
SDN Controller
(Control Plane)

Data Plane

HaRTES HaRTES HaRTESHaRTES

Sensors ActuatorsIndustrial Machines Multimedia

OpenFlow
switch protocol

User Application(s)

Northbound API

Internet

Non real-time
nodes

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Luis Emanuel
Moutinho da Silva

Plataforma de Rede Tempo-Real Configurável por
Software para Sistemas de Produção Ciber-Físicos

A Real-Time Software-Defined Networking
Framework for Cyber-Physical Production Systems

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Luis Emanuel
Moutinho da Silva

Plataforma de Rede Tempo-Real Configurável por
Software para Sistemas de Produção Ciber-Físicos

A Real-Time Software-Defined Networking
Framework for Cyber-Physical Production Systems

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Telecomunicações, realizada
sob a orientação científica do Doutor Paulo Bacelar Reis Pedreiras, Professor
Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da
Universidade de Aveiro, e do Doutor Luis Miguel Pinho de Almeida, Professor
Associado do Departamento de Engenharia Electrotécnica e de Computa-
dores da Universidade do Porto.

This work has been supported by the

European Regional Development Fund

(FEDER) through a grant of the Opera-

tional Programme for Competitivity and

Internationalization of Portugal 2020 Part-

nership Agreement (PRODUTECH-SIF,

POCI-01-0247-FEDER-024541).

This work has been supported by

the research unit UID/EEA/50008/2013

(Instituto de Telecomunicações).

This work is funded by FCT/MEC through

national funds and when applicable

co-funded by FEDER – PT2020 part-

nership agreement under the project

UID/EEA/50008/2013.

Dedico este trabalho ao melhor da humanidade.

o júri / the jury

presidente / president Prof. Doutor Aníbal Guimarães da Costa
Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Alexandre Júlio Teixeira dos Santos
Professor Associado com Agregação da Universidade do Minho

Prof. Doutor Luís Miguel Moreira Lino Ferreira
Professor Adjunto do Instituto Superior de Engenharia do Porto

Prof. Doutor Manuel Alejandro Barranco González
Professor Assistente da Universitat de Les Illes Balears

Prof. Doutor Seyed Mohammadhossein Ashjaei
Professor Assistente da Mälardalen University

Prof. Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

A maratona que culminou nesta tese começou em 2013 quando, o meu
então futuro orientador Paulo Pedreiras, me perguntou (algo parecido com):
"Já andas nesta vida de investigação há uns anos... e porque não iniciar
um doutoramento?!". Pois bem, fui para casa, encomendei uma bela pizza,
e reflecti bastante (não tanto assim) no assunto. Passados poucos dias
disse-lhe eu (também algo parecido com) : "Sabes que mais... siga! Aceitas
ser o meu orientador?". E assim começou esta autêntica aventura.

Durante este período tive a felicidade de vivenciar imensas experiências que
me fizeram crescer como pessoa e também profissionalmente (desculpem
o cliché, tive de o usar). Uma das grandes oportunidades que tive foi a
experiência de docência que começou na Universidade de Aveiro e que
actualmente continua na Escola Superior de Gestão de Águeda (ESTGA).
Quero agradecer a todas as pessoas e colegas que viram em mim a
responsabilidade e o empenho necessário para esta função, e que me deram
o seu voto de confiança, apoio e amizade. Em particular, quero agradecer
ao Paulo Pedreiras, que me impulsionou para esta oportunidade de valor
incalculável. Quero agradecer também ao Válter Silva, à Margarida Urbano,
ao Joaquim Ferreira, ao José Manuel, ao Ricardo Marau, e a todos os outros
colegas da ESTGA, pela sempre pronta disponibilidade e companheirismo.
Por fim, e não tendo menor importância, quero agradecer a todos os meus
alunos pelo seu empenho, respeito, e compreensão. Espero ter-vos ajudado
a adquirir novas competências e que tenham desfrutado as aulas como eu
desfrutei :)

Uma outra, e igualmente importante experiência foi o envolvimento em
diversos projectos de investigação. Quero agradecer ao Luis Almeida e ao
seu grupo de trabalho que me acolheram pela primeira vez na Faculdade
de Engenharia da Universidade do Porto (FEUP) pela orientação destes
meus primeiros passos no mundo da investigação científica. Quero também
agradecer ao grupo de Sistemas Embutidos do Instituto de Telecomunicações
(IT) - Pólo de Aveiro por estes últimos anos fantásticos. Bruno Fernandes,
Joana Mendes, João Rufino, João Almeida, e restantes colegas, obrigado por
todas as discussões técnicas (e outras menos técnicas) agradáveis, todas
as gargalhadas e partidas, pelo espírito de grupo e entreajuda, e ainda mais
importante, obrigado pelo apoio nos dias menos bons e pela compreensão
nos dias em que exibi um maior grau de má disposição e "rabugice" :) Eu
culpo as deadlines dos artigos!!

Não posso deixar de dar uma palavra à minha família e amigos:

obrigado à minha família, em particular ao meu irmão Marco Silva pelos
momentos "bro" e é claro, à minha mãe Maria Deolinda e ao meu pai
Alberto Luís pelo milagre da vida, apoio, compreensão nos momentos difíceis
(mesmo sendo menos correcto convosco... nunca foi por mal), e pelo amor
incondicional. Que tenhamos muitos anos juntos pela frente!

obrigado à minha namorada, Alice Paiva, por ter tido a resiliência de me
"aturar" nestes tempos difíceis, pelas nossas piadas "foleiras", e por todo o
amor. Que seja para a vida!

obrigado família Pedreiras (Paulo, Cristina, Sofia, Francisco) por sempre me
acolherem de braços abertos e com genuína amizade. Obrigado por me
fazerem sentir "parte" da família... espero ser sempre um bom exemplo de
"filho do meio" :)

[com a mesma consideração e sentimento] obrigado família Marau (Ricardo,
Jeanette e Mariana). Ainda não acredito na honra de ter tido o vosso voto de
confiança para ser padrinho da Mariana (onde tinham vocês a cabeça?!). Vou
fazer o meu melhor para ser um excelente modelo de pessoa e transmitir os
melhores valores para a vossa filha, minha laroca afilhada (padrinho babado,
sempre!).

obrigado Nuno Valdemar, Nélson Cunha e Samuel Moreira, pela amizade
desde tenra infância que resiste ao teste do tempo, distância, e discussões
e "zangas" tontas (iOS é melhor que Android, tenho dito!!). Que tenhamos
longos anos deste verdadeiro companheirismo!

obrigado a todos os colegas de escola, das orquestras e bandas nas quais
colaborei, e a todas as outras amizades criadas por esse mundo fora!

Como palavras finais, quero novamente agradecer aos meus orientadores,
Paulo Pedreiras e Luis Almeida, pela orientação técnico-científica e pessoal
que me proporcionaram no decorrer deste percurso e que foi sempre bas-
tante próxima e humana. Obrigado por acreditarem sempre, mesmo quando
eu menos acreditava em mim. Sem vós nunca teria conseguido completar
este caminho, muito menos com qualidade! Sinto um enorme orgulho de
poder contar convosco como meus grandes amigos. Paulo, não poderia pedir
melhor orientador e amigo. Obrigado por tudo, foste a minha verdadeira mão
direita, braço, pernas,... :)

Palavras Chave Sistemas de Produção Ciber-Físicos, Redes de Comunicação Tempo-Real,
Redes Configuradas por Software, Indústria 4.0.

Resumo Conceitos emergentes como Produção Inteligente, Internet Industrial das
Coisas e Indústria 4.0 trazem um conjunto radicalmente novo de requisitos
para o modo como os sistemas industriais são projetados. No que diz
respeito à infra-estrutura de comunicação, o suporte a ambientes dinâmicos,
interoperabilidade e heterogeneidade, combinado com um aumento significa-
tivo no número de dispositivos, são apenas alguns dos desafios que devem
ser enfrentados.

Redes definidas por software (SDN) é um paradigma de rede disrup-
tivo que surgiu nas redes de campus, mas logo conquistou um interesse
considerável da indústria e da academia, e é considerado um salto na gestão
de tráfego aberto. Ele exibe dois recursos específicos que são muito ade-
quados para gerir uma rede com requisitos em tempo real: (i) um controlo de
recursos centralizado, completamente desacoplado do plano de dados, e (ii),
um controlo granular de recursos, trama a trama. No entanto, devido às suas
raízes, o modelo de tráfego SDN favorece o rendimento médio da rede com
políticas de melhor esforço, eventualmente impondo restrições de largura de
banda ou definindo prioridades fixas. Este modelo não é compatível com
cenários industriais, que normalmente têm requisitos rigorosos em termos de
previsibilidade, pontualidade e tolerância a falhas.

Esta dissertação suporta a tese de que é possível suportar a flexibili-
dade, a pontualidade e os requisitos de heterogeneidade de aplicações
industriais emergentes, aprimorando as tecnologias SDN com os meios
para aprovar reservas de recursos em redes que incluem plataformas de
comutação com serviços em tempo real baseados em componentes.

Em particular, este trabalho: (i) aprimora uma plataforma de comuta-
ção em tempo real com serviços SDN, (ii) desenvolve extensões para o
OpenFlow, um protocolo seminal SDN, para que um controlador OpenFlow
possa configurar serviços SDN e em tempo real, e (iii) estende um contro-
lador OpenFlow com análise de escalonamento para que possa executar
o controle de admissão de novos fluxos de tráfego enquanto mantém o
comportamento de prontidão de toda a rede.

Um protótipo da estrutura SDN em tempo real proposto é usado para
executar vários experimentos que validam as propriedades desejadas e,
consequentemente, a tese.

Keywords Cyber-Physical Production Systems, Real-Time Communication Networks,
Software-Defined Networking, Industry 4.0.

Abstract Emerging concepts such as Smart Production, Industrial Internet of Things,
and Industry 4.0 bring a radically new set of requirements to the way industrial
systems are engineered. In what concerns the communication infrastructure,
support to dynamic environments, interoperability and heterogeneity, com-
bined with a significant increase in the number of devices, are just a few of
the challenges that must be faced.

Software-defined networking (SDN) is a disruptive networking paradigm
that emerged on campus networks but soon captured considerable interest
from industry and academia, and is considered a leap forward in open traffic
management. It exhibits two particular features that are very well suited to
manage a network with real-time requirements: (i) a centralized resource
control, completely decoupled from the data plane, and (ii), a fine granular
resource control, down to validating each single frame received in each port
of a switch. However, due to its roots, the SDN traffic model favors the
average network throughput with best-effort policies, eventually imposing
bandwidth constraints or setting fixed priorities. This model is not compatible
with industrial scenarios, which typically have strict requirements in terms of
predictability, timeliness and fault tolerance.

This dissertation supports the thesis that is possible to support the flex-
ibility, timeliness, and heterogeneity requirements of emerging industrial
applications by enhancing SDN technologies with the means to enact
resource reservations on networks comprising switching platforms with
component-based real-time services.

In particular, this work: (i) enhances a real-time switching platform with
SDN services, (ii) develops extensions to OpenFlow, a seminal SDN protocol,
so an OpenFlow controller may be able to configure both SDN and real-time
services, and (iii) extends an OpenFlow controller with scheduling analysis so
it may perform the admission control of new traffic flows while maintaining the
timeliness behavior of the whole network.

A prototype of the proposed real-time SDN framework is used to perform
several experiments that validate the desired properties and consequently,
the thesis.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 An introduction 1
1.1 The problem statement . 1
1.2 The thesis statement . 2
1.3 The central contributions . 2
1.4 Document outline . 3

2 A crash course on industrial (real-time) systems 5
2.1 Industrial systems: the historical evolution . 5
2.2 The rise of a digitized industry . 13
2.3 Networks for the industry of tomorrow . 19

3 Theoretical foundation 21
3.1 On real-time systems . 21

3.1.1 Taxonomy of a real-time system . 22
3.1.2 Task model . 23
3.1.3 Task scheduling . 24
3.1.4 Schedulability analysis . 28
3.1.5 Hierarchical scheduling . 30

3.2 On real-time communications . 33
3.2.1 Transaction activation paradigms . 33
3.2.2 Message scheduling . 34

3.3 Software Defined Networking Paradigm . 35
3.3.1 OpenFlow protocol . 37
3.3.2 Using SDN in industry . 42

4 Towards a real-time data plane 45
4.1 Switched Ethernet . 45

4.1.1 Limitations . 51
4.2 An overview of real-time Ethernet technologies . 52
4.3 Finding a flexible and efficient real-time data plane 54

4.3.1 Time sensitive networking (TSN) . 55
4.3.2 Hard Real-Time Ethernet Switch (HaRTES) 63

5 A real-time SDN framework 73
5.1 A reference architecture for a real-time SDN framework 73

i

ii CONTENTS

5.2 A SDN controller with real-time admission control . 75
5.2.1 The admission control . 77

5.3 A real-time empowered control plane . 84
5.3.1 The OpenFlow real-time add-on . 85

5.4 A real-time Ethernet data plane . 91
5.4.1 The SDN augmented HaRTES . 93

6 Validation of the real-time SDN framework 101
6.1 The validation of the proposed framework . 101

6.1.1 Evaluating the data plane real-time capabilities 102
6.1.2 Evaluating the control plane schedulability analysis 107
6.1.3 Evaluating the admission control responsiveness and scalability 109
6.1.4 Evaluating the framework under a realistic Industry 4.0 scenario 111

6.2 On the fulfillment of Industry 4.0 network requirements 114

7 TSN and SDN in the context of Industry 4.0 115
7.1 Evaluating TSN and SDN . 116

7.1.1 Real-time performance . 116
7.1.2 Overhead . 117
7.1.3 Mutual isolation . 118
7.1.4 Granularity of QoS control . 118
7.1.5 Traffic Management Architecture . 119
7.1.6 Flexibility . 120
7.1.7 Overall evaluation . 121

7.2 TSN as data plane enabling technology . 122
7.2.1 Network Architecture . 123
7.2.2 Supporting standard OpenFlow services . 124
7.2.3 Supporting real-time traffic . 127
7.2.4 Data plane comparative analysis: TSN vs HaRTES 130

8 The Finale 133
8.1 Conclusions . 133
8.2 Future research . 135

References 137

A List of publications and communications 145
A.1 Core publications . 145
A.2 Other publications . 145

B Code sample for the Real-Time OpenFlow Add-On API 149

C Mandatory and optional OpenFlow components/functions 153

D Code sample for the schedulability analysis of time-triggered traffic 157

List of Figures

2.1 Centralized architecture of a process plant . 7
2.2 Distributed architecture of a process plant . 7
2.3 CIM automation pyramid . 8
2.4 Collapsed automation pyramid . 9
2.5 CIM-inspired industrial network architecture . 10
2.6 Industrial Ethernet equipment market share . 12
2.7 Industrial network market shares . 12
2.8 Industry 4.0 . 15
2.9 Industrie 4.0 reference architecture model (RAMI 4.0) . 16

3.1 Taxonomy for real-time scheduling algorithms . 24
3.2 Example of a Hierarchical Scheduling Framework . 31
3.3 Generic SDN architecture . 36
3.4 OpenFlow switch architecture . 37
3.5 OpenFlow Flow Table . 38
3.6 Simplified OpenFlow pipeline processing . 39

4.1 Switched Ethernet network topology example . 46
4.2 Ethernet (IEEE 802.3) frame structure . 46
4.3 IEEE 802.1Q VLAN-tagged Ethernet frame structure . 48
4.4 The Forwarding Process of Ethernet bridges . 49
4.5 Time-Sensitive Networking (TSN) set of standards and amendments 56
4.6 An example of a TSN network . 59
4.7 An operation example of the Credit-Based Shaper algorithm 61
4.8 An example of the application of TSN transmission gates 62
4.9 FTT-SE vs HaRTES network architecture . 64
4.10 HaRTES elementary cycle overview . 65
4.11 HaRTES hierarchical server-based scheduling . 66
4.12 HaRTES hardware platform (NETFPGA 1G) . 67
4.13 HaRTES hardware resources . 67
4.14 HaRTES internal architecture . 68
4.15 Structure of a HaRTES API message . 70

5.1 Reference architecture for the real-time SDN network . 74
5.2 Main components of the real-time SDN controller . 76
5.3 Overview of the admission control unit operation . 77
5.4 Reduced Buffering Scheme (RBS) example . 81
5.5 Real-time OpenFlow add-on . 85
5.6 Traffic processing flowchart . 87
5.7 Structure of a Real-Time API message . 90
5.8 OpenFlow-enabled HaRTES platform architecture . 94
5.9 HaRTES’s OpenFlow pipeline . 96

iii

iv List of Figures

5.10 Structure of an HaRTES’s flow entry . 97
5.11 Extended HaRTES API message example . 99
5.12 Logic architecture of the OpenFlow Mediator . 100

6.1 Experimental Setup . 102
6.2 Elementary cycle parametrization . 104
6.3 Inter-arrival timings for traffic in experiment 1 . 106
6.4 Inter-arrival timings for traffic in experiment 2 . 106
6.5 Elementary cycle parametrization . 107
6.6 Time-triggered scheduling: experimental setup . 108
6.7 Time-triggered scheduling: experimental results . 109
6.8 Network setup for the experiment . 110
6.9 Time-triggered scheduling: experimental results . 111
6.10 Experimental setup of the smart distributed robotic cell 112
6.11 Configured elementary cycle structure . 112

7.1 Framework reference architecture with TSN-enabled data plane 124
7.2 TDMA for real-time communications in TSN . 128
7.3 Time-triggered scheduling in TSN . 129
7.4 Event-triggered scheduling in TSN . 130

List of Tables

2.1 Typical traffic requirements for industrial and multimedia applications 9
2.2 Typical QoS requirements of Industry 4.0 applications [40], [45] 20

4.1 Recommended priority mapping for the number of implemented traffic classes 51
4.2 HaRTES API . 69
4.3 HaRTES API parameters . 70

5.1 Real-time API . 88
5.2 Real-time API parameters used to describe a real-time flow 89
5.3 Pipeline logic resources utilization . 97
5.4 Extended HaRTES API . 98

6.1 Properties of the traffic generated in the experiment scenarios 103
6.2 Properties of the configured reservations . 104
6.3 Requests to the OpenFlow standard API . 105
6.4 Requests to the OpenFlow add-on real-time API . 105
6.5 Summary of observed timing figures . 105
6.6 Parameters of time-triggered traffic for the prototype experiment 108
6.7 Setup communication parameters (adapted from [126]) 113
6.8 Real-time traffic performance . 113

7.1 Evaluation of SDN, SDN extensions, and TSN with respect to performance, QoS, and
flexibility . 121

7.2 Data plane enablers : HaRTES vs TSN . 131

C.1 OpenFlow Objects . 153
C.2 OpenFlow Ports . 153
C.3 Flow Instructions . 153
C.4 Flow Match Fields . 154
C.5 Flow Group Types . 154
C.6 Flow Actions . 155
C.7 Flow Meter Bands . 155
C.8 Flow Table Counters (per table) . 155
C.9 Flow Entry Counters (per entry) . 155
C.10 Port Counters (per port) . 155
C.11 Queue Counters (per queue) . 156
C.12 Group Counters (per group) . 156
C.13 Group Bucket Counters (per bucket) . 156
C.14 Meter Counters (per meter) . 156
C.15 Meter Band Counters (per meter band) . 156

v

Glossary

AFDX Avionics Full-DupleX switched
ethernet

AI Artificial Intelligence
API Application Programming Interface
ATM Asynchronous Transfer Mode
CBS Credit Based Shaper
CFQ Cyclic Queuing and Forwarding
CIM Computer Integrated Manufacturing
CLI Command-Line Interface
CMIP Common Management Information

Protocol
COTS Commercial-Of-The-Shelf
CPS Cyber-Physical Systems
CSMA/CD Carrier-Sense Multiple-Access with

Collision Detection
CPPS Cyber-Physical Production Systems
DDC Direct Digital Control
EC Elementary Cycle
EDF Earliest Deadline First
FCS Frame Check Sequence
FDB Filtering Database
FDDI Fiber Distributed Data Interface
FIFO First-In First-Out
FPGA Field Programmable Gate Array

(FPGA)
FSM Finite-State Machine
FTT Flexible Time-Triggered
FTT-SE Flexible Time-Triggered Switched

Ethernet
HaRTES Hard Real-Time Ethernet Switch
HSF Hierarchical Scheduling Framework
ICT Information and Communication

Technology
IIoT Industrial Internet of Things
IoT Internet of Things
IP Internet Protocol
IPG Inter-Packet Gap
IS-IS Intermediate System to

Intermediate System
IT Information Technology
ITU International Telecommunications

Union
LAN Local Area Network
LRP Link-local Registration Protocol
M2M Machine-to-Machine
MAC Media Access Control

MAN Metropolitan Area Network
MAP Manufacturing Automation Protocol

MMRP Multiple MAC Registration Protocol
MRP Multiple Registration Protocol
MSRP Multiple Stream Registration

Protocol
MSTP Multiple Spanning Tree algorithm

and Protocol
MVRP Multiple VLAN Registration

Protocol
NETCONF Network Configuration Protocol
NIC Network Interface Card
NMS Network Management System
ONF Open Networking Foundation
OSI Open Systems Interconnection
PAR Project Authorization Request
PCI Peripheral Component Interconnect
PLC Programmable Logic Controller
QoS Quality-of-Service
RBS Reduced Buffering Scheme
RM Rate Monotonic
RSTP Rapid Spanning Tree algorithm and

Protocol
SDN Software Defined Networking
SFD Start Frame Delimiter
SNMP Simple Network Management

Protocol
SPB Shortest Path Bridging
SRP Stream Reservation Protocol
STP Spanning Tree algorithm and

Protocol
TDMA Time Division Multiple Access
TLS Transport Layer Security
TM Trigger Message
TOP Technical and Office Protocol
TS Timeline Scheduling
TSN Time-Sensitive Networking
UDP User Datagram Transport
UML Unified Modeling Language
VID Virtual Local Area

Network (VLAN) Identifier
VLAN Virtual Local Area Network
WCET Worst-Case Execution Time
YANG Yet Another Next Generation

vii

CHAPTER 1
An introduction

Contents
1.1 The problem statement . 1
1.2 The thesis statement . 2
1.3 The central contributions . 2
1.4 Document outline . 3

Presently, industry is preparing for what is thought to be the very next big industrial
revolution: Industry 4.0. This paradigm foresees an intimate interconnection of three major
technologies, Cyber-Physical Systems, Internet-of-Things, and Cloud Computing, in order to
seamlessly integrate physical objects, humans, and intelligent machines into a sophisticated
information network, commonly known as Industrial Internet-of-Things. With it, a completely
digitized industry emerges where the digital and physical environments are unblemished and
intelligently connected, and new business models and ways of organizing and controlling value
chains during product life-cycles are possible. Factories that are able to autonomously adapt
to new configurations in order to meed supply-demand fluctuations or product variations,
self-organizing logistics, and self-diagnosing machines, are some examples of the type of new
services that are expected to be realized. Besides significant gains in efficiency and cost
reduction, Industry 4.0 is expected to bring improved product quality, better manufacturing
and logistics planning, and a higher degree of customer satisfaction.

1.1 The problem statement

A cornerstone of Industry 4.0 is the interconnection and availability of data throughout the
entire value chain, from field devices at factories’ shop floors to logistics and ultimately,
the consumer. This vertical (factory levels) and horizontal (value chain) integration pushes
forward the boundaries for services that networks must provide, with new applications de-
manding even more strict requirements in terms of flexibility, heterogeneity, management,
and timeliness guarantees. Although the management and heterogeneity aspects have been
thoroughly explored by generic data networks such as Ethernet and generic network man-
agement frameworks such as Software-Defined Networking (SDN), their main focus has been
on throughput, often forsaking the timeliness behavior of the network. On the other hand,
industrial network technologies have been developed to meet the strict timing requirements of

1

2 CHAPTER 1. AN INTRODUCTION

industrial applications, e.g. very low latency and jitter values, with little regard to throughput
and online reconfiguration. As such, bridging these two domains is vital to realize the vision of
Industry 4.0. This work aims to interconnect both domains, enhancing technologies for highly
flexible and heterogeneous networks with the ability to fulfill strict timeliness requirements
with analytical guarantees.

1.2 The thesis statement

The thesis supported by the present dissertation argues that:

The flexibility, timeliness, management, and heterogeneity requirements of emerging cyber-
physical production systems can be satisfied by a framework that leverages the inherent flexibility
of SDN technologies to control a network comprising switching platforms with composable and
dynamically configurable real-time services.

1.3 The central contributions

The main contributions of this work are:

• The real-time extension of a Software-Defined Networking (SDN) control plane;

• The real-time admission control module for a SDN controller;

• The enablement of a real-time Ethernet technology as a SDN data plane.

The aforementioned contributions, presented in detail in Chapter 5, resulted in the following
scientific publications and communications:

1. L. Silva, P. Pedreiras, P. Fonseca, et al., “On the adequacy of SDN and TSN for industry
4.0”, in 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing
(ISORC), IEEE, May 2019. doi: 10.1109/isorc.2019.00017. [Online]. Available:
https://doi.org/10.1109%2Fisorc.2019.00017

2. L. Silva, P. Goncalves, R. Marau, et al., “Extending OpenFlow with flexible time-
triggered real-time communication services”, in 2017 22nd IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), IEEE, Sep. 2017.
doi: 10.1109/etfa.2017.8247595. [Online]. Available: https://doi.org/10.1109%
2Fetfa.2017.8247595

3. L. Silva, P. Goncalves, R. Marau, et al., “Extending OpenFlow with industrial grade
communication services”, in 2017 IEEE 13th International Workshop on Factory Com-
munication Systems (WFCS), IEEE, May 2017. doi: 10.1109/wfcs.2017.7991965.
[Online]. Available: https://doi.org/10.1109%2Fwfcs.2017.7991965

https://doi.org/10.1109/isorc.2019.00017
https://doi.org/10.1109%2Fisorc.2019.00017
https://doi.org/10.1109/etfa.2017.8247595
https://doi.org/10.1109%2Fetfa.2017.8247595
https://doi.org/10.1109%2Fetfa.2017.8247595
https://doi.org/10.1109/wfcs.2017.7991965
https://doi.org/10.1109%2Fwfcs.2017.7991965

1.4. DOCUMENT OUTLINE 3

4. M. Ashjaei, L. Silva, M. Behnam, et al., “Improved message forwarding for multi-hop
HaRTES real-time ethernet networks”, Journal of Signal Processing Systems, vol. 84,
no. 1, pp. 47–67, May 2015. doi: 10.1007/s11265-015-1010-8. [Online]. Available:
https://doi.org/10.1007%5C%2Fs11265-015-1010-8

5. L. Silva, P. Pedreiras, M. Ashjaei, et al., “Demonstrating the multi-hop capabilities of
the hartes real-time ethernet switch”, in RTSS@Work 2014 Open Demo Session of
RealTime Systems, 2014

1.4 Document outline

This document is structured as follows:

• Chapter 2 presents an overview of the evolution of industrial networks, leading up to
the present tendencies. It discusses the communication requirements of the emerging
Industry 4.0 and how can they be tackled;

• Chapter 3 introduces basic concepts on real-time communications, scheduling tech-
niques and analyses as well as knowledge on the SDN paradigm and its seminar south-
bound protocol OpenFlow;

• Chapter 4 presents existing real-time network technologies based on switched Ethernet,
existing research, and compares the most relevant technologies in order to find the best
candidate for the framework herein proposed;

• Chapter 5 discusses the proposed framework, its components and their development;

• Chapter 6 presents the experiments carried out to evaluate and validate the proposed
framework;

• Chapter 7 compares TSN and SDN-based solutions, including the herein proposed
framework, in the context of Industry 4.0;

• Chapter 8 concludes the dissertation and draws some conclusions on the carried work
and possible lines for future research.

https://doi.org/10.1007/s11265-015-1010-8
https://doi.org/10.1007%5C%2Fs11265-015-1010-8

CHAPTER 2
A crash course on industrial

(real-time) systems

Contents
2.1 Industrial systems: the historical evolution 5
2.2 The rise of a digitized industry . 13
2.3 Networks for the industry of tomorrow . 19

During the past decades, the evolution of computer science and electronic engineering,
combined with the ever-increasing power and cost-effectiveness of electronic systems, has
significantly influenced all areas of the human society and among them, industrial control
systems. This chapter presents an overview of the evolution of industrial communications and
discusses the real-time and functional network requirements of the current industrial trend as
well as how can they be addressed.

2.1 Industrial systems: the historical evolution

Under a broad-scope view, the industry can be split into two major categories: process and
manufacturing. The former alludes to processes or methods, either mechanical or chemical,
to modify or preserve a given material or good. Processing can be typically carried out
continuously or in batches, handling very large material flows and often having stringent safety
requirements. Examples of this type of industries include petrochemical production, ceramics,
and plastics. The latter type, the manufacturing industry, is concerned with the process of
transforming raw materials, or semi-finished products, into finished goods for consumption
or sale. Production is typically done on a large scale in factories, manually or with the help
of machines, and normally focuses on attaining maximum quantity throughput of produced
goods. Examples of this type of industries include textile and automotive.

Over the course of years, due to economic, social, and environmental factors, both process and
manufacturing industries have been striving to improve production efficiency and quality while
keeping costs low. As consequence, manual supervision, processing, and operation of machines
was incrementally augmented, or even replaced, by automatic equipment in an effort to increase
production levels, quality control, and reduce the number of employees. The need to move

5

6 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

towards larger plants in order to reap the benefits of economies of scale has further stimulated
the aforementioned process. However, the evolution of the industrial systems in the process and
manufacturing industry has not been identical. While the former addressed automation within
large plant areas with several interconnected machines spread over, manufacturing plants
were normally composed of several isolated production stations (cells) and thus, automation
was at first limited to the cell boundaries. Nonetheless, their differences in technical solutions
progressively diminished and nowadays both use similar electronic systems for closed-loop
control, for operator-machine interfaces, and for networking [6]. In this chapter, focus will
be placed on the evolution of process plants and their technologies; however, do note that
the presented communication technologies and topologies were eventually adopted by the
manufacturing industry for both cells and the whole factory.

Early process plants were controlled either manually or through mechanical and/or hydraulic
control systems. With the advent of discrete electronics, these systems were replaced by hard-
wired control loops circuits comprising electronic sensors and actuators, such as transducers
and relays. Process supervision and control was done in analog control rooms, through the use
of analog indicators, buttons, and knobs. These systems were extremely complex and difficult
to maintain, with changes to control loops requiring hardware to be replaced and kilometers of
wiring to be reconfigured manually. With the appearance of computers specially designed for
process control, supervisory and control functions were gradually shifted to a single mainframe
computer. Point-to-point links connected field devices, i.e. sensors and actuators, to the
control room mainframe, in a star-like topology. An example of this centralized configuration,
common in the 1960s, is depicted in Figure 2.1. With this form of digital control, known as
Direct Digital Control (DDC), systems were easier to deploy and maintain, with the possibility
to enact changes to control strategies with a simple swap of programs. Still, wiring at the
field level was still extensive and complex, and the expensive mainframe represented a single
point of failure for the whole system [7], [8].

As computers got more powerful, reliable, and affordable, more and more analog control systems
were replaced by computers. Supervisory and control tasks began to be distributed over several
devices in an effort to increase the overall system resilience to faults and further reduce costs.
This process culminated with the invention of integrated circuitry and microprocessors, which
made possible to shift from centralized to distributed control systems by deploying relatively
small, powerful, and affordable, digital controllers, e.g. Programmable Logic Controller (PLC),
throughout the plant. An example of this distributed configuration, common in the late 1970s,
is illustrated in Figure 2.2. A Local Area Network (LAN) based on high-speed serial digital
networks, such as IEEE 802.4 Token Bus [9] or IEEE 802.3 Ethernet [10], now connected
supervisory systems, operator consoles, and other computers at the control room to the
distributed controllers that could now be deployed closer to field devices, further reducing
the complexity and cost of wiring as the length of cables is significantly shortened. However,
communication with field devices was still realized by point-to-point analog technologies, such
as the 4-20mA [11] standard for analog sensors or the use of 24Vdc for digital inputs, which
still required significant cabling complexity, e.g. two wires per half-duplex analog channel or

2.1. INDUSTRIAL SYSTEMS: THE HISTORICAL EVOLUTION 7

Mainframe Computer

Field Devices

Figure 2.1: Centralized architecture of a process plant

Field Devices

Supervisory Computer Operator Console

LAN

Local
Controller

Local
Controller

Figure 2.2: Distributed architecture of a process plant

four wires for a full-duplex one, and exhibited low data rates.

Advances in microelectronics led to another revolution in the early 1980s. As field devices
became more intelligent and with more embedded functionality, including the capability to
communicate over digital links, the previous point-to-point connections to the distributed
controllers were phased out and replaced by a single digital data bus: the fieldbus. The use of
a fieldbus, combined with the advanced capabilities of field devices such as data pre-processing
and integrated control/monitoring functions, has several advantages, the most relevant being:

8 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

(i) an overall improvement in system modularity that introduced flexibility in the configuration
and expansion of the process field, (ii) a significant reduction of installation and maintenance
costs due to the substantial reduction in cabling volume and complexity, and (iii), the ability to
remotely communicate with field devices for data acquisition, maintenance and configuration
purposes [8], [12].

As manufacturing and process factories moved towards a distributed architecture with more
computers, controllers, field devices, and communication networks, the existing architecture
of a factory began to be logically and physically structured into different levels, e.g. man-
agement and process floors, each associated to a specific purpose and employing different
technologies. During the mid 1970s, the Computer Integrated Manufacturing (CIM) concept
is formulated; it recognizes that the development and production of a manufactured product
can be accomplished more effectively and efficiently with the use of computer technology, and
the importance of a comprehensive, enterprise-wide, information processing system. CIM
defines a hierarchical structure for the use of computers and networks at all levels of industrial
automation, identifying the varying characteristics, e.g. timeliness and volume, of data at
each level and the necessary level of abstraction for data exchange across levels. The defined
functional model is depicted in Figure 2.3 [12].

Field level

Process level

Cell level

Shop floor level

Factory level

Company level

Local
Controllers

Cell
Controller

Response
Time

Data
Size

Frequency

ms

min

bits

MBytes rare

often

Gateway

Figure 2.3: CIM automation pyramid

Despite the production advantages foretold by CIM, its implementation, being plagued by
interoperability issues between networks and components of different vendors at the different
levels in the automation pyramid, was no easy task. With respect to data and traffic
characteristics, the 6 layered automation pyramid can be collapsed into three layers: field,
cell, and company level [13], [14]. The taxonomy of such model, still used today, is depicted
in Figure 2.4 [14]. At the company level, networks span the entire plant and interconnect a
large number of computer systems for high-level applications such as stockpile management,
engineering, and office applications. Communications at this level concern the exchange of
large amounts of bursty data, such as production orders and queries to databases, with lax real-

2.1. INDUSTRIAL SYSTEMS: THE HISTORICAL EVOLUTION 9

time requirements, e.g. response times of seconds. Cell level networks typically interconnect a
moderate number of specialized devices, e.g. conveyors and machine tools, over a moderately
large area and have to support real-time and non real-time communications comprising
moderate amounts of data. Finally, networks at the field level interconnect field devices
and controllers for automation purposes and thus, have stringent real-time requirements, e.g.
response times as low as few milliseconds. Common requirements for industrial applications
found at each factory level are presented in Table 2.1 [15]. In addition to performance
requirements, a factory communication system has to provide a set of functional services such
as acknowledged data transfer, uni-/multi-/broadcast communication, and security features.

Field level

Cell level

Company level

Local
Controllers

Cell
Controller

IP-Based
Networks

Field Area
 Networks

Gateway

Figure 2.4: Collapsed automation pyramid

Table 2.1: Typical traffic requirements for industrial and multimedia applications

Application Bandwidth Data per station Delay Jitter Frequency
(Mbps) (Bit) (ms) (ms) (ms)

Company Level 10 4 x106 500 - -
Cell Level 1 800 5 1 10
Field Level 1 16 1 0.01 1
Video (MJPEG) 16 0.5 x106 200 1 30
Audio 0.064 8 200 10 0.125

At that time, fulfilling the aforementioned functional and traffic requirements with a single
network technology was no trivial task and thus, different, non-interoperable, communication
protocols and/or physical media technologies emerged for use at the various plant levels, e.g.
Asynchronous Transfer Mode (ATM) [16] for the company level, Ethernet at the cell level
and a fieldbus technology across the field level. Even within the same level several network
technologies could be found to address specific application requirements, or due to the use of
machines and devices from different vendors; this is particularly true for field-level networks,
where dozens of fieldbus solutions from several companies exist. This technological diversity

10 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

leads to problems of incompatibility, forcing factories to resort to expensive gateways, adapters
and protocol converters in order to integrate such number of heterogeneous systems [14]. An
example of such system is depicted in Figure 2.5 [6].

Management and supervisory systems

LAN

Gateway

Router Public Data
Network

LAN / Fieldbus

Fieldbus

PLC

Field level

Cell level

Company level

Figure 2.5: CIM-inspired industrial network architecture

In the wake of the CIM idea, several projects sprouted in an effort to tackle interoperability
issues across factory levels. Examples of these projects include the Manufacturing Automation
Protocol (MAP) [17] and Technical and Office Protocol (TOP) [18] projects for the creation
of standard communication profiles within the CIM hierarchy, and the IEC TC 65/SC65C [19]
committee the standardization of fieldbus technologies. However, these standardization efforts
were an intricate process and limited results were achieved. The discussion of this matter is
out of the scope, however, interested readers are referred to [8], [14] for detailed insight.

While both manufacturers and factories struggled towards an harmonization of the industrial
communication infrastructure, Ethernet was quickly becoming the de facto standard for home
and office networks worldwide and it was not long before it was considered for industrial
use. Ethernet, being a mature and widely used technology, offers a significant number of
advantages over other technologies. The main advantage comes from the great availability
of manufacturers, which translates into cheap networking hardware, e.g. Network Interface
Card (NIC) boards and hubs, and thus, lower deployment costs. Moreover, since it is a
widespread and open technology, there is a large number of technicians and/or network
administrators who are familiar with the technology; expenses due to proprietary software
licensing and personnel training can be significantly decreased. The next significant advantage
comes from the massive bandwidth, typically higher than that offered by fieldbus networks,

2.1. INDUSTRIAL SYSTEMS: THE HISTORICAL EVOLUTION 11

with transmission speeds that can be in the range of Gbps, e.g. Gigabit Ethernet [20]. This
fact opens the possibility for new advanced applications such as the use of audio and video
for process surveillance [21]. Finally, the use of Ethernet across the entire plant, from offices
connected to the Internet at the company level to field devices at the field level, would create
a ubiquitous access to all devices in the plant, allowing controllers to communicate directly
with each other, with system servers and field devices.

Despite being successfully adopted at high levels of the industrial network hierarchy, i.e.
company and cell level, standard Ethernet could not be used at the field level. The main
obstacle is its destructive and non-deterministic arbitration mechanism, Carrier-Sense Multiple-
Access with Collision Detection (CSMA/CD) [10], which prevents Ethernet from providing
deterministic channel access times and convey real-time traffic within guaranteed deadlines,
particularly for high network traffic loads [22]. Although switched Ethernet [23] alleviates the
impact of the non-determinism inherent to CSMA/CD with the absence of collisions at the
switches’ ports, providing real-time communication services is still not trivial due to multiple
factors such as the limited number of priority levels and output queues, queuing build-up and
memory overflow issues [22], [24], [25]. Thus, research began in order to support real-time
traffic on switched Ethernet. Alas, despite standardization efforts from some committees, e.g.
IEC 61158, the result has been a trend towards multiple Ethernet-based fieldbus protocols,
similar to the fieldbus development process in the 1980s. Examples of such real-time Ethernet
(RTE) protocols include EtherNet/IP [26], PROFINET IRT [27], TT-Ethernet [28], HaRTES
[29], and Time-Sensitive Networking (TSN) [30].

Fast-forward to today, the industrial network landscape is fragmented between traditional
fieldbus and real-time Ethernet technologies. Nonetheless, Ethernet-based networks, in partic-
ular networks employing switching technology (Figure 2.6 [31]), have overtaken traditional
fieldbuses, and now account for 52% of market share versus the latter’s 42% (Figure 2.7
[32]). Moreover, one can expect Ethernet to rapidly attain a dominant position due to its
significantly higher annual growth of 22% versus the observed 6% for traditional fieldbuses.

Despite the important improvements in terms of flexibility, scalability, cost and performance,
and the potential for a vertical integration of all factory levels, there is more to be reaped
from the use of Ethernet in automation. Since its inception, Ethernet, combined with the
TCP/IP network stack, quickly became the most popular technology for networks in offices,
homes and commercial facilities all over the world. According to Beck [33], more than 95% of
all LAN networks are Ethernet-based. As costs of network infrastructure is steadily being
driven down, more and more devices are being connected. This trend is further fuelled by
recent concepts, the most prominent one being the Internet of Things (IoT), in which is
envisaged that it will be possible to connect almost anything with everything, anywhere,
with the aid of the Internet technology. Industry and automation are no exception to the
aforementioned trend, as attested by the recent uprise of similar concepts such as Industry
4.0 and Industrial Internet of Things (IIoT). The next section will present these on-going
trends and the expected changes on the industrial landscape.

12 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

Managed Switches
51.0%

Unmanaged Switches
23.0%

Hubs
1.2%

Converters
11.4%

Routers
7.4%

Managed Routing
Switches

6.0%

Figure 2.6: Industrial Ethernet equipment market share

Industrial Ethernet: 52%
Annual growth: 22%

Wireless: 6%
Annual growth: 32%

Other Wireless
1% Bluetooth

1%

Fieldbus: 42%
Annual growth: 6%

EtherNet/IP
15%

PROFINET
12%

EtherCAT
7%

Modbus-TCP
4%

POWERLINK
4%

Other Ethernet
10%

Other Fieldbus
10%

DeviceNet
4%

CANopen
4%

CC-Link
6%

Modbus-RTU
6%

PROFIBUS DP
12%

WLAN
4%

Figure 2.7: Industrial network market shares

2.2. THE RISE OF A DIGITIZED INDUSTRY 13

2.2 The rise of a digitized industry

Industry 4.0, a term first coined as Platfform Industrie 4.0 [34] by the German government as
part of its strategic development road-map "High-Tech Strategy 2020", is poised as the very next
big industrial revolution. While the first three revolutions were clearly marked by the advent of
a new disruptive technology, be it the steam machine of the first revolution, the electricity and
mass production techniques found in the second, or the advent of electronics and automation
in the third, Industry 4.0 is all about leveraging and interlinking existing technologies from
diverse technological areas, e.g. Cyber-Physical Systems (CPS), Machine-to-Machine (M2M)
communications, the Internet-of-Things, Big Data, and 3D printing. Its main goal is to
seamlessly integrate physical objects, humans, and intelligent machines into a sophisticated
information network commonly known as IIoT, and with it bring forth a digitized industry,
where the digital and physical environments are unblemished and intelligently connected,
and new business models and ways of organizing and controlling value chains during product
life-cycles are possible [35], [36].

Following the Industry 4.0 paradigm, the new industrial landscape will exhibit the following
key characteristics [35], [36]:

• Smart robots and machines. Robots and machines will exhibit a higher level of
sensorization and intelligence, being able to interact and cooperatively work with
humans and other machines on complex and/on interlinking tasks. Moreover, they will
also be able to autonomously perform diagnostics and foresee necessary maintenance
interventions, alerting human operators before breakdowns may happen;

• Vertical networking of smart production systems. Although current production
systems already embrace electronics and Information and Communication Technology
(ICT), these systems will be far more interconnected and controlled in real-time. CPS
will now spawn over all levels of the traditional factory pyramid (Figure 2.3), and
incorporate machines across processes, storage and supply systems, as well as be able
to communicate with suppliers and customers alike, giving way to the so called Cyber-
Physical Production Systems (CPPS). With this vertical integration, factories will
be able to react rapidly to changes in demand, stock levels, fluctuations in quality
and machinery breakdowns, and production can be dynamically tailored, for example,
according to customer-specific requests;

• Horizontal networking across value chains. Entire value chains will be intercon-
nected locally and/or globally thought the use of Internet and a new generation of
real-time optimized networks. By networking inbound logistics, warehousing, production,
marketing, sales, and outbound logistics, new cooperation and business models involving
both customers and business partners are possible. For example, a customer is able to
issue specific requests, not only for production but as well for the ordering, distribution,
or even development of the product, and keep track of the product status in real-time.

14 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

Moreover, value chains will be also able to better cooperate and facilitate a global
optimization, e.g. adjust production schedules among factories, and stock piles;

• Big Data. Due to the huge scale of sensorization and interconnection between the
diverse systems and factories, a significant amount of data can be collected. This rich
data set may be leveraged by cloud computing and Artificial Intelligence (AI) entities,
for example, to further optimize and coordinate operations across the entire value chain;

• Incorporation of exponential technologies. Future factories will exploit exponential
technologies to further improve product individualization, production flexibility, and
cost savings. For example, AI and advanced robotics technologies can improve the
cognitive ability and autonomy of machines and robots, enhancing production speeds,
improving tasks such as the management of warehouses by autonomous vehicles, or
even enabling new ones such as flying maintenance robots in production lines. Another
example of the application of an exponential technology is the use of 3D printing for
quick prototyping, inventory reduction, or even the reduction of supply chain partners.

An overview of the different Industry 4.0 components and entities, and their interactions, is
depicted in Figure 2.8 [35]. All in all, the foundation of Industry 4.0 can be condensed as a
tight relationship and interconnection of three major technologies [37]:

• Cyber-Physical Systems. These systems are defined by the control of physical
processes through the use of computer-based algorithms and networking technologies.
Examples include smart grid and autonomous vehicles;

• Internet of Things (IoT). Although there is no clear-cut definition for the term
"Internet of Things", the International Telecommunications Union (ITU) defines it
as "a global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving interoperable
information and communication technologies" [38]. In summary, IoT can be described
as a network technology that allows physical devices, vehicles, buildings and other
electronic objects to collect and exchange data virtually anywhere;

• Cloud Computing. Cloud computing provides ubiquitous, on-demand access to remote
computing resources, e.g. applications, storage or raw processing power, and data over
the Internet. It can be efficiently leveraged, for example, as enabler of Big Data
applications.

2.2. THE RISE OF A DIGITIZED INDUSTRY 15

PL
A

N
T

O
F

TH
E

FU
TU

R
E

SE
N

SO
R

S

v

H
ig

h
 a

cc
ur

ac
y

v

R
ea

ct
iv

it
y

v

Tr
ac

ea
b

ili
ty

v

P
re

di
ct

ab
ili

ty

H
O

R
IZ

O
N

TA
L

V
A

LU
E

CH
A

IN

v

Fu
lly

 in
te

gr
at

ed
 s

u
p

p
ly

 c
h

ai
n

v

In
te

rc
on

n
ec

te
d

 s
ys

te
m

s
v

P
er

fe
ct

 c
oo

rd
in

at
io

n
 a

n
d

co
o

pe
ra

ti
o

n

 A
D

V
A

N
C

ED
 M

A
T

ER
IA

LS

v

Sm
ar

t
va

lu
e

-a
d

de
d

 p
ro

du
ct

s
v

In
cr

ea
se

d
 p

ro
d

uc
t

pe
rf

or
m

an
ce

,
su

rv
iv

ab
ili

ty
, a

n
d

af
fo

rd
ab

ili
ty

v

Lo
w

er
 p

ro
d

uc
t

w
ei

gh
t

A
D

V
A

N
C

ED

M
A

N
U

FA
C

T
U

R
IN

G

SY
ST

EM
S

v

C
yb

er
-p

h
ys

ic
al

 s
ys

te
m

s
v

V
e

rt
ic

al
ly

 c
o

n
ne

ct
e

d
sy

st
e

m
s

v

M
2M

 c
o

m
m

u
n

ic
at

io
n

s

M
A

SS
 C

U
ST

O
M

IZ
A

T
IO

N

v

O
n

-d
em

an
d

 a
nd

 c
u

st
o

m
er

-
ta

ilo
re

d
 m

an
uf

ac
tu

ri
ng

v

Fl
e

xi
b

ili
ty

v

N
ew

 b
u

si
ne

ss
 m

o
de

ls
 a

nd

cu
st

o
m

er
 e

xp
er

ie
n

ce

IN
TE

R
N

ET
 O

F
TH

IN
G

S

v

R
ea

l-
ti

m
e

d
at

a
ca

p
tu

re
v

O
b

je
ct

 t
ra

ck
in

g
v

O
p

ti
m

iz
ed

 s
to

ck
 p

ile
s

A
V
A
N
T
-G
A
R
D
E

M
A

CH
IN

ES

v

In
te

lli
ge

n
ce

 a
n

d
 a

ut
o

no
m

y
v

In
te

rc
oo

p
er

at
io

n
v

Fl
e

xi
b

ili
ty

 a
n

d
ad

ap
ta

ti
on

N
EW

 R
ES

O
U

R
CE

S

v

C
le

an
 a

n
d

 r
en

ew
ab

le
 e

n
er

gy
v

A
lt

er
n

at
iv

e
ra

w
 m

at
e

ri
al

s

A
U

TO
N

O
M

O
U

S
V

EH
IC

LE
S

v

Fl
o

w
 o

pt
im

iz
at

io
n

v

In
cr

ea
se

d
 s

af
et

y
v

Lo
w

er
 c

os
ts

SU
PP

LI
ER

S

A
D

D
IT

IV
E

M
A

N
U

FA
C

TU
R

IN
G

v

M
as

s
cu

st
o

m
iz

at
io

n
v

R
ap

id
 p

ro
to

ty
p

in
g

v

Lo
w

er
 m

at
e

ri
al

 w
as

te

C
U

ST
O

M
ER

S

Figure 2.8: Industry 4.0

16 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

Besides the obvious significant initial gains in efficiency and cost reduction, which according
to [39] can reach values of 18% and 14% respectively over a period of five years, the fourth
industrial revolution is expected to bring [39], [40]: (i) better planning and control for manu-
facturing and logistics, (ii) a higher degree of customer satisfaction, (iii) greater manufacturing
flexibility and faster time to market, (iv) improved product quality, (v) improved safety in the
working environment, (vi) reduction of the consumption of raw materials, energy and water,
as well as lower pollution emissions, and (vii), entirely new business models, with product
oriented services and the individualization of products.

Although the vision and potential of Industry 4.0 is somewhat easy to understand, its
development may be viewed as a daunting task due to its tremendous technological complexity
and significant number of involved industrial, business, and political stakeholders. To facilitate
the specification, development, and standardization of services, interfaces, and infrastructure,
the Plattform Industrie 4.0 consortium introduced the Industrie 4.0 reference architecture
model (RAMI 4.0). RAMI 4.0 [41], depicted in Figure 2.9, spawns beyond previous models
used for traditional industrial systems, e.g. CIM, and incorporates not only the functional
hierarchical aspects of factories/plants (y axis) but also information on the life-cycle (type) and
service life (instance) of I4.0 components (x axis), i.e. products and production systems. Layers
in the vertical axis represent the various perspectives, such as hardware, communications,
functional descriptions and data maps.

I4.0 Component

Type

Field Device

Enterprise

Asset

Integration

Communication

Information

Functional

Business

LAYERS

Product

Connected World

Work Centers

Station

Control Device

Development
Maintenance

Usage

Instance

Production
Maintenance

Usage

x

y

Figure 2.9: Industrie 4.0 reference architecture model (RAMI 4.0)

2.2. THE RISE OF A DIGITIZED INDUSTRY 17

At the bottom of the model, the Asset Layer represents the reality which includes physical
components, e.g. documents, raw materials, software and hardware, as well as humans.
Moving up, the Integration Layer provides a digital representation of assets, making the
properties of the real world accessible to computer systems. The Communication Layer
deals with protocols and the transmission of data, providing uniform data formats to the
Information Layer, which pre-processes, e.g. executes integrity checks and event-related rules,
and stores the gathered data. The Functional Layer formally defines functions and services
for remote access and horizontal integration. Finally, the business layer deals with relevant
business processes, while also dealing with legal and regulatory aspects [41].

To help defining the set of interfaces and interactions among distinct entities of the RAMI
4.0 model, as well as to identify functional and qualitative requirements, nine application
scenarios, described in detail in [42], are pinpointed:

• Order-Controlled Production (OCP). The existence of a network extending au-
tonomous production capabilities beyond factory and company boundaries may allow
companies to offer available production services to other companies in a way to increase
the utilization of their own machinery. Third party companies may then access the
aforementioned capacities to expand their production capability temporarily and in an
ad-hoc fashion;

• Adaptable Factories (AF). With a network of intelligent and interoperable production
modules that are capable to autonomously adapt to new configurations, an individual
factory may rapidly change its production capabilities and throughput to meet supply-
demand fluctuations or product variations;

• Self-organizing Adaptive Logistics (SAL). By taking advantage of the networking
of adaptive logistic systems and autonomous transport vehicles, the distribution of
goods and materials across the entire value chain can be done in a more decentralized
and agile way, ensuring consistent flows between warehouses, production lines, and
pick-up/delivery sites, while autonomously adjusting according to production conditions
and material needs;

• Value-Based Services (VBS). By collecting data related to production, e.g. the
machines and plants required to manufacture a certain good, product status information,
and even the characteristics of processed raw materials or product parts, Information
Technology (IT) platforms may provide new individualized services such as, for example,
the provision of the correct process parameters for a production task being requested,
or optimized maintenance schedules and procedures;

• Transparency and Adaptability of delivered Products (TAP). Manufacturers
will be able to automatically and inexpensively collect information on sold products
during their entire life cycle, in real-time. Akin to the business practices found in
the software industry of today, manufacturers will be able to reconfigure/update some
features of the product according to current operating conditions, provide after-sales

18 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

services, and enhance/optimize future products by taking into account how consumers
use a certain product;

• Operator Support in Production (OSP). The increase in digitization and network-
ing, combined with new human-to-human/machines interfaces, will enable new services
to assist human operators in the production process. For example, the real-time feedback
from experts via remote video can provide quick assistance in the analysis and fixing
of complex problems, or the training of new employees, which could be customized
according to personal profiles, e.g. previous experience and language, and augmented
with on-site 3D video-based tutorials;

• Smart Product Development for Smart Production (SP2). The availability
of material data from suppliers, product specifications and functions, in the form of
transparent data and virtual designs, may enable new collaborative and seamless product
engineering work flows;

• Innovative Product Development (IPD). By leveraging Internet-based cooperation,
new forms of collaborative product development may be created, with product vendors
involving the right partners and technologies beyond site and company boundaries;

• Circular Economy (CRE). Technologies of Industry 4.0, in particular sensor technol-
ogy and connectivity, will assist the return, restoration, and re-usability of products and
components. For example, RFID technology can be used to clearly identify products
with information regarding material composition and reuse possibility, and machines may
monitor their components in real-time and order spare parts, while returning defective
ones directly to proper recycling facilities.

The RAMI 4.0 model and its application scenarios pose significant technological challenges,
in particular, the availability of secure information in real-time across the entire value chain
is not easily fulfilled by existing communication technologies and demands the research of
new solutions [42]–[44]. These network challenges are discussed in Section 2.3. Besides
technological challenges, there are other barriers to the uptake of Industry 4.0 [37], [39]:

• IT security risk. The connection of the value chain to the Internet may give room to
security breaches and cybertheft which can have serious costs and reputation loss for
enterprises;

• Data privacy. The significant level of data collection and sharing found in such
interconnected industry raises transparency and legal issues, with questions like who
owns the data, what and how can it be shared, and for which purposes. This may lead
to privacy concerns for both companies and consumers alike;

• Initial capital investment. Companies will have to adapt or completely revamp
existing installations, for example, to accommodate the necessary complex IT systems.
This can be prohibitively costly, specially for smaller businesses;

2.3. NETWORKS FOR THE INDUSTRY OF TOMORROW 19

• Lack of skilled workers. The digital transformation to Industry 4.0 demands workers
with new technical skills for both operation and maintenance tasks. This may require a
significant retraining of the work force and/or hiring of highly qualified workers which
can be scarce;

• Low maturity level of required technologies. Industry typically demands proven
and mature technology, and isn’t willing to take unnecessary risks that may arise from
bleeding-edge technology.

2.3 Networks for the industry of tomorrow

Considering the use cases and application scenarios envisaged for Industry 4.0, which foresee
a significant increase in volume, reaction times, and variety of information, it is clear that
networks will have to exhibit a high level of adaptability and throughput while having to satisfy
demanding timing and reliability requirements [40], [44]. Moreover, requirements concerned to
network safety, security, and ease of management and monitoring are also expected [40], [45].
This work focus on the requirements concerning heterogeneity, timeliness, and management,
namely:

• Requirement 1 (R1): Support simultaneous applications with heterogeneous
QoS requirements. Table 2.2 presents typical QoS requirements, particularly timing,
of classes of applications that will co-exist in Industry 4.0 and which need to be fulfilled
jointly [40], [45].

• R2: Meeting precisely applications’ QoS requirements. Over-provisioning of
network resources must be avoided to achieve efficient use of the network capacity.

• R3: Dynamic message and reservation sets. Order-controlled production and
adaptable factories [42], leveraged by MAS and Service-Oriented Architectures (SOA)
[46], [47] imply changing the communication requirements online. This change is itself
time-constrained, e.g., in the seconds range [46].

• R4: Real-time network monitoring and diagnostics. Precise communications
and network state monitoring is key to react promptly to changes in communication
requirements and potentially harmful situations [40], [48].

• R5: Consistent set of open management tools. The current practice of using
vendor-specific and non-interoperable sets of management tools limits heterogeneity and
jeopardizes the benefits of Industry 4.0.

During the last years, Software-Defined Networking (SDN), explained in detail in Chapter
3, has garnered considerable attention from industry and academia and is considered an
important step for an open and flexible management of generic data networks, in particular
for data center and carrier grade networks. Its success is based on two particular aspects:

20 CHAPTER 2. A CRASH COURSE ON INDUSTRIAL (REAL-TIME) SYSTEMS

Table 2.2: Typical QoS requirements of Industry 4.0 applications [40], [45]

Motion Cell Augmented HMI*
Control Control Reality

Latency / Cycle Time 250µs to 1ms 1ms 10ms 100ms
Jitter 6 1µs 6 1ms - - - - - -
Reliability** 1e−8 1e−8 to 1e−5 1e−5 1e−5
Data rate kbit/s k-Mbit/s M-Gbit/s M-Gbit/s
- - - Not specified

*Human-Machine Interface

**Packet Error Rate

(i) a centralized resource control, completely open and decoupled from the network devices
hardware/software, and (ii), a fine granular resource control, down to the validation of each
single received frame. These two characteristics are also very interesting and suitable for a
flexible and dynamic management of resources in real-time networks (meets requirements
R4-R5). Alas, due to its roots, the development of SDN technologies prioritizes forwarding
and throughput management and has no suitable services and APIs to support real-time
applications and provide a proper configuration of real-time resources (misses R1-R3).

On the other side of the spectrum, the development of industrial networks have intensively
pursued high determinism and extremely low latency and jitter values. Although there is
a plethora of industrial network technologies (discussed in Chapter 4) which are able to
fulfill strict timeliness requirements, these commonly exhibit limitations in either throughput,
operational flexibility, and concurrent support for traffic with distinct requirements and
activation patterns (limited fulfilment of R1-R3). Moreover, it is also common to have different
network technologies across factory levels, where each technology exhibits different degrees of
determinism, throughput, and flexibility, and requires different tools for the management and
configuration of its resources (fails R4-R5).

In conclusion, future networks will have to address the aforementioned issues and reconcile
the determinism of low level industrial networks with the openness of Internet-like generic
data networks, leading to significant research and technological challenges. In fact, this is
the problem addressed by this thesis work. Herein, it will be shown that it is possible to
conciliate the flexibility and heterogeneity of SDN technologies with deterministic real-time
communications offered by suitable Ethernet technologies and meet all the previously identified
requirements.

CHAPTER 3
Theoretical foundation

Contents
3.1 On real-time systems . 21

3.1.1 Taxonomy of a real-time system . 22

3.1.2 Task model . 23

3.1.3 Task scheduling . 24

3.1.4 Schedulability analysis . 28

3.1.5 Hierarchical scheduling . 30

3.2 On real-time communications . 33

3.2.1 Transaction activation paradigms 33

3.2.2 Message scheduling . 34

3.3 Software Defined Networking Paradigm . 35

3.3.1 OpenFlow protocol . 37

3.3.2 Using SDN in industry . 42

This chapter aims to provide basic knowledge on real-time communications, scheduling
techniques, and on software-defined networking technologies. This knowledge is essential for
the understanding of concepts introduced throughout this document.

3.1 On real-time systems

Some systems, commonly associated to physical processes, have to interact with the external
environment in order to perform a given function, e.g. control an engine’s fuel combustion.
This interaction is usually done through the use of sensors, actuators and other input-output
interfaces. These systems can be found, for example, in industrial automation systems,
automotive applications, flight control systems and military applications [49]. Since the
environment has inherent temporal dynamics, in order to properly interact with it these
systems not only have to produce logically correct solutions but also produce and apply them
within a specified time interval, known as deadline. Systems, where the correctness of the
system behaviour depends on both the logical computations and the physical time instant
when they are produced and applied are called real-time systems [49].

21

22 CHAPTER 3. THEORETICAL FOUNDATION

3.1.1 Taxonomy of a real-time system

Real-time systems are usually composed by computational activities, i.e. tasks, which execute
specific functions and have stringent timing constraints that must be met in order to achieve
proper system behaviour. A typical timing constraint on a task is the deadline, i.e the instant
before which a task should complete its execution without impairing the system. Depending
on the effects of a missed deadline, tasks can be categorized as [49]:

• Non real-time. Task has no time constraints and always contributes to the system
whenever it completes its execution;

• Soft. Task’s output still has some utility to the system after missing its deadline,
however, the system’s performance is degraded;

• Firm. Task’s output has no utility to the system after a deadline miss, however, it does
not cause catastrophic consequences on the system behaviour;

• Hard. Task only contributes to the system if it completes within its deadline. A
deadline miss may cause catastrophic consequences, e.g. overall system failure with
human and/or material losses.

According to the type of tasks executing in the system and the consequences that may arise
from deadline misses, real-time systems can be categorized as [49]:

• Soft real-time systems. Systems that only integrate soft and/or firm tasks are
categorized as soft real-time. In these systems, deadline misses may induce overall
performance degradation without catastrophic consequences. A typical example for this
type of system is video and sound streaming in which a deadline miss typically results
in minor image/sound glitches.

• Hard real-time systems. Systems that contain at least one hard task are categorized
as hard real-time. In these systems, a deadline miss may result in a system failure with
catastrophic effects, e.g. material and/or human losses. A typical example for this type
of system is a nuclear power plant control in which a deadline miss could result in the
failure of the nuclear reactor;

Besides timing constraints, tasks may also have precedence relations, i.e. they can’t be
executed in arbitrary order, and resource constraints. Readers are referred to [49] for more
information.

A real-time system may have one or more resources that have to be shared among several
tasks, e.g. CPU and network. An important matter is to determine how tasks access shared
resources and whether all tasks can execute and meet their requirements, in particular during
peak-load. To that end, a real-time system commonly employs a scheduler entity which runs
scheduling algorithms to determine how tasks access a given resource, e.g. task’s order of

3.1. ON REAL-TIME SYSTEMS 23

access, and performs schedulability analysis to assess if a given task-set can be executed while
fulfilling its timeliness requirements. To perform these operations, a real-time system describes
tasks using mathematical abstractions (task models) that convey, for example, their timeliness
requirements. These components will be briefly described in the following sections.

3.1.2 Task model

Tasks can be triggered (activated) by several sources, from events generated at specific time
instants, to occurrences derived from the execution of other tasks or by external events, e.g.
sensor reading. The time instant in which a task is activated is known as task arrival, while
the duration of time between two arrivals of the same task is known as task inter-arrival time.
Depending on the regularity of its activation, a task may be categorized as periodic, aperiodic,
or sporadic. Tasks that are activated regularly and with a fixed inter-arrival time are called
periodic. Conversely, tasks whose arrival is not periodic but exhibit a minimum inter-arrival
time between any consecutive actions are known as sporadic. Finally, tasks which don’t have
a predictable and bounded activation pattern are defined as aperiodic.

The model for a set of periodic tasks Γ can be formally defined as:

Γ = {τi | τi = {Ci, Ti, φi, Di, P ri} , i = 1, 2, .., n} (3.1)

where:

• Ci is the worst-case computation time required to complete task τi, also known as
Worst-Case Execution Time (WCET);

• Ti is the period of task τi;

• φi is the initial phase, i.e., the release time of the first instance of task τi;

• Di denotes the relative deadline of task τi;

• Pri denotes the priority of task τi.

The release (activation) instant (ri,k) and absolute deadline value (di,k) of a generic kth

instance of the periodic task τi can be computed as follows:

ri,k = φi + (k − 1)× Ti , k ∈ N (3.2)

di,k = ri,k +Di , k ∈ N (3.3)

There are other parameters typically defined for periodic task-sets:

• Hyperperiod. Minimum interval of time after which the schedule repeats itself. For a
set of periodic tasks synchronously activated at time t = 0, the hyperperiod is equal to
the least common multiple of all task periods;

24 CHAPTER 3. THEORETICAL FOUNDATION

• Job response time. Time elapsed between the instant when the task is ready to
execute to the time when it finishes its execution (single instance);

• Task response time. Maximum response time among all task jobs;

• Task critical instant. Activation time that produces the largest task response time.

The notation of Equation 3.1 can also be applied for sporadic tasks by foregoing the initial
phase φi and by considering the minimum inter-arrival activation time Tmiti instead of the
regular period Ti. For sporadic tasks, the activation and the absolute deadline instants are
computed as:

ri,k ≥ ri,k−1 + Tmiti , k ∈ N (3.4)

di,k = ri,k +Di , k ∈ N (3.5)

3.1.3 Task scheduling

As previously mentioned, the resource scheduler is the system component that decides the
order in which tasks access a given shared resource. The procedure of selecting the task that
executes at a given point in time is called scheduling and the set of rules that determines
the order by which tasks are executed is known as scheduling algorithm [49]. A common
taxonomy used to categorize the scheduling algorithms is depicted in Figure 3.1.

Real-Time
Scheduling

Offline Online

Static Priorities Dynamic Priorities

Preemptive Preemptive Non-preemptiveNon-preemptive

Static Cyclic
Scheduler

Figure 3.1: Taxonomy for real-time scheduling algorithms

The scheduling algorithms fall into two general categories: (i) online, where scheduling decisions
are performed while the system is running, and (ii) offline, in which the schedule is built before
starting the system. The advantage of offline techniques lies in the possibility of using complex
and computational demanding algorithms to obtain highly optimized schedules. However,
online changes in the task set are inherently not possible and thus, they are not adequate

3.1. ON REAL-TIME SYSTEMS 25

for dynamic systems where new tasks may be added at run-time and their requirements
changed. With respect to online scheduling techniques, they are much more flexible and are
able to perform scheduling decisions upon the occurrence of events that require rescheduling,
e.g. arrival of new tasks. Online algorithms are further divided into two categories: (i)
scheduling that is based on static priorities that are derived from fixed information, and (ii)
scheduling based on priorities that are dynamically changing following run-time information,
e.g. proximity to deadlines. Each of the last two categories can be identified as being
preemptive or non-preemptive. In preemptive scheduling techniques, the on-going execution
of a task can be suspended and interrupted in order to give way to a higher priority task. In
non-preemptive scheduling, a running task executes to its completion, even if a higher priority
task becomes ready for execution. The next sections will present some of the most relevant
scheduling algorithms.

3.1.3.1 Scheduling techniques for periodic tasks

Periodic tasks are of great importance for many real-time systems, in particular for industrial
applications which commonly employ closed-loop control techniques for the operation and
management of processes and machinery. Such tasks are required to be cyclically executed
at proper rates and completed within their deadlines. To that end, several techniques and
algorithms can be employed by schedulers. Examples of the most well known and used
techniques include Timeline Scheduling (TS), Rate Monotonic (RM), and Earliest Deadline
First (EDF) [49]. These will be briefly explained next.

Timeline Scheduling
Timeline Scheduling, also known as Cyclic Executive, consists in segmenting time into equal
length time intervals (time slots). The execution of each task is statically allocated to a certain
time slot in such a way that the frequency and deadline requirements for all tasks in the
system is respected. The association of task executions and time slots for a whole hyperperiod
is stored in a scheduling table that is typically built offline, i.e., before the system is started.
At run-time, a dispatcher follows the table’s schedule and ensures that tasks are only executed
at their predetermined slots. The schedule is repeated at the start of every hyperperiod.

The main advantages of this scheduling technique is its simplicity and behaviour predictability.
However, its flexibility is very limited since it is built offline and it is very sensitive to
application changes. These problems are solved by priority-based algorithms, e.g. Rate
Monotonic.

Rate Monotonic
The Rate Monotonic [50] is a simple online preemptive algorithm based on static priorities
and constrained deadlines, i.e., ∀τi ∈ Γ : Di = Ti. Following RM scheduling, priorities are
monotonically assigned according to their request rates. In particular, tasks with shorter
periods have higher priorities. That is:

∀τi,τj ∈ Γ : Ti < Tj ⇒ Pi > Pj (3.6)

26 CHAPTER 3. THEORETICAL FOUNDATION

Task scheduling is done online, i.e. at run-time. Whenever a task instance is activated or
the execution of a task finishes, the scheduler selects for execution the task with the shortest
period among all ready tasks. Liu and Layland [50] showed that RM is optimal among all
fixed-priority assignments, i.e., no other algorithm can schedule a task set that cannot be
scheduled by RM.

Earliest Deadline First
Earliest Deadline First [50] is an online preemptive algorithm based on dynamic priorities and
constrained deadlines. EDF assigns higher priority levels to tasks with the nearest (earliest)
deadline relative to the current time instant. That is, during run-time the following relation
holds:

∀τi,τj ∈ ΓTa : di < dj ⇒ Pi > Pj , Ta ∈ R (3.7)

where ΓTa is the subset of Γ comprising only the ready tasks at instant Ta, and (di,dj) are
the absolute deadlines at the same instant Ta for task τi and τi, respectively.

Compared to RM scheduling, EDF is able to achieve higher utilization while keeping guaranteed
timeliness, and reducing the number of task preemptions. However, EDF is more complex and
exhibits high run-time overheads which can be problematic for systems with low processing
power.

3.1.3.2 Scheduling techniques for aperiodic tasks

Contrasting to periodic tasks, that have well defined activation patterns and are easily con-
trolled and synchronized within the scheduling framework, aperiodic tasks are asynchronously
activated by events that are typically external and not controllable by the scheduler. A
challenge faced by systems which have to combine both type of tasks, such as those herein
addressed, is to be able to execute aperiodic tasks within adequate response times while still
fulfilling the timeliness requirements of all periodic jobs. To that end, several techniques have
been devised to bound the interference of aperiodic tasks and make it more deterministic.
These approaches can be grouped into two main groups: (i) techniques based on fixed-priority
scheduling, and (ii), techniques based on dynamic-priority scheduling.

Techniques from the former category typically target systems where periodic tasks are scheduled
according to the RM policy and all tasks are fully preemptable. These include [49]:

• Background scheduling. This is the simplest method to schedule aperiodic jobs and
consists in executing aperiodic tasks in a best-effor manner, i.e., in background when no
periodic tasks are ready for execution. Although the timeliness guarantees for periodic
jobs are preserved, no guarantees for aperiodic tasks are provided, particularly for
systems with high periodic loads. Therefore, background scheduling is only useful for
work-sets where aperiodic activities do not have demanding timing requirements;

• Server-based schedulers. Compared to background scheduling, server-based tech-
niques are able to provide good response times and timeliness guarantees for aperiodic

3.1. ON REAL-TIME SYSTEMS 27

tasks. The main idea behind these techniques is the use of a periodic task, known as
server, whose purpose is to act as an proxy for the execution of associated aperiodic
tasks. A server is characterized by a period Ts and an execution time Ci, commonly
referred to as server capacity or budget, just like a regular periodic task. Servers are
scheduled together with periodic tasks and, when active, service associated aperiodic
requests within the limit of their configured server capacity. The scheduling of aperiodic
tasks within a given server may resort to different algorithms than the one used by the
system for the periodic jobs. Although server-based schedulers are not optimal, they
strike an excellent balance between performance, and computational and implementation
complexity;

• Slack stealing [51]. This algorithm provides substantial improvements on the response
time of aperiodic events over server-based solutions. Slack stealing takes advantage of
the fact that, for the majority of systems, there is no benefit in completing periodic tasks
earlier than their deadline. Therefore, it creates passive tasks which attempt to make
time for servicing aperiodic tasks by delaying the execution of periodic requests as much
as possible while avoiding deadline misses. Although slack stealing based techniques
provide excellent performance when compared to the background and server-based
scheduling, they are exhibit high computational and implementation complexity.

There are several types of server-based, fixed-priority schedulers in the literature, with different
improvements with respect to their performance. The most well-known algorithms are [49]:

• Polling Server (PS) [52]. A polling server activates every Ts, where it fully replenishes
capacity and checks for pending aperiodic requests. If one or more requests are pending
upon activation, the server executes them within its budget, otherwise, it becomes
suspended until the next activation and all its budget is lost. Requests arriving during the
suspended state must wait until the next server activation. Tasks execute only during the
server capacity Ci, and are preempted if the budget is completely exhausted. Therefore,
aperiodic executions are constrained and have a similar impact in the schedulability
of the system as regular periodic tasks with period Ts and computation time Cs. The
significant drawback of polling servers is their poor response time, since requests that
arrive just after server activations have to wait for the following instances to be serviced;

• Deferrable Server (DS) [53]. The deferrable server is another server-based scheduler
that presents slightly better response times for aperiodic requests than the polling server.
Following this algorithm, the server task is also modeled as a periodic task with period
Ts and execution time Ci. Contrary to the polling server, which polls pending tasks
every period and drops all its budget in the absence of requests, DS preserves its budget
until the end of each period or until it is exhausted. This allows requests to use the
available budget at any time during the server period. Akin to the PS, server capacity
is fully replenished at the beginning of each server period. A negative aspect from the
use of deferrable servers is a lower schedulability bound for the periodic task-set since
aperiodic tasks may now execute at any time during the servers’ period[49];

28 CHAPTER 3. THEORETICAL FOUNDATION

• Priority Exchange (PE) [52]. The priority exchange algorithm exchanges a slight
degradation of the response times provided by deferrable servers for better schedulability
bounds. Here, servers are typically configured as high priority periodic tasks, and are
able to exchange their budget for the the execution time of lower priority periodic tasks.
As in the polling server, the server fully replenishes its budget at the beginning of each
server instance and checks for pending aperiodic requests. If the server is the highest
priority active task, it serves pending aperiodic requests using the available capacity,
otherwise its budget is exchanged for the execution time of the periodic task which is
currently ready and has the highest priority. Hence, servers’ budget are not lost but
preserved at the priority of the lower priority task involved in the exchange. When an
aperiodic request is received, it is run with the priority currently associated with the
server’s budget. Note that this algorithm exhibits a significantly higher computation
overhead and complexity than that of a deferrable server;

• Sporadic Server (SS) [54]. The sporadic server exhibits better average response time
of aperiodic tasks than those of the polling server while preserving the schedulability
of the periodic task-set. Akin to the deferrable server, it preserves its capacity until
it is consumed by an aperiodic request. Unlike the other server-based techniques, the
sporadic server schedules the replenishment only when budget is consumed, and for an
amount equal to the consumed budget. These replenishment rules, from a scheduling
point of view, make the impact of SS equal to that of a normal periodic task with a
period Ts and execution time CS . However, the implementation of SS is more complex
than that of DS.

An important remark, although some of the aforementioned techniques are able to improve
the average response time of aperiodic tasks, it has been proven in [55] that there are no
optimal algorithms that can both minimize the response time of every aperiodic request while
guaranteeing the schedulability of a periodic task-set ordered according to a fixed-priority
scheme. Hence, there is always a trade-off between response time and schedulability when
using server-based scheduling solutions.

There are similar techniques to handle aperiodic events based on dynamic-priority scheduling,
which provide better utilization bounds when compared to the fixed-priority ones. Many of
these solutions are enhanced versions of the server-based algorithms such as, for example,
an extension of the sporadic server called the Dynamic Sporadic Server (DSS) [56] and the
Dynamic Priority Exchange Server (DPE) [56], an enhancement of the priority exchange
server. The reader is referred to [49] for a more detailed overview and analysis of this matter.

3.1.4 Schedulability analysis

Schedulability analysis allow to determine a priori if a given task-set under a certain scheduling
policy is feasible, i.e., if all tasks will meet their deadlines at runtime. There are several
approaches in the literature such as, for example, utilization and response time based tests [49].
Utilization-based tests are typically less computationally complex and faster when compared

3.1. ON REAL-TIME SYSTEMS 29

to other approaches, however, they can exhibit a high level of pessimism. Tests based on the
analysis of response times are usually less pessimistic and can provide response time bounds
for each task. However, these are more complex and not suitable for dynamic scheduling
systems with low processing power.

Utilization-based tests
In general, utilization-based tests compute the processor utilization factor U , i.e. the fraction
of processor time, for the execution of a given task set Γ and compare it to a certain upper
bound. Only sets with utilization factors bellow the threshold are considered to be schedulable.
This threshold depends on the task set, i.e. particular relations among tasks’ periods and
deadlines, and on the employed scheduling algorithm. Nonetheless, if a task set exhibits an
utilization greater than 1.0, it cannot be scheduled by any algorithm.

A seminal work on utilization-based scheduling is the one presented by Lui and Layland in
[50] for periodic task sets under the Rate Monotonic (RM) scheduling policy. The task model
consists of independent periodic tasks with relative deadlines equal to their periods. Moreover,
all tasks are considered to be released at the same time, which corresponds to the critical
instant for all tasks under RM. Tasks can be preempted and the resulting system overhead is
considered to be negligible1. The utilization factor U for a set Γ with n tasks is given by:

U =
n∑
i=1

(
Ci
Ti

)
(3.8)

According to [50], a given task set is guaranteed to have a feasible schedule under RM if the
sufficient test expressed by Inequality 3.9 is true. Note that the right side of the inequality
corresponds to the least upper bound for processor utilization.

U < n×
(
2

1
n − 1

)
(3.9)

Response time analysis
Response time schedulability tests compute the worst-case response time for all tasks in the
set and compare it with the respective deadlines. If the worst-case response time of any task
in the set is bigger than the task’s deadline, the set is deemed not schedulable.

An important response time test for fixed-priority preemptive systems was presented by Joseph
and Pandya in [57]. According to them, the longest response time Ri of a periodic task τi is
given by the sum of its worst computation time Ci and the amount of interference Ii that it
can suffer from the higher priority tasks in the system. That is:

Ri = Ci + Ii (3.10)

The maximum interference happens at the critical instant which, for a set of periodic tasks,
occurs when task Ii is released with all other higher priority tasks (hp(i)) at the same instant.
The maximum interference is computed as:

Ii =
∑

∀j∈hp(i)

(⌈
Ri
Tj

⌉
× Cj

)
(3.11)

1When required, this overhead can be accounted for in the analysis.

30 CHAPTER 3. THEORETICAL FOUNDATION

Combining Equation 3.10 and Equation 3.11 yields:

Ri = Ci +
∑

∀j∈hp(i)

(⌈
Ri
Tj

⌉
× Cj

)
(3.12)

Equation 3.12 can be solved by iterating the following equation:

Rn+1
i = Ci +

∑
∀j∈hp(i)

(⌈
Rni
Tj

⌉
× Cj

)
(3.13)

where the iteration starts with R0
i = 0 and stops when Rn+1

i = Rni or when Rni exceeds the
task’s deadline. The present analysis was improved by Audsley et al. in [58] to address the
effect on non-preemption. They extended Equation 3.10 to include blocking Bi introduced by
lower priority tasks executions:

Ri = Ci + Ii +Bi (3.14)

The enhanced equation can be solved using the same iterative technique. The blocking factor
is computed as follows:

Bi =
{

0, lep(i) = ∅
maxj∈lep(i){Cj}, lep(i) 6= ∅

(3.15)

An important remark, due to the presence of the blocking factor the critical instant is re-defined
and now occurs when the task τi and all other higher priority tasks are released just after the
instant in which the lower priority task that can block τi the longest starts its execution.

3.1.5 Hierarchical scheduling

The scheduling techniques introduced in Section 3.1.3 are able to provide good system utiliza-
tion while assuring temporal correctness, however, they share a weakness: the schedulability
analysis must be performed globally, i.e. by analyzing all applications in the system together.
Although this necessity imposes no limitations when the system is closed, i.e. when all
applications that can run at the same time are determined a priori, it does so for open
systems [59], [60]. This is particularly important since many modern systems, e.g. automotive
domain, have become extremely complex and open, often employing concurrent development
techniques to design and validate applications independently. Scheduling these systems is no
easy task since users may request, during run-time, the execution of real-time applications
whose schedulability has not been analyzed together with the current combination of executing
applications. This is aggravated by the fact that many properties of applications in the system
may be unknown. To address this issue, new scheduling approaches have been researched,
typically known as hierarchical schedulers or Hierarchical Scheduling Framework (HSF). The
main components and structure of such framework is depicted in Figure 3.2 [61], [62].

A HSF is generally represented as a tree (hierarchy) of nodes (components), each representing
an application with its own scheduler for scheduling internal workloads, i.e. tasks. Components
model their internal real-time requirements as a single real-time requirement called the real-
time interface. This interface can be modeled, for example, as the standard periodic model

3.1. ON REAL-TIME SYSTEMS 31

Real-time interface

 Real-Time System Resource

Global Scheduling
Algorithm

Resource (Share)

Local Scheduling
Algorithm

Workload

Component (Application)

Child
Component

Parent
Component

Real-time interface

Resource (Share)

Local Scheduling
Algorithm

Workload

Real-time interface

Resource (Share)

Local Scheduling
Algorithm

Workload

Real-time interface

Resource (Share)

Local Scheduling
Algorithm

Workload

Figure 3.2: Example of a Hierarchical Scheduling Framework

(Section 3.1.2). Parent components use this interface to provide resource allocations to its child
components without the need to control or even understand how child components schedule
resources for their own tasks. For example, following the periodic model, a component can
be treated by its parent as a single periodic task. As long as the parent component satisfies
the resource requirements imposed by this task, the resource demands of the child’s entire
workload is also satisfied. A given parent will in turn combine all child interfaces into a
single real-time interface. At system-level, a global scheduler assigns resources to all parent
components at the top of the hierarchy according to a certain scheduling policy.

With this approach, complex and large real-time systems can be decomposed into several
subsystems, i.e. components, whose timing properties can be analyzed and verified indepen-
dently. These can then be assembled hierarchically such that timing properties established at
the component level are also hold at the system level. According to Shin and Lee [61], [62] a
hierarchical scheduling framework must fulfill the following properties:

• Independence. The schedulability analysis for each component must be performed
independently of other components at the same hierarchical level;

• Separation. Parent and child components only interact through an interface that
abstracts their internal complexity;

32 CHAPTER 3. THEORETICAL FOUNDATION

• Universality. Any scheduling algorithm can be employed by each component;

• Composability. A parent component is schedulable if and only if the timing require-
ments of all its childs are satisfied.

Server-based architectures are commonly employed to achieve these properties since they are
an effective technique to perform controlled resource sharing. In particular, they are able to
transparently provide virtual resources to HSF components that are a fraction of the capacity
of the underlying hardware resources, and enforce mutual temporal isolation. Therefore,
servers can easily provide suitable component scheduling interfaces.

An important HSF was presented by Shin and Lee [61], [62]. In it, they define a component C
as a triplet (W,R,A), where W describes the workload, R the available resources, and A the
scheduling algorithm used to schedule the resources among the workload. Then, they specified
two functions: (i) dbfA(W, t), the demand bound function that quantifies the maximum
possible workload W that can be submitted to the resource R, managed under the scheduling
policy A, during a certain time interval t, and (ii) sbfR(t), the supply bound function that
computes the minimum possible resources that R provides throughout the course of time
interval t. The resource R satisfies the submitted workload W if:

dbfA(W, t) ≤ sbfR, ∀t ∈ R+ (3.16)

Shin and Lee also define a real-time interface Γ(Π,Θ), based on the periodic model, which
characterizes the periodic allocation of the resource R by workload W . Therefore, Γ(Π,Θ)
represents a resource supply that periodically, every Π time units, provides Θ resource units.
Therefore, the supply bound function can be defined as:

sbfΠ(t) =
{
bΘ +max{0, t− a− bΠ}, t ≥ Π−Θ
0, t < Π−Θ

(3.17)

where:
a = 2(Π−Θ), b =

⌊
t− (Π−Θ)

Π

⌋
(3.18)

Arvind et al. [63] generalized the Γ = (Π,Θ) for hierarchical frameworks defining explicit
deadlines. The proposed model, known as explicit deadline periodic (EDP) model Ω =
(Π,Θ,∆), specifies a resource supply that provides every Π time units, Θ resource units during
∆ time units, where ∆ ≤ Π. The periodic model Γ = (Π,Θ) is defined in EDP model as
(Π,Θ,Π). The supply bound function sbfΩ(t) can be defined as:

sbfΩ(t) =
{
bΘ +max{0, t− a− bΠ}, t ≥ ∆−Θ
0, t < ∆−Θ

(3.19)

where:
a = (Π + ∆− 2Θ), b =

⌊
t− (∆−Θ)

Π

⌋
(3.20)

3.2. ON REAL-TIME COMMUNICATIONS 33

3.2 On real-time communications

Many real-time systems, such as those found in the modern industrial applications presented
in Chapter 2, use a distributed architecture in which a set of nodes, that may be deployed in
geographically separate locations, are interconnected by a communication system (network)
in order to exchange information and cooperate towards a common goal. These systems,
commonly known as real-time distributed systems, integrate time-constrained activities which
include both task executions at nodes and the exchange of messages over the network. There-
fore, the proper temporal behavior of the whole system depends not only on the timeliness
of tasks executing on each processing device but also the capacity of the underlying commu-
nication system to provide the delivery of messages within specific timeliness requirements.
Communication systems that are able to support such temporal requirements are known as
real-time communication systems [64].

Real-time communication systems must be properly designed. If the network is overloaded,
i.e. the demand for resources exceeds the maximum capacity, or isn’t able to fulfill the
Quality-of-Service (QoS) requirements of each communication stream, e.g. delay and drop
rate, the whole system may experience a performance degradation and a partial or global
system failure. [65]. The amount of network resources and the type of QoS requirements are
heavily dependent on the type of the system and its applications. For example, file transfer
applications prioritize bandwidth with low regard for transmission delays while closed-loop
control systems demand low bandwidth but strict timing requirements, such as very low
delay values and jitter [65]. The remainder of this section addresses some important issues
concerning real-time communication.

3.2.1 Transaction activation paradigms

In real-time communication systems there are two different paradigms that can be used to
initiate message exchanges [64]:

• Time-triggered. The time-triggered paradigm infers that a given message transmission
is only triggered at a specific, predefined point in time within the communication system.
In order for this to be possible, all system nodes must have a common time reference and
follow a predefined scheduling table which defines the trigger points for each message.
The scheduling tables can be built prior to transmissions dynamically, i.e. while the
system is active, or offline, i.e. before the system startup. Scheduling tables are built
by schedulers who coordinate the exchanges as to optimize the network resources and
respect all timing requirements;

• Event-triggered. Following the event-triggered paradigm, message transmissions are
triggered by the system nodes upon a given asynchronous event, e.g. the detection of
movement by a sensor. In contrast to the time-triggered paradigm, the communication
control is now external to the communication system. Due to the fact that these events
may occur at undetermined time instants and out of the network’s control it is not

34 CHAPTER 3. THEORETICAL FOUNDATION

possible to plan ahead the instants in which communications will occur, leading to
contention on the access to the resources. However, it is still possible to determine upper-
bounds for the response time of messages provided that a minimum set of information
is available, e.g. transmission time and minimum inter-arrival time between consecutive
transmissions.

Due to the transmissions’ scheduled nature, time-triggered communications are able to support
periodic messages with low transmission latency and jitter as long as the entire system is
synchronized and the scheduling of messages respected, otherwise high latency values and
jitter may be induced. For example, if an imperfectly synchronized node produces a message
immediately after the scheduled transmission time instant, this message will be delayed and
sent in the next scheduled instant. Thus, time-triggered approaches are better suited for fully
synchronized loop-control systems [66]. As event-triggered messages may be dispatched at
any time, they may be handled with low latency. However, due to contention, messages may
suffer interference from other ones, resulting in potentially high latency and jitter values.

In many real-time systems, both kinds of events occur naturally, e.g. automotive and industrial
systems. Supporting a combination of both event-triggered and time-triggered communication
would bring benefits for the system, such as higher flexibility and reduced costs. However, in
order for both paradigms to coexist, isolation, e.g. temporal, between the two traffic types
must be introduced to prevent the asynchronous nature of event-triggered from interfering
with the time-triggered traffic performance.

3.2.2 Message scheduling

In distributed systems, nodes commonly exchange data messages through a shared medium
network. Therefore, as with tasks in systems with a single processor, the access to the network
must be properly scheduled in order to fulfill the timing requirements of all applications.

Message scheduling in communication networks has several similarities with task scheduling:
messages can also be categorized according to timing constraints (non real-time, soft, or hard)
and the activation pattern (periodic, sporadic, or aperiodic). As such, techniques employed
for task scheduling, such as the periodic model scheduling algorithms, and scheduling analyses,
can also be applied to the network domain. In fact, this has been extensively done in the
literature, with examples including [6], [25], [67]. However, distributed real-time systems
pose additional challenges. For example, resource schedulers need to keep the status of all
resources update in order to accurately control their usage. However, due to the distributed
nature of the system, knowledge concerning nodes and network state is not easy to gather
and is not always available. Therefore, scheduling decisions typically have to be taken based
on incomplete information. Additionally, data units (frames) transmitted by networks are
typically non-preemptive and thus, preemptive scheduling techniques which in average provide
higher schedulability cannot be used, leading to a penalty on efficiency.

3.3. SOFTWARE DEFINED NETWORKING PARADIGM 35

3.3 Software Defined Networking Paradigm

As discussed in Chapter 2, Software Defined Networking (SDN) can be an important technology
to manage networks of complex and highly dynamic applications such as those found in Industry
4.0. Therefore, the key question is "what is SDN all about?". According to Nadeau [68], SDN:
"functionally enables the network to be accessed by operators programmatically, allowing
for automated management and orchestration techniques; application of configuration policy
across multiple routers, switches, and servers; and the decoupling of the application that
performs these operations from the network device’s operating system."

Historically, network management was often performed manually, with configurations set up
via Command-Line Interface (CLI) on a device-by-device basis. This rendered the management
of networks a complex a difficult task, in particular for large and complex networks comprising
many kinds of equipment, from routers and switches to firewalls and server load-balancers.
To aggravate the complexity, network administrators typically had to configure individual
network devices using configuration interfaces and tools that vary across vendors—and even
across different products from the same vendor. Although some network management tools,
e.g. CiscoWorks LAN Management Solution [69], offer a central configuration point, these
still operate at the level of individual protocols and configuration interfaces. Therefore, once
deployed, networks are largely static and commonly untouchable. This mode of operation has
slowed innovation, increased complexity, and increased both the capital and operational costs
of running a network [68], [70].

SDN is a network management architecture that emerged from the need to solve the com-
plexity in the management of data center networks and provide the flexibility required by
emerging applications such as server virtualization and cloud computing. It has been receiving
considerable attention from industry and academia [71], and exhibits two particular features
that are very well suited to manage a network with real-time requirements: (i) a centralized
resource control, completely decoupled from the data plane, and (ii), a fine granular resource
control, down to validating each single frame received in each port of a switch. The main
components of a SDN architecture are depicted in Figure 3.3.

SDN network resource control is performed by a central entity named controller, that centrally
performs admission control of the new traffic flows, and takes decisions about the network
resource management. Being a central entity performing the resource management, the
controller keeps the complete information about network topology and resource allocations.
SDN controllers interact with data plane entities through the so-called southbound interface,
installing rules that dictate, for example, how traffic is to be forwarded/routed throughout
the network. At the data plane, network elements process traffic according to the rules
instantiated by the controller. The southbound interface creates an abstraction that allows
to avoid the difficulties imposed by vendor specific management technologies. The network
controller is also referred in the literature as the network operating system, entity to which
network applications request network services through the northbound interface. One of the
common API technologies used at the northbound interface is the Representational State

36 CHAPTER 3. THEORETICAL FOUNDATION

Control Plane

Application Plane
Cloud

Orchestration

Open Northbound API

Business
Application

SDN
Applications

SDN Control Software
SDN Controller

Control Logic

Data Plane

Open Southbound API

Network
Infrastructure

Data forwarding
devices

Figure 3.3: Generic SDN architecture

Transfer (REST) API that uses HTTP/HTTPS protocols to execute common operations on
resources represented by Uniform Resource Identifier (URI) strings. The northbound API
offers a network abstraction interface to applications and management systems at the top
of the SDN stack, promoting the innovation of the network management process and new
business applications [68], [71].

SDN offers just minimal QoS support with different priorities and minimum guaranteed
bandwidth, which are vital for cloud-based deployments. Further improvements are currently
being considered. For example, the northbound interface lacks the specification of QoS
requirements that are essential for applications such as multimedia. This led the Open
Networking Foundation (ONF) to standardize the Real-Time Media NBI [72]. Other proposals
already aim at enhancing the support for traffic with more demanding requirements but most
are just at the level of conceptual ideas, under simulated or emulated scenarios[71]. As of
today, albeit offering unprecedented control granularity, SDN still lacks adequate support for
network applications that impose strict deadlines on network traffic delivery, such as many

3.3. SOFTWARE DEFINED NETWORKING PARADIGM 37

IIoT applications. Noticeably, SDN’s most popular southbound signaling protocol, OpenFlow,
lacks mechanisms to specify real-time requirements.

3.3.1 OpenFlow protocol

The OpenFlow switch protocol [73], standardized by the ONF, is the most widely accepted and
employed southbound for SDN-based networks. An SDN/OpenFlow architecture comprises
two main elements: OpenFlow-enabled controllers and OpenFlow-enabled forwarding devices.
OpenFlow controllers have the same role of being the "network brain" as traditional SDN
controllers, however, they implement the necessary software stacks to communicate with and
configure OpenFlow data plane devices using the standardized API and services. OpenFlow
data plane devices are hardware (or software) entities that are specialized in packet forwarding
and implement a forwarding datapath according to the standard. The main components of an
OpenFlow data plane device (OpenFlow switch) are shown in Figure 3.4 [73].

Flow Table
1

Port

Port

Flow Table
2

Flow Table
n

Port

Port

...

Meter
Table

Group
Table

Datapath

OpenFlow Pipeline

OpenFlow
Channel

OpenFlow
Channel

Control Channel

OpenFlow
Controller

OpenFlow
Controller

OpenFlow switch Protocol

Figure 3.4: OpenFlow switch architecture

An Openflow switch consists of a forwarding pipeline comprising one or more flow tables, the
OpenFlow Pipeline, a group table, and one or more OpenFlow channels to external controllers.
An OpenFlow channel provides a reliable message delivery service based on Transport Layer
Security (TLS) and implements the interface that connects each switch to an OpenFlow
controller. Through this interface, a controller may configure and manage the switch, receive
events from the switch, and send frames out the switch. The Control Channel component of
the switch may support one or multiple OpenFlow channels, enabling multiple controllers to
share the management of the device. A meter table may also be supported by the device’s
datapath. This table allows OpenFlow to forward traffic through programmable flow meters

38 CHAPTER 3. THEORETICAL FOUNDATION

in order to implement simple QoS operations, such as rate-limiting. Each meter measures
the rate of traffic flows assigned to it and can be configured to drop frames or increase the
drop precedence of DiffServ flows upon reaching a programmable rate threshold. OpenFlow
ports are abstractions of network interfaces that allow to receive/transmit traffic from/to
the network as well as within internal processing. An OpenFlow device supports a set of
OpenFlow ports which may not be identical to the set of network interfaces provided by the
switch hardware. Three types of ports are defined: (i) physical, that correspond to a hardware
interface of the switch, (ii) logical, which don’t correspond directly to hardware interfaces and
may be used to define and perform traffic processing using non-OpenFlow methods, and (iii),
reserved ports, a subset of logical ports that are defined by the OpenFlow standard to enact
certain processing actions such as, for example, sending a received frame to the controller. All
ports have port counters, for statistic purposes such as registering the number of processed
traffic frames, state, e.g. online or offline, and configuration parameters, e.g. drop all traffic.
Finally, the OpenFlow pipeline and the group table implement the services that perform traffic
look-ups and forwarding.

The group table comprises a set of entries (group entries), which enable OpenFlow to
specify sets of actions (buckets) to facilitate complex operations such as fast-failover and link
aggregation. These are not going to be addressed here in detail. The reader is referred to [73]
for more information. Flow tables are the cornerstone of the OpenFlow pipeline processing.
The structure of a flow table2 is depicted in Figure 3.5 [73].

Match Fields

Flow Entry 0

Instructions

Flags

Priority

Counters

Timeouts

Cookie
Flow Entry 1

Flow Entry N

Flow Entry 2

Flow Table

. . .

0x0011

ETH_SRC = 00:11:22:33:44:55
IPV4_DST = 192.168.100.150

Write-Actions{OUTPUT 0x01}

Rx Packets = 0x0000000000001029
Duration = 0x00FF0011 seconds
Idle = 0x0010 seconds
hard = 0x0020 seconds

0x0123 4567 89AB CDEF

OFPFF_SEND_FLOW_REM |
OFPFF_CHECK_OVERLAP

Figure 3.5: OpenFlow Flow Table

Every table in the pipeline comprises a set of flow entries that can be configured by an
OpenFlow controller. Each flow entry contains a set of match fields that are used to filter
frames according to several fields such as, for example, Ethernet and IPV4 addresses. When a

2Note that the presented figure is merely indicative, not all the possible instructions, actions, match fields,
flags, and counters are illustrated

3.3. SOFTWARE DEFINED NETWORKING PARADIGM 39

frame matches a given entry, i.e. when match fields and the corresponding frame fields are
equal, a set of instructions associated with that particular entry are executed. The execution
of these instructions may result in changes to a list of actions (the action set) associated to
the frame, the modification of the frame itself, e.g. addition of VLAN tags, or may modify
the pipeline processing, e.g. indicate the next table to process the frame. The order according
to which frames are matched against flow entries in a particular table follows the matching
precedence that is established by the priority field of each flow entry (higher value holds
higher precedence level). Finally, flow entries also contain a cookie value that can be used
by controllers to filter how some configuration commands affect certain entries, counters for
statistic purposes, configuration flags, and timeout fields that can be used to specify the
maximum liveness period for the entry.

3.3.1.1 OpenFlow pipeline processing

A simplified view of the pipeline processing is depicted in Figure 3.6 [73].

Ingress processing

Ingress
Port

...
Group
Table

Action
Set = {}

Received
Frame

Egress
Port

Flow
Table

1

Flow
Table

n

Flow
Table

2

Execute
Action

Set

Drop

Figure 3.6: Simplified OpenFlow pipeline processing

Frames received at ingress ports are sent to the first flow table in the OpenFlow pipeline for
ingress processing. The frame is then matched against the table’s flow entries to select a flow
entry. If there is a match, the instructions in the matched flow entry are executed. Besides
modifying the frame or its action set, the performed instructions may also explicitly direct the
frame to another subsequent flow table, where the same process is repeated. If the matching
flow entry does not direct frames to another flow table, the current stage of pipeline processing
stops and the frame’s current action set is executed. From the execution of the action set a
frame may either: (i) go through additional processing in the group table, (ii) be forwarded to
a given OpenFlow egress port, or (iii), be dropped if no output/group action is present in the
action set. The additional processing carried within the group table may as well either drop
the frame or forward it to one or several OpenFlow egress ports. OpenFlow switches may
optionally support an additional OpenFlow pipeline to enact processing within the context of
a specific egress port. This egress pipeline operates akin to the ingress OpenFlow pipeline.

If a frame does not match a flow entry in a given flow table, an event known as table miss
occurs. In this scenario, the frame is either dropped or, if configured, processed according

40 CHAPTER 3. THEORETICAL FOUNDATION

to the instructions of a special entry known as table-miss flow entry. Table-miss flow entries
can be configured by OpenFlow controllers to specify how traffic unmatched by other entries
should be dealt with. These entries are similar to regular entries and support the same
instructions and actions. However, table-miss flow entries wild-card all match fields and have
the lower priority value (0). Controllers typically configure these entries to either drop traffic
or send it to the controller, in a process named Packet-in. The controller may then analyze
this traffic and, if it so decides, set up appropriate forwarding rules in the data plane.

3.3.1.2 OpenFlow actions

Concerning the action set, an OpenFlow switch may support the following actions [73]:

• Output port_no. The Output action forwards frames to the specified OpenFlow port
for egress processing;

• Group group_id. Sends frame to be processed by the specified group in the group
table;

• Drop. There is no explicit action to represent drops, however, frames whose action sets
have no Output and no Group action are dropped;

• Set-Queue queue_id. Sets the egress queue id for a frame. Forwarding behavior is
dictated outside the OpenFlow protocol by the services serving the specified queue;

• Meter meter_id. Directs frame to the specified meter. The frame may be then
dropped as result of the metering process;

• Push-Tag/Pop-Tag ethertype. Push/pop a new header onto/from the frame. VLAN,
MPLS, and PBB headers are specified;

• Set-Field field_type value. Set the specified field to a certain value;

• Copy-Field src_field_type dst_field_type. Copies data between any header fields;

• Change-TTL ttl. Modifies the value of IPv4 TTL, IPv6 Hop Limit or MPLS TTL in
the frame.

The action set associated with each frame is empty by default and may be filled with a list of
actions by instructions of matched flow entries. In case an action set contains more than one
action, these must be performed according to the following ordering [73]: (i) copy TTL inwards,
(ii) apply all tag pop actions, (iii) apply MPLS, PBB, VLAN tag push actions following this
order, (iv) copy TTL outwards, (v) decrement TTL, (vi) apply all set-field actions, (vii) apply
all QoS actions, such as meter and set_queue, (viii) process frame according to the group
action, and (ix), forward the frame to the port specified by the output action.

3.3. SOFTWARE DEFINED NETWORKING PARADIGM 41

3.3.1.3 OpenFlow signalling messages

The OpenFlow switch protocol implements several classes of messages that allow a controller
to: (i) query information regarding the capabilities and state of a given OpenFlow switch,
(ii), configure the OpenFlow services of data plane devices, and (iii), receive events, e.g. flow
entries expiration and port state changes, from data plane devices. The existing messages are
categorized into three types: controller-to-switch, asynchronous, and symmetric.

Controller-to-switch
Controller-to-switch messages are initiated by the controller to directly manage os inspect the
state of an OpenFlow switch, and may or may not require a response. For the configuration
of data plane devices, the following controller-to-switch messages are defined:

• Switch configuration. Can set and query switch configuration parameters, e.g. drop
or reassemble IP fragments;

• Modify-state. Allow the controller to add, delete, and modify flow/group entries,
configure meters, and modify the behavior of OpenFlow ports and tables;

• Role-request. Used by the controller to request a change in its role as master or slave
controller;

• Asynchronous-configuration. Allows to define which events are to be reported to
the controller.

The operation state of switch devices can be monitored using the following messages:

• Read-State. Messages used by the controller to collect switch information, such as
current configuration, statistics and capabilities. These are typically implemented over
multipart message sequences;

• Barrier. To query message dependencies or to receive completed operation notifications;

• Features. Used to request the identify and basic capabilities, e.g. number of flow tables,
of a switch.

There is also a Packet-out message which the controller may use to send frames out of a
specified port on the device. It is commonly used to forward frames received via Packet-in
events. Controllers are able to group a set of messages into Bundles in order to enact several
configurations/requests as a single transaction. All messages in a bundle must be able to
successfully applied, otherwise, none of them are performed.

Asynchronous messages
Asynchronous messages are initiated by the switch without a controller soliciting them and
they are used to update the controller of network events and changes to the switch state.
Switches send asynchronous messages to controllers, for instance, to denote a new unregistered
packet arrival or to notify a switch state change. OpenFlow asynchronous messages include:

42 CHAPTER 3. THEORETICAL FOUNDATION

• Packet-in. Upon table miss events, switches may send the related frames to the
controller via Packet-in messages;

• Flow-removed. Message sent to the controller to notify a flow entry removal from a
flow table;

• Flow-monitor. Message sent to the controller to notify changes in a flow entry;

• Port-status. Informs controllers of changes on a switch port, e.g. link has gone down;

• Role-status. Message to notify a controller of a change in its role. For multi-controller
scenarios;

• Controller-status.Informs controllers of changes in OpenFlow channels. Used, for ex-
ample, to notify controllers in a multi-controller scenario of the severance of a connection
to a specific controller.

Symmetric messages
Symmetric messages are initiated by either the switch or the controller and sent without
solicitation. These are:

• Hello. Messages that are exchanged between the switch and controller upon connection
startup;

• Echo. Request/reply messages that are used to verify the liveness of a controller-switch
connection;

• Error. Messages used by the switch or the controller to notify problems to the other
side of the connection. Normally used to report the failure of a request;

• Experimenter. Messages that provide a standard way for OpenFlow devices to offer
additional functionality that is not specified by the OpenFlow protocol;

3.3.2 Using SDN in industry

The unprecedented level of flexibility provided by SDN has raised interest on using it in industry
as reported in the scientific literature, including qualitative and quantitative evaluations, as
well as methods to extend its functionality and use it in real-time Ethernet networks. This
section reviews some of the most relevant scientific contributions in this area.

3.3.2.1 Qualitative evaluations

Henneke et al. [48] and Ehrlich et al. [74] evaluate the use of SDN in future industrial networks
and identify industrial communication requirements that are not adequately supported by
SDN, yet. Both studies highlight the inability of existing southbound APIs in expressing
industry-grade requirements, e.g. real-time timeliness requirements, as a limiting factor on
enabling proper QoS provisioning and monitoring services. Ehrlich et al. [74] also identifies a

3.3. SOFTWARE DEFINED NETWORKING PARADIGM 43

set of ten requirements for future industrial networks (a superset of those identified in Section
2.3) and conclude that SDN already fulfills a subset of them, namely independence from
underlying network technologies, support for online (re)configurations, and security-related
features. Kálmán [75] overviews the most relevant characteristics of SDN and identifies possible
ways to apply it in industrial Ethernet scenarios. The work refers significant advantages in
network deployment, monitoring, and dynamic management brought by SDN centralized
control.

3.3.2.2 Performance analysis

Thiele et al. [76] performed a formal analysis of the OpenFlow protocol (OFP) visualizing its
deployment on a TSN Ethernet network. The work focus on the actual management flow,
not on real-time traffic performance, and considers the network topology, the communication
with the controller, and respective scalability limits. Nonetheless, the analysis shows that
attaining latency values below 50ms is possible. Herlich et al. [77] highlight the possible gains
in supporting arbitrary network topologies, dynamic (re)configurations, and fast fail-over by
using SDN on real-time Ethernet networks. Experiments based on a virtual platform with
OpenFlow deployed on Ethernet POWERLINK (EPL) networks show fail-over operations
without packet losses.

3.3.2.3 Extensions and use in real-time networks

In [78], Ternon et al. investigate how the FTT paradigm can be instantiated on standard
OpenFlow hardware making it suitable for real-time scenarios. The paper presents a new
protocol, FTT-OpenFlow, that enhances the response time of sporadic real-time traffic
and of non-real-time traffic. They show analytically that the proposed solution meets the
requirements of an avionics scenario. However, this work targets single switch topologies and
does not address its applicability to multi-hop scenarios. In [79], Nayak et al. exploit the
logical centralization of SDN to build a global view of the network and compute routes and
transmission schedules that reduce in-network queuing of time-triggered traffic. The central
controller uses OpenFlow to configure the data plane devices and enforce the computed routes,
and transmits the schedule to the source nodes that synchronize their transmissions according
to the assigned temporal slots. Despite obtaining low latency and jitter, the proposal does not
address coexistence with sporadic real-time traffic. Ahmed et al. [80] propose SDPROFINET,
a SDN deployment over PROFINET networks. Similarly to [79], the central controller acquires
network information and configures the data plane PROFINET data channels according to
the desired routes. Despite the gains in network management, operational flexibility is
constrained by PROFINET. In [81], Ishimori et al. propose a hierarchical scheduling approach,
similar to that of Linux Traffic Control (TC), to overcome the limitations of the FIFO
queues in OpenFlow devices. It supports HTB (Hierarchical Token Bucket), RED (Randomly
Early Detection), and SFQ (Stochastic Fair Queuing). However, these policies only provide
bandwidth-based traffic shaping and thus, explicit support to real-time traffic is still poor.

CHAPTER 4
Towards a real-time data plane

Contents
4.1 Switched Ethernet . 45

4.1.1 Limitations . 51

4.2 An overview of real-time Ethernet technologies 52
4.3 Finding a flexible and efficient real-time data plane 54

4.3.1 Time sensitive networking (TSN) 55

4.3.2 Hard Real-Time Ethernet Switch (HaRTES) 63

As discussed in Chapter 2, communication networks, in particular networks based on the Eth-
ernet technology and on the standard TCP/IP stack, are an extremely important component
of present and future industrial systems. The boundaries for services that such networks must
provide in the future are being pushed forward, with new applications demanding even more
strict requirements in terms of flexibility, reconfiguration and timeliness guarantees. This
chapter presents a survey of existing real-time Ethernet technologies and stacks them up in
order to find the best candidate for a data plane that is able to fulfill the aforementioned
requirements. The chapter starts by detailing switched Ethernet, and its limitations. Then, a
survey on existing real-time technologies based on switched Ethernet is presented. Finally,
the features of the most relevant technologies are compared, and the most promising ones
explained in detail at the end of the chapter.

4.1 Switched Ethernet

Ethernet bridges, also commonly known as switches, were first standardized in 1990 as the
IEEE 802.1D standard [82] in an attempt to solve the performance issues that plagued shared
Ethernet networks, in particular its low level of bandwidth utilization and lack of determinism
that stemmed from the use of a shared multi-access bus and the non-deterministic nature of
the CSMA/CD arbitration algorithm.

Switched Ethernet networks maintain the same segmented physical architecture as hub-based
Ethernet, with stations now connected to bridges via a full-duplex point-to-point link, in
a star/tree layout. Unlike Ethernet hubs, bridges operate at the second layer of the Open
Systems Interconnection (OSI) reference model, i.e. data link layer, and run a learning

45

46 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

mechanism that allows them to only forward received frames through the link connected to
the destination station, avoiding unnecessary broadcasts and bandwidth waste. Moreover, by
eliminating physical, direct connections between ports, and by queuing frames at the output
ports until the medium is idle, bridges define a private collision domain for each of its ports.
If there is a single station per network segment connected to a bridge port, an arrangement
known as micro-segmentation, no collisions can occur. Switched Ethernet networks exploit
and incorporate this micro-segmentation into their topologies in order to effectively sidestep
the performance issues associated with the CSMA/CD protocol [13], [22]. An example of
such topologies is depicted in Figure 4.1. Bridges also overcome the limits on total segments
between two hosts and support mixed speeds at its interfaces.

Station

Station

Bridge Bridge

Station

Station

Station

Bridge

Station

Figure 4.1: Switched Ethernet network topology example

Switched Ethernet networks keep the original Ethernet frame structure untainted. Its format,
including overheads from the physical layer of the OSI model, is shown in Figure 4.2 [10].

IPGPreamble SFD
Destination

Address

1 byte

4 bytes

46 to 1500 bytes
(basic frames)

Source
Address

Length
or Type

MAC
Client
Data

PAD ExtensionFCS

6 bytes

6 bytes

2 bytes7 bytes

>= 0 bytes
12 bytes

minimum

Frame (OSI layer 2)

Figure 4.2: Ethernet (IEEE 802.3) frame structure

The function of each frame field is the following [10]:

• Preamble: alternating sequence of ‘1’ and ‘0’ bits used for the synchronization of the
receiver’s clocks;

• Start Frame Delimiter (SFD): “10101011” sequence that marks the end of the
preamble and the start of the Ethernet frame;

4.1. SWITCHED ETHERNET 47

• MAC Destination Address: address of the frame’s destination network interface;

• MAC Source Address: address of the frame’s source network interface;

• Length/Type: indicates the length of the payload in bytes, or the protocol encapsulated
in the payload, e.g. 0x0800 for IPv4 datagrams;

• MAC Client Data: contains the user data. The maximum supported size is 1500 bytes
for basic frames, 1504 bytes for Q-tagged frames [23] or 1982 bytes for encapsulation
services requiring extra tags [10];

• PAD: contains, if required, padding to guarantee the imposed minimum frame size of
64 bytes (excludes the size of preamble and SFD fields);

• Frame Check Sequence (FCS): contains a cyclic redundancy check value to detect
errors in a received MAC frame;

• Extension: extension bits only required for 1000 Mbps half duplex operation modes;

• Inter-Packet Gap (IPG): idle time between consecutive frames (a minimum of 96
bits).

The first Ethernet bridges, as defined by IEEE 802.1D [82], had limited support for the
segregation of traffic into classes associated to different QoS requirements and relied on in-
band mechanisms present in some IEEE 802 technologies, e.g. IEEE Std 802.5 token-passing
ring and Fiber Distributed Data Interface (FDDI), to convey priority information. To address
this issue, a set of standards have been proposed to extend the original Ethernet frame
structure and provide traffic differentiation. Such amendments include VLAN tagging (IEEE
802.1Q) and a priority identifier (IEEE 802.1p and IEEE Std 802.1AC)1. The format of a
VLAN-tagged Ethernet frame is depicted in Figure 4.3 [23].
The function of each field found on the additional 802.1Q tag is:

• Tag Protocol Identifier (TPID): identifies the new framing format and has the fixed
value of 0x8100. It is located at the same position as the original Length/Type field of
untagged frames;

• Priority Code Point (PCP): indicate the frame’s priority level, from 0 through 7;

• Drop eligible indicator (DEI): can be used separately, on in conjunction with PCP,
to encode the frame’s eligibility to be dropped in the presence of congestion;

• VLAN Identifier (VID): specifies the VLAN to which the frame belongs. The
reserved value 0x000 indicates that the 802.1Q tag only conveys a priority level, i.e.
frame does not belong to a specific VLAN.

1These amendments are now part of the IEEE 802.1Q-2014 standard

48 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

802.1Q
Tag

IPGPreamble SFD
Dest.

Address

1 byte 4 bytes
46 to 1500 bytes

(basic frames)

Source
Address

Length
or Type

MAC
Client
Data

PAD ExtensionFCS

6 bytes

6 bytes

2 bytes

7 bytes >= 0 bytes

2 bytes

TPID PCP DEI VID

3 bits

1 bit

12 bits

Frame (OSI layer 2)

Figure 4.3: IEEE 802.1Q VLAN-tagged Ethernet frame structure

A notable remark: the PCP value does not necessarily correspond to an effective and absolute
priority level throughout the network. The value conveyed by PCP is translated by the Traffic
Class Table associated with each potential egress port into a traffic class numbered from 0
through 7, with lowest and highest dispatching priority levels respectively. Traffic class tables
are configurable, and may translate priority levels to different traffic classes in different bridges
along the network. Priority level 7 is usually translated into the highest priority traffic class 7.
However, due to legacy and interoperability reasons [23], priority level 1 is typically translated
into traffic class 0, while priority 0 is associated to traffic class 1 (see Table 4.1). This means
that priority level 1 typically conveys the lowest priority.

Bridges that support the IEEE 802.1Q VLAN tagging and associated services, e.g. traffic
segregation by priority, are referred to as VLAN bridges while traditional bridges are defined
as MAC bridges [23]. Focus will be placed only on VLAN bridges for the remaining of the
document since they are nowadays common and essential for Time-Sensitive Networking
(TSN) networks.

Regarding the addressing space, bridges commonly support the three Ethernet address types
[23]:

• Unicast: a unicast transmission implies directing frames from a source station directly
to the destination station. To this end, bridges observe the source address of incom-
ing frames and send them to the output port (egress port) that is connected to the
destination;

• Broadcast: a broadcast transmission implies forwarding frames from a source sta-
tion to all other stations simultaneously. Ethernet bridges recognize this address
(0xFFFFFFFFFFFF) and forward broadcast traffic to all ports but the port from which
it was received (ingress port);

4.1. SWITCHED ETHERNET 49

• Multicast: a multicast transmission implies sending frames from a source station to
a group of stations. IEEE 802.3 defines a special set of addresses that can be used to
define multicast groups. However, multicast protocols operate at the layer 3 of the
OSI model and thus, a pure layer 2 bridge handles multicast addresses as broadcasts.
There are, however, bridges that support layer 3 services and are able to properly handle
multicast addresses.

In order to perform traffic forwarding, bridges perform a set of functions known as the
Forwarding Process. An overview of its main functions and components2 is depicted in Figure
4.4 [23].

Ingress Port

Active topology enforcement

Ingress filtering

Frame filtering

Egress filtering

Flow metering

Queuing frames

Queue management Queue management

Transmission selection

Egress Port

Egress Port State

Ingress Port State

Filtering Database

Figure 4.4: The Forwarding Process of Ethernet bridges

Frames are received at a given ingress port, processed by the Forwarding Process pipeline,
and may be eventually transmitted through one or several egress ports. Although most
pipeline functions rely on information conveyed by the frame’s headers, e.g. VID and MAC
addresses, some also require information regarding the state of ingress and egress ports,
as well as filtering information stored in the Filtering Database (FDB). Port states, e.g.
disabled or forwarding, dictate if a given port is forwarding traffic and/or participating in the
Learning Process, and may be controlled administratively or by active topology management
protocols such as Rapid Spanning Tree algorithm and Protocol (RSTP). The FDB contains
two types of filtering information: (i) static, which is added to, modified, and removed

2As defined in IEEE 802.1Q-2014 [23]. Some functions were extended by separate amendments, in particular,
Time-Sensitive Networking (TSN)-related enhancements (see Section 4.3.1)

50 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

from the FDB by explicit management actions performed through configuration consoles or
network management protocols such as Simple Network Management Protocol (SNMP) and
Network Configuration Protocol (NETCONF), and (ii), dynamic information which is built
dynamically by the bridges’ internal Learning Process [23]. The Learning Process observes
the MAC addresses and the VLAN Identifier (VID) of ingress frames to create or update
dynamic filtering information. Both static and dynamic filtering entries contain:

• A MAC address specification, comprising a single or multiple individual/group
MAC destination address(es);

• A VID specification, containing the VID, or set of VIDs, of specific VLANs to which
the entry applies;

• A port map, with a control element for each egress port, specifying if frames, matching
the aforementioned address and VID specifications, are to be forwarded through the
port or filtered, i.e. discarded.

The Forwarding Process starts with an active topology enforcement procedure that, based on
the state of ports and filtering information on the FDB, determines if a given received frame
is to be submitted to the Learning Process or dropped in order to prevent unwanted learning
of MAC addresses and path loops. Frames are afterwards inspected by an ingress filtering
which, if enabled, discards frames with a VID that is not associated with the ingress port.
Next, the Forwarding Process queries the FDB and sets the potential egress ports for each
frame. Ports that aren’t related with the frame’s VID are removed from the set of egress ports
by the following egress filtering operation. Frames may then be subjected to flow classification
and metering3 by rules based on VID, MAC addresses and priority. Flow meters may discard
frames based on the DEI bit, frame size, and maximum bandwidth. After metering, each
frame is queued to each of the potential egress ports. For each port, the Forwarding Process
provides one or more First-In First-Out (FIFO)-like queues, each queue corresponding to a
distinct traffic class, and a configurable Traffic Class Table that maps frames into a traffic
class according to their priority level. The recommended priority to traffic class mapping
is shown in Table 4.1 [23]. Up to eight traffic classes may be supported, allowing separate
queues for each priority level.

Finally, each queue is associated with a transmission selection algorithm that select frames
for transmission if and only if: (i) the operation of the algorithm determines that there is a
frame available for transmission, and (ii), the transmission algorithm of numerically higher
traffic classes, i.e. with higher priority, determines that there are no frames available for
transmission. On each port, a Transmission Selection Algorithm Table assigns, for each traffic
class, the algorithm that is to be used.

3Although flow metering is enforced after egress filtering, the applied meters operate per ingress port, not
per potential egress ports.

4.1. SWITCHED ETHERNET 51

Table 4.1: Recommended priority mapping for the number of implemented traffic classes

Available Traffic Classes
Traffic Category Priority 1 2 3 4 5 6 7 8

Best Effort 0 (Default) 0 0 0 0 0 1 1 1
Background 1 0 0 0 0 0 0 0 0
Excellent Effort 2 0 0 0 1 1 2 2 2
Critical Applications 3 0 0 0 1 1 2 3 3
Video (< 100 ms latency and jitter) 4 0 1 1 2 2 3 4 4
Voice (< 10 ms latency and jitter) 5 0 1 1 2 2 3 4 5
Inter-network Control 6 0 1 2 3 3 4 5 6
Network Control 7 0 1 2 3 4 5 6 7

Three algorithms are currently defined by IEEE 802.1Q-2014 [23]:

• Strict priority: determines that there is a frame available if the queue contains one or
more frames;

• Credit-Based Shaper (CBS)4: a frame is available for transmission if the queue
contains one or more frames, and the shaper credit is zero or positive;

• Enhanced Transmission Selection (ETS): based on the allocation of bandwidth to
traffic classes, it determines that there is a frame for transmission if: (i) the queue is not
empty, (ii) the class has not surpassed the allocated bandwidth, (iii) there are no frames
available for transmission for any queues running strict priority or CBS algorithms.

With respect to the way the Forwarding Process is triggered, two schemes are commonly
employed:

• Store-and-forward: in this method the bridge waits until the full frame is received
before executing the Forwarding Process. This allows for the verification of the frame’s
data using the FCS field. If the data is found erroneous, the frame can be discarded,
preventing error propagation in the network. However, this process induces additional
end-to-end transmission latency;

• Cut-through: the bridge starts the Forwarding Process as soon as the MAC addresses,
and VID for VLAN-tagged frames, are received and analyzed. This allows for lower
latency values but it is less resource-efficient since it can propagate erroneous packets
through the network, wasting bandwidth for information that will be nevertheless
discarded by the receiver.

4.1.1 Limitations

Although the use of Ethernet switches brought a huge improvement on global throughput,
traffic isolation, and can be used to build network topologies free from the non-determinism

4Explained in detail in Section 4.3.1.1 due to its origin (IEEE 802.1Qav) and common association with
Time-Sensitive Networking

52 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

inherent to the CSMA/CD algorithm, there are still other phenomena that negatively impact
the real-time performance of switched Ethernet networks. Collisions and retransmissions,
which are associated to induced forwarding delays and jitter, are effectively eliminated by
switching technology. However, a full prediction of bounds for traffic transmission times is
still not possible, in most part due to queuing and congestion issues at switches’ output ports,
particularly under heavy load conditions and multilevel topologies [22], [83]. For example, in
interlinks, i.e. single links interconnecting two switch devices, the traffic received by multiple
ingress ports of a given switch may easily exceed the transmission rate of the interlink. In
this scenario, queues at the interlink egress port may overflow and frames can be dropped.
Moreover, switched Ethernet has a limited and small number of supported traffic classes and
respective queues: only a maximum of eight queues is standardized, from which only five
or six are practically available for real-time traffic since the former, the background traffic,
and the traffic related to network control and management must be segregated into distinct
classes. This number is insufficient to implement efficient priority-based scheduling policies,
in particular for large sets of real-time streams [84]. Also, many real-time applications, e.g.
automotive and aeronautical, demand efficient handling and coexistence of both periodic and
sporadic traffic; this requires a level of isolation, e.g. temporal, that switched Ethernet does
not provide.

4.2 An overview of real-time Ethernet technologies

In pursuance of real-time behavior on switched Ethernet, several approaches and techniques
have been proposed. Akin to shared Ethernet, dozens of solutions emerged, employing distinct
approaches that range from software modifications at end nodes, master-slave protocols,
and traffic shaping, to specialized switching hardware and network stacks. As such, each
technology exhibits different levels of interoperability with legacy switched networks and
real-time capabilities. To classify the existing solutions, several taxonomies can be used.
For example, in [29], protocols are categorized following the use of Commercial-Of-The-
Shelf (COTS) or non-COTS equipment, while the IEC 61784-2 [85] specification groups
existing technologies into 16 communication profiles that grade real-time capabilities based
on nine performance indicators such as message latency, throughput, jitter for periodic traffic,
and redundancy. In [83], solutions are classified by degree of interoperability with IEEE 802.3
compliant nodes.

The work on this thesis addresses real-time networks which may include traffic from Ethernet
compliant nodes and thus, the latter taxonomy was used to evaluate the different solutions and
help filtering the most promising for our system. Therefore, three classification categories are
considered: non interoperable, interoperable homogeneous and interoperable heterogeneous
[83].

Non interoperable technologies

Technologies under the non interoperable class are deemed incompatible with standard
Ethernet devices without the use of tunneling or gateways, and mainly rely on alterations

4.2. AN OVERVIEW OF REAL-TIME ETHERNET TECHNOLOGIES 53

to the IEEE 802.3 MAC layer and specialized hardware/software. Examples of solutions
under this class include Ethernet POWERLINK [86], FTT-SE [25], and Avionics Full-DupleX
switched ethernet (AFDX) [87]. Ethernet POWERLINK employs a master-slave approach, in
which a single master node in the network (Managing Node) individually polls slave nodes
(Controlled Nodes) for transmission. Slave nodes are completely passive and only react to
the master explicit requests. Communications are organized in a Time Division Multiple
Access (TDMA) fashion, with phases dedicated to time- and event-triggered communications.
Standard Ethernet switches may be used, and nodes are implemented either on standard
Ethernet devices using a special stack on top of the MAC layer or with special hardware for
improved real-time performance. Akin to POWERLINK, Flexible Time-Triggered Switched
Ethernet (FTT-SE) also follows a master-slave transmission control technique and coordinates
all traffic transmissions under TDMA cycles comprising isolated temporal windows for time-
and event-triggered traffic. Unlike POWERLINK, FTT-SE employs a signalling mechanism
which is used by nodes to report the status of their communication queues, and the master
is able to simultaneously poll all communications in the network by broadcasting a message
containing the schedule for the on-going TDMA cycle. FTT-SE is based on COTS switches
and components, with special software deployed at nodes. AFDX is an avionics data network
technology whose communication protocols are derived from commercial Ethernet and the
Internet Protocol (IP) stack. The standard physical and Media Access Control (MAC) layer
of Ethernet is kept unchanged, and the network and upper layers mix standard IP stack
services, e.g. User Datagram Transport (UDP), with services tailored for avionics applications.
Communications between end systems are organized into Virtual Links that are associated
with a specific route and bandwidth allocation. AFDX switches incorporate special filtering
and policing functions, and forward traffic according to pre-configured static routes. End
systems perform traffic shaping following each Virtual Link bandwidth allocation. AFDX
switches also enforce Virtual Links’ bandwidth reservations. Redundancy is achieved by the
duplication of interfaces at the end systems, and switches.

Interoperable homogeneous technologies

In the interoperable homogeneous category, improved nodes and regular IEEE 802.3 compliant
nodes can coexist and communicate, however, offered real-time guarantees only exist under
the assumption that all devices follow the protocol. Solutions belonging to this category
typically rely on the use of special stacks over the standard Ethernet MAC layer in order to
control and shape network traffic. EtherNet/IP [26] and the RETHER protocol for switched
networks [88] are examples of interoperable homogeneous technologies. EtherNet/IP uses
standard Ethernet and switches, and implements the Common Industrial Protocol (CIP) [89]
on top of the TCP/IP stack (OSI transport layer). CIP encompasses a suite of messages
and services tailored for manufacturing automation applications, including control, safety,
synchronization, and network management. Following a producer-consumer communication
paradigm, it facilitates the distribution of data while providing a more efficient network
bandwidth usage. Besides CIP, EtherNet/IP provides limited real-time capabilities since it
uses COTS switched Ethernet and relies on the IEEE 802.1Q VLAN tagging to assign the

54 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

highest priority traffic class to real-time traffic. RETHER relies on special software over the
standard Ethernet MAC layer of nodes and switches, and keeps COTS Ethernet hardware
untouched. Applications use the custom software to request real-time reservations which are
enforced by a deadline-driven token passing protocol that prioritizes real-time transmissions
over non-real-time data. Non real-time nodes get to use the remaining bandwidth after all
real-time nodes have been serviced. The whole network operates using the standard Ethernet
MAC protocol (CSMA/CD) when no real-time traffic is queued for transmission in any node.

Interoperable heterogeneous technologies

In this class, technologies are able to provide real-time guarantees even in the presence of
standard Ethernet nodes. A common feature of these solutions is the use of specialized
Ethernet switches to segregate and isolate legacy traffic from real-time traffic. Examples
include PROFINET IRT [27], TT-Ethernet [28], HaRTES [29], and Time-Sensitive Networking
(TSN) [30]. PROFINET IRT relies on customized Ethernet switches to build bi-phase periodic
communication cycles comprising a mandatory phase for the confinement of isochronous real-
time traffic (IRT phase), followed by a standard phase where non real-time communications
are allowed. In order to execute the real-time schedule with high accuracy, PROFINET
IRT synchronizes all devices in time with the IEEE 1588 Precision Time Protocol. Similarly
to PROFINET IRT, TT-Ethernet organizes time in cyclic periods with temporal segments
allocated for three distinct classes: (i) time-triggered, in which traffic is dispatched according
to a pre-defined communication schedule deployed at nodes and switches, (ii) rate-constrained,
which shapes event-triggered traffic according to reserved bandwidth allocations, and (iii), best-
effort, for traffic that requires no timing guarantees, e.g. standard Ethernet traffic. HaRTES
also provides cyclic periods with dedicated segments for time-triggered, even-triggered, and best
effort communications. Switches poll time-triggered communications by sending a broadcast
message at the beginning of each cycle, and traffic within the event-triggered slot is shaped by
a configurable, hierarchical set of server-based shapers. TSN extends the standard Ethernet
switches with several real-time enhancements, the most relevant being the Credit Based
Shaper (CBS) algorithm and time gates. Both mechanisms control how traffic stored at egress
queues is dispatched. CBS is aimed for use by traffic classes associated with event-triggered
traffic and provides a shaping service based on bandwidth allocation. Time gates address
time-triggered traffic and may be used to define schedules where queues are serviced only at
specific time intervals.

4.3 Finding a flexible and efficient real-time data plane

On the quest to find the most suitable technology for the Software-Defined Networking
framework proposed by this work, the aforementioned interoperable heterogeneous solutions
were compared. Note that non interoperable and interoperable homogeneous are not considered
due the lack of support for standard Ethernet devices.

PROFINET IRT exhibits impressive performance indicators, e.g. capable of 1 ms cycle times
with sub-micro jitter values for time-triggered traffic [90]. However, it is not suitable for

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 55

dynamic environments, i.e. applications where devices may be be connected/disconnected
at any time and communication requirements may vary over the time, since its schedule
for real-time traffic is static and has to be pre-defined offline. Likewise, TT-Ethernet does
not support the online admission of new real-time streams and the modification of existing
reservations. TSN does allow for dynamic reconfiguration of the system to some extent, but
it is crippled by the limited number of traffic classes inherited from IEEE 802.1Q devices
which prevents the implementation of efficient scheduling policies for applications with a
high number of nodes and traffic streams [84]. Moreover, these solutions do not provide
component-oriented design methodologies that enable an efficient system composability with
safe resource sharing and virtualization. This aspect is highly relevant for the management of
complex distributed real-time systems, as attested by frameworks such as AUTOSAR in the
automotive domain [91], IMA in avionics [92], and IEC 61499 in industrial automation [93].
HaRTES was designed with the aforementioned limitations in mind, and features:

• Online admission control;

• Dynamic QoS management for both time- and event-triggered traffic;

• A configurable hierarchical server framework for event-triggered traffic;

• Traffic policing at ingress ports;

• Accommodation of traffic from standard Ethernet nodes as event-triggered or background
traffic.

Due to the aforementioned reasons, HaRTES is considered to be the best option as enabler of
the framework developed in the scope of this thesis, and is presented in detail in Section 4.3.2.
TSN, due to its popularity and wide-spread interest by the industry as a real-time enabler is
presented in detail in Section 4.3.1.

4.3.1 Time sensitive networking (TSN)

TSN is a set of technical standards developed by the IEEE 802.1 time-sensitive networking
task group [30], previously known as audio/video bridging task group. It provides protocols
and mechanisms to improve the real-time behaviour, e.g. guaranteed packet transport with
bounded low latency and jitter, of IEEE 802 network technologies. TSN focuses on four
main aspects: temporal synchronization among devices, end-to-end bounded latency and
high reliability for real-time traffic streams, as well as management of network resources. An
overview of the set of standards and amendments5 related to the TSN framework is depicted
in Figure 4.5.

In summary, the standards associated to TSN are:
5At the time of writing, the following amendments are incorporated into the IEEE 802.1Q-2014 standard:

IEEE 802.1{Qav,Qat}. However, for simplicity, the community continues to refer to the amendment tags.

56 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

Time-Sensitive Networking Components

Synchronization Reliability

Bounded Low Latency Resource Management

 Timing and synchronization (802.1AS)
 IEEE 1588 profile

 Frame replication (802.1CB)
 Path control (802.1Qca)
 Per-stream filtering (802.1Qci)

 Credit Based Shaper (802.1Qav)
 Preemption (802.3br & 802.1Qbu)
 Scheduled traffic (802.1Qbv)
 Cyclic queing & forwarding (802.1Qch)
 Asynchronous shaping (P802.1Qcr)

 Stream Reservation Protocol (802.1Qat)
 TSN configuration (P802.1Qcc)
 YANG (P802.1Qcp)
 Link-local Registration (P802.1CS)

Figure 4.5: Time-Sensitive Networking (TSN) set of standards and amendments

• IEEE 802.1AS and IEEE P802.1AS-REV6 [94], [95]: specifies protocols and
procedures to synchronize the local clocks of all devices across bridged and virtual
bridged local area networks, with high accuracy, to ensure jitter and synchronization
requirements of time-sensitive applications such as audio and video streaming;

• IEEE 802.1Qav [96]: specifies how priority values encoded in VLAN tags can be used
to segregate time-critical and non-time-critical traffic into different traffic classes with
distinct QoS requirements. It also specifies a new forwarding mechanism, the Credit
Based Shaper (CBS) algorithm, to shape traffic in accordance to stream reservations;

• IEEE 802.1Qbu and IEEE 802.3br [97], [98]: define procedures and enhancements
for the MAC layer and forwarding process of IEEE 802 devices to provide support for
traffic preemption. Traffic classes may be classified either as express or preemptable.
Frames of express classes are able to interrupt the transmission of preemptable classes’
frames in a non destructive way;

• IEEE 802.1Qbv [99]: augments the forwarding process of IEEE 802 devices with the
addition of a new component, termed transmission gate, to each egress traffic queue.
The state of the transmission gate, i.e. open or close, determines whether or not queued

6 At the time of writing, it was still a Project Authorization Request (PAR), i.e., still on development and
not published as a standard

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 57

frames can be selected for transmission. Transmission gates’ state can be changed
according to a well-defined schedule so as to provide a basic support for time-triggered
communications;

• IEEE 802.1Qch [100]: specifies the use of stream filters and transmission gates to
implement a new traffic shaping method, entitled Cyclic Queuing and Forwarding (CFQ),
for time-sensitive traffic streams. In CFQ, time is divided into time intervals with fixed
duration and traffic frames are queued and transmitted along a network path in a
cyclic manner, i.e., frames transmitted during interval i by bridge A are received by
bridge B within time interval i and are transmitted onward to the next bridge/device
during interval i+1. Thus, a well defined, not optimal, upper bound for latency is easily
calculated, being completely described by the time intervals’ length and number of hops;

• IEEE P802.1Qcr6 [101]: proposes an additional layer of shaped queues to merge
traffic into the existing egress queue structure. This aims to cope with the poor fine
grained traffic management for asynchronous traffic which derives from the limited
number of egress queues of existing bridging standards;

• IEEE 802.1CB [102]: defines procedures and protocols to improve the reliability of
traffic streams by: (i) replicating the stream’s packets at the source system, (ii) splitting
replicas into multiple Member streams, sent through disjoint paths through the network
(iii) rejoining Member streams at relay points in the network or at the destination system
while eliminating all redundant frame copies;

• IEEE 802.1Qca [103]: introduces the use of the Intermediate System to Intermediate
System (IS-IS) protocol to control Ethernet networks. It surpasses common topology
protocols such as Shortest Path Bridging (SPB) and offers explicit path control with
bandwidth reservation and redundancy. It enables network management applications
in a central Network Management System (NMS) to collect information regarding the
network topology and enforce explicit forwarding paths and/or redundant paths;

• IEEE 802.1Qci [104]: introduces a list of stream filters that determine, on a per-
stream basis, filtering and policing actions to be applied to frames received on a specific
stream. It enables filtering frames based on arrival times, rates and bandwidth;

• IEEE 802.1Qat [105]: defines Stream Reservation Protocol (SRP), which allows
network resources to be dynamically reserved for specific traffic streams requiring
guaranteed QoS guarantees along a bridged local network. With SRP, end systems may
disseminate through the whole network their willingness to be producers ("Talkers") or
consumers ("Listeners") of specific streams. When a Talker and one or more Listeners
announce for the same stream, and a network path with sufficient resources exists,
network bridges configure the forwarding mechanisms proposed in IEEE 802.1Qav, e.g.
CBS, to enforce the stream’s QoS requirements. Then, bridges notify the associated
Talker and Listeners so that communication may start;

58 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

• IEEE P802.1Qcc6 [106]: extends the capabilities of SRP with support for more
streams, better description of stream characteristics, support for layer 3 streaming, and
introduces three network management approaches: (i) fully centralized model, where
end systems report their stream requirements directly to a central management system
that then configures the whole network devices accordingly, (ii) fully decentralized, as
defined by the original SRP approach, and (iii) partially centralized, where requests
are sent to the edge bridge closest to the end system and then forwarded to the central
management system;

• IEEE P802.1Qcp6 [107]: specifies Unified Modeling Language (UML) and Yet Another
Next Generation (YANG) data models for the configuration and monitoring of bridges.
They can be used combined with management protocols such as NETCONF to simplify
network configuration;

• IEEE P802.1CS6 [108]: defines Link-local Registration Protocol (LRP), a link-local
registration protocol that replicates databases on both ends of a point-to-point link. It
serves the same purpose as Multiple Registration Protocol (MRP), i.e. facilitate the cre-
ation of application protocols that distribute information among network devices, while
overcoming MRP’s scalability and performance issues, e.g. performance significantly
drops for databases sized over 1500 bytes (such as those found in SRP).

In TSN networks, IEEE 802.1Q VLAN bridges enhanced with the aforementioned amendments
interconnect Ethernet end stations in topologies identical to those found in standard switched
Ethernet networks. All devices are synchronized in time to ensure jitter and synchronization
requirements of time-sensitive applications such as audio and video streaming. Streams only
allow a single producer ("Talker") and one or several consumers ("Listeners"). An example of
a TSN network is depicted in Figure 4.6. Two real-time traffic streams are defined [23]:

• Stream Reservation (SR) class A: Profiled for audio/voice streams. Defines a class
measurement interval of 125 µs, a maximum latency target of 2 ms over 7 hops, and a
priority level of 3 (mapped to traffic class 7 when eight traffic classes are supported, see
Table 4.1);

• Stream Reservation (SR) class B: Profiled for video streams. Defines a class
measurement interval of 250 µs, a maximum latency target of 50 ms over 7 hops, and a
priority level of 2 (mapped to traffic class 6 when eight traffic classes are supported, see
Table 4.1).

When requested by an application at an end station, the SRP instantiates the necessary
resources and configurations of TSN bridges across the network in order to guarantee the
aforementioned profiles of SR class A and/or SR class B. Applications specify the properties
of a stream through two parameters (TSpec): (i) the maximum size of a frame, excluding
headers and framing overheads, transmitted by the producer station ("Talker"), and (ii), the
maximum number of frames that the Talker may transmit within one class measurement

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 59

Talker
TSN

Bridge

TSN
Bridge

Listener

Station

TSN
Bridge

Listener

SR Class A

SR Class B

Non real-time stream

Figure 4.6: An example of a TSN network

interval. In order to provide latency and bandwidth guarantees for stream reservations, the
Transmission Selection Algorithm Table is configured to assign the Credit-Based Shaper (CBS)
algorithm to egress queues associated with SR classes.

TSN also provides a mechanism, known as transmission gates (or colloquially as time-gates),
that allows the control of transmissions from each egress queue following a time schedule.
However, the configuration of this mechanism is currently specified as being made through
management, e.g. configuration consoles or network management protocols, and no association
with a resource management protocol such as SRP is defined. Moreover, the only standardized
use-case is supplied by the IEEE 802.1Qch [100], which suggests the use of transmission
gates to implement a "Cyclic Queuing and Forwarding" scheme (CQF). According to the
aforementioned amendment, in CQF, traffic is transmitted along a network path within
fixed-length time intervals in a cyclic manner. For example, frames transmitted by bridge
A during time interval i are received by bridge B. Bridge B then transmits frames received
during interval i in interval i+1, and so on. This technique allows to precisely describe the
latency introduced as time-sensitive frames transit the network, which is completely described
by the length of time intervals and the number of hops.
A brief overview of the operation of the CBS algorithm and transmission gates is presented
next.

4.3.1.1 Credit-Based Shaper (CBS) algorithm

CBS is an algorithm that can be used to shape the transmission of traffic from egress queues
in accordance with the bandwidth negotiated for a stream reservation. The operation of
each CBS instance is governed by two external parameters, i.e. modifiable by management,
associated with each queue [23]:

60 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

• Port Transmission Rate (portTransmitRate): the current transmission rate, in
bits per second, of the egress port;

• Idle Slope (idleSlope): the actual bandwidth, in bits per second, that is currently
reserved for use by the queue. The sum of idle slopes of all CBS queues must not
exceed 75% of the port’s available bandwidth. Lower priority queues may share unused
bandwidth from higher priority traffic classes.

A set of internal parameters are also used to describe the operation of CBS:

• Maximum Frame Size (maxFrameSize): the maximum size, in bits, of a frame for
the concerned traffic class;

• Maximum Interference Size (maxInterferenceSize): the maximum size, in bits,
of any burst traffic that can delay the transmission of a frame for the concerned traffic
class. For the highest priority class, it is equal to the maximum frame size supported by
the underlying port MAC. Remaining classes must account the interference owning to
any higher traffic class;

• Credit: the transmission credit, in bits, currently available to the queue. Credit is set
to zero when positive, and no frames are queued or being transmitted;

• Send Slope (sendSlope): rate of change of Credit, in bits per second. Computed as:

sendSlope = idleSlope− portTransmitRate (4.1)

• High Credit (hiCredit): The maximum value of credit that can be accumulated.
Computed as:

hiCredit = maxInterferenceSize× idleSlope

portTransmitRate
(4.2)

• Low Credit (loCredit): The minimum value of credit that can be accumulated.
Computed as:

loCredit = maxFrameSize× sendSlope

portTransmitRate
(4.3)

The operation of CBS can be briefly described as follows. A queued frame is selected for
transmission if there is no conflicting traffic, i.e. no ongoing transmission and no higher
priority traffic awaiting transmission, and the credit value is zero or positive. Credit decreases
at the rate of sendSlope during the transmission, and increases back to zero at the rate of
idleSlope once the transmission of the frame is complete. hiCredit and loCredit place a bound
on the maximum burst size a class may perform after awaiting transmission due to interference
from other traffic classes.

An example of the operation of the CBS algorithm is depicted in Figure 4.7 (adapted from
[23]), in which three frames are queued in the same queue while conflicting traffic is being

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 61

Frame C

hiCredit

loCredit

0

Frame A

Frame C

Queue

t

Frame AConflicting FramesTransmitted
Data

Frame B

Frame B

Figure 4.7: An operation example of the Credit-Based Shaper algorithm

transmitted. As there are frames in the queue awaiting for transmission, credit accumulates
at the rate of idleSlope. Once all conflicting traffic has been transmitted, frame A is selected
for transmission and credit decreases at the rate of sendSlope. When the transmission of the
frame A ends, credit is still greater or equal to 0 and there is no conflicting traffic and thus,
frame B is transmitted right away. When its transmission concludes, credit is negative and
the transmission of the last frame is delayed until credit returns to zero.

Note: In order for the CBS algorithm to operate properly, all traffic classes that support the
CBS algorithm must have higher priority than classes running the Strict Priority algorithm.

4.3.1.2 Enhancements for scheduled traffic (Transmission Gates)

TSN bridges and end stations may support the use of transmission gates to allow the
transmission of frames according to a time schedule. A transmission gate is an entity that can
be associated with a given traffic class queue, and is able to enable or disable the associated
transmission selection algorithm, e.g. CBS or Strict Priority, in order to allow or prevent it
from selecting frames from the concerned queue. A transmission gate has two possible states:

• Open: queued frames are selected for transmission in accordance with the normal
operation of the transmission selection algorithm;

• Closed: queued frames are not selected for transmission.

Each port has an associated Gate Control List which contains an ordered list of gate operations.
A gate operation contains the state of each transmission gate for a given time interval

62 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

(TimeInterval). Every Gate Control List can be configured to be executed at a given time
instant (CycleStartTime, expressed as a PTP timescale) and repeated periodically (every
OperCycleTime periods, in seconds). An example of a configuration using transmission gates
is presented in Figure 4.8.

c o c c c c c c

Transmission
Selection Algorithm

...
Queue

#7

Transmission Selection

Transmission Port

Transmission Gate
(Open)

Transmission
Selection Algorithm

Queue
#6

Transmission Gate
(Closed)

Transmission
Selection Algorithm

Queue
#5

Transmission Gate
(Closed)

Transmission
Selection Algorithm

Queue
#0

Transmission Gate
(Closed)

Frames from queue #7 only

Queue# SPT ETS CBS
7
6
...
1
0

...
X

...

X

X
X
...

Transmission Selection
Algorithm Table

After
X ns

Queue #

T00
T01
T02
...

Gate Control List

7 6 5 4 3 2 1 0Gate Op #

T-- c c c c c o o o

o c c c c c c c

...

c c c c c c c c

GateState

TimeInterval

Gate Operation #T01

o c c c c c c c

X [ns]

Figure 4.8: An example of the application of TSN transmission gates

Note: The state of a transmission gate affects the idleSlope of the queue’s CBS algorithm.
It is now zero when the gate is Closed and as given by Equation 4.4 when the gate is Open.
The variable operIdleSlope is the configured fixed bandwidth for the stream reservation,
while GateOpenTime is equal to the total amount of time that the gate state is Open during
OperCycleTime.

idleSlope = operIdleSlope× OperCycleT ime

GateOpenT ime
(4.4)

4.3.1.3 Limitations and related research

An important limitation of TSN is the low, limited number of supported traffic classes which
impairs system scalability and the real-time performance, in particular for large systems. As
there are only eight queues, it is not possible to segregate traffic into individual queues if
the number of flows in the system grows past the available class number. Thus, interference
from several flows assigned to a same queue may happen, leading to aggravated latency and
jitter values. Moreover, the presence of a set of time-triggered traffic with big prime values as
transmission periods can lead to huge and unmanageable gate control lists, a problem already
faced for example in WorldFIP [6]. Thus, a lot of research has been addressed to study the
performance impact related to the assignment of traffic into traffic classes and the use of
time-gates, as well as to devise strategies in order to attain the necessary system schedulability.

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 63

Work to improve fault-tolerance has also been carried-out. A brief overview of existing work
now follows.

In [109], Craciunas et al. studied the scheduling challenges that affect the real-time commu-
nication of streams under the use of transmission gates (IEEE 802.1Qbv). They identified
constraints for the computation of schedules that are able to guarantee deterministic end-to-
end latency and low jitter, and proposed several possible configurations. The schedulability
and scalability of the proposed approach is evaluated under simulations. Ko et al. [110]
studied the distribution of bandwidth between scheduled traffic and the remaining traffic
classes in order to establish an optimal relationship that guarantees the requested QoS. Sim-
ulations based on an automotive scenario were used to evaluate the proposed distribution
ratio. Pop et al. [111] introduced a Integer Linear Programming (ILP) formulation to assign
time-triggered flows to TSN classes and synthesize the necessary gate control lists. They
also proposed an optimization strategy for the routing of flows through the network. The
enhanced worst-case delay analysis of [112] is used to verify the schedulability of the obtained
configurations. A similar work is presented in [113], but also takes into account the QoS
impact on event-triggered, lower priority real-time traffic. In [114], Álvarez et al. formulated
the use of time and spatial redundancy for TSN networks to increase reliability, in particular
against transient faults, and reduce resource consumption. They combine their time-based
replication mechanism (Proactive Transmission of Replicated Frames (PTRF)) proposed in
[115], which replicates frames of critical streams through the same path, with TSN’s frame
replica elimination mechanism (IEEE 802.1CB). The approach is able to reduce the number
of redundant paths while being able to tolerate permanent and temporary faults.

4.3.2 Hard Real-Time Ethernet Switch (HaRTES)

Hard Real-Time Ethernet Switch (HaRTES) [29] is a modified Ethernet switch which provides
real-time communication services with hierarchical, server-based resource sharing mechanisms.
It was developed to overcome some limitations of the FTT-SE protocol, in particular the
compatibility with standard Ethernet stations, and to provide advanced resource management
services, e.g. hierarchical servers, so as to provide a higher degree of flexibility in the design
of complex distributed real-time applications. More specifically it features:

• Embedded FTT master features such as admission control, Quality-of-Service (QoS)
manager and traffic scheduling, amongst others;

• Support for synchronous (time-triggered) and asynchronous (event-triggered) traffic;

• Hard and soft real-time guarantees for the synchronous and asynchronous traffic, re-
spectively;

• Hierarchical, server-based traffic scheduling for the asynchronous traffic;

• Seamless integration of standard, non-FTT compliant nodes, without jeopardizing
real-time performance;

64 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

• Traffic enforcement and policing mechanisms;

• Low switching latency and jitter.

Akin to FTT-SE, HaRTES employs a master-slave technique to control network communi-
cations, with the master node implemented within the Ethernet Switch (Figure 4.9) and
communications following the Flexible Time-Triggered (FTT) paradigm [116].

HaRTES

Slave

Master

Slave
Slave

Slave

Slave

Bridge

Slave

Slave
Slave

Slave

Slave

FTT-SE

Master

HaRTES

Figure 4.9: FTT-SE vs HaRTES network architecture

The integration of the master node within the Ethernet switch provides significant advantages
[29]:

• The asynchronous traffic handling is simplified. Instead of being polled by the
master node, asynchronous traffic is now autonomously triggered by nodes and managed
by the switch in order to maintain proper temporal behaviour;

• Increased system integrity. Unauthorized communications can be blocked at the
switch’s input ports to prevent interference with the rest of the system;

• Integration of Ethernet legacy nodes. Nodes not compliant with the protocol can
be integrated without compromising the real-time communications;

• Improved network synchronization. The Trigger Message (TM) is now transmitted
with very low jitter and latency.

The master of HaRTES coordinates communications within fixed-duration time-slots called
Elementary Cycles (ECs) (Figure 4.10). In order to organize communications and support
synchronous and asynchronous traffic, each Elementary Cycle (EC) is divided into two windows:
a synchronous window, in which synchronous transmissions are scheduled and triggered by
the master, and an asynchronous window, in which asynchronous communications triggered

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 65

by the nodes are managed by hierarchical server-based traffic scheduling mechanisms. This
temporal isolation is enforced by the switch itself, effectively eliminating interference between
the two traffic classes. The master inside the switch keeps information regarding all traffic
streams and data exchanges. It also performs traffic scheduling for the time-triggered traffic,
online admission control, traffic policing at ingress ports, and is able to reconfigure existing
reservations without disruption of service.

SM2SM1

TMSwitch uplinks

downlinks

TM

Node A uplink

downlink

TM

Node B uplink

downlink

Synchronous Window

SM1 SM2

SM4

AM31

IP PACKET

Asynchronous Window

SM4

SM1

SM4

SM1

SM4

SM2

SM2

SM1

SM2 AM31

AM31

IP PACKET

IP PACKET

IP PACKET

AM31

Figure 4.10: HaRTES elementary cycle overview

Synchronous transmissions in HaRTES are scheduled and triggered (polled) by its internal
FTT master via special messages known as trigger messages (TMs). TMs are broadcast at the
beginning of each EC, and contain the IDs of the time-triggered messages to be transmitted
within the current cycle’s synchronous window. FTT-compliant nodes decode received TMs
and transmit immediately its scheduled message(s). The switch then forwards the received
messages to the correct egress port(s). Unscheduled synchronous messages, such those from
badly behaved nodes, or synchronous messages transmitted outside the synchronous window
bounds are promptly discarded at ingress ports. Scheduling for time-triggered traffic is done
online, on an EC basis, according to a user-defined scheduling policy such as Rate-Monotonic.
The master guarantees that all messages scheduled for transmission within a given EC fit,
avoiding window overruns and queue buildup. By generating the TM within the switch and
transmitting it directly to the network, TM transmissions occur in a highly precise manner,
with very low jitter and latency.

The asynchronous traffic is triggered by nodes without being scheduled and polled by the
master. Once the asynchronous traffic is received by the switch, it is queued in dedicated
memory pools and transmitted when appropriate, i.e. when its transmission conforms to

66 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

the negotiated timing properties. In order to enforce the asynchronous traffic transmission
behaviour, hierarchical, server-based mechanisms are used within HaRTES. An example of a
configuration for this asynchronous framework is shown in Figure 4.11 [29].

Y

X

Level 1

Level 2

Level 3

Level 4

Γ11
Server

Γ21
Server

Γ31
Server

Γ22
Server

Γ32
Server

Γ41
Stream

Γ42
Stream

Γ43
Stream

Γ33
Stream

Figure 4.11: HaRTES hierarchical server-based scheduling

During the registration process, producer nodes ask for resource reservations by stating their
asynchronous streams’ properties, e.g. identifier, priority, minimum inter-arrival time, etc.
Upon acceptance, the switch allocates the necessary resources, e.g. memory, and assigns a
given server to each stream. This server is configured so to enforce the stream’s temporal
behaviour. Asynchronous packets are then transmitted to the network within the asynchronous
window, provided that its associated servers allow it, i.e. servers have enough budget. These
servers can be composed hierarchically by the users in order to enable a flexible management
of resources within complex systems and applications. Non real-time traffic, e.g. from non
FTT-compliant nodes, is also transmitted within the asynchronous windows, albeit in a
background fashion, i.e. when no asynchronous traffic is queued or when all stream’s servers
are budget depleted [29].

4.3.2.1 HaRTES Platform Architecture

HaRTES is fully implemented in hardware, more specifically using the NetFPGA 1G (Figure
4.12) platform [117], an open source, low-cost and reconfigurable hardware platform optimized
for high performance networking projects developed by the Stanford University.

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 67

Figure 4.12: HaRTES hardware platform (NETFPGA 1G)

The NetFPGA includes all the necessary resources to design a complete, custom Ethernet
switch. More specifically it provides (Figure 4.13):

• A Field Programmable Gate Array (FPGA) (FPGA);

• Four Gigabit Ethernet interfaces;

• Memory for packet/data storage (4.5MB of SRAM and 64MB of DDR2 DRAM);

• A standard Peripheral Component Interconnect (PCI) interface to interact with a host
computer, e.g. for complex operations.

Host computer

FPGA
Virtex II-Pro 50

(User-defined network
processing logic)

PCI Interface
(Control operations)

36Mb
SRAM

64MB
DDR2 SDRAM

36Mb
SRAM

Linux OS – NetFPGA Kernel Driver

1GE
MAC

1GE
MAC

1GE
MAC

1GE
MAC

1GE
PHY

1GE
PHY

1GE
PHY

1GE
PHY

Gigabit
Ethernet

Interfaces

User-defined software networking applications

NetFPGA Platform

FIFO
Packet
buffers

Figure 4.13: HaRTES hardware resources

68 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

By fully implementing the entire datapath and control plane in hardware, the switch exhibits
low switching and processing latency values with extremely low jitter at the egress ports. An
overview of HaRTES internal logic architecture is illustrated in Figure 4.14.

Figure 4.14: HaRTES internal architecture

The main blocks of the architecture are:

• The FTT master module. It includes all the management and decision making logic,
such as the admission controller, QoS manager, traffic scheduler and global dispatcher.
It also includes the database with the information regarding registered traffic streams
and their properties;

• Memory Pool. Here is where all the received packets’ data is stored. Three main
memory sub-pools exist, each one associated to a given traffic category;

• Input ports module. At the input ports, packet classifiers validate and either admit
or trash received packets. Packets are also categorized as synchronous, asynchronous or
non-real-time;

• Output ports module. At the output ports separated queues for each traffic type are
implemented. Moreover, the logic of the server-based scheduling for asynchronous traffic
is also implemented here, one for each port.

Packets received at the input ports are classified into synchronous, asynchronous or non-
real-time packets and stored in the dedicated memory pool queues. Invalid packets, e.g.
corrupted and unauthorized, are discarded. Memory pointers to each stored packet are then

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 69

generated. These contain information on each packet, e.g. type, size, stream ID, memory
address, etc., and are used by all of the internal switch’s modules. When a module has to
access a given packet’s content, it will look up the memory address within the pointer and read
the contents directly. Each of these generated pointers is then forwarded to the FTT-Master
module. Packets carrying requests, e.g. stream registration/removal, will be handled by
the Admission Control module, while the destination of regular packets will be looked up
and their pointers stored at the respective output port(s). At each port, dedicated FIFO
queues for each registered synchronous/asynchronous stream and non-real time streams are
instantiated. Within each EC, the Port Dispatcher module (on each port) retrieves pointers
from the appropriate queues and transmits the associated packet to the network. Note that the
mechanisms described for the synchronous and asynchronous transmissions rule and determine
which queue is to be served at a given instant.

4.3.2.2 HaRTES Configuration API

HaRTES provides a simple API that allows applications to configure the offered real-time
services. A summary of the available operations is presented in Table 4.2.

Table 4.2: HaRTES API

Category Operation Description

OP_REG Register a synchronous stream.
OP_DEREG Deregister a synchronous stream.OP_CAT_SYNC
OP_MODIFY Modify properties of a synchronous stream.
OP_REG Register an asynchronous stream.
OP_DEREG Deregister an asynchronous stream.OP_CAT_ASYNC
OP_MODIFY Modify properties of an asynchronous stream.
OP_SET Enable and configure a server.OP_CAT_SERVER OP_UNSET Disable a server.

Synchronous (SYNC) and asynchronous (ASYNC) streams are specified by ID, period or
minimum inter-arrival time, offset (for synchronous streams only), deadline, priority, frame
length, ingress and egress ports. Asynchronous streams have an additional parameter, the
server bitmap, which associates the stream with a set of servers. There is an independent set
of servers per output port, and each server can be configured with a budget and replenishment
period, which are typically equal to the frame length and minimum inter-arrival time of the
associated stream, respectively. Table 4.3 provides a description and value range for each of
the aforementioned parameters.

The structure of some HaRTES API messages is shown in Figure 4.15. Remaining messages
follow a similar structure.

70 CHAPTER 4. TOWARDS A REAL-TIME DATA PLANE

Table 4.3: HaRTES API parameters

Parameter Description Value range

ID Stream identifier.]0, 32]
Period SYNC: periodicity of frames.

ASYNC: minimum time between consecutive frames.
]0, 216−1] ECs

Deadline Frame’s relative deadline.]0, 216−1] ECs
Offset SYNC: relative phasing.

ASYNC: ignored parameter.
]0, 232−1] ECs

Priority Absolute priority. Lower value equals a higher level.]0, 28 − 1]
Frame length Maximum length, in bytes, of a stream’s OSI layer 2 frame.

Includes all headers, payload and FCS.
[68, 216 − 1]

Producers Stream’s ingress ports. - - -
Consumers Stream’s egress ports. - - -
Server bitmap Bit vector to associate servers to a stream.

E.g. 0x83 = "1000 0011" associates server 1, 7 and 8.
]0, 28 − 1]

Server ID Server’s ID.]0, 8]
Port Server’s egress port. [0, 3]
Server budget Server’s budget, in bytes. [0, 216 − 1]
Server period Server’s replenishment period. [0, 232−1] ECs

OP_CAT_ASYNC[OP_CAT_SERVER[

 Transaction ID
 Operation Category
 Operation

 ID
 Priority
 Period
 Deadline

 Frame length
 Producers
 Consumers
 Server bitmap

 FTT_CFG_OP_CAT_SYNC
 FTT_CFG_OP_CAT_ASYNC
 FTT_CFG_OP_CAT_SERVER

 FTT_CFG_OP_REG
 FTT_CFG_OP_DEREG
 FTT_CFG_OP_MODIFY
 FTT_CFG_OP_SET
 FTT_CFG_OP_UNSET

 Server ID
 Port

 Server budget
 Server period

Figure 4.15: Structure of a HaRTES API message

4.3. FINDING A FLEXIBLE AND EFFICIENT REAL-TIME DATA PLANE 71

4.3.2.3 Related research

Research has been conducted to improve HaRTES, in particular, to scale its use to big
networks comprised by several interconnected HaRTES switches and increase fault-tolerance.

Ashjaei et al. [118] investigated the challenges of connecting multiple HaRTES switches while
preserving the real-time performance of the whole network. They proposed a forwarding
method, named Distributed Global Scheduling, to handle the traffic forwarding through
the several hops. They also devised a response time analysis for the method and evaluated
the embodied level of pessimism. In[119], Ashjaei et al. proposed an improved forwarding
method for multi-hop HaRTES networks, called Reduced Buffering Scheme. They developed
a response time analysis for the new method and compared it with the previous Distributed
Global Scheduling method. They concluded that new method performs better and brings an
improvement on the response time for all types of traffic. Rodriguez-Navas and Proenza [120]
proposed a method to enhance HaRTES with a multicast service for synchronous messages.
The proposed method takes advantage of the centralized, online scheduling service of HaRTES
to reduce complexity and bandwidth utilization. Ballesteros et al. [121] proposed a new
switch called HaRTES/PG, based on the existing HaRTES switch, in order to prevent the
propagation of Byzantine node behaviours and ensure that local errors can’t interfere with
the global communication. In this work, they studied the possible errors that may lead to
Byzantine node behaviours and global communication disturbance in HaRTES. They also
presented some ideas on how to prevent the propagation of these errors in with the new
switch. Gessner et al. [122] explored some architectural designs to improve the reliability of
HaRTES-based networks. They add some level of fault tolerance through the replication of
switches.

CHAPTER 5
A real-time SDN framework

Contents
5.1 A reference architecture for a real-time SDN framework 73
5.2 A SDN controller with real-time admission control 75

5.2.1 The admission control . 77
5.3 A real-time empowered control plane . 84

5.3.1 The OpenFlow real-time add-on . 85
5.4 A real-time Ethernet data plane . 91

5.4.1 The SDN augmented HaRTES . 93

This chapter introduces the development of a software-defined networking framework for
complex real-time systems, such as those of Industry 4.0. It starts by presenting the proposed
system architecture, followed by the design of an extended control plane that is able to conduct
network resource reservations for real-time traffic flows. Next, the enhancement of a real-time
data plane with SDN services is discussed.

5.1 A reference architecture for a real-time SDN framework

The proposed reference architecture follows the common SDN design, in which the control
plane is enacted by a logically centralized controller that is responsible for the configuration
of a network comprising one or more switching devices. When combined, these devices realize
the data plane. An example for the reference architecture is depicted in Figure 5.1. Note that
the data plane can also implement traditional start/tree topologies found in switched Ethernet
networks. Akin to standard SDN approaches, it is desirable the existence of a dedicated
management network connecting the controller to each switching device on the data plane for
performance and security sake. If this is not possible, in-band channels within the data network
can be used. However, strong security measures must be put in place and enough bandwidth
should be reserved for these management communications. Additionally, admission control and
scheduling algorithms must consider interference that may arise from the presence of in-band
traffic. Throughout this work, it is considered the use of a dedicated management network
to connect switching devices at the data plane to the controller. Moreover, although this
work focus on single-controller topologies, as the employed southbound protocol (OpenFlow)
natively provides support for multiple controllers, multi-controller topologies are also possible.

73

74 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

SDN Controller
(Control Plane)

Data Plane

HaRTES HaRTES HaRTESHaRTES Internet

Non real-time
nodes

Sensors ActuatorsIndustrial Machines Multimedia

OpenFlow
switch protocol

User Application(s)

Northbound API

Figure 5.1: Reference architecture for the real-time SDN network

The central controller interacts with applications through northbound Application Program-
ming Interface (API) interfaces which can be built, for example, under the ONF’s Intent NBI
paradigm [72]. Applications may request the reservation of network resources for both non
real-time and real-time flows, accompanied with the necessary information for determining
network end-points, i.e. consumers and producers, and the necessary resources, e.g. payload
size and transmission period. The development of this northbound API is not addressed in
this work, and is left as future work. For now, it is assumed that all the necessary information
regarding application flows is available in a database inside the controller. Upon receiving
requests, the controller runs an admission control algorithm to ensure the system has the
necessary network resources and that real-time guarantees for both new and existing flows are
met. If a flow is admitted the controller sets the entire data path with adequate configurations,
otherwise, the request is denied. The data plane network relies on HaRTES switches as the
enabling platform with real-time services. The reasoning behind this choice of HaRTES is
presented in Section 4.3. The controller entity uses the southbound protocol OpenFlow to
configure data plane services.

The development of the described framework was organized into three distinct workflows:

• Development of the admission control module. A traffic scheduling analysis must

5.2. A SDN CONTROLLER WITH REAL-TIME ADMISSION CONTROL 75

be executed before admitting new flows in order to provide temporal guarantees for
real-time traffic. This admission control must be devised since it is not provided by
standard SDN controllers;

• Extension of the control plane (OpenFlow protocol). Standard OpenFlow lacks
an API and services that are adequate to manage real-time traffic and thus, it must be
extended;

• Enhancement of HaRTES with SDN services and OpenFlow API. Although
HaRTES provides flexible real-time services, it lacks basic SDN functionality and an
API that is compatible with OpenFlow. It is then necessary to enhance HaRTES with
such capabilities.

These aforementioned workflows are described in detail by the following sections.

5.2 A SDN controller with real-time admission control

The SDN controller is the central piece of any software-defined network. It stands between
network devices and applications and implements the intelligence to manage existing network
resources and communication flows according to application requests. Although there is a
myriad of SDN controllers, e.g. NOX, RYU, ONOS, and OpenDaylight, they are mainly
designed for the management of data center resources and carrier operator networks, and do not
provide the necessary services to manage networks for communications with strict timeliness
requirements, e.g. admission control with real-time schedulability analysis. Therefore, a
SDN controller application with real-time control capabilities was specifically designed for the
real-time SDN framework. Figure 5.2 presents an overview of the developed controller.

The real-time controller is implemented on the RYU framework [123], an open-source framework
designed for the development of network management and control applications. RYU is
written in Python programming language and follows a component-based software architecture,
meaning that it is possible to build applications on top of bare-bone services and add additional
modules to expand functionality as required, greatly reducing complexity and computational
overheads. It also supports various protocols for managing network devices, e.g. NETCONF,
including all OpenFlow protocol versions up to version 1.5. For these reasons, it is considered
an adequate development framework for the real-time controller.

The real-time controller application is able to communicate with one or more data plane
switching devices using the standard OpenFlow protocol. The OpenFlow protocol API and
the OpenFlow channels are all provided and managed by RYU’s bare-bone services. Devices
first connecting to the controller are handled by the Setup Handler at the Data Plane Manager.
This handler creates an entry for the device at the Device Database and performs basic
configurations to the device’s OpenFlow services, e.g. installs Table-miss flow entries. The
Device Database maintains for each device information concerning : (i) basic capabilities, such
as the number of Ethernet ports, OpenFlow tables, and supported instructions, (ii) installed

76 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

Device
Database

RYU Framework

OpenFlow Channel 1

Extended OpenFlow Protocol API

Flow
Database

OpenFlow Channel N

Switch 1

Standard OpenFlow Protocol API

Switch N

Monitor
Thread

Device
State

Handler

Setup
Handler

Packet-In
Handler

Application Manager

Admission Control

Data
Plane

Manager

Network
Topology
Database

Real-Time Controller
Application

Northbound API

Figure 5.2: Main components of the real-time SDN controller

OpenFlow configurations, for example, the installed flow entries, (iii) statistic information
retrieved from OpenFlow counters, and (iv) state information, such as the state (online or
offline) of Ethernet ports. The Monitor Thread periodically polls statistics and installed
OpenFlow configurations from each device, while the Device State Handler receives events
sent by devices regarding state changes. Combined, they keep the Device Database up-to-date
and consistent.

Applications communicate via northbound protocols with the Application Manager. As the
northbound API is not yet defined, application communication requirements are deployed
either offline or over a console. Application requests are then forwarded to the Admission
Control unit which determines if a given traffic flow can be accepted into the network. In
case of an affirmative decision, the Admission Control unit relays the request to the Data
Plane Manager that then installs the adequate configurations on the data plane. If the flow is
rejected, a denial notification is sent to the Application Manager and transmitted afterward
to the requesting application. Extensions to the OpenFlow protocol API allow the Data
Plane Manager to configure both standard OpenFlow services and real-time services on data
plane switching devices. The specification and development of these extensions is presented

5.2. A SDN CONTROLLER WITH REAL-TIME ADMISSION CONTROL 77

in Section 5.3.

In order to run the admission tests, the Admission Control consults the Flow Database and
the Network Topology Database to retrieve information concerning currently installed traffic
flows and network topology, respectively. These databases are built and updated accordingly
by the Data Plane Manager upon changes in the network and devices’ state, for example,
when a new switching device is connected into the network or an Ethernet port of some device
is disabled. The network topology is modeled as a directed graph using the NetworkX library
[124].

5.2.1 The admission control

When applications request for a new traffic flow, the communication system must first verify
whether it is possible to guarantee the requested resources and constraints, e.g. temporal or
bandwidth, without compromising the overall system, i.e., the inclusion of new flows must not
result in the system failing to provide the QoS required by existing communications. Requests
that fail to meet this assertion are rejected, otherwise, the new flows are accepted into the
system. This procedure is done at the implemented real-time controller application by the
Admission Control unit.

The overall operation of the Admission Control unit is depicted in Figure 5.3.

CalcWCRT(Flows)

REJECT

REQUEST
(Flow F)

Add F to Flow
Database

Any
WCRT >

Deadline?

Remove F from Flow
Database

ACCEPT

REJECT

YesCheck Parameters
Compute Network Path

Both Valid?

Yes

No

No

Figure 5.3: Overview of the admission control unit operation

First, it validates the request parameters, i.e., checks if the request has all the necessary
information and all values are within proper ranges. Then it analyzes the network topology
and computes the network path for the new flow. If the request parameters are invalid, or a
valid path does not exist, no further inspections are performed and the request is rejected.
Finally, the Admission Control unit performs a set of algorithms to determine if the flow can
be accepted. This process is executed in two main stages. First, an analysis is performed to
check if the system is capable of meeting the QoS parameters for the new flow. For example,
the response time for the new flow is calculated considering all the existing flows in the system,

78 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

and compared to the flow’s deadline. If the computed time is higher than the deadline, the
requested QoS can’t be guaranteed and thus, the flow is rejected. Secondly, the ability of the
system to provide the QoS requirements demanded by each existing flows is evaluated as if
the new flow is now part of the system. Using the previous example, the response time for
every flow is computed considering the presence of the new flow and compared against their
own deadlines. If the QoS can’t be satisfied for all flows, the request is rejected.

In the following section, the network and traffic models, essential for the execution of any
kind of QoS evaluation, are defined. The algorithms executed by the Admission Control unit
for the assessment of the system’s QoS conformance for traffic flows are explained in Section
5.2.1.2.

5.2.1.1 Network and traffic model

Network Model

The data plane of the proposed reference architecture (Section 5.1) comprisesNχ interconnected
HaRTES switches. The model for each switch is akin to that of a store-and-forward Ethernet
switch comprising a set of Np Ethernet ports, Φ. All ports are considered to be operating at the
same bit rate Ξ and in full-duplex mode. Therefore, frames can be concurrently transmitted
and received. Switches impose switching delays to frames being forwarded through them.
These delays comprise two components: (i) the hardware fabric latency (ε), which corresponds
to delays introduced by frame processing mechanisms, and (ii) the store-and-forward delay
(Υ), which represents the time required to receive a frame before forwarding it to the egress
port. The former delay depends on the speed and architecture of switches’ internal processes.
An upper bound for the fabric latency can be determined, for example, experimentally. The
latter delay is related to the frame size (Λ), which includes all headers and overheads, and
the switch ports’ bit rate. It can be computed as follows:

Υ = Λ
Ξ (5.1)

All switches in the network are configured with equally sized Elementary Cycles. The length
of the EC is denoted by ∆EC. The size of a synchronous and asynchronous window is denoted
by ∆SW and ∆AW , respectively. The EC must have both synchronous and asynchronous
windows, and these must not overrun the EC. That is, for ∆EC,∆SW,∆AW ∈ N it follows
that (∆SW + ∆AW) < ∆EC. The length of synchronous and asynchronous windows may
differ between switches and/or ports of a given switch, however, interconnected ports must
exhibit the same window configuration. Therefore, for an interconnected pair of ports A and
B, it follows that: ∆SWA = ∆SWB ∧ ∆AWA = ∆AWB.

In summary, the set of all switches in the reference architecture is defined throughout this
work as

X = {χi| χi = {εi, ∆EC, Φi} , i = 1, 2, .., Nχ} (5.2)

5.2. A SDN CONTROLLER WITH REAL-TIME ADMISSION CONTROL 79

with the set of ports for a given switch χi being described as

Φi = {φj | φj = {Ξ, ∆SWj , ∆AWj} , j = 1, 2, .., Np} (5.3)

Every physical connection between two switches or between a node and a switch are modeled
as a set of two unidirectional links, one per each direction (ingress or egress). Each link is
denoted by ł . Propagation delays in links are ignored (considered to be 0). The set of all
links in the network, Ł, is presented as:

Ł = {łx, x = 1, 2, .., Nł} (5.4)

Traffic Model
Concerning network traffic, the employed model restricts flows (streams) to unicast trans-
missions. Nonetheless, multicast and broadcast traffic flows can be included as a set of
multiple unicast streams. Moreover, frames from a given stream cannot be preempted during
transmission.

Time-triggered streams are represented following the traditional real-time periodic model.
Therefore, a set of Nps periodic streams, Γ, is expressed as:

Γ = {PSi| PSi = (Λi, Ci, Ti, Oi, Di, Pi, Łi) , i = 1, 2, .., Nps} (5.5)

Each stream is defined by the transmission time Ci of a maximum sized frame, the periodicity
of transmissions Ti, an initial offset Oi expressing the instant of the first transmission with
respect to a reference time instant, the relative deadline Di, the fixed stream’s priority Pi,
and the set of links Łi that stream PSi crosses through. All parameters are expressed by
positive integer numbers, with the exception of Oi which can also be 0. Ci is a direct function
of the maximum frame size Λi, which includes OSI layer 2 headers and the FCS field, and
takes into account all OSI layer 1 overheads for its computation. For the considered switched
Ethernet networks, Ci is computed following Equation 5.6. The start of frame (SOF) and
Inter-Packet Gap (IPG) are sized 8 and 12 bytes, respectively.

Ci = SOF + Λi + IPG

Ξ (5.6)

The model is assumed to be constrained, that is, ∀i=1,2,..,Nps Di ≤ Ti. Periods, offsets, and
deadlines are all expressed as integer multiples of the EC duration, that is:

Ci, Di, Ti ∈ N, Oi ∈ N0 | ∀x ∈ {Ci, Di, Ti, Oi} : x ≡ 0 (mod ∆EC) , i = 1, 2, .., Nps (5.7)

The priority Pi for all streams is assigned following the fixed-priority Rate-Monotonic (RM)
scheduling policy. Therefore, streams with the same period have the same priority level. Three
subsets, hp(PSi), lp(PSi), and hep(PSi), identify the sets of streams with higher, lower, and
higher or equal priority than a given stream PSi, respectively. These are formally described
as follows:

hp(PSi) = {PSx| PSx 6= PSi ∧ Px > Pi , x = 1, 2, .., Nps} (5.8)

80 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

lp(PSi) = {PSx| PSx 6= PSi ∧ Px < Pi , x = 1, 2, .., Nps} (5.9)

hep(PSi) = {PSx| PSx 6= PSi ∧ Px ≥ Pi , x = 1, 2, .., Nps} (5.10)

Łi comprises the set of N łi links traversed by frames pertaining to stream PSi. It is presented
as follows:

Łi = {łx| x = 1, 2, .., N łi}, Łi ⊂ Ł (5.11)

The set of links traversed by a stream PSi along its network route, from a specific link ła
until another specific link łb, is given according to the following definition:

Łi,a,b = {ły| y = a, a+ 1, .., b}, 1 ≤ a ≤ b ≤ N łi, Łi,a,b ⊆ Łi (5.12)

The total response time for a frame of stream PSi is denoted as RTi and corresponds to the
time lapse between the instant in which the frame becomes ready at the sender’s interface
and the instant in which its reception at the receiver’s interface terminates. Additionally,
response times can also be computed for transmissions between a specific pair of links. In this
case, RTi,a,b corresponds to the time interval since the frame has been placed for transmission
in the output queue of the egress link ła and the instant in which the frame is completely
received by the interface connected to the ingress link łb. All response times are expressed as
multiples of ∆EC.

The scheduling and forwarding of time-triggered traffic is performed according to the Reduced
Buffering Scheme (RBS) [4], [67]. Following RBS, traffic produced and sent through a single
switch is defined as local traffic while traffic that crosses multiple switches is known as global
traffic. In order to increase efficiency, all switches are synchronized in time, e.g. using IEEE
1588, and the size of the synchronous window for each link may be differentiated and selected
according to foreseen local and global loads. Local traffic is managed in accordance with
the normal operation of HaRTES for a single switch (recall Section 4.3.2). Global traffic is
scheduled only at ports that are physically connected to producer nodes. Then, it is forwarded
through interlinks belonging to the streams’ routes while there is enough time within the
links’ synchronous windows. If an interlink does not have enough time left in the present
synchronous window, the respective switch stores the received global frames into dedicated
priority queues at the respective egress port. Frames stored at priority queues are forwarded
in the following elementary cycle in descending order of priority. Figure 5.4 presents a scenario
showing the transmission of a frame from a given stream PSi throughout a multi-hop network.

In the supplied example, stream PSi has node A and node B as producer and consumer,
respectively. Therefore, the set of links for this stream is Łi = {ł1, ł2, ł3, ł4}. At the beginning
of EC n, HaRTES H2 sends a Trigger Message (TM) to node A (ingress ł8) polling the
transmission of a PSi frame. Node A stores the requested frame in its egress queue and
transmits the frame through ł1 at the beginning of the synchronous window. This frame is
completely received by H2 after the store-and-forward delay (Υ) which then processes and

5.2. A SDN CONTROLLER WITH REAL-TIME ADMISSION CONTROL 81

Node A Node B

1 8

H2
2

H1
7

3
6

H3

5 4

A

H2

H1

H3

B

(Egress)
(Ingress)

1
8
2
1
3
2

3
4

4
5

ε

ΔSW

ΔEC (EC n) ΔEC (EC n+1)

ϒ

RTi

Ι

TM RTi 2,3

RTi 3,4

Figure 5.4: Reduced Buffering Scheme (RBS) example

stores it at the respective egress queue, i.e. egress queue of ł2. This queuing process adds
a delay of ε to the transmission of PSi to switch H1. The same process is repeated by H1,
however, there is now no space in H1’s synchronous window to transmit the received frame.
Therefore, the frame is stored at the appropriate egress queue and transmitted in the following
elementary cycle. This causes an idle time I at the end of the synchronous window in EC n.
Finally, H3 receives the frame and forwards it to the destination node.

5.2.1.2 The schedulability analysis for synchronous traffic

This work employs the response time analysis proposed in [4], [67] to perform the admission
control of time-triggered traffic. The aforementioned analysis is specifically designed for
networks comprising several interconnected HaRTES switches and the RBS forwarding scheme.
In short, the devised analysis calculates the response time of traffic from the source to the
sink node, link-by-link, while checking whether frames are buffered in any switch along the
route. Algorithm 1 [67] describes how the response time for a given stream can be calculated
using the described approach.

82 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

Algorithm 1 Response time calculation for stream PSi

1: RTi = 0
2: a = b = 1
3: while b ≤ N łi do
4: RTi,a,b = responseT imeCalc(PSi,Łi,a,b)
5: RTi,a,b = dRTi,a,b

∆EC e
6: if (a! = b) && (RTi,a,b! = RTi,a,(b−1)) then
7: RTi = RTi +RTi,a,(b−1)
8: a = b
9: else

10: b = b+ 1
11: end if
12: end while
13: RTi = RTi +RTi,a,(b−1)

The algorithm starts by setting the initial parameters, i.e., the total response time RTi is set
to zero (line 1) and the link indexes a and b are set to select the first link in PSi’s link set Łi
(line 2). The main loop (line 3) computes the response time, link-by-link, until the last link
(N łi) in Łi. It starts by computing the response time for PSi frames traversing the subset
Łi,a,b (line 4), rounding the resulting response time up to a multiple of ∆EC, i.e. number of
elementary cycles (line 5). The rounded response time is then compared to that obtained in
the previous iteration (line 6). However, this is only done when ła 6= łb, that is, only when
the response time has been computed over two or more different links. This is to account
for: (i) the fact that frames can not be buffered at the egress link of a node due to having
being scheduled by the switch, and (ii), when a frame is determined to have been buffered
by a switch (line 6), the algorithm re-initializes the computation to the egress link of the
buffering switch (line 8). Buffering is detected when the computed response time for a subset
Łi,a,b comprising two or more links differs from the result obtained from the calculation up to
the next-to-last link in the same subset, i.e., Łi,a,(b−1) (line 6). The reasoning behind this is
the fact that for all possible sets Łi,a,b comprising at least two distinct links, i.e. a 6= b, the
next-to-last and the last elements forcefully correspond to the ingress and egress link of the
same switch. Therefore, if the response time up to the ingress link of that switch differs (in
number of ECs) from the one up to its egress link, it is safe to assume that the frame will be
buffered by this switch. In this case, the computed response time up to the ingress link is
added to the total response time and the computation starts anew from the egress link of the
buffering switch (line 7 and 8). If the frame is found not be buffered, the next link in Łi is
added to the response time calculation of the next loop iteration (line 10). The total response
time is found when the main loop reaches the last link in the route of PSi (line 13).

The response time of PSi for a given subset Łi,a,b (line 4 of Algorithm 1) is based on the
classical response time analysis employing the accumulation of delays within iterations. The
response time computation is described by Equation 5.13.

rti,a,b(x) = Ci
αi,a,b

+ Ii,a,b(x) +Bi,a,b(x) + SDi,a,b(x) (5.13)

5.2. A SDN CONTROLLER WITH REAL-TIME ADMISSION CONTROL 83

The calculation considers the transmission time Ci of the PSi frame itself as well as three
types of interference that may arise from the existence of other time-triggered streams in the
network: (i) Ii,a,b, the interference from messages with higher or equal priority that have links
in common with PSi, (ii) Bi,a,b, blocking from messages with lower priority that share links
with PSi, and (iii) SDi,a,b, the switching delay for the stream across the entire route. The
computation of the response time is complete when the iteration of Equation 5.13 converges,
i.e., rti,a,b(x) = rti,a,b(x− 1). The first iteration computes rti,a,b(0) = Ci

αi,a,b
.

As transmissions of time-triggered frames are confined to the synchronous window, an inflation
factor αi,a,b is used to adequately compute the transmission time of frames within the window
[6]. The calculation of this factor is described by Equation 5.14.

αi,a,b = min(∆SWl − Il)
∆EC , l = a, a+ 1, .., b (5.14)

To compute αi,a,b while accounting for the worst-case scenario, the minimum sized window
among all links in Łi,a,b and the maximum idle time that may occur in the aforementioned
window are used. The maximum idle time is calculated following Equation 5.15.

Il = max(Λi,Λx), ∀x ∈ [1, Nps] ∧ PSx ∈ hep(PSi) ∧ łl ∈ Łx (5.15)

The computation for the first kind of interference, Ii,a,b, is straight- forward and is given by
Equation 5.16. Note that the transmission time for interfering messages Cj must also be
inflated by αi,a,b.

Ii,a,b =
∑(⌈

rti,a,b(x− 1)
Tj

⌉
∗ Cj
αi,a,b

)
,∀j ∈ [1,Nps] ∧PSj ∈ hep(PSi) ∧Łj∩Łi,a,b 6= ∅ (5.16)

The second interference type, Bi,a,b, is computed by Equation 5.17. Note that a particular
stream with lower priority can only block PSi once throughout the route.

Bi,a,b =
b∑

t=a+1
a6=b

max

(
Λx
αi,a,b

)
, ∀x ∈ [1, Nps] ∧ PSx ∈ lp(PSi) ∧ łt ∈ Łx ∧ ∀y, a+1 ≤ y ≤ t, ły /∈ Łx

(5.17)
Finally, the accumulated switching delay for the stream along the whole route is supplied by
Equation 5.18. The computation of this last term, albeit resulting into a somewhat simple
equation, has some interesting details. Authors are referred to [4] for some insight on this
matter.

SDi,a,b

b∑
t=a+1
a6=b

max

(
Υi,Υx

αi,a,b

)
, ∀x ∈ [1, Nps] ∧ łt ∈ Łx ∧ ł(t−1) ∈ Łx (5.18)

The source code for the implementation of the presented analysis can be consulted in Appendix
D.

84 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

5.3 A real-time empowered control plane

Software Defined Networking (SDN) frameworks are primarily designed to provide an ab-
straction of the network lower-level functionality so as to allow network administrators to
dynamically configure and manage network resources in a flexible and convenient way, without
having to dwell on complex protocols. The development of such frameworks didn’t consider
the support and management of real-time communications and, as consequence, they do not
provide traffic models and APIs that are adequate for this type of communications. OpenFlow,
being a southbound protocol for SDN platforms, is no exception.

OpenFlow relies on two main services to enable limited QoS support: (i) an action to forward
traffic to specific output queues in the data plane, and (ii), traffic shapers that restrict traffic
flows according to configurable bandwidth thresholds. Although one could use a set of output
queues to, for example, implement priority-based queuing schemes, these are only configured
outside the OpenFlow protocol, e.g. through data plane vendors’ command line tools or
dedicated configuration protocols. Additionally, the available shapers are only able to limit
a given flow’s maximum bandwidth, which is configurable by either setting the maximum
number of packets per second or kilobits per second (kbps). One could use these services to
provide QoS guarantees to event-triggered traffic, however, the offered guarantees would be
severely constrained. The support for time-triggered traffic with standard OpenFlow is simply
non-existant.

It is clear that extensions to the current OpenFlow protocol1 are essential in order to enable
adequate real-time services. To this end, two distinct approaches may be pursued: (i) modify
the current OpenFlow services and API, adding new services to the protocol as needed, or (ii),
keep standard OpenFlow services and API intact, while providing a non-intrusive real-time
add-on with its own set of services and API.

The former approach requires that several objects and features of OpenFlow are modified.
For example, flow table entries would have to be modified so as to be able to categorize traffic
as time-triggered, event-triggered or non-real-time traffic. Within the same traffic category,
several flows may be served by distinct real-time services, e.g. deferrable servers, and so, at
the end of the pipeline processing real-time flows must be directed to the respective services.
Moreover, each real-time flow has a set of requirements which are specified through a set of
metrics, e.g. period and deadline, that are inexistent in OpenFlow APIs. Thus, present APIs
and message structures would have to be modified and/or extended, and a database to store
each real-time flow’s requirements would have to be implemented. Since this approach is
significantly intrusive and could hinder the extensions adoption by the standard, as well as
being a hindrance for the update of our developed framework to future OpenFlow version
releases, it will not be engaged. The latter approach keeps the current standard unaltered
and introduces a separate real-time add-on with its own set of messages, services and API.
This add-on will follow the philosophy of OpenFlow and its API and messages will reuse as
much as possible common structures already defined by the standard. For example, OpenFlow

1At the time of writing the latest published version of the standard was v1.5.0

5.3. A REAL-TIME EMPOWERED CONTROL PLANE 85

defines data structures for messages’ headers and contents which are compatible and can be
adopted by the real-time add-on. Naturally at a certain point, the structure of messages will
have to diverge but the introduced changes will closely follow the mindset of OpenFlow. Next,
we will take a look on the developed add-on module.

5.3.1 The OpenFlow real-time add-on

The proposed add-on architecture, and its main components, is depicted in Figure 5.5.

Figure 5.5: Real-time OpenFlow add-on

Two distinct domains exist: the standard OpenFlow domain and the real-time OpenFlow
add-on domain. The standard domain implements the OpenFlow pipeline with all the objects
and services defined by OpenFlow completely unchanged. As in the original modus operandi,
flow, group and meter tables are configured by the controller through the standard OpenFlow
switch protocol API in order to rule the pipeline processing and forward flows to the desired
OpenFlow output ports. These ports may be: (i) physical, which are directly mapped to
switching hardware ports, (ii) reserved, i.e. logical entities that are associated to specific
OpenFlow-defined processing such as flooding packets to several physical ports, and (iii),
logical ports that may be related to processing instructions that are defined outside the
OpenFlow protocol.

Logical ports are the cornerstone of the add-on. In OpenFlow, there are a total of 224−1 ports
that can be freely used as either physical or logical. The real-time add-on defines a subset of
these ports to be used for real-time processing, where each logical port is linked to a given
real-time stream and real-time service, e.g. time-triggered or event-triggered. A controller may
query the switch regarding logical ports that are reserved and supported real-time services.
Using this information, the controller can then configure the pipeline to correctly identify and

86 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

direct filtered flows to the desired real-time services. Note that within the standard OpenFlow
domain there is no explicit notion of real-time and non-real-time flows; flow entries, their
matching rules, and pipeline processing outcomes are kept unchanged. Only the controller
knows how to distinguish flows and it must configure flow table entries to properly filter and
direct packets to non real-time or real-time ports.

Real-time traffic streams and their properties have to be provided so that reservations are
made and the appropriate real-time services configured. This process happens at the real-time
add-on domain. The controller registers real-time streams into the database of switching
devices through the real-time API. Devices then translate each stream entry into reservations
that are enforced by the appropriate real-time services. These services must process the
received traffic from related streams and take adequate actions to enforce the negotiated
real-time behaviour. How these services are implemented and operate is not defined by the
add-on since it is intended to be technologically agnostic and not tailored for a particular
real-time protocol. It is the responsibility of the device to deny requests whose real-time
timings cannot be guaranteed by the implemented services. Nonetheless, data plane devices
do must implement two distinct dispatchers: one to dispatch non real-time traffic and another
for real-time traffic. The dispatching of real-time traffic should always take precedence over
the non real-time.

In summary, the process that a controller must conduct in order to successfully add a real-time
traffic flow into the system is:

1. Configure the appropriate real-time services. The controller uses the add-on API
to register the real-time stream into each data plane device across the stream’s route,
providing information such as the ID of the stream being registered and its real-time
properties, e.g. type of real-time service and timing requirements (see Section 5.3.1.1).
Note that the specified ID is unique and (indirectly) defines the logical port for the
OpenFlow pipeline;

2. Configure the OpenFlow pipeline. Using the standard OpenFlow API, the controller
configures the necessary rules, i.e. flow entries with adequate matching rules, instructions,
and actions, to redirect matching traffic to the real-time logical port that is linked to
the stream registered in step 1. This step must be executed for each device across the
stream’s path.

In case one of the aforementioned steps fails, e.g. a switching device denied the request due to
an error and/or unsupported request, the controller must abort the process, undo all previous
configurations, and report to the application. Traffic from successfully admitted flows are
processed on each device according to the flowchart of Figure 5.6.

5.3. A REAL-TIME EMPOWERED CONTROL PLANE 87

Ingress Port

Packet In

Flow
Table 0

Flow
Table n

Execute
Action

Set

Drop packet

Yes
NoNo

Yes

Egress
processing
support?

Output
action ?

Group
action ?

Flow
Table 0

Flow
Table n

Execute
Action

Set

Yes
Group

action ?
No

Yes

Output
action ?

Yes No

Output
port type ?

Logical Port

Non real-time
queuing

Physical Port

Reserved Port

Real-time
reserved?

No

Packet Out

Real-time
services &

queues

Yes

Egress Port

No

Real-time
dispatcher

Figure 5.6: Traffic processing flowchart

Traffic received at an ingress port goes through the original OpenFlow pipeline, going through
one or more flow tables until it matches a flow entry or is dropped, e.g. upon not matching
any entry. At the end of the processing pipeline, traffic with an associated output action may
either go to: (i) a reserved port, (ii) a physical port, (iii) a non real-time logical port, or (iv),
a real-time logical port. Traffic for the first three types of ports is stored in standard non
real-time queues, while traffic for real-time ports is stored in queues managed by real-time
services. The real-time dispatcher then serves both non and real-time queues according to its
internal algorithm. Traffic with no output action or valid ports is dropped.

The real-time API of the OpenFlow add-on is presented in the next section.

88 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

5.3.1.1 Real-time OpenFlow API

One of the most important components of the real-time OpenFlow add-on is the Real-Time
API, summarized in Table 5.1, which implements the interface between controllers and real-
time services. Controllers use this interface to configure and maintain real-time reservations
on data plane switching devices. In short, it uses specific messages to add, remove and modify
real-time stream reservations, get the list of registered real-time streams and the individual
parameters of existing reservations, as well as the real-time services supported by the device.

Table 5.1: Real-time API

Message Description Sender

RT_ST_ADD Add stream to the add-on database. Controller
RT_ST_MODIFY Modify properties of an existing stream. Controller
RT_ST_DELETE Removes stream from add-on database. Controller
RT_ST_LIST_REQUEST Get the ID of all streams of a given type. Controller
RT_ST_LIST_REPLY Reply to RT_ST_LIST_REQUEST. Switch
RT_ST_PROP_REQUEST Get properties of a given stream. Controller
RT_ST_PROP_REPLY Reply to RT_ST_PROP_REQUEST. Switch
RT_ST_REMOVED Notification of stream removal events. Switch
RT_ST_STATS_REQUEST Get properties and statistics of all streams. Controller
RT_ST_STATS_REPLY Reply to RT_ST_STATS_REQUEST. Switch
RT_ST_CAP_REQUEST List supported real-time services. Controller
RT_ST_CAP_REPLY Reply to RT_ST_CAP_REQUEST. Switch

Real-time reservations are specified by a unique ID, type, and traditional real-time properties:
period or minimum inter-arrival time, deadline, offset, priority, frame length, and a list of
associated producers and consumers. Three types of streams are defined: (i) time-triggered
(TT), (ii) event-triggered (ET), and (iii) other (OT). The first two types are for traffic that
follows the respective activation paradigm, while the latter provides some flexibility to associate
streams to other processing algorithms. The list of producers and consumers main function is
to identify the device’s ingress and egress ports for that particular stream. Akin to OpenFlow
flow entries, each reservation can be configured with idle and hard timeouts. Finally, request
messages contain a miscellaneous field which can be used to provide information outside
the specification of the add-on. The objective of this field is to provide a wider range of
compatibility with proprietary technologies and implementations. A miscellaneous field also
exists on each entry of consumer and producer lists. Table 5.2 provides a description and
value range for each of the aforementioned parameters.

A few remarks, the priority of a stream conveys an absolute priority level among all streams
forwarded by the same device. It is computed by the controller and it may derive from a
combination of parameters given by applications, such as criticality or a global priority, as
well as from scheduling algorithms, such as Rate Monotonic (RM) or Deadline Monotonic
(DM). For the time being, since the northbound API is not yet defined, the computation of
this priority simply follows the RM scheduling algorithm. The frame length is also computed

5.3. A REAL-TIME EMPOWERED CONTROL PLANE 89

Table 5.2: Real-time API parameters used to describe a real-time flow

Parameter Description Value range

UID Unique stream identifier.]0, 232 − 1]
Type Type of real-time stream. TT,ET,OT
Period TT traffic: periodicity of frames.

ET traffic: minimum time between consecutive frames.
OT traffic: minimum time between consecutive frames.

]0, 232−1] µs

Deadline Frame’s relative deadline.]0, 232−1] µs
Offset TT traffic: relative phasing.

ET traffic: ignored parameter.
OT traffic: ignored parameter.

]0, 232−1] µs

Priority Absolute priority. Higher value equals a higher priority level. [0, 216 − 1]
Frame length Maximum length, in bytes, of a stream’s OSI layer 2 frame.

Includes all headers, payload and FCS.
[68, 216 − 1]

Producers List of stream’s ingress ports. - - -
Consumers List of stream’s egress ports. - - -
Idle timeout Maximum time interval with no received traffic before entry

expires. If 0, stream is never removed.
[0, 232 − 1] s

Hard timeout Time interval before stream expires. If 0, stream is never
removed.

[0, 232 − 1] s

Miscellaneous For purposes outside the add-on specification. - - -

by the controller. Applications report to the controller the length of data that they produce;
the controller then considers the application payload length and protocol overheads, e.g. from
the network and transport layers, to compute the maximum frame length. If application data
has to be split into several Ethernet frames, e.g. size greater than the maximum transmission
unit (MTU), the controller must compute adequate frame length, period, and deadline values
to account for the several fragments.

The implementation of all messages for the Real-Time API follows the existing OpenFlow
message structure mindset, and thus, all messages start with the common OpenFlow header,
and conveyed data structures are 8-byte aligned and packed with padding. To implement
the message payload, two approaches are possible: (i) define new message types and data
structures for the OpenFlow message type space, or (ii), use experimenter messages, defined
by the standard for non-standard functionalities within the OpenFlow message type space.
Again, in order to remain the standard untouched, the latter approach was taken.

Experimenter messages include:

• Common OpenFlow header (ofp_header). Conveys the protocol version, identifies
the type of message, in this case an experimenter, the length of the message including
this header, and a transaction ID to facilitate request/reply pairing;

• Experimenter field. Uniquely identifies the entity defining the extension. Assigned
by the Open Networking Foundation upon request;

90 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

• Experience field. Identifies the type of message encapsulated in the experimenter
message payload. It is used to indicate the type of Real-Time API message within the
payload;

• Payload (experimenter_data). Carries the Real-Time API message payload, whose
contents may vary depending on the type of message.

An example of the structure of the RT_ST_ADD message is shown in Figure 5.7. The
implementation of the remaining messages follows a similar structure2. For more details, the
reader is referred to Annex B that contains the C header for the implemented API.

 OFP version
 Msg type

 Msg size
 Transaction ID

 UID
 Type
 Period
 Deadline

 Experimenter
 Experience

 Offset
 Priority
 Frame length
 Producers

 Consumers
 Idle timeout
 Hard timeout
 Miscellaneous

 RT_ST_ADD
 RT_ST_MODIFY
 RT_ST_DELETE
 RT_GET_ST_LIST_REQUEST
 RT_GET_ST_LIST_REPLY
 RT_GET_ST_PROP_REQUEST
 RT_GET_ST_PROP_REPLY
 RT_ST_REMOVED

 RT_TYPE_TT
 RT_TYPE_ET
 RT_TYPE_OTHER

Figure 5.7: Structure of a Real-Time API message

2Due to their potential size, RT_ST_STATS_{REQUEST,REPLY} use OpenFlow multipart experimenter
messages. Nonetheless, their structure is very similar.

5.4. A REAL-TIME ETHERNET DATA PLANE 91

5.4 A real-time Ethernet data plane

The reference architecture for the real-time SDN framework (Section 5.1) relies on HaRTES
switches for the implementation of a data plane empowered with real-time services. Despite
providing a suitable platform for complex applications with demanding timing and flexibility
requirements, HaRTES is not designed according to the SDN paradigm, i.e. there is no
decoupling of network control functions from the forwarding plane, and lacks the basic services
required by the OpenFlow standard. In addition, HaRTES’s API (see Section 4.3.2.2) is
tailored for the configuration of its real-time services and therefore, is incompatible with the
OpenFlow switch protocol.

Hence, in order to integrate HaRTES in the proposed framework it is necessary to: (i)
remove its network control functions, e.g. learning forwarding tables, (ii), implement a basic
OpenFlow pipeline, e.g. configurable flow tables, entries, and actions, and (iii), create an
OpenFlow-compatible interface, which is able to communicate with controllers and translate
requests from the OpenFlow domain into proper HaRTES commands. To this end, three
possible architectures can be pursued:

• Hardware-oriented architecture. HaRTES is currently fully implemented in hard-
ware technology (FPGA). Therefore, a natural approach is to expand the current
implementation with the required OpenFlow services and interface layer;

• Software-oriented architecture. A second approach is to fully implement both Open-
Flow and HaRTES services in software. Open-source, software versions for both HaRTES
(HaRTES-SW) and OpenFlow-compatible virtual switches already exist. OpenFlow
services and API could be extracted from such OpenFlow virtual switches, e.g. Open
vSwitch3, and incorporated into HaRTES-SW;

• Hybrid architecture. This approach combines the flexibility of software with the
performance of a hardware-based implementation. This can be achieved by implementing
performance-demanding services in hardware, e.g. real-time services and switching, and
realize complex management operations in software, e.g. interpretation of OpenFlow
messages.

The first approach would most likely exhibit the highest performance among all approaches
since both OpenFlow and HaRTES services would be fully implemented in hardware logic.
However, it also exhibits the highest level of complexity due to the intricate nature of the
OpenFlow protocol. For example, controllers communicate with data plane devices over a
dedicated communication channel which is typically encrypted using the TLS protocol or runs
directly over the TCP/IP protocol. The setup and maintenance of this channel requires the
execution of several functions, such as establishing the connection using Uniform Resource
Identifier (URI) addresses, monitoring the liveness of the channel with echo-reply messages,
and channel reestablishment procedures. If several controllers exist, multiple control channels

3Homepage: https://www.openvswitch.org/

92 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

have to be instantiated and managed. A process to elect the OpenFlow master controller and
remaining slave controllers must also be supported. Moreover, OpenFlow messages are built
over a significantly large set of complex data structures comprising optional fields, padding,
and variable-sized lists. Although these messages and conveyed operations are easily decoded
using a software programming language such as C, it would require complex hardware logic.
An additional drawback is the lack of flexibility to be easily modified to comply with future
versions of the protocol. Due to aforementioned reasons, this approach was not executed.

The second approach exhibits the highest flexibility of all and would likely require minor
changes to the current HaRTES-SW version, considerably lowering the implementation effort.
However, as with most pure software-based solutions, the real-time performance of HaRTES-
SW is poor and insufficient for real-time applications with strict timing requirements such
as loop-controlled physical processes that are extremely common in industrial scenarios.
Therefore, this approach is also discarded.

As for the third approach, two slightly different schemes were considered:

• Software-based OpenFlow Processing and Hardware-based Switching. Imple-
ment OpenFlow services, such as the flow processing pipeline and its objects, in software.
The remaining data plane services, such as packet storage, dispatching and real-time
services, are performed in hardware;

• Software-based OpenFlow Mediator and Hardware-based Forwarding Pipe-
line. Implement OpenFlow management related functions, such as maintenance of the
communication channel with the OpenFlow controller and interpretation of OpenFlow
messages, in software. The OpenFlow processing pipeline as well as the remaining data
plane services are implemented in hardware.

Following the first proposition, OpenFlow and HaRTES services are kept completely separated.
OpenFlow services would fully reside in software, taking advantage of the inherent flexibility of
software programming languages and resources to execute the complex OpenFlow management
and traffic control services. In this way, entities related to flow management, such as flow
tables, group tables, meters and counters, as well as the dedicated communication channels
to the controller, would be implemented, configured and managed in software. In contrast,
the remaining data plane functions would be realized in hardware, taking advantage of the
inherent extreme performance to perform operations, such as switching and dispatching, with
very low latency and jitter values. Traffic management and storage entities, input and output
queues, as well as the mechanisms to provide communications with real-time guarantees would
be implemented, configured and managed in hardware.

The aforementioned storage, switching and real-time services are already functional and
embedded in HaRTES switch. The nonexistent OpenFlow entities and algorithms could be
retrieved from existing OpenFlow virtual switches. To run the software services, an external
CPU or one embedded in the FPGA can be used. Since the available resources of the hardware

5.4. A REAL-TIME ETHERNET DATA PLANE 93

platform used to implement HaRTES are currently limited, an external CPU, in this case a
host PC, is necessary.

For the proper operation of the OpenFlow protocol, services at the host PC and the remaining
data plane services in HaRTES must be able to communicate. For example, headers and
specific data fields of received packets are vital for the proper operation of the OpenFlow
pipeline. Therefore, a copy of each received packet must be sent to the software platform.
Additionally, switching services must be instructed with the outcome of the pipeline processing
to properly forward packets. In order to create a dedicated communication channel between
both platforms two physical interfaces are available: (i) an Ethernet port, and (ii), a PCI
interface. Either one of these can be used to instantiate the required communication channel,
however, resorting to the PCI interface is preferable since, in its current implementation, the
HaRTES prototype has a low number of available Ethernet ports (only 4).

Although this scheme is able to implement complex OpenFlow pipeline processing, it may
suffer from performance issues, in particular, extra latency and jitter on the whole packet
forwarding process due to frequent exchanges of large quantities of control data between the
hardware and software platforms. Moreover, as flow matching and other pipeline operations are
executed in software, an additional penalty on the forwarding performance and determinism
is introduced. Although the use of a real-time operative system would ameliorate some of
the aforementioned problems, experience with the HaRTES software version has shown4 that
it might still not be enough to attain latency and jitter within acceptable values for some
applications.

The second scheme, presented in the next section, overcomes the aforementioned issues, and
is the one employed for the enhancement of HaRTES.

5.4.1 The SDN augmented HaRTES

To overcome the inherent issues of the previously presented approach, an improved design
was devised. The major difference between the two solutions is the migration of a subset of
OpenFlow objects and services to the hardware platform. In particular, the whole OpenFlow
pipeline is now implemented in hardware logic, while remaining services, e.g. that deal with
requests from/to the controller, are performed by an OpenFlow Mediator (OFM) daemon, in
software. The proposed system architecture is illustrated in Figure 5.8.

4Maximum jitter values for time-triggered traffic were hard to keep under 100µs, with Xenomai OS v2.6.3
running on an Intel Core i7-4770 @ 3.4GHz, 8GB RAM DDR-3, and Intel I350 NIC @ 100 Mbps.

94 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

Eth4

Eth3Eth2Eth1

Eth4

Eth2

Eth1

Eth3

PCI/Eth0

PCI/Eth0

Host PC

OpenFlow-Enabled HaRTES Platform

OpenFlow Mediator

OpenFlow Controller

Applications

HaRTES
Switch

OpenFlow
Pipeline

Memory
Pool

Frame
Manager

Real-Time
Services

Output
Queues

Input
Queues

OpenFlow-Enabled HaRTES

Node

Agent

Eth0

Node

Agent

Eth0

Extended OpenFlow Protocol API

Extended HaRTES API

Mediation Layer

Extended
OpenFlow

Eth0

Northbound
protocol

Figure 5.8: OpenFlow-enabled HaRTES platform architecture

In the enhanced HaRTES platform, traffic frames are received at HaRTES Ethernet ports
and buffered by the respective input queues. Frames are retrieved from input queues in a
cut-through fashion, i.e. while they are still being received, and stored in the central memory
pool. At the same time, a copy of each frame is also sent to the OpenFlow pipeline which
starts processing the frame as soon as all the required information is received, e.g. Ethernet
and IPv4 headers. The actions, resulting from the pipeline processing, are then handled by a
frame manager that populates the output queues accordingly. Output queues are managed by
HaRTES’s real-time services which perform the dispatching of stored frames according to the
configured reservations. Non real-time traffic frames are also managed by the aforementioned
services, in a best-effort way.

The OpenFlow pipeline and HaRTES’s real-time services are configured by the OpenFlow
mediator, which deals with the complexity of OpenFlow management functions and messages,
and translates OpenFlow requests issued by controllers into suitable HaRTES commands.
The OpenFlow pipeline and the OpenFlow Mediator are presented in detail in Section 5.4.1.1
and Section 5.4.1.3, respectively.

5.4. A REAL-TIME ETHERNET DATA PLANE 95

Performance wise, the implementation of the OpenFlow pipeline in hardware provides signifi-
cant advantages:

• Faster forwarding. Forwarding latency and jitter due to data exchange between
software and hardware services is eliminated. For example, it is no longer necessary to
send copies of entire received frames from the HaRTES platform to the host PC since
these are now directly delivered, in hardware, to the pipeline;

• Increase in pipeline processing efficiency. The true parallel computation power
offered by hardware logic can be exploited in order to increase pipeline efficiency. For
example, the whole pipeline, or parts of, can be cloned for each Ethernet port and exe-
cuted independently. In this way, the need for queuing traffic and performing arbitration
to access a single, shared pipeline, is eliminated. Additionally, parallel execution can
also be exploited to match all flow table entries against frames simultaneously;

• Deterministic execution. Worst-case execution times are easier to determine since
hardware logic is extremely deterministic.

Unfortunately, this arrangement also exhibits some downsides, the most relevant being a
higher difficulty in implementing pipelines with multiple tables and complex filters and actions.
Nevertheless, the current OpenFlow protocol standard only demands a subset of all defined
services, e.g. a single flow table with a simplified set of filters and actions. All the optional
and obligatory services were identified, and can be consulted in Annex C. Therefore, focus
will be placed on the implementation of mandatory components and functions. Optional ones
will be gradually introduced as the prototype gets more mature. The following OpenFlow
objects and services are currently implemented:

• Objects: OpenFlow channels, and one ingress flow table;

• Ports: Physical, logical, and the ALL, CONTROLLER, TABLE, ANY, UNSET,
NORMAL, and FLOOD reserved ports;

• Instructions: WRITE-ACTIONS and GOTO-TABLE;

• Actions: OUTPUT and DROP.

5.4.1.1 A hardware implementation of an OpenFlow pipeline

The layout of the currently implemented OpenFlow pipeline is depicted in Figure 5.9.

96 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

OpenFlow Pipeline (Port 1)

Done

Frame Fields

Flow Entry

Flow Entry Status

Slot ID

Action-Set

DoneEnable

PauseInput
Queue

Flow
Categorizer

Header
Extractor

Flow
Table

Frame Byte

Enable

Clear

Slot ID

Flow Entry

Config.
Manager

Done

Frame
Manager

Action-Set
Manager

Fr. Type

Egress Ports

Queue ID

(3x)

Figure 5.9: HaRTES’s OpenFlow pipeline

A clone of the entire OpenFlow pipeline is assigned to each physical port in order to explore
parallel execution and eliminate resource contention. Frames received at each Ethernet
interface are buffered byte-by-byte by the MAC controller into the respective FIFO input
queue. A Finite-State Machine (FSM), the Header Extractor (HE) unit, readily retrieves
buffered bytes in a cut-through fashion, i.e. while the frame is still being received, and
extracts the fields that are essential for flow matching. The FSM operation is paced by the
Enable and Pause signals which indicate when there are valid stored bytes (Pause = ’0’) of an
incoming frame (Enable = ’1’). Once all fields are extracted, the HE unit sends a request
(Done = ’1’) to the Flow Categorizer (FC) that then begins to match them against flow entries.
Configured flow entries (Flow entry status = ’1’) are matched one-by-one in descending order
of priority until there is a match or the table-miss flow entry, i.e. the last entry in the table
with priority equal to 0, is reached. The ID and action-set of the matched entry is then
sent to the Action-Set Manager (A-SM) unit which decodes the received information into
queuing instructions, e.g. frame type, the egress queue ID, and target output ports, for the
Frame Manager (FM) unit. Finally, the FM unit stores frames into the correct output queues.
The Configuration Manager (CM) simultaneously configures and replicates flow entries on all
pipelines according to commands received from the HaRTES API.

The structure of each flow entry is shown in Figure 5.10. A flow entry comprises three
main segments: (i) match fields, which contain the values for the several header fields to be
matched against frames, (ii) flags for the match fields, used to signal if a certain field is to be
wild-carded, and (iii), the associated action-set. For the action-set, drop and output OpenFlow
actions are currently implemented. Depending on the configured action, the action-set also
comprises several parameters:

• Drop Action: has no associated parameters;

• Output Action: Port type indicates if the target port is physical, reserved, or logical.
For all port types, the forwarding Ethernet ports are indicated (Egress ports field).
Parameter 1 and 2 are ignored for both physical and reserved ports, and for logical
ports, identify the stream type (TT, ET, NRT) and stream ID, respectively.

5.4. A REAL-TIME ETHERNET DATA PLANE 97

 OFP_DROP_ACTION
 OFP_OUTPUT_ACTION

 Eth dst
 Eth src
 Eth type

 IPv4 src
 IPv4 dst
 IPv4 proto
 Src port
 Dst port

 Eth dst
 Eth src
 Eth type

 IPv4 src
 IPv4 dst
 IPv4 proto
 Src port
 Dst port

 Port Type (4 bits)
 Egress ports (4 bits)
 Parameter 1 (4 bits)
 Parameter 2 (4 bits)

Figure 5.10: Structure of an HaRTES’s flow entry

Flow entries are stored in a Flow Table which, due to the size5 of each flow entry, is
implemented using FPGA’s internal memory blocks, i.e. dual port block RAM (BRAM).
Additional tables can be deployed at the expense of more resources and a slight modification
of the Flow Categorizer FSM. Table 5.3 shows the necessary logic resources6 for a single
pipeline comprising one flow table and 32 entries.

Table 5.3: Pipeline logic resources utilization

Unit
Resources

FSM Counter 32x244
BRAM

Comparator D-Type
Flip-Flop16-bit 8-bit 48-bit 32-bit 16-bit 8-bit

Head Extractor 1 1 2 0 0 0 0 0 218
Flow Table 0 0 0 1 0 0 0 0 277
Flow Categorizer 1 0 1 0 2 2 3 1 31
Action-Set Manager 0 0 0 0 0 0 0 0 23

Total 2 1 3 1 2 2 3 1 549

Concerning performance, the current OpenFlow pipeline processes a received frame within
a time interval PRT that is mainly dominated by (i) the pipeline clock speed fclk, (ii) the
maximum number of supported flow entries NFE and (iii) the time to receive all the supported
flow matching fields tHE . A bound for PRT can be computed following Eq. 5.19, where the
rightmost term accounts for the number of clock cycles (4) related to output logic between
modules (HE, FC, and A-SM) and the decoding of operations by the A-SM module. With a
fclk of 62.5MHz, the pipeline of the current HaRTES prototype is able to process frames at

5The length of flow entries could be optimized by using hashes instead of raw values for the match fields.
6After synthesis and before place and route in Xilinx ISE Design 10.1.

98 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

wire speed.
PRT = tHE + NFE ∗

1
fclk

+ 4 ∗ 1
fclk

(5.19)

5.4.1.2 The extension of HaRTES API

In order to be possible to configure flow entries, an extension of the HaRTES API was necessary.
Table 5.4 provides a summary of the operations currently supported by the extended HaRTES
API. The same approach can be used to provide additional operations as more OpenFlow
objects are implemented.

Table 5.4: Extended HaRTES API

Category Operation Description

OP_REG Register a synchronous stream.
OP_DEREG Deregister a synchronous stream.OP_CAT_SYNC
OP_MODIFY Modify properties of a synchronous stream.
OP_REG Register an asynchronous stream.
OP_DEREG Deregister an asynchronous stream.OP_CAT_ASYNC
OP_MODIFY Modify properties of an asynchronous stream.
OP_SET Enable and configure a server.OP_CAT_SERVER OP_UNSET Disable a server.
OP_REG Register a flow entry.
OP_DEREG Deregister a flow entry.OP_CAT_OFP
OP_MODIFY Modify properties of a flow entry.

The main structure for messages generated by the HaRTES API is kept unchanged. For the
registration of flow entries and the modification of their properties, the entire data set of
a flow entry is included as payload ("op_parameters"). Messages for the removal of a flow
entry only carry the ID of the target entry. Figure 5.11 shows the structure of the message
generated by the extended API upon the registration of a new flow entry.

5.4. A REAL-TIME ETHERNET DATA PLANE 99

OP_CAT_OFPC[

 Transaction ID
 Operation Category
 Operation

 FTT_CFG_OP_CAT_SYNC
 FTT_CFG_OP_CAT_ASYNC
 FTT_CFG_OP_CAT_SERVER
 FTT_CFG_OP_CAT_OFP

 FTT_CFG_OP_REG
 FTT_CFG_OP_DEREG
 FTT_CFG_OP_MODIFY
 FTT_CFG_OP_SET
 FTT_CFG_OP_UNSET

 OFP_DROP_ACTION
 OFP_OUTPUT_ACTION

 Eth dst
 Eth src
 Eth type

 IPv4 src
 IPv4 dst
 IPv4 proto
 Src port
 Dst port

 Eth dst
 Eth src
 Eth type

 IPv4 src
 IPv4 dst
 IPv4 proto
 Src port
 Dst port

 Port Type (4 bits)
 Egress ports (4 bits)
 Parameter 1 (4 bits)
 Parameter 2 (4 bits)

Figure 5.11: Extended HaRTES API message example

5.4.1.3 A software implementation of an OpenFlow mediator

The OpenFlow Mediator deals with the complex management aspects of the OpenFlow switch
protocol and is responsible for the translation between OpenFlow and HaRTES domains.
Specifically, the mediator is responsible for: (i) the establishment and maintenance of all
dedicated OpenFlow channels for communication with controllers, (ii) the interpretation of
OpenFlow requests and respective messages, (iii) the translation of OpenFlow requests into
suitable calls of HaRTES API for the proper configuration of the OpenFlow pipeline and
real-time services, and (iv), keeping databases with information regarding the system state
and capabilities, e.g. current configurations and supported real-time logical ports. Figure 5.12
shows the logical components of the proposed mediator.

100 CHAPTER 5. A REAL-TIME SDN FRAMEWORK

Mediation Layer

Extended HaRTES API

Real-Time
Database

Capabilities
Database

OpenFlow
Pipeline

Database

OpenFlow Channel Manager

Extended OpenFlow Protocol API

Management Channel Manager

Controller

HaRTES Switch

OpenFlow Mediator

Figure 5.12: Logic architecture of the OpenFlow Mediator

Channels to OpenFlow controllers are established and managed by the OpenFlow Channel
Manager unit which is able to execute all management functions defined by the standard.
It forwards OpenFlow requests from controllers to the Mediation Layer unit and transmits
replies or packet-in operations issued by that layer to the corresponding controller. The
Mediation Layer implements the extended OpenFlow API (Section 5.3.1), decodes and
interprets requests, and consults internal databases to validate requested operations and
fill-in replies. Three databases are stipulated: (i) Real-Time Database, that contains all
installed real-time streams and their properties, (ii) OpenFlow Pipeline Database, which keeps,
for example, a synchronized image of the installed configurations at the device’s pipeline,
and (iii) Capabilities Database, that stores information regarding the capabilities of the
existing pipeline, e.g. number of flow tables/entries and existing real-time logical ports. If
an OpenFlow request is deemed valid, the Mediation Layer uses the extended HaRTES API
(Section 5.4.1.2) to execute the necessary configurations. Finally, the Management Channel
Controller mediates the transaction of requests and replies between the aforementioned layer
and the HaRTES switch.

The current prototype for the presented OpenFlow Mediator daemon is based on the open-
source code of the popular CPqD OpenFlow 1.3 Software Switch (ofsoftswitch13) [125],
stripped of switching functionalities and enhanced with the Mediation Layer, Management
Channel Controller, and databases. The standard OpenFlow API of ofsoftswitch13 is enhanced
with the proposed real-time extensions.

CHAPTER 6
Validation of the real-time SDN

framework

Contents
6.1 The validation of the proposed framework 101

6.1.1 Evaluating the data plane real-time capabilities 102

6.1.2 Evaluating the control plane schedulability analysis 107

6.1.3 Evaluating the admission control responsiveness and scalability . . 109

6.1.4 Evaluating the framework under a realistic Industry 4.0 scenario . 111

6.2 On the fulfillment of Industry 4.0 network requirements 114

In Chapter 5, the development of a cohesive real-time SDN framework was thoroughly
discussed. This chapter presents the experiments that validate the correct operation of the
framework, as well as a quantitative analysis of its capabilities.

6.1 The validation of the proposed framework

As discussed in Section 2.3, networks for modern industrial systems must be able to provide
strict timeliness guarantees while being able to modify the properties of existing reservations
and execute the admission of new communication streams or the removal of existing ones.
All of this must be possible while the network is online and without causing disruption or
interference to on-going communications.

The herein proposed framework is specifically designed to meet the set of requirements
highlighted in Section 2.3 by exploiting the flexibility on network management provided
by SDN technologies, and combining it with a capable real-time switching platform. This
section presents a set of experiments whose goal is to validate the correct operation of the
developed framework and provide a quantitative analysis of its capabilities, with emphasis on
its real-time and reconfiguration potential. Four main aspects are evaluated: (i) the ability
to support the coexistence of several types of traffic with distinct bandwidth and real-time
requirements, (ii) the possibility to enact online changes to network reservations, (iii) the
correctness of the implemented admission control algorithms, and (iv) the responsiveness to
reconfiguration requests and scalability of the admission control unit.

101

102 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

Aspects (i) and (ii) are analyzed in Section 6.1.1. To that end, the presented experimental
scenarios embrace the coexistence of all types of traffic (time-triggered, event-triggered, and
non real-time traffic), perform online alterations on existing reservations, and incorporate
misbehaving nodes and traffic not conforming to the negotiated reservations. Experiments
specifically tailored to verify the correct operation of the admission control and its schedulability
analyses are presented in Section 6.1.2. In these, large sets of traffic streams with real-time
requirements are generated, and their response times measured and/or simulated. The
obtained results are then compared with the worst-case response times from the output of the
admission algorithms. Section 6.1.3 presents the experiments whose objective is to evaluate
the responsiveness of the admission control unit to (re)configuration requests, as well as how
its algorithms scale with network complexity. In particular, the response time of a request
for the addition of a new real-time flow is observed experimentally for a set of networks with
a variable number of switches and pre-installed flows. Finally, in Section 6.1.4, the whole
framework is evaluated under a realistic Industry 4.0 use-case: adaptable production.

6.1.1 Evaluating the data plane real-time capabilities

Figure 6.1 illustrates the setup used to conduct the experiments for the real-time performance
evaluation. It comprises four nodes and one OpenFlow-enabled HaRTES switch.

Hardware
Sniffer

Standard
OpenFlow
Protocol

Eth2

Eth1

Eth3

Eth0HaRTES
Switch

OpenFlow
Pipeline

Memory
Pool

Frame
Manager

Real-Time
Services

Output
Queues

Input
Queues

Unix
Sockets

Ethernet Port

Host PC
(Node 4)

OpenFlow Mediator

Extended OpenFlow Protocol API

Extended HaRTES API

Mediation Layer

OpenFlow
Controller

Node 1

Node 2

Node 3

Controller-issued
Configurations

Figure 6.1: Experimental Setup

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 103

Nodes 1, 2, and 3 generate traffic flows in a mix of time-triggered, event-triggered and
non-real-time traffic. Such traffic classes are representative of the diversity of requirements
found in Industry 4.0 scenarios. To assess the precision of the real-time enforcement, traffic
generators that provide precise patterns are used. Therefore, nodes 1 to 3 are implemented on
FPGAs, providing high accuracy traffic with low jitter, when needed. All flows have node 4
as the sink node. Node 4 also executes the OpenFlow Mediator daemon, which interacts with
the controller and sends configurations and reservations into the switching platform. Since
the PCI controller for the HaRTES switch is currently not functional, an Ethernet port is
used to connect HaRTES to the Host PC. For this reason, and due to the limited number
of available ports in the switching platform, the OpenFlow controller is also instantiated in
Node 4. The communication interface between controller and the mediator daemon is based
on standard Unix sockets. A FPGA-based sniffer captures all traffic going to the sink node
and generates time-stamps with a resolution of 1us.

Two types of experiments were performed. The first experiment (Exp1) evaluates the system
capability to support time-triggered (TT) traffic, which, in common industrial applications, is
extremely sensitive to latency and jitter. The second experiment (Exp2) appraises the system
ability to dynamically configure new flows and reservations, while concurrently supporting
distinct traffic classes with guaranteed QoS. Table 6.1 compiles the properties for each traffic
flow generated in both Exp1 and Exp2 experiments.

Table 6.1: Properties of the traffic generated in the experiment scenarios

Experiment Node Flow Type Payload (Bytes) Period (µs)

1 Time-triggered 50 1000
2 Time-triggered 50 1000Exp1
3 Non real-time 1500 130
1 Time-triggered 50 1000
2 Event-triggered 1000 130Exp2
3 Non real-time 1500 130

Note: The payload conveys only the frame data, no headers and other overheads from the
OSI layer 2 are included

In Exp1, the network is overloaded with standard non real-time (NRT) OpenFlow traffic
to assess the amount of interference induced on time-triggered (TT) communications that
may arise from the presence of high network loads. The NRT flow intentionally saturates the
ingress link of node 4 to cause as much interference as possible. In Exp2, both time-triggered
and event-triggered (ET) real-time traffic, as well as standard OpenFlow traffic (NRT), are
deployed concurrently. In this experiment, NRT traffic keeps the system overloaded while
the reservations for the ET traffic are dynamically reconfigured into three distinct modes,
that correspond to different flow rates and, consequently, reserved bandwidth. In both
experiments, the enhanced HaRTES platform implements the data plane functionality, and
links are configured to 100 Mbit/s. The FTT Elementary Cycle (EC) length is set to 1 ms,
with the windows configured as shown in Figure 6.2.

104 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

Turn Around
Window

t10 us 10 us 150 us 700 us 130 us

TM
Window

Elementary Cycle (EC)

Guard Window
Synchronous

Window
Asynchronous

Window

Figure 6.2: Elementary cycle parametrization

As reminder, the Elementary Cycle starts with the transmission of the Trigger Message (TM)
that synchronizes HaRTES nodes and conveys the schedule of the time-triggered traffic for
that cycle. It follows the turn-around window, which allows nodes to interpret the TM
and prepare the scheduled time-triggered transmissions. Then, it follows the Synchronous
Window, where scheduled time-triggered transmissions are carried out. Event-triggered and
non real-time transmissions occur within the asynchronous window, in which event-triggered
traffic is always prioritized over the non real-time traffic. Finally, the guard window inserts
idle time to prevent EC overruns caused by event-triggered/non real-time frames. Additional
details on the inner workings of HaRTES are available in Section 4.3.2.

A simple application in the controller manages all OpenFlow and real-time reservations. It
uses both the standard and extended OpenFlow APIs to install reservations for each traffic
flow. Table 6.2 lists the properties of the installed reservations for both experiments.

Table 6.2: Properties of the configured reservations

Traffic stream Reservation Properties

Time-triggered Time-triggered slot 1 slot per EC
Non real-time Best effort - - -

Event-triggered Deferrable server

Budget (Bytes) 1018
4 (Mode 1)
2 (Mode 2)Period (No. ECs)
1 (Mode 3)

The presented reservations were set up online and after system boot, i.e. after all devices have
been powered-up and without pre-installed reservations. The process to configure reservations
follows two consecutive phases: (i) the controller accesses the standard OpenFlow API to
configure the necessary flow entries so as to identify each flow and output it to the respective
logical port, (ii) the controller accesses the real-time add-on API to register the real-time
flows and their properties, indirectly instantiating the adequate reservations. The controller
also accesses the real-time API to modify the properties of existing reservations. Table 6.3
and Table 6.4 present the requests sent through the standard OpenFlow and the real-time
APIs, respectively.

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 105

Table 6.3: Requests to the OpenFlow standard API

Standard OpenFlow API

Flow Operation Match Fields Action
Eth Source Eth Type IP Source

TT (1) Node 1 MAC TT EtherType * * * Output
LOGICAL TT_1

TT (2) Add Node 2 MAC TT EtherType * * * Output
LOGICAL TT_2

ET Flow Entry Node 2 MAC IP Protocol Node 2 IP Output
LOGICAL ET_1

NRT Node 3 MAC * * * * * * Output
PHYSICAL 0

* * * (Don’t care)

Table 6.4: Requests to the OpenFlow add-on real-time API

Extended OpenFlow Real-Time API
Flow Operation Stream Type UID C (Bytes) T (No. ECs) Consumers

TT (1) Time-triggered TT_1 68 1 Eth0
TT (2) Reg. stream Time-triggered TT_2 68 1 Eth0

Event-triggered ET_1 1018 4 (Mode 1) Eth0
ET Event-triggered ET_1 1018 2 (Mode 2) Eth0Mod. stream Event-triggered ET_1 1018 1 (Mode 1) Eth0
NRT - - - - - - - - - - - - - - - - - -

The packets inter-arrival times and associated jitter for each traffic class are chosen as metrics
to evaluate the system performance. Figure 6.3 and Figure 6.4 show the inter-arrival timings,
for received packets of each traffic class, on Exp1 and Exp2 respectively. Table 6.5 presents a
statistical breakdown of these values.

Table 6.5: Summary of observed timing figures

Exp. Flow Inter-arrival (µs) Jitter (µs)

Min Max Mean Relative Absolute

Exp1
TT (1) 983 1002 992 18 19
TT (2) 983 1007 992 22 24
NRT 123 385 165 262 262

Exp2

TT 985 999 992 14 14

ET
(Mode 1) 3954 3983 3968 29 29
(Mode 2) 1951 1991 1984 33 40
(Mode 3) 962 999 992 31 37

NRT 123 384 160 261 261

106 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

Figure 6.3: Inter-arrival timings for traffic in experiment 1

Figure 6.4: Inter-arrival timings for traffic in experiment 2

In both experiments, the time-triggered traffic is forwarded with very low jitter despite the
flooding of non real-time traffic. This shows that the temporal isolation provided by HaRTES’s
real-time dispatcher is effective and completely eliminates interference between time-triggered
and other types of traffic. The jitter for time-triggered traffic is slightly higher in Exp1 since
packets from both time-triggered flows contend with each other and no particular ordering is
enforced within the synchronous window. This interference corresponds to the transmission
time of a time-triggered frame which accounts for approximately 7 µs.

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 107

Exp2 shows that the effective bandwidth used by the event-triggered traffic is constrained
by the associated reservation, which can be dynamically modified without service disruption.
There are three different modes, in which the server assigned to the event-triggered traffic is
configured with replenishment periods of 4 ms, 2 ms, and 1ms (Table 6.2). As the budget
capacity of the server allows only one frame transmission, the inter-arrival values correspond
to the server period, as expected. Due to the absence of contention, the jitter is very low
(up to 40us). This was also expected since event-triggered queues are kept full and HaRTES
prioritizes this type of traffic over non real-time traffic. If the event-triggered queues were not
kept full, one could expect to see interference arising from the blocking of one non real-time
message, which would account for a maximum of 123 µs.

Finally, in both experiments the non real-time traffic is dispatched in a best effort way,
occupying the remaining bandwidth. Its minimum inter-arrival time corresponds to the
transmission time of one non real-time frame, approximately 123 µs. The maximum value
observed can be explained considering that each EC conveys one event-triggered frame and
six non real-time messages, the last of which overruns 121 µs of the guarding window. The
non real-time frame that follows is blocked until after the transmission of the event-triggered
frame in the next asynchronous window, yielding the observed 385 µs.

6.1.2 Evaluating the control plane schedulability analysis

An important service at the control plane is the admission control and its algorithms. If the
employed algorithms and underlying analysis would not be flawless the admission control
could make decisions based on misleading information, placing the timeliness performance
of the whole network in jeopardy. Therefore, experiments based on simulations1 and on a
laboratory prototype were performed to assess the validity of the outputs resulting from the
schedulability analysis.

In this experiment, all switches’ links operate at the rate of 100 Mbps and the hardware fabric
latency ε is considered to be equal to 3 µs2. Although the Reduced Buffering Scheme (RBS)
method supports different window sizes for each link, for the sake of simplicity, the synchronous
window in all links in the network are equal. The configured EC is depicted in Figure 6.5.

Turn Around
Window

t10 us 10 us 700 us 150 us 130 us

TM
Window

Asynchronous
Window

Elementary Cycle (EC)

Guard Window
Synchronous

Window

Figure 6.5: Elementary cycle parametrization

1Setup and simulation results reused from [4]
2According to extensive measurements performed in [29]

108 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

As setup, a multi-hop network comprising three HaRTES prototype switches and three nodes
for the generation of time-triggered traffic was deployed. Figure 6.6 shows the implemented
experimental setup. A set of thirty time-triggered streams was generated, mixing different
pairs of source-sink nodes and with message periods uniformly generated within the interval
[5, 25] ECs. Each stream produces a single frame with a transmission time of Ci = 123µs.
The priority of each stream is set according to the Rate Monotonic policy. Table 6.6 shows
the parameters for each generated stream, including the period Ti and priority Pi.

Node 1

HaRTES
H2

HaRTES
H1

Node 2

HaRTES
H3

Node 3

Figure 6.6: Time-triggered scheduling: experimental setup

Table 6.6: Parameters of time-triggered traffic for the prototype experiment

ID Ti Pi Source Sink ID Ti Pi Source Sink

m1 20 6 3 1 m16 18 5 3 2
m2 20 6 1 3 m17 15 4 2 3
m3 25 7 3 1 m18 15 4 3 2
m4 15 4 3 2 m19 20 6 3 2
m5 10 2 3 2 m20 10 2 2 3
m6 15 4 3 2 m21 18 5 3 2
m7 10 2 2 1 m22 25 7 3 2
m8 20 6 3 2 m23 18 5 3 2
m9 12 3 2 3 m24 5 1 3 1
m10 5 1 3 1 m25 15 4 2 3
m11 15 4 2 1 m26 15 4 2 3
m12 10 2 3 1 m27 18 5 1 2
m13 15 4 3 2 m28 10 2 1 2
m14 18 5 3 2 m29 10 2 2 1
m15 25 7 3 1 m30 10 2 3 2

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 109

The response time of each stream was measured over the course of 60,0003 ECs, and the mini-
mum (minRT), average (avgRT), and maximum (maxRT) response time values determined.
Note that all values are rounded up to be comparable to those from the analysis outputs.
Therefore, it may happen that some of the values appear to be "equal". The obtained results
are illustrated in Figure 6.7. The output values (calcRT) from the analysis algorithms that
are currently implemented in the framework are also shown.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Stream ID

0

1

2

3

4

5

6

7

8

9

10

R
es

p
o

n
se

 T
im

e
(N

o
. E

C
s)

minRT
avgRT
maxRT
calcRT

Figure 6.7: Time-triggered scheduling: experimental results

The obtained results show that all the measured response time values are either equal or
lower than those predicted by the analysis algorithms. Moreover, it is also noticeable a degree
of pessimism in the computed response time values, in particular, for messages with lower
priority levels. For example, while the difference between the computed and the measured
values for streams with priority 1 and 2 is at most 1 EC, values for streams with priority
levels of 6 and 7 differ from 2 up to 5 ECs. The sources of this pessimism are discussed in
[4], and can be summarized as: (i) the existence of phasing between streams, which is not
taken into consideration by the analysis, and (ii), pessimism induced by the idle calculation
which always considers the worst-case scenario, i.e. the smallest synchronous window and the
largest frame size.

6.1.3 Evaluating the admission control responsiveness and scalability

An important aspect of the control plane is its ability to respond to new (re)configuration
requests within time intervals that are compatible with a given application. For example,
the desired time for the reconfiguration of a small industrial production system falls within
a seconds range [46]. Therefore, this experiment aims to evaluate the responsiveness of the
implemented admission control unit under diverse levels of network complexity. To that
end, the time required to perform the admission control analysis (Tsched) and to configure all

3Significantly more than the size of the hyperperiod

110 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

devices (Tconf) upon a request for a single new flow was measured for networks with different
sizes and number of existing flows.

The deployed setup, depicted in Figure 6.8, consists on a network of multiple HaRTES switches
(NH =1, 2, 4, 8, 16) connected to a RT SDN controller. To assess the load effect on the
schedulability analysis algorithm, a set of random flows (NS =0, 10, 50, or 100 flows) is
pre-installed in the system. To capture the worst-case scenario where all devices must be
properly configured, all switches are interconnected following a line topology and the new
flow traverses the entire network. Additionally, as the analysis stops computing as soon as a
deadline miss for a given flow is detected, long enough deadlines for all flows were considered.
This ensures that the algorithm always computes the response time for all flows without
stopping in the middle and thus, the worst-case execution time for the analysis is captured.

H1 H2 HN

RT SDN
Controller

Figure 6.8: Network setup for the experiment

Figure 6.9 shows the observed execution times, with the shades/intervals representing the
measured minimum-maximum range. Each data point was obtained by repeating the associated
conditions 1000 times.

As expected, Tsched grows significantly with the number of flows since the algorithm complexity
is O(NS ∗ (NH + 1)) [4]. In contrast, Tconf is independent of the number of flows and directly
proportional to the number of switches that must be configured. Finally, even for a reasonably
sized network comprising 16 switches and 100 flows, the framework is able to respond to
reconfiguration requests in less than 170ms, which is significantly less than the reported
reconfiguration times for small industrial production systems, i.e. seconds range [46].

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 111

0 10 20 30 40 50 60 70 80 90 100

No. of traffic streams in the system

0

50

100

150

El
ap

se
d

 t
im

e
 (

m
s)

Schedulability analysis time (Tsched)

1 switch 2 switches 4 switches 8 switches 16 switches

0 2 4 6 8 10 12 14 16

No. of HaRTES switches (NH)

0

1

2

3

4

5

El
ap

se
d

 t
im

e
 (

m
s)

Configuration of OpenFlow rules and real-time reservations (Tconf)

y = 0.2057*NH

Figure 6.9: Time-triggered scheduling: experimental results

6.1.4 Evaluating the framework under a realistic Industry 4.0 scenario

This experiment aims to evaluate the traffic timeliness capabilities of the framework under
a representative Industry 4.0 application scenario. In particular, it emulates the network
of a smart distributed robotic cell for adaptable production. The setup is adapted from
[126] considering the limited number of Ethernet ports (4) of HaRTES’s hardware platforms.
Moreover, the original period of flows is also significantly reduced to increase network load.

The setup, shown in Figure 6.10 contains a RT SDN controller connected to three HaRTES
switches (H1, H2, H3) via dedicated links plus five application nodes (N1-N5). All links
operate at 100 Mbit/s and the EC is configured as depicted in Figure 6.11. The ECs of the
three switches are synchronized via an explicit signal applied to specific digital ports.

The coordinator (N3) controls robots 1 and 2 (N1 and N4, respectively) by transmitting a set
of periodic commands according to data received from each robot and from a cluster of sensors
(nodes N2 and N5). Table 6.7 shows the parameters of the flows used in the experiment,
where T is the period or minimum inter-arrival time, PL the payload, and O the initial offset
(TT traffic only).

112 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

Robot 1
(N1)

Sensors
(N2)

Robot 2
(N4)

RT SDN Controller

Sensors
(N5)

Coordinator
(N3)

H1 H2 H3

Figure 6.10: Experimental setup of the smart distributed robotic cell

Turn Around
Window

t
8 us 2 us 80 us 160 us

TM
Window

Asynchronous
Window

Elementary Cycle (EC)

Synchronous
Window

Figure 6.11: Configured elementary cycle structure

Flows 1 to 8 convey control data (TT traffic) while flows 9 to 18 carry monitoring data and
alarm events (ET traffic). Finally, flows 19 to 24 represent non-real-time traffic, particularly
statistics and production logs. All real-time flows are scheduled following the Rate-Monotonic
scheduling algorithm, i.e. flows with lower periods are assigned to higher priority levels.

All nodes are implemented in FPGAs for high precision traffic generation. A hardware sniffer,
namely a Hilscher netANALYZER NANL-C500-RE, captures packets in multiple links and
timestamps them with nanosecond resolution. In particular, it measures the time between
the first bit of a frame in the source node’s link and the corresponding first bit in the sink
node’s link. We add the frame transmission time to captured times in order to obtain the
total response time. Possible delays in nodes’ interfaces is not accounted.

The application exhibits two distinct operational modes: mode A and mode B. In mode
A, only robot 1 is operating, while in mode B both robot 1 and 2 operate concurrently.
Therefore, during mode A only nodes N1, N2, and N3 communicate, while in mode B all

6.1. THE VALIDATION OF THE PROPOSED FRAMEWORK 113

Table 6.7: Setup communication parameters (adapted from [126])

Flow ID Source Sink Type T (µs) PL (Bytes) O (ECs)

1-3 N3 N1 TT 500 80 0
4-6 N3 N4 TT 500 80 1
7 N2 N3 TT 250 160 0
8 N5 N3 TT 250 160 0
9,10 N1 N3 ET 1000 390 —
11,12 N4 N3 ET 1000 390 —
13 N2 N3 ET 1000 390 —
14 N5 N3 ET 1000 390 —
15,16 N2 N1 ET 250 46 —
17,18 N5 N4 ET 250 46 —
19 N1 N3 NRT 1000 750 —
20 N4 N3 NRT 1000 750 —
21 N2 N1 NRT 1000 750 —
22 N5 N4 NRT 1000 750 —
23 N3 N1 NRT 500 750 —
24 N3 N4 NRT 500 750 —

nodes communicate. The change between modes occurs online and without service disruption.
Flow reservations are (re)configured upon a mode change.

Table 6.8 presents the observed message response times and jitter between consecutive frames
of the same flow, as well as the worst-case response time (R) computed by the SDN controller.

Table 6.8: Real-time traffic performance

Flow ID Response time (µs) Jitter (µs) R1

Min. Mean Max.

Mode A

1-3 31.1-31.2 31.2-31.3 31.4-32.5 0.9-1.0 1
7 50.3 50.5 50.6 0.9 1
9-10 105.6-106.4 197.5-219.9 305.1-338.9 269.5-338.0 3
13 105.7 166.1 409.4 476.9 3
15-16 14.4-14.5 49.8-52.9 149.8-149.9 179.1-179.9 1

Mode B

1-6 32.1-32.2 32.2-32.3 32.4-32.5 0.8-1.0 2
7 50.3 50.5 50.7 0.9 1
8 65.0 65.9 66.6 1.0 1
9-10 105.7-106.4 202.6-232.9 340.6-390.6 258.2-322.7 4
11 105.7 258.2 475.1 496.0 4
12 104.6 341.7 461.1 393.4 4
13-14 103.6-105.6 209.9-211.0 621.0-654.3 690.3-821.6 4
15-18 14.3-14.5 51.1-54.2 189.3-199.3 306.0-329.1 1
500 000 samples per flow. EC is 250µs long.
1 Estimated worst-case response time (No. of ECs).

114 CHAPTER 6. VALIDATION OF THE REAL-TIME SDN FRAMEWORK

The results show that, in both modes, control (TT) traffic is forwarded with latency values
below 70µs (within 1 EC) and jitter at or below 1µs, fulfilling the most stringent requirements
(motion control applications in Table) 2.2. This is a consequence of proper EC configuration
and the tight synchronization among nodes. An interesting detail can be observed with flow 8
in mode B, which suffers interference from flow 7 in the last link, increasing its response time.
An important remark, as HaRTES follows a synchronous approach with the resolution of ECs
and without an explicit control of the order of transmissions within the Synchronous Window,
the TT message set must be defined with care in order to achieve very low jitter. This can be
achieved, for example, by adjusting the periods and/or offsets of TT flows, a common practice
employed in the construction of TT schedules. Regarding ET traffic, the results show that
all frames are delivered within their minimum inter-arrival time, i.e. implicit deadlines. The
observed jitter is relatively high for this type of traffic due to the possibility of frames being
randomly blocked by ongoing transmission in switches’ egress links. Finally, the measured
maximum response times are within the bounds produced by the controller analysis.

Concerning mode reconfigurations, the mean and maximum time to change from mode A to
mode B, i.e. adding robot 2 reservations, is 7.78ms and 9.37ms, respectively, while from mode
B back to mode A, i.e. deleting robot 2 reservations, is 2.98ms and 3.73ms. These values
were obtained by sampling 1000 mode change cycles.

6.2 On the fulfillment of Industry 4.0 network requirements

The experimental results reported in the previous sections indicate that the conceptualized
SDN framework can fulfill all the Industry 4.0 network requirements identified in Sec. 2.3.
With the HaRTES-based data plane, the framework is able to support the coexistence of
multiple applications with distinct QoS requirements while ensuring full guaranteed timeliness
(requirement R1) with relatively low pessimism (R2). HaRTES’s traffic confinement and
policing services ensure that communications are restricted to the negotiated reservations,
maintaining timeliness guarantees even in the presence of misbehaving applications. Moreover,
the flexibility of HaRTES enables the dynamic management of real-time flows by the RT SDN
controller (R3).

Additionally, the enhanced SDN controller leverages the monitoring capabilities of the extended
OpenFlow protocol to to keep track of existing flows, current link states, and flow statistics,
providing a powerful monitoring and diagnostics framework (R4). Finally, the whole network
can be set up from a single entity, i.e. the SDN controller, using a single management protocol,
i.e. OpenFlow, using the proposed OpenFlow real-time extensions. The controller can also
be easily extended with additional network management protocols, e.g. SNMP, to configure
possible non-OpenFlow devices. This eases network management and allows reducing (or
avoiding) the dependence on multiple vendor-specific management tools (R5).

CHAPTER 7
TSN and SDN in the context of

Industry 4.0

Contents
7.1 Evaluating TSN and SDN . 116

7.1.1 Real-time performance . 116

7.1.2 Overhead . 117

7.1.3 Mutual isolation . 118

7.1.4 Granularity of QoS control . 118

7.1.5 Traffic Management Architecture 119

7.1.6 Flexibility . 120

7.1.7 Overall evaluation . 121

7.2 TSN as data plane enabling technology . 122

7.2.1 Network Architecture . 123

7.2.2 Supporting standard OpenFlow services 124

7.2.3 Supporting real-time traffic . 127

7.2.4 Data plane comparative analysis: TSN vs HaRTES 130

Previously, a novel SDN framework comprising real-time extensions to the OpenFlow protocol,
a SDN controller with admission control capabilities for real-time traffic, and a flexible
real-time data plane based on HaRTES switches, was introduced and successfully validated
experimentally. Concurrently to the development of this framework, new proposals and
technologies have been introduced by the scientific community that also address the flexibility,
heterogeneity, and management of real-time Ethernet networks. On the one hand, TSN
has been subject of continuous enhancement, with new real-time services and new features
extending its (re)configurability. On the other hand, extensions and methods to use SDN in
real-time networks have been subject of research (recall Section 3.3.2).

This chapter aims to discuss the most important aspects of the most relevant solutions and
evaluate their suitability in the context of Industry 4.0. First, TSN as a whole and SDN-related
solutions, including the herein developed framework, are evaluated and compared under a set
of criteria based on the requirements identified in Section 2.3. Then, as the developed real-time

115

116 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

OpenFlow extensions employ generic parameters and allow distinct data plane technologies
to be used, possible ways to integrate TSN devices into the framework are discussed. This
chapter concludes with the highlight of the limitations that such arrangement would bring
when compared to the use of a HaRTES-based data plane.

7.1 Evaluating TSN and SDN

To evaluate TSN and the different SDN-based solutions, the following criteria were used:

• Real-time performance: compliance with latency and jitter figures of real-time traffic;

• Overhead: bandwidth consumed and/or wasted by the protocols;

• Mutual isolation: support to heterogeneous traffic types without mutual interference;

• Granularity of QoS control: diversity and parametrization of allowed QoS policies;

• Traffic management architecture: supported logical management architectures and
how it affects resource management efficiency;

• Flexibility: ability to create and modify reservations promptly.

For sake of conciseness, the SDN/OpenFlow extensions reviewed in Section 3.3.2.3 are labeled
as: FTT-Openflow [78]; TSSDN [79]; SDPROFINET [80]; and SDN-HSF [81]. The herein
proposed real-time SDN framework is labeled as OpenFlow-RT.

7.1.1 Real-time performance

TSN provides services specifically tailored for traffic with Real-Time (RT) requirements,
namely CBS and Transmission Gates. The former service provides a shaping service which
allows gross bandwidth reservations suitable for real-time Event Triggered (ET) streams.
However, the limited number of traffic classes (up to 6, as the maximum number is 8 and two
are reserved for background and management), flat server structure and hard to analyze (at
least for real-time purposes) server type, constraint the response-time and jitter of this kind of
traffic. Transmission Gates are specifically designed for periodic traffic, creating contention-free
time-based transmission slots that suit well Time-Triggered (TT) communications, allowing
low latency and jitter.

OpenFlow (OF) was not designed for real-time systems, not distinguishing RT traffic from
Non Real-Time (NRT) one, and there is no explicit support to real-time activation modes
(TT, ET). Time issues are only mentioned to allow the application of synchronized updates
on a given set of OF switches. In addition, priorities are supported on output queues, which
usually are available in a limited number, thus constraining the support of scheduling policies
for realistic cases. As such, the real-time performance of OF is poor.

FTT-OpenFlow is an implementation of FTT-SE [25] on OpenFlow, which preserves the
original periodic traffic management of FTT-SE while improving the handling of sporadic

7.1. EVALUATING TSN AND SDN 117

real-time traffic by modifying the signaling mechanism associated to these messages. It thus
allows an efficient handling of both TT and ET RT traffic.

TSSDN and SDPROFINET bring support to TT traffic on SDN, allowing low figures of
jitter and latency. In the former case this is achieved by synchronizing end nodes to avoid
contention among TT packets. Interference between TT and other traffic is handled via
priorities, eventually combined with frame preemption mechanisms. In the latter case, SDN is
used to manage PROFINET switches, thus inheriting the real-time attributes of this protocol.
In both cases there is good support to TT traffic, but there is no explicit handling for RT ET
traffic. Moreover, TSSDN relies solely on controlling the transmission instants at end nodes,
without depending on bridge-level scheduling services. As such, the schedulability level for
TT traffic is reduced, as the protocol does not allow any kind of overlapping in flow paths.

In turn, SDN-HSF does not explicitly addresses RT traffic, but the enhancements on queuing
disciplines brings significant improvements on traffic isolation and bandwidth control, with a
positive impact on ET RT traffic.

Finally, Openflow-RT supports explicitly both ET and TT traffic by means of dynamic explicit
scheduling in the former case, and hierarchical servers in the second one. This allows low
latency and jitter for both kinds of traffic.

7.1.2 Overhead

Attaining low jitter in communication systems supporting event-triggered traffic is complex
and, usually, impacts negatively on bandwidth utilization efficiency. This is particularly
noticeable when there is joint support for TT traffic, as this kind of traffic is often associated
with very strict jitter requirements.

TSN introduces a frame preemption mechanism that allows to interrupt the transmission of less
important and/or jitter tolerant messages (classified as preemptable) in favor of other messages
more jitter sensitive (classified as express). There is a minimum size before preemption can
occur, which implies wasted bandwidth in each transmission slot for the case TT traffic is
managed by Transmission Gates. Moreover, preemption also adds overhead, as control bytes
must be added to the packet segments. TSSDN behaves similarly to TSN, as the use of frame
preemption is allowed and it comprises the notion of slots for TT messages.

On the other hand, SDPROFINET, FTT-OpenFlow and OpenFlow RT use dedicated win-
dows for TT traffic, blocking eventual ET transmissions that could otherwise overrun TT
transmission windows. This represents network idle-time that translates to overhead. In
general the impact of the inserted idle-time is moderate, as it is inserted once per window,
not once per message.

Control messages are another potentially relevant source of overhead. In this regard, FTT-
OpenFlow and OpenFlow RT are penalized by the need to disseminate periodically elementary
cycle’s transmission schedule. The impact is inversely proportional to the elementary cycle
duration, starting to be relevant for cycles below 1ms.

118 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

OF and SDN-HSF don’t have relevant overheads as they don’t implement the functionalities
above described.

7.1.3 Mutual isolation

TSN provides a set of mechanisms that allow some degree of traffic isolation. There are
distinct traffic classes that can be associated with different forwarding mechanisms, which
include the selection algorithms (prioritized transmissions, shapers) and the Transmission
Gates. Moreover, the availability of filtering and policing also impacts positively on isolation
by allowing to bound the interference of misbehaving streams. Although this set of features
is interesting from the traffic isolation point of view, the performance of TSN in this regard
is impaired by the limited number of priorities, which are associated with traffic classes. As
mentioned above, in practical terms only 6 classes can be used, so per-stream confinement
and isolation is far from reach.

SDPROFINET is based on PROFINET and, as such, segregates traffic in NRT, RT and
IRT. The IRT traffic comprises exclusive transmission slots for isochronous traffic streams.
Therefore, IRT streams are completely isolated form each other and from the other classes.
However, for RT traffic, the isolation is not so strong, as the mechanisms are based only on
communication stack adaptations (IP partially abandoned and direct use of Layer 2/OSI
services). Moreover, RT ET traffic is not explicitly supported.

TSSDN only segregates RT TT traffic from the remaining one. No other mechanisms, except
references to the use of traffic prioritization, are provided. So, this protocol is quite limited in
this respect.

FTT-OpenFlow and OpenFlow RT are based on the FTT paradigm. As such, they isolate
the transmission of TT, ET and NRT traffic, which have exclusive transmission windows.
Moreover, in both these protocols RT ET traffic is managed by hierarchical servers, which
allows a fine grain stream composition (from individual streams to subsystems and systems)
with bounded and predictable interference. In the particular case of OpenFlow RT, the
HaRTES-based bridges implement traffic policing and have separated memory areas for the
different traffic types, assuring the robustness of the isolation mechanisms.

Support of isolation on OF and SDN-HSF is poor, as there is no notion of traffic types. The
simple use of priorities and improved queuing management policies are not enough to attain
an acceptable level of performance in this regard.

7.1.4 Granularity of QoS control

In what concerns QoS granularity for real-time systems, TSN performance is modest. On
the one hand, the TSN set of standards lacks support to some attributes commonly used in
real-time systems (e.g. activation paradigm, precedence constraints, offsets), and the existing
QoS attributes are of limited usefulness in what regards real-time applications. For example,
CBS parameters are specified as bandwidth, and reservations are issued based on number of

7.1. EVALUATING TSN AND SDN 119

frames per time interval and maximum latency, only. Moreover, QoS is in practice specified
per class, not per stream because, as mentioned above, the number of priorities/classes is low
(up to 6, in practice).

OF also does not support the set of attributes commonly used in real-time systems. QoS
specification is limited to bandwidth limitations and priorities. As such, its performance in
this regard is poor.

TSSDN is also rather limited. The only specific reference to QoS parameterization of real-time
traffic is the specification of the periodicity for TT streams, which is assumed to be expressed as
an integral multiple of a base-period that corresponds to a minimum system-wide transmission
period that can be supported. No other attributes or traffic types are explicitly supported.
There are references also to the use of priorities to favor the transmission of TT traffic when
a time slot cannot be found.

SDPROFINET uses formal specifications based on the behavioral type concept, to identify
interdependencies between different devices. The authors propose using regular expression
based specification mechanisms to capture a sequence chart of communication messages.
Reference [80] is does not go deep enough to allow a well supported evaluation of the protocol
in this regard, but the approach should allow capturing the essential attributes.

FTT-OpenFlow and OpenFlow RT are based on the FTT paradigm and support the full set
of attributes commonly used in real-time systems. Streams are individually associated with
attributes such as period, deadline,offsets and activation mode (TT/ET). These attributes
as, in practical terms, unconstrained, e.g. there are no limits to the number of priorities.
Moreover, for the RT ET it is possible to specify QoS at diverse levels, thanks to the presence
of hierarchical servers. As such, these protocols excel in this aspect.

SDN-HSF is quite limited in what concerns QoS granularity. The improvements over SDN are
restricted to queue management and the implemented disciplines (HTB, RED and SFQ) only
provide bandwidth-based traffic shaping. As such, despite improving performance, explicit
support to real-time traffic QoS is still poor.

7.1.5 Traffic Management Architecture

TSN inherited AVB’s fully distributed model based on the Stream Reservation Protocol.
Traffic reservation requests are propagated along the network and each device (end nodes and
bridges) decide on the admissibility of each request. It should be noted, however, that SRP
only permits to manage stream reservations associated with CBS. Centralized architectures
are known to enable more efficient and responsive resource management, supported by a
broader knowledge on existing resources and requirements. TSN traffic management was
recently augmented with a centralized management option, where reservations are directed to
a Centralized Network Configuration entity that decides about the admissibility of reservations
and then, when appropriate, uses remote management protocols (e.g., SNMP, NETCONF) to
configure bridges in accordance with the requirements. As such, TSN excels in this aspect, by

120 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

allowing both distributed (with limitations) and centralized management architectures, that
have distinct advantages and disadvantages.

SDN prescribes a logically centralized architecture, where the controller is the sole entity
responsible for configuring the data-plane switches. As mentioned above, this architecture is
arguably more efficient in what concerns the management of network resources, but detractors
also point weaknesses, e.g. in what concerns scalability. The enhancements brought by SDN-
HSF and TSSDN to SDN do not impact significantly on the traffic management architecture
of SDN, thus sharing essentially the same properties.

SDPROFINET allows the existence of diverse domain controllers, but prescribes that copies
of controllers shall reside on a remote control center to allow topology changes and other
modifications to be carried out centrally. The objective is to allow network stabilization and
instantiate modifications consistently, eliminating the possibility of instability and transients
during updates.

FTT-OpenFlow and OpenFlow RT also have strongly centralized architecture, inherited both
from the base FTT architecture and SDN, which are both centralized. In fact, the more
elemental functionalities of these protocols depend on the presence of a (logically) centralized
entity, which performs activities that go well beyond handling reconfigurations, e.g. periodic
traffic scheduling. Thus, these protocols depend almost entirely on the permanent availability
of the controller.

7.1.6 Flexibility

TSN provides mechanisms to configure all the services directly and indirectly related with
stream forwarding, e.g. set CBS parameters, configure the Transmission Gates’ schedule, issue
or remove a stream reservation, etc. Despite that, there are some limitations. For example,
modifications to stream attributes are not directly supported, and must be instantiated as
a tear down followed by a creation. This procedure requires multiple message exchanges
and involves several timeout mechanisms, limiting the responsiveness to system adaptations,
particularly for the case of distributed architectures, as messages have to be propagated
through the entire path. More importantly, TSN only provides the basic mechanisms to
parametrize the configuration of network devices, not assisting the applications in managing
the allocated QoS. As such, QoS management is entirely left to the application side, which is
a severe limitation in terms of flexibility and adaptability. Finally, TSN does not allow the
creation of application-specific protocols. The application can only choose which protocols to
use (from a predefined set) and configure them.

SDN is, in some sense, in the opposite side of TSN. Due to its “programmatic” approach, the set
of protocols that can be deployed is virtually unlimited, being possible to design applications
taking standard protocols eventually complemented with custom ones, specifically tailored for
individual applications. The centralized architecture also potentiates quick modifications to
the system configuration, so the manipulation of stream attributes and system configuration

7.1. EVALUATING TSN AND SDN 121

changes can be carried with low delay. As TSN, SDN but does not assist applications in QoS
management.

TSSDN, SDPROFINET, and SDN-HSF are SDN-based and thus, share the characteristics
of OF in what regards flexibility and adaptability. TSSDN and SDPROFINET may impose
a penalization in latency upon system changes due to the computational complexity of the
methdos used to derive the schedules and routes. As TSN and OF, these protocols do not
provide QoS management, which must also be performed by applications.

As for the case of TSN and OF, the centralized architecture of FTT-OpenFlow and OpenFlow
RT enables fast reconfigurations. These protocols allow to create, delete, and modify message
streams without service disruption. A unique feature of FTT-OpenFlow and OpenFlow RT
that stems from its FTT roots is the native QoS management provided by the network.
These protocols provide admission control capabilities along with a QoS manager to which
applications may send requests specifying acceptable levels of QoS, e.g. in the form of
acceptable ranges or bounds for periodicity or deadline. When resources are insufficient,
the QoS manager interacts with the admission control to try to find feasible configurations.
Therefore, these protocols provide a much better support to flexibility and adaptability than
the other ones.

7.1.7 Overall evaluation

Table 7.1 summarizes the results of the above discussion, mapping the performance of the
protocols in each criteria in a qualitative scale that ranges from 1 (Worse) to 5 (Better).

Table 7.1: Evaluation of SDN, SDN extensions, and TSN with respect to performance, QoS,
and flexibility
Criteria TSN OpenFlow FTT- TSSDN SDPROFINET SDN-HSF OpenFlow-

-OpenFlow -RT
RT Performance TT 5 1 5 4 5 1 5

ET 3 1 5 1 3 3 5
Overhead 4 5 3 4 4 5 3
Mut. Isolation 4 1 5 2 3 1 5
QoS Granularity 3 1 5 2 4 2 5
Manag. Arch. 5 3 3 3 4 3 3
Flexibility 3 4 5 4 4 4 5
From 1 (Worse) to 5 (Better)

There are some interesting conclusions that can be withdrawn. TSN performs well or very well
in all criteria. The limitations it exhibits result essentially from backward compatibility issues.
The limited number of priorities is particularly relevant as it constrains, in a fundamental
way, several aspects of the protocol performance (e.g. traffic isolation, event-based messages).
The overall complexity that results from the combination of an huge number of protocols,
several of them not designed for real-time applications, turns the resulting system hard to
analyze and to prove correct.

SDN takes a radically different approach, promising an unprecedented degree of flexibility
thanks to its “programmability”. However, it was designed for data centers and lacks ex-

122 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

pressiveness to handle real-time scenarios, therefore its overall real-time performance is very
poor.

The potentialities of SDN have been recognized and thus several contributions eventually
appeared, having all in common the objective of enriching SDN with real-time services, while
preserving its essential attributes. Some of the approaches are simpler but still very limited
in terms of real-time performance (SDN-HSF). Others go one step ahead, using dedicated
hardware and/or modifications to the communication stack and global management, improving
significantly the real-time performance of SDN (TSSDN and SDPROFINET). Finally, FTT-
OpenFlow and OpenFlow RT exploit the QoS management and flexibility, characteristic of
the FTT paradigm, to enhance OF with efficient real-time and QoS management services.

Summarizing, the qualitative evaluation herein presented clearly shows that TSN performs
well, but it is far from perfect, having inherent performance limitations. On the other
hand, it also shows that SDN can be augmented, in different ways, to support effective and
efficiently applications with real-time requirements, thus being a promising alternative to TSN.
Both FTT-OpenFlow and OpenFlow-RT present significant advantages in terms of real-time
performance and flexibility over the other SDN-based proposals, however, OpenFlow-RT is
superior due to the inherent advantages of HaRTES over FTT-SE such as, for example, the
support of nodes not compliant to the protocol and the policing mechanisms within each
switch for both time-triggered and event-triggered traffic.

7.2 TSN as data plane enabling technology

As discussed in Section 4.3.1, the development of TSN arises from the need for support
of communications conveying time-sensitive data in IEEE 802.1 LAN/Metropolitan Area
Network (MAN) networks. Therefore, TSN closely follows the network architectures and
protocols defined by IEEE 802 standards. In particular, TSN networks rely on learning
mechanisms and a set of protocols, e.g. Spanning Tree algorithm and Protocol (STP) and
Multiple Spanning Tree algorithm and Protocol (MSTP), that perform vital functions such
as building and maintenance of logical network topologies and traffic forwarding routes.
The majority of these protocols operate in a distributed manner, i.e. devices autonomously
exchange information with neighbours and/or nodes across network(s), in order to build the
necessary configurations for each device. This operation mode contrasts with the centralized
paradigm and control plane decoupling of the SDN framework. The following sections will
present a discussion regarding the support for standard OpenFlow services and for the real-time
extensions herein proposed on data plane networks comprising TSN devices. The discussion
focuses on currently published TSN services, and proposals that are in a late stage of the
standardization process, i.e. draft published by the work group1 or approved for publication
as standard.

1Such as PAR P802.1Qcc and P802.1Qcp [127].

7.2. TSN AS DATA PLANE ENABLING TECHNOLOGY 123

7.2.1 Network Architecture

TSN networks are composed by computational nodes that host applications, called end stations,
and nodes that control the forwarding of frames throughout the network, known as bridges.
Although IEEE 802.1 (see Section 4.1) defines two bridge types, i.e. IEEE 802.1D MAC
bridges [82] and IEEE 802.1Q VLAN bridges [23], TSN resource reservation protocols, e.g.
SRP, and associated QoS services are only available in VLAN bridges. If a TSN traffic stream
was to be forwarded by a MAC bridge at any point in the network, real-time performance
could be severely compromised. Therefore, only networks that are composed by these bridges
alone are considered. Moreover, the considered VLAN bridges support the maximum number
of forwarding queues as foreseen by the standard (8 queues) and implement the following
amendments to IEEE 802.1Q-2014 [23]:

• IEEE 802.1Qbv: Enhancements for scheduled traffic. Provides time gates and associ-
ated control lists that allow the transmission of each queue to be scheduled relative to a
known time scale;

• IEEE 802.1Qci: Per-stream filtering and policing. Provides stream filters and gates
that allow a bridge to perform filtering and service class selection for data stream’s
frames, in sync with a cyclic time schedule.

In the considered network, all end stations must adhere to the reservation protocols and
transmission patterns for the negotiated time-sensitive streams as defined in IEEE 802.1Q-2014.
End stations and VLAN bridges are synchronized in time using the protocols and mechanisms
defined by the IEEE 802.1AS-2011 standard [94].

TSN supports the same network topologies as HaRTES and thus, is easily incorporated in the
reference architecture. The significant difference between the two architectures is the temporal
synchronization of all real-time nodes in the network by the IEEE 802.1AS-2011 protocol.
Figure 7.1 represents an example for the framework’s reference architecture employing a
TSN-enabled data plane.

124 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

SDN Controller
(Control Plane)

Data Plane

TSN VLAN
Bridge

TSN VLAN
Bridge

TSN VLAN
Bridge

TSN VLAN
Bridge

Internet

Non real-time

Sensors ActuatorsIndustrial processes Multimedia

Extended OpenFlow protocol
+

Network management
protocols (e.g. NETCONF)

User Application(s)

Northbound API

Figure 7.1: Framework reference architecture with TSN-enabled data plane

7.2.2 Supporting standard OpenFlow services

The most important characteristic of technologies that follow the SDN paradigm is the
decoupling of the control plane, i.e., the "intelligence" that decides how traffic is to be
processed and forwarded to, from the data plane, which processes and forwards traffic
according to the rules dictated by the control plane. In OpenFlow, control plane functions are
performed by a central entity, composed by one or more physical nodes, which makes all the
rules related to traffic forwarding and installs them into every switching device on the data
plane in the network using a management protocol: the OpenFlow switch protocol [73]. In
contrast, TSN VLAN bridges host both control and data plane functions. Each bridge relies
on a set of protocols, e.g. STP and MSTP, to communicate with other bridges in the network
and exchange data that allows it to build, and maintain, loop-free active topologies. Moreover,
bridges autonomously build traffic forwarding rules for their own data path by analyzing the
source address of frames received in ingress ports that belong to active topologies. Thus,
in order to support standard OpenFlow services on VLAN bridges one must first: (i) strip
bridges of the control plane related to traffic processing, and (ii) centralize the control plane
for all bridges in a single logical node.

To strip the control plane from TSN devices, all protocols that directly or indirectly configure
the forwarding paths and traffic processing rules must be disabled for every bridge in the

7.2. TSN AS DATA PLANE ENABLING TECHNOLOGY 125

network. For example, active topology management protocols such as RSTP and MSTP,
manage the participation of a given port in the Learning Process. This process in turn, creates
Dynamic Filtering Entries that dictate how traffic is forwarded to each egress port (recall from
Section 4.1). Therefore, protocols belonging to this category must be disabled administratively,
for example, by setting the Port State of every bridge port to "Disabled" (i.e. the port does
not participate in active topology management functions). The same applies to protocols that
autonomously manage the association of ports to VLANs, e.g. Multiple VLAN Registration
Protocol (MVRP), and create Dynamic Filtering Entries for VLAN forwarding, e.g. ISIS
Shortest Path Bridging (SPB). Another family of protocols that must be disabled is that
which allows devices and applications to request the reservation of resources throughout the
network and the association of traffic flows to those reservations. Examples include the Stream
Reservation Protocol (SRP), and applications belonging to the MRP family, such as Multiple
Stream Registration Protocol (MSRP) and Multiple MAC Registration Protocol (MMRP).
Once all protocols have been identified, these can either be disabled administratively, through
device configuration consoles on a per bridge basis, or remotely by the SDN controller using
network management protocols such as Common Management Information Protocol (CMIP)
or SNMP. However, due to the large number of existing protocols and device vendors, it is
not trivial to ascertain if all the required protocols are possible to be disabled in all devices.

Assuming that it is possible to effectively decouple the control plane from the data plane, all
control plane functions must now be moved to the SDN controller. Naturally, TSN devices
do not support the OpenFlow switch protocol and thus, an alternative way to centrally
configure devices is required. At the time of writing, TSN does not provide a native protocol
to manage its QoS services, however, the controller may exploit existing remote management
protocols such as SNMP, CMIP, and NETCONF, to centrally configure network resources.
In particular, to adopt TSN devices in the proposed real-time SDN framework two approaches
could be pursued:

1. Implement the OpenFlow Mediator daemon in each TSN bridge. In this
approach, the controller directly uses the extended OpenFlow protocol to request con-
figurations of both standard OpenFlow and real-time services. The mediator translates
requests into, for example, suitable SNMP commands to configure the necessary services;

2. For each bridge, execute an instance of the OpenFlow Mediator daemon in
the controller. Akin to the first approach, mediator daemons translate OpenFlow
requests into adequate configuration commands. However, a daemon instance for each
TSN bridge is now run within the controller.

As vendors typically have a tight and closed control of each device firmware/operative system,
the former method may not be possible. Nonetheless, the developed extensions to the control
plane are still valid for both approaches.

TSN bridges do not implement the standard OpenFlow pipeline and associated services.
However, some existing entities and services can be leveraged so as to provide an OpenFlow-
esque operation:

126 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

• Filtering Database (FDB). This database stores, amongst other type of information,
configurable Static Filtering Entries. The FDB and its entries can be leveraged to act
as an OpenFlow-like pipeline comprising a single Flow Table, the FDB, with several
Flow Entries, the static entries;

• Static Filtering Entries. With respect to traffic forwarding control, static entries are
similar to Flow Entries, albeit exhibiting significantly limited filtering rules and actions;

• Flow Classification and Metering. TSN bridges may support ingress metering, in
which a subset of traffic frames may be identified and subjected to a given meter which
can discard frames on the basis of parameters such as frame size and inter-frame time.
This mechanism, and/or Credit-Based Shapers, can be used to implement a service akin
to OpenFlow meters;

• Traffic Class Tables and Transmission Selection Algorithm Tables. Each
bridge port has an associated Traffic Class Table that maps frames to traffic classes
using the frame’s priority. Traffic classes are associated to individual egress queues
which may be served by different dispatching services. The association of dispatching
algorithms to each queue can be performed through the configuration of the port’s
Transmission Selection Algorithm Table. These tables may be configured and combined
so as certain traffic flows are forwarded to different classes and dispatching methods,
akin to OpenFlow logical ports;

• Port Counters. These objects are similar to counters specified by OpenFlow, and can
provide the number of bytes and frames processed by a given ingress/egress port.

With these services, one could create a simple pipeline with rules to identify traffic flows, and
drop or forward their frames to the desired egress queues. This is comparable to configuring
Flow Entries comprising only "Drop" or "Output" actions with physical and logical ports.
Identified flows could be applied to metering, which is comparable to the OpenFlow action
"Meter". However, this virtual pipeline is dramatically limited when compared to OpenFlow’s
mandatory services. For example, although Static Filtering Entries allow one to identify flows,
the supported filters only target frames’ destination MAC address and VLAN ID, and do
not provide support for other OpenFlow mandatory filtering fields such as IPv4 addresses,
EtherType, and TCP/UDP ports. Moreover, group tables are nonexistent and can’t be easily
modeled by existing TSN entities. Finally, the support for packet-in/packet-out operations is
difficult to evaluate, since the features provided by management interfaces are vendor-specific.

Despite the aforementioned constraints, it seems possible to provide limited SDN-like services
over TSN bridges. Next, we take a look at the offered QoS services and evaluate "if" and
"how" could they be leveraged by the devised framework in order to provide the envisioned
real-time services.

7.2. TSN AS DATA PLANE ENABLING TECHNOLOGY 127

7.2.3 Supporting real-time traffic

TSN bridges provide several services that can be used and combined to enforce certain levels
of QoS, e.g. traffic classification, metering, and transmission selection algorithms. However,
there are (presently) two services specifically tailored for traffic with real-time requirements:
the Credit-Based Shaper (CBS) selection algorithm (Section 4.3.1.1) and Transmission Gates
(Section 4.3.1.2) [23]. The former provides a shaping service which grossly enforces bandwidth
reservations for streams that need low latency levels such as video and audio streaming. The
latter is specifically designed for periodic traffic, and allows the confinement of traffic within
specific time intervals. Due to their intrinsic properties, CBS is better suited for event-triggered
traffic while transmission gates are adequate for time-triggered communications.

One of the important requirements to support both event- and time-triggered traffic in a
shared communication network is the existence of isolation between these two traffic types.
Failing to do so typically results into high jitter values, in particular for time-triggered
communications. Therefore, a first step is to ensure that interference between the two traffic
types is nonexistent, or at least greatly reduced and within controlled bounds. To that end,
TSN specifies procedures for the MAC layer to allow certain traffic classes to preempt on-going
transmissions (IEEE 802.1Qbu [97] and IEEE 802.3br [98]). However, despite providing true
non-destructive preemption, on-going transmissions can’t be instantaneously preempted and
fragments from preempted frames must have a minimum size. Although one can use this
mechanism to greatly reduce interference and contain it within well-defined bounds, there is
another possible approach in which interference can be completely eliminated: implement a
TDMA scheme with temporal windows, similar to that used by HaRTES. Figure 7.2 depicts
such scheme and the most important services that are necessary for its implementation.

Similarly to HaRTES EC, the proposed TDMA scheme implements three temporal windows,
each one assigned to a specific type of traffic streams: time-triggered, event-triggered, and non
real-time. Windows confine the transmission of the associated traffic type within their bounds.
The first step to implement such scheme is to reserve traffic classes, and their respective egress
queues, for a particular type of streams. In the example of Figure 7.2, traffic classes 4 up
to 7 are reserved for time-triggered streams, while classes 1 up to 3 and class 0 are assigned
to event-triggered and non real-time streams, respectively. Traffic is assigned to a certain
traffic class using the standard TSN mechanisms, i.e. Traffic Class Table and frame’s VLAN
Identifier. The next step is to enforce the temporal windows. To that end, the Gate Control
List and its entries are configured in such a way that transmission gates only allow traffic to
be selected for transmission from queues comprising traffic associated to the current temporal
window. In the provided example, gate operations 0 up to 3 enforce the time-triggered
window by disabling transmissions from the event-triggered and non real-time queues. The
same reasoning is used for the remaining windows. Finally, adequate transmission selection
algorithms must be configured for each egress queue. Time-triggered queues are served by
the Strict Priority Transmission algorithm (SPT) while event-triggered queues are assigned
to the CBS algorithm. Non real-time uses SPT and occupies the remaining bandwidth as

128 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

ET TrafficTT Traffic

TDMA Elementary Cycle

X ns Y ns Z ns

X ns

Y ns

Z ns

NRT Traffic o o o o c c c c

Queue# SPT ETS CBS

7

6

5

4

3

X

X

Transmission Selection
Algorithm Table

Queue #

T00

T01

T02

T03

Gate Control List

7 6 5 4 3 2 1 0Gate Op #

T04 c c c c o o o c

o o o o c c c c
o o o o c c c c

c c c c o o o c
T05

T06

c c c c o o o c

T07 c c c c c c c o

o o o o c c c c

2

1

0

X

X

X

X

X

X

Queue# TT ET NRT

7

6

5

4

3

X

X

Assigned Queues by Traffic Type

2

1

0

X

X

X

X

X

X

Figure 7.2: TDMA for real-time communications in TSN

background traffic.

After deploying the previously discussed TDMA scheme, the next question is how one schedules
traffic and assigns the reserved queues to streams pertaining to the same traffic category. This
is addressed next.

7.2.3.1 Incorporating time-triggered traffic

With the extremely limited number of queues provided by TSN, an important matter is how can
such number be optimally exploited and at the same time provide timeliness communications.
Taking the previous example (Figure 7.2) as case-study, the issue is how to distribute the four
available queues among a set of time-triggered streams. If the number of streams is equal or
inferior to the number of available queues, the solution is plain obvious: assign a dedicated
queue for each stream. However, this solution suffers from extremely poor scalability. If
the number of streams is higher than the number of available queues, which can be easily
attainable in industrial scenarios, queue sharing must be executed. For this, there are multiple
possible schemes: (i) a single queue for all streams, which could result in a significant amount
of interference and worst-case delays in particular for large stream sets, (ii) share queues for
streams with equal period, this could lower some of the interference, in particular if streams
have offset periods, (iii) mix streams according to common period multiples, building sets that
minimize the number of stream frames in a given queue within the same time interval. All of

7.2. TSN AS DATA PLANE ENABLING TECHNOLOGY 129

the aforementioned schemes either have scalability or interference issues, or both. A better
approach is to evolve TSN egress queues from FIFO to content-addressed queues and allow a
real-time scheduler/transmission selection algorithm to retrieve frames from a given queue
according to a schedule. However, current standards explicitly mandate that all implemented
queues preserve frame arrival order, i.e. operate like a FIFO [23].

Another issue is how to schedule the transmissions of queued time-triggered traffic. Assuming
that in future TSN versions it would be possible to have a dedicated queue for each stream, or
a method to store frames into the existing queues according to a schedule, the time-triggered
window could be further divided into several time-slots, each controlled by a given transmission
gate. Frames from queued streams are now transmitted only within assigned time-slots. To
control transmissions in time-slots within the window, the Gate Control List would have to
be configured in order to implement a slot schedule map. Figure 7.3 shows an example for
two time-slots.

ET TrafficTT Traffic

TDMA Elementary Cycle (EC)

NRT Traffic

c c c c o o o c

Queue #

T00

T01

T02

T03

Gate Control List

7 6 5 4 3 2 1 0Gate Op #

T04 c c c c c c c o

c c c c o o o c
o c c c c c c c

c o c c c c c c
T05

T06

o c c c c c c c

T07 c c c c c c c c

c c c c o o o c

c c c c o o o cT08

T09 c c c c o o o c
c c c c c c c oT10

EC(n)

EC(n+1)

.

Stream # Queue # T (No. ECs) D (No. ECs)

1

2

Time-triggered Streams

7 1 1

6 2 2

Cycle n Cycle n+1

#1 #1 #2

Hypercycle

Time-slot

Figure 7.3: Time-triggered scheduling in TSN

In short, for each time-slot activation a gate operation entry, enabling the respective trans-
mission gate, is required. Since time-triggered streams may have different periods, the Gate
Control List must be populated with enough gate operation entries to cover all activations
within an entire hypercycle, i.e. until the least common multiple (LCM) for all existing stream
periods is reached. Although the hypercycle is relatively short for the presented example
(LCM = 2), it can rapidly grow to huge values, especially in the presence of high prime period
values. For example, consider a small set with only three streams and periods of 1, 9, and
101 ECs. The LCM for this set is 909, and thus, the Gate Control List would have to spawn
over 909 cycles, each cycle requiring a bare minimum of 2 gate control entries, one for the
ET and NRT window, and one entry per time-slot activation. This can rapidly lead to a
list with overwhelming size and impossible to be effectively managed by the TSN bridge. A
possible solution for this, suggested for WorldFIP in [6], is to dynamically upload segments

130 CHAPTER 7. TSN AND SDN IN THE CONTEXT OF INDUSTRY 4.0

of the entire table as needed. TSN does support the dynamic update of the Gate Control
List, however, the time required to concurrently update such tables in all ports needs to be
evaluated and the impact on the real-time dispatching determined.

7.2.3.2 Incorporating event-triggered traffic

Event-triggered traffic suffers the same queue-related issues that were identified for time-
triggered traffic. Although one could use the solutions proposed therein for queue assignment,
sharing queues among several streams induces significantly negative drawbacks. As each
queue is now managed by a CBS shaper, the configured bandwidth limits apply to the whole
queue. Thus, streams assigned to a given queue will compete for the same bandwidth, leading
to possible starvation for some streams. Moreover, the ability to constrain the maximum
bandwidth used by each stream is lost, since CBS must be configured for the stream with the
highest bandwidth requirement. In this case, a stream with a lower negotiated bandwidth
could just use more. Therefore, for event-triggered traffic, a dedicated queue for each stream
is vital. Figure 7.4 depicts an example of such configuration comprising three event-triggered
streams. Besides the clear limitation on the support for several event-triggered streams, TSN
lacks the support to build hierarchical relationships between streams, an important feature to
tackle with highly complex systems.

ET TrafficTT Traffic

TDMA Elementary Cycle (EC)

NRT Traffic

c c c c o o o c

Queue #

T00

T01

T02

T03

Gate Control List

7 6 5 4 3 2 1 0Gate Op #

T04 c c c c c c c o

c c c c o o o c
o c c c c c c c

c o c c c c c c
T05

T06

o c c c c c c c

T07 c c c c c c c c

c c c c o o o c

c c c c o o o cT08

T09 c c c c o o o c
c c c c c c c oT10

EC(n)

EC(n+1)

.

Stream # Queue # T (No. ECs) D (No. ECs)

1

2

Time-triggered Streams

7 1 1

6 2 2

Stream # Queue # T (No. ECs) P

1

2

Event-triggered Streams

3 1 3

1 2 1

3 2 2 2

Figure 7.4: Event-triggered scheduling in TSN

7.2.4 Data plane comparative analysis: TSN vs HaRTES

Over the course of the last sections, TSN has been evaluated as a possible real-time data
plane enabler for the proposed SDN framework. One of the main derived conclusions is that
TSN, as in the present form, may be able to provide basic SDN services provided that device
vendors grant a way to disable, either through configuration consoles or by management
protocols like SNMP and NETCONF, all the protocols that intervene in the configuration

7.2. TSN AS DATA PLANE ENABLING TECHNOLOGY 131

of forwarding paths, traffic processing rules, and enact the reservation of network resources.
Examples of identified protocols include RSTP, the MRP family, and SRP. Nonetheless, the
OpenFlow services provided by TSN would be severely limited, lacking mandatory services
such as Group Tables and with no support for a large number of filtering rules, as discussed
in Section 7.2.2.

Additionally, the real-time services provided by TSN exhibit several limitations, the most
relevant being linked to the small number of traffic classes and lack of adequate support for
scheduling algorithms. Notwithstanding, it was shown the possibility of enacting temporal
isolation between different traffic categories and support, with severe limitations, both time-
and event-triggered real-time streams. Therefore, HaRTES continues to be considered the
best choice as the data plane enabler switching platform for the herein devised real-time SDN
framework. A breakdown of the currently supported services in HaRTES vs those that would
be possible with TSN is presented in Table 7.2. Note that HaRTES is still being enhanced
and will support even more OpenFlow services in the future.

Table 7.2: Data plane enablers : HaRTES vs TSN

Tables Ports Instructions Match RT Traffic Flows
Flow Group Fields TT ET

TSN

1 7 Physical Write-Actions ETH_DST 6 (max)* 6 (max)*
Logical (few) VLAN_VID
FLOOD
NORMAL

HaRTES

1 7 Physical Write-Actions ETH_DST 32** 8**
Logical (all) Goto-Table ETH_SRC
FLOOD ETH_TYPE
NORMAL IPV4_DST
CONTROLLER IPV4_SRC
TABLE IP_PROTO
IN_PORT TCP_DST

UDP_DST
TCP_SRC
UDP_SRC

* Can either have: [6 TT + 1 ET + 1 NRT] or [1 TT + 6 ET + 1 NRT] flows.
** Not a hard limit. Easily scaled at the cost of more FPGA resources.

CHAPTER 8
The Finale

Contents
8.1 Conclusions . 133

8.2 Future research . 135

8.1 Conclusions

The new trend in Industry towards Smart Production/Industry 4.0 poses new requirements
for flexibility of traffic management together with the usual strict timeliness requirements.
Software-Defined Networking can provide the needed flexibility but lacks appropriate support
for timeliness. This issue is addressed in this work that argues:

"The flexibility, timeliness, management, and heterogeneity requirements of emerging cyber-
physical production systems can be satisfied by a framework that leverages the inherent flexibility
of SDN technologies to control a network comprising switching platforms with composable and
dynamically configurable real-time services".

Herein, a novel real-time framework that extends the SDN/OpenFlow architecture with real-
time communication services, and is able to support event-triggered and time-triggered real-
time traffic with guaranteed Quality of Service (QoS) is presented. Three main contributions
were made:

• A set of real-time extensions to OpenFlow, the Real-Time OpenFlow Add-On
(RTOF), that accommodates the specification of real-time flows and the (re)configuration
of real-time reservations while keeping compatibility with the OpenFlow standard. The
RTOF is agnostic to underlying data plane technologies by using generic real-time
attributes.

• An OpenFlow-enabled real-time Ethernet data plane technology (Enhanced
HaRTES). HaRTES switches are now augmented with a hardware OpenFlow pipeline,
which currently supports most of the mandatory OpenFlow services, and a mediation
layer to communicate with SDN controllers using the RTOF extensions.

• A SDN controller for real-time applications. This controller enacts admission
control operations to guarantee the timeliness of network communications. It employs a

133

134 CHAPTER 8. THE FINALE

real-time schedulability analysis for multi-hop HaRTES networks to predict the temporal
behavior of the network upon the (possible) admission or reconfiguration of flows.

The capabilities of the developed framework were evaluated through experiments carried
out on a real-world prototype. Four main vectors were analyzed: (i) the ability to perform
(re)configurations online and admit new streams without causing disruption or interference to
existing traffic, (ii) the timeliness behavior of the system in the presence of diverse classes of
real-time and non real-time traffic, (iii) the accuracy of the output results from the developed
schedulability analysis, and (iv) the responsiveness to requests and scalability of the admission
control unit. The obtained results confirm that the framework is able to fulfill all the network
requirements identified in Section 2.3. In particular, the framework is able to:

• Support simultaneous applications with heterogeneous QoS requirements
(R1). Experiments based on a realistic Industry 4.0 scenario (adaptable production)
show the coexistence of time-/event-triggered and non real-time flows, with all timeliness
guarantees being met. The observed latency and jitter values, which were under/at 70µs
and 1µs, respectively, show the capability of the framework to fulfill the most strict
requirements imposed by motion control applications.

• Precisely meet applications’ QoS requirements (R2). Thanks to the traffic polic-
ing and confinement mechanisms provided by the framework’s data plane technology
(HaRTES), communications are efficiently restricted to the negotiated network reserva-
tions. Moreover, the analysis performed by the developed RT SDN controller exhibits a
relatively low level of pessimism, as experimentally observed.

• Support dynamic message and reservation sets (R3). By leveraging the flexibility
of the enhanced data plane and the real-time extensions to the control plane, the
framework is able to perform changes to message and reservation sets online, without
service disruption. Moreover, even for reasonably sized networks comprising 16 switches
and 100 flows, single reconfiguration requests are evaluated and performed under 170ms.
This value is significantly less than the desired reconfiguration time of small production
systems, which falls in the range of a few seconds [46].

• Enable real-time network monitoring and diagnostics (R4). With the services
provided by the OpenFlow protocol and its extensions herein introduced, the framework
is able to keep track of existing flows, current link states, and flow statistics, providing
a powerful monitoring and diagnostics platform.

• Provide a consistent set of open management tools (R5). The centralized
management of the whole network using a single protocol, i.e. OpenFlow and proposed
real-time extensions, combined with the possibility to easily integrate additional network
management protocols, e.g. SNMP, for possible non-OpenFlow devices, eases network
management and reduces the dependence on multiple vendor-specific tools.

8.2. FUTURE RESEARCH 135

Finally, a qualitative study evaluated the herein proposed framework and the most relevant
proposals in the literature targeting the extension of SDN and its use on real-time networks.
The study concludes that this thesis’s proposal provides significant advantages over the other
solutions (including TSN) regarding operational flexibility and real-time performance.

8.2 Future research

An important line of future work is the investigation of northbound APIs and possible real-time
extensions. At the time of writing, and to best of my knowledge, the existing northbound
APIs focus on business-related applications such as, for example, network virtualization and
lack adequate models/data structures to specify the requirements of real-time applications.
Although the ONF has standardized the Real-Time Media NBI [72], a northbound API for
multimedia applications, it mainly uses parameters such as bandwidth and other properties
which are unsuitable for hard real-time applications.

Another important line of work is the integration of heterogeneous communication technologies
into the data plane. In particular, the use of wireless segments and 5G technology are of
great importance in the industrial landscape [40], [45]. Besides the challenges posed by
the MAC layer in order to provide timeless and reliability guarantees, wireless technologies
also exhibit limitations on flexible management and real-time monitoring [40]. Thus, the
herein enhanced control plane could be of significant value to overcome the aforementioned
management and monitoring short-comings. In fact, a first step towards the use of the herein
developed OpenFlow extensions was carried by Paulo Ribeiro et al. [128].

Finally, as the vision for the future industrial landscape entails a massive presence of machine-
to-machine (M2M) communications, the integration of enabling M2M protocols, such as
OPC-UA and MQTT, is a natural, following step. The SDN framework could be exploited by
these protocols to, for example, dynamically and autonomously configure channels for M2M
communication with the necessary real-time guarantees.

References

[1] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, “On the adequacy of SDN and TSN for industry
4.0”, in 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC),
IEEE, May 2019. doi: 10.1109/isorc.2019.00017. [Online]. Available: https://doi.org/10.1109%
2Fisorc.2019.00017.

[2] L. Silva, P. Goncalves, R. Marau, P. Pedreiras, and L. Almeida, “Extending OpenFlow with flexible time-
triggered real-time communication services”, in 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), IEEE, Sep. 2017. doi: 10.1109/etfa.2017.8247595.
[Online]. Available: https://doi.org/10.1109%2Fetfa.2017.8247595.

[3] L. Silva, P. Goncalves, R. Marau, and P. Pedreiras, “Extending OpenFlow with industrial grade
communication services”, in 2017 IEEE 13th International Workshop on Factory Communication
Systems (WFCS), IEEE, May 2017. doi: 10.1109/wfcs.2017.7991965. [Online]. Available: https:
//doi.org/10.1109%2Fwfcs.2017.7991965.

[4] M. Ashjaei, L. Silva, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, and T. Nolte, “Improved
message forwarding for multi-hop HaRTES real-time ethernet networks”, Journal of Signal Processing
Systems, vol. 84, no. 1, pp. 47–67, May 2015. doi: 10.1007/s11265-015-1010-8. [Online]. Available:
https://doi.org/10.1007%5C%2Fs11265-015-1010-8.

[5] L. Silva, P. Pedreiras, M. Ashjaei, M. Behnam, T. Nolte, L. Almeida, and R. J. Bril, “Demonstrating
the multi-hop capabilities of the hartes real-time ethernet switch”, in RTSS@Work 2014 Open Demo
Session of RealTime Systems, 2014.

[6] L. Almeida, “Flexibility and timeliness in fieldbus-based real-time systems”, PhD thesis, Universidade
de Aveiro, 1999.

[7] B. Galloway and G. P. Hancke, “Introduction to industrial control networks”, IEEE Communications
Surveys & Tutorials, vol. 15, no. 2, pp. 860–880, 2013. doi: 10.1109/surv.2012.071812.00124.
[Online]. Available: https://doi.org/10.1109%2Fsurv.2012.071812.00124.

[8] J.-P. Thomesse, “Fieldbus technology in industrial automation”, Proceedings of the IEEE, vol. 93,
no. 6, pp. 1073–1101, Jun. 2005, issn: 0018-9219. doi: 10.1109/JPROC.2005.849724.

[9] IEEE standard for local area networks: Token ring access method and physical layer specifications. doi:
10.1109/ieeestd.1989.108547. [Online]. Available: https://doi.org/10.1109%2Fieeestd.1989.
108547.

[10] IEEE standard for ethernet. doi: 10 . 1109 / ieeestd . 2016 . 7428776. [Online]. Available: https :
//doi.org/10.1109%2Fieeestd.2016.7428776.

[11] Ansi/isa–50.1–1982 (r1992)- compatibility of analog signals for electronic industrial process instruments,
1982. [Online]. Available: https://standards.globalspec.com/std/335354/isa-50-1.

[12] R. Zurawski, Industrial communication technology handbook. CRC Press, 2017.

[13] E. Jasperneite and P. Neumann, “Switched ethernet for factory communication”, in ETFA 2001.
8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat.
No.01TH8597), IEEE. doi: 10.1109/etfa.2001.996370. [Online]. Available: https://doi.org/10.
1109%2Fetfa.2001.996370.

[14] T. Sauter, “The three generations of field-level networks—evolution and compatibility issues”, IEEE
Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3585–3595, Nov. 2010. doi: 10.1109/tie.
2010.2062473. [Online]. Available: https://doi.org/10.1109%2Ftie.2010.2062473.

[15] C. Cseh and J. Jasperneite, “Emerging data transfer technologies for factory communication”, in
IECON ’98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society
(Cat. No.98CH36200), IEEE. doi: 10.1109/iecon.1998.724048. [Online]. Available: https://doi.
org/10.1109%2Fiecon.1998.724048.

137

https://doi.org/10.1109/isorc.2019.00017
https://doi.org/10.1109%2Fisorc.2019.00017
https://doi.org/10.1109%2Fisorc.2019.00017
https://doi.org/10.1109/etfa.2017.8247595
https://doi.org/10.1109%2Fetfa.2017.8247595
https://doi.org/10.1109/wfcs.2017.7991965
https://doi.org/10.1109%2Fwfcs.2017.7991965
https://doi.org/10.1109%2Fwfcs.2017.7991965
https://doi.org/10.1007/s11265-015-1010-8
https://doi.org/10.1007%5C%2Fs11265-015-1010-8
https://doi.org/10.1109/surv.2012.071812.00124
https://doi.org/10.1109%2Fsurv.2012.071812.00124
https://doi.org/10.1109/JPROC.2005.849724
https://doi.org/10.1109/ieeestd.1989.108547
https://doi.org/10.1109%2Fieeestd.1989.108547
https://doi.org/10.1109%2Fieeestd.1989.108547
https://doi.org/10.1109/ieeestd.2016.7428776
https://doi.org/10.1109%2Fieeestd.2016.7428776
https://doi.org/10.1109%2Fieeestd.2016.7428776
https://standards.globalspec.com/std/335354/isa-50-1
https://doi.org/10.1109/etfa.2001.996370
https://doi.org/10.1109%2Fetfa.2001.996370
https://doi.org/10.1109%2Fetfa.2001.996370
https://doi.org/10.1109/tie.2010.2062473
https://doi.org/10.1109/tie.2010.2062473
https://doi.org/10.1109%2Ftie.2010.2062473
https://doi.org/10.1109/iecon.1998.724048
https://doi.org/10.1109%2Fiecon.1998.724048
https://doi.org/10.1109%2Fiecon.1998.724048

138 REFERENCES

[16] A. F. T. Committee et al., “Traffic management specification version 4.0”, in ATM Forum contribution,
1995, 95–0013R10.

[17] J. Dwyer, “Why general motors’ manufacturing automation protocol is here to stay”, Automation,
vol. 21, no. 5, pp. 19–21, 1985.

[18] N. Collins, “Boeing architecture and top (technical and office protocol)”, in Proc. Int. Conf. Networking:
A Large Organization Perspective, 1986, pp. 49–54.

[19] M. Gault and J. Lobert, “Contribution for the fieldbus standard”, Presentation to IEC/TC65/SC65C/WG6,
1985.

[20] H. Frazier, “The 802.3z gigabit ethernet standard”, IEEE Network, vol. 12, no. 3, pp. 6–7, 1998. doi:
10.1109/65.690946. [Online]. Available: https://doi.org/10.1109%2F65.690946.

[21] J. Guillaud, M. R. Pokam, and G. Michel, “Information superhighway enters the manufacturing world”,
in Third IEEE Workshop on the Architecture and Implementation of High Performance Communication
Subsystems, Aug. 1995, pp. 210–215. doi: 10.1109/HPCS.1995.662031.

[22] L. L. Bello, M. Lorefice, O. Mirabella, and S. Oliveri, “Performances analysis of ethernet networks in the
process control”, in ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial
Electronics (Cat. No.00TH8543), vol. 2, Dec. 2000, 655–660 vol.2. doi: 10.1109/ISIE.2000.930375.

[23] “Ieee standard for local and metropolitan area networks–bridges and bridged networks”, IEEE Std
802.1Q-2014 (Revision of IEEE Std 802.1Q-2011), pp. 1–1832, Dec. 2014. doi: 10.1109/IEEESTD.
2014.6991462.

[24] Hirschmann Network Systems, “Real Time Services (QoS) In Ethernet Based Industrial Automation
Networks”, Tech. Rep., 1999.

[25] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communication over COTS ethernet
switches”, in 2006 IEEE International Workshop on Factory Communication Systems, IEEE, 2006. doi:
10.1109/wfcs.2006.1704170. [Online]. Available: https://doi.org/10.1109%2Fwfcs.2006.1704170.

[26] EtherNet/IP – CIP on Ethernet Technology, 2016. [Online]. Available: https://www.odva.org/
Portals/0/Library/Publications_Numbered/PUB00138R6_Tech-Series-EtherNetIP.pdf.

[27] PROFINET - the leading Industrial Ethernet Standard. [Online]. Available: https://www.profibus.
com/technology/profinet/ (visited on 09/01/2018).

[28] TTTech), Time-Triggered Ethernet – A Powerful Network Solution for Multiple Purpose. [Online].
Available: https://www.tttech.com/fileadmin/content/general/secure/TTEthernet/TTTech_
TTEthernet_Technical-Whitepaper.pdf (visited on 09/01/2018).

[29] R. Santos, “Enhanced ethernet switching technology for adaptive hard real-time applications”, PhD
thesis, Universidade de Aveiro, 2007.

[30] IEEE 802.1 Working Group, Time-sensitive networking task group. [Online]. Available: http://www.
ieee802.org/1/pages/tsn.html (visited on 11/22/2017).

[31] J. Morse, The world market for industrial ethernet components, 2011. [Online]. Available: http:
//www.iebmedia.com/index.php?id=8595&parentid=74&themeid=255&showdetail=true&bb=true
(visited on 08/20/2018).

[32] T. Carlsson, Industrial ethernet is now bigger than fieldbuses, 2018. [Online]. Available: https://www.
anybus.com/about-us/news/2018/02/16/industrial-ethernet-is-now-bigger-than-fieldbuses
(visited on 08/20/2018).

[33] M. Beck, Ethernet in the First Mile: The IEEE 802.3ah EFM Standard, ser. McGraw-Hill professional
engineering: Communications engineering. McGraw-Hill Education, 2005, isbn: 9780071469913.

[34] Plattform Industrie 4.0. [Online]. Available: https://www.plattform-i40.de/ (visited on 08/20/2018).

[35] M. Blanchet, T. Rinn, G. Von Thaden, and G. De Thieulloy, “Industry 4.0: The new industrial
revolution - how europe will succeed”, Hg. v. Roland Berger Strategy Consultants GmbH. München,

https://doi.org/10.1109/65.690946
https://doi.org/10.1109%2F65.690946
https://doi.org/10.1109/HPCS.1995.662031
https://doi.org/10.1109/ISIE.2000.930375
https://doi.org/10.1109/IEEESTD.2014.6991462
https://doi.org/10.1109/IEEESTD.2014.6991462
https://doi.org/10.1109/wfcs.2006.1704170
https://doi.org/10.1109%2Fwfcs.2006.1704170
https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00138R6_Tech-Series-EtherNetIP.pdf
https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00138R6_Tech-Series-EtherNetIP.pdf
https://www.profibus.com/technology/profinet/
https://www.profibus.com/technology/profinet/
https://www.tttech.com/fileadmin/content/general/secure/TTEthernet/TTTech_TTEthernet_Technical-Whitepaper.pdf
https://www.tttech.com/fileadmin/content/general/secure/TTEthernet/TTTech_TTEthernet_Technical-Whitepaper.pdf
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://www.iebmedia.com/index.php?id=8595&parentid=74&themeid=255&showdetail=true&bb=true
http://www.iebmedia.com/index.php?id=8595&parentid=74&themeid=255&showdetail=true&bb=true
https://www.anybus.com/about-us/news/2018/02/16/industrial-ethernet-is-now-bigger-than-fieldbuses
https://www.anybus.com/about-us/news/2018/02/16/industrial-ethernet-is-now-bigger-than-fieldbuses
https://www.plattform-i40.de/

139

2014. [Online]. Available: https://www.rolandberger.com/publications/publication_pdf/roland_
berger_tab_industry_4_0_20140403.pdf (visited on 08/20/2018).

[36] R. C. Schläpfer, M. Koch, and P. Merkhofer, “Industry 4.0 challenges and solutions for the digital
transformation and use of exponential technologies”, Deloitte, Zurique, 2015. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch- en-
manufacturing-industry-4-0-24102014.pdf (visited on 09/20/2018).

[37] E. S. Jacek Walendowski Henning Kroll, “Industry 4.0, advanced materials (nanotechnology)”, Regional
Innovation Monitor Plus 2016, 2016. [Online]. Available: https://ec.europa.eu/growth/tools-
databases/regional-innovation-monitor/sites/default/files/report/RIM%5C%20Plus_Indu
stry%5C%204.0%5C%2C%5C%20Advanced%5C%20Materials%5C%20%5C%28Nanotechnology%5C%29_
Thematic%5C%20paper.pdf (visited on 09/20/2018).

[38] ITU-T, “Recommendation itu-t y.2060: Overview of the internet of things”, SERIES Y: GLOBAL IN-
FORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION
NETWORKS, 2012. [Online]. Available: http://handle.itu.int/11.1002/1000/11559 (visited on
09/20/2018).

[39] V. Koch, S. Kuge, R. Geissbauer, and S. Schrauf, “Industry 4.0: Opportunities and challenges of the
industrial internet”, Strategy & PwC, 2014. [Online]. Available: https://www.pwc.nl/en/assets/
documents/pwc-industrie-4-0.pdf (visited on 09/22/2018).

[40] J.-S. Bedo, E. Calvanese, S. Castellvi, T. Cherif, V. Frascolla, W. Haerick, I. Korthals, O. Lazaro,
E. Sutedjo, L. Usatorre, and M. Wollschlaeger, White paper on factories of the future vertical sector,
2015. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-
on-Factories-of-the-Future-Vertical-Sector.pdf.

[41] Status report: Reference architecture model industrie 4.0 (rami4.0), 2015. [Online]. Available: https:
//www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/5305_Publikation_GMA_
Status_Report_ZVEI_Reference_Architecture_Model.pdf.

[42] Working paper: Aspects of the research roadmap in application scenarios, 2016. [Online]. Available:
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-
research-roadmap.pdf?__blob=publicationFile&v=10.

[43] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation
networks in the era of the internet of things and industry 4.0”, IEEE Industrial Electronics Magazine,
vol. 11, no. 1, pp. 17–27, 2017.

[44] Discussion paper: Network-based communication for industrie 4.0, 2016. [Online]. Available: https:
//www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/network-based-communicat
ion-for-i40.pdf?__blob=publicationFile&v=6.

[45] Etsi ts 122 261 v15.5.0 - 5g : Service requirements for next generation new services and markets, 2018.
[Online]. Available: https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/15.05.00_60/
ts_122261v150500p.pdf.

[46] W. Lepuschitz, “Self-Reconfigurable Manufacturing Control based on Ontology-Driven Automation
Agents”, PhD thesis, Technische Universität Wien, 2018. [Online]. Available: http://repositum.
tuwien.ac.at/obvutwhs/content/titleinfo/2582212?lang=en.

[47] T. Bangemann, M. Riedl, M. Thron, and C. Diedrich, “Integration of Classical Components Into
Industrial Cyber–Physical Systems”, Proceedings of the IEEE, vol. 104, no. 5, pp. 947–959, May 2016,
issn: 0018-9219. doi: 10.1109/JPROC.2015.2510981.

[48] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of realizing a future industrial network
by means of Software-Defined Networking (SDN)”, in 2016 IEEE World Conference on Factory
Communication Systems (WFCS), May 2016, pp. 1–4. doi: 10.1109/WFCS.2016.7496525.

[49] G. C. Buttazzo, Hard Real-Time Computing Systems : Predictable Scheduling Algorithms and Ap-
plications. Springer US, 2011. doi: 10 . 1007 / 978 - 1 - 4614 - 0676 - 1. [Online]. Available: https :
//doi.org/10.1007%2F978-1-4614-0676-1.

https://www.rolandberger.com/publications/publication_pdf/roland_berger_tab_industry_4_0_20140403.pdf
https://www.rolandberger.com/publications/publication_pdf/roland_berger_tab_industry_4_0_20140403.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/sites/default/files/report/RIM%5C%20Plus_Industry%5C%204.0%5C%2C%5C%20Advanced%5C%20Materials%5C%20%5C%28Nanotechnology%5C%29_Thematic%5C%20paper.pdf
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/sites/default/files/report/RIM%5C%20Plus_Industry%5C%204.0%5C%2C%5C%20Advanced%5C%20Materials%5C%20%5C%28Nanotechnology%5C%29_Thematic%5C%20paper.pdf
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/sites/default/files/report/RIM%5C%20Plus_Industry%5C%204.0%5C%2C%5C%20Advanced%5C%20Materials%5C%20%5C%28Nanotechnology%5C%29_Thematic%5C%20paper.pdf
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/sites/default/files/report/RIM%5C%20Plus_Industry%5C%204.0%5C%2C%5C%20Advanced%5C%20Materials%5C%20%5C%28Nanotechnology%5C%29_Thematic%5C%20paper.pdf
http://handle.itu.int/11.1002/1000/11559
https://www.pwc.nl/en/assets/documents/pwc-industrie-4-0.pdf
https://www.pwc.nl/en/assets/documents/pwc-industrie-4-0.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
https://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf
https://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf
https://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf?__blob=publicationFile&v=10
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf?__blob=publicationFile&v=10
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/network-based-communication-for-i40.pdf?__blob=publicationFile&v=6
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/network-based-communication-for-i40.pdf?__blob=publicationFile&v=6
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/network-based-communication-for-i40.pdf?__blob=publicationFile&v=6
https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/15.05.00_60/ts_122261v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/15.05.00_60/ts_122261v150500p.pdf
http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/2582212?lang=en
http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/2582212?lang=en
https://doi.org/10.1109/JPROC.2015.2510981
https://doi.org/10.1109/WFCS.2016.7496525
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007%2F978-1-4614-0676-1
https://doi.org/10.1007%2F978-1-4614-0676-1

140 REFERENCES

[50] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment”, J. ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973, issn: 0004-5411. doi: 10.1145/321738.
321743. [Online]. Available: http://doi.acm.org/10.1145/321738.321743.

[51] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling soft-aperiodic tasks in
fixed-priority preemptive systems”, in [1992] Proceedings Real-Time Systems Symposium, Dec. 1992,
pp. 110–123. doi: 10.1109/REAL.1992.242671.

[52] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced aperiodic responsiveness in hard real-time
environments”, IEEE Trans. Computers, vol. 44, pp. 73–91, 1987.

[53] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments”, IEEE Transactions on Computers, vol. 44, no. 1,
pp. 73–91, Jan. 1995, issn: 0018-9340. doi: 10.1109/12.368008.

[54] J. L. Brinkley Sprunt Lui Sha, “Aperiodic task scheduling for real-time systems”, AAI9107570, PhD
thesis, Pittsburgh, PA, USA, 1990.

[55] T.-S. Tia, J. W.-S. Liu, and M. Shankar, “Algorithms and optimality of scheduling soft aperiodic
requests in fixed-priority preemptive systems”, Real-Time Syst., vol. 10, no. 1, pp. 23–43, Jan. 1996, issn:
0922-6443. doi: 10.1007/BF00357882. [Online]. Available: http://dx.doi.org/10.1007/BF00357882.

[56] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems”, Real-Time
Systems, vol. 10, pp. 179–210, Mar. 1996. doi: 10.1007/BF00360340.

[57] M. Joseph and P. Pandya, “Finding response times in a real-time system”, The Computer Journal,
vol. 29, no. 5, pp. 390–395, 1986. doi: 10.1093/comjnl/29.5.390. eprint: /oup/backfile/content_
public/journal/comjnl/29/5/10.1093/comjnl/29.5.390/2/290390.pdf. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/29.5.390.

[58] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling theory
to static priority pre-emptive scheduling”, Software Engineering Journal, vol. 8, no. 5, pp. 284–292,
Sep. 1993, issn: 0268-6961. doi: 10.1049/sej.1993.0034.

[59] Z. Deng and J. W. .-.-. Liu, “Scheduling real-time applications in an open environment”, in Proceedings
Real-Time Systems Symposium, Dec. 1997, pp. 308–319. doi: 10.1109/REAL.1997.641292.

[60] M. Holenderski, R. J. Bril, and J. J. Lukkien, “An efficient hierarchical scheduling framework for the
automotive domain”, in Real-Time Systems, Architecture, Scheduling, and Application, InTech, 2012.

[61] I. Shin and I. Lee, “Compositional real-time scheduling framework with periodic model”, ACM Trans.
Embed. Comput. Syst., vol. 7, no. 3, 30:1–30:39, May 2008, issn: 1539-9087. doi: 10.1145/1347375.
1347383. [Online]. Available: http://doi.acm.org/10.1145/1347375.1347383.

[62] ——, “Periodic resource model for compositional real-time guarantees”, in RTSS 2003. 24th IEEE
Real-Time Systems Symposium, 2003, Dec. 2003, pp. 2–13. doi: 10.1109/REAL.2003.1253249.

[63] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework using edp resource models”,
in 28th IEEE International Real-Time Systems Symposium (RTSS 2007), Dec. 2007, pp. 129–138. doi:
10.1109/RTSS.2007.36.

[64] H. Kopetz, Real-Time Systems. Springer US, 2011. doi: 10.1007/978-1-4419-8237-7. [Online].
Available: https://doi.org/10.1007%2F978-1-4419-8237-7.

[65] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms. Prentice-Hall,
2007.

[66] P. Pedreiras, “Supporting flexible real-time communication on distributed systems”, PhD thesis,
Universidade de Aveiro, 2003.

[67] M. Ashjaei, “Real-time communication over switched ethernet with resource reservation”, PhD thesis,
Malardalen University, Nov. 2016. [Online]. Available: http://www.es.mdh.se/publications/4564-.

[68] T. N. D. and K. Gray, SDN: Software Defined Networks, 1st. O’Reilly Media, Inc., 2013, isbn:
1449342302, 9781449342302.

https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
https://doi.org/10.1109/REAL.1992.242671
https://doi.org/10.1109/12.368008
https://doi.org/10.1007/BF00357882
http://dx.doi.org/10.1007/BF00357882
https://doi.org/10.1007/BF00360340
https://doi.org/10.1093/comjnl/29.5.390
/oup/backfile/content_public/journal/comjnl/29/5/10.1093/comjnl/29.5.390/2/290390.pdf
/oup/backfile/content_public/journal/comjnl/29/5/10.1093/comjnl/29.5.390/2/290390.pdf
http://dx.doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1109/REAL.1997.641292
https://doi.org/10.1145/1347375.1347383
https://doi.org/10.1145/1347375.1347383
http://doi.acm.org/10.1145/1347375.1347383
https://doi.org/10.1109/REAL.2003.1253249
https://doi.org/10.1109/RTSS.2007.36
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007%2F978-1-4419-8237-7
http://www.es.mdh.se/publications/4564-

141

[69] Ciscoworks lan management solution (lms) version 4.0. [Online]. Available: https://www.cisco.
com/c/en/us/products/collateral/cloud-systems-management/ciscoworks-lan-management-
solution-3-2-earlier/white_paper_c11-542881.html.

[70] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of programmable
networks”, SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014, issn: 0146-
4833. doi: 10.1145/2602204.2602219. [Online]. Available: http://doi.acm.org/10.1145/2602204.
2602219.

[71] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-defined networking: A comprehensive survey”, Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, Jan. 2015, issn: 0018-9219. doi: 10.1109/JPROC.2014.2371999.

[72] “Onf tr-523: Intent nbi – definition and principles”, Open Networking Foundation, 2016. [Online].
Available: https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/
2014/10/TR-523_Intent_Definition_Principles.pdf (visited on 01/12/2018).

[73] “Openflow switch specification version 1.5.0 (protocol version 0x06)”, Open Networking Foundation,
pp. 1–277, Dec. 2014. [Online]. Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
(visited on 07/12/2018).

[74] M. Ehrlich et al., “Software-Defined Networking as an Enabler for Future Industrial Network Manage-
ment”, in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 1, Sep. 2018, pp. 1109–1112. doi: 10.1109/ETFA.2018.8502561.

[75] G. Kálmán, “Applicability of Software Defined Networking in industrial Ethernet”, in Proceedings
of the 22nd Telecommunications Forum Telfor (TELFOR), Nov. 2014, pp. 340–343. doi: 10.1109/
TELFOR.2014.7034420.

[76] D. Thiele and R. Ernst, “Formal analysis based evaluation of software defined networking for time-
sensitive Ethernet”, in 2016 Design, Automation Test in Europe Conf. (DATE), Mar. 2016, pp. 31–
36.

[77] M. Herlich, J. L. Du, F. Schörghofer, and P. Dorfinger, “Proof-of-concept for a software-defined real-
time Ethernet”, in 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2016, pp. 1–4. doi: 10.1109/ETFA.2016.7733605.

[78] C. Ternon, J. Goossens, and J.-M. Dricot, “FTT-OpenFlow, on the Way Towards Real-time SDN”,
SIGBED Rev., vol. 13, no. 4, pp. 49–54, Nov. 2016, issn: 1551-3688. doi: 10.1145/3015037.3015045.

[79] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive Software-defined Network (TSSDN) for
Real-time Applications”, in Proceedings of the 24th International Conference on Real-Time Networks
and Systems, ser. RTNS ’16, Brest, France: ACM, 2016, pp. 193–202, isbn: 978-1-4503-4787-7. doi:
10.1145/2997465.2997487.

[80] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, “Software defined networking for communication
and control of cyber-physical systems”, in 2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS), Dec. 2015, pp. 803–808. doi: 10.1109/ICPADS.2015.107.

[81] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of Multiple Packet Schedulers for
Improving QoS on OpenFlow/SDN Networking”, in 2013 Second European Workshop on Software
Defined Networks, Oct. 2013, pp. 81–86. doi: 10.1109/EWSDN.2013.20.

[82] “Ieee standard for local and metropolitan area networks: Media access control (mac) bridges”, IEEE
Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998), pp. 1–277, Jun. 2004. doi: 10.1109/IEEESTD.
2004.94569.

[83] J.-D. Decotignie, “Ethernet-based real-time and industrial communications”, Proceedings of the IEEE,
vol. 93, no. 6, pp. 1102–1117, Jun. 2005. doi: 10.1109/jproc.2005.849721. [Online]. Available:
https://doi.org/10.1109%2Fjproc.2005.849721.

[84] D. I. Katcher, S. S. Sathaye, and J. K. Strosnider, “Fixed priority scheduling with limited priority
levels”, IEEE Transactions on Computers, vol. 44, no. 9, pp. 1140–1144, 1995, issn: 0018-9340. doi:
10.1109/12.464392.

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/ciscoworks-lan-management-solution-3-2-earlier/white_paper_c11-542881.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/ciscoworks-lan-management-solution-3-2-earlier/white_paper_c11-542881.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/ciscoworks-lan-management-solution-3-2-earlier/white_paper_c11-542881.html
https://doi.org/10.1145/2602204.2602219
http://doi.acm.org/10.1145/2602204.2602219
http://doi.acm.org/10.1145/2602204.2602219
https://doi.org/10.1109/JPROC.2014.2371999
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://doi.org/10.1109/ETFA.2018.8502561
https://doi.org/10.1109/TELFOR.2014.7034420
https://doi.org/10.1109/TELFOR.2014.7034420
https://doi.org/10.1109/ETFA.2016.7733605
https://doi.org/10.1145/3015037.3015045
https://doi.org/10.1145/2997465.2997487
https://doi.org/10.1109/ICPADS.2015.107
https://doi.org/10.1109/EWSDN.2013.20
https://doi.org/10.1109/IEEESTD.2004.94569
https://doi.org/10.1109/IEEESTD.2004.94569
https://doi.org/10.1109/jproc.2005.849721
https://doi.org/10.1109%2Fjproc.2005.849721
https://doi.org/10.1109/12.464392

142 REFERENCES

[85] Industrial communication networks - Profiles - Part 2: Additional fieldbus profiles for real-time networks
based on ISO/IEC 8802-3. [Online]. Available: https://webstore.iec.ch/publication/5879#
additionalinfo.

[86] IEEE 61158-2017 - IEEE Standard for Industrial Hard Real-Time Communication, 2017. doi: 10.
1109/IEEESTD.2017.8024204.

[87] ARINC 664 P7 - Aircraft Data Network Part 7 - Avionics Full-Duplex Switched Ethernet, 2005.

[88] C. Venkatramani and T.-c. Chiueh, “Design and implementation of a real-time switch for segmented
ethernets”, in Proceedings 1997 International Conference on Network Protocols, Oct. 1997, pp. 152–161.
doi: 10.1109/ICNP.1997.643709.

[89] The Common Industrial Protocol (CI) and the Family of CIP Network, 2016. [Online]. Available: https:
//www.odva.org/Portals/0/Library/Publications_Numbered/PUB00123R1_Common-Industrial_
Protocol_and_Family_of_CIP_Networks.pdf.

[90] PROFIBUS International), PROFINET - Real Time Communication. [Online]. Available: http :
//www.profibus.org.pl/index.php?option=com_docman&task=doc_view&gid=28 (visited on
09/11/2018).

[91] AUTOSAR. [Online]. Available: https://www.autosar.org/ (visited on 09/06/2018).

[92] J. Littlefield-Lawwill and R. Viswanathan, “Advancing open standards in integrated modular avionics:
An industry analysis”, in 2007 IEEE/AIAA 26th Digital Avionics Systems Conference, Oct. 2007,
2.B.1-1-2.B.1-14. doi: 10.1109/DASC.2007.4391848.

[93] IEC 61499. [Online]. Available: http://www.iec61499.de/ (visited on 09/06/2018).

[94] “Ieee standard for local and metropolitan area networks - timing and synchronization for time-sensitive
applications in bridged local area networks”, IEEE Std 802.1AS-2011, pp. 1–292, Mar. 2011. doi:
10.1109/IEEESTD.2011.5741898.

[95] IEEE draft standard for local and metropolitan area networks - timing and synchronization for time-
sensitive applications. [Online]. Available: https://1.ieee802.org/tsn/802-1as-rev/.

[96] IEEE standard for local and metropolitan area networks - virtual bridged local area network - amendment
12: Forwarding and queuing enhancements for time-sensitive streams. doi: 10.1109/ieeestd.2009.
5375704. [Online]. Available: https://doi.org/10.1109%2Fieeestd.2009.5375704.

[97] IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment
26: Frame preemption. doi: 10.1109/ieeestd.2016.7553415. [Online]. Available: https://doi.org/
10.1109%2Fieeestd.2016.7553415.

[98] IEEE standard for ethernet amendment 5: Specification and management parameters for interspersing
express traffic. doi: 10.1109/ieeestd.2016.7592835. [Online]. Available: https://doi.org/10.1109%
2Fieeestd.2016.7592835.

[99] IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment
25: Enhancements for scheduled traffic. doi: 10.1109/ieeestd.2016.7440741. [Online]. Available:
https://doi.org/10.1109%2Fieeestd.2016.7440741.

[100] IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment
29: Cyclic queuing and forwarding. doi: 10.1109/ieeestd.2017.7961303. [Online]. Available: https:
//doi.org/10.1109%2Fieeestd.2017.7961303.

[101] IEEE p802.1qcr – bridges and bridged networks amendment: Asynchronous traffic shaping. [Online].
Available: https://1.ieee802.org/tsn/802-1qcr/.

[102] IEEE standard for local and metropolitan area networks–frame replication and elimination for reliability.
doi: 10.1109/ieeestd.2017.8091139. [Online]. Available: https://doi.org/10.1109%2Fieeestd.
2017.8091139.

[103] IEEE standard for local and metropolitan area networks– bridges and bridged networks - amendment
24: Path control and reservation. doi: 10.1109/ieeestd.2016.7434544. [Online]. Available: https:
//doi.org/10.1109%2Fieeestd.2016.7434544.

https://webstore.iec.ch/publication/5879#additionalinfo
https://webstore.iec.ch/publication/5879#additionalinfo
https://doi.org/10.1109/IEEESTD.2017.8024204
https://doi.org/10.1109/IEEESTD.2017.8024204
https://doi.org/10.1109/ICNP.1997.643709
https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf
https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf
https://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00123R1_Common-Industrial_Protocol_and_Family_of_CIP_Networks.pdf
http://www.profibus.org.pl/index.php?option=com_docman&task=doc_view&gid=28
http://www.profibus.org.pl/index.php?option=com_docman&task=doc_view&gid=28
https://www.autosar.org/
https://doi.org/10.1109/DASC.2007.4391848
http://www.iec61499.de/
https://doi.org/10.1109/IEEESTD.2011.5741898
https://1.ieee802.org/tsn/802-1as-rev/
https://doi.org/10.1109/ieeestd.2009.5375704
https://doi.org/10.1109/ieeestd.2009.5375704
https://doi.org/10.1109%2Fieeestd.2009.5375704
https://doi.org/10.1109/ieeestd.2016.7553415
https://doi.org/10.1109%2Fieeestd.2016.7553415
https://doi.org/10.1109%2Fieeestd.2016.7553415
https://doi.org/10.1109/ieeestd.2016.7592835
https://doi.org/10.1109%2Fieeestd.2016.7592835
https://doi.org/10.1109%2Fieeestd.2016.7592835
https://doi.org/10.1109/ieeestd.2016.7440741
https://doi.org/10.1109%2Fieeestd.2016.7440741
https://doi.org/10.1109/ieeestd.2017.7961303
https://doi.org/10.1109%2Fieeestd.2017.7961303
https://doi.org/10.1109%2Fieeestd.2017.7961303
https://1.ieee802.org/tsn/802-1qcr/
https://doi.org/10.1109/ieeestd.2017.8091139
https://doi.org/10.1109%2Fieeestd.2017.8091139
https://doi.org/10.1109%2Fieeestd.2017.8091139
https://doi.org/10.1109/ieeestd.2016.7434544
https://doi.org/10.1109%2Fieeestd.2016.7434544
https://doi.org/10.1109%2Fieeestd.2016.7434544

143

[104] IEEE standard for local and metropolitan area networks–bridges and bridged networks–amendment
28: Per-stream filtering and policing. doi: 10.1109/ieeestd.2017.8064221. [Online]. Available:
https://doi.org/10.1109%2Fieeestd.2017.8064221.

[105] IEEE standard for local and metropolitan area networks—virtual bridged local area networks amendment
14: Stream reservation protocol (SRP). doi: 10.1109/ieeestd.2010.5594972. [Online]. Available:
https://doi.org/10.1109%2Fieeestd.2010.5594972.

[106] IEEE p802.1qcc – stream reservation protocol (srp) enhancements and performance improvements.
[Online]. Available: https://1.ieee802.org/tsn/802-1qcc/.

[107] IEEE p802.1qcp – bridges and bridged networks amendment: Yang data model. [Online]. Available:
https://1.ieee802.org/tsn/802-1qcp/.

[108] IEEE p802.1cs – link-local registration protocol. [Online]. Available: https://1.ieee802.org/tsn/802-
1cs/.

[109] S. S. Craciunas, R. S. Oliver, M. Chmelık, and W. Steiner, “Scheduling real-time communication
in ieee 802.1qbv time sensitive networks”, in Proceedings of the 24th International Conference on
Real-Time Networks and Systems, ser. RTNS ’16, Brest, France: ACM, 2016, pp. 183–192, isbn:
978-1-4503-4787-7. doi: 10.1145/2997465.2997470. [Online]. Available: http://doi.acm.org/10.
1145/2997465.2997470.

[110] J. Ko, J. Lee, C. Park, and S. Park, “Research on optimal bandwidth allocation for the scheduled
traffic in ieee 802.1 avb”, in 2015 IEEE International Conference on Vehicular Electronics and Safety
(ICVES), Nov. 2015, pp. 31–35. doi: 10.1109/ICVES.2015.7396889.

[111] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design optimisation of cyber-physical dis-
tributed systems using ieee time-sensitive networks”, IET Cyber-Physical Systems: Theory Applications,
vol. 1, no. 1, pp. 86–94, 2016, issn: 2398-3396. doi: 10.1049/iet-cps.2016.0021.

[112] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for ieee 802.1qbv time sensitive
networks using network calculus”, IEEE Access, vol. 6, pp. 41 803–41 815, 2018, issn: 2169-3536. doi:
10.1109/ACCESS.2018.2858767.

[113] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (tsn) for mixed-criticality industrial
applications”, in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS),
Jun. 2018, pp. 1–4. doi: 10.1109/WFCS.2018.8402374.

[114] I. Álvarez, J. Proenza, and M. Barranco, “Mixing time and spatial redundancy over time sensitive
networking”, in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), Jun. 2018, pp. 63–64. doi: 10.1109/DSN-W.2018.00031.

[115] I. Álvarez, J. Proenza, M. Barranco, and M. Knezic, “Towards a time redundancy mechanism for
critical frames in time-sensitive networking”, in 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Sep. 2017, pp. 1–4. doi: 10.1109/ETFA.2017.8247721.

[116] P. Pedreiras and A. Luis, “The flexible time-triggered (FTT) paradigm: An approach to QoS man-
agement in distributed real-time systems”, in Proceedings International Parallel and Distributed
Processing Symposium, IEEE Comput. Soc. doi: 10.1109/ipdps.2003.1213243. [Online]. Available:
https://doi.org/10.1109%2Fipdps.2003.1213243.

[117] NetFPGA ORG, Netfpga home page. [Online]. Available: http://netfpga.org/site/#/ (visited on
12/06/2017).

[118] M. Ashjaei, P. Pedreiras, M. Behnam, R. J. Bril, L. Almeida, and T. Nolte, “Response time analysis of
multi-hop HaRTES ethernet switch networks”, in 2014 10th IEEE Workshop on Factory Communication
Systems (WFCS 2014), IEEE, May 2014. doi: 10.1109/wfcs.2014.6837579. [Online]. Available:
https://doi.org/10.1109%2Fwfcs.2014.6837579.

[119] M. Ashjaei, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, and T. Nolte, “Reduced buffering solution
for multi-hop HaRTES switched ethernet networks”, in 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, IEEE, Aug. 2014. doi: 10.1109/rtcsa.
2014.6910504. [Online]. Available: https://doi.org/10.1109%2Frtcsa.2014.6910504.

https://doi.org/10.1109/ieeestd.2017.8064221
https://doi.org/10.1109%2Fieeestd.2017.8064221
https://doi.org/10.1109/ieeestd.2010.5594972
https://doi.org/10.1109%2Fieeestd.2010.5594972
https://1.ieee802.org/tsn/802-1qcc/
https://1.ieee802.org/tsn/802-1qcp/
https://1.ieee802.org/tsn/802-1cs/
https://1.ieee802.org/tsn/802-1cs/
https://doi.org/10.1145/2997465.2997470
http://doi.acm.org/10.1145/2997465.2997470
http://doi.acm.org/10.1145/2997465.2997470
https://doi.org/10.1109/ICVES.2015.7396889
https://doi.org/10.1049/iet-cps.2016.0021
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1109/WFCS.2018.8402374
https://doi.org/10.1109/DSN-W.2018.00031
https://doi.org/10.1109/ETFA.2017.8247721
https://doi.org/10.1109/ipdps.2003.1213243
https://doi.org/10.1109%2Fipdps.2003.1213243
http://netfpga.org/site/#/
https://doi.org/10.1109/wfcs.2014.6837579
https://doi.org/10.1109%2Fwfcs.2014.6837579
https://doi.org/10.1109/rtcsa.2014.6910504
https://doi.org/10.1109/rtcsa.2014.6910504
https://doi.org/10.1109%2Frtcsa.2014.6910504

144 REFERENCES

[120] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible, real-time and consistent multicast
in FTT/HaRTES switched ethernet”, in 2013 IEEE 18th Conference on Emerging Technologies &
Factory Automation (ETFA), IEEE, Sep. 2013. doi: 10.1109/etfa.2013.6648153. [Online]. Available:
https://doi.org/10.1109%2Fetfa.2013.6648153.

[121] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pedreiras, “Towards preventing error
propagation in a real-time ethernet switch”, in 2013 IEEE 18th Conference on Emerging Technologies &
Factory Automation (ETFA), IEEE, Sep. 2013. doi: 10.1109/etfa.2013.6648140. [Online]. Available:
https://doi.org/10.1109%2Fetfa.2013.6648140.

[122] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a flexible time-triggered replicated
star for ethernet”, in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA), IEEE, Sep. 2013. doi: 10.1109/etfa.2013.6648137. [Online]. Available: https://doi.org/
10.1109%2Fetfa.2013.6648137.

[123] Ryu sdn framework. [Online]. Available: https://osrg.github.io/ryu/ (visited on 10/13/2018).

[124] Networkx : Software for complex networks. [Online]. Available: https://networkx.github.io/ (visited
on 10/16/2018).

[125] Openflow software switch 1.3. [Online]. Available: http://cpqd.github.io/ofsoftswitch13/ (visited
on 10/13/2018).

[126] C. Liu, F. Li, G. Chen, and X. Huang, “TTEthernet Transmission in Software-Defined Distributed
Robot Intelligent Control System”, Wireless Communications and Mobile Computing, vol. 2018, pp. 1–
13, Jul. 2018. doi: 10.1155/2018/8589343.

[127] J. Farkas, Introduction to IEEE 802.1 : Focus on the time-sensitive networking task group. [Online].
Available: http://www.ieee802.org/1/files/public/docs2017/tsn-farkas-intro-0517-v01.pdf
(visited on 11/22/2017).

[128] P. A. Ribeiro, L. Duoba, R. Prior, S. Crisostomo, and L. Almeida, “Real-Time Wireless Data Plane
for Real-Time-Enabled SDN”, in 2019 IEEE World Conference on Factory Communication Systems
(WFCS), May 2019, pp. 1–4. doi: 10.1109/WFCS.2019.8757951.

https://doi.org/10.1109/etfa.2013.6648153
https://doi.org/10.1109%2Fetfa.2013.6648153
https://doi.org/10.1109/etfa.2013.6648140
https://doi.org/10.1109%2Fetfa.2013.6648140
https://doi.org/10.1109/etfa.2013.6648137
https://doi.org/10.1109%2Fetfa.2013.6648137
https://doi.org/10.1109%2Fetfa.2013.6648137
https://osrg.github.io/ryu/
https://networkx.github.io/
http://cpqd.github.io/ofsoftswitch13/
https://doi.org/10.1155/2018/8589343
http://www.ieee802.org/1/files/public/docs2017/tsn-farkas-intro-0517-v01.pdf
https://doi.org/10.1109/WFCS.2019.8757951

APPENDIX A
List of publications and

communications

A.1 Core publications

1. L. Silva, P. Pedreiras, P. Fonseca, et al., “On the adequacy of SDN and TSN for industry
4.0”, in 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing
(ISORC), IEEE, May 2019. doi: 10.1109/isorc.2019.00017. [Online]. Available:
https://doi.org/10.1109%2Fisorc.2019.00017

2. L. Silva, P. Goncalves, R. Marau, et al., “Extending OpenFlow with flexible time-
triggered real-time communication services”, in 2017 22nd IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), IEEE, Sep. 2017.
doi: 10.1109/etfa.2017.8247595. [Online]. Available: https://doi.org/10.1109%
2Fetfa.2017.8247595

3. L. Silva, P. Goncalves, R. Marau, et al., “Extending OpenFlow with industrial grade
communication services”, in 2017 IEEE 13th International Workshop on Factory Com-
munication Systems (WFCS), IEEE, May 2017. doi: 10.1109/wfcs.2017.7991965.
[Online]. Available: https://doi.org/10.1109%2Fwfcs.2017.7991965

4. M. Ashjaei, L. Silva, M. Behnam, et al., “Improved message forwarding for multi-hop
HaRTES real-time ethernet networks”, Journal of Signal Processing Systems, vol. 84,
no. 1, pp. 47–67, May 2015. doi: 10.1007/s11265-015-1010-8. [Online]. Available:
https://doi.org/10.1007%5C%2Fs11265-015-1010-8

5. L. Silva, P. Pedreiras, M. Ashjaei, et al., “Demonstrating the multi-hop capabilities of
the hartes real-time ethernet switch”, in RTSS@Work 2014 Open Demo Session of
RealTime Systems, 2014

A.2 Other publications

1. J. Rufino, L. Silva, B. Fernandes, et al., “Overhead of v2x secured messages: An
analysis”, in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring),
IEEE, Apr. 2019. doi: 10.1109/vtcspring.2019.8746479. [Online]. Available: https:
//doi.org/10.1109%2Fvtcspring.2019.8746479

2. J. Rufino, L. Silva, B. Fernandes, et al., “Empowering vulnerable road users in c-ITS”,
in 2018 IEEE Globecom Workshops (GC Wkshps), IEEE, Dec. 2018. doi: 10.1109/

145

https://doi.org/10.1109/isorc.2019.00017
https://doi.org/10.1109%2Fisorc.2019.00017
https://doi.org/10.1109/etfa.2017.8247595
https://doi.org/10.1109%2Fetfa.2017.8247595
https://doi.org/10.1109%2Fetfa.2017.8247595
https://doi.org/10.1109/wfcs.2017.7991965
https://doi.org/10.1109%2Fwfcs.2017.7991965
https://doi.org/10.1007/s11265-015-1010-8
https://doi.org/10.1007%5C%2Fs11265-015-1010-8
https://doi.org/10.1109/vtcspring.2019.8746479
https://doi.org/10.1109%2Fvtcspring.2019.8746479
https://doi.org/10.1109%2Fvtcspring.2019.8746479
https://doi.org/10.1109/glocomw.2018.8644266
https://doi.org/10.1109/glocomw.2018.8644266
https://doi.org/10.1109/glocomw.2018.8644266

146 APPENDIX A. LIST OF PUBLICATIONS AND COMMUNICATIONS

glocomw.2018.8644266. [Online]. Available: https://doi.org/10.1109%2Fglocomw.
2018.8644266

3. J. Ferreira, M. Alam, B. Fernandes, et al., “Cooperative sensing for improved traffic
efficiency: The highway field trial”, Computer Networks, vol. 143, pp. 82–97, Oct. 2018.
doi: 10.1016/j.comnet.2018.07.006. [Online]. Available: https://doi.org/10.
1016%2Fj.comnet.2018.07.006

4. D. Duarte, L. Silva, B. Fernandes, et al., “Implementation of security services for
vehicular communications”, in Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Springer Nature, 2017, pp. 79–
90. doi: 10.1007/978-3-319-51207-5_8. [Online]. Available: https://doi.org/10.
1007%2F978-3-319-51207-5_8

5. L. Silva, P. Pedreiras, L. Almeida, et al., “Combining spatial and temporal dynamic
scheduling techniques on wireless vehicular communications”, in 2016 IEEE World
Conference on Factory Communication Systems (WFCS), Institute of Electrical and
Electronics Engineers (IEEE), May 2016. doi: 10.1109/wfcs.2016.7496532. [Online].
Available: https://doi.org/10.1109%2Fwfcs.2016.7496532

6. L. Silva, P. Pedreiras, M. Alam, et al., “STDMA-based scheduling algorithm for infras-
tructured vehicular networks”, in Intelligent Transportation Systems, Springer Nature,
2016, pp. 81–105. doi: 10.1007/978-3-319-28183-4_4. [Online]. Available: https:
//doi.org/10.1007%2F978-3-319-28183-4_4

7. J. Blancou, J. Almeida, B. Fernandes, et al., “eCall++: An enhanced emergency call
system for improved road safety”, in 2016 IEEE Vehicular Networking Conference (VNC),
Institute of Electrical and Electronics Engineers (IEEE), Dec. 2016. doi: 10.1109/vnc.
2016.7835964. [Online]. Available: https://doi.org/10.1109%2Fvnc.2016.7835964

8. M. Alam, B. Fernandes, L. Silva, et al., “Implementation and analysis of traffic safety
protocols based on ETSI standard”, in 2015 IEEE Vehicular Networking Conference
(VNC), Institute of Electrical and Electronics Engineers (IEEE), Dec. 2015. doi: 10.
1109/vnc.2015.7385561. [Online]. Available: https://doi.org/10.1109%2Fvnc.
2015.7385561

9. L. Almeida, Z. Iqbal, P. Pedreiras, et al., “Developments in flexible time-triggered
switched ethernet”, in Workshop on Real-Time Ethernet (RATE 2013) in conjunction
with RTSS 2013, 2013

10. P. Silva, L. Silva, R. Marau, et al., “Demonstrating real-time reconfiguration of video
sensing service-oriented applications”, in 2012 IEEE 8th International Conference
on Distributed Computing in Sensor Systems, Institute of Electrical and Electronics
Engineers (IEEE), May 2012. doi: 10.1109/dcoss.2012.59. [Online]. Available:
https://doi.org/10.1109%2Fdcoss.2012.59

11. M. de Sousa, L. Silva, R. Marau, et al., “A real-time resource manager for linux-based
distributed systems”, in Proceedings of the WIP Session of the 32nd IEEE Real-Time
Systems Symposium (RTSS’2011), 2011. [Online]. Available: http://hdl.handle.net/
10216/94788

12. P. Silva, L. Silva, R. Marau, et al., “Demonstrating real-time reconfiguration in ser-
vice oriented distributed systems”, in 32nd IEEE Real-Time Systems Symposium
(RTSS’2011@Work Session), 2011

https://doi.org/10.1109/glocomw.2018.8644266
https://doi.org/10.1109/glocomw.2018.8644266
https://doi.org/10.1109/glocomw.2018.8644266
https://doi.org/10.1109%2Fglocomw.2018.8644266
https://doi.org/10.1109%2Fglocomw.2018.8644266
https://doi.org/10.1016/j.comnet.2018.07.006
https://doi.org/10.1016%2Fj.comnet.2018.07.006
https://doi.org/10.1016%2Fj.comnet.2018.07.006
https://doi.org/10.1007/978-3-319-51207-5_8
https://doi.org/10.1007%2F978-3-319-51207-5_8
https://doi.org/10.1007%2F978-3-319-51207-5_8
https://doi.org/10.1109/wfcs.2016.7496532
https://doi.org/10.1109%2Fwfcs.2016.7496532
https://doi.org/10.1007/978-3-319-28183-4_4
https://doi.org/10.1007%2F978-3-319-28183-4_4
https://doi.org/10.1007%2F978-3-319-28183-4_4
https://doi.org/10.1109/vnc.2016.7835964
https://doi.org/10.1109/vnc.2016.7835964
https://doi.org/10.1109%2Fvnc.2016.7835964
https://doi.org/10.1109/vnc.2015.7385561
https://doi.org/10.1109/vnc.2015.7385561
https://doi.org/10.1109%2Fvnc.2015.7385561
https://doi.org/10.1109%2Fvnc.2015.7385561
https://doi.org/10.1109/dcoss.2012.59
https://doi.org/10.1109%2Fdcoss.2012.59
http://hdl.handle.net/10216/94788
http://hdl.handle.net/10216/94788

A.2. OTHER PUBLICATIONS 147

13. L. Silva, A. Oliveira, P. Pedreiras, et al., “Ligação de Alto Desempenho entre FPGAs
para Switch Ethernet FTT”, in VII Jornadas sobre Sistemas Reconfiguráveis, 2011

APPENDIX B
Code sample for the Real-Time

OpenFlow Add-On API

1 #i f n d e f OPENFLOW_PRIVATE_EXT_H_
#de f i n e OPENFLOW_PRIVATE_EXT_H_

3
#i f d e f __KERNEL__

5 #inc lude <asm/ byteorder . h>
#end i f

7
#inc lude " openf low/openf low . h "

9 #inc lude " openflow−ext . h "

11 #de f i n e PRIVATE_VENDOR_ID 0x00acde48
#de f i n e MAX_STREAM_NODES 10 /∗ Max no producer /consumer nodes per stream ∗/

13 #de f i n e MAX_MP_STAT_STREAMS 5 /∗ Max no streams per MP rep ly fragment ∗/

15 enum rt_openflow_type
{

17 RT_ST_ADD = 0 , /∗ Add a rea l−time stream to the database ∗/
RT_ST_MODIFY, /∗ Modify p r op e r t i e s o f an e x i s t i n g stream ∗/

19 RT_ST_DELETE, /∗ Remove a rea l−time stream from the database ∗/
RT_ST_LIST_REQUEST, /∗ Get the ID o f a l l streams o f a g iven type ∗/

21 RT_ST_LIST_REPLY, /∗ Switch r ep ly to RT_ST_LIST_REQUEST ∗/
RT_ST_PROP_REQUEST, /∗ Get p r op e r t i e s o f a g iven rea l−time stream ∗/

23 RT_ST_PROP_REPLY, /∗ Switch r ep ly to RT_ST_PROP_REQUEST ∗/
RT_ST_REMOVED, /∗ Switch n o t i f i c a t i o n o f stream removal events ∗/

25 RT_ST_STATS_REQUEST, /∗ Get p r op e r t i e s and s t a t i s t i c s o f a l l streams ∗/
RT_ST_STATS_REPLY /∗ Switch r ep ly to RT_ST_STATS_REQUEST ∗/

27 } ;

29 enum rt_openflow_stream_type
{

31 RT_TYPE_TT = 1 , /∗ Time−t r i g g e r e d stream type ∗/
RT_TYPE_ET, /∗ Event−t r i g g e r e d stream type ∗/

33 RT_TYPE_OTHER, /∗ Other stream types ∗/
} ;

35 #de f i n e RT_LIST_ALL 0x00

37 s t r u c t rtof_stream_mod_msg
{

39 s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID,
subtype = RT_ST_{ADD,MODIFY,DELETE} ∗/

41
uint32_t uid ; /∗ Unique stream i d e n t i f i e r ∗/

43 uint32_t per iod ; /∗ For RT_TYPE_TT: p e r i o d i c i t y o f messages [us]

149

150APPENDIX B. CODE SAMPLE FOR THE REAL-TIME OPENFLOW ADD-ON API

For RT_TYPE_ET: minimum int e r−t r ansmi s s i on time
45 between cons e cu t i v e messages [us] ∗/

47 uint32_t dead l ine ; /∗ Message dead l ine . [us] ∗/
uint32_t o f f s e t ; /∗ Re la t i v e phasing . Ignored f o r RT_TYPE_ET/OTHER

49 t r a f f i c . [us] ∗/

51 uint32_t id le_t imeout ; /∗ Stream ’ s i d l e t imeout be f o r e i t and i t s a s s o c i a t ed
r e s e r v a t i o n s are removed [s] . I f 0 , stream i s

53 never removed . ∗/
uint32_t hard_timeout ; /∗ Maximum durat ion be f o r e stream and i t s a s s o c i a t ed

55 r e s e r v a t i o n s are removed [s] . I f 0 , stream i s never
removed . ∗/

57
uint32_t tx_time ; /∗ [DEPRECATED] ∗/

59
uint16_t p r i o r i t y ; /∗ Stream ’ s p r i o r i t y (h igher value , h igher p r i o r i t y) ∗/

61 uint16_t frame_length ; /∗ Maximum frame ’ s l ength [Bytes] ∗/

63 uint16_t n_producers ; /∗ Producers l i s t s i z e (num elements) ∗/
uint16_t n_consumers ; /∗ Consumers l i s t s i z e (num elements) ∗/

65 uint8_t type ; /∗ One o f RT_TYPE_∗ ∗/
uint8_t pad [3] ; /∗ Align to 64 b i t s ∗/

67
uint8_t producers [0] ; /∗ L i s t o f stream producers ∗/

69 uint8_t consumers [0] ; /∗ L i s t o f stream consumers ∗/
uint8_t misc [0] ; /∗ Misce l l aneous f i e l d ∗/

71 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_mod_msg) == 56) ;

73
s t r u c t rtof_stream_prop_req_msg

75 {
s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID,

77 subtype = RT_GET_ST_PROP_REQUEST ∗/

79 uint32_t stream_uid ; /∗ Unique stream i d e n t i f i e r ∗/
uint8_t pad [4] ; /∗ Align to 64 b i t s ∗/

81 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_prop_req_msg) == 24) ;

83
s t r u c t rtof_stream_prop_reply_msg

85 {
s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID,

87 subtype = RT_GET_ST_PROP_REPLY ∗/
uint32_t uid ;

89 uint32_t per iod ;

91 uint32_t dead l ine ;
uint32_t o f f s e t ;

93
uint32_t id le_t imeout ;

95 uint32_t hard_timeout ;

97 uint32_t tx_time ; /∗ [DEPRECATED] ∗/
uint16_t p r i o r i t y ;

99 uint16_t frame_length ;

101 uint16_t n_producers ;
uint16_t n_consumers ;

151

103 uint8_t stream_type ;
uint8_t pad [3] ;

105
uint8_t producers [0] ;

107 uint8_t consumers [0] ;
uint8_t misc [0] ;

109 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_prop_reply_msg) == 56) ;

111
s t r u c t rtof_stream_list_req_msg

113 {
s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID,

115 subtype = RT_GET_ST_LIST_REQUEST ∗/

117 uint8_t streams_type ; /∗ Type o f reques ted streams . One o f RT_TYPE_∗ .
Can a l s o be RT_LIST_ALL f o r r eque s t s f o r a l i s t

119 with a l l streams , independent ly o f t h e i r type ∗/
uint8_t pad [7] ; /∗ Align to 64 b i t s ∗/

121 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_list_req_msg) == 24) ;

123
s t r u c t rtof_stream_list_reply_msg

125 {
s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID

127 subtype = RT_GET_ST_LIST_REPLY ∗/

129 uint16_t l i s t _ s i z e ; /∗ Number o f stream UIDs in l i s t ∗/
uint8_t streams_type ; /∗ Type o f streams conta ined in l i s t .

131 One o f RT_TYPE_∗ . Can a l s o be RT_LIST_ALL
f o r l i s t s with a l l streams ,

133 independent ly o f t h e i r type ∗/
uint8_t pad [5] ; /∗ Align to 64 b i t s ∗/

135
uint32_t u i d_ l i s t [0] ; /∗ L i s t o f stream UIDs ∗/

137 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_list_reply_msg) == 24) ;

139
s t r u c t rtof_stream_removed_msg

141 {
s t r u c t ofp_extension_header header ; /∗ vendor = PRIVATE_VENDOR_ID,

143 subtype = RT_ST_REMOVED ∗/

145 uint32_t stream_uid ; /∗ UID of the removed rea l−time stream ∗/
uint8_t reason ; /∗ Reason f o r removal (OFPRR_IDLE_TIMEOUT,

147 OFPRR_HARD_TIMEOUT,OFPRR_DELETE,
OFPRR_GROUP_DELETE) ∗/

149 uint8_t pad [3] ; /∗ Align to 64 b i t s ∗/
} ;

151

153 s t r u c t rto f_stream_stats
{

155 uint64_t packet_count ; /∗ Number o f packets in stream counter ∗/

157 uint64_t byte_count ; /∗ Number o f bytes in stream counter ∗/

159 uint32_t durat ion_sec ; /∗ Time stream has been a l i v e [s] ∗/
uint32_t duration_nsec ; /∗ Time stream has benn a l i v e [ns] ∗/

161

152APPENDIX B. CODE SAMPLE FOR THE REAL-TIME OPENFLOW ADD-ON API

uint32_t uid ;
163 uint32_t tx_time ; /∗ [DEPRECATED] ∗/

165 uint32_t per iod ;
uint32_t dead l ine ;

167
uint32_t o f f s e t ;

169 uint32_t id le_t imeout ;

171 uint32_t hard_timeout ;
uint16_t p r i o r i t y ;

173 uint16_t frame_length ;

175 uint16_t n_producers ;
uint16_t n_consumers ;

177 uint8_t type ;
uint8_t pad [3] ;

179
uint8_t producers [0] ;

181 uint8_t consumers [0] ;
uint8_t misc [0] ;

183 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_mod_msg) == 56) ;

185
s t r u c t rtof_stream_stats_mp_reply_msg

187 {
s t r u c t ofp_mult ipart_reply header ;

189 s t r u c t ofp_experimenter_multipart_header
exp_header ; /∗ exper imenter = PRIVATE_VENDOR_ID,

191 type= RT_ST_STATS_REPLY∗/

193 uint16_t l i s t _ s i z e ; /∗ Number o f e lements in l i s t ∗/
uint8_t pad [6] ; /∗ Align to 64 b i t s ∗/

195
uint8_t s t a t s_ l i s t [0] ; /∗ L i s t o f r to f_stream_stats ∗/

197 } ;
OFP_ASSERT(s i z e o f (s t r u c t rtof_stream_stats_mp_reply_msg) == 32) ;

199
#end i f

./code/private–ext.h

APPENDIX C
Mandatory and optional OpenFlow

components/functions

Table C.1: OpenFlow Objects

Object Description Mandatory Min. No

OpenFlow Channel Communication channel with one controller. 3 1
Ingress Flow Table Table for ingress frames (1st stage). 3 1
Egress Flow Table Table for the 2nd stage (after output/group actions). 7 - - -
Group Table Group buckets. For processing groups of flows. 3 1
Meter Table Contains entries for QoS shapers. 7 - - -

Table C.2: OpenFlow Ports

OpenFlow Ports Description Mandatory Min. No

Physical ports Hardware interfaces. 3 - - -
Logical ports Software interfaces for non-OpenFlow processing. 7 - - -
ALL port Reserved. Clones frames for all ports but frame’s ingress. 3 - - -
CONTROLLER port Reserved. For packet-in/packet-out operations. 3 - - -
TABLE port Reserved. For packet-out, sends frame to 1st flow table. 3 - - -
IN_PORT port Reserved. Sends frame through its ingress port. 3 - - -
ANY port Reserved. Special value for multi-addressed requests. 3 - - -
UNSET port Reserved. Indicates an output port not set in action-set. 3 - - -
LOCAL port Reserved. Switch internal networking stack. 7 - - -
NORMAL port Reserved. Normal forwarding with non-OFP methods. 7 - - -
FLOOD port Reserved. Flooding with non-OFP methods. 7 - - -

Table C.3: Flow Instructions

Instruction Description Mandatory

Apply-Actions Apply specified actions immediately without changes to action-set. 7

Clear-Actions Clear all actions in the action-set immediately. 7

Write-Actions Merge specified actions into the current frame’s action-set. 3

Write-Metadata Write the metadata value into the metadata field. 7

Stat-Trigger Send event to controller if flow statistics cross the threshold. 7

Goto-Table Send frame to a certain table in the pipeline. 3

153

154
APPENDIX C. MANDATORY AND OPTIONAL OPENFLOW

COMPONENTS/FUNCTIONS

Table C.4: Flow Match Fields

Field Description Mandatory

OXM_OF_IN_PORT Ingress port, physical or logical. 3

*ACTSET_OUTPUT Egress port from action set. 3

*ETH_DST Ethernet destination address. Can use arbitrary bitmask. 3

*ETH_SRC Ethernet source address. Can use arbitrary bitmask. 3

*ETH_TYPE Ethernet type. 3

*IP_PROTO IPv4 or IPv6 protocol number. 3

*IPV4_SRC IPv4 source address. Can use arbitrary bitmask. 3

*IPV4_DST IPv4 destination address. Can use arbitrary bitmask. 3

*IPV6_SRC SIPv6 source address. Can use arbitrary bitmask. 3

*IPV6_DST IPv6 destination address. Can use arbitrary bitmask. 3

*TCP_SRC TCP source port. 3

*TCP_DST TCP destination port. 3

*UDP_SRC UDP source port. 3

*UDP_DST UDP destination port. 3

*METADATA Table metadata. 7

*TUNNEL_ID Metadata associated with a logical port. 7

*PACKET_TYPE Canonical header type of outermost header. 7

*VLAN_VID VLAN ID from 802.1Q tag. 7

*VLAN_PCP VLAN PCP from 802.1Q tag. 7

*IP_DSCP Diff Serv Code Point (DSCP). 7

*IP_ECN ECN bits of the IP header. 7

*TCP_FLAGS TCP flags. 7

*SCTP_SRC SCTP source port. 7

*SCTP_DST SCTP destination port. 7

*ICMPV4_TYPE ICMP type. 7

*ICMPV4_CODE ICMP code. 7

*ARP_OP ARP opcode. 7

*ARP_SPA Source IPv4 address in ARP payload. 7

*ARP_TPA Target IPv4 address in ARP payload. 7

*ARP_SHA Source Ethernet address in ARP payload. 7

*ARP_THA Target Ethernet address in ARP payload. 7

*IPV6_FLABEL IPv6 flow label. 7

*ICMPV6_TYPE ICMPv6 type. 7

*ICMPV6_CODE ICMPv6 code. 7

*IPV6_ND_TARGET Target address in an IPv6 Neighbor Discover (ND) message. 7

*IPV6_ND_SLL Source link-layer address in IPv6 ND message. 7

*IPV6_ND_TLL Target link-layer address in IPv6 ND message. 7

*MPLS_LABEL Label in the first MPLS shim header. 7

*MPLS_TC Traffic class in the first MPLS shim header. 7

*MPLS_BOS Bottom of stack bit in the first MPLS shim header. 7

*PBB_ISID I-SID in the first PBB service instance tag. 7

*IPV6_EXTHDR IPv6 extension header. 7

*PBB_UCA UCA field in the first PBB service instance tag. 7

Table C.5: Flow Group Types

Group Type Description Mandatory

Indirect Execute the single, defined bucket in this group. 3

All Execute all buckets in the group. 3

Select Execute the selected bucket in the group. 7

Fast Failover Execute first live bucket. 7

155

Table C.6: Flow Actions

Action Description Mandatory

Output Forward frame to specified OpenFlow port. 3

Group Process frame through the specified group. 3

Drop Frames without output/group actions are dropped. 3

Set-Queue Set queue id for a frame. 7

Meter Direct frame to specified meter. 7

Push-Tag Push tags, e.g. VLAN, MPLS, into frame. 7

Pop-Tag Pop tags, e.g. VLAN, MPLS, from frame. 7

Set-Field Modify values of respective fields in frame. 7

Copy-Field Copy data between any fields in frame. 7

Change-TTL Modify values of IPv4/MPLS TTL, IPv6 hop limit in frame. 7

Table C.7: Flow Meter Bands

Band Description Mandatory

Drop Drop frame if threshold reached. 7

DSCP Remark Increase drop precedente of DSCP field if threshold reached. 7

Table C.8: Flow Table Counters (per table)

Counter Description Mandatory Min. No

Reference Count No. of times table was referenced by goto-table action. 3 1
Packet Lookups No. of frames processed by flow table. 7 1
Packet Matches No. of frames that matched entries of flow table. 7 1

Table C.9: Flow Entry Counters (per entry)

Counter Description Mandatory Min. No

Rx Packets No. of frames that matched entry. 7 - - -
Rx Bytes No. of total bytes that matched entry. 7 - - -
Duration (s) Amount of time entry has been installed. 3 1
Duration (ns) Amount of time entry has been installed. 7 - - -

Table C.10: Port Counters (per port)

Counter Description Mandatory Min. No

Rx Packets No. of frames received by port. 3 1
Tx Packets No. of frames transmitted through port. 3 1
Rx Bytes No. of total bytes received by port. 7 - - -
Tx Bytes No. of total bytes transmitted through port. 7 - - -
Rx Drops No. of frames dropped at reception by port. 7 - - -
Tx Drops No. of frames dropped at transmission by port. 7 - - -
Rx Errors No. of errors while receiving frames. 7 - - -
Tx Errors No. of errors while transmitting frames. 7 - - -
Rx Align Errors No. of alignment errors while receiving frames. 7 - - -
Rx Overrun Errors No. of overrun errors while receiving frames. 7 - - -
Rx CRC Errors No. of CRC errors in received frames. 7 - - -
Collision No. of collisions at port. 7 - - -
Duration (s) Amount of time port has been alive. 3 1
Duration (ns) Amount of time port has been alive. 7 - - -

156
APPENDIX C. MANDATORY AND OPTIONAL OPENFLOW

COMPONENTS/FUNCTIONS

Table C.11: Queue Counters (per queue)

Counter Description Mandatory Min. No

Tx Packets No. of frames processed by queue. 3 1
Tx Bytes No. of total bytes processed by queue. 7 - - -
Tx Overrun Errors No. of overruns in transmissions processed by queue. 7 - - -
Duration (s) Amount of time queue has been alive. 3 1
Duration (ns) Amount of time queue has been alive. 7 - - -

Table C.12: Group Counters (per group)

Counter Description Mandatory Min. No

Reference Count No. of group references by group actions. 7 - - -
Packet Count No. of frames processed by group. 7 - - -
Byte Count No. of total bytes processed by group. 7 - - -
Duration (s) Amount of time group has been installed. 3 1
Duration (ns) Amount of time group has been installed. 7 - - -

Table C.13: Group Bucket Counters (per bucket)

Counter Description Mandatory Min. No

Packet Count No. of frames processed by group bucket. 7 - - -
Byte Count No. of total bytes processed by group bucket. 7 - - -

Table C.14: Meter Counters (per meter)

Counter Description Mandatory Min. No

Flow Count No. of flows references by meter actions. 7 - - -
Input Packet Count No. of frames processed by meter. 7 - - -
Input Byte Count No. of total bytes processed by meter. 7 - - -
Duration (s) Amount of time meter has been installed. 3 1
Duration (ns) Amount of time meter has been installed. 7 - - -

Table C.15: Meter Band Counters (per meter band)

Counter Description Mandatory Min. No

Packet Count No. of frames that reached band threshold. 7 - - -
Byte Count No. of total bytes that reached band threshold. 7 - - -

APPENDIX D
Code sample for the schedulability

analysis of time-triggered traffic

import r t o f . ap i
2 import r t o f . topo logy

import r t o f . srdb
4 import r t o f . u t i l s

import r t o f . devdb
6 import math

8 c l a s s Error (Exception) :
" " " Base c l a s s f o r except i ons in t h i s module . " " "

10 pass

12 c l a s s AlphaError (Error) :
de f __init__(s e l f , message) :

14 s e l f . message = message

16 c l a s s Inval idParamError (Error) :
" " " Exception r a i s e d f o r e r r o r s in func t i on ’ s parameters

18 Att r ibute s :
exp r e s s i on −− input exp r e s s i on in which the e r r o r occurred

20 message −− exp lanat ion o f the e r r o r
" " "

22 de f __init__(s e l f , expre s s ion , message) :
s e l f . message = expr e s s i on

24 s e l f . message = message

26 de f WorstResponseTimeCalc (srdb , topology , stream) :

28 # Val idate stream ’ s producers / consumers
i f (stream . consumers i s Fa l se) or (stream . producers i s Fa l se) :

30 pr in t (’ ! ! ! (Admission Control) : I nva l i d producers / consumers ’)
r a i s e Inval idParamError (" aaa " , " bbb ")

32
Get stream ’ s path l i n k s e t

34 prod = stream . producers [0]
cons = stream . consumers [0]

36
Get network path f o r stream

38 prod_id = topology . getDevNodeID (prod . id , prod . port)
cons_id = topology . getDevNodeID (cons . id , cons . port)

40 path = topology . getPath (prod_id , cons_id)
i f path i s None :

42 pr in t (’ ! ! ! (Admission Control) : No path found f o r reques ted rea l−time stream
uid {} ’ . format (stream . uid))

157

158
APPENDIX D. CODE SAMPLE FOR THE SCHEDULABILITY ANALYSIS OF

TIME-TRIGGERED TRAFFIC

r e turn
44

Retr i eve l i n k s e t f o r t h i s stream
46 l i n k s = topology . pathToLinkList (path)

48 # Calcu la te worst−case re sponse time f o r messages o f t h i s stream
i f stream . type == r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_TT:

50 wrt = _calcTimeTriggeredWrt (srdb , topology , stream , l i n k s)
e l i f stream . type == r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_ET:

52 wrt = _calcEventTriggeredWrt (srdb , topology . stream , l i n k s)
e l s e :

54 pr in t (’ ! ! ! (Admission Control) Fa i l ed to c a l c u l a t e wrt f o r stream uid {} >
Type { :5 s } not supported < ’ . format (stream . uid , stream . type))

re turn
56

r e turn wrt
58

Cal cu l a t e s the worst re sponse time f o r messages o f stream uid
60 de f _calcTimeTriggeredWrt (srdb , topology , stream , l ink_se t) :

62 r t = 0
a = b = 0

64 rt_a_b_prev = 0

66 # Get e s s e n t i a l network r e l a t e d in fo rmat ion f o r the ana l y s i s
Get a l l TT streams in system

68 a l l_ s e t = srdb . getSameTypeStreamList (r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_TT)

70 # Get TT streams with h igher or equal p r i o r i t y than stream
hep_set = srdb . getHepStreamList (stream . p r i o r i t y , r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_TT
)

72
Get TT streams with lower p r i o r i t y streams

74 lp_set = srdb . getLpStreamList (stream . p r i o r i t y , r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_TT)

76 whi le b + 1 <= len (l i nk_se t) :
l i n k s = l ink_se t [a : b + 1]

78 rt_a_b = _ResponseTimeCalc (stream , l i nk s , hep_set , lp_set , a l l_ s e t)
rt_a_b = math . c e i l (rt_a_b/ r t o f . devdb .NETWORK_EC_US)

80 i f (a != b) and (rt_a_b != rt_a_b_prev) :
r t += rt_a_b_prev

82 a = b
e l s e :

84 b += 1
rt_a_b_prev = rt_a_b

86
r t += rt_a_b_prev

88 r e turn r t

90 de f _ResponseTimeCalc (stream , l i nk s , hep_set , lp_set , a l l_ s e t) :

92 i f stream . type == r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_TT:
alpha = _ca l c In f l a t i onFac t o r (stream , l i nk s , hep_set , ’TTW’)

94 e l i f stream . type == r t o f . ap i .RTOF_ST_TYPES.RT_TYPE_ET:
alpha = _ca l c In f l a t i onFac t o r (stream , l i nk s , hep_set , ’ETW’)

96 e l s e :
What to do?

98 alpha = 1

159

100 # Calcu la te f i r s t re sponse time i t e r a t i o n i t e r a t i o n r t (0)
speed = l i n k s [0] . speed # We only support networks where a l l l i n k s are at the same
speed

102 c_i = r t o f . u t i l s . calcTxTimeMsgUs (stream . data_length , speed)
prev_rt = i n f l a t e d_c i = c_i / alpha

104
r t = 0

106 whi le (True) :
Ca lcu la te f u r t h e r re sponse time i t e r a t i o n s un t i l they converge (r t (n−1) ==

r t (n))
108 i n t e r f e r e n c e = _calcTTInter ference (l i nk s , hep_set , alpha , prev_rt)

b lock ing = _calcTTBlocking (l i nk s , lp_set , alpha)
110 swd = _calcTTSwd(a l l_se t , stream , l i nk s , alpha)

112 r t = i n f l a t e d_c i + i n t e r f e r e n c e + block ing + swd

114 i f r t == prev_rt :
break

116 e l s e :
prev_rt = r t

118
r e turn r t

120
de f _ca lcTTInter ference (stream_links , hep_set , i n f l a t i o n_ f a c t , prev_rt) :

122
i n t e r f e r enc e_us = 0

124 # For each stream in the h igher or equal p r i o r i t y s e t ’ hep_set ’ , which has l i n k s
in common with ’ stream_links ’ ,
compute i t s con t r i bu t e to the i n t e r f e r e n c e

126 f o r s t in hep_set :
s t_ l i n k_ l i s t = l i s t (s t . l i nk_se t . va lue s ())

128
i f r t o f . u t i l s . i s L i s t I n t e r s e c t i o nNu l l (stream_links , s t_ l i n k_ l i s t) i s Fa l se :

130 # NOTE: stream ’ s per iod in RTOF API i s de f ined as [us] whi l e HARTES’
streams ’ pe r i od s are u sua l l y expres sed in mu l t i p l e s o f ECs

c_j = r t o f . u t i l s . calcTxTimeMsgUs (s t . data_length , stream_links [0] . speed) #
We only support networks where a l l l i n k s are at the same speed

132 i n t e r f e r enc e_us += math . c e i l (prev_rt / s t . per iod) ∗(c_j/ i n f l a t i o n_ f a c t)

134 r e turn in t e r f e r enc e_us

136 de f _calcTTBlocking (stream_links , lp_set , i n f l a t i o n_ f a c t) :
b lock ing = 0

138
Blocking does not happen at stream ’ s input l i n k and when a==b

140 i f l en (stream_links) == 1 :
I t e r a t i o n check ing only the input l i n k −> No block ing e x i s t s

142 pass

144 e l s e :
Discard input l i n k and check b lock ing f o r the remaining l i n k s

146 l i n k s = stream_links [1 :]
prev_l inks = []

148 f o r l in l i n k s :
max_msg_length = 0

150 f o r s t in lp_set :
Check i f l i n k i s in stream ’ s l i n k s e t

152 i f r t o f . u t i l s . i sL ink InL inkSet (l , s t . l i nk_se t) i s Fa l se :
cont inue

160
APPENDIX D. CODE SAMPLE FOR THE SCHEDULABILITY ANALYSIS OF

TIME-TRIGGERED TRAFFIC

154
Check i f p rev ious analysed l i n k s are in stream ’ s l i n k s e t (msg can

only block at a c e r t a i n l i n k and not at the f o l l ow i n g ones)
156 s t_ l i n k_ l i s t = l i s t (s t . l i nk_se t . va lue s ())

i f r t o f . u t i l s . i s L i s t I n t e r s e c t i o nNu l l (prev_l inks , s t_ l i n k_ l i s t) i s
Fa l se :

158 cont inue

160 # Check i f stream ’ s data l ength i s l a r g e r than the cur rent maximum
i f s t . data_length > max_msg_length :

162 max_msg_length = s t . data_length

164
i f max_msg_length > 0 :

166 b lock ing += r t o f . u t i l s . calcTxTimeMsgUs (max_msg_length , stream_links
[0] . speed) / i n f l a t i o n_ f a c t# We only support networks where a l l l i n k s are at the
same speed

168 # Store analysed l i n k in analysed l i n k s
prev_l inks . append (l)

170
r e turn b lock ing

172
de f _calcTTSwd(streams_set , stream , stream_links , i n f l a t i o n_ f a c t) :

174 swd = 0

176 # Blocking does not happen at stream ’ s input l i n k and when a==b
i f l en (stream_links) == 1 :

178 # I t e r a t i o n check ing only the input l i n k −> No block ing e x i s t s
pass

180
e l s e :

182 # Discard input l i n k and check swi tch ing de lay f o r the remaining l i n k s
l i n k s = stream_links [1 :]

184 prev_l ink = r t o f . topo logy . Link (id=−1) #Dummy l i n k that no stream has f o r sure

186 f o r l in l i n k s :
max_msg_length = stream . data_length

188 f o r s t in streams_set :
Check i f l i n k i s in stream ’ s l i n k s e t

190 i f r t o f . u t i l s . i sL ink InL inkSet (l , s t . l i nk_se t) i s Fa l se :
cont inue

192
Check i f p rev ious l i n k i s in stream ’ s l i n k s e t

194 i f r t o f . u t i l s . i sL ink InL inkSet (prev_link , s t . l i nk_se t) i s Fa l se :
cont inue

196
Check i f stream ’ s data l ength i s l a r g e r than the cur rent maximum

198 i f s t . data_length > max_msg_length :
max_msg_length = s t . data_length

200
swd += r t o f . devdb .SWITCHING_FABRIC_DELAY_US + r t o f . u t i l s . calcTxTimeMsgUs (

max_msg_length , stream_links [0] . speed) / i n f l a t i o n_ f a c t
202

Store analysed l i n k in analysed l i n k s
204 prev_l ink = l

206 r e turn swd

161

208 de f _ca l c I n f l a t i onFac t o r (stream , l i nk s , hep_set , window) :

210 ec_us = 0
min_lw_id_us = 0 x f f f f f f f f

212
For each l i n k that stream goes through , get the minimum TT window length and
maximum message s i z e o f i n t e r f e r i n g messages

214 f o r l in l i n k s :
max_msg_len = stream . data_length

216 # Get EC and window length from l i n k . I n t e r l i n k s have same p r op e r t i e s on each
port so we need to check only one

i f l . s r c i s not None :
218 lw_us = r t o f . devdb . hartes_sw_prop [l . s r c . dev i c e . dp . id] [l . s r c . port_no] [

window]
ec_us = r t o f . devdb . hartes_sw_prop [l . s r c . dev i c e . dp . id] [l . s r c . port_no] [’EC ’]

220
e l s e :

222 lw_us = r t o f . devdb . hartes_sw_prop [l . dst . dev i c e . dp . id] [l . dst . port_no] [
window]

ec_us = r t o f . devdb . hartes_sw_prop [l . dst . dev i c e . dp . id] [l . dst . port_no] [’EC ’]
224

Get maximum s i z ed message among the h i ghe s t and same p r i o r i t y t t messages
that share t h i s l i n k with the new stream

226 f o r s t in hep_set :

228 i f s t . l i nk_se t . get (l . id , None) i s not None :
i f s t . data_length > max_msg_len :

230 max_msg_len = s t . data_length

232 lw_id_us = lw_us−r t o f . u t i l s . calcTxTimeMsgUs (max_msg_len , l . speed)

234 i f lw_id_us < min_lw_id_us :
min_lw_id_us = lw_id_us

236
alpha = min_lw_id_us/ec_us

238
i f a lpha <= 0 :

240 r a i s e AlphaError (" I n f l a t i o n f a c t o r c a l c u l a t i o n returned i n v a l i d value ({}) " .
format (alpha))

242 r e turn alpha

244 de f _calcEventTriggeredWrt (srdb , topology , stream , l ink_se t) :
pass

./code/ac.py

162
APPENDIX D. CODE SAMPLE FOR THE SCHEDULABILITY ANALYSIS OF

TIME-TRIGGERED TRAFFIC

	Contents
	List of Figures
	List of Tables
	Glossary
	An introduction
	The problem statement
	The thesis statement
	The central contributions
	Document outline

	A crash course on industrial (real-time) systems
	Industrial systems: the historical evolution
	The rise of a digitized industry
	Networks for the industry of tomorrow

	Theoretical foundation
	On real-time systems
	Taxonomy of a real-time system
	Task model
	Task scheduling
	Schedulability analysis
	Hierarchical scheduling

	On real-time communications
	Transaction activation paradigms
	Message scheduling

	Software Defined Networking Paradigm
	OpenFlow protocol
	Using SDN in industry

	Towards a real-time data plane
	Switched Ethernet
	Limitations

	An overview of real-time Ethernet technologies
	Finding a flexible and efficient real-time data plane
	Time sensitive networking (TSN)
	Hard Real-Time Ethernet Switch (HaRTES)

	A real-time SDN framework
	A reference architecture for a real-time SDN framework
	A SDN controller with real-time admission control
	The admission control

	A real-time empowered control plane
	The OpenFlow real-time add-on

	A real-time Ethernet data plane
	The SDN augmented HaRTES

	Validation of the real-time SDN framework
	The validation of the proposed framework
	Evaluating the data plane real-time capabilities
	Evaluating the control plane schedulability analysis
	Evaluating the admission control responsiveness and scalability
	Evaluating the framework under a realistic Industry 4.0 scenario

	On the fulfillment of Industry 4.0 network requirements

	TSN and SDN in the context of Industry 4.0
	Evaluating TSN and SDN
	Real-time performance
	Overhead
	Mutual isolation
	Granularity of QoS control
	Traffic Management Architecture
	Flexibility
	Overall evaluation

	TSN as data plane enabling technology
	Network Architecture
	Supporting standard OpenFlow services
	Supporting real-time traffic
	Data plane comparative analysis: TSN vs HaRTES

	The Finale
	Conclusions
	Future research

	References
	List of publications and communications
	Core publications
	Other publications

	Code sample for the Real-Time OpenFlow Add-On API
	Mandatory and optional OpenFlow components/functions
	Code sample for the schedulability analysis of time-triggered traffic

