplished, e.g., using only 1 byte per message, coding the ID with 6 bits (for a

system with a maximum of 64 messages) and the remaining 2 bits representing the number

of copies (e.g., 0b00 - 1; 0b01 - 2; 0b10 - 3 and 0b11 - 4), if 4 copies are enough to attain the

global recovery objective.

Then, assuming max 1cycle errors per cycle, using 1 byte per error in the RetM message

payload and considering worst case bit stuffing, the message size is given by Equation (7.1).

RetMMAX = 55 + 10 ·max 1cycle (7.1)

To guarantee that errors affecting this message do not hinder its transmission, this window

can also be extended to allow more than one copy to be transmitted.

7.2.1.2 Retransmissions Window

One possible approach for message retransmission is to define a window for each node,

with a duration equal to the longest message transmitted by this module, allowing for the

maximum RepLevel number of messages. This strategy is not bandwidth efficient, and even

with a small number of nodes it would rapidly reserve too much bandwidth. For instance, a

system with 5 nodes, each one transmitting a maximum size message equal to 135 bits and

maximum RepLevel of 3, would need 5 windows, each one with size 474 bits (that includes

error frames of 23 bits), making a total of 2370 bits in each cycle. If the basic cycle has a

length of 2500 bits (2.5 ms with bit rate of 1000 kbps), then this allocation scheme uses a

significant part of the available bandwidth, restricting severely the system schedulability.

A more wise approach would be to use a large window, that will be shared by all nodes,

as it is not necessary to have in all cycles reserved capacity for each node, as the fault model

used has a bound on maximum number of faults per cycle, that surely is lower, even for

Agressive environments, than the number of nodes. Of course, to allow that any node can

send messages in this window, it must be of arbitration type.

So, the arbitration window used for message retransmission must be large enough to

accommodate the number of replicas necessary to guarantee a successful retransmission. This

can be obtained by a similar process described for the Controlled Retransmission method,

obtaining the number maximum of errors in one cycle and the RepLevel vector. Then the

vector N Ret is constructed, Equation (7.2), that describes the number of messages copies

that should be retransmitted, for all possibilities in number of errors. Considering that

162

Chapter 7. Generic Model and Applicability to TT Protocols

maximum size messages need to be retransmited, we obtain the window length - Equation

(7.3), that must also include a term for the maximum number of error frames, where r is a

number between 1 and max 1cycle, that accounts for errors in previous cycle (limited by the

fault scenarios sequences). Thus the arbitration window used for retransmission should have

this length and be placed after the RetM window, as can be observed in Figure 7.2.

N Ret = {1 ·RepLevel(1), 2 ·RepLevel(2), ...,max 1cycle ·RepLevel(max 1cycle)} (7.2)

W Ret = MAXi=1..max 1cycle(N Ret) ·MAXi=1..n(Ci)+(max 1cycle−r) ·Cerror frame (7.3)

The maximum bandwidth overhead is the one of the RetM window, considering RepRetM

copies, plus a large enough arbitration window to cope with highest combination of necessary

retransmissions in the following basic cycle, that is given by Equation (7.4).

Overhead BW = RetMMAX ·RepRetM +W Ret (7.4)

7.2.2 Application Example and Additional Comments

Using an example system working in an Aggressive environment, that presents max 1cycle

equal to 4 and RepLevel = {3, 3, 2, 1}, we obtain using Equation (7.3) a window with size

equal to 856 bits, which corresponds to 34.2% of a basic cycle, if this has a length equal to

2500 bits. We also have to consider the window for RetM message and its copies, that add

another 354 bits to the recovery method overhead (3 copies were considered, each with a

payload equal to 4 bytes, including error frames). So we end up with a total of 1210 bits,

which is approximately 48.4% of the 2500 bits cycle. This seems a very large overhead, but

in fact must be compared with static TT strategies, that tend to consume much greater

bandwidth, as presented before. Of course, with bigger cycles this overhead would be more

acceptable.

Applying this approach to Updated SAE benchmark we will get an overhead equal to

43.6% on top of the necessary BW to schedule regular messages. This value is larger than the

one encountered for FTT-CAN, which was 17.2%, having as a plus the operational flexibility,

that is not available in TTCAN. Remember also that a pure static TT approach could not

get a feasible schedule for this benchmark.

When a pure static approach is used, a system in an aggressive environment with high-

reliability goal, each message is sent with four copies per message period, thus limiting the

maximum bandwidth utilization to less than 25%. With the approach for TTCAN presented

here, and considering the same ambient that accounts for maximum RepLevel equal to 3,

then the maximum bandwidth utilization is bounded to less than 51.6%, which is a good

improvement when compared with the 25% bound of pure static TT approaches.

163

Chapter 7. Generic Model and Applicability to TT Protocols

The protocol can be made more bandwidth efficient if the RetM payload could be sent on

a message that was already transmitted in all basic cycles. The TTCAN Reference message

has available payload - 8 bytes for Level 1 and 4 bytes for Level 2 (see Section3.3.1.1), that

can be used to convey RetM content. In this case, the Retransmission Window must be

separated with sufficient time so the slowest node can decode the RetM message contents,

prepare the message to retransmit and put it in the CAN buffer, so preferably this window

should be placed towards the end of the basic cycle. This is illustrated in Figure 7.3, that

corresponds to the same example presented in Figure 7.2, with this alteration introduced.

Figure 7.3: Error recovery in TTCAN, using payload of TTCAN Reference message to trans-
mit RetM message.

This corresponds to an effective improvement on protocol efficiency, as the total time

used decreases by the size of the RetM copies, that is now free for scheduling other messages

(last slot in each basic cycle). This would increase the bound for bandwidth utilization, in

example given previously, to 65.8% of the available bandwidth, instead of only 51.6%.

Moreover, this also implies that the scheduling process would run in the various nodes

that are Time Master’s candidates, giving enhanced guarantees in availability of the recovery

mechanism triggering, since a Time Master (principal or substitute) must be available at all

times, for correct TTCAN functioning.

Other aspect refers to the bandwidth waste in no-error scenarios, as the retransmission

window is reserved for message recovery, and cannot be used to transmit other traffic. So

there is a waste in available bandwidth equivalent to the reserved time. This waste can

be somehow mitigated by allowing the sending of any existing asynchronous traffic in this

window, additionally to the windows reserved for it. This will allow a reduction of the average

response time of this type of messages, as any unused time by the retransmission messages can

then be used by event-triggered messages. Possible interference with retransmission messages

in this window is avoided by assigning higher IDs to the event traffic messages.

If nodes with sufficient resources and computing power are available in the system, then

the actions performed by this node can be delegated on an already existent node. In this

case, the introduction of the error recovery method is cost free.

The error recovery for TTCAN method also implies the introduction of new code in the

slave nodes, to process the RetM message and to execute the actions triggered by this same

message, that must be checked for implementability, specially if some slave nodes possess

limited processing power.

164

Chapter 7. Generic Model and Applicability to TT Protocols

Finally we refer that the original message set, that must be extended with the window

for message RetM and copies and the window for message retransmissions, can be scheduled

by any available algorithm, as for example the ones referred in Section 3.3.1.2, imposing

restrictions on this windows position in the basic cycle, as pointed out when the window

position allocation was discussed.

7.3 Error Recovery Applied to FlexRay Protocol

In FlexRay, at the communication cycle level, the time is divided in four segments: Static

Segment, Dynamic Segment, Symbol Window and Network Idle Time (Section 3.3.3.3). Mes-

sages can be transferred in the two first segments, being the access in the first one made by

TDMA, with a fixed number of slots, all of the same size. In the Dynamic Segment the access

is made through a mini-slotting scheme, being this segment intended to transmit event based

messages.

Firstly we assume that the messages that we want to provide guarantees on successful

transmission are the ones of TT nature, that are sent in the Static Segment.

To apply the proposed recovery mechanism, that uses temporal redundancy, we must

discuss several aspects:

• the necessity of introducing new nodes;

• what segment to use for retransmissions, considering protocol specification and band-

width efficiency;

• timing limits and protocol overhead estimation.

Similarly to the recovery method proposed for TTCAN protocol, in previous Sections,

an additional node is needed, termed Master R, that will be responsible for triggering the

messages that need retransmission. So, the dynamic scheduling is only applied to the eventual

retransmissions.

An example system architecture is depicted in Figure 7.4, where it was considered a

broadcast medium, a bus, being the network composed by 3 nodes plus the Master R node.

Figure 7.4: Example of FlexRay network with 3 nodes plus Master R.

This node uses the FlexRay Communications Controller capabilities to listen the messages

transmitted in the Static Segment and detect all failed transmissions. The Master R node

165

Chapter 7. Generic Model and Applicability to TT Protocols

must possess information on Static Segment schedule of the messages that it protects and the

RepLevel vector, necessary to adjust the necessary number of retransmissions. After failed

transmission detection, the respective message information is inserted in an error queue.

Immediately after the end of the Static Segment, Master R builds a special message, called

Retransmissions Message - RetMsg - running an adequate scheduler over the information held

in the error queue, and sends this message to all nodes. The information content of RetMsg

are the IDs of messages that need to be retransmitted in the next cycle (in the next Dynamic

Segment) and the number of copies of each one. It is possible to send several replicas of

RetMsg, being the number of copies chosen according to the expected error incidence, as

defined by the fault model.

When a slave node receives the RetMsg message, processes it and, if instructed to do so,

places the unsuccessful TT message in the output queue for transmission in the Dynamic

Segment. With this sequence of events, depending also on the retransmission scheduling

algorithm, in the best case, the retransmission will be carried out in the next cycle. This

corresponds to a recovery latency equal to one cycle, with the introduction of jitter as the

retransmitted message uses a different segment and cycle than the regular ones. The RetMsg

message also includes information on the number of copies that should be sent, guaranteeing

a restransmission success (within a given probability). So the node must transfer this number

of copies of the message to the communication controller buffers as fast as possible.

Figure 7.5 illustrates the error recovery process, where the message sent in Static Slot

number 2 suffers an error in cycle i. The Master R node promptly detects this occurrence,

placing it in the error queue and after scheduling it sends the RetMsg with parameters

{ID = 2;Rep = 2}, in the same cycle, using the allocated minislot of the Dynamic Segment,

in this case the second minislot of this segment. This way, the node that produces message

m2 is instructed to prepare the message (assembling it and putting in the correspondent

Communication Controller transmission buffers), that afterwards, in cycle (i + 1), will re-

transmit the message copies, using specific minislots allocated for this node. In the example

presented, it uses the minislots with ID 9 and 15, supposing that these minislots are the ones

associated with the node that uses the static slot number 2. Also, in this example, we are

considering the number of copies per retransmission equal to 2.

Figure 7.5: Error recovery in next cycle, using retransmission in the Dynamic Segment.

Notice that the RetMsg does not use the first slot in the Dynamic Segment, but a later one.

This provides Master R time to detect and process errors, execute the scheduling algorithm

and send the message. The most stringent situation is when the error occurs in the last slot

of the Static Segment. More, the Master R module can be a new physical hardware node or

a virtual one. The later is possible if all its functionalities could be integrated in a existing

166

Chapter 7. Generic Model and Applicability to TT Protocols

node as an extra software module. Either way, the functions performed will be the same and

the option physical/virtual will be made only in the implementation phase, after analyzing

the computing power and of the available hardware nodes.

7.3.1 Segment Choosing and Slot Configuration

The schedule for the Static Segment, as defined in the protocol, is defined at pre-runtime,

thus restricting the applicability of the generic method since it is not possible to apply freely

dynamic scheduling, due to the association between slots and nodes. This introduces some

limitations on method implementation in this protocol, that are further discussed next.

A key aspect is to decide in which segment to send the messages. Regarding the RetMsg

message, using the Static Segment implies reserving one or more slots, every FlexRay cycle

for this purpose, in order to have a prompt recovery. This leads to a significative bandwidth

waste, since most of the time this message would be empty. To illustrate this waste, consider

a simple system example: bit rate = 2.5 Mbps; Cycle = 5ms; BER = 2.6 · 10−7. On average

there will be 1 error every 307 cycles, meaning that 306 out of 307 times, the copies of RetMsg

messages would be empty as there is no need to trigger retransmissions, wasting several full

static slots with no purpose. The wasted bandwidth is even greater if we consider more

benign environments as, in average, the time interval between error occurrences is greater.

A better alternative is to send the RetMsg message (and its copies) in the Dynamic

Segment. Due to the nature of this segment, the chosen minislot must be available every cycle

and in case there is no need to transmit (no error in current cycle) the wasted bandwidth is

minimal as only one minislot time is really wasted, being this duration much smaller than

the duration of a static slot. Therefore, the obvious choice is to use the Dynamic Segment to

send RetMsg messages, since it uses the available bandwidth more efficiently.

In what concerns the message retransmissions, a similar reasoning as for the RetMsg

can be done concerning the segment in which the nodes should send their retransmissions,

specially as the number of messages to retransmit is greater. Therefore, for the sake of

bandwidth efficiency and prompt recovery, we also opted to use the Dynamic Segment.

So, the RetMsg copies and the message retransmissions are all transmitted in this segment.

The next issue is how to configure the minislot IDs reserved for the retransmissions of

messages in the Dynamic Segment, including the RetMsg copies. Instead of allocating a

minislot per message, a more efficient option in terms of bandwidth is to reserve one minislot

per node, which is used by that node to recover any of its messages, following a line of

reasoning similar to the approach in TTCAN proposal.

To get a measure on the method overhead it can be defined a virtual slot in the Dynamic

Segment, that contains the following components:

• time necessary to transmit the RetMsg and its copies;

• retransmission of a defined number of copies per failed message transmissions (in the

previous cycle), considering maximum size messages;

167

Chapter 7. Generic Model and Applicability to TT Protocols

• minislots unused, reserved for nodes that do not retransmit messages.

Considering a system with a total of l nodes, the virtual slot length is given by Equation

(7.5), that corresponds to the worst case length of the Virtual slot. In this equation Size() is

a function that gives the duration of a message transmission in µs, N RetMsg is the number

of copies of RetMsg and n is the number of TT messages (transmitted in the Static Segment).

The N Ret is the vector in Equation (7.6), which defines the total number of messages used

to recover errors in the previous cycle, with adequate replication level. Then, this vector

represents the number of copies to retransmit, across all error and recovery scenarios.

V irtualSlotMAX = N RetMsg · Size(RetMsg)+

+MAXi=1..max 1cycle(N Ret) ·MAXi=1..n(Ci)+

+ (l ·MAX(Replevel)−MAXi=1..max 1cycle(N Ret)) · Size(minislot)
(7.5)

N Ret = {1 ·RepLevel(1), 2 ·RepLevel(2), ...,max 1cycle ·RepLevel(max 1cycle)} (7.6)

This formulation was obtained considering that a frame packing algorithm was performed

in the initial message set and it is possible to obtain a compact message set where only one

message per node and per cycle exists. For other schemes Equation (7.5) would have to be

adapted.

In error free scenarios, the time used by the proposed recovery mechanism is given by

Equation (7.7), which represents a minimum wasted time and the remaining time allocated

in this segment could be used by other messages. Any event triggered traffic would then

benefit from the remaining segment time and obtain a lower average response time. Notice

that most of the time, as shown in the start of this section, this is the waste that occurs.

V irtualSlotmin = N RetMsg · Size(minislot)+

+ l ·MAX(RepLevel) · Size(minislot)
(7.7)

Figure 7.6 represents an example of events and message transmission, considering a system

with 5 nodes and using 3 copies per message retransmitted, as the RepLevel considered is

{3, 3, 2, 1} and max 1cycle and max cycles both equal to 4. Considering the error and

recovery scenario with 2 errors in consecutive cycles, the messages transmitted are the ones

presented in this figure and the longest virtual slot occurs in cycle (i + 1), being its value

given by Equation (7.5).

168

Chapter 7. Generic Model and Applicability to TT Protocols

Figure 7.6: Error recovery in next cycle - maximum overhead for the example considered.

7.3.2 Application Example and Protocol Efficiency Assessment

Following an example presented by BMW [Sch07], which specifies a cycle of 5 ms, frames

with 16 bytes of payload and a MacroTick (MT) equal to 2µs, being the payload capacity

considered a fair value for new applications and a good compromise to connect to other

networks, namely CAN which has maximum payload of 8 bytes. It was also considered a

total of 10 nodes, connected by a single bus and using a bit rate of 2.5 Mbps. More, the Static

segment has duration equal to 3 ms, that corresponds to 27 slots and complying with the

constraints imposed by the FlexRay specification [Fle10], a minislot with 5 MT (10µs) was

chosen, which is a conservative value for this bit rate, having approximately 200 minislots in

the Dynamic Segment.

Thus, applying Equation (7.5) the maximum virtual slot is 1140µs, i.e., 22.8% of the time

available in a cycle, being this obtained using max 1cycle = 4 and maximum RepLevel = 3.

This represents a significant improvement over the static TT approaches, as for instance the

one presented in [TBEP10], which corresponds to more more than 300% bandwidth increase,

when 4 copies are needed per message period.

The bandwidth use depends on how (how many and when) errors effectively occur, de-

pending also in specific message size and on the number of errors per cycle that must be

tolerated. Nevertheless, we can enforce an upper bound to the bandwidth use, e.g. via

a server, and thus give real-time guarantees to event-triggered traffic. For instance, keep

following the same example, a guaranteed (2000-1140) µs are available for event messages,

every Dynamic Segment. The average response should be better, as the available time is

equal to the Dynamic Segment duration minus the minimum Virtual slot duration, which is

(2000-340) µs, in this example. The 1140 µs and 340 µs correspond to the maximum and

minimum Virtual slots, obtained by Equation (7.5) and (7.7), respectively.

As shown, only a fraction of the available bandwidth is necessary to implement the re-

covery mechanism, not compromising future system expansion. The recovery time is fast,

since an error detected in a given cycle is triggered for retransmission in the same cycle and

recovered in the following one.

An improvement in recovery latency is possible by retransmiting the messages in the same

cycle where errors were detected. This is represented in Figure 7.7, where the RetMsg triggers

the retransmission of message m1 and m2 with 2 copies each, supposing that these were the

messages that suffered errors in the Static Segment. In Figure 7.7, RetMsg is also configured

with 2 copies transmission.

The method would work in the following way:

• Master R node must detect failed messages, build the RetMsg and transmit it, starting

169

Chapter 7. Generic Model and Applicability to TT Protocols

Figure 7.7: Constraints to obtain in-cycle recovery.

in the earliest possible minislot;

• slaves must decode the RetMsg message and put immediately the message(s) to retrans-

mit in the correspondent transmission buffers.

The first restriction corresponds to the time interval, say tM , that must exist in the

beginning of the Dynamic Segment, prior to the first RetMsg transmission. This is necessary

since the Master R node must detect the latest possible error, that would occur in the last

slot of the Static Segment, process it, build and transfer the RetMsg to the communication

controller buffer. The second one, the tS interval, accounts for the time the slaves need

to receive and process the RetMsg message and place in the communication controller the

messages to retransmit. To make the process faster, each slave node should maintain in

memory copies of the last messages just transmitted in the Static segment, so if instructed

to retransmit, the message is already assembled.

This will introduce additional restrictions on choosing the slots positions in the recovery

method, that are acceptable if fast microcontrollers are used. For instance a microcontroller

with 100 MHz clock and single cycle instruction processes 500 instructions in 5 µs, that

should be enough for the slaves to decode the RetMsg. These are small values, that do not

compromise the method applicability, being a small price to pay for the recovery latency

improvement obtained. Nevertheless, this should be measured experimentally, to guarantee

correct functioning.

7.4 Summary

This chapter started by presenting a generic model to attain high-reliability using time

redundancy in Time-Triggered systems. It discusses next its application to two known pro-

tocols: TTCAN and FlexRay. Details on how the method could be applied, their limitations

and overhead were also presented. As for FTT-CAN, in both cases retransmissions are sched-

uled centrally. This also implies the introduction of additional messages and code in the slave

nodes, necessary to comply with message retransmission triggering.

Resuming, the proposal for error recovery in TTCAN and FlexRay uses the following

functionalities to implement time redundancy:

• failed messages detection, done by a specific node, RetNode or Master R;

• Messaging trigger mechanism in the nodes, for retransmssions only;

• Compliance, by the slave nodes, to the triggers sent in special messages RetM or RetMsg.

170

Chapter 7. Generic Model and Applicability to TT Protocols

The proposal achieves a low error recovery time, typically equal to one cycle, and also

the bandwidth used is very small when compared to extra static windows/slots in static

scheduling approach. In FlexRay, an alternative on the recovery method would allow in-cycle

error recovery, with very small overhead increase.

It would be interesting to analyze the applicability of the proposed recovery method to

emerging Ethernet based protocols with real-time guarantees, as for instance TTEthernet,

AVB or FTT-HaRTES.

171

Chapter 7. Generic Model and Applicability to TT Protocols

172

Chapter 8

Conclusions and Future work

Distributed Embedded Systems (DES) are pervasive in technological and advanced soci-

eties, controlling all sorts of equipment and machinery. The computing nodes that constitutes

the DES use a communication network to exchange messages, cooperating between them to

fullfill its intended function.

The DES are often used in systems that are safety-critical or at least need to present

high-levels of reliability, so the underlying network has also to present them. But, as in any

real network, transmission errors will always be present, which must be resolved to obtain

the intended reliability of this subsystem. The network has to assure the timely and correct

delivery of messages, despite the error occurrence, being this typically obtained using fault

tolerance techniques.

The thesis here presented argues that is possible to obtain real-time functioning, with

adequate reliability level, recurring to message retransmission that are centrally scheduled.

Also, obtaining this goal is compatible with prompt error recovery and attaining bandwidth

efficiency.

One contribution is this new method, that uses a CAN network with a Time-Triggered

setting, using the FTT paradigm, taking advantage of its online scheduling of the time-

triggered traffic. Then by adding a module to detect errors in each Elementary Cycle and a

server to manage the errors detected, it is possible to make error recovery in the following

cycle. The retransmissions requests are then fed to the online scheduler by the error server,

which integrates these requests in the scheduling process of regular TT messages. The server

choice and its parametrization is obtained using limit error scenarios bounded by the fault

model used, identifying the most demanding error scenarios and determines the level of

replication needed to guarantee error recovery in the next FTT-CAN elementary cycle. All

the necessary steps were discussed in detail, including the corresponding algorithms.

To assess the proposed recovery method an event simulator of FTT-CAN networks was

built, which constitutes also a contribution of this work. The simulator includes an error pat-

tern generator, with single bit-errors and limited to one per EC or with compound sequences

of multiple errors in consecutive cycles, corresponding to the fault scenarios previously iden-

tified.

173

Chapter 8. Conclusions and Future work

Then, the proposed error recovery mechanism was simulated with several well-known

benchmarks, as well as random message sets and is compared with other methods available

in the literature. The simulations showed that the proposed method is effective in promptly

recovering errors in time-triggered messages, using approximately two orders of magnitude

less average bandwidth than other approaches, while the instantaneous bandwidth required

by our method (average of the random sets) is also always lower than the one used by other

methods, allowing for the application of the error recovery method to message sets with

greater bandwidth utilization.

On the other hand, our method presents a recovery latency equal to one cycle while other

approaches can recover in the cycle in which the error occurred. This has implications on

Elementary Cycle time choosing and may force our mechanism to use shorter cycles to handle

fast messages appropriately.

The proposed method was tailored for a specific protocol, the FTT-CAN, but possess some

generic characteristics that were identified, which allowed it to be abstracted from specific

protocols, making it generic to Time-Triggered protocols. Then, with some adaptations it can

be applied to different protocols, being this discussed for the TTCAN and FlexRay protocols,

which were previously presented in Chapter 3.

As these protocols use static schedules, contrary to FTT-CAN, it is not possible to sched-

ule retransmissions together with regular TT traffic. An additional module must be added

to the system, that listens to all bus traffic and schedules the retransmissions, sending a spe-

cial message to trigger retransmissions in the slaves, that must be updated with additional

code to respond accordingly. The TTCAN protocol uses a single Arbitration window, shared

by all nodes and where they can send their retransmissions. In FlexRay networks, due to

TDMA access, it is used the Dynamic Segment, where reserved minislots per node are used

to retransmit messages. The performed analysis in both protocols allows to conclude that the

new recovery method is more bandwidth efficient than the static Time-Triggered approaches.

8.1 Future work

An investigation work is never completed, as the research for solutions for the initial

problem always give rise to a myriad of new unresolved questions. Due to lack of time,

material limitations or simply because they are slightly out of the scope of the proposed

work, these new directions are, most of the time, not followed.

Some of the directions that can be pursued in the future are the following:

• Admit different error detection scenarios, as for instance the ones when there is an

inconsistent view of errors by the diverse recipients;

• Extend our approach to other error models than the Poisson single bit error model, so

that we can accurately apply our method to situations with error bursts and periods of

sustained higher interference;

174

Chapter 8. Conclusions and Future work

• The proposal in this thesis copes only with transient faults, so recurring to the proposal

of FTT with multiple buses [Sil10], and use it as a base to extend the fault tolerance

mechanism to tolerate permanent failures, buses, communication controllers and nodes,

increasing this way the overall system dependability;

• The optimization and reduction of the complexity in the schedulability and analysis

techniques is another direction to pursue.

By joining the subjects studied in this work, with the author teaching activities and

interest in communication networks for DES, a line of possible future work is also to develop

a implementation of a FTT-CAN FD version, with multiple bus access (two just to start), for a

32 bit microcontroller family and test it with a hardware fault injector. After development and

correct functioning verification, this FTT-CAN FD implementation would be made publicly

available, free of charge.

175

Chapter 8. Conclusions and Future work

176

Bibliography

[ABR+93] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, September 1993.

[AF01] L. Almeida and J. A. Fonsec. Analysis of a simple model for non-preemptive
blocking-free scheduling. In Proceedings of the ECRTS01 (EUROMICRO Conf.
Real-Time Systems), pages 233–240, Delft, The Netherlands, June 2001. 13-15
June.

[AFD05] Aircraft data network, part 7: Avionics full duplex switched ethernet (afdx)
network. arinc specication 664, 2005.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):1–23, January 2004. Jan-March 2004.

[AP12] F. Ataide and C. Pereira. Ftt-can: Estudo de uma aplicao automotiva. Revista
Controle & Automação, 2012.

[APF02] L. Almeida, P. Pedreiras, and J. A. Fonseca. The ftt-can protocol: why and how.
IEEE Transactions on Industrial Electronics, 49(6):1189–1201, December 2002.

[APL+06] F. Ataide, C. Pereira, W. Lages, , and A. Assis. On the design of an embedded
ftt-can platform with improvement of its inherent jitter. In Proceedings of the
4th International IEEE Conference on Industrial Informatics, Singapore, August
2006.

[BB99] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In Pro-
ceedings of the 20th IEEE Real-Time Systems Symposium, page 6878, Phoenix,
AZ, USA, December 1999. 13 December 1999.

[BB03] I. Broster and A. Burns. The babbling idiot in event-triggered real-time sys-
tems. In Proceedings of the 22nd IEEE Real-Time Systems Symposium - Work-
In-Progress Session, 2003.

[BBB03] E. Bini, G. Buttazzo, and G. Buttazzo. Rate monotonic scheduling: The hyper-
bolic bound. IEEE Transactions on Computers, 52(7):933–942, July 2003.

[BBRN02] I. Broster, A. Burns, and G. Rodriguez-Navas. Probabilistic analysis of can with
faults. In Proceedings of the 23rd IEEE Real-Time Systems Symposium, page
269278, Austin, USA, December 2002. 35 December.

177

Bibliography

[BBRN04] I. Broster, A. Burns, and G. Rodrguez-Navas. Comparing real-time communi-
cation under electromagnetic interference. In Proceedings of the 16th Euromicro
Conference on Real-Time Systems (ECRTS04), Catania, Sicily, Italy, June 2004.
June 30 - July 2, 2004.

[BDBP06] A. Ballesteros, S. Derasevic, M. Barranco, and J. Proenza. First implementation
and test of reintegration mechanisms for node replicas in the ft4ftt architecture. In
Proceedings of the 21th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2016), Berlin, 2006.

[BG91] Robert Bosch GmbH. Controller Area Network (CAN) specification - version 2.0.
Technical report, Bosch GmbH, Robert, 1991.

[BG12] Robert Bosch GmbH. CAN with flexible data-rate - specification version 1.0.
Technical report, Bosch GmbH, Robert, 2012.

[BPG00] J. Berwanger, M. Peller, and R. Griessbach. byteflight - a new protocol for safety
critical applications. In Proceedings of the FISITA World Automotive Congress,
Seoul, Korea, June 2000. 12-15 June.

[BS14] Unmesh D. Bordoloi and Soheil Samii. The frame packing problem for can-fd.
In Proceedings of the 2014 IEEEReal-Time Systems Symposium (RTSS), 2014
IEEE, Rome, Italy, December 2014. IEEE.

[But11] G. C. Buttazzo. Hard Real-Time Computing Systems - Predictable Scheduling
Algorithms and Applications. Springer USA, New York, 3rd edition, 2011.

[CBF01] F. Coutinho, J. Barreiros, and J.A. Fonseca. Scheduling for a ttcan network
wtth a stochastic optimization algorithm. In Proceedings of the IFAC interna-
tional conference on fieldbus systems and their applications, Amsterdam, The
Netherlands, 2001.

[CSSLC00] P. Castelpietra, Y.-Q Song, F. Simonot-Lion, and O. Cayrol. Performance eval-
uation of a multiple networked in-vehicle embedded architecture. In Proceedings
2000 IEEE International Workshop Factory Communication Systems, pages 187–
194, Porto, Portugal, September 2000. IEEE.

[DNGG12] H. Di Natale, M.and Zeng, P. Giusto, and A. Ghosal. Understanding and Us-
ing the Controller Area Network Communication Protocol Theory and Practice.
Springer-Verlag, 1st edition edition, 2012.

[FAF+06] J. Ferreira, L. Almeida, J. A. Fonseca, P. Pedreiras, E. Martins, G. Rodriguez-
Navas, J. Rigo, and J. Proenza. Combining operational flexibility and depend-
ability in ftt-can. IEEE Transactions on Industrial Informatics, 2(2):95–102, May
2006.

[FAFF04] J. Ferreira, O. Arnaldo, P. Fonseca, and J.A. Fonseca. An experiment to assess
bit error rate in can. In Proceedings of 3rd International Workshop of Real-Time
Networks (RTN2004), pages 15–18, 2004.

[Fer05] J. Ferreira. Fault-Tolerance in Flexible Real-Time Communication Systems. PhD,
Universidade de Aveiro, Aveiro, 2005.

[Fle05] FlexRay Consortium. Flexray communications system, electrical physical layer
specication, version 2.1. Technical report, FlexRay Consortium, May 2005.

178

Bibliography

[Fle10] FlexRay Consortium. Flexray communications system, protocol specication ver-
sion 3.0.1 revision a. Technical report, FlexRay Consortium, December 2010.

[FPAF02] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca. Achieving fault tolerance
in ftt-can. In 4th IEEE International Workshop on Factory Communication
Systems (WFCS’2002) Proceedings, pages 125–132, Väster̊as, Sweden, August
2002.

[FTT18] http://paginas.fe.up.pt/ ftt/sections/repository/index.html, 2018.

[GPBB19] D. Gessner, J. Proenza, M. Barranco, and A. Ballesteros. A fault-tolerant eth-
ernet for hard real-time adaptive systems. IEEE Transactions on Industrial In-
formatics, 15(5):2980–2991, May 2019.

[HMFH02] F. Hartwich, B. Mller, T. Fhrer, and R. Hugel. Timing in the ttcan network.
CAN Newsletter, 2002.

[HP03] M. G. Harbour and J.C. Palencia. Response time analysis for tasks scheduled
under edf within fixed priorities. In Proceedings of the 24th IEEE Real-Time
Systems Symposium, Cancun, Mexico, December 2003. 5.December.

[iA15] CAN in Automation. CAN in Automation(CiA): Controller area network (can).
http://www.can-cia.org, July 2015.

[Inc07] Microchip Technology Inc. PIC18F2585/2680/4585/4680 Data Sheet. Microchip
Technology Inc, Chandler, AZ, USA, 2007.

[Inc17] Microchip Technology Inc. ATSAME51J18A Data Sheet. Microchip Technology
Inc, Chandler, AZ, USA, 2017.

[Int93] SAE International. Class c application requirement considerations - sae technical
report j2056/1. Technical report, SAE International, PA, USA, June 1993.

[KAGS05] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered
ethernet (tte) design. In Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2005 (ISORC 2005), Seattle, WA,
USA, May 2005. IEEE.

[KB03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings of the
IEEE, 91(1):112–126, January 2003.

[KCM05] J. Kaiser, B. Cristiano, and C. Mitidieri. Cosmic: A real-time event-based mid-
dleware for the can-bus. Journal of Systems and Software, 77(1):27–36, July
2005.

[KL99] J. Kaiser and M. Livani. Achieving fault-tolerant ordered broadcasts in can. In
Jan Hlavička, Erik Maehle, and András Pataricza, editors, Dependable Computing
— EDCC-3, pages 351–363, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. Real-Time Systems Series. Springer US, 2nd edition, 2011.

[Lap95] J.-C. Laprie. Dependable computing: Concepts, limits, challenges. In Proceed-
ings of the 25th Int. Symp. on Fault-Tolerance Computing (FTCS-25), Pasadena,
USA, June 95.

179

Bibliography

[Law13] Wolfhard L. Lawrenz. CAN System Engineering: From Theory to Practical Ap-
plications. Springer, 2nd edition, 2013.

[LH02] G. Leen and D. Heffernan. Ttcan: a new time-triggered controller area network.
Microprocessors and Microsystems, 26(2):77–94, March 2002.

[Lin12] T. Lindenkreuz. Can fd - can with flexible data-
rate (vector kongress 2012 presentation). on-line:
https://vector.com/portal/medien/cmc/events/commercial events/VectorCongress 2012/VeCo12 8 NewBusSystems 3 Lindenkreuz Lecture.pdf,
2012.

[LL73] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 1(20):40–61, January 1973.

[LNZ+09] W. Li, M. Natale, W. Zheng, P. Giusto, A. Sangiovanni-Vincentelli, and S. Se-
shia. Optimizations of an application-level protocol for enhanced dependability
in flexray. In Proceddings of Design, Automation & Test in Europe Conference
& Exhibition, pages 1076–1081, Nice, France, April 2009. 20-24 april.

[LSS87] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness
in hard real-time environments. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 261–270, San Jose, CA, USA, December 1987.

[MAF+06] R. Marau, L. Almeida, J. A. Fonseca, J. Ferreira, and V. Silva. Assessment of
ftt-can master replication mechanisms for safety-critical applications. SAE 2006
Transactions Journal of Passenger Cars: Electronic and Electrical Systems, April
2006. E XTRA-INFO-OPTIONAL.

[Mar09] R. Marau. Real-time communications over switched Ethernet supporting dynamic
QoS management. PhD, Universidade de Aveiro, Aveiro, 2009.

[MB76] Robert Metcalfe and David Boggs. Ethernet: Distributed packet switching for
local computer networks. Communications of the ACM, 19(7):395–404, July 1976.

[MBSP02] R. Maier, G. Bauer, G. Stöger, and S. Poledna. Time-triggered architecture: A
consistent computing platform. IEEE Micro, 22:36–45, 2002.

[MGL+12] P. Milbredt, M. Glab, M. Lukasiewycz, A. Steininger, and J. Teich. Designing
flexray-based automotive architectures: A holistic oem approach. In Proceedings
of the DATE12 - Design, Automation & Teste in Europe Conference, Dresden,
Germany, March 2012.

[MN10] U. Mohammad and N. Nizar. Development of an automotive communication
benchmark. Canadian Journal on Electrical and Electronics Engineering, 1(5),
August 2010.

[MVPA13] L. Marques, V. Vasconcelos, P. Pedreiras, and L. Almeida. Error recovery in
time-triggered communication systems using servers. In Proceedings 8th IEEE
International Symposium on Industrial Embedded Systems (SIES’13), Porto, Por-
tugal, June 2013.

[Nol03] Thomas Nolte. Reducing Pessimism and Increasing Flexibility in the Controller
Area Network. PhD thesis, Malardalen University, 2003.

180

Bibliography

[NSS00] N. Navet, Y.-Q. Song, and F Simonot. Worst-case deadline failure probability
in real-time applications distributed over controller area network. Journal of
Systems Architecture, 46(7):607–617, April 2000.

[Obe05] R. Obermaissser. Event-Triggered and Time-Triggered Control Paradigms.
Springer, 2005.

[PAG02] P. Pedreiras, L. Almeida, and P. Gai. The ftt-ethernet protocol: merging flex-
ibility, timeliness and efficiency. In Proceedings 14th Euromicro Conference on
Real-Time Systems, Vienna, Austria, June 2002. 1921 June 2002.

[PAK08] O. Pfeiffer, A. Ayre, and C. Keydel. Embedded Networking with CAN and
CANopen. Greenfield: Copperhill Technologies Corporation, 1st edition, 2008.

[Par07] Dominique Paret. Multiplexed Networks for Embedded Systems - CAN, LIN,
Flexray, Safe-by-Wire ... Chichester: John Wiley & Sons, 1st edition, 2007.

[Ped03] P. Pedreiras. Supporting Flexible Real-Time Communication on Distributed Sys-
tems. PhD thesis, Universidade de Aveiro, 2003.

[PF04] J. Pimentel and J. A. Fonseca. Flexcan: A flexible architecture for highly depend-
able embedded applications. In Proceedings of the Third International Workshop
on Real-Time Networks, Held in Conjunction with the 16th Euromicro Interna-
tional Conference in Real-Time Systems, Catania, Italy, June 2004.

[PHN00] S. Punnekkat, H. Hansson, and C. Norstrom. Response time analysis under
errors for can. In Proceedings of the 6th Real-Time Technology and Applications
Symposium (RTAS), 2000.

[PKOS04] P Peti, H. Kopetz, R. Obermaisser, and N Suri. From a federated to an integrated
architecture for dependable embedded systems. Technical report, Technische
Universitat Wien, 2004.

[PMJ00] J. Proenza and J. Miro-Julia. Majorcan: A modication to the controller area net-
work protocol to achieve atomic broadcast. In Proceedings IEEE Int. Workshop
on Group Communications and Computations, Taipei, Taiwan, April 2000.

[RVA+98] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant
broadcasts in can. In Digest of Papers of the 28th IEEE International Symposium
on Fault-Tolerant Computing Systems, pages 150–159, Munich, Germany, June
1998. 2325 June.

[San11] R. Santos. Enhanced Ethernet Switching Technology for Adaptive Hard Real-Time
Applications. PhD, Universidade de Aveiro, Aveiro, 2011.

[SBCH13] A. Sheikh, O. Brun, M. Chramy, and P.-E. Hladik. Optimal design of virtual
links in afdx networks. Real-Time Systems, 49(3), 2013.

[Sch07] A. Schedl. Goals and architecture of flexray at bmw. Slides presented at the
Vector FlexRay Symposium, March 2007.

[SF06] V. Silva and J.A. Fonseca. Using ftt-can to combine redundancy with increased
bandwidth. In Proceedings of the 6TH IEEE International Workshop on Factory
Communication Systems, Stockholm, Sweden, November 2006.

181

Bibliography

[SFF06] V. Silva, J.A. Fonseca, and J. Ferreira. Using ”ftt-can” to the flexible control of
bus redundancy and bandwidth usage. In Proceedings of the 11TH International
”CAN” Conference, Torino, Italy, June 2006. June 28-30.

[SFF07a] V. Silva, J.A. Fonseca, and J. Ferreira. Adapting the ftt-can master for multiple-
bus operation. In Proceedings of the IEEE 5th International Conference on In-
dustrial Informatics, page 305310, Patras, Greece, December 2007.

[SFF07b] V. Silva, J.A. Fonseca, and J. Ferreira. Flexible bus media redundancy. In
Proceedings of the International Workshop on Dependable Embedded Systems (In
Conjunction with the 26th Symposium on Reliable Distributed Systems), Beijing,
China, April 2007.

[SFF07c] V. Silva, J.A. Fonseca, and J. Ferreira. Master replication and bus error detection
in ”ftt-can” with multiple buses. In Proceedings of the 12th IEEE Conference on
Emerging Technologies and Factory Automation, page 305310, Vienna, Austria,
July 2007. 23-27 July.

[Sil10] V. Silva. Flexible Redundancy and Bandwidth Management in Fieldbuses. PhD,
Universidade de Aveiro, Aveiro, 2010.

[SLS95] J. Strosnider, J. Lehoczky, and L. Sha. The deferrable server algorithm for en-
hancing aperiodic responsiveness in hard-real-time environments. IEEE Trans-
actions on Computers, 44(1):73–91, January 1995.

[SS07] K. Schmidt and E.G. Schmidt. Systematic message schedule construction for
time-triggered can. IEEE TRANSACTIONS ON VEHICULAR TECHNOL-
OGY, 56(6):3431–3441, November 2007.

[SS10] M. Short and I. Sheikh. Computing optimal window sizes to enforce dependable
communications in time-triggered controller area networks. In Proceedings of
the 9th International Workshop on Real-Time Networks, page 3843, Brussels,
Belgium, July 2010.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard real-time
systems. Journal of Real-Time Systems, July 1989.

[ST16] M. Steen and A. Tanenbaum. A brief introduction to distributed systems. Com-
puting, 98:967–1009, August 2016.

[STA04] ISO INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO
11898-4 :2006 Road vehicles Controller Area Network (CAN) Part 4: Time-
triggered communication, 2004.

[STM+06] F. Santos, J. Trovao, A. Marques, P. Pedreiras, J. Ferreira, L. Almeida, and
M. Santos. A modular control architecture for a small electric vehicle. In Pro-
ceedings of the 11th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’2006), pages 139–144, Prague, Czech Republic,
September 2006.

[TB94] K. Tindell and A. Burns. Technical report ycs 229 - guaranteed message la-
tencies for distributed safety-critical hard real-time networks. Technical report,
Department of Computer Science, University of York, 1994.

182

Bibliography

[TBEP10] B Tanasa, U. Bordoloi, P. Eles, and Z. Peng. Scheduling for fault-tolerant com-
munication on the static segment of flexray. In 31st IEEE Real-Time Systems
Symposium, pages 385–394, San Diego, CA, USA, December 2010.

[Vos08] Wilfried Voss. A Comprehensible Guide to J1939. Copperhill Technologies Cor-
poration, 2008.

[WI11] B. M. Wilamowski and J. D. Irwin, editors. Industrial Communication Systems.
CRC Press, second edition, 2011.

[WL88] J. Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77:1–36, 1988.

[Zel17] Holger Zeltwanger. Market research - ”the only statistics you can trust are those
you falsified yourself”. CAN Newsletter, (2):42–44, 2017.

183

Appendix A

Benchmarks

A.1 SAE

The benchmark defined in [Int93] was intended to be representative of an automotive
communication system, namely in an electric car communication system. In fact, SAE class C
was defined for the real-time and fault-tolerant aspects of communication in the car industry.
The SAE Benchmark describes the set of signals exchanged on point-to-point links in a
prototype electric car, and has been later adapted to CAN in [TB94]. The benchmark is
comprised of 7 subsystems exchanging 53 messages. A optimized version, with signal packing,
presented in [TB94] is in Table A.1. However, the characteristics of the SAE benchmark are
not exactly the ones of a typical automotive CAN network and it is no more realistic in terms
of data exchanged and number of nodes.

Table A.1: SAE benchmark message set

DLC T D
Signal Numbers ID (bytes) (ms) (ms)

14 1 50 5
8, 9 2 5 5

7 3 5 5
43, 49 4 5 5

11 5 5 5
32, 41 6 5 5

31, 34, 35, 37, 38, 39, 40, 44, 46, 48, 53 7 10 10
23, 24 , 25, 28 8 10 10

15, 16, 17, 19, 20, 22, 26, 27 9 10 10
41, 43, 45, 47, 49, 50, 51, 52 10 10 10

18 11 50 20
1, 2, 4, 6 12 100 100

12 13 100 100
10 14 100 100

3, 5, 13 15 1000 1000
21 16 1000 1000

33, 36 17 1000 1000

This benchmark was used in several studies.

A.2 Updated SAE

The previous benchmark reveals itself outdated, as with new functionalities implemented
in modern cars, as for instance Departure Lane and ADAS. A revised message set with the

184

Appendix A. Benchmarks

introduction of these new functionalities was presented in [MN10]. The full list of messages
is presented in Table, with the identification of each message parameter (payload in bytes,
period and Deadline) and the node that transmits each message. The ID assigning was done
using fixed priorities, namely Deadline Monotonic.

Table A.2: Updated SAE benchmark message set

DLC T D
Source Node ID (bytes) (ms) (ms)

Body Control Module 1 1 50 5
Hydraulic Brake Control Unit 2 2 5 5

Body Control Module 3 1 5 5
Engine Control Module 4 2 5 5

Transmission Control Module 5 1 5 5
Engine Control Module 6 2 5 5

Throttle Control unit 7 1 5 5
Traction Control unit 8 1 5 5

Front-Left Wheel Module 9 1 7.5 7.5
Front-Right Wheel Module 10 1 7.5 7.5

Rear-Left Wheel Module 11 1 7.5 7.5
Rear-Right Wheel Module 12 1 7.5 7.5

Body Control Module 13 1 7.5 7.5
Electronic Brake Control Module 14 4 7.5 7.5

Traction Control unit 15 4 7.5 7.5
ESP/ROM 16 4 7.5 7.5

Body Control Module 17 1 10 10
Body Control Module 18 2 10 10

Engine Control Module 19 6 10 10
Engine Control Module 20 2 10 10
Engine Control Module 21 3 10 10
Active Frame Steering 22 2 10 10

Front-Left Wheel Module 23 2 12.5 12.5
Front-Right Wheel Module 24 2 12.5 12.5

Rear-Left Wheel Module 25 2 12.5 12.5
Rear-Right Wheel Module 26 2 12.5 12.5

Active Suspension unit 27 4 12.5 12.5
ESP/ROM 28 5 12.5 12.5

Adaptative Cruise Control 29 3 12.5 12.5
Hydraulic Brake Control Unit 30 1 50 20

Body Control Module 31 4 100 100
Hydraulic Brake Control Unit 32 1 100 100
Transmission Control Module 33 1 100 100

Body Control Module 34 3 1000 1000
Engine Control Module 35 1 1000 1000

Transmission Control Module 36 1 1000 1000

A.3 PSA

In [CSSLC00]a study on a research vehicle conducted for PSA Peugeot-Citroen Automo-
bile Company was presented, being the messages exchanged in the network the ones presented
in table 6.2. Messages are referred as X, Y and Z that were not disclosed due to confidential-
ity reasons. The network architecture is presented in Figure A.1 has two different buses, one
CAN and one VAN, interconnected by a module termed ”Intelligent Switching Unit” that
is responsible for protocol adaptions for the messages exchanged between buses. The VAN
protocol is similar to CAN in many aspects being distinct from the later by essentially the
following characteristics: maximum payload equal to 28 bytes, IDs with 12 bits and possibil-

185

Appendix A. Benchmarks

ity of in-frame response. It also uses Enhanced Manchester bit coding and no bit-stuffing is
necessary. The VAN protocol was in the meanwhile dropped by its proponents, essentially
the PSA group, and is no longer used.

Figure A.1: PSA prototype network.

Table A.3: PSA Benchmark message set (original)

Frame ID DLC T Network
Source Node (bytes) (ms)

Engine Control 1 8 10 CAN
Wheel Angle Sensor/DHC 2 3 14 CAN

Engine Control 3 3 20 CAN
Automatic Gear Box (AGB) 4 2 15 CAN

ABS/VDC 5 5 20 CAN
ABS/VDC 6 5 40 CAN
ABS/VDC 7 4 15 CAN

Body Application Controller (ISU) 8 5 50 CAN
Suspension Controller 9 4 20 CAN

Engine Control 10 7 100 CAN
Automatic Gear Box (AGB) 11 5 50 CAN

ABS/VDC 12 1 100 CAN

Body Application Controller (ISU) 13 8 50 VAN
Body Application Controller (ISU) 14 10 10 VAN

Y 15 16 50 VAN
X 16 4 150 VAN
X 17 4 200 VAN
Z 18 20 100 VAN
Z 19 2 150 VAN

From the original network and bus we derived a new message set, corresponding to all
the messages that are transmitted in the CAN bus only, where the Intelligent Switching Unit
is responsible for sending all messages from the X, Y and Z modules, adapting it to the CAN
protocol limitations, namely by breaking messages that have a payload greater than 8 bytes
in several messages.

The obtained message set is the one presented in Table A.4

A.4 VEIL

The VEIL is a small electric vehicle with a variety of energy sources and is equipped
with X-by-wire controls for which the proposed fault-tolerance techniques are particularly
relevant.

186

Appendix A. Benchmarks

Table A.4: PSA Benchmark message set (adapted)

Frame ID DLC T D
Source Node (bytes) (ms) (ms)

Engine Control 1 8 10 10
Wheel Angle Sensor/DHC 2 3 14 10

Engine Control 3 3 20 20
Automatic Gear Box (AGB) 4 2 15 15

ABS/VDC 5 5 20 20
ABS/VDC 6 5 40 40
ABS/VDC 7 4 15 15

Body Application Controller (ISU) 8 5 50 50
Suspension Controller 9 4 20 20

Engine Control 10 7 100 100
Automatic Gear Box (AGB) 11 5 50 50

ABS/VDC 12 1 100 100
Body Application Controller (ISU) 13 8 50 50
Body Application Controller (ISU) 14, 15 10 (5, 5) 10 10

Y 16, 17 16 (8, 8) 50 50
X 18 4 150 150
X 19 4 200 200
Z 20, 21, 22 20 (7,7,6) 100 100
Z 23 2 150 150

Figure A.2: VEIL - Small Electric Vehicle Prototype.

Table A.5: VEIL benchmark message set

Frame DLC T D Frame DLC T D
Function ID (bytes) (ms) (ms) Function ID (bytes) (ms) (ms)

ang stw 1 2 10 10 volt bat bnk1 11 8 100 100
ang whl 2 2 10 10 pwr 12 1 250 250

pos brk+pos acc 3 4 10 10 eng bat 13 2 500 500
veil veloc 4 1 20 20 enb conv+enb vfd 14 2 500 500

vpl dcl 5 2 20 20 tmp vfd 15 1 1000 1000
cur im + vel im 6 4 20 20 tmp bat 16 1 1000 1000

eng sc 7 2 50 50 eng sp 17 2 1000 1000
aes 8 3 50 50 tmp bat bnk1 18 8 1000 1000

vol dcl+cur dcl 9 4 100 100 tmp bat bnk2 19 8 1000 1000
volt bat bnk1 10 8 100 100

187

Appendix A. Benchmarks

Figure A.3: Power and communication network in VEIL.

188

Appendix B

Other Simulation Results

B.1 First Results With Poisson Model

Simulation using simple model, BER = 2.6· and 10−7, 10 million EC’s, LEC = 5 ms, 10
simulation runs each.

Table B.1: Error recovery ratio for PSA benchmark - CS/CMAX varying from 1 to 10.

Unrecovered Message Error
CS/CMAX Errors Recovery Ratio

1 46.5 95.987%
2 0.9 99.923%

3 ... 10 0.0 100.000%

Table B.2: Error recovery ratio for VEIL benchmark - CS/CMAX varying from 1 to 10.

Unrecovered Message Error
CS/CMAX Errors Recovery Ratio

1 11.1 98.028%
2 0.1 99.983%

3...10 0.0 100.000%

Choosing possible values for TS for the PSA and VEIL benchmarks - Tables B.3 and B.4.

Table B.3: Message recovery ratio with different (CS , TS) combinations for PSA benchmark

TS/LEC

CS 125 250 375 750

1 99.301% 98.829% 98.216% 95.987%
2 100.000% 100.000% 99.970% 99.923%

3 ... 10 100.000% 100.000% 100.000% 100.000%

Server BW 0.0432% 0.0216% 0.0216% 0.0108%

Simulations to obtain error recovery ratio as a function of the server capacity with higher
than Aggressive environment. Performed 10 runs with 10 Mcycles each, LEC = 5ms,
TS/LEC = 750 and λ = 2.6 faults/second - results in tables B.5 and B.6

189

Appendix B. Other Simulation Results

Table B.4: Message recovery ratio with different (CS , TS) combinations for VEIL benchmark

TS/LEC

CS 125 250 375 750

1 99.940% 99.820% 99.407% 98.028%
2 100.000% 100.000% 100.000% 99.983%

3 ... 10 100.000% 100.000% 100.000% 100.000%

Server BW 0.0432% 0.0216% 0.0216% 0.0108%

Table B.5: PSA benchmark - Error recovery ratio as a function of the server capacity.

Missed Message Error
CS Deadlines Recovery Ratio

1 3939.4 66.402%
2 991.0 91.458%
3 199.8 98.296%
4 31.6 99.731%
5 4.2 99.964%
6 2.2 99.981%

7...10 1.6 99.986%

Table B.6: VEIL benchmark - Error recovery ratio as a function of the server capacity.

Missed Message Error
CS Deadlines Recovery Ratio

1 1072.4 81.274%
2 141.1 97.537%
3 16.4 99.714%
4 2.1 99.965%
5 0.9 99.985%

6...10 0.7 99.987%

190

Appendix B. Other Simulation Results

B.1.1 Polling Server

Simulations results using a Polling Server. Simulatios performed with bit rate = 1000
kbps, BER = 2.6 · 10−7, 10 million cycles, LEC = 5ms.

Table B.7: Polling server TS choosing, with PSA benchmark.

Missed Message Error
TS/LEC Deadlines Recovery Ratio

1 0 100.0%
2 502 55.2%
5 594 47.0%
10 938 16.3%
100 1114 0.6%

Table B.8: Polling server TS choosing, with VEIL benchmark.

Missed Message Error
TS/LEC Deadlines Recovery Ratio

1 0 100.0%
2 315 44.7%
5 335 41.2%
10 471 17.4%
100 561 1.6%

B.1.2 Sporadic Server

Simulations results using a Sporadic Server. Simulations with bit rate = 1000 kbps,
TS/LEC = 750, BER = 2.6 · 10−6 and 10 million cycles, LEC = 5ms - 10 simulation runs,
each CS .

Table B.9: Sporadic Server, PSA benchmark - Error recovery ratio as a function of the server
capacity.

Missed Message Error
CS Deadlines Recovery Ratio

1 7934.4 32.479%
2 4392.2 62.622%
3 752.7 93.594%
4 157.4 98.660%
5 21.2 99.820%
6 7.1 99.940%

7 ... 10 1.3 99.989%

191

Appendix B. Other Simulation Results

Table B.10: Sporadic Server,VEIL benchmark - Error recovery ratio as a function of the
server capacity.

Missed Message Error
CS Deadlines Recovery Ratio

1 3548.9 37.923%
2 1277.9 77.647%
3 32.8 99.426%
4 4.2 99.926%
5 1.7 99.971%

6 ... 10 0.6 99.989%

B.2 Simulation Results for Priority Assignment of Deferrable
Server

The simulations were performed with the following parameters Simulations with bit rate
= 1000 kbps, TS/LEC = 750, λ = 2.6 faults/sec and LSW=10.5% for PSA benchmark and
λ = 8 faults/sec and LSW=6.3% for VEIL benchmark, 10 million EC’s and LEC = 5ms - 10
simulation runs.

Table B.11: Deadline misses in message hit by errors of PSA benchmark (average)

MaxPriority SamePriority SameDMP ServerEDF

Total misses 5.9 10.1 4.9 4.0
Unrecoverable misses 4.8 4.9 3.5 3.6

Table B.12: Deadline misses in message hit by errors of VEIL benchmark (average).

MaxPriority SamePriority SameDMP ServerEDF

Total misses 12.3 17.0 11.0 11.0
Unrecoverable misses 12.0 13.0 11.0 11.0

Server average response time, test for all server policies are presented in tables B.15 and
B.16.

192

Appendix B. Other Simulation Results

Table B.13: PSA benchmark - WCRT for all tested policies.

Direct Indirect
msg no Max Same Same Server Max Same Same Server

error Priority Priority DMP EDF Priority Priority DMP EDF

1 1 2 2 2 2 1 1 1 1
2 1 2 2 2 2 1 1 1 1
3 1 2 2 2 2 1 1 1 1
4 1 2 2 2 2 2 1 1 2
5 1 2 2 2 2 2 1 1 2
6 2 4 3 3 3 2 2 2 2
7 2 3 3 3 3 2 2 2 2
8 2 3 4 4 3 2 2 2 2
9 2 3 4 4 3 4 2 2 4
10 2 3 4 4 4 4 4 4 4
11 4 5 6 6 6 4 4 4 4
12 4 5 8 8 6 4 4 4 4
13 4 5 8 8 6 6 6 6 6
14 6 7 8 8 8 8 8 8 8
15 8 9 10 10 9 8 8 8 8
16 8 9 15 15 11 8 8 8 8
17 8 9 16 16 12 16 16 16 16
18 10 11 16 16 12 18 18 18 18
19 16 17 18 18 18 18 18 20 18
20 18 19 20 20 19 20 20 20 20
21 18 19 20 20 20 20 20 20 20
22 18 19 20 20 20 20 20 20 20
23 18 19 20 20 20 20 20 20 20

Table B.14: VEIL benchmark - WCRT for all tested policies.

Direct Indirect
msg no Max Same Same Server Max Same Same Server

error Priority Priority DMP EDF Priority Priority DMP EDF

1 1 2 2 2 2 1 1 1 1
2 1 2 2 2 2 2 1 1 2
3 1 2 2 2 2 2 1 1 2
4 1 3 3 3 3 2 1 1 1
5 2 4 4 4 4 4 2 2 2
6 2 4 4 4 4 4 4 4 4
7 2 5 6 6 6 4 4 4 4
8 4 6 8 8 8 4 4 4 4
9 4 5 8 8 8 6 6 6 6
10 4 7 8 8 8 8 8 8 8
11 6 9 10 10 10 10 8 8 8
12 7 9 8 8 10 12 10 10 10
13 8 9 10 12 12 12 10 10 10
14 8 11 12 12 12 14 12 12 12
15 8 11 12 12 11 14 12 12 12
16 8 9 12 12 10 15 14 14 14
17 10 11 12 12 12 16 16 16 16
18 12 15 16 16 14 16 16 16 16
19 14 16 16 16 18 16 16 16 18

193

Appendix B. Other Simulation Results

Table B.15: PSA benchmark - Server average response time

Policy/Message 1 2 3 4 5 6 7 8 9 10 11 12
MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SamePriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.31 2.00 2.00 2.38 2.49
SameDMP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.31 2.00 2.00 2.38 2.49
ServerEDF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.01

Policy/Message 13 14 15 16 17 18 19 20 21 22 23
MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SamePriority 2.65 2.52 2.49 2.43 4.35 4.40 5.39 3.82 2.26 2.21 2.67
SameDMP 2.65 2.52 2.49 2.43 4.35 4.42 5.39 3.82 2.26 2.21 2.67
ServerEDF 2.00 2.01 1.91 1.58 2.78 2.61 2.70 2.13 2.26 2.22 2.67

Table B.16: VEIL benchmark - Server average response time

Policy/Message 1 2 3 4 5 6 7 8 9 10
MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SamePriority 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.01 2.01 2.00
SameDMP 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.01 2.02 2.01
ServerEDF 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.01 2.02 2.01

Policy/Message 11 12 13 14 15 16 17 18 19
MaxPriority 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SamePriority 2.00 1.53 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SameDMP 2.00 1.53 2.02 2.00 2.00 2.00 2.00 2.00 2.00
ServerEDF 2.00 1.53 2.02 2.00 1.97 2.00 2.00 2.00 2.00

B.3 Recovery Method with Multiple copy retransmission

Table B.17 with Updated SAE benchmark, LSW = 55.1% and and RepLevel={4, 3, 2,
1}, the messages 31, 32 and 33 have their WCRT with Indirect Interference.

Table B.18 presents values for PSA benchmark, with Aggressive environment, LSW =
28% and RepLevel={3, 3, 2, 1}.

Table B.19 is for the VEIL benchmark, with Aggressive environment, RepLevel={3, 2, 2
, 1} and LSW = 23.8%

194

Appendix B. Other Simulation Results

Table B.17: Updated SAE benchmark - Response time with all interference patterns and
RepLevel={4, 3, 2, 1}.

Indirect Interference Direct Interference
msg 4-4-4-4 4-4-6-0 4-6-4-0 4-6-0-0 6-4-4-0 6-6-0-0 6-4-0-0 4-0-0-0 4-4-4-0 4-6-0-0 6-4-0-0 6-0-0-0 IND DIR WCRT no error Deadline

1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

3 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

4 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

5 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

6 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

7 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

8 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 1 2

9 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

10 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

11 1 1 1 2 2 2 2 1 2 2 3 3 2 3 3 1 3

12 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

13 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

14 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

15 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 3

16 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 3

17 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 4

18 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 2 4

19 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 4

20 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 4

21 3 3 3 3 3 3 3 2 4 4 4 3 3 4 4 2 4

22 3 4 4 3 3 3 3 2 4 4 4 3 4 4 4 2 4

23 3 4 4 3 4 3 3 2 4 4 4 3 4 4 4 2 5

24 3 4 4 3 4 3 3 2 4 4 4 3 4 4 4 2 5

25 3 4 4 3 4 3 3 2 4 4 4 4 4 4 4 2 5

26 4 4 4 3 4 4 3 2 5 4 4 4 4 5 5 2 5

27 4 4 4 3 4 4 3 2 5 4 4 4 4 5 5 2 5

28 5 4 4 4 4 4 3 3 5 5 4 4 5 5 5 2 5

29 5 4 4 4 4 4 4 3 5 5 5 4 5 5 5 2 5

30 5 4 4 4 4 4 4 3 5 5 5 4 5 5 5 2 20

31 6 5 5 4 5 4 4 3 5 5 5 4 6 5 6 2 40

32 6 5 5 4 5 4 4 3 5 5 5 4 6 5 6 2 40

33 6 5 5 4 5 4 4 3 5 5 5 4 6 5 6 2 40

34 6 6 6 4 5 5 4 3 6 5 5 4 6 6 6 3 400

35 6 6 6 4 6 5 4 3 6 5 5 5 6 6 6 3 400

36 6 6 6 4 6 5 4 3 6 5 5 5 6 6 6 3 400

Table B.18: PSA benchmark - Response time with all interference patterns .

Indirect Interference Direct Interference

msg 3-3-3-3 3-3-6-0 3-6-3-0 3-6-0-0 6-3-3-0 6-6-0-0 6-3-0-0 4-0-0-0 3-3-3-0 3-6-0-0 6-3-0-0 6-0-0-0 IND DIR WCRT no error Deadline

1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

3 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

4 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 1 2

5 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

6 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 3

7 1 1 1 1 2 2 2 1 2 2 3 3 2 3 3 1 4

8 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3 1 4

9 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 4

10 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 8

11 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 10

12 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 1 10

13 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 10

14 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 10

15 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 10

16 2 3 3 3 3 3 3 2 3 4 4 3 3 4 4 2 20

17 3 4 4 3 4 4 3 2 4 4 4 4 4 4 4 2 20

18 3 4 4 3 4 4 3 2 4 4 4 4 4 4 4 2 20

19 3 4 4 3 4 4 3 3 4 4 4 4 4 4 4 2 20

20 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 20

21 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 30

22 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 30

23 4 4 4 4 4 4 4 3 5 5 5 4 4 5 5 2 40

195

Appendix B. Other Simulation Results

Table B.19: VEIL benchmark - response time with all interference patterns.

Indirect Interference Direct Interference

msg 3-3-3-3 3-3-4-0 3-4-3-0 3-6-0-0 4-3-3-0 4-4-0-0 6-3-0-0 4-0-0-0 3-3-3-0 3-4-0-0 4-3-0-0 6-0-0-0 IND DIR WCRT no error Deadline

1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2

3 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 1 2

4 1 1 1 1 1 1 2 1 2 2 2 3 2 3 3 1 4

5 1 1 1 1 1 1 2 1 2 2 2 3 2 3 3 1 4

6 1 1 1 1 1 2 2 1 2 2 2 3 2 3 3 1 4

7 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3 1 10

8 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 10

9 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 1 20

10 2 2 2 3 2 2 2 2 3 3 3 3 3 3 3 1 20

11 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 1 20

12 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 2 50

13 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 100

14 2 2 3 3 3 3 3 2 3 4 4 3 3 4 4 2 100

15 3 3 3 3 3 3 3 2 4 4 4 3 3 4 4 2 200

16 3 3 3 3 3 3 3 2 4 4 4 4 3 4 4 2 200

17 3 3 3 3 3 3 3 2 4 4 4 4 4 4 4 2 200

18 3 4 4 3 4 3 3 2 4 4 4 4 4 4 4 2 200

19 4 4 4 4 4 3 4 3 5 4 4 4 4 5 5 2 200

Table B.20: Comparing analytic WCRT with the one observed in simulations for the PSA
message set with LSW = 28.0% of LEC, considering an Aggressive environment.

msg 1 2 3 4 5 6 7 8 9 10 11 12

Design 2 2 2 2 3 3 3 3 3 3 3 3

Simulation 2 2 2 2 2 2 2 2 2 2 2 2

msg 13 14 15 16 17 18 19 20 21 22 23

Design 4 4 4 4 4 4 4 5 5 5 5

Simulation 3 3 3 3 3 3 3 4 3 4 4

Table B.21: Comparing analytic WCRT with the one observed in simulations for the VEIL
message set with LSW = 23.8% of LEC, considering an Aggressive environment.

msg 1 2 3 4 5 6 7 8 9 10

Design 2 2 2 3 3 3 3 3 3 3

Simulation 2 2 2 2 2 2 2 2 2 2

msg 11 12 13 14 15 16 17 18 19

Design 3 3 4 4 4 4 4 4 5

Simulation 2 2 2 3 3 3 3 3 3

196

Appendix B. Other Simulation Results

B.3.1 Controlled Retransmission vs Automatic Retransmission - Average
and WCRT

Table B.22: Comparing average response time of for the PSA benchmark with LSW = 28.0%
of LEC, considering an Aggressive environment - Controlled Retransmission vs Automatic
Retransmission

msg 1 2 3 4 5 6 7 8 9 10 11 12

Automatic 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.3333 1.3333 2.0000 1.5000 1.6667

Controlled 1.0002 1.0002 1.0002 1.0003 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

msg 13 14 15 16 17 18 19 20 21 22 23

Automatic 2.0000 2.0833 2.3333 2.8333 3.3333 4.0000 4.0000 4.0000 3.0000 3.5000 4.6667

Controlled 1.0003 1.0836 1.3337 1.6669 2.0003 2.0003 2.0003 2.0003 1.5002 1.5002 2.0002

Table B.23: Comparing WCRT of the PSA benchmark with LSW = 28.0% of LEC, consid-
ering an Aggressive environment - Controlled Retransmission vs Automatic Retransmission

msg 1 2 3 4 5 6 7 8 9 10 11 12

Automatic 1 1 1 1 1 1 1 2 2 2 2 2

Controlled 2 2 2 2 2 3 3 2 2 3 3 2

msg 13 14 15 16 17 18 19 20 21 22 23

Automatic 2 3 3 3 4 4 4 4 4 6 6

Controlled 2 3 3 3 4 4 3 4 3 3 3

Table B.24: Comparing Average RT of the VEIL benchmark with LSW = 23.8% of LEC,
considering an Aggressive environment - Controlled Retransmission vs Automatic Retrans-
mission

msg 1 2 3 4 5 6 7 8 9 10

Automatic 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.5000 2.0000 2.0000

Controlled 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0003

msg 11 12 13 14 15 16 17 18 19

Automatic 2.0000 1.5000 3.0000 3.0000 3.0000 3.0000 4.0000 4.0000 4.0000

Controlled 1.0003 1.0002 1.0002 2.0002 2.0001 2.0002 2.0002 2.0004 2.0004

197

Appendix B. Other Simulation Results

Table B.25: Comparing WCRT of the VEIL benchmark with LSW = 23.8% of LEC, consid-
ering an Aggressive environment - Controlled Retransmission vs Automatic Retransmission

msg 1 2 3 4 5 6 7 8 9 10

Automatic 1 1 1 1 1 1 1 2 2 2

Controlled 2 2 2 2 2 2 2 2 2 2

msg 11 12 13 14 15 16 17 18 19

Automatic 2 2 3 3 3 3 4 4 4

Controlled 3 2 2 3 3 3 3 3 3

198

Appendix C

Resolving IMO Scenarios in the
Master Node

The CAN controller uses different rules for the transmitter and the receivers in error
detection of the last bits of the CAN frame, namely in the EOF field, that may lead to
inconsistent scenarios [RVA+98].

The proposed method relies on the fact that the Master node shares the same view of
every message transmission state with errors or error free - with all the nodes. As previously
stated this assumption may be violated in very particular cases that need to be thoroughly
analyzed. The generic scenario is depicted in Figure C.1.

Figure C.1: Inconsistent Message Omission scenario.

When the synchronous messages are transmitted the Master is a receiver and we assume
that he has a correct and consistent message state view with all the nodes, if the error
happens previous to the last but one bit in the EOF field. If the error is on the last but one
bit, then one or more nodes (set A) may detect a dominant value in this bit, so they reject
the message and transmit an error flag. The other receiving nodes (set B) view the error
message as an overload flag and accept the message. The transmitter detects a dominant
signal on the last bit and transmits an error flag, but as the automatic retransmission is not
active, the message is not queued for retransmission by the transmitter, so some of the nodes
(set A) do not get the message and other nodes (set B) will get it. This scenario is defined as
an Inconsistent Message Omission (IMO) [RVA+98] and constitutes a serious impairment to
obtain a high-reliability transmission system. From the Master point of view, three different
scenarios may arise:

1. The Master node has the same view as the nodes in set A - in this case the message is
detected by the Master node as faulty and is recovered by the mechanism described in
this thesis and the nodes in set B will receive a second copy of the message, being this
an Inconsistent Message Duplicate - IMD [RVA+98] . This inconsistency is not critic,
since these nodes always get the message and can choose the replica to use;

199

Appendix C. Resolving IMO Scenarios in the Master Node

2. The Master node has the same view as the nodes in set B - the Master accepts the
message and considers it correct, so no further action is taken (regarding this message).
This will effectively lead to an IMO and the nodes in set A will not get the message.
This is a serious impairment to obtain the intended reliability, since one IMO per hour
is expected to happen in each mission of one hour (numbers recalculated based on the
values present in [RVA+98]), with a bus running at 1 Mbps and subject to an Aggressive
environment with BER equal to 2.6· and 10−7;

3. Only the Master has the view presented for set A and all the other nodes behavior is
the same one as the set B nodes, so all the nodes will get the message. As the Master
considers the message in error, it will be retriggered for retransmission, so all the nodes
will get a duplicate of it in the next EC (we have again an IMD). This situation is
similar to the first scenario, but in this case the retransmission would not be necessary,
since all the nodes already possess the message.

From the presented inconsistent scenarios, only the number two must be resolved if a
highly reliable transmission system is sought. This can be done in the following way, as
illustrated in Figure C.2: looking at the CAN specification [BG91] we know that if an error
occurred in the last but one bit, of at least one receiver, then an error frame is sent and then
from the last bit of the EOF field position at least six more bits (due to the sent error flag)
should have a dominant value. Then the Master must read individually these bits in order to
decide if an error occurred or not. If one of these bits have dominant value then the Master
considers that an error occurred and the message should be put in the recovery queue. In
this way we transform a possible IMO in an IMD, which does not compromise the attainment
of a high-reliability system.

Figure C.2: Proposed solution.

Nevertheless, the proposed solution can fail if an error occur in all the 4 last bits of the
frame. In this case the Master reads recessive values when in the bus a dominant level is
present. In this case the Master will consider the message as correct and some nodes may have
discard it (similar to scenario 2). The probability of occurrence of this inconsistent scenario
in an Aggressive environment is, for the Master and considering single bit errors, equal to
(2.6· and 10−7)4 which leads to a value less than 10−9 IMOs per hour (an acceptable value
even for safety critical systems). This solution needs a specific implementation in hardware,
e.g. FPGA, for the Master node only, in order to be able access individual bits of the CAN
frame (namely the last four ones, LB + 3 of the IFS) and to perform the necessary checking
actions of these bits, as previously described.

200

Appendix D

Acronyms List

GENERIC

ADAS Advanced Driver Assistance Systems

AFDX Avionics Full-DupleX Switched Ethernet

AVB Audio/Video Bridging

BACnet Building Automation Control net

BER Bit-Error Rate

CAN Controller Area Network

CA Collision Avoidance

CLP Constraint Logic Programming

COTS Commercial Off-the-Shelf

CPS Cyber-Physical Systems

CR Collision Resolution

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

DES Distributed Embedded Systems

DM Deadline-Monotonic

DS Deferrable Server

DS Dynamic Segment

ECU Electronic Control Unit

EDF Earliest-Deadline First

EMC Electromagnetic Compatibility

EMI Electro-magnetic Interference

ES Embedded Systems

FTDMA Flexible TDMA

201

Appendix D. Acronyms List

FTT Flexible Time-Triggered

HaRTES Hard Real-Time Ethernet Switching

LLF Least-Laxity First

IoT Internet of Things

IP Internet Protocol

ITS Intelligent Transportation System

ISO International Organization for Standardization

LVDS Low-Voltage Differential Signalling

LIN Loca Interconnect Network

MILP Mixed Integer Linear Programming

MAC Medium Access Control

MOST Media Oriented Systems Transport

MS minislot

MT macrotick

NES Networked Embedded System

NIT Network Idle Time

OBD On-Board Diagnostics

OEM Original Equipment Manufacturer

PDU Protocol Data Unit

QoS Quality-of-Service

RF Radio Frequency

RM Rate-Monotonic

RTS Real-Time Systems

SAE Society of Automotive Engineers

SS Sporadic Server

SS Static Segment

STP Shielded TP (cable)

TCAN Timely CAN

TDMA Time Division Multiple Access

TP Twisted Pair (cable)

TT Time-Triggered

TTA Time-Triggered Architecture

TTCAN Time-Triggered CAN

202

Appendix D. Acronyms List

TTP Time-Triggered Protocol

TTP/A Time-Triggered Protocol, SAE Class A

TTP/C Time-Triggered Protocol, SAE Class C

UTP Unshielded TP (cable)

UTSP Unshielded Twitsed Single Pair

VAN Vehicle Area Network

VANET Vehicle Ad-hoc Network

WCRT Worst Case Response Time

WorldFIP Factory Instrumentation Protocol

WSN Wireless Sensor Networks

FTT-related

AM Asynchronous Message

AMS Asynchronous Messaging System

ART Asynchronous Requirements Table

AW Asynchronous Window

EC Elementary Cycle

FTT-SE Flexible Time-Triggered communication over Switched Ethernet

LAW Length of Asynchronous Window

LEC Length of Elementary Cycle

LSW Length of Synchronous Window

LTM Length of Trigger Message

SM Synchronous Message

SMS Synchronous Messaging System

SRDB System Requirements DataBase

SRT Synchronous Requirements Table

SW Synchronous Window

TM Trigger Message

203

Appendix D. Acronyms List

204

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Thesis and Contributions
	Published works
	Thesis Outline

	Background
	Real-time Systems
	Distributed Systems and Networks
	Physical Topologies
	Medium Access Control - MAC

	Communication Paradigms

	Fault Tolerance and Reliability
	Dependability
	Threats
	Attributes
	Means
	Fault-Tolerance

	Reliability in the message transmission subsystem

	Fault Models
	Deterministic Model
	Probabilistic Model
	Experimental BER characterization in CAN networks

	Scheduling Algorithms
	Scheduling Policies
	Shedulability Bounds
	Response Time Analysis
	Processor Demand Test for EDF

	Servers
	Polling Server
	Deferrable Server
	Sporadic Server
	Summary of Servers

	Summary

	Networks for Embedded Systems
	Controller Area Network
	Introduction
	Bus Signal Levels
	Bit time
	Bit rate versus Bus length

	CAN Data-Link Layer
	 CAN Data Frame
	Remote Frame
	Error Frame
	Overload Frame

	Non-destructive arbitration mechanism â•ﬁ CSMA/CR
	Bit Stuffing mechanism
	Error detection, signaling and recovery
	Fault confinement
	Frame Filtering (Acceptance Filtering)
	Possible Inconsistent Scenarios
	CAN with Flexible Data Rate - CAN FD
	 CAN FD Data Frame

	Other Communication Protocols
	TTP/C
	Ethernet
	Proposals for Real-Time/Industrial Ethernet
	Avionics Full-DupleX Switched Ethernet (AFDX)
	TTEthernet
	FTT-Ethernet
	FTT-SE and HaRTES
	Fault Tolerance for FTT Architecture

	Other Real-Time protocols and Industrial Internet

	Time-Triggered Protocols for Operational Flexibility
	TTCAN
	Timing Synchronization and Fault Tolerance
	Scheduling Algorithms
	Inconsistency Scenarios in TTCAN networks

	FTT-CAN protocol
	Schedulability tests
	Synchronous Messages tests

	Asynchronous Messaging System Scheduling Analysis
	Asynchronous traffic scheduling

	Additional information on FTT-CAN
	The Trigger Message
	Slave Messages
	Inside the Master
	Operational Flexibility
	Master Replication
	Multibus Solution Replication
	Slotted FTT-CAN

	FlexRay Protocol
	Basic description
	Physical Topology
	Communications Organization
	Communication Cycle - Static Segment, Dynamic Segment and others
	Fault Tolerance and Dual Bus configuration

	Summary

	Error Recovery in TT Systems
	Fault-tolerance with Hardware Redundancy
	Slave Replication with Single Bus
	Bus Redundancy
	Bus and Node Redundancy

	Fault-tolerance with Temporal Redundancy
	Real-Time Event Channels in CAN
	Message Retransmission and Acknowledgement in FlexRay
	Message Replication in the Static Segment of FlexRay
	CLP Formulation
	Optimization objective

	Heuristic Approach
	Windowed Transmission in TDMA CAN
	Temporal Replicas in FTT-CAN - Locally Controlled
	Retransmission in the Asynchronous Window by the Sender

	FTT-CAN Static Error Recovery

	Summary

	Error Recovery in FTT-CAN - Dynamic Approach
	ReScheduling by the Master
	Error Recovery in the Time Domain - Single Replica Version
	Motivational Example
	The Recovery Server
	Server Type
	Obtaining Server Capacity and Period

	Message Response Time
	Message Response Time with Indirect Interference
	Message Response Time with Direct Interference
	Obtaining Response Time with Both Type of Interference's

	Priority Assignment and Scheduling Policies for the Server
	Server with Maximum Priority
	Server with Same Priority
	Server with Same Priority and Deadline Miss Protection
	Server with EDF policy

	Limits on the recovery success

	Error Recovery in the Time Domain - Multiple Replica Version
	Limitations and Motivating for an Improved Recovery Method
	Update on Server Capacity Computation
	Obtaining Worst Case Response Time of Messages with Server Interference
	Updating the Message Response Time Computation
	Obtaining the Number of Replicas
	Replica Level

	Building the Interference Patterns
	Server Interference
	Indirect Interference
	Direct Interference

	System Schedulability Test

	Resource Optimization - Obtaining Minimum LSW

	Summary

	Simulation Study and Partial Experimental Validation
	 Simulator - Single Replica Version
	Used benchmarks
	Updated_SAE benchmark
	PSA benchmark
	VEIL benchmark

	First Results with Poisson Model (limit of 1 fault per EC)
	Server Policy
	Assessing the Polling Server
	Assessing the Sporadic Server

	Priority Assigning to the Deferrable Server
	Recovered Errors and Interference
	Final remarks on priority assigning policies

	Recovery Method with Multiple-Replica Retransmission
	Updated Simulator Description

	Assessing the Error Recovery Method with Compound Fault Model and Multiple Message Retransmission
	Assessing by Simulation the Design Method
	Comparison with other Methods
	LSW Optimization and BW Required by the Error Recovery Mechanism
	LSW Optimization with Random Sets

	Issues in Master Implementation
	First experiments
	Optimizing the Scheduler to Obtain Minimum Latency

	Summary

	Generic Model and Applicability to TT Protocols
	 Generic Model
	Error Recovery Applied to TTCAN
	Windows Placement and Size
	RetM Message and Window
	Retransmissions Window

	Application Example and Additional Comments

	Error Recovery Applied to FlexRay Protocol
	 Segment Choosing and Slot Configuration
	Application Example and Protocol Efficiency Assessment

	Summary

	Conclusions and Future work
	Future work

	Bibliography
	Benchmarks
	SAE
	Updated_SAE
	PSA
	VEIL

	Other Simulation Results
	First Results With Poisson Model
	Polling Server
	Sporadic Server

	Simulation Results for Priority Assignment of Deferrable Server
	 Recovery Method with Multiple copy retransmission
	Controlled Retransmission vs Automatic Retransmission - Average and WCRT

	Resolving IMO Scenarios in the Master Node
	Acronyms List

