
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Programa de Doutoramento em Informática

das Universidades do Minho, de Aveiro e do Porto

Flávio
Silva Meneses

Gestão Virtualizada de Mobilidade para Redes
Futuras Baseadas em Particionamento de Rede

Virtualized Mobility Management for Future
Slicing-based Networks

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Flávio
Silva Meneses

Gestão Virtualizada de Mobilidade para Redes
Futuras Baseadas em Particionamento de Rede

Virtualized Mobility Management for Future
Slicing-based Networks

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à ob-
tenção do grau de Doutor no âmbito do programa doutoral MAP-i, realizada sob a orientação
científica do Doutor Daniel Nunes Corujo, Investigador Doutorado do Departamento de Eletró-
nica, Telecomunicações e Informática da Universidade de Aveiro, e do Doutor Rui Luís Andrade
Aguiar, Professor Catedrático do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro.

Este doutoramento foi realizado com o apoio do Instituto de Telecomunicações
- Pólo de Aveiro (UID/EEA/50008/2019), e com o apoio dos projetos CENTRO-
01-0145-FEDER-000010 e PTDC/EEI-TEL/30685/2017.

o júri / the jury
presidente / president Doutor Armando da Costa Duarte

Professor Catedrático, Universidade de Aveiro

vogais / examiners committee Doutora Marília Pascoal Curado
Professora Associada com Agregação, Universidade de Coimbra

Doutor José André Rocha Sá Moura
Professor Auxiliar, Instituto Universitário de Lisboa

Doutor Jorge Miguel Matos Sousa Pinto
Professor Associado com Agregação, Departamento de Informática da Escola de Engenharia da
Universidade do Minho

Doutor João Paulo Silva Barraca
Professor Auxiliar, Universidade de Aveiro

Doutor Daniel Nunes Corujo
Investigador Doutorado, Universidade de Aveiro

agradecimentos /
acknowledgements

A tese apresentada marca o término de um ciclo, que não seria possível sem a
colaboração e ajuda de várias pessoas e entidades, sendo com elas que partilho os
méritos que dela possa receber. Agradeço a todos aqueles que contribuíram de
forma decisiva para a concretização deste estudo.

À Universidade de Aveiro e Instituto de Telecomunicações de Aveiro manifesto o
meu apreço pela possibilidade de realização do presente trabalho e por todos os
meios colocados à disposição, assim como a excelência da formação prestada e
conhecimentos transmitidos, ambicionando que o trabalho desenvolvido dignifique
ambas as instituições.

Aos orientadores desta tese, Doutor Daniel Corujo e Professor Doutor Rui Aguiar,
agradeço não só toda a disponibilidade, colaboração e conhecimentos transmitidos,
mas principalmente a capacidade de estímulo e confiança ao longo de todo o
trabalho. Deixo também o meu reconhecimento a todos os colegas com os quais
me cruzei ao longo destes anos e que de uma forma ou de outra contribuíram para
esta tese. Em especial a José Quevedo e Carlos Guimarães, agradecendo a partilha
de conhecimentos, mas principalmente por tornarem o tempo de laboratório em
companheirismo.

Um especial e sentido abraço com profundo reconhecimento aos meus pais. À
minha esposa, Sara de Meneses, por me ter acompanhado sempre ao longo
desta caminhada, com o seu ombro amigo e estabilidade emocional. Deixo
também um agradecimento especial ao casal Fátima e António, por todo o apoio e
amizade partilhada, e essencialmente por me acolherem como família desde o início.

Por último, a todas estas pessoas resta-me dizer: Muito obrigado.

Palavras Chave Redes Definidas por Software, Virtualização de Funções de Rede, Orquestração,
Particionamento de rede, Gestão de Mobilidade

Resumo O aumento do número de dispositivos móveis e a forma como são utilizados para
o acesso à Internet tem estado na origem de diversos desafios de rede. Estes dis-
positivos têm vindo a evoluir e são agora capazes de consumir e produzir fluxos de
vídeo em tempo real enquanto se movem e exploram múltiplos acessos a tecnolo-
gias sem-fios. Paralelamente, operadores de rede têm apostado em mecanismos de
redes definidas por software (do inglês, SDN) e de funções de rede virtualizadas
(do inglês, NFV), de forma a possibilitar a rede a adaptar-se de uma forma dinâ-
mica e flexível a diversos tipos de requisitos de tráfego e casos de uso. Além disso,
o 3GPP projecta a próxima rede de quinta geração (5G), como uma arquitetura
holística capaz de agregar diferentes tecnologias de acesso, e servir múltiplos ver-
ticais (ex., indústria automóvel e saúde) com diferentes requisitos de tráfego (ex.,
baixa latência e elevados picos de transmissão de dados). Neste sentido, o parti-
cionamento de rede (do inglês, network slicing ou slicing) aparece como decisivo,
permitindo a divisão da infra-estrutura de rede em redes logicamente isoladas, de
forma a suportar determinados tipos de serviço. No entanto, isto levanta novos
desafios relacionados com a gestão de mobilidade nesta arquitetura holística de
redes altamente dinâmicas e flexíveis. Alinhada com esta visão, esta tese propõe
um mecanismo de gestão virtualizada de mobilidade para redes futuras baseadas
em particionamento de rede, capaz de adaptar a rede (através de mecanismos de
slicing) aos requisitos de comunicação do utilizador, enquanto possibilita o han-
dover transparente entre diferentes tecnologias de acesso. Este mecanismo foi
suportado pelo desenho de uma arquitetura baseada em tecnologias SDN e NFV,
sendo depois evoluída de forma a acomodar mecanismos de slicing e orquestração
para instanciação e orquestração de network slices. A tese implementa e avalia
provas de conceito dos diferentes componentes de rede, com os resultados a mos-
trar a sua viabilidade e providenciando indicadores para futuros melhoramentos e
implementações comerciais.

Keywords Software-Defined Networking, Network Function Virtualization, Orchestration,
Network Slicing, Mobility Management

Abstract The increasing number of mobile devices and their usage for Internet access has
been at the origin of new networking challenges. In fact, mobile devices have evol-
ved and are now able to both consume and produce live stream videos, while moving
and taking advantage of multiple wireless access technologies. In parallel, network
operators have been relying on Software Defined Networking (SDN) and Network
Function Virtualization (NFV) mechanisms for enabling the network to dynamically
and flexibly adapt to the different traffic requirements and use cases. Furthermore,
3GPP envisions the upcoming fifth generation (5G) of networks, as a holistic archi-
tecture able to aggregate different access technologies, and serve multiple vertical
use cases (e.g., automotive and eHealth) with different traffic requirements (e.g.,
low latency and high peak data rates). Here, network slicing appears as the game
changer, by allowing the network infrastructure to be divided into logically-isolated
networks for supporting certain service types. Nevertheless, this rises new chal-
lenges related to the mobility management on such a highly dynamic and flexible
holistic architecture. Aligned with this vision, this thesis proposes a virtualized
mobility management mechanism for future slice-based networks, capable of provi-
ding the means to flexibly adapt the network (through slicing mechanisms) to the
user’s communication requirements, while enabling seamless handovers between
different access technologies. This mechanism was supported by the design of
an SDN/NFV-based architecture, that was further evolved to accommodate slice
and orchestration mechanisms for the dynamic instantiation and orchestration of
network slices. The thesis provides proof-of-concept implementation and evalua-
tion of the different network components, with results showing its feasibility and
providing indicators for further enhancement and commercial deployment.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.2.1 Research Questions . 4

1.2.2 Methodology . 5

1.3 Achievements and Contributions of the thesis 7

1.4 Thesis structure . 10

2 State of the art and development tools 13

2.1 5G System Architecture . 14

2.2 Software Defined Networking and Network Function Virtualization as key

enablers . 16

2.2.1 Software Defined Networking . 16

2.2.2 Network Function Virtualization . 21

2.3 The role of Network Slicing . 24

2.3.1 Slicing initiatives and implementation efforts for different slice dimensions 26

2.4 Mobility Management for 5G networks . 28

2.5 Evaluation tools, software and frameworks 31

2.5.1 Softwarization tools . 31

i

2.5.2 Virtualization Platforms . 33

2.5.3 MANO frameworks . 33

2.5.4 Network slicing tools . 34

2.5.5 Wireless testbed . 35

2.6 Chapter Considerations . 35

3 A Virtualized SDN-enabled Framework for Mobile and Network Devices 37

3.1 Network Architecture . 38

3.1.1 Network Controller . 39

3.1.2 Enabling end-devices with SDN capabilities 40

3.1.3 Points of Attachment virtualization 45

3.1.4 Integrating vMN and vPoA for bringing user context to the cloud . . 48

3.2 Towards a deviceless communication . 57

3.2.1 Involved entities and their integration with virtualization concepts . 57

3.2.2 Use case description . 60

3.2.3 Proof-of-Concept evaluation . 61

3.3 Chapter Considerations . 63

4 Inter-slice Mobility Management 65

4.1 Slice-based network overview . 66

4.1.1 Vertical slices and use cases . 67

4.2 Framework Architecture Enhancements . 69

4.2.1 Network procedures . 71

4.2.2 Wi-Fi slices implementation and evaluation 73

4.2.3 3GPP slices implementation and evaluation 77

4.2.4 Proof-of-concept evaluation for mobility scenarios in dynamic slice

environments . 80

4.3 Network slicing for corporate environments 86

4.3.1 Network entities interactions . 87

4.3.2 Proof-of-concept scenario evaluation 89

4.4 Chapter Considerations . 92

5 Slice Management and Orchestration 95

5.1 Orchestrating Slice-based Points of Attachments 96

ii

5.1.1 Framework overview . 97

5.1.2 Migration among cluster’s nodes . 101

5.1.3 Migration among Point of Deployment 105

5.2 Slice Management and Orchestration . 112

5.2.1 SliMANO’s Overview . 112

5.2.2 High-level of sequence message for instantiation and delete action . . 115

5.2.3 Proof-of-Concept Implementation and Evaluation 116

5.3 Chapter Considerations . 120

6 Conclusion and Future Directions 123

6.1 Review of Achievements . 124

6.1.1 Fulfillment of research questions . 125

6.2 Future Directions . 128

References 129

iii

List of Figures

2.1 4G System architecture (single gateway configuration option) [27]. 14

2.2 5G System architecture [25]. 14

2.3 Non-roaming architecture for 5G Core Network with non-3GPP access [25]. . . . 15

2.4 SDN architecture overview. 18

2.5 OpenFlow packet structure. 19

2.6 NFV reference architectural framework [51]. 22

2.7 Mobility architectures comparison. 29

2.8 SDN-based DMM architecture. 30

3.1 Framework Concept Overview [12]. 39

3.2 SDN controller architecture. 40

3.3 SDN-based mobile node overview. Connections in the figure: (1) patch port; and

(2) physical port [22]. 41

3.4 Handover procedure high-level message sequence [11]. 44

3.5 PoA high-level architectural overview for: (a) regular Wi-Fi PoA (without virtual-

ization); (b) fully virtualized PoA; and (c) partially virtualized PoA [14]. 45

3.6 Attachment delay and bandwidth for the deployed AP approaches [14]. 48

3.7 Framework architecture overview and forwarding rules [13]. 49

3.8 Control communication [14]. 50

3.9 Control high-level signaling [13]. 52

3.10 Video throughput for: a) Scenario A; b) Scenario B; c) Scenario C; and d) Sce-

nario D [13]. 55

3.11 Handover delay for evaluated scenarios [13]. Time intervals (t1-t5) are related to

signalling points depicted in Figure 3.9. 56

3.12 Conceptual framework for a deviceless communication [15]. 57

v

3.13 Overview of the deployed deviceless scenario [15]. 60

3.14 High-level message sequence of the deployed deviceless scenario [15]. 61

3.15 Video throughput over time and total video data amount for the deviceless

scenario [15]. 62

4.1 Slice-based architecture overview [21]. 66

4.2 MNO’s sub-slice dimensions [21]. 68

4.3 Deployed framework architecture. 70

4.4 Instantiation of a non-3GPP slice [17]. 74

4.5 Impact of traffic shaping in slice throughput [16]. 75

4.6 Wi-Fi slice throughput for: (a) without E2E QoS; and (b) SDN-based UE with

E2E QoS [22]. 76

4.7 High-level sequence of messages for the scenario evaluation [21]. 77

4.8 Experimental results for 3GPP network reconfiguration [21]. 80

4.9 Mobile offloading for a non-3GPP slice high-level signalling [16]. 81

4.10 Video throughput over time for mobile offloading scenario [16]. 82

4.11 Network architecture considering an OTT [23]. 84

4.12 High-level message sequence for the deployed OTT scenario [23]. 85

4.13 Experimental results of the proposed OTT architecture [23]. 86

4.14 Proposed mobile network architecture for corporate environments [17]. 87

4.15 High-level message sequence for non-3GPP slice instantiation [17]. 89

4.16 Deployed datapath simplification, where UE#1 is a registered UE of the corpora-

tion and UE#2 is a regular user [17]. 89

4.17 Packet overhead when considering: (a) GRE tunnel (b) IPSec in tunnel mode.

(c) OpenVPN [17]. 90

4.18 Throughput over time for the corporate scenario [17]. 92

5.1 Proposed architecture for vCPE over PaaS [20]. 97

5.2 Architecture overview for vCPE over PaaS [20]. 98

5.3 High-level signaling for instantiation and migration in PaaS architectures [20]. . 103

5.4 Instantiation and migration delay of a vCPE [20]. 104

5.5 Throughput over time in a migration scenario [20]. 105

5.6 Migration among PoDs scenario overview [19]. 106

5.7 High-level signalling for vCPE instantiation and migration among PoDs [19]. . . 108

vi

5.8 Live migration impact in on-going HD and UHD livestreams [19]. 111

5.9 SliMANO’s motivational scenario [24]. 113

5.10 SliMANO’s architecture [24]. 115

5.11 High-level signaling for NSI: (a) instantation; and (b) deletion [24]. 116

vii

List of Tables

1.1 List of publications. 10

3.1 Signaling Opportunities [11]. 42

3.2 Comparison of Wi-Fi access point approaches [14]. 46

3.3 Scenario signaling impact (bytes) [15]. 63

4.1 Types of slices and use cases [21]. 69

4.2 Signalling impact for traffic shaping within Wi-Fi slice [22]. 76

4.3 Impact of dedicated signalling messages for mobile offloading scenario [16]. . . . 83

5.1 Instantiation and migration delays [20]. 104

5.2 vCPE instantiation and PoD migration delays [19]. 109

5.3 Comparison of virtualized- and non-virtualized CPE approaches. 111

5.4 Overall OSM and SliMANO delay for instantiation and delete of a network slice [24].118

5.5 SliMANO’s components delay for instantiation and delete of a network slice [24]. 119

ix

Acronyms

3GPP 3rd Generation Partnership Projec

4G fourth generation

5G fifth generation

5G-PPP 5G Infrastructure Public Private
Partnership

AAA Authentication, Authorization and
Accounting

AF Application Function

AKA Authentication and Key Agreement

AMazING Advanced Mobile wIreless Network
playGround

AMF Access and Mobility Management
Function

AMQP Advanced Message Queuing
Protocol

AP Access Point

API Application Programming Interface

ARP Address Resolution Protocol

AUSF Authentication Server Function

BS Base Station

CDF cumulative distribution function

COE container orchestrator engine

CN Correspondent Node

CVNF containerized VNF

CPE Customer Premises Equipment

CSMF Communication Service
Management Function

DHCP Dynamic Host Configuration
Protocol

DMM Distributed Mobility Management

DNS Domain Name System

E2E end-to-end
EAP Extensible Authentication Protocol
eCDF empirical CDF
EDCA Enhanced Distributed Channel

Access
eMBB enhanced Mobile Broadband
eNB evolved Node B
EPC Evolved Packet Core
EPS Evolved Packet System
ETSI European Telecommunications

Standards Institute
FA Foreign Agent
GW Gateway
GRE Generic Routing Encapsulation
GTP GPRS Tunneling Protocol
HA Home Agent
HD High Definition
HSS Home Subscriber Server
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IMSI International Mobile Subscriber

Identity
IP Internet Protocol
IPSec Internet Protocol Security
ISP Internet Service Provider
IT Instituto de Telecomunicações
KPI Key Performance Indicator
KVM Kernel-based Virtual Machine
LCM Life-cycle Management
LMA Local Mobility Anchor

xi

LTE Long-Term Evolution

LXC Linux Containers

MAC Media Access Control

MAG Mobile Access Gateway

MANO Management and Orchestrator

MAR Mobile Access Router

MEC Multi-access Edge Computing

MIP Mobile IP

MME Mobility Management Entity

mMTC massive Machine Type
Communications

MN Mobile Node

MNO Mobile Network Operator

N3IWF Non-3GPP InterWorking Function

NaaS Network as a Service

NAT Network Address Translation

NB NorthBound

NEF Network Exposure Function

NF Network Function

NFV Network Function Virtualisation

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NIC Network Interface Controller

NRF Network Repository Function

NS Network Service

NSaaS Network Slice as a Service

NSI Network Slice Instance

NSMF Network Slice Management Function

NSSF Network Slice Selection Function

NSSI Network Slice Subnet Instance

NSSMF Network Slice Subnet Management
Function

NSST Network Slice Subnet Template

NST Network Slice Template

OAI OpenAirInterface

ODL OpenDaylight

OF OpenFlow

ONAP Open Network Automation Platform

ONF Open Networking Foundation

ONOS Open Network Operating System

OS Operating System

OSA Open System Authentication

OSM Open Source MANO

OTT Over-the-Top

OvS Open vSwitch

OVSDB Open vSwitch DataBase

PaaS Platform as a Service

PCF Policy Control Function

pCPE physical CPE

PCRF Policy and Charging Rules Function

P-GW Packet Data Network Gateway

PMIP Proxy Mobile IP

PMIPv6 Proxy Mobile IPv6

PNF Physical Network Function

PoA Point of Attachment

PoD Point of Deployment

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer

RPC Remote Procedure Call

RTP Real-time Protocol

RTT round trip time

SB SouthBound

SBA Service-Based Architecture

SD Standard Definition

SDN Software-Defined Networking

SDR Software-Defined Radio

SFC Service Function Chain

S-GW Serving Gateway

SIM Subscriber Identification Module

SLA Service Level Agreement

SliMANO Slice Management and
Orchestration

SMF Session Management Function

SSID Service Set Identification

TCP Transmission Control Protocol

TLS Transport Layer Security

xii

TOSCA Topology and Orchestration
Specification for Cloud Applications

UDP User Datagram Protocol

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UHD Ultra High Definition

UPF User Plane Function

URLLC Ultra Reliable Low Latency
Communications

vAP virtual AP

vCPE virtual CPE

VDU Virtual Deployment Unit

vGW virtual Gateway

VIM Virtual Infrastructure Manager

vPoA virtual PoA

VM Virtual Machine

vMN virtual MN

VNF Virtual Network Function

VNFM VNF Manager

VPN Virtual Private Network

vUE virtual UE

WMWG Wireless and Mobile Working Group

WNV Wireless Network Virtualization

WPA Wi-Fi Protected Access

XaaS Anything as a Service

xiii

CHAPTER 1
Introduction

“One of the main contributing factors to growing traffic is
consumer video use. One of the main solutions to meet
the demands of the increasing demand for bandwidth has
long been leveraging Wi-Fi networks, which enables oper-
ators to scale capacity to meet their subscribers’ needs.”

— Cisco

The 5G research community has been looking for flexible, dynamic and low latency
network architectures in order to meet the growing traffic consumption and user ser-
vice demands. Technologies such as Software-Defined Networking (SDN) and Network
Function Virtualisation (NFV) have been promising to offer such capabilities, by facili-
tating the instantiation and re-instantiation of Network Functions (NFs) in different
network domains. Following such characteristics, network slicing has been considered
a game changer for future network architectures, allowing operators to optimise and
share resources, in a era where wireless devices have surpassed wired ones in the total
amount of data shared in the network, evidencing the need for developing mechanisms
that not only optimise the use of network resources, but also to seamlessly handover
wireless devices among heterogeneous sliced wireless networks. This chapter presents the
motivations that led to the study of mobility management for future networks, and how
network virtualization and softwarization can contribute for a new level of abstraction in
heterogeneous environments. This is followed by a problem statement, where the research
challenges are discussed along with the adopted methodology. Finally, the achievements
resulted from this research are presented.

1

1.1 Motivation

Internet interconnects people all around the world, allowing its users to share information
in multiple ways (e.g., text, voice and video), enhance productivity and commerce
(e.g., e-productivity and e-commerce), and socialize through social media networks
and applications. Although networks began by being designed for “human-to-human”
interactions, the technological evolution shaped by the users’ interests and types
of network traffic consumption has patched the network to support highly-diverse
services. Also, initially developed over fixed access networks, the “freedom” of wireless
access networks allied with its constant capabilities enhancements (e.g., bandwidth and
latency) and current mobile devices capability of simultaneously connect to multiple
access networks while moving, have been catching users’ attention. In fact, in 2017,
wired devices already accounted for less traffic than wireless and mobile devices. The
use of wireless and mobile devices to access the Internet is expected to keep growing,
with forecasts pointing that by 2022 this type of devices accounts for 71% of the total
traffic [1]. In addition, the average usage of smarthpones for data consumption has been
increasing, where mobile video already accounted for more than half of all mobile data
traffic in 2017. Also, the increase of such consumptions has triggered the development
of mobile offloading mechanisms from fixed networks to Wi-Fi and femtocells, with the
amount of mobile offloaded data traffic actually exceeding the cellular one. Finally,
in 2017, fourth generation (4G) network connections accounted for more than 70% of
the mobile data, and in 2022, fifth generation (5G) connections will represent 3.4%
of mobile networks, but generating 2.6 times more than an average 4G connection,
resulting in 11.8% of all mobile data [2].

In parallel, requirement demands for 5G are significantly higher than in current
networks. As such, 5G requirements envision an explosion of connected devices, a
massive increasing of traffic volume and the increasing of data rates with lower than
ever latency [3]. Notwithstanding, not all future use cases require a self-adapting and
ultra-fast network. As a result, the network needs to be built in a flexible way so that
speed and capacity can be allocated in logical partitions of the network (i.e., network
slices) in order to meet the demands of each specific use case [4]. Also, the vertical
architecture of current networks makes it difficult to scale operator networks and adapt
them to the changing subscribing demands. This becomes more complicated when
considering the global increase of mobile devices, which are not only increasing video
traffic consumption, but also able to access it from several wireless access technologies
(e.g., Long-Term Evolution (LTE) and Wi-Fi) while on the move [2][5].

In this context, in its first steps, 5G research has been building its base upon SDN
and NFV, providing a more flexible network environment, and enabling the network

2

providers to run their infrastructure more efficiently. The adoption of these technologies
“allow vertical systems to be broken into building blocks, resulting in a horizontal network
architecture that can be chained together, both programmatically and virtually, to suit
the services being offered and scaled” [4]. Here, SDN centralizes the network control
and the remote management and control of forwarding devices through Application
Programming Interface (API), supported by protocols such as OpenFlow (OF)[6] and
Open vSwitch DataBase (OVSDB) [7]. NFV takes advantage of virtualization and
cloud technologies for deploying NFs in generic hardware. Thus, instead of separately
deploying isolated NFs (e.g., mobile tracking, authentication, etc.) in dedicated servers,
they are instantiated as Virtual Machines (VMs) or containers over shared computation,
storage and virtualized network substrates. Lately, the term network slice has been
widely associated with 5G systems. Maintaining its key enablers as SDN and NFV
technologies, network slicing promises to enable operators to run their Network as
a Service (NaaS). In this line, 5G has been addressing Network Slicing to allow the
operator to slice one physical network into multiple, virtual, end-to-end (E2E) networks,
where each of them are logically isolated, including device, access, transport and core
network and dedicated for different types of services with different characteristics and
requirements [3]. Nevertheless, despite initial rollouts, the upcoming 5G architecture is
still under heavy research and development by both academic and industrial efforts,
in parallel with standardization efforts. Moreover, important mechanisms for fully
supporting a 5G vision are still lacking, such as the clear separation of slices per use
case, the isolation between them, its levels and the types of resources that should be
shared between slices, or even how mobility management will be achieved are still open
aspects [3].

As such, the outcome of this thesis focuses on the study of Network Slicing issues
associated to mobility management operations. The thesis exploits the Network Slicing
concept, through the application of SDN and NFV technologies, for mobility man-
agement in wireless environments, bringing a more flexible and intelligent mobility
management dimension to the next mobile network generation framework, able to better
support existing and upcoming scenarios, contributing to national and international
research efforts on 5G. Nevertheless, 5G studies encompass levels of specification and
enhancement, ranging from hardware and radio to software and architectural aspects.
In this line, this thesis is focused in mobility management leveraged by enhanced
architectural aspects, softwarization and virtualization of the network functions and
devices.

3

1.2 Problem Statement

Mobile devices have been experiencing different technological evolutions, increasing their
features and capabilities, enabling them to take advantage of multiple wireless access
technologies (e.g., Wi-Fi, LTE, etc.) while on the move. The upcoming 5G network
aims to tackle this scenario in more complex environments (e.g., holistic architecture
with highly dynamic traffic), considering the amount of traffic generated and the need
to optimize network resources in respect to Quality of Experience (QoE) expectations.
In addition, network operators have to search for ways to increase operational efficiency,
reduce CAPEX and OPEX costs, and to agilize services instantiation. In the light of
this, Network Slicing aims to virtualise core building blocks of the network, enabling
the creation of communication system partitions for each different use case, typically
supported by SDN and NFV concepts. Also, the network slice should be provided
only for the necessary traffic treatment of each use case, thus not all slices will contain
the same functions. Despite initial rollouts, 5G architectures are still very incipient,
particularly considering the support of mobility management procedures. In this regard,
this thesis aims to develop mechanisms that enable mobility management procedures
to be jointly orchestrated with slice management and control, allowing mobile users
to maintain connectivity using different interfaces, in environments where slices will
be short-lived and extremely dynamic. This results in a framework which envisages a
highly flexible and manufacturer-independent network architecture design, simplifying
deployment and allowing the control of virtualized network resources and services
running on top of the infrastructure (e.g., routing, firewalls, etc.). Next, the research
questions and the adopted methodology for the development of the thesis are presented.

1.2.1 Research Questions

The thesis explores the feasibility of mobility management procedures through the ex-
ploitation of SDN and NFV mechanisms, while focusing on network slicing architectural
aspects. In this way, the thesis aims to bring answers to the following questions:

Q1. What will be the actual benefits of SDN flow-based mobility management control
in 5G environments?

Q2. Which NFV architectural mechanisms should be deployed (and devised) to support
the integration of SDN in wireless environments?

Q3. How will a composed SDN and NFV solution perform for wireless and mobile
environments?

Q4. How would such a solution evolve into a pure distributed design, while still
maintaining its cloud-based behavior?

4

Q5. Which would be the key architectural aspects of a SDN/NFV-based wire-
less/mobile enhanced control infrastructure that would be transited into a network
slice architecture, and which would be the requirements and benefits involved?

Q6. How should mobility management be implemented in a Network Slice architecture
and which resources should be shared between slices?

Q7. What level of isolation should mobility management have, should it be an inde-
pendent building block?

Q8. How will a mobility management building block communicate with the remaining
blocks of a network slice?

In this line, the thesis presents a framework whose features are improved along the
chapters of the thesis for assessing the self-imposed questions, with the answers being
provided in the end of chapter 3, chapter 4 and chapter 5, and summarized in chapter 6.

1.2.2 Methodology

The thesis work initiated with a state-of-the-art review, developing both theoretical and
practical studies, where the candidate was able to gather next generation mobile networks
bibliographical references, as well as to study and propose evolutions to 5G-enabling
technologies, in particular applied to wireless environments. Incrementally, a selection of
relevant existing solutions (e.g., SoftRAN [8], Cloud-RAN [9], CellSDN [10]) was done,
in order to allow the candidate not only to become familiarized with the important
academic and industrial proposals in the area, but also to exploit the mechanisms
of both technologies to contribute with new experimental data and improvements to
existing solutions. As such, keeping in mind that both SDN and NFV are considered
the key enablers of the network slicing concept, the thesis work started by trying to find
answers to questions Q1-Q4, exploring how these key enablers enhance wireless networks
and devices’ mobility management. In this regard, the work developed for addressing
questions Q1-Q4 resulted in multiple scientific publications in book chapter, journal
and conference proceedings. Such publications evaluate an SDN domain extension up
to the Mobile Node (MN), as well as a qualitative comparison between the proposed
approach and other existing IP-based mobility protocols (such as Mobile IP (MIP),
Proxy Mobile IP (PMIP), Distributed Mobility Management (DMM) and SDN-based
solutions). Also, both SDN and NFV mechanisms (i.e., OpenFlow and OpenStack,
respectively) were used to enhance wireless mobility, by virtualizing not only the Access
Point (AP) but also the MN (or User Equipment (UE), used interchangeably along the
thesis). This study is also reflected in chapter 3 and, as mentioned above, answers to
these questions will be provided in chapter 6.

The following phases focused on the progression of use cases and architectural
evolutions considered from the leading 5G visionary organizations in the world (i.e.,

5

5G-PPP, 5G Americas, IMT-2020 and 5G Forum), directly targeting the shortcomings
of future 5G slice-based approaches for the support of mobility management mechanisms.
The integration of the network slice concept in a network operator presents different
challenges, especially when considering the ever-growing number of connected devices
and their connectivity requirements, constraints and level of isolation. Focusing in the
mobile broadband use case, the candidate explored different utilisation scenarios such
as real-time video and latency tolerant data, in order to enable the network to optimally
support each content type with dynamic on-demand slices. In fact, in such dynamic
mobility management environments, the definition of a mobility management core
function and the level of core function sharing between slices is itself a challenge. The
designed framework implements different core building blocks (e.g., mobility management
and slice manager), while exploring the different types of isolation between network slices.
In this context, the usage of both SDN and NFV mechanisms, allowed the building and
configuration of the framework. Additionally, the developed mobility management block
tackles the issues pointed out by the 3rd Generation Partnership Projec (3GPP) (and by
5G Infrastructure Public Private Partnership (5G-PPP) projects), such as heterogeneous
access technologies and specific mobility management requirements. The framework
exploits solutions for control abstraction (e.g., OpenFlow) and new control interfaces,
such as a northbound API for mobility management, able to operate in highly-dynamic
slicing environments. This allows the network to adapt itself, according to the service,
user and network utilization needs, in terms of mobility management. Moreover, aiming
towards an heterogeneous network, the framework takes into consideration different
link technologies, mostly wireless technologies. At this point the candidate explored the
Network Slicing mobility issues, such as intra-technology and inter-technology seamless
handovers, aiming to tackle the research questions Q5-Q8, by proposing a slice-based
network architecture. Thus, this study was performed as an enhancement of the previous
framework, and is reflected in chapter 4.

In the end, in chapter 5, the framework adopts orchestration mechanism to fulfill
requirements of the upcoming 5G networks, such as the inter-technology convergence,
enabling seamless handovers among different wireless technologies (e.g., Wi-Fi and
LTE) and the dynamic instantiation of network slices. As result, the thesis contributes
to 5G research by developing a mobility management framework, exploiting the usage
of extremely dynamic network slices. The work considers both intra-technology and
inter-technology handovers (e.g., mobile networks and Wi-Fi), providing not only a
mobile offloading service, but actually a convergence architecture for heterogeneous
wireless networks. For this, the necessary mechanisms to allow user devices to roam
among different slices were developed, as well as to simultaneously obtain services from
one or more specific network slices. In this respect, the thesis studies the impact in

6

mobility management control and data plane procedures when mobility signaling needs
to traverse and impact different slices, as well as when different radio access slices are
involved. Also, the developed mechanisms were implemented in the Advanced Mobile
wIreless Network playGround (AMazING) testbed and in an in-house data-center,
with the framework deployment stages being shared in open-source communities (e.g.,
GitHub), furthering the dissemination of the PhD outcomes. Finally, the work presented
in this document builds upon scientific publications authored by the candidate. The
reused material is properly referenced at the end of each chapter.

1.3 Achievements and Contributions of the thesis

In this section the achievements and contributions of the thesis are presented in
terms of research projects, open-source projects and dissemination in scientific forums
and publications. In this line, the candidate participated in multiple national and
international research projects both internal and external of the institution. Next, the
research projects that the candidate was involved are described, presenting the work
developed by the candidate.

• AMazING1: The AMazING is an internal project that developed an outdoor
wireless testbed in the Instituto de Telecomunicações (IT) de Aveiro. The AMaz-
ING testbed enables the control and reproduction of the experiments for wireless
network scenarios. The candidate played a role on the hardware and software
maintenance, as well as on the current development and migration of the testbed
to an NFV and SDN enabled framework.

• 5GCONFIG2: The 5GCONFIG (Convergent Core Architecture for Next Gen-
eration Networks) was an international project that aimed to add a degree of
flexibility to 5G networks through its modularisation allowing the tailoring of the
network to be oriented to vertical scenarios. Also, 5GCONFIG proposed an access-
agnostic 5G core network for heterogeneous wireless access integration. Here, the
candidate developed efforts on the integration of heterogeneous wireless network
in a single core network, evidencing its benefits on the mobility management for
cross-technology handovers (i.e., vertical handover) [11]–[13].

• SOCA3: The SOCA project focuses on the sensing of individuals considering
their physical context enabling personalized and predictive responses. Here,
the candidate developed mechanisms for wireless context acquisition for further
computation in data-centres. Mechanisms for context migration and offload
to/from edge data-centers were developed as well [14]–[17].

1AMazING: http://amazing.atnog.av.it.pt
25GCONFIG: https://www.5g-control-plane.eu
3SOCA: http://soca.av.it.pt

7

http://amazing.atnog.av.it.pt
https://www.5g-control-plane.eu
http://soca.av.it.pt

• Mobilizador 5G4: The Mobilizador 5G is a national project that aims the devel-
opment, integration and validation of products for 5G networks. With focus on
the access network, the candidate was involved in proposals and prototypes of
virtualized costumer premises equipment (vCPE) and development of network
control mechanisms [18]–[20].

• 5GCONTACT5: The main objective of the 5GCONTACT project is the develop-
ment of flexible and optimised solutions for 5G networks, using slicing mechanisms
in fixed, mobile and wireless networks, for optimising the network in smart assisted
living scenarios. The candidate has been contributing to this project by developing
mechanisms for wireless context acquisition to be further processed and used to
optimised the network, as well as mechanisms to tailor network characteristics
towards vertical smart assisted living scenarios [21]–[23].

• 5Growth6: The 5Growth project empowers vertical industries by proposing an
end-to-end solutions supported by slicing and virtualization techniques. The
candidate has been developing SDN-based slicing and virtualization mechanism
for enhancing mobility management in heterogeneous sliced wireless networks [24].

For a matter of convenience, Table 1.1 presents the list of contributions of the
candidate in terms of scientific publications. The work progress was also disseminated
through posters in national forums:

• SDN-based End-to-End Mobility Management in Wireless Environments, Proc.
Conferência sobre Redes de Computadores (CRC), Évora, Portugal, Nov 2015

• SDN-based End-to-End Mobility Management, Encontro Ciência 2016, Lisbon,
Portugal, Jul 2016

• 5G-VCoM - 5G Virtual Cloud Mobility, Research Day, Aveiro, Jun, 2017
• CONFIG - 5G Control Plane, Research Day, Aveiro, Jun, 2017

In addition, the software developed and demonstrators of above presented works are
available as online contribution to GitHub projects:

• OpenFlow within the Mobile Node7 explains how to deploy an OF-based UE for
managing its wireless connectivity remotely;

• 5G-Virtual Cloud Mobility (5G-VCoM)8 explains how to reproduce and configure
a similar framework where the wireless context of the UE is virtualized in the
cloud;

4Mobilizador 5G: https://www.it.pt/Projects/Index/4524
55GCONTACT: https://5gcontact.av.it.pt
65Growth: http://5growth.eu
7OpenFlow within the Mobile Node (GitHub): https://atnog.github.io/of_mobilenode/
85G-VCoM (GitHub): https://atnog.github.io/5G-VCoM/

8

https://www.it.pt/Projects/Index/4524
https://5gcontact.av.it.pt
http://5growth.eu
https://atnog.github.io/of_mobilenode/
https://atnog.github.io/5G-VCoM/

• Slice Management and Orchestration (SliMANO)9 offers a Python-based open-
source framework for end-to-end slice management and orchestration.

Finally, besides the referred contributions, the expertise acquired during the de-
velopment of this thesis were leveraged by the candidate to provide guidance in the
development of the following master theses:

• A software defined network controller quantitative and qualitative analysis, Pedro
Bispo, University of Aveiro, Portugal (2017);

• IoT traffic flow management in Software Defined Networks, Sofia Marques, Uni-
versity of Aveiro, Portugal (2018);

• Offloading Mechanisms for Mobile Networks using SDN in Virtualized Environ-
ments, Rui Silva, University of Aveiro, Portugal (2018);

• Service deployment on Multi-access Edge Computing environments, David Santos,
University of Aveiro, Portugal (2018);

• Software Defined Networks and Network Functions Virtualization for critical and
reliable communications in 5G environments, João Filipe, University of Aveiro,
Portugal (2018);

• Cloud-based virtual customer premises equipment, Tiago Vieira, University of
Aveiro, Portugal (2019);

• Assessing traffic prioritization in Software-Defined Networks using Open vSwitch,
Marlene Gomes, University of Aveiro, Portugal (ongoing).

9SliMANO (GitHub): https://atnog.github.io/SliMANO/

9

https://atnog.github.io/SliMANO/

Table 1.1: List of publications.

Type Year Title Venue Ref.

Conference 2017 An abstraction framework for flow mobility in
multi-technology 5G environments using virtual-
ization and SDN

IEEE NetSoft [12]

Conference 2018 Handover Initiation Comparison in Virtualised
SDN-basedFlow Mobility Management

IEEE ISCC [13]

Journal 2018 Deviceless Communications: Cloud-Based Com-
munications for Heterogeneous Networks

Springer WPC [15]

Book Chapter 2018 Experimental Wireless Network Deployment of
Software-Defined and Virtualized Networking in
5G Environments

Springer [14]

Conference 2018 SDN-based Mobility Management: Handover Per-
formance Impact in Constrained Devices

IFIP NTMS [11]

Conference 2018 Using sdn and slicing for data offloading over het-
erogeneous networks supporting non-3gpp access

IEEE PIMRC [16]

Conference 2018 SDN-based End-to-End Flow Control in Mobile
Slice Environments

IEEE WS MO-
BISLICE

[22]

Journal 2019 Micro and Macro Network Slicing: An Experi-
mental Assessment of the Impact of Increasing
Numbers of Slices

Springer WPC [21]

Conference 2019 A Performance Comparison of Containers and
Unikernels for Reliable 5G Environments

IEEE DRCN [18]

Journal 2019 An integration of slicing, NFV, and SDN for mo-
bility management in corporate environments

Wiley ETT [17]

Journal 2019 Dynamic network slice resources reconfiguration
in heterogeneous mobility environments

Wiley ITL [23]

Conference 2019 Traffic-aware Live Migration in Virtualized CPE
Scenarios

IEEE WS MO-
BISLICE

[19]

Conference 2019 Dynamic Modular vCPE Orchestration in Plat-
form as a Service Architectures

IEEE CloudNet [20]

Conference 2019 SliMANO: An Expandable Framework for the
Management and Orchestration of End-to-end
Network Slices

IEEE CloudNet [24]

1.4 Thesis structure

The remainder of the thesis is organized as follows: Chapter 2 introduces the state of the
art of the base technologies of the upcoming 5G networks and consequently the developed
study, as well as the related work in the mobility management of such architectures.
Chapter 3 presents a first approach of the developed architecture, where both Point of
Attachment (PoA) and UE were virtualized in the cloud, enabling a greater degree of
abstraction when considering wireless mobility. Chapter 4 introduces network slicing to

10

the framework architecture and how slicing impacts in the user experience, as well as
how the framework enables inter-slice mobility. Chapter 5 evolves from the previous
framework architecture and implements mechanisms for dynamic slice instantiation
and orchestration able to use Management and Orchestrator (MANO) frameworks
for Virtual Infrastructure Manager (VIM) management and orchestration. Chapter 6
concludes the thesis and presents future research directions, namely Service-Based
Architecture (SBA) for 5G networks.

11

CHAPTER 2
State of the art and development

tools

“The main domains of the 5G system are wireless access,
transport, cloud, applications, and management including
orchestration.”

— Ericsson

The thesis presents an architecture framework for mobility management in sliced-
networks. Notwithstanding, despite upcoming 5G networks encompass different levels
of hardware, radio and network enhancements, this thesis focus solely in architectural
enhancements leveraged by the softwarization and virtualization of the core network
components. In this context, this chapter introduces the 5G system architecture, and
evolves towards the considered 5G key enablers, namely SDN and NFV technologies. As
proposals from the 5G research community evolves, new terms and networks schemes
leveraged by such key enablers, started to emerge. Concretely, Network Slicing is consid-
ered as the game changer for future network architecture, allowing operators to optimize
and share resources, while tailoring the network infrastructure to vertical use case sce-
narios. Lastly, evaluation tools and frameworks for virtualized slice-based networks are
presented.

13

2.1 5G System Architecture

The 5G system architecture has been under heavy standardization effort, with the
3GPP’s Release 15 presenting its specifications in both 5G New Radio and Core Network,
being followed by Release 16 and Release 17 whose specification is already underway.
5G aims towards a more efficient and cost effective network, leveraged by SDN and NFV
mechanisms, as well as service-based interactions among network functions for allowing
independent scaling and evolution of both control and data planes [25], [26]. The 5G
system reference architecture for non-roaming scenarios is depicted in Figure 2.2. Also,
5G has been made efforts for a holistic network, supporting a unified authentication
framework for converging 3GPP and non-3GPP access. In this line, Figure 2.3 illustrates
the 5G reference architecture for non-3GPP accesses. Next, the NFs of the 5G system
architecture are presented, and compared with the NFs of the current Evolved Packet
System (EPS) (i.e.,4G network) presented in Figure 2.1.

SGi
S4

S3
S1-MME

PCRF
S7

S6a
HSS

Operator's IP Services ’
(e.g. IMS, PSS etc.)

Rx+

UE

UTRAN SGSN

"LTE-Uu"
E-UTRAN

MME
S11

S1-U

Serving
Gateway

PDN
Gateway

S10

GERAN

Figure 2.1: 4G System architecture (single gateway configuration option) [27].

UE (R)AN UPF

AF

AMF SMF

PCF UDM

DNN6

NRFNEF

N3

N2 N4

AUSF

Nausf Namf Nsmf

NpcfNnrfNnef Nudm Naf

NSSF

Nnssf

Figure 2.2: 5G System architecture [25].

• Access and Mobility Management Function (AMF): it connects to the
Radio Access Network (RAN) control plane interface (N2) and it can be seen as the
equivalent of the Mobility Management Entity (MME) from the EPS. Thus, the
AMF manages the registration, connection, reachability and mobility of the UE.

14

Untrusted Non-
3GPP AccessUE

N3IWF

3GPP
Access

Data Network

HPLMN

Non-3GPP
Networks

UPF
N3 N6

Y1

Y2

AMF SMF
N2

N2
N4

N3

NWu

N11

N1

N1

Figure 2.3: Non-roaming architecture for 5G Core Network with non-3GPP access [25].

Other functionalities involve the access authentication and authorization, as well
as the security context management. Additionally, it supports the authentication
of UEs connected via non-3GPP access (more details in Non-3GPP InterWorking
Function (N3IWF));

• Session Management Function (SMF): when compared with EPS network
functions, the SMF replaces the Service and Packet Gateways (Serving Gateway
(S-GW) and Packet Data Network Gateway (P-GW), respectively), as well part
of the MME. Thus, the SMF manages the UE’s session and configures the traffic
steering. It also ensures the roaming functionality;

• User Plane Function (UPF): it is the gateway for data traffic from the Access
Network (AN), being an equivalent of the combined data plane of the S-GW and
P-GW of the EPS. As such, a GPRS Tunneling Protocol (GTP) tunnel connects
the AN to the UPF, which anchors the traffic for intra- and inter-RAT mobility;

• Unified Data Management (UDM): similarly to the Home Subscriber Server
(HSS) network function of the EPS, the UDM verifies the user identification and
access authorization based on subscription data and management;

• Application Function (AF): It enables application influence on traffic routing,
provides access to the NEF and interacts with the policy framework for policy
control.

• Network Slice Selection Function (NSSF): it selects the set of network slice
instances serving the UE, while determining the AMF set to serve the UE;

• Network Exposure Function (NEF): it enables 3GPP NFs to expose their
capabilities and events to other NFs, while handling the masking of network and
user sensitive information to external AFs according to the network policy.

• Network Repository Function (NRF): it supports service discovery function
by providing (upon request) the information (profile and supported services) of
the discovered NF instances.

15

• Policy Control Function (PCF): similarly to the Policy and Charging Rules
Function (PCRF) of the EPS, the PCF accesses the subscription information
relevant for policy decisions in a Unified Data Repository (UDR) and provides it
to the control plane functions its enforce.

• Authentication Server Function (AUSF): acting as an authentication server,
it assumes part of the HSS of the EPS.

• Non-3GPP InterWorking Function (N3IWF): it establishes the tunnel
with the UPF, while serving as local mobility anchor within untrusted non-3GPP
access networks. It also communicates with the AMF for authentication and
access authorization of the UE to the 5G core network in non-3GPP accesses.

In this thesis, the proposed frameworks were defined without explicitly considering
the 3GPP standards, focusing instead on the assessment of the specific slice-based
mobility management procedures themselves. Moreover, the framework was designed
in such a way that allows it to be flexibly integrated into a 3GPP architecture. This
is particularly verified in the framework presented in chapter 4, where the framework
presented in chapter 3 was evolved and integrated in a SDN/NFV-based EPS complaint
with 3GPP standards, maintaining (whenever possible) the existing interfaces used
between 3GPP building blocks. Nevertheless, although the use of the EPS, following the
current 3GPP standardization for 5G [25], proposed enhancements can be integrated
as part of the above presented network functions.

2.2 Software Defined Networking and Network Function
Virtualization as key enablers

As mentioned in previous section, 5G network systems have been addressing the
holistic vision of a converged architectural solution. Such architecture should be
flexible enough to support different network requirements for different network usage
scenarios, namely enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency
Communications (URLLC) and massive Machine Type Communications (mMTC).
Additionally, this architecture should support optimized device mobility in heterogeneous
wireless environments, developing mobility management procedures able to offer an
optimal QoE for users. In this context, SDN and NFV appeared as the key enablers
for such flexible and dynamic network. Next, SDN is introduced by presenting its
architecture and its applicability to wireless environments. This is followed by an NFV
introduction and the main research work related to wireless is discussed.

2.2.1 Software Defined Networking

Presented as a building block for upcoming 5G networks, SDN promises to introduce
a greater degree of flexibility into the network architecture by decoupling the control-

16

path from the data-path, allowing the network to better adapt to more dynamic
environments. As such, the network control operations are centralized in a high-level
entity (namely, the SDN controller) able to dynamically coordinate and program the
network forwarding entities (i.e., SDN switches) behaviour through a software API. The
SDN controller became the central point of the network and uses NorthBound (NB)
and SouthBound (SB) APIs to communicate with SDN applications and SDN switches,
respectively.

Figure 2.4 illustrates the SDN architecture overview, where three layers are presented:
(i) infrastructure layer; (ii) control layer; and (iii) application layer. Contrary to
traditional networking where all thee layers are implemented in the firmware of the
forwarding devices, in SDN the infrastructure layer is responsible for forwarding the
user traffic according to the decision provided by the control layer. Forwarding devices
are then able to expose their capabilities to the control layer through SB APIs and
protocols such as OF [6]. The control layer uses SB APIs to acquire information
from the infrastructure layer and apply management and controller decisions to the
forwarding devices. The fact that in SDN the control layer is implemented through
software allows the development of more dynamic solutions, specially when considering
its integration with the application layer through NB APIs such as Representational
State Transfer (REST). By doing so, besides monitoring the infrastructure layer, the
control layer interfaces application and infrastructure layers, providing information to
the SDN applications and performing policy management to the forwarding devices in
order to meet applications’ requirements and Service Level Agreement (SLA) [28]. In
this regard, Open Networking Foundation (ONF) [29] claims that SDN should abstract
network resources and state to external applications, as well as to ensure interoperability
based upon open control layer interfaces. Also, it should not only support management
interfaces for resource policies establishment, but also the co-existence with existing
business and operations support systems.

As mentioned above, SDN provides open interfaces (i.e., SB and NB APIs) for the
development of mechanisms capable of controlling and managing network resources
connectivity, by performing traffic inspection and modification. The OF [6] protocol has
been under standardization by the ONF and is considered the de-facto open-source SDN
SB protocol instantiation, allowing the reconfiguration of network forwarding devices
on the fly. In addition, due to its flexibility for accommodating new scenarios and
applications, the OF protocol has evolved from research networks to a core component
of network virtualization mechanisms and cloud-based architectures [30], becoming a
key cornerstone for the upcoming 5G architectures [31].

In this sense, ONF’s Wireless and Mobile Working Group (WMWG) [32] identifies
SDN as an asset to wireless and mobile networks, contributing for RAN optimization and

17

overall QoE improvement. In [33], OpenFlow sheds its light onto wireless environments,
allowing a wireless router to act as an OF switch. Also, Mobileflow [34] and SoftCell [35]
complement the routing controller with a dedicated mobility engine, and the distribution
of mobile networks data flows for MNs, according to a set of SDN policies. Also,
works such as [36], [37], apply SDN to wireless traffic control, facilitating dynamic
reconfiguration. Notwithstanding, it relies on complex procedures and dedicated
protocols, hindering heterogeneity. In [38] SDN capabilities were conceptually extended
to the MN, enabling and simplifying mobility-based scenarios. In [39], SDN is deployed
within the MN providing it with optimized bandwidth estimation. In [40] an OpenFlow
wireless extension to TDMA optimizations for IEEE 802.11 is experimentally evaluated.
Experimental studies on flow-based mobility using OpenFlow in MN were done in [41]
and [42], with the first only considering network initiated handovers and the later not
focusing on the impact of the handover process. In [43], SDN was used in the MN,
focusing on multi-homing protocols and requiring changes to the network endpoint on
the receiver side, rendering the solution only operable in intra-domain scenarios.

Notwithstanding, above works did not considered slice-based architectures and how
to dynamically manage the life-cycle of network slices for handovering the users’ traffic
to the optimal slice resources. In this line, this thesis virtualizes the UE allowing to
network to acquired the UE’s wireless context, while enabling it to dynamically anchor
the UE’s traffic and use SDN-based mechanisms for performing inter-slice mobility.

Application layer Business
Applications

Control layer

Infrastructure layer

SDN Control Software

Network
services

Network Devices

API

Control data plane interface
(e.g., OpenFlow)

Figure 2.4: SDN architecture overview.

18

2.2.1.1 OpenFlow protocol

The connection between an OF switch to an OF controller is performed through an
OF channel interface, that can run directly over Transmission Control Protocol (TCP)
or encrypted using Transport Layer Security (TLS). The OF controller, uses this OF
channel to configure and manage the OF switch via OF messages, which in turn are
divided in three categories.

• Controller-to-switch messages are initiated by the controller and used to directly
manage or inspect the state of the OF device. It may or may not require a
response from the OF switch;

• Asynchronous messages are initiated by the switch and used to update the
controller of network events and changes to the switch state;

• Symmetric messages are sent without solicitation by either the controller or switch.

Nevertheless, as can be seen in Figure 2.5, independently of the OF message type
and version, its header serves the following structure: (i) a version field, specifying
the version used in the communication; (ii) a type field indicating the message type
and how it to interpret the payload; (iii) a length field indicating the end point of the
message in the byte stream; and (iv) a transaction identifier (xid) for matching request
and response OF messages.

xid

version

payload (type)

type length

32 bits

8 bits 8 bits 16 bits

Figure 2.5: OpenFlow packet structure.

The first OF version was released in 2009 and it was limited to a single flow
table with three components in a flow entry, namely Header Fields, Counters and
Actions. Due to these limitations, multiple tables and group tables were introduced
in OF v1.1, and basic support for IPv6 in OF v1.2. In 2012, OF v1.3 introduced
Quality of Service (QoS) capabilities with the “Meter table” feature and provided
the optional support for encrypted TLS communication and a certificate exchange
between the switches and the controller. OF v1.4 introduced an unidirectionally
or bidirectionally synchronization capability for flow tables, as well as “bundles” for
grouping state modifications. “Scheduled Bundles” were introduced in OF v1.5, allowing
synchronization among multiple switches [44]. At the time of this writing, despite OF

19

v1.5 being the latest version, vendors are still focusing in providing OF v1.0 and v1.3 in
their products. Nevertheless, the OF mechanisms adopted in the framework proposal
are backward compatible from OF v1.0. Due to the elevated number of messages in the
current OF version, only the ones used in this thesis for acquiring wireless context from
the MN and performing mobile offloading are described next.

• Echo: This symmetric message starts the connection between the MN and
Controller by performing a handshake. It is started by the MN, and can be used
to exchange information about latency, bandwidth and liveness;

• Description/Features: In these controller-to-switch messages, the MN an-
nounces its ports information and Media Access Control (MAC) addresses, al-
lowing the Controller to identify the necessary characteristics of the MN and
its connections to the network. An OF connection with the Controller for each
interface is required, allowing the MN to determine which interfaces it wants to
integrate into mobility procedures;

• Status: The OF status is an asynchronous message which can be used by the
MN to inform the controller link up/down events of its network interfaces;

• Packet_in: The packet_in is an asynchronous message sent by the OF switch
to the controller resulted from a mismatch flow or output action. In the proposed
handover mechanism (section 3.1.2.2), the packet_in was generated by an output
action in a flow entry with a specific matching, which was done through destination
Internet Protocol (IP) address, allowing the MN to inform the controller of specific
events such as a link going down;

• Flow_modification (or flow_mod): The “modify flow entry message” is a
modify-state message (sub-group of controller-to-switch messages) used by the
controller to manage the OF switches state. It is used to add, delete and modify
flow entries in the OF switch, allowing to redirect data flows from/to specific
output ports. In SDN-based multiple interfaced MNs, it allows to redirect data
flows from one wireless technology to another.

• Barrier messages: The barrier_request and barrier_reply are controller-to-
switch messages used by the controller to ensure the completion of precedented
operations before new ones. In a vertical handover, where the MN offloads
the data traffic from one PoA to another, in the implemented mechanism two
flow_modification messages are required. As such, the controller uses these
messages to ensure that the first flow_modification is completed before sending
the second one.

20

2.2.2 Network Function Virtualization

As discussed above, 5G research has been building its foundation in new architectural
approaches, such as SDN and NFV, in order to tackle challenges such as massive
traffic volumes, the proliferation of connected devices and sustainable integration of
heterogeneous networks in mobile environments [45]. Standardization organizations,
such as European Telecommunications Standards Institute (ETSI)1 and ONF2, are
promoting an evolution from the traditional networks to others that leverage cloud-
based mechanisms, by moving specific network functions to data-centers. In fact, the
abstraction layer provided by SDN enables the deployment of a virtualized network
independent of the underlying transport technology and network protocols. In this
line, NFV contributes to this by providing fundamental mechanisms to decouple the
NFs from the hardware, allowing their deployment into generic hardware. Thus, NFV
allows the deployment of NFs as software instances running on servers through software
virtualization techniques, instead of specialized and dedicated hardware [46]. Otherwise,
by decoupling the data-path from the control-path, SDN allows routes to be dynamically
setup through a standardised API. Also, it becomes possible to virtualize, in the cloud,
IP network functions (such as load balancers, firewalls, security, and others) and Evolved
Packet Core (EPC) network functions (such as, the MME, HSS and S-GW).

The adoption of SDN and NFV mechanisms not only allows improving the economics
of deploying and managing services (i.e., CAPEX and OPEX), but actually provides new
possibilities by bringing the virtualization concept to network operations. For example,
in plain bare-metal scenarios, operators had to over-provision hardware by multiple
orders of degree, in order to allow the network to face against peak-hours utilization
demands. With virtualization, a more dynamic approach is able to be performed, with
resources scaling according to real-time needs. In this context, while NFV is used to
virtualize NFs, SDN improves network flexibility and (re)configurability.

Architectures such as Odin [47] and CloudMAC [48] already employ some of these
concepts into wireless networks, by virtualizing APs in data centers. While Odin explores
the implementation of high level services, such as Authentication, Authorization and
Accounting (AAA), CloudMAC deals with the MAC frames of a specific AP in the
cloud. Nevertheless, both architectures focus in the IEEE 802.11 standards, disregarding
integration with cellular networks. Other approaches such as SoftRAN [8] and Cloud-
RAN [9], further evolve from concepts that apply SDN in cellular networks, by exploring
the usage of both SDN and NFV therein. Concretely, SoftRAN introduces a SDN-
based centralized control plane for RANs which abstracts Base Stations (BSs) from a
local area (SD-RAN), and provides different control algorithms for network operation.

1ETSI - http://www.etsi.org/
2ONF - https://www.opennetworking.org/

21

On the other hand, Cloud-RAN proposes to connect the SD-RANs to virtual BSs,
providing a centralized control solution. Focusing on the wireless integration with NFV,
OpenRadio [49] proposes a modular programming capability for the entire wireless
stack, by decoupling the wireless protocol definition from the hardware, and ensuring
that multi-core platforms are capable of implementing the protocols.

In this context, NFV has been identified as a solution for telecommunication service
providers to perform more efficient operations (by remotely maintaining and updat-
ing NFs), and increase utilization efficiency of resources by using existing network
capacity for more user traffic. In this line, ETSI has been developing standards for
NFV deployment, providing some use cases, a reference architecture and a MANO
framework [50]. Figure 2.6 presents the ETSI’s NFV reference architectural framework,
which encompasses the NFV Infrastructure (NFVI) and MANO.

Figure 2.6: NFV reference architectural framework [51].

2.2.2.1 Management and Orchestration

In virtualized networks, the MANO entity is a framework defined by ETSI responsible
for the managing and orchestrating of resources in a virtualized data-centers. This
includes compute, networking, storage, and VM resources. Also, the NFV MANO
envisions a flexible instantiation, re-instantiation and deletion of network components.
In Figure 2.6, MANO is composed by: (i) the NFV Orchestrator (NFVO) that is a key
component of the NFV-MANO and manages network services by requesting, scheduling

22

and instantiating VNFs via VIM, while using the VNF Manager for VNFs’ configuration;
(ii) the VNF Manager (VNFM) that is responsible for the lifecycle management of
VNFs, including instantiation, updating, scaling and termination of VNFs; (iii) the
VIM that is responsible for controlling and managing the NFVI compute, storage, and
network resources.

In the light of this, the NFVO orchestrates Virtual Network Functions (VNFs) by
deploying and configuring them in a predefined set of VIMs, envisioning the creation of
a network to support a certain service type. This concept of having a network deployed
on top of another network, for supporting specific service types, is often presented
as network slicing. Also, these virtualized networks are usually created by defining
a datapath through the virtualized NFs (a chain of VMs), which results in a Service
Function Chain (SFC).

In this context, the NFVO is one key component of MANO architectures, and it is in
charge of the deployment and configuration of VNFs which are part of a network slice,
leaving the interconnection (i.e., the chaining) of these VNFs out of its scope. However,
this aspect still needs to be addressed, for enabling a truly automated slice orchestration.
In this context, 3GPP proposes in their study for network slicing MANO [52] the
following terms and definitions:

• Network Slice Template (NST): it describes the network slice and has the
slice definitions and instance-specific information used as a skeleton to build-up
network slices.

• Network Slice Subnet Template (NSST): it represents a slice template that
is part of a higher level slice template.

• Network Slice Instance (NSI): it uses a NST as base and a set of custom
parameters to build-up a network slice. The NSI includes all functionalities and
resources (physical and logical) necessary to support certain set of communication
services (thus serving certain business purpose). Also, the NSI contains NFs from
both access and core networks, with the 3GPP management system containing
the information of necessary interconnections between NFs (e.g., topology and
QoS). Finally, a NSI may be fully or partly, logically and/or physically, isolated
from another NSI.

• Network Slice Subnet Instance (NSSI): it is a NSI that is part of a higher
level NSI. For example, for instantiation of a NSI that contains access and core
network components, these components are instantiated as two NSSIs: one NSSI
for the access network, and other for core. Thus, the targeted NSI is instantiated
by combining both NSSIs. Nevertheless, a NSSI may be shared by multiple NSSIs
and/or NSIs.

23

• Network Slice Management Function (NSMF): it manages and orches-
trates NSIs. It derives network slice subnet related requirements from network
slice related requirements and communicates with the Network Slice Subnet
Management Function (NSSMF) and Communication Service Management Func-
tion (CSMF).

• Network Slice Subnet Management Function (NSSMF): it is responsible
for the management and orchestration of NSIs. It communicates with the NSMF.

• Communication Service Management Function (CSMF): it translates the
communication service related requirement to network slice related requirements.
It communicates with the NSMF.

However, key issues for network slicing management, such as how services are
requested via the 3GPP management system and how they are facilitated using and
NSI, are still under discuss. Also, fully working solutions for slice orchestration for intra
and inter administrative domains, as well as shared slice instance management, are still
lacking.

2.3 The role of Network Slicing

Network Slicing (or slicing) is a concept that allows differentiating traffic traversing
a shared network infrastructure, providing isolation to different scenarios (and their
specific requirements). Currently, this is achieved through various mechanisms, such
as VLANs or firewalls, adding complexity to networking configuration and requiring
the deployment of special devices at appropriate network locations. More recently, the
introduction of SDN allowed centralized network control, supported by protocols such
as OpenFlow. This was leveraged by systems such as FlowVisor [53], which enable
multiple applications to control a SDN network without interfering with each other,
albeit requiring the interposition of complex hypervisor software at the management
plane.

Lately, network slicing has been highlighted as a key enabler for the realization of
the next generation of communications architecture (5G) [29]. The requirements in such
environments are significantly more demanding than today’s networks, envisioning an
explosion of connected devices, massive increase of traffic and data rates with extremely
reduced latency [3]. As such, the network needs to be built in a flexible cost-efficient
way so that speed and capacity can be allocated on-demand in logical slices to meet the
demands of each use case [4]. With the appearance of initial 5G architectural proposals,
mostly based on SDN and NFV technologies, several key issues have surfaced, not only
when considering the application of network slicing, but also the transition between
mobile network and the novel 5G environments [54].

24

Network Slices are seen as the key for delivering differentiated service demands,
as they are able to provide connectivity adapted and optimized for each different use
case, application and user. In order to run the network in such resource efficiently way,
researchers are laying its efforts into SDN and NFV technologies [4][3]. The level of
network programmability provided by SDN allows several network slices, optimized
for different service deployments, to be configured using the same physical and logical
network infrastructure. “One physical network can therefore support a wide range of
services and deliver these services in an optimal way” [4]. These features were exploited
in [55] where in an SDN-based home network several slicing strategies were used for
better user experience accordingly with the user demands and applications. On the
other hand, NFV’s flexibility allows the network functions to execute independently
of location, being no longer bounded to a specific network node. The same network
function can not only be executed in different places, but also be chained together as a
logical network slice [4]. Slicing initiatives for mobile networks can be mainly divided
into three groups [56]:

• Spectrum-level (or radio) slicing: it is the slicing of the spectrum though
time, space or frequency multiplexing. Alternatively, the creation of an overlaid
access (such as an Service Set Identification (SSID) in Wi-Fi) is also considered as
a radio link virtualization. In this line, different solutions are proposed depending
on the wireless medium access technology. In LTE, solutions such as [57], [58]
propose an architecture for evolved Node B (eNB) virtualization with the objective
of enabling infrastructure sharing among several operators. Also, [59] proposes an
algorithm to dynamically allocate resource blocks depending on the slice demand.
Considering the Wi-Fi, in [60] virtual APs with different SSIDs and security
configurations are used for allowing a single AP to be shared among operators
when deployed in popular locations (e.g., airports and hotels). Solutions such as
[60] and [61], propose to configure Enhanced Distributed Channel Access (EDCA)
parameters to improve throughput of the slices.

• Infrastructure-level slicing: it is the slicing of the physical network elements
(antennas, base stations, memory) and accomplished mostly by virtualization.
This allows network operators to share the infrastructure, which gains more impact
when considering areas with limited coverage [62]. However, despite projects such
as OpenAirInterface (OAI) and FlexRAN allowing the EPC virtualization and
the eNB radio slicing, respectively, no fully working proposals were found in the
literature for infrastructure sharing among operators.

• Network-level slicing: it is the slicing of all the network infrastructure as an
end-to-end slice. Similarly to the previous one, fully working architectures capable
of creating, managing and orchestrating end-to-end slices are still lacking.

25

Also, slicing implies the allocation of the required resources for independent services [56].
However, in wireless environments, the slice isolation of the wireless access medium
adds particular challenges, especially when ensuring QoS and SLAs. In this context, not
only SDN and NFV are seen as key enablers for resource slicing in wireless networks,
but also for Wireless Network Virtualization (WNV) [56]. Towards slicing per service,
user or application, WNV aims not only the sharing of the infrastructure, but also the
radio spectrum.

Applying these concepts, works such as [63] propose through simulations where
control mechanisms dynamically allocate network resources to different slices, in order to
maximize users’ satisfaction. However, the work focuses in QoE, disregarding mobility
issues. In [64], the authors proposed a “5G Network Slice Broker” to facilitate on-
demand resource allocation and perform admission control based on traffic monitoring
and forecasting. Similar to this, in [65] the concept of hierarchical Network Slice as
a Service (NSaaS) is introduced, allowing network operators to customize end-to-end
networks as a service. Despite enabling operators to build network slices for vertical
industries more agilely, these approaches disregard mobility management issues, such
as the role of the MME in such architecture, or even the communication between
the network slice and the MME. Next, initiatives for different slice dimensions are
presented.

2.3.1 Slicing initiatives and implementation efforts for different slice
dimensions

Different slicing initiatives and proof-of-concept frameworks have been proposed in
recent years. However, the majority of such proposals often focuses in specific use
cases, without presenting their integration with the global architecture, which in turn
demands great flexibility in order to tailor a slice for the verticals. In addition, such
existing works also address the subject assuming a single type of network slice (or at
most, just distinguish between radio access or network services slices at the core). In
this line, next recent slicing initiatives and proof-of-concept frameworks are reviewed,
viewing them under the lens of the network slicing granularity classification and map
them according to the architecture proposed in this thesis (presented in chapter 4).

2.3.1.1 Operator

Despite existing works (such as, [66], [67]) proposing infrastructure sharing among
network providers, few actually experimentally implement such approach. For example,
OAI [68] along with FlexRAN [69] allows to slice the Mobile Network Operators (MNOs)
infrastructure, by virtualizing the EPC in a data-center and instantiate multiple radio
slices, respectively. However, such frameworks do not allow the RAN sharing, requiring

26

each MNO to deploy its own RAN infrastructure (more specifically, eNBs). In this line,
it is necessary to develop mechanisms allowing eNBs to be shared among MNOs, in
order to allow full infrastructure sharing. Regarding to non-3GPP infrastructure sharing
initiatives, works such as [16], [70] present proof-of-concept frameworks to dynamically
instantiate Wi-Fi slices, which redirect traffic to the respective core networks, allowing
APs deployed in public places to be shared among MNOs.

2.3.1.2 Geographic area

As above mentioned, frameworks such as FlexRAN [69] and OAI [68] enhanced the
deployment flexibility of mobile networks. Multi-access Edge Computing (MEC) and
fog computing are enablers for this type of slices, as the closer proximity of the network
function deployment infrastructure to the end users, allows for geographical-based
performance gains and resource usage optimization. In this line, by enhancing the
modularity of such frameworks, it is possible to dynamically manage the control and
data planes in order to instantiate a geographical slice, and use MEC to reduce latencies.

2.3.1.3 Type of client

Frameworks such as FlexRAN [69], allow the RAN slicing for MNOs, with instantiated
RAN slices being attached to the MNO’s EPC (as presented in section 4.2.3). Similarly,
in [16], multiple Wi-Fi slices were instantiated with different QoS. Such approaches
allow MNOs to instantiate 3GPP and non-3GPP slices for different classes of users,
providing different QoS for each slice (as presented in section 4.2.2).

2.3.1.4 Access technology

Currently, proposed architectures in the literature provide mechanisms to create network
slices for different access technologies, disregarding the interoperability between slices
of different access technologies. In this line, [69] proposes the slicing of 3GPP networks,
while works such as [70] slice non-3GPP PoAs for enhanced QoS and/or infrastructure
sharing among operators. However, providing inter-operation capabilities between both
slices requires both the development of new mechanisms as well as the enhancement of
existing procedures. In [16], the candidate took the first steps towards this direction
and developed a framework that dynamically instantiated a non-3GPP slice for the UE,
allowing mobile video offloading while maintaining the QoE (presented in section 4.2.4.1).

2.3.1.5 Node/UE

Aligned with the interoperability between slices of different access technologies, the
instantiation of slices per UE can be proposed. This allows the access technology
currently in use by the UE to become transparent, enabling seamless handover scenarios.
In this line, the use of a virtualized representation of the UE inside the network provider’s

27

VNFs (as in chapter 4) anchors the UE to the network, allowing the network provider
to flexibly move the slice among the different access technologies. Alternatively, the use
of bond interfaces3 allows the unification of access technologies in the UE, which also
allows the transparency of multiple slices to the end-user.

2.3.1.6 Interface

Here, a different slice is instantiated depending if interfaces are from the same access
technology, or not. For interfaces of the same access technology (e.g., dual-SIM
smartphone), the MNO instantiates a slice per interface. For interfaces of different
access technologies, the slice is similar to the access technology slice type. This type of
slicing allows for greater UE connectivity resilience in case of network failure, and despite
being supported by current slicing implementations, mechanisms for slice handover
management in inter-domain scenarios need to be further developed.

2.3.1.7 Flow

This is the most frequent type of radio slicing. Works such as [71], [72] propose
algorithms for the allocation of resource blocks depending on the traffic characteristics.
Conversely, [22] noted that such approaches do not guarantee the uplink traffic demands
in scenarios with “greedy” flows, and propose instead the use of SDN technologies
within the UE, for dynamic queuing of flows.

2.3.1.8 Packet

This type of slicing aims to offer to the UE the capability to attach the same interface
to multiple slices, allowing the parallel transmission of packets of the flow, with the
benefit of enhanced throughput, redundancy and resilience. However, currently there is
no slicing mechanisms in the literature that allows the UE to dynamically send packets
of the same flow through different slices.

2.4 Mobility Management for 5G networks

As previously presented, wireless devices have been increasing its share in the global
Internet data consumption [1], evidencing the need to develop mechanisms capable
of performing seamless handovers over multiple access technologies (e.g., mobile and
Wi-Fi). Notwithstanding, 5G studies show that despite of the increasingly large segment
of users/devices, 5G solutions should not assume mobility support for all devices and
services. Instead, mobility on-demand should be supported, ranging from very high

3 Bond interfaces: Bonding network interfaces allows to have multiple network interfaces attached
to a virtual interface (i.e., bond interface), which becomes the network interface used by the kernel for
network access interfaces. Nevertheless, the bond interface physically uses the actual network interfaces
(e.g, wlan0, wlan1, etc). This increases redundancy and availability for network access.

28

mobility, such as high-speed trains/airplanes, to low mobility or stationary devices such
as smart meters [3].

Device mobility can be seen as changing PoA (namely, BSs or APs) along with
associated procedures. MIP [73] was introduced by the Internet Engineering Task
Force (IETF), to address mobility by mapping, in the Home Agent (HA), a global
address with the device’s current IP address. Thus, packets destined to the MN are
received by the HA and tunneled towards the MN. However, even considering its
IPv6 variant (MIPv6), IP-based mobility was not deployed Internet-wide [74] due to
handover delay, triangular routing between HA and Foreign Agent (FA), signaling
overhead and stack software modifications. In alternative, network-based mobility
management protocols such as Proxy Mobile IPv6 (PMIPv6) [75] and DMM [76] were
proposed, shifting mobility signaling to network nodes. Figure 2.7 compares the MIP,
PMIP and DMM architectures. PMIPv6 still inherited issues such as non-optimal path
communication between the MN and the Correspondent Node (CN), and tunneling.
Nonetheless, PMIPv6 was deployed as a network-based mobility management protocol,
handling the signaling on behalf of the MN, improving the localized routing handover
delay, signaling cost, and Local Mobility Anchor (LMA) utilization [74]. Despite an
evolution, PMIPv6 can be simultaneously deployed with MIPv6 [77], with the latter
used globally and the former locally. Conversely, DMM was designed to be flexible and
distributed [78], and supported by IETF and 3GPP, DMM complemented or replaced
existing functions (e.g., LMA and Mobile Access Gateway (MAG) became a single
entity, namely Mobile Access Router (MAR)) [76]. However, the inherent triangular
routing and tunnels between MARs are still issues [78].

mipHA

FA

CN

MN MN(movement)

(a) MIP

CN

MN MN

LMA

MAG MAG

(movement)

(b) PMIP

MAR MAR

MN MN

MAR

CN

MN

(movement) (movement)

(c) DMM

Figure 2.7: Mobility architectures comparison.

Mobility management studies for 5G networks started with initial SDN-based DMM
architectures [46], [79]–[81] (Figure 2.8), resulting in a framework providing mobility
and QoS for the end-user, in terms of latency and throughput. Here, mobility tunnels
between MARs become unnecessary due to the added flexibility for dynamic datapath

29

reconfiguration offered by SDN’s SB APIs, such as the OF protocol. However, 5G
provides a new opportunity for the development of a fully converged architectural
solution able to support optimized device mobility in heterogeneous wireless access
environments. Thus, works, such as [33], applied OpenFlow capabilities to APs, further
extended in [82], allowing SDN controllers to remotely configure flows traversing them.
This established the foundation for using SDN and OpenFlow as mobility management
mechanism, with [36] and [37] supporting an enhanced controller capable of managing
handovers, using IEEE 802.21 and OpenFlow. OpenFlow-based mobility support
procedures were also applied into mobile devices [38]. Experimental deployments
were presented in [39] and [40] focusing on IEEE 802.11 technologies, and [41], [42]
validating SDN mobility management capabilities in heterogeneous environments. This
was progressed in [43] by deploying OpenFlow in end-to-end source mobility scenarios.

MAR
(OF)

OF

OFNetwork
controller

MN MN

MAR
(OF)

CN

(movement)

Figure 2.8: SDN-based DMM architecture.

Works such as [83]–[85] have provided mobility management enhancements enabled
by the creation of virtual APs (vAPs) (as in [47], [48]). In [83] the vAPs is able to
“follow” the MN, placing mobility procedures entirely inside the virtualized network
of interconnected vAPs. As such, each MN is associated with its own vAP when it
connects to the network, the latter moving along with its client, with the MN unaware
of the physical handover. In [84] the authors take advantage of APs operating on
multiple channels for seamless handovers. In [85] SDN-based procedures were proposed
for creating, managing and migrating vAPs, without modifying MNs.

Nevertheless, the proliferation of new network services and end-devices that differ
in terms of requirements and communication capabilities, creates the need to tailor the
network to specific use cases and vertical industries (e.g., eHealth and automotive). In
this context, “network slicing offers an effective way to meet all of the diverse use case
requirements and exploit the benefits of a common network infrastructure, enabling
operators to establish different capabilities, deployments, and architectural flavors for

30

each use case” [86]. As such, mobility mechanisms must be developed to enable the
deliver of differentiated services over optimized connectivity and tailored to the use
case, application and user. In the light of this, this thesis provides a framework that
allows the dynamic instantiation of 3GPP and non-3GPP network slices, using SDN-
and NFV-based mechanisms and considering the user’s data requirements. For this, as
mentioned before, the UE is virtualized, with the network preserving the user’s wireless
context in the vUE, and allowing it to partake and contribute to the optimization of
the network by anchoring the UE’s traffic and enabling the handover of traffic between
slices (if necessary).

2.5 Evaluation tools, software and frameworks

A number of research efforts have focused on novel solutions for deploying virtualized
and slice-based networks. Available solutions provide a reference and material to analyze
and explore the concepts addressed along this thesis. As such, this sections presents
possible technologies capable of implementing the desired framework, while providing
an overview of them, highlighting their architecture, features and limitations.

2.5.1 Softwarization tools

OF switches can be either physical or virtualized, with Open vSwitch (OvS) being one
of the most used open-source software (virtualized) switches. OvS not only supports
standard management protocols (e.g., sFlow and NetFlow), but also open protocols such
as OpenFlow and OVSDB, that expose the flow-based forwarding state and the switch
port state, respectively. Also, OvS allows its use as an OF-hybrid switch, enabling
the use of both OpenFlow and “conventional” Ethernet switching operations (i.e.,
L2 Ethernet switching, VLAN isolation, L3 routing). As such, OF-hybrid switches
provide a classification mechanism outside of OpenFlow that routes traffic to either
the OpenFlow or normal pipeline [87]. Regarding to SDN SB APIs, OpenFlow allows
the remote and on-the-fly re-configuration of the flow tables (by adding, updating or
even deleting a flow entry). Thus, each flow table is a set of flow entries, and each
flow entry consists of match fields, counters, and a set of instructions to apply to
matching packets. Nevertheless, when changes are required in the management plane,
SDN-enabled forwarding devices implement different open protocols. OvS implements
the OVSDB protocol for defining the configuration of the OvS itself (e.g., addition of a
port to a OvS bridge, creation of a new OvS bridge) as well as the QoS policies.

2.5.1.1 SDN Controller

The SDN controller interfaces the application and infrastructure layers, offering open
APIs for the development of SDN applications that helps the controller to manage

31

SDN-enabled forwarding devices. Doing this, the SDN controller abstracts the different
levels of the network, enabling the network to evolve to a more programmable state,
improving its functionality, flexibility and adaptability. Next, the most popular open-
source SDN/OF controllers are presented.

• OpenDaylight (ODL)4: part of Linux Foundation Networking, it is a JAVA-
based open-source SDN controller, driven by a global, collaborative community of
vendor and user organizations that continuously adapts to support the industry’s
broadest set of SDN and NFV use cases.

• NOX5: considered the original OF controller, it was written in C++ and initially
developed by Nicira Networks (side-by-side with OpenFlow) in 2009.

• POX6: presented as NOX’s younger sibling, it brings faster development and
prototyping of SDN/OF applications through Python.

• Floodlight7: it is an enterprise-class, Apache-licensed, Java-based OF Controller
supported by a community of developers and maintained by Big Switch Networks.

• Open Network Operating System (ONOS)8: it is an open-source SDN
controller for building next-generation SDN/NFV solutions, designed to meet the
needs of operators wishing to build carrier-grade solutions. It is a JAVA-based
open-source project distributed under the Apache 2.0 license, released in 2014 by
Open Networking Lab (ON.Lab). Currently, it is maintained by Linux Foundation.

• Ryu9: it is a component-based SDN framework that provides software components
with a well defined API that makes it easy for developers to create new network
management and control applications. It is available under the Apache 2.0 license,
written in Python and supported by Nippon Telegraph and Telephone (NTT).

Comparing the above presented SDN controllers, JAVA-based controllers (namely,
ODL, Floodlight and ONOS) offer a similar feature set by being vendor-neutral and
supporting open interfaces for SB an NB. Nevertheless, Python-based controllers
(namely, POX and Ryu) also support such capabilities with the added benefit of offering
a more agile software framework for a fast developing and prototyping, when compared
with such “all-purpose” monolithic controllers. Moreover, performance improvements
of JAVA-based controllers are only noticed for large scale networks [44]. In the light
of this, the framework proposal in this thesis used Python-based controllers: initially
using POX and then migrated to Ryu (for better features support, such as OF version
and NB AP). Nevertheless, the framework is agnostic to the SDN controller choice,

4OpenDaylight: http://www.opendaylight.org/
5NOX: http://www.noxrepo.org/nox/
6POX: https://noxrepo.github.io/pox-doc/html/
7Floodlight: http://www.projectfloodlight.org
8ONOS: https://onosproject.org
9Ryu: http://osrg.github.io/ryu/

32

requiring the necessary application adaptations. Here, both POX and Ryu controllers
offer APIs for developing applications through Python modules.

2.5.2 Virtualization Platforms

This section presents virtualization platforms as enablers for virtualizing network entities
and functions.

• OpenStack10: OpenStack is an infrastructure platform which enables the deploy-
ment of private clouds. It allows developers to instantiate VMs on-demand with a
complete Operating System (OS) stack (through an hypervisor). However, due to
cloud security concerns, when a chaining of VMs to redirect flows is needed, it is
required to encapsulate, perform Network Address Translation (NAT) or change
the header of the packets.

• ProxMox11: Proxmox VE is an open-source Linux-based operating system that
combines two different virtualization technologies, namely Kernel-based Virtual
Machine (KVM) and Linux Containers (LXC), allowing users and developers to
instantiate VMs. Contrary to OpenStack, ProxMox favors stability over flexibility.

• Docker12: Docker Engine provides containers for managing software workloads on
a shared infrastructure, while isolating them via built-in OS features. Nevertheless,
it allows direct access to the device drivers which makes I/O operations faster
than with a hypervisor approach. Docker containers do not require a complete
boot of a new OS, resulting in a lighter alternative for running applications on
shared compute resources. Notwithstanding, Docker still has some limitations,
such as isolation and security.

In this context, both OpenStack and ProxMox allow the deployment of a virtualiza-
tion platform for private and public clouds. Despite ProxMoX VE being more stable,
OpenStack is more automated and has a lively community ensuring new resources
for new project developers and users. Regarding to the use of Docker containers, it
significantly reduces the on-demand instantiation load of services, since containers’
images do not have the guest OS. Also, the Docker Engine can be installed in a VM
of a cloud provider, allowing to deploy a pre-built framework to be launched there,
enabling the switch between OpenStack or bare metal environments whenever needed.

2.5.3 MANO frameworks

As presented in Figure 2.6, the MANO entity is composed by a NFVO, VNFM and
VIM. In this context, Topology and Orchestration Specification for Cloud Applications

10OpenStack: https://www.openstack.org/
11ProxMox: https://www.proxmox.com
12Docker: https://www.docker.com/

33

(TOSCA) is a data model for orchestrating NFV services and applications and allowing to
automate cloud infrastructure and resources through information models and templates.
Conversely, ETSI standardized the functionalities of network components, with solutions
for NFV orchestration from both academia and open-source organizations (such as
ETSI itself and Linux Foundation) following these specifications. Next, well known
MANO frameworks are presented.

• Cloudify13: it is an open-source cloud orchestration framework that enables to
model applications and services, as well as to automate their entire life-cycle.
Also, it is characterized by being a TOSCA-based technology. Initially developed
by GigaSpaces Technologies, Cloudify currently belongs to a company with the
same name.

• Open Baton14: it is a an extensible and customizable NFV MANO-compliant
framework that integrates with existing VNFMs. Although OpenStack is the
major supported VIM, it provides a driver mechanism for supporting additional
VIM types. Open Baton was developed by Fraunhofer FOKUS and TU Berlin.

• Open Network Automation Platform (ONAP)15: it provides a unified
operating framework for vendor-agnostic, policy-driven service design, implemen-
tation, analytics and life-cycle management for large-scale workloads and services,
allowing network operators to synchronously orchestrate Physical Network Func-
tions (PNFs) and VNFs. It is open-source and a Linux Foundation Networking
project. Currently, ONAP is in the fourth release.

• Open Source MANO (OSM)16: it is an operator-led community hosted by
ETSI that develops an Open Source NFV MANO software stack (aligned with
ETSI NFV) for NFV networks. At the time of this writing, OSM is in release
SIX.

2.5.4 Network slicing tools

As discussed in section 2.3, an end-to-end slice is composed by underlying radio and
infrastructure slices. As such, different network slicing tools were used to accomplish
dedicated and isolated networks deployed on top a single infrastructure. In this line,
in this thesis, infrastructure slicing was accomplished through virtualization, where
VNFs were deployed and chained creating SFCs and, ultimately, creating networks
for supporting a certain service type. Regarding to radio slicing, tools for 3GPP and
non-3GPP access networks are presented below.

13Cloudify: https://cloudify.co
14Open Batton: https://openbaton.github.io
15ONAP: https://www.onap.org
16OSM: https://osm.etsi.org

34

• FlexRAN17: it is a platform that separates the control and data planes of RAN
(4G and 5G) runtime environment, and acts as an abstraction layer for the RAN.
Also, FlexRAN allows not only the RAN slicing, but actually the development of
RAN control applications for monitoring and coordinating the RAN infrastructure.

• Hostapd18: designed to run in the background for controlling the authentication
of IEEE 802.11 APs, the hostapd software allows the creation of overlaid Wi-
Fi access networks (i.e., SSID in Wi-Fi), which is also considered a radio link
virtualization (as presented in section 2.3).

2.5.5 Wireless testbed

As previously presented, this thesis features a framework envisioning a holistic network
for different access networks. As such, the framework was implemented over 3GPP and
non-3GPP access networks testbeds, which are presented as follows.

• 3GPP network: Regarding to 3GPP network deployment, the OAI19 is a
consortium of industrial and academia contributors that offers an open-source
software and hardware development for the core and access networks 3GPP-
complaint.

• non-3GPP network: The AMazING testbed [88] is an outdoor system com-
posed by 24 fixed nodes distributed across 1200m2 sited in the rooftop of IT
in Aveiro, Portugal. It allows controllability (for the experimenter) and high
reproducibility of the tests, providing to the users a full access to node devices for
expanding its capabilities by locating the core functions that eventually access
the nodes’ wireless interfaces.

2.6 Chapter Considerations

The current state-of-the-art presents solutions for a slice-based 5G architecture at
several levels of deployment. Also, the existing work does not take into consideration
implications that network slicing, as a key enabler for 5G, has on mobility management
procedures involving different access technologies, such as Wi-Fi and mobile networks.
They do, however, pave the way to enable a better understanding of how the existence
of different slices can be considered, both at the access and the core level, having
different use cases requirements in mind and providing a framework for flexible mobility
management support in 5G environments. Finally, this chapter reuses partial material
from the publications presented in Table 1.1 authored by the candidate.

17FlexRAN: http://mosaic-5g.io/flexran/
18Hostapd: https://w1.fi/hostapd/
19OpenAirInterface (OAI): https://www.openairinterface.org

35

CHAPTER 3
A Virtualized SDN-enabled

Framework for Mobile and Network
Devices

“A digital transformation, enabled by mobility, cloud and
broadband, is taking place in almost every industry, dis-
rupting and making us rethink our ways of working.”

— Ericsson

The increasing number of connected mobile devices exploring wireless data traffic through
different technologies has been increasingly developing the potential for interoperability
scenarios in mobile operators. The presence of different PoAs to the network provides
users and services with added benefits, by increasing connectivity and optimization
opportunities. However, the different access technologies operate in distinct ways and
create a complex integration challenge for their combined exploitation. Upcoming
5G deployment scenarios have been further accentuating these scenarios, with the
combination of novel access technologies into the telecommunications domain.
This chapter introduces a framework that integrates SDN and NFV to migrate operational
aspects of both the network’s PoA and MNs into the cloud. The SDN Controller is used
as an enhanced mobility management entity by integrating the capability to instantiate
in the cloud a virtual representation of the MNs, which not only act as anchors for
the handover process of the physical MNs, but also act as proxies for the delivery of
context information about the physical MNs wireless surroundings. Such information
can be further used by the Controller for optimized handover decisions, resulting in a
technology-agnostic flow mobility management mechanism for heterogeneous networks.

37

3.1 Network Architecture

The way we use and access the Internet has been changing since its creation, evolving to
more dynamic traffic patterns and following new consumption trends such as IP video
in mobile scenarios. New requirements towards the underlying network rise, particularly
regarding to mobility management support in wireless heterogeneous environments.
Despite 5G network architectures have begun development empowered by SDN and
NFV technologies, the application of such technologies in wireless mobility scenarios
still has to deal with the specifics of each link layer technology.

In the light of this, the framework proposed in this chapter explores a holistic vision
of SDN and NFV integration to provide flexibility and abstract mechanisms to diminish
the necessary measures for supporting flow mobility management in heterogeneous
scenarios. For this, NFV mechanisms are used to instantiate a virtual representation
of the MN (i.e., virtual MN (vMN)) and the PoA (i.e., virtual PoA (vPoA)) in the
cloud for abstracting wireless context (i.e., active links, signal level, neighbor cells) and
means for optimizing link selection and heterogeneous mobility procedures. In addition,
these virtual representations can be enhanced beyond the capabilities of their physical
counterparts, and be coupled with the necessary logic that allows them to inter-operate
or be controlled by network control processes, independently of the involved access
technologies. Figure 3.1 illustrates the architectural concept of the framework, which is
composed by thee main building blocks:

i. Enabling end-devices with SDN capabilities, allowing flow-based handovers with-
out additional mobility protocols (section 3.1.2);

ii. PoA virtualization, exploring the cloudification of the network (section 3.1.3);
iii. Moving the wireless context to the cloud by virtualizing the MN (section 3.1.4).

The remainder of this sections individually evaluates the SDN-based mechanisms
into the MN and the PoA virtualization, in section 3.1.2 and section 3.1.3, respectively.
This is followed by the virtualization of the vMN, and the evaluation of the overall
framework architecture in mobile offloading scenarios (section 3.1.4). Next, the network
controller role in the framework is discussed.

38

Wireless access
technology #1

W-NICW-NIC

Apps

MN

W-NIC NIC

Wireless access
technology #2

W-NIC NIC

P
hy

si
ca

l N
et

w
or

k

NIC

 N
et

w
or

k

Data
Center

vPoA #1

NIC vNIC

Net apps & plugins

vPoA #2

NIC vNIC

Net apps & plugins

vMN #1

NIC

Net apps & plugins

Controller

NIC

SDN controller

br
id

ge

L3 tunnel

L3 tunnel

C
lo

ud
 e

nv
iro

nm
en

t

Legend:
 OpenFlow Control Path;
NIC: Network Interface Controller; W-NIC: Wireless NIC;

U
se

r e
nv

iro
nm

en
t

Figure 3.1: Framework Concept Overview [12].

3.1.1 Network Controller

In the proposed architecture, the SDN Controller is enhanced with management capa-
bilities for all network nodes in regards to flow mobility and virtualization of network
entities (e.g., PoA and MN). Also, the SDN controller is able to trigger the vMN
instantiation in the cloud, and bind it to the MN (further detailed in section 3.1.4).
It leverages OpenFlow to communicate with the virtualized equipment in the cloud,
(re)configuring network resources via flow-based rules. For handover procedures, it
maps the MN to the correspondent vMN, leaving the handover procedure of flows to
the selected vMN. It can scale in the operator’s data-center or cloud as needed, and
integrate therein with other core decision entities. Figure 3.2 depicts the SDN controller
architecture.

Here, the POX controller was used as SDN controller and integrated with a developed
application (able to process OF messages sent from the vPoA and vMN), to add
VMs instantiation and handover execution capabilities, over the base SDN Controller
operations. Concretely, it allowed for flow-based rule operations by the SDN Controller
to also encompass specific flow matching, through the usage of the OF packet_in
message (which are typically used for flow mis-match with flow tables in OF switches).
Additionally, this application identifies the type of network node (i.e., MN or switch)
storing its information and instantiating a new vMN if required. Nevertheless, this
application is a behavioral example that can be enabled in the controller by the
framework, but the design does not impose a mandatory procedure. Other potential
aspects, such as an enhanced NB API allowing other network entities to convey such
features (through SDN applications) can be considered and developed. Moreover,
despite the use of the POX controller, the framework was built independently of the
SDN controller choice.

39

Event dispatcher Libraries

OpenFlow
parser/serializer

Protocol support
(e.g., OVSDB)

Controller
built-in app

(e.g., Topology
discovery)

dev
apps

dev
apps(...)

OF switch

SDN apps

Figure 3.2: SDN controller architecture.

3.1.2 Enabling end-devices with SDN capabilities

This section explains which SDN mechanisms were extended up to the MN in this
proposal for improving mobility management in heterogeneous wireless environments,
by enabling flow-based handovers using OpenFlow and without requiring additional
mobility protocols, contributing for a more homogenized network. For this, an OF
controller (i.e., the network controller or the vMN, discussed in section 3.1.4) is able to
interact, in a media-independent way, with the MN via OpenFlow, enabling the former
to acquire link context information (e.g., link strength) from the MN. Such information
can be further combined with other Key Performance Indicators (KPIs) obtained (e.g.,
signal strength, neighbor cells) from monitoring subsystems, generating a handover
decision. Thus, this allows the network to enforce traffic optimization and policing,
since by establishing a connection between the MN and an OF controller, the latter
becomes capable of controlling how MNs connect to different access technologies, and
implementing flow-level actions, such as packet redirection between network interfaces
in offloading scenarios.

The MN architecture is illustrated in Figure 3.3, and features a multi-interfaced MN
(as current dual Wi-Fi/Mobile smartphones), targeting flow-based mobility environments.
Here, OF bridges (i.e., OF-BR) were instantiated in the MN and interconnected with
patch ports (performing virtual connections that act as patch cable between switches),
enabling the traffic redirection (for flow mobility) between wireless interfaces. In this
way, it is possible to not only change packet characteristics (i.e., source and destination

40

addresses) before it leaves the node, but also from which interface (with the added
benefit of this feature being remotely controlled by the network, via an OF controller).
For this, the OvS was installed in a dual-interfaced MN, with an OvS bridge for each
wireless network interface. Since MNs are characterized as both content producer and
consumer, the OvS bridges are instantiated as Layer 3 (L3) between the Linux network
stack and the physical network interface. The OvS L3 bridge allows the configuration
of an IP address, enabling it to receive and send packet from/to kernel and from/to
wireless interfaces.

In addition, since a dual-interfaced MN implements two OF bridges, it opens
two OF connections with the OF controller, which in turn requires a mechanism for
identifying network interfaces from the same MN. For implementation purposes, the
framework proposal names the patch-ports with the MAC address of the destination
bridge, simplifying the identification mechanism (cross-matching) of bridges of the same
system by the controller. In this way, the creation of an OF system identifier, as well
as the modification of OF standards is avoided. Here, the OF controller uses the OF
features message (as discussed in section 2.2.1.1). Furthermore, in order to allow the
MN to operate as a standard device in environments where the network has no OF
controller, here MN’s OvS bridges are configured in “standalone” fail-safe-mode and
with a low priority “NORMAL” action. In addition, a higher priority action is set to
allow the trigger for the handover to be sent when a controller is available.

Finally, as mentioned above, the handover procedure is handled by an SDN/OF
controller (i.e., network controller or vMN) jointly with a developed application. This
application is a behavioral example that can be enabled in the controller by the
framework, but the design does not impose a mandatory procedure. Instead, it leverages
on the SB and NB APIs of the SDN Controller allowing other network entities to interact
with the controller and define the handover execution, increasing the flexibility of the
solution. Next, the context acquisition and the handover procedure are discussed.

W-NIC W-NIC

OF-BR OF-BR

Kernel routing

Application

(1)
(2) (2)

Figure 3.3: SDN-based mobile node overview. Connections in the figure: (1) patch port;
and (2) physical port [22].

41

3.1.2.1 Wireless Context Acquisition

As present in section 2.2.1, works such as [36], [37], applied SDN-based mechanisms to
the PoAs for acquiring wireless context (e.g., attachments and detachments of MNs).
Here, the enablement of SDN-based mechanisms in end-devices not only allows flow-
based handovers without additional mobility protocols, but also allows the network to
acquire wireless context of the MNs in order to explore different signaling opportunities
from both networks’ PoAs and from the MN itself.

In this context, the MN can use OpenFlow not only to receive commands from an
OF controller (not necessarily the network controller), but actually to contribute with
information about network conditions from the MN’s point-of-view, to further optimize
network control and mobility decisions. However, in order to enable the MN to notify
the controller towards potential network optimization, the MN needs to be capable
of perceiving its network surroundings as well as its own traffic, to possibly inform
the controller what is the problematic flow. Otherwise, keeping all monitoring in the
network reduces not only the control signaling over-the-air, but also the consumption
of MN resources, while enabling other metrics to be explored, such as the detection
of the PoA overload, or even the knowledge of the number of users connected to the
same PoA. However, the complexity of scalable solutions increases with the number of
attached users. Table 3.1 features signaling opportunities for acquiring network context
that can be coupled to OF messages for both the MN and PoA perspectives.

Finally, to enable the collection of such information and package them in OF event
packets, applications (in both Bash and C) were developed for the MN and PoA. Note
that these applications were developed for proof of concept and illustrative simplification,
since the design of the framework aims to be generic and deployable independently of
the underlying wireless access technology by providing the means to integrate with
existing or novel monitoring methods. The applications are available as open-source
tools in the GitHub repository.

Table 3.1: Signaling Opportunities [11].

Network entity Signalling opportunities Disadvantages

MN

• Signal noise/strength;
• Packet loss detection;
• Discover connection to better net-
works;

• Higher MN complexity;
• Higher control communication de-
lay;
• More control signalling over-the-
air;

PoA • Overload detection;
• Number of connected users;
• Hardware/ Link failure;

• MME (or, OF controller) loses
MN’s perspective;
• Ping-pong effect possibility;

42

3.1.2.2 Flow-based Handover

As stated in section 2.2.1.1, OF messages can be used to perform a flow-based handover,
offloading the specific flows from one wireless network interface of the UE to another.
The handover procedure is illustrated in Figure 3.4, and its signaling explained as
follows. Please note that MN and UE are used interchangeably along the document.

• Packet_in: It is used as the handover trigger and carries information such as
the current active flows on the interface and/or the flow that should be offloaded.

• Flow_modification (or flow_mod): If the packet_in results in an han-
dover decision, the controller redirects the flow through flow-based rules via
OF flow_mod messages for each MN interface involved in the handover. The first
flow-based rule adds in the MN’s OvS bridge a flow entry, which redirects the
matching traffic from a specific port (i.e., the patch port) towards the network
via the new transmitting wireless interface. In order to perform this forwarding,
this rule should implement the “MOD_SRC_ADD” and “MOD_DST_ADD”
OF actions, to fulfill the wireless handshake. Both actions change the source and
destiny MAC address, respectively.

• Barrier_request and barrier_reply messages: After the first flow_mod, a
barrier_request is sent, ensuring that the second flow_mod is sent only when
the first is already executed, avoiding packet loss or ping-pong effects during the
handover. Therefore, mimicking a make-before-break approach.

• Flow_modification (or flow_mod): The second OF flow_mod message redi-
rects the matching traffic towards the bridge responsible of the new transmitting
network interface. Since the first flow-based rule is already implemented (which
forwards the traffic towards the network), after implementing this rule the UE
starts transmitting through the new interface.

The intelligence of this handover procedure is the SDN controller, and as such, an
application was developed in order to allow the controller to adopt such behavior upon
specific triggers. In this line, an application for the POX controller and another for
the Ryu controller were developed. Despite both applications having the same logic,
controller specific libraries required dedicated applications to be developed. Upon the
attachment of a SDN-enabled device to the network, the SDN controller uses the OF
features message to discover its proprieties and verify if it is a MN.

Upon a handover request trigger (sent as OF packet_in message), the controller gen-
erates an interruption, and after analyzing the source of the packet, starts the procedures
to perform the handover. As described above, in a make-before-break approach, the
first flow-based rule is sent to the new transmission bridge, and immediately after, OF
barrier messages are exchanged, ensuring that the first flow-based rule is implemented

43

(8) barrier request
(7) flow modification

AP2MN
AP1 CTL CN

H
an

do
ve

r
Si

gn
al

lin
g

(1.1) echo request
(1.0) echo request

(2.0) echo reply
(3.0) features request
(2.1) echo reply
(3.1) features request

(4.1) features reply
(4.0) features reply

(5b) UDP stream

(11) UDP stream

(10) flow modification

(9) barrier reply

H
an

ds
ha

ke

(5) UDP stream

(11b) UDP stream

wlan0 wlan1

(6a) packet_in
(6b) packet_in

Scenario A
Scenario Bt1

t2

t3

t4

Figure 3.4: Handover procedure high-level message sequence [11].

before sending the second one. Similarly to the packet_in, the barrier_reply message,
sent with the same ID as the barrier_request, will cause an interruption that motivates
the sending of the second flow-based rule. Finally, specific aspects such as how the
controller is aware of MN network attachments were also explored with applications
being developed for the MN and PoA, exploring SDN SB and NB APIs. This will be
further detailed in section 3.1.4.

3.1.2.3 OpenFlow Signaling Impact

The handover procedure signaling is responsible for 550bytes (5 OF messages). As
presented in section 3.1.2.1, the handover can be triggered from different network entities,
namely the MN and PoA, Scenario A and Scenario B of Figure 3.4, respectively.

In Scenario A, these 5 messages are handled by the MN, while in Scenario B, the
MN only handled 80% (i.e., 416bytes) of them, with the remaining 20% being part
of the PoA signaling. This message is the handover request (i.e., the OF packet_in
message), which has an impact of 134bytes (24% of the handover signaling). As such,
Scenario B contributes towards a reduction of the overhead introduced in MN by the
handover signaling. Notwithstanding, the major impact of the OF signaling regards to
keep-alive messages exchanged every 5s between the controller and OvS (by default). In
this context, in a 40s experiment, the MN exchanged 2422 ± 48bytes. These keep-alive
messages have special impact on the MN since each bridge requires an OF channel and,
therefore, the number of keep-alive messages is duplicated. Nevertheless, this overhead
can be reduced by defining a higher period for such messages.

44

3.1.3 Points of Attachment virtualization

This section addresses the PoA virtualization, presenting different approaches and
comparing them with legacy solutions. 5G mobility communication systems need to
go beyond mobile network technologies, instead providing mobility management and
control procedures in a technology-agnostic way. In this line, the vPoA represents the
virtualization of PoA management and control services (e.g., authentication, association
and Dynamic Host Configuration Protocol (DHCP)) in the cloud, exploiting resources
therein to regard PoAs as virtualizable network functions that can be dynamically
instantiated according to utilization needs. As such, the vPoA can be seen as working
on behalf of the PoA, able to fully offload its operating mechanisms (Figure 3.5b) or
only selected services and applications (Figure 3.5c). Figure 3.5 compares the different
deployments.

L2 services

W-NIC NIC

PoA

W-NIC NIC

Net apps & L3 services

PoA

W-NIC NIC

PoA

W-NIC NIC

Net apps & L3 services

vPoA

tunnel

a) b) c)

L2 services V-WNIC vNIC

Net apps & L3 services

vPoA

L2 services

tunnel

Figure 3.5: PoA high-level architectural overview for: (a) regular Wi-Fi PoA (without
virtualization); (b) fully virtualized PoA; and (c) partially virtualized PoA [14].

Note that despite the framework of this chapter leverages PoA virtualization, the
contribution is focused in the virtualization of the MN and the usage of SDN-mechanisms
into the MN for enhancing mobility management for heterogeneous networks. Thus,
here the candidate implements and evaluates different PoA virtualization strategies
found in the literature for further integration in the final framework.

3.1.3.1 Mobility enhancement enabled by the Point of Attachment virtualization

PoA virtualization brings a trade-off between delay and both hardware and wireless
mobility simplicity. By virtualizing the PoA in the cloud (i.e., vPoA), the physical
PoA becomes a bare metal device, but creates a longer control and management path
between the attached device and the vPoA. Table 3.2 summarize the deployment
differences.

In a regular Wi-Fi (Figure 3.5a) network, where virtualization is not considered,
the AP deals with all wireless management and control frames (e.g., authentication,
association and probes), while at the same time manages L3 connections and services.
Thus, current Wi-Fi AP configurations are simple, but in large scale environments,

45

complexity increases substantially. When compared with virtualization approaches illus-
trated in Figure 3.5, discarding processing time, it is expected that the “fully virtualized”
approach has a higher delay for both L2 and L3 attachment, since besides the Wi-Fi
round trip time (RTT), an Ethernet RTT is added. As such, the “partially virtualized”
has a lower delay, since the Ethernet delay is inputted only for L3 messages. A regular
AP deployment should have the lowest L2 and L3 attachments delay. Conversely, results
presented in Figure 3.6 shows that the “partially virtualized” approach registered the
lowest values of attachment delay (discussion in section 3.1.3.2).

Under a L2 perspective, virtualizing the PoA in the cloud enables traffic management
to be offloaded to the vPoA, decoupling the intelligence from the hardware and deploying
it in any point of the network. This facilitates handover management both for L3 and
L2, since the attachment is processed in the virtual instance instead of the physical
node. As such, a vPoA can be transmitting/receiving management frames from different
physical nodes, and a handover between two physical PoAs does not necessarily mean
an L2 or L3 handover, since they may be connected to the same vPoA. CloudMac [48]
and Odin [47] identified that AP virtualization into a data-center improves intra-
technology mobility at a cost in bandwidth and attachment delay. In contrast, physical
PoAs become simpler, while vPoAs had increased computational power. Despite MEC
scenarios where this approach may be well suited [89], wireless networks may experience
performance issues due to the delay between the physical PoA and the corresponding
vPoA. At the cost of losing seamless L2 handovers, this is overcome by keeping the L2
attachment in the physical equipment and virtualizing only L3 services (e.g., DHCP).
In this case, the PoA handles L2 connectivity, allowing MN attachment and remaining
L2 communications to be managed therein. Otherwise, L3 services are migrated to the
cloud. Considering a handover in a Wi-Fi network, where a MN switches the physical
AP, a new L2 connection is required. However, the MN may keep the L3 connection,
facilitating handover management.

Table 3.2: Comparison of Wi-Fi access point approaches [14].

Advantages Disadvantages Mobility	impact

Regular	AP Simple	implementation; Manual	reconfiguration; Complex	mobility	management;
Dedicated	mobility	protocols

L2	vPoA Simpler	network	equipment; L2+L3	attachment	delay
Lost	performance	due	to	the	RTT	
delay

Seamless	L2+L3	handover

L3	vPoA Simpler	network	equipment;
Reconfiguration	on	the	fly;

L3	attachment	delay Seamless	L3	handover

46

3.1.3.2 Evaluation of PoA virtualization strategies

This section provides an experimental overview of different vPoA strategies (presented in
Figure 3.5), using an Wi-Fi AP in Open System Authentication (OSA) as example. As
such, hereafter the PoA and its virtual entity are presented as AP and vAP, respectively.
The MN’s network (re)attachment delay and bandwidth impact are studied.

Physical nodes (i.e., MN and PoAs) were deployed in single board computers with
a 64-bit support AMD APU CPU with 1GHz dual-core and 2GB DRAM, while the
corresponding virtual instances (i.e., vMN and vPoAs) deployed in an in-house data-
center, using a VM with 1 vCPU and 2GB RAM. In both types of network nodes,
Ubuntu 64-bit 14.04 was used. Following the presented architecture of Figure 3.5 in
strategy: a) hostapd and dhcp-server were deployed in AP; b) hostapd and dhcp-server
were deployed in vAP; and c) hostapd was deployed in the AP and dhcp-server in
the vAP. As proposed by CloudMAC [48], to move the management capabilities (e.g.,
attachment of a user equipment) of the AP to the cloud (i.e., strategy b, fully virtualized
PoA), the vAP was coupled with an enhanced mac_80211_hwsim, which emulated
a wireless interface and the OpenFlow tool, Capsulator1, was used to create a tunnel
between the wireless monitor interfaces of both entities. For the partially virtualized
PoA (strategy c), a similar approach was used, and a tunnel using the Capsulator tool,
was instantiated between both the AP and the vAP.

Figure 3.6 compares a regular AP with different vAP deployments in terms of
attachment delay and bandwidth. The “L2 attachment” regards to messages of an Wi-
Fi OSA, while “L3 attachment” regards to DHCP messages. As a trade-off for hardware
simplicity and L2 handover management, the fully virtualized (i.e., “L2 virtualization”)
approach has the worst result, with a delay increase of 50% for a L2 attachment and
DHCP IP address. This is mainly due to the increase of RTT and overhead caused by
increased forwarding of wireless management frames. This is reflected in the bandwidth,
which decreased by 14%. By offloading only L3 services, not only the bandwidth value
was re-established, but also the DHCP delay was improved, while maintaining the
L2 attachment delay. This may be due to forwarding overhead decrease (since Wi-Fi
management frames are processed in the AP), allied with the increased computational
power of the vAP.

1Capsulator: http://archive.openflow.org/wk/index.php/Capsulator

47

AP L2 virtualiz. L3 virtualiz.
0

5

10

15

20

25

30

35

40

at
ta

ch
me

nt
 de

lay
 (m

s)

L2 attachment L3 attachment

AP L2 virtualiz. L3 virtualiz.
0

5

10

15

20

25

ba
nd

wi
dt

h (
Mb

ps
)

Bandwidth

Figure 3.6: Attachment delay and bandwidth for the deployed AP approaches [14].

3.1.4 Integrating vMN and vPoA for bringing user context to the cloud

This section addresses end-node virtualization (as presented in section 3.1 and illustrated
in Figure 3.1), presenting a framework for bringing user context to the cloud, while
including the SDN-enabled MN (section 3.1.2) and PoA virtualization (section 3.1.3).
This enables information about the MN’s link to be collected in the core network by
its virtual representation (i.e., vMN), enabling the Controller to adapt the network to
each type of access technology. Current smartphones allow accessing online services
while moving from one wireless technology to another. MN virtualization implies
the virtualization of its network context into the cloud enabling the vMN to perform
management decisions on behalf of the MN: the vMN not only allows to anchor the MN
when offloading traffic from one wireless PoA, but actually allows to deploy a virtual
representation on other devices (such scenario is further discussed and evaluated in
section 3.2).

The interaction between the vMN and its physical counterpart allows the provisioning
of information about the connectivity status of the latter. Thus, the network controller
(which is involved in the instantiation of the vMN and its traffic flows configuration) gets
feedback on the physical link conditions of the MN, allowing optimization. Moreover,
the fact that the physical MN is connected to its virtual counterpart, means that all
traffic associations between the vMN and other communication entities can be handled
inside the data-center, minimizing handover control signaling. Moreover, the MN’s
perspective information, such as a list of detected neighboring network cells, their link
quality, or even application and user preferences, can be sent towards the network,
which can use it to enforce traffic optimization and policing, and to optimize mobility
management. An example of such scenario, would be the detection that the current
link does not have enough signal strength to support a video call, and thus trigger a

48

flow handover allowing the video flow to reach the MN via a different interface (i.e.,
Wi-Fi) with better conditions, while maintaining the audio in the original interface of
the call. Moreover, despite acting as an anchor for the mobility process, the vMN also
acts as a proxy for the Internet.

As a result, the framework architecture presented in Figure 3.1 can be updated to
Figure 3.7, presenting how data-flows are routed in the architecture.

Wireless access technology #1

W-NIC

W-NIC

Apps

MN

Legend:
NIC: Network Interface Controller; W-NIC: Wireless NIC

 N
et

w
or

k

Wireless access technology #2

Data center

W-NIC

NIC

PoA #2

W-NIC

NIC

PoA #1

1

2

3

PoA forwarding rules
All flows from WLAN -> vPoA
All flows from vPoA -> WLAN

vPoA forwarding rules
All flows from MN#1 -> vMN#1
All flows from vMN#1 -> MN#1 via PoA

vPoA #1

NIC vNIC

Net apps & plugins
Network Controller

NIC

SDN controller

vMN forwarding rules
Flow#1&2 from MN -> CN
Flow#1 from CN -> MN via vPoA#1
Flow#2 from CN -> MN via vPoA#2

vPoA #2

NIC vNIC

Net apps & plugins
vMN #1

NIC

Net apps & plugins

L3 tunnel

L3 tunnel

CN

Figure 3.7: Framework architecture overview and forwarding rules [13].

3.1.4.1 User context transfer in the cloud

This section explains the control and management communication of the framework.
Binding the MN to the vMN via OpenFlow enables both entities to directly interact with
each other. While the MN exploits the OF protocol to provide its own perspective of the
network (i.e., provide context about the wireless link) and assist the network connectivity
selection, the vMN manages the data traffic of the MN through the implementation of
flow-level actions, such as packet redirection between mobile interfaces for an offloading
scenario. For the vMN to assist in managing the MN, a mobility management application
was developed to be used along with a SDN controller (e.g., POX and Ryu). This
application stores the information regarding to the MN activity such as active links,
MAC addresses and current flows. As described in section 3.1.2.1, such information is
acquired via OF messages and is further used for handover procedures directly over the
MN or to assist the SDN Controller for network optimization. Figure 3.8 illustrates
control interactions among the framework entities, where different approaches can be
considered for context updates (e.g., active links and neighbor cells):

49

Case A) event trigger in the vPoA: the PoA/vPoA monitors the different attached
MNs and periodically updates the controller (or when requested), which updates the
vMNs;

Case B) event trigger in the MN: the MN monitors the wireless medium, sending
updates to the controller via direct OF control communication between both MN and
vMN (SDN Controller is no longer an intermediate). For this, the MN can acquire the
vMN’s IP address via DHCP and it can use OF messages and events, as presented in
section 2.2.1.1 and summarized as follows:

• Features: to provide initial information to the vMN (e.g., available wireless access
technologies);

• Packet_in: for signaling specific events by MN towards vMN (e.g., handover
opportunities);

• Flow_modification: to update the MN’s OF flow-table for source-mobility scenar-
ios;

• Port_status: indicate MN events to the vMN (e.g., link up/down).

Network Controller

NIC

SDN controller

vPoA #2

NIC vNIC

Net apps & plugins
vPoA #2

NIC vNIC

Net apps & plugins
vPoA #1

NIC vNIC

Net apps & plugins

vUE #3

NIC

Net apps & plugins
vUE #2

NIC

Net apps & plugins
vUE #1

NIC

Net apps & plugins

W-NICW-NIC

Apps

UE #n

W-NICW-NIC

Apps

UE #2

W-NICW-NIC

Apps

UE #1

OpenFlow control communication
OpenFlow control communication
Layer 2 control communication

1 4

2 3

Figure 3.8: Control communication [14].

3.1.4.2 Framework procedures

Similar to section 3.1.2.1, during the MN attachment, the PoA informs the controller of a
new connection, using an OF packet_in message. MN attachment information is sent to
the SDN controller, registering the necessary information for network (re)configuration.
By saving the MN’s MAC address and PoA, the controller verifies if the MN is already
associated to an existing vMN or if a new one is required. Figure 3.9 depicts this
process, which is described as follows.

50

3.1.4.2.1 MN’s attachment and vMN’s instantiation

When the MN attaches to the network (1), this attachment is performed in cloud and
generates an event in the vPoA, triggering an OF message towards the Controller (2)
with the MN’s identification (i.e., the attached MAC address). Receiving the vPoA’s
message, an event is generated in the Controller, which verifies the existence of a vMN
or if a new one is required (3). After the vMN’s instantiation, the vMN establishes an
OF connection with the SDN Controller, and informs the later, that it is ready to be
added to the network (4). Thus, the Controller updates the flow tables on the vPoA
(5), in order to redirect the MN’s traffic for the respective vMN.

3.1.4.2.2 MN’s context update

If by receiving the vPoA’s message (2), the generated event in the Controller results
in an already existence of a vMN, the Controller updates the context of both vMN
and vPoA (5). Moreover, the vPoA monitors the link conditions of the MN via link
layer messages. Changes are informed to the SDN Controller via OF messages (events,
case A), which in turn updates the vMN’s context. Specific MN-initiated events can
also be communicated to the network (case B), with the MN sending a OF message
towards the vMN (6-7). Note that this update (such as, MN’s wireless connections)
can be performed in two ways (i.e., Case A and Case B presented above).

3.1.4.2.3 Handover signaling

The framework uses the procedure presented in section 3.1.2.1. Thus, the OF control is
extended to the MN and the handover is performed using a standard-based API for
heterogeneous flow mobility management, contributing to a more homogeneous network
management procedure, in terms of used protocols. Nevertheless, the procedure defers
depending on the flow direction:

• Downstream: if the trigger is sent from the vPoA to the Controller, the latter
verifies the network state and, after deciding which MN should be offloaded,
updates the flow-table (9) with the IP address of the MN new receiving interface.
For an MN-initiated mobility, the trigger is sent to the vMN, which updates its
flow table. Besides OpenFlow, the MN can send the trigger via an User Datagram
Protocol (UDP) packet, which is converted into an OF message in the vPoA, and
sent to the Controller (as in scenario of section 3.2).

• Upstream: When the trigger is sent from the vPoA towards the Controller (10b),
the latter verifies the network state, and informs the respective vMN. If the
trigger is sent from the MN (10a), the message is sent to the vMN, responsible for

51

choosing which flow will be offloaded (11-14). In addition, an OF barrier message
(12-13) is used to verify the correct reception of the first flow-rule, preventing
packet loss due to the handover procedure (as discussed in section 3.1.2.2).

H
O

 S
ig

na
lli

ng

D
ow

ns
tre

am
U

ps
tre

am
PoA#2

MN
vPoA#2

vMN SDN
Controller

(1) Authentication/Association

(2) New attachment (OF PacketIn)

M
N

’s
 A

tta
ch

m
en

t

PoA#1 vPoA#1

(5) Route update (OF FlowMod)

M
N

’s
 C

on
te

xt
 u

pd
at

e Event

C
as

e
A

C
as

e
B

(6-7 b) Context update (OF echo, features, ...)

(6-7 a) Context update (OF packetIn)
Event

(3) vMN creation/context update

(4) Context update (OF PacketIn)

(8-9) HO Request
(OF PacketIn / PacketOut)

(11) Route update (OF FlowMod)

(12-13) OF Barrier
Request/ Reply

(14) Route update (OF FlowMod)

B&D (10b) HO Request (OF PacketIn)

A (10a) HO Request (OF PacketIn)

t1c
C

t2

t1a

t4
t3

t1b

Route update
(OF FlowMod) Event

Figure 3.9: Control high-level signaling [13].

3.1.4.3 Proof-of-Concept evaluation of the framework

This section implements and evaluates the architecture illustrated in Figure 3.7. The
framework addresses SDN, NFV and cloud principles for abstracting mobility manage-
ment procedures in heterogeneous environments. It goes beyond the state-of-the art,
by considering the virtualization of the MN allowing the controller to reduce direct
interaction with the end-nodes, interacting instead with their virtual counterparts.
Gains can be expected here, particularly when the Controller and the virtual nodes
representations are in the same data-center. Moreover, each vMN manages the wireless
state of its respective MN, alleviating the Controller load.

The framework used the AMazING testbed for deploying the physical network
entities PoA, CN and MN. Otherwise, the vMN, vPoAs and the SDN Controller were

52

deployed in VMs in an OpenStack data-center. The AMazING nodes were equipped
with a 64-bit 1 GHz dual-core AMD APU CPU and 4GB of DDR3-1066 DRAM, while
the OpenStack VMs were instantiated with 1 vCPU and 1GB of RAM, running Ubuntu
64-bit 14.04 LTS. Finally, OvS (v2.5.90) enabled to (re)configure the network on the fly
via OF flow-based rules. Depending on the entity that triggers the handover (e.g., vPoA
or MN), different handover initiation procedures can be done. Although not limited to,
the framework has focused on the following ones, illustrated in Figure 3.9:

• MN-initiated handover (MIHO): The MN verifies its current connection with the
PoA, and sends an handover request directly to its vMN, upon discovery of a
PoA with better signal strength.

• Network-initiated handover (NIHO): The handover trigger is executed in the
network, reducing the signaling over-the-air. Pre-configuring triggers in the vPoA
(e.g., attachment, signal level to the MN and overloaded bandwidth), the vPoA
sends a handover request to the Controller, which alerts the respective vMN.

The following evaluated scenarios are directly related to the use case scenarios
and signaling presented in Figure 3.9. Videos were streamed using VLC2 software via
Real-time Protocol (RTP). The experiments were run 10 times, with their average
being presented with a confidence interval of 95%. Figure 3.10 shows the throughput
for each scenario, where “original video” is a calculated optimal video flow necessary to
avoid any packet loss while transitioning from PoA1 to PoA2. As such, the proposed
framework’s performance is compared with this flow, to see if it is able to maintain the
expected throughput. Otherwise, Figure 3.11 presents the measured handover delay (in
the MN and the vMN) for the evaluated scenarios. Note that the MN’s handover delay
cannot be directly compared with vMN’s delay, since it was accounted in different time
windows.

3.1.4.3.1 Scenario A (MIHO for upstream traffic)

In Figure 3.10a), the MN was initially streaming a video3 towards the CN via PoA1
(Figure 3.7- 1). As the MN moved away from PoA1, the link strength and quality
decreased, and as such the MN issued a handover request at 25s (Figure 3.9- 10a). Once
the handover procedure was completed (Figure 3.9- 11/14), the video stream was sent
towards the CN (Figure 3.7-3) via PoA2 (Figure 3.7-2). The handover occurred when
PoA1 had −60dBm of signal strength against the −20dBm of PoA2 (such thresholds
are configurable). After the handover, the MN kept streaming towards the CN, but

2VLC: https://www.videolan.org/
3Caminandes 3 (video 1): http://www.caminandes.com/

53

via PoA2. Also, the flow offloading to the new PoA did not result in interruptions nor
losses to the upload data rate of the video.

3.1.4.3.2 Scenario B (NIHO for upstream traffic)

In this scenario, the vPoA monitored the MN’s link strength and prompted the Controller
for a network optimization. Verifying the origin of this message, the Controller notified
the correspondent vMN (Figure 3.9- 10b), which in turn proceeded the handover process.
Figure 3.10b) illustrates the operation of the proposed mechanisms, without packet
loss during the video transmission. Here, the handover request was sent by the vPoA1
at 25s. As in the previous scenario, the proposed mechanism was able to maintain
data rate. Also, both scenarios A and B had similar traffic performance, with PoA1
registering 45% of the total video traffic, while the AP2 registered the remaining 55%.

3.1.4.3.3 Scenario C (NIHO for downstream traffic)

In Figure 3.10c), the MN was initially attached only to the PoA1, receiving a video
stream via mobile network (Figure 3.7- 1 and 3). When the MN attached to the Wi-Fi
network (i.e., PoA2), the vPoA2 triggered the controller (via OF message), which
notified the vMN (at 25s). In turn, the vMN offloaded the video stream from the mobile
network (vPoA1, Figure 3.7- 1) to vPoA2 (vPoA2, Figure 3.7- 2) via OF flow-based
rules, reducing the video transport cost in the mobile network. The handover procedure
did not result in packet loss, with the traffic towards the MN being offloaded to the new
wireless access interface seamlessly, since the process occurred in the cloud (i.e., in the
vMN), with the deployment of the flow-rule in the vMN instantly redirecting the flow
towards the new MN interface. As such, the vMN receives the full traffic video from
the CN and redirects it to the MN via the more appropriate wireless network. Finally,
while PoA1 transmitted 45% of the video traffic, PoA2 transmitted the remaining 55%.

3.1.4.3.4 Scenario D (NIHO for upstream traffic balancing)

This scenario emulates a PoA overload. Thus, the MN simultaneously streamed two
videos, which caused the PoA to overload and consequently originating packet loss. For
this, the MN started streaming a video (video 1) towards the CN via PoA1. At about
9s of experience, the MN started a second video4 (video 2) streaming, also via PoA1.
Receiving both video streams, PoA1 got overloaded, and informed the SDN Controller.
Similar to the previous scenario, the SDN Controller notified the vMN, which in turn
offloaded the flow of video 1 (at 24s). As such, the MN kept streaming, video 2 via

4Big Buck Bunny (video 2): https://peach.blender.org/

54

PoA1 and video 1 via PoA2, towards the CN. In this way, only one stream was moved
to the new vPoA, performing a flow-based mobility. In Figure 3.10d) the video traffic
received by the CN is compared with the traffic sent from each PoA. The stream
analysis shows that if the streaming of both videos was kept in via PoA1, the lost would
be about 55.80% of the remaining video packets from video 1, against 12.80% from
video 2. Also, the handover process did not result in packet loss nor sequence errors,
keeping both videos’ original data rate, and revealing the feasibility of the proposed
procedures. Finally, while PoA1 accounted for 75% of the total video traffic, PoA2
registered the remaining 25%.

10 15 20 25 30 35 40
0

2

4

6

8a)

10 15 20 25 30 35 40
0

2

4

6

8

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)b)

10 15 20 25 30 35 40
0

2

4

6

8c)

Original video

10 15 20 25 30 35 40

Timeline (s)

0

4

8

12
d)

Upstream data from MN vPoA1 vPoA2 Handover moment

Figure 3.10: Video throughput for: a) Scenario A; b) Scenario B; c) Scenario C; and
d) Scenario D [13].

3.1.4.3.5 Handover delay for upstream scenarios (i.e., A, B and D)

For the handover delay measured in the vMN, the MIHO (i.e., Scenario A) had better
performance than NIHO (i.e., B and D). This occurred because, in MIHO scenarios,
the MN notified the vMN directly, having one less control decision. In Figure 3.9, it
is noted that for NIHO, the request was done from the vPoA to the SDN controller,
which in turn notified the vMN. Thus, despite increasing the handover delay in vMN’s
point of view, NIHO scenarios reduce the handover delay in the MN’s point of view in
50%, since the notification process becomes transparent for the MN. In this line, the
handover delay in the MN was measured from the moment that it notices the handover,
which only occurred when the first flow-rule (Figure 3.9- 11) was received.

55

3.1.4.3.6 Handover delay for downstream scenarios (i.e., C)

The handover delay in the vMN was measured from the moment that it received the
notification of the Controller until the first redirected flow (36.28(±5.44)ms). However,
since this process was transparent to the MN, the latter only noticed the handover when
it stopped receiving from one wireless interface and started receiving from the new one
(t5). As such, the handover was seamless for the MN, and its delay (13.65(±3.46)ms)
was measured between the last video packet received from the initial wireless interface
(i.e., before handover), and the first packet received by the new interface (i.e., after
handover). However, the real handover time may be smaller, since the measured value
depends on the time period between two consecutive packets of the video stream. This
results from the fact that the mobility process occurs in the cloud between the SDN
Controller and the vMN, with the implementation of the flow redirection in the vMN
instantly redirecting the flow towards the new MN interface.

As a global note, the increase of data traffic in the vMN negatively affects the
control communication, by increasing the handover delay in about 13%. This is due
to the fact that control traffic was not prioritized over data, therefore competing for
the same resources. However, this issue may be mitigated by separating both data
and control traffic. As such, the vMN would deal with the control traffic, while an OF
switch could be instantiated in order to create a path for the data traffic. This strategy
was adopted in the framework proposed in chapter 4.

A B C D
0

10

20

30

40

50

60

70

80

H
a
n
d
o
v
e
r

d
e
la

y
 (

m
s
)

MN's perspective

A B C D
Scenarios

vMN's perspective

t1 t2 t3 t4 t5

40 45 50 55 60 65 70 75 80
HO delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

e
C

D
F

eCDF for vMN's perspective

MIHO NIHO

Figure 3.11: Handover delay for evaluated scenarios [13]. Time intervals (t1-t5) are related
to signalling points depicted in Figure 3.9.

56

3.2 Towards a deviceless communication

This section further progresses the concepts introduced in the previous sections and
applies them to a new framework that provides a deviceless communication approach,
where data and media flows reaching a user can be individually shifted into nearby
devices. To support this, the framework presented in the previous section enhances
SDN and NFV concepts, allowing the opportunistic utilization of nearby devices as the
user moves, while still being perceived as a single end-point towards external entities.
Figure 3.12 presents the conceptual context and location infrastructure. Also, an
experimental validation scenario is illustrated in Figure 3.13, showcasing a video stream
being delivered to a nearby large TV screen, allowing the user to watch the video while
answering a voice call.

Data Center

SDN Controller

vUE#1

vUE vUE

Context Retrieval

Context & Location Awareness

vUE

Sensors

vUE Updater

Figure 3.12: Conceptual framework for a deviceless communication [15].

3.2.1 Involved entities and their integration with virtualization concepts

The framework gathers information of the user’s surrounding environment, and dynam-
ically updates the virtual UE (vUE), allowing the user to communicate in scenarios
where the user has only a localized probing device, by instantiating the user’s context
in nearby devices (e.g., smart TVs and smartphones). Nevertheless, given the privacy
aspects of a generic location and context architecture, for a proof-of-concept prototype,
the framework was simplified and a smartphone was used as UE and localized identi-
fier, probing devices that listens the user’s surrounding environment and retrieves the
relevant information (such as, nearby devices and re-routing opportunities) directly to
the vUE. In this way, nearby devices choose which information to share, and the user
fetch permitted devices.

57

3.2.1.1 User Equipment and its virtualization

Nowadays smartphones’ capabilities (represented in the proposal as the UE) allow us
to explore scenarios such as accessing a video from Youtube5 or Netflix6, while jumping
from one wireless technology to another (e.g., from LTE to Wi-Fi, or vice-versa). Here,
the devices have a virtual representation on the cloud (vUE), and a context retrieval
infrastructure collects data from sensors and devices, about all relevant context for the
user and its nearby devices. This is passed to a Context & Location Awareness Engine
that will control the flows for the vUE, and will perform a request to a vUE updater if
required. The vUE updater will dynamically profile the vUE as the user context changes.
This enables the user to keep the context of the UE in the cloud for further usage in
different equipment with networking capabilities (such as, smart TVs). As such, the user
is no longer attached to an unique UE, being able to explore communication scenarios
where the user is not “carrying the device”. To this end, while the UE represents
a current dual-interfaced (i.e., mobile and Wi-Fi) smartphone, the vUE is created
on-demand by the network Controller and consists on a dynamic representation of the
UE in the cloud. Also, as presented in section 3.1.4, the vUE acts not only as a proxy
for the Internet access, but also as an anchor for flow mobility procedures. As such,
cross-technology handovers become transparent for both end-nodes, since both continue
to send/receive the traffic to/from the same entity (i.e., vUE) regardless of the physical
device that eventually terminates the flow.

3.2.1.2 Smartphone context application

To enable the smartphone to trigger an offloading event upon reception of a voice
call, an Android application was developed and installed therein. The purpose of
this application is to signal the network when the user is accessing an online video
and simultaneously answering a call. As such, the UE is aware of nearby TVs, by
constantly reading bluetooth signals from beacon devices7 attached to them. The
distance estimation between the UE and the TV is based on the received signal strength
of each beacon device. When the UE is in a call and watching a video, if it detects a
TV, it informs the network about the handover opportunity. Note that for a generic
implementation of a deviceless communication environment, the UE would become a
powerful device discovery probe. When the application detects that the user answered
an incoming call and if there is, at least, one TV in range, a trigger is sent to the
network towards the vUE, identifying the nearest TV. When the mobile voice call is
ended, the application triggers the vUE to retrieve the video back to the UE. Finally,

5Youtube: https://www.youtube.com/
6Netflix: https://www.netflix.com/
7Bluetooth beacon device: ByteReal TagBeacon 2.0

58

https://www.youtube.com/
https://www.netflix.com/

while this application is running in the background, the user is visualizing the online
video stream in the VLC application. Security (and authentication) aspects of these
procedures (such as policy-based network decisions about which video flows can be
offloaded to external devices or not) are outside the scope of this work.

3.2.1.3 PoA and its virtualization

Since the framework aims to be agnostic of the access technology, the BSs and APs are
generically represented as PoAs. In this line, the vPoA represents the virtualization
of the management and control services of the PoA (i.e., the fully virtualized PoA of
section 3.1.3) in the cloud. Thus, for proof-of-concept implementation, the PoA/vPoA
was implemented as an Wi-Fi AP/vAP, following the respective deployment presented
in section 3.1.3, where the vAP is responsible for the all management traffic of the
physical AP. Also, a Link SAP module to monitor the signal level of the attached
MNs was developed and implemented in the vAP for monitoring signal strength and
attachment/detachment, allowing it to perceive the MN’s connectivity context.

3.2.1.4 Network Controller

As presented in section 3.1.1, the network Controller (i.e., SDN Controller) manages all
network equipment in regards to flow mobility management, redirecting flows (via OF
flow-based rules), and instantiating new network entities of recently attached devices
(such as, vPoAs and vUEs) in the cloud. In this line, and framing a video re-routing
context, the framework improves video QoE by implementing a technology-agnostic
traffic flow mobility mechanism by bringing a virtual representation of both the UE and
PoAs to the cloud. In this way, flow mobility management mechanisms are migrated
to the data-center, benefiting the enhanced computational power, thus allowing the
implementation of more complex management decisions, when the opportunity to
redirect flows towards other devices arises. Regarding to UE’s handover procedures,
the controller maps the UE with the correspondent vUE, leveraging the handover of
the flow to the selected vUE.

3.2.1.5 Headend, Set-top-box and Correspondent Node

In the simplified reference scenario (Figure 3.13), the video headend is used as a video
server for streaming and transcoding a video. The set-top-box is connected to a TV
and receives a small context of the UE therein, while the CN performs a voice call
with the UE. Moreover, the set-top-box has bluetooth capabilities, allowing nearby
devices locate it. The Set-top-box was deployed in a Raspberry Pi 38 connected to a
TV, running the Raspbian Jessie. Finally, the CN performs the voice call with the UE
over the cellular network.

8Raspberry Pi 3: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

59

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

3.2.2 Use case description

Figure 3.13 presents the simplified framework for the reference scenario, where a video is
re-routed from the UE to a nearby TV (equipped with a set-top-box). When in its home
network, the UE attaches to the Wi-Fi network and reads the bluetooth beacons sent
from the set-top-box, estimating the distance of the nearest TV. Also, the Controller
updates the necessary UE’s context in the cloud (i.e., vUE). For simplification, in such
scenario it is assumed that vPoAs are already instantiated in the cloud and connected
to their physical counterparts (i.e., PoAs). Also, the implementation was simplified, and
only reached the virtualization of the AP and UE, maintaining the cellular connection
in its default configuration.

Figure 3.14 depicts the signaling regarding to this scenario. The scenario starts
with the user visualizing a video stream in its UE via Wi-Fi network (Figure 3.14:1-2),
when a voice call is received. Answering the voice call, the user triggers an event
(Figure 3.14:3), originating a handover request towards the vUE. Upon reception of the
handover request, the vUE updates the video stream destination, offloading it to the
nearest TV (Figure 3.14:6). Ending the mobile voice call, another trigger is generated
(Figure 3.14:7) notifying the vUE, which in turn redirects the video stream back to
the UE (Figure 3.14:10). In this way, the user is able to keep visualizing the video on
another device, despite answering the call on the mobile phone.

Data Center

SDN Controller

vUE#1 vPoA#1
Headend

vUE

UE
CN

Set-top-box

Network
1

2

4
5 3

Figure 3.13: Overview of the deployed deviceless scenario [15].

60

UE vPoA vUE SDN
ControllerSet-top-box PoA

voice call
arrives

Headend

(1) Video (HD + SD streams)(2) Video (SD stream)

(3) Handover trigger (UDP packet)
(4) Handover trigger

(OpenFlow Packet_in)

voice call
ends

(5) Flow mobility procedure
(2x OpenFlow Flow_modification)

(6) Video (HD stream)

(7) Handover trigger (UDP packet)
(8) Handover trigger

(OpenFlow Packet_in)

(9) Flow mobility procedure
(2x OpenFlow Flow_modification)

(10) Video (SD stream)

Figure 3.14: High-level message sequence of the deployed deviceless scenario [15].

3.2.3 Proof-of-Concept evaluation

To experimentally evaluate the proof-of-concept prototype, the AMazING testbed was
used to deploy the physical network entities PoA, video headend, and CN. A Nexus 5
smartphone with Android 6.0 was used as UE. The AMazING nodes were equipped
with a 64-bit support AMD APU CPU with 1 GHz dual-core and 4GB of DDR3-1066
DRAM. The vPoA, vUE, and SDN Controller were virtualized in Docker containers
(mimicking a data-center). The Docker software was running in a Virtualbox VM, with
1 vCPU, 4GB of RAM and Ubuntu 64-bit 16.04 LTS OS.

To evaluate the proof-of-concept scenario, the received and transmitted traffic was
captured in the UE, vUE and set-top-box. Figure 3.15a shows the received video for
the evaluated scenario. Initially the UE was accessing an online video9 with Standard
Definition (SD) quality (following the Android standards). As the UE received a
voice call, the video switched to the nearest TV. Here, the video was upgraded to
High Definition (HD) quality, which consequently increased the throughput. As the
voice call finished, the video switched back to the UE with lower quality, decreasing
the throughput to initial values. The scenario was evaluated during 45s, with UE
receiving the video in a total of 24s (i.e., 15s before and 9s after the voice call), and
the set-top-box (connected to the TV) in remaining 21s . The flow mobility process
to/from the UE was measured at the PoA in the time window between the offloading
trigger and the first video data packet sent to the new destination, presenting a delay
of 27.85(±3.17)ms.

9Caminandes 3: http://www.caminandes.com/

61

http://www.caminandes.com/

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Timeline (s)

Video received in the UE Video received in RPi

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 35 40 45
0.1

0.2

0.3

0.4

0.5

0.6

(a) Registered video throughput.

UE Set-top-box vUE
0

1

2

3

4

5

6

7

V
id

e
o
 t

ra
ff

ic
 (

M
B

y
te

s
)

(b) Video traffic registered in
each entity.

Figure 3.15: Video throughput over time and total video data amount for the deviceless
scenario [15].

Figure 3.15b presents the amount of video traffic in the network, dividing it by the
UE, set-top-box and vUE. The vUE received both streams (i.e., SD and HD), in order
to be able to switch between them dynamically. While the UE received 22% of the
video traffic, since the video transmitted to the TV is HD, the set-top-box received 41%
of the video traffic, corresponding to 86% more video traffic compared to the UE.

Table 3.3 presents the signaling impact of the offloading procedure messages. As
a framework that aims to operate independently of the physical layer, MAC headers
were not considered. These messages had an impact of a 157bytes (72 + 85bytes) in
the UE for the trigger (i.e., UDP packets) and 325bytes in cloud entities (i.e., for the
triggers to be sent as OF packet_in messages - 156bytes and 169bytes, respectively).
The flow mobility is completed after the implementation of two OF Flow_modification
messages (i.e., the first to implement the new path and the second to remove the
previous one) with an impact of 296bytes (i.e., 172bytes and 124bytes, respectively)
for the OF flow_modification messages). Despite triggers sent from the UE to update
the context of its surrounding, the remaining flow management signaling and context
triggers were retained in cloud. As such, while 917bytes for scenario management were
accounted in the cloud, only 157bytes were sent over-the-air.

62

Table 3.3: Scenario signaling impact (bytes) [15].

Trigger type of message impact on
UE

impact on
vPoA

arriving call offloading opportunity 72bytes 156bytes

ending call offloading opportunity 85bytes 169bytes

new UE attaching context update - 142bytes

UE disattaching context update - 142bytes

UE’s Signal level crossing pre-
established threshold

context update - 142bytes

3.3 Chapter Considerations

This chapter addressed how the integration of software and virtualization mechanisms
can enhance mobility management for upcoming 5G networks, by building systems with
greater degree of flexibility and abstraction. In this context, this chapter discussed,
implemented and evaluated three building blocks of the proposed framework: (i) SDN
capabilities extension all the way to the UE; (ii) PoA virtualization approaches; and
(iii) bringing the UE’s context through virtualization.

As result, the proposed framework virtualizes both the UE and PoA, thus moving
radio and core network functions, as well as UE’s wireless context to the cloud. Here,
the user context was brought to the cloud by virtualizing the UE therein and extending
the OF control path up to the UE, allowing it to become part of the network control,
assisting the controller in the mobility management by providing its perspective of the
network conditions (such as, detected neighbor cells) and minimizing signaling delay.
Also, the usage of SDN mechanisms within the UE, allowed for selective flow-based
handover remotely controlled by the vUE. This was supported by proof-of-concept
deployments and evaluations in experimental wireless testbeds.

Additionally, the proposed framework was evolved and deployed in a proof-of-concept
scenario that provided the foundations to the concept of deviceless communication.
This concept ultimately allows a user to be connected by any device on its surrounding.
Here, and in order to avoid associated context privacy issues, this concept was simplified
as a UE (smartphone) deciding which nearby device to use (for quality, energy, or
convenience reasons). As such, here the interaction of the UE with other connected
devices, such as TVs with network capabilities, is explored for selective flow handover,
enhancing the user experience by redirecting data and content and taking advantage of
the better features existing in such devices (i.e., larger screen).

Furthermore, the frameworks presented in this chapter provided successful indicators

63

of the benefits of a SDN flow-based mobility management (research question Q1), more
specifically, the development of flow-based mechanisms agnostic to the wireless technol-
ogy and without requiring additional and dedicated mobility protocols, thus contributing
to a more homogenized network in terms of control protocols. Also, the introduction
of NFV mechanisms (research question Q2) enabled the virtualization of both the UE
and PoA, allowing control and management decisions to be performed in the cloud.
Notwithstanding, wireless devices virtualization brings a trade-off between delay and
both hardware and wireless mobility simplicity. The framework was implemented and
evaluated considering different scenarios and network triggers, with results showcasing
its feasibility allowing seamlessly performed flow-based handovers between different
wireless network interfaces (research question Q3). Finally, this framework paved the
way for a more distributed architecture design (research question Q4), by providing
the foundations for a more flexible and dynamic network able to instantiate virtualized
network entities in different points of deployment. Also, it enables the introduction of
network slicing by provisioning the means for dynamically chain VNFs to perform a
slice (discussed in chapter 4).

Finally, this chapter was written based in outcomes achieved through following
publications authored by the candidate: book chapter [14], scientific journal [15] and
international conference proceedings [11]–[13]. Moreover, the publication [11] was
distinguished with a best paper award in the mobility track of the conference.

64

CHAPTER 4
Inter-slice Mobility Management

“5G networks, in combination with network slicing, per-
mit business customers to enjoy connectivity and data
processing tailored to the specific business requirements
that adhere to a Service Level Agreement (SLA) agreed
with the mobile operator.”

— GSM Association

5G networks aim not only to enhance traffic performance and allow efficient management,
but also to enable it to dynamically and flexibly adapt to the traffic demands of different
vertical scenarios. In order to support that enablement, the underlying NFs are being
virtualized and deployed in cloud-based environments, allowing for a more optimized
usage of the infrastructure resources. In addition, such resources can be sliced, allowing
isolated provisioning to specific NFs allocated to disparate vertical deployments. As
network slices are envisaged by operators to fulfill a small number of slices, able to cater
towards essential 5G scenario demands (i.e., eMBB, mMTC and URLLC), the total
amount of slices existing in a system is currently dictated by the underlying operational
overhead placed over the cloud infrastructure. This chapter explores the challenges
associated to a vision where the network slicing concept is applied with a much greater
level of granularity, ultimately allowing it to become a core mechanism of the network’s
operation, with large numbers of co-existing slices. Here, the framework presented in
chapter 3 is enhanced for instantiation of network slices among network providers,
enabling it to instantiate sub-slices tailored to use cases and vertical tenants. As such,
this chapter proposes a 3GPP-complaint SDN/NFV-based architecture supporting non-
3GPP access, and capable of dynamically instantiate 3GPP and non-3GPP slices for
inter-slice flow-based mobility.

65

4.1 Slice-based network overview

The framework architecture presented in the chapter 3 was enhanced in order to enable a
deployment of a network over a Infrastructure as a Service (IaaS) environment, allowing
network and infrastructure providers to be different players. As such, in the architecture
proposal presented in this chapter, network providers (such as, MNOs) request a network
slice to the infrastructure provider, in order to deploy their access network. For this,
infrastructure providers offer an service orchestrator that can be interfaced, allowing
network providers to announce their requirements. This allows infrastructure sharing
among multiple network providers, since these request a set of NFs (i.e., PNFs and
VNFs) from the infrastructure provider, which in turn slices the infrastructure (i.e., BSs,
APs, forwarding devices, data-centers) and chains the requested NFs. This is portrayed
as Macro-slices, in the proposed architecture of this chapter. Additionally, network
providers, when requesting resources to the infrastructure provider, tailor such requests
towards the construction of a suitable network slice, as required by the vertical and
traffic demands of each use case. As such, network providers offer a vertical manager,
allowing each vertical to specify their requirements. These compose the Micro-slices,
in the proposed architecture. Figure 4.1 illustrates the architecture proposal, with the
different involved layers being described as follows.

PNF1

PNF2

VNF1

VNF3
VNF2

PNF3

PNF4

Network Slice A

Infrastructure
Provider

Network
Provider

(Macro-slice)

PNF1 VNF3VNF2 PNF4

Use Case Y
Vertical
Manager

Vertical
(Micro-slice)

Service
Orchestrator

Figure 4.1: Slice-based architecture overview [21].

In the proposed architecture, the infrastructure provider is responsible for instanti-
ating network slices when requested by network providers. For this, the infrastructure
providers offer a service orchestrator where network providers can choose the necessary

66

PNFs and VNFs from a catalog, to meet a vertical’s demands. Thus, the infrastructure
is responsible for chaining the requested NFs in a logical isolated network.

In this context, network providers do not own the infrastructure (i.e., physical
equipment). Instead, network providers (such as, MNOs) deploy their network over
a shared infrastructure by requesting a slice to the infrastructure provider. Here, a
network slice is defined as a set of isolated PNFs and VNFs chained together, resulting
a logical isolated network. Also, network providers are able to instantiate sub-slices by
reconfiguring their NFs, adapting the virtual access network to each vertical and/or use
case.

Verticals are defined as specific industrial or commercial use cases such as automotive
and eHealth. In this line, the network provider offers a vertical manager, allowing
verticals to specify the necessary traffic requirements. Such information is then used
by network operators to (re)configure their slices, in order to adapt the network to
the specific traffic demands of each vertical (different types and possibilities of vertical
slices are presented in section 4.1.1).

Regarded to the service orchestrator, it exposes the infrastructure layer to network
providers, while coordinating the multiple different requests from such providers. As
such, the service orchestrator creates a high-level business service to automate network
slices instantiation, providing isolation and security among slices and network providers.

Lastly, the vertical manager exposes the network provider features and available
resources to the vertical tenant. Here, verticals announce the requirements of the use
case, and the SLAs are defined. The manager then (re)configures the network slice
(e.g., chains of PNFs and VNFs) in order to tailor the slice to the traffic demands.

4.1.1 Vertical slices and use cases

As discussed previously, network providers, such as MNOs, request PNFs and VNFs
to the infrastructure provider (forming a network slice) to deploy their network. Nev-
ertheless, MNOs are able to (re)configure their virtual networks (i.e., network slices),
in order to meet traffic demands of each vertical. In this section, and aligned with
section 2.3.1 of chapter 2, network slice types are proposed and classified in terms
of granularity, going beyond the currently accepted general notion of network slice.
Figure 4.2 illustrates the proposed slices dimensions, while Table 4.1 summarizes them
by providing use case examples.

In this line, the MNO requests an operator slice to the infrastructure provider,
which in turn grants PNFs and VNFs. The MNO is responsible for the orchestration
of its slice, allowing it to (re)configure the requested NFs. Thus, the MNO is able to
dynamically instantiate sub-slices with different sizes and requirements, according to
the use cases’ and/or verticals’ demands.

67

Figure 4.2a exemplifies macro-slices instantiated for covering bigger areas of the
network. For example, to meet the sporadic or seasonal traffic demands of a sport
event, the MNO may instantiate a geographical slice, in order to enforce better coverage
and enhance QoS and QoE for its users during the event. Also, the MNO may create
different classes of users (e.g., premium, regular and low cost) and instantiate a slice
with different requirements and QoS for each class.

Current smartphones are able to simultaneously use multiple wireless access tech-
nologies (e.g., LTE and Wi-Fi), thus the MNO has the possibility of instantiating a
slice per access technology. This allows the traffic redirection to the less crowded access
network for QoE enhancement and/or the traffic offloading from the licensed to the
unlicensed spectrum (i.e., from LTE to Wi-Fi). Notwithstanding, alternatively, for UE’s
redundancy and throughput enhancement, the MNO may instantiate a slice covering
multiples access technologies of the UE. Also, despite UEs having multiple interfaces of
the same access technology, a slice can be instantiated per interface, allowing a UE to
be attached to different MNOs simultaneously.

O
pe

ra
to

r Z
 Geographical X

Geographical Y

Ty
pe

 o
f u

se
r A

Ty
pe

 o
f u

se
r B

(a) Macro-slices.

N
et

w
or

k
st

ac
k

N
od

e
/ U

E

Ap
pl

ic
at

io
ns

UE
Packet Slice X
Packet Slice Y
Packet Slice Z

Flow A
Flow B
Flow C

N
IC

In
te

rfa
ce

1

N
IC

(b) Micro-slices.

Figure 4.2: MNO’s sub-slice dimensions [21].

Nevertheless, use cases such as eHealth and automotive require high reliability, with
the presence of micro-slices becoming important (Figure 4.2b). In this line, scenarios
where Network Interface Controllers (NICs) of the nodes (or UEs) attach to multiple
slices simultaneously, allow the UE to prioritize certain types of flows. Also, in more
specific scenarios, packets of the same flow are transmitted/received in parallel, allowing
a greater degree of redundancy, reliability and/or throughput.

68

Table 4.1: Types of slices and use cases [21].

Type of slice Description Vertical / Use case

Operator Network slice instantiated by the infrastructure
provider with multiple PNFs and VNFs.

MNOs.

Geographic area Slice instantiated in geographical area for spo-
radic gathering.

Sport event or concert in
a stadium.

Type of client Instantiated by the tenant MNO over the op-
erators slice by (re)configuring the requested
PNFs and VNFs.

Definition of classes of
users for QoS and QoE.

Access technology The MNO offers network access through dif-
ferent wireless access networks (e.g., LTE and
Wi-Fi), instantiating a slice per access technol-
ogy.

Mobile video offloading.

Node/UE Independently of the number of UE’s network
interfaces, the MNO instantiates one slice for
the UE.

eMBB (high throughput,
since the UE uses multiple
interfaces simultaneously).

Interface For UEs with multiple network interfaces for
the same wireless access technology (e.g., dual-
sim smartphones) a slice is instantiated per
interface.

Resilience and redundancy

Flow The MNO instantiates slices per types of flow
and/or service, allowing UEs to attach to mul-
tiple slices simultaneously.

QoS and QoE per flow
and/or service (traffic
shaping).

Packet The MNO instantiates multiple slices to which
UEs attach allowing the parallel transmission
of packet from the flow.

uRLLC and eHealth.

4.2 Framework Architecture Enhancements

The proposed framework aims to inter-operate with 3GPP and non-3GPP networks, by
instantiating a 3GPP slice and (when appropriate) dynamically instantiate a non-3GPP
(i.e., Wi-Fi) slice for traffic offloading from the licensed to the unlicensed spectrum,
while ensuring the traffic requirements (in terms of security, isolation and QoS) for
end-users. For this, the architecture presented in chapter 3 was adapted for ensuring
compatibility with 3GPP networks. Also, in order to allow the MNO to deploy its service
over an IaaS, in this chapter, the framework architecture adopts a SDN/NFV-based
3GPP architecture and enhances it by instantiating new network entities: (i) Slice
Creator; (ii) Slice Selector; (iii) Context Updater; and (iv) vUE. Figure 4.3 presents
the proposed mobile network architecture as an enhancement of a SDN/NFV-based
3GPP architecture. For compatibility sake, this proposed framework maintains to the
highest possible extent existing interfaces used between 3GPP building blocks, while
mapping any new introduced protocol to 3GPP signaling whenever possible.

69

In the 3GPP standards (release 15 [90] and release 16 [27]) for 4G networks, the
interoperability between 3GPP and non-3GPP networks is ensured by the MME and
P-GW. The MME is responsible for the control of intra-3GPP and inter-3GPP (to
non-3GPP technologies, e.g., from LTE to Wi-Fi) handovers, where the S-GW and
the P-GW are used as data traffic anchors for intra-3GPP and inter-3GPP handovers,
respectively. Notwithstanding, with the introduction of new technologies into the
network (i.e., slicing, SDN and NFV), new procedures should be studied, along with the
instantiation of new network entities and functions. In fact, for 5G networks, the 3GPP
is considering such enhancements, and new network functions are being established
under standardization [25] (presented in chapter 2, section 2.1). In this line, since
at the time of this writing there is no open-source 5G core frameworks available, the
architecture here presented uses a 4G network and proposes the usage of the vUE for
managing the inter-3GPP mobility of its physical counterpart, alleviating the MME
procedures. Moreover, although the proposed architecture focuses on the existing EPC,
the current 3GPP standardization for 5G in [25] was followed, with the UE’s context
updater being able to be integrated in the AMF, allowing the network to follow the UE
and update its context in the virtual instances. The building blocks of the proposed
framework are described next, and depicted in Figure 4.3.

HSS
VM

MME
VM

SPGW-U
VM

3GPP Access

non-3GPP Access

eNB

AP

UE

AAA
VM

S11S6a

 SWx S1-MME

SB API

STa

S2a

SDN Controller
VM

SPGW-C
VM

FlexRAN SD-RAN
Controller

Slice
creator/ selector NB APINB API

vUE Context
Updater

Figure 4.3: Deployed framework architecture.

• Slice Creator: The slice creator is in charge of dynamically instantiating 3GPP
sub-slices (e.g., RAN slices) and non-3GPP slices. As such, it communicates with
the context updater of each 3GPP slice. Since each slice is specific to each use
case, the slice creator chooses the building blocks to be instantiated with the slice.

70

Here, the S/P-GW was instantiated for user plane and the Context Updater and
vUE for control plane.

• Slice Selector: The slice selector maps the UEs to their corresponding slices. For
example, while a regular user has its UE connectivity attached to a default slice,
corporates may have a dedicated virtual EPC with different network requirements
per UE. Also, and specific to the scenario discussed in section 4.3, a corporate may
contract a MNO for dedicated non-3GPP slices for its collaborators to improve
the remote working experience.

• Context Updater: The context updater communicates with the vUEs, updating
its information and requesting the instantiation of non-3GPP slices to the slice
creator. Here, the context updater will enhance the capabilities of the S-GW and
the P-GW of the 3GPP by creating and updating the vUEs of the end-users.

• vUE: The vUE assumes the MME responsibility of controlling inter-3GPP han-
dovers, but with a finer flow control, since each vUE is responsible for its UEs
flows. As such, the vUE maps the UE in the network, keeping the information
regarded to the physical UE’s wireless link and active flows. Also, each vUE is
able to verify if the QoS of each flow meets the requirements agreed in the SLAs.

Note that the above network entities are enhancements from the architecture
proposed in chapter 3. Thus, slice creator, slice selector and context updater entities
were introduced into this architecture to allow the collection of UE’s context information
(e.g., neighbor cells and APs) and to dynamically instantiate slices with the predefined
KPIs (e.g., bandwidth and access networks) for supporting the UE’s communications.
Contrarily, despite already being introduced in chapter 3, here the vUE is a SDN
application, decoupling the control and data paths, and allowing the anchoring of the
UE’s data in different network points.

4.2.1 Network procedures

The framework proposal considers different procedures and network entities interaction,
depending on the type of access technology used by the UE. Figure 4.3 depicts the
entities involved in the procedures for the 3GPP and non-3GPP attachment. The above
procedures are described as follows.

4.2.1.1 3GPP attachment and 3GPP slice

When an UE attaches to the network via a 3GPP access the eNB requests credentials
to the MME (via the S1-MME interface). The MME validates the International Mobile
Subscriber Identity (IMSI) of the UE with the HSS (via the S6a interface), and then
replies to the UE. After that, the UE requests a L3 attachment, which is agreed between
the MME and the S-GW-C (control plane) (via the S11 interface). Upon attachment

71

completion of the UE, the S-GW-C notifies the Slice Selector, which in turn sends
the result to the S-GW-C, the FlexRAN controller and the Context Updater of the
correspondent slice. The S-GW-C then creates a tunnel between the attached eNB and
the Gateway (GW) of the respective core slice. As presented in chapter 2 (section 2.5.4),
the FlexRAN controller is capable of instantiating the 3GPP radio slices.

4.2.1.2 non-3GPP attachment and non-3GPP slice instantiation

As presented in chapter 2 (section 2.3 and section 2.5.4), the non-3GPP radio slicing can
be achieved by wireless virtualization. Thus, the proposed framework deploys multiple
SSIDs with different wireless security encryptions over the AP. For this, APs of the
proposed framework were enhanced with an application for on-demand reconfiguration
of the wireless networks with the necessary characteristics (e.g., security, traffic shaping).

Regarding to the non-3GPP access authentication, different procedures are consid-
ered.

• Independent non-3GPP access: when the user connects to a non-3GPP
access, the AP authenticates the UE for wireless access (e.g., Wi-Fi Protected
Access (WPA)), and the Internet Service Provider (ISP) and MNO (through the
context updater and vUE) establish the slice requirements for the UE, with the
former instantiating a slice for the UE (scenario presented in section 4.2.4.2).

• Mobile core with support for non-3GPP access: when an UE attaches to
a non-3GPP access (i.e., Wi-Fi) deployed by the MNO, the AP authenticates the
UE in the AAA (interface STa), which in turn verifies the IMSI of the UE with
the HSS (interface SWx). DHCP is then requested by the UE, and the S-GW-C
with slice selector connects (via tunnel) the AP with the respective slice S/P-GW
(used in section 4.3).

4.2.1.3 Inter-slice flow mobility

Here, inter-slice mobility is processed as inter access technology handovers (i.e., between
3GPP and non-3GPP, and vice versa). However, in the proposed framework, such
procedure was moved from the MME to the vUE. This allows a greater degree of
granularity, since each vUE monitors the flows of its UE. Conversely, current MME
implementations do not perform flow-based mobility, instead they offload all traffic,
independently of the flow characteristic and the wireless link status of the UE. In this
context, for inter-slice flow mobility, the vUE monitors the wireless link and active flows
of its physical counterpart, in order to perform flow-based mobility adapted to each
flow, while requesting for non-3GPP slices with the agreed QoS requirements with the
tenant vertical. Regarding to intra-3GPP slice mobility, in the proposed framework,

72

the MME continues to be in charge of its management, according with the involved
eNB and UE the transmission parameters.

4.2.2 Wi-Fi slices implementation and evaluation

For non-3GPP access, the framework was evaluated, as proof-of-concept, under the
instantiation of Wi-Fi slices, more specifically, the IEEE 802.11n at 5GHz. As such, the
AP was implemented using APU2C4 with wle600vx wireless modules. The Ubuntu 14.04
LTS OS was used with the hostapd v2.1 software for AP capabilities. For the non-3GPP
slice instantiation an application was developed, which reconfigures the Linux hostapd
daemon creating a new SSID with the necessary characteristics (e.g., security, traffic
shaping) and implements traffic shaping through Linux traffic control when requested
by the network controller. Finally, the new SSID was configured in IEEE 802.11n at
5GHz with a chosen protect access, including the EAP-AKA1 authentication, which in
turn allows the authentication using the Subscriber Identification Module (SIM) card.

4.2.2.1 Slice instantiation delay

As mentioned above, Wi-Fi slices were created exploiting hostapd features by instan-
tiating an SSID for the UE, where different authentication methods can be set (e.g.,
WPA2 and EAP-AKA). As such, slice instantiation delay is the time interval between
the slice creation request and the AP’s reply after instantiation. Also, such delay can
be decomposed as follows: (1) suitable AP discovery; (2) slice instantiation; (3) UE’s
connection to the AP; and (4) flow redirection. Figure 4.4 shows the cumulative
distribution function (CDF) and empirical CDF (eCDF) of such procure (from 1 to 3).

The (1) suitable AP discovery took 9s (±2s) and it was regarded to the UE’s
detection of an available AP2 (for instantiating a slice) in range and informing it to the
network (i.e., to the vUE). In the Linux UE deployment, an application was developed
for enabling the UE to scan the wireless environments with a periodicity of 9s (similarly
to iOS and Android OS [91]). The (2) slice instantiation took 10s and was the delay
between the non-3GPP slice request and its instantiation. This delay was associated
to the necessity of restarting the hostapd with the updated values (i.e., SSIDs, traffic
shaping, and DHCP server). Then (3) the UE took about 7s (±1s) to detect and
connect to the dynamically instantiated SSID. Finally, (4) the data flow was redirected
from the 3GPP to the non-3GPP slice.

In this line, while the instantiation of the non-3GPP slice took 10s, the overall
procedure took about 26s. Finally, the proposed framework can explore location service

1EAP-AKA specifies an Extensible Authentication Protocol (EAP) method that is based on the
Authentication and Key Agreement (AKA) mechanism used in 3GPP networks.

2This was implemented by discovering known SSIDs (section 4.3).

73

of current smartphones, and preemptively instantiate the non-3GPP slice, saving 20s of
delay (i.e., slice request and slice instantiation).

0 5 10 15 20 25 30 35

delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

e
C

D
F

Slice request Slice instantiation UE connection

Figure 4.4: Instantiation of a non-3GPP slice [17].

4.2.2.2 Slice throughput

As an illustrative scenario, here the Wi-Fi bandwidth was shaped depending on the
service or user type. As such, the AP (in a IEEE 802.11g at 2.4GHz) was sliced
with an SSID per user (totaling 3 users), while dynamically establishing different
bandwidth percentages per slice. Thus, it was defined: slice 1 for premium users with
12Mbps; slice 2 for regular users with 6Mbps; and slice 3 for low-cost users with 2Mbps.
Figure 4.5 shows the achieved TCP downlink throughput over time per slice. Results
were obtained using the iperf tool. Initially, all slices/users were defined with the same
allowed bandwidth. Thus, the 20Mbps were divided among the existing slices, resulting
in about 6Mbps per slice. At 9s, the traffic shaping was established and the bandwidth
was divided as previously described. As a final note, for UDP traffic, while for downlink
the bandwidth is divided as described, for the uplink the UEs continuously compete for
the bandwidth, showing the importance of radio slicing for E2E slicing mechanisms.

74

0 5 10 15 20
Timeline (s)

0

5

10

15

20

25

T
h
o
u
g
h
p
u
t
(M

b
p
s
)

Slice1 Slice2 Slice3 Total Traffic shaping

Figure 4.5: Impact of traffic shaping in slice throughput [16].

4.2.2.3 Traffic shaping within the network slice

Figure 4.6 illustrates the upstreaming UDP throughput for a sliced AP with two IEEE
802.11n at 5GHz wireless networks (i.e., slice A and slice B). Thus, the AP had approxi-
mately 100Mbps of bandwidth to be shared among active slices. In this line, Figure 4.6a
illustrates the traffic for a scenario without E2E QoS applied. As such, the bandwidth
was divided by both networks, independently of the slice requirements, resulting in
approximately 50Mbps per slice. Also, with each slice achieving 50Mbps, such band-
width was divided per user flows. In the evaluated scenario, the UE had 5 active flows,
resulting in approximately 10Mbps each, disregarding the flows characteristics (i.e., live
video, web searching).

Conversely, in Figure 4.6b the UE was a SDN-enabled device, allowing its virtual
counterpart to dynamically instantiate queues depending on the user demands while
switching the traffic among queues in a flow-based way, resulting in a dynamic E2E
QoS. Additionally, the network provider is able to dynamically establish the traffic
bandwidth to each UE, and consequently, its slice. This allows to establish the dynamic
bandwidth elasticity of the UE and slices. Here, slice A was limited with 30Mbps,
allowing slice B to achieve 65Mbps. Nevertheless, not all flows have the same network
demands, with examples such as online gaming and live video streaming having more
restrict requirements in terms of delay and throughput than web content searching
or cached video. As such, and as an illustrative scenario, in slice A, different QoS
policies where configured, depending on the traffic characteristics. Thus: type A with
12Mbps for online gaming; type B with 8Mbps for live video streaming, type C with
5Mbps for video cache, type D with 3Mbps social media; and type E with 2Mbps

for web searching. Comparing both scenarios (i.e., Figure 4.6a and Figure 4.6b) it is
noted that by reducing the bandwidth in one slice, the other slice was able to consume
the remaining bandwidth, allowing slice elasticity. Also, Figure 4.6b illustrates the
feasibility of the proposed mechanism with the flows being shaped to the configured

75

0 5 10 15 20

Timeline (s)

0

15

30

45

60

T
h
o
u
g
h
p
u
t
(M

b
p
s
)

10 11 12
10.2

10.4

10.6

10.8

11

(a)

0 5 10 15 20

Timeline (s)

0

15

30

45

60

T
h
o
u
g
h
p
u
t
(M

b
p
s
)

Slice A Slice B Type A Type B Type C Type D Type E

5 10 15
0

3

6

9

12

15

(b)

Figure 4.6: Wi-Fi slice throughput for: (a) without E2E QoS; and (b) SDN-based UE with
E2E QoS [22].

bandwidth.

4.2.2.4 Signaling impact for traffic shaping

The signaling impact in terms data overhead and delay for the dynamically instantiation
of QoS rules in the UE are presented in Table 4.2. As discussed previously, to implement
SDN-based QoS policies both OF or OVSDB protocols can be used. In this line, OF
meter_modification message creates a flow meter in the OF/OvS bridges, allowing
the traffic policing above configured thresholds. OVSDB enables the management of
OvS bridges, allowing the creation of QoS rules for traffic shaping. In this context,
while an OF meter_modification message had 164 bytes of overhead and a delay of
approximately 7ms, the creation of a QoS rule had approximately 7Kbytes of overhead
and 60ms. This is mainly due to the fact that both the SDN controller and OvS bridge
exchange information about the bridge status before and after the QoS creation. Finally,
to apply the QoS policies, the flow must be redirected to the flow meter and/or QoS
queue. This is performed via OF flow_modification messages. As final note, flow meter
and queues are complementary to each other. However, flow meters are usually easier
to create and modify at the runtime (via OF messages), while queues are more rigid
and created out of band or by specific protocols (e.g., OVSDB).

Table 4.2: Signalling impact for traffic shaping within Wi-Fi slice [22].

Function Protocol Data overhead Delay
Flow meter OpenFlow 164 bytes 7 ms
QoS and Queues OVSDB 6914 bytes 59.10 ms
Flow redirection OpenFlow 236 bytes 5 ms

76

4.2.3 3GPP slices implementation and evaluation

The architecture of the instantiated MNO’s slice is presented in Figure 4.3, where
the EPC was instantiated in a in-house data-centre running OpenStack (Ocata). The
deployed EPC was based in the OAI project, enhancing its flexibility by introducing a
SDN controller capable of receiving information from NB SDN application helping in
the network (re)configuration. In this line, 3GPP entities, such as the MME, HSS and
S/P-GW, were instantiated in VMs with a 1 CPU core and 2 GB of RAM, running the
Ubuntu 16.04 LTS OS. Regarding to the RAN, its flexibility was enhanced by deploying
the FlexRAN framework. In this context, the proposed framework is composed by
both the FlexRAN and the OAI, allowing the development of SDN NB applications
to acquire context from both core and ran networks, and assist the SDN controller in
the core and access networks management via NB APIs. The eNB was deployed in a
physical machine running Ubuntu desktop 16.04 LTS OS with an Intel Core i7-7700K
CPU and 32 GB of RAM, and an USRP B210 Software-Defined Radio (SDR) board
with a LP0965 antenna.

The new proposed network entities, namely the slice creator and the slice selector,
both were developed and implemented as Ryu SDN applications for assisting the SDN
controller in the management of UEs’ requirements. As such, both run along with the
SDN controller and interacted with the remaining entities via UDP messages, and when
applicable deploying OF messages through the SDN controller.

For simplification, due to the complexity of infrastructure sharing among MNOs
(section 2.3.1), in the proposed scenario the slice for the MNO was already instantiated.
In this context, the MNO reconfigures its building blocks (PNFs and VNFs) accord-
ing to requests from verticals. Figure 4.7 illustrates the messages sequence for the
reconfiguration of the framework upon the attachment of an UE.

Slice
creator/ selector

FlexRAN SD-RAN
Controller

SDN
Controller

SPGW-UeNB

MME

(2)

(1)
(3)(4)

(5)

Figure 4.7: High-level sequence of messages for the scenario evaluation [21].

In Figure 4.7, when a UE attaches to the 3GPP network, the MME informs the SDN
controller via NB APIs, through developed REST messages (Figure 4.7:1). The SDN
controller then reconfigures the S/P-GW-U (user plane) (Figure 4.7:2) via SB APIs (i.e.,

77

OF for flow based rules and OVSDB for tunnel creation), enabling the communication
of the UE. Initially, the UE is attached to a default slice. Nevertheless, after attachment
completion, the SDN controller informs the slice creator/selector, which in turn verifies
the UE’s characteristics (e.g., type of client, current flow in use, etc.) and (if necessary)
requests to the FlexRAN SD-RAN controller to move the UE to the correct slice (or
asks for a new one, moving the UE afterwards).

Next, the proposed framework is evaluated in terms of UE attachment, radio slice
instantiation and slice handover delays, and the impact caused by the simultaneous
existence of requests and/or increasing number of instantiated slices. Experiments were
run 50 times, with the results being shown in Figure 4.8 and presented with a confidence
interval of 95%.

4.2.3.1 Slice radio instantiation delay

As previously discussed, the deployed framework uses both OAI and FlexRAN. In this
context, FlexRAN only allows to instantiate a maximum of 10 radio slices. Figure 4.8a)
presents the instantiation delay of upon a request of multiple radio slices. The results
show that the slice instantiation did not depend on the number of requested slices, as
of the current version of the FlexRAN software, for the amount of simultaneous slices
used in the evaluated experiments. In Figure 4.7, it is noted that the request was sent
by the developed SDN NB application via REST (more specifically, Hypertext Transfer
Protocol (HTTP) POST message). However, the FlexRAN SD-RAN controller sends
an acknowledgment before the correct implementation of the slice, misleading the slice
requester to move UEs to a slice before its correct implementation. To overcome this, a
delay between the slice instantiation acknowledgment and the UE’s slice handover was
set.

4.2.3.2 Slice handover delay

From Figure 4.8b) it is noted that the slice handover of the UE was independent of
the number of instantiated slices. As such, in Figure 4.7, when the requester asked
for a slice handover of the UE, the network took about 2s to switch the radio slice
that the UE was attached to. In this context, in scenarios where the network uses
handovers from one slice to another as the means to fulfill the UE requirements (e.g.,
better latency), the slice handover delay requires to be much lower in order not to incur
any impact to the experienced QoE (especially when considering URLLC scenarios).
As such, enhanced mechanisms should be developed in order to increase handover
performance.

78

4.2.3.3 S/P-GW update delay

Figure 4.8c) presents a scalability study of the developed SDN mechanism for S/P-GW
flow control. For this, the MME emulated the attachment of multiple UE simulta-
neously and the delay for correct flow implementation for the requested number of
UEs was measured. The experiment uses a worst case scenario, since requests were
sent consecutively to the SDN controller. Results show that the developed mechanism
escalated well, outperforming a linear scenario.

4.2.3.4 UE attachment delay

This experiment evaluates the total delay of the UE attachment in a dynamically
instantiated slice. Thus, this delay results in the sum of the delay for slice radio
instantiation, update of the S/P-GW and slice handover. Figure 4.8d) presents the
eCDF of the delay for each stage completion (as such, each stage accounts the delay
of previous stages). In Figure 4.7, when an UE attached to the 3GPP network, the
MME notified the SDN controller (Figure 4.7:1) which in turns updated the S/P-GW-U
(Figure 4.7:2). Such update took about 100ms and was related to the installation of
two flow-based rules (for uplink and downlink UE’s communication) in the OF switch.
The slice creator/ selector then instantiated a new slice for UE (Figure 4.7:4, 600ms),
moving the UE to it afterwards (Figure 4.7:4, 2). In this context, the whole process
took almost 3s to be completed.

4.2.3.5 Messages impact

Figure 4.8e) illustrates the message sizes for the different scenario messages. For the UE
attachment and detachment (Figure 4.7:1), the REST API was used, more specifically,
HTTP POST messages. As such, the former had an impact of 370bytes and the latter
310bytes. When the SDN controller is notified of the UE’s attachment, it updates the
S/P-GW-U via OF messages (i.e., OF flow_modification). Thus two messages were
sent (Figure 4.7:2): first for uplink (UL) communication (170bytes), and second for
downlink (DL) (178bytes). Initially, the UE is attached to a default slice. In case,
of specific UE’s requirements, the slice creator/ selector, uses HTTP POST messages
(Figure 4.7:4) to instantiate a slice (558bytes) and to handover the UE for the new
slice (66bytes). Finally, for a slice delete and HTTP POST message (237bytes) is sent
towards the FlexRAN SD-RAN controller.

Regarding to request slice messages, Figure 4.8f) shows how the HTTP POST
message increased depending on the number of requested slices. Also, in scenarios where
there are already 5 slices, and 3 more slices are needed, the HTTP POST contains the
resulted 8 slices with the correspondent slice parameters (resulting in 1204bytes).

79

1 2 4 6 8
Number of requested slices

0.0

0.2

0.4

0.6

0.8

1.0

De
la

y
(s

)

a) Slice instantiation delay

2 3 5 7 9
Number of instantiated slices

0

2

4

De
la

y
(s

)

b) Slice handover

100 101 102 103 104

Number of UEs attachment

10−1

100

101

De
la

y
(s

)

c) Update of the S/P-GW

UE
att

ach
. UE

de
tac

h. D
L
rul

e UL
rul

e Add
slic

e Del.
slic

e Slic
e
HO

0

200

400

600
By

te
s

370
310

178 170

558

237

66

e) Impact of scenario messages

1 2 4 6 8
Number of requested slices

0

500

1000

By
te

s

558
681

927

1172 1204
f) HTTP POST message

0.0 0.1 0.2
0.0

0.5

1.0

eC
DF

S/
P-

GW
 U

pd
at

e

0.7 0.8 0.9
Delay (s)

Sl
ice

 in
st

an
tia

tio
n

d) UE attachment delay with slice HO

2.8 2.9 3.0

Sl
ice

 H
O

Figure 4.8: Experimental results for 3GPP network reconfiguration [21].

4.2.4 Proof-of-concept evaluation for mobility scenarios in dynamic slice
environments

This section evaluates the proposed framework in terms of inter-slice mobility for mobile
video offloading (section 4.2.4.1) and dynamic resource reconfiguration (section 4.2.4.2).

4.2.4.1 Mobile video offloading for a non-3GPP slice

This scenario dynamically instantiates non-3GPP slices, in order to allow the operator
to offload mobile video from the licensed (i.e., LTE) to the unlicensed (i.e., Wi-Fi)
spectrum, while keeping the user’s QoE. Figure 4.9 depicts the high-level message
sequence of the scenario. Here, the flow redirection to the non-3GPP (Wi-Fi) slice is
decomposed in four stages. First, the vUE detects that the user started to visualize
a live video. For this, the OF flow_stats message was used (with a periodicity of 5s)
to analyze the characteristics of the user’s flow (e.g., protocol, port and bitrate). If
such analysis results in an offloading decision, the vUE requests the creation of a slice.
Secondly, the slice is created exploiting hostapd features by instantiating an SSID for
the UE, whose authentication is ensured via IMSI. Thirdly, after the slice is created, the
UE detects the SSID and attaches to it. Finally, the vUE implements a flow redirection
in the chosen anchor (i.e., GW) via a OF flow_modification message. The offloading
delay was measured from the moment the UE starts receiving the video via LTE until
its redirection to the Wi-Fi slice, resulting in a average delay of 36s.

The framework was implemented using the guidelines presented in sub-section 4.2.2
and sub-section 4.2.3, for non-3GPP and 3GPP, respectively. In this section the proof-

80

of-concept implementation was evaluated in terms of handover performance, throughput
achieved in a non-3GPP slice, and overhead in over-the-air data traffic. The experiments
were run 10 times with the results being presented with a confidence interval of 95%.
Finally, an experiment was recorded and is available online in the project webpage3.

MME

UE

eNB

AP

(11) Create Tunnel (OvSDB)

S/P-GW
 (control) SDN

Controller Headend

Data-center

(5) Route Update (OF)

DHCP
server

AAA HSS
S/P-GW
 (data)

Wi-Fi control LTE control
Network control

(6) Video Flow via BS

LTE attachment &
Control communication

(13) IMSI & IP (REST)

(15) Video Flow via AP

(2a/b) Attach L3 Req./Resp.

(3) Create Tunnel (OvSDB)
(4) IMSI & IP (REST)

(10a/b) Attach L3 Req./Resp.

Wi-Fi attachment &
Control communication

(12a/b) Route Update (OF)

(14) Route Update (OF)event

vUE control

Video detection &
Slice creation

(8) Create slice (UDP) event

(7a/b) Flow_stats (OF)

(9a/b) Attach L2 Req./Resp.

vUE

Context
Updater

(1a/b) Attach L2 Req./Resp.

Figure 4.9: Mobile offloading for a non-3GPP slice high-level signalling [16].

4.2.4.1.1 Scenario evaluation

The evaluated scenario started with the user visualizing a live stream video on a mobile.
Initially, the UE was receiving the video4 via LTE, however in the meantime, the vUE
requested (at 2s) to the SDN controller an Wi-Fi slice for mobile video offloading
due to congestion on the network5. Still receiving the live video, the UE attached (at
22s), in background, to the dynamically instantiated Wi-Fi slice. Such attachment
triggered the vUE, which in turn redirected (at 22s) the video flow from the LTE to the
Wi-Fi seamlessly, switching from the licensed to the unlicensed spectrum. Figure 4.10
illustrates the throughput in the handover scenario, comparing it with having the video
always received via the congested eNB. Here, despite the throughput being similar to
both situations (only 2% of throughput loss), in the latter the UE received unsorted

3Mobile video offloading demo: https://atnog.github.io/5G-VCoM/demos/demo1.html
4Big Buck Bunny (video): https://peach.blender.org/
5Exploiting the OAI limitations, which works in transmission mode 1, the eNB was overloaded by

adding more users requesting UDP data.

81

packets due to congestion, which degraded the user’s QoE (this can be seen on the
recording available online). In terms of bytes, in the 40s of the assessed video, 50%
of its total cost (4 Mbytes) was offloaded to Wi-Fi. No lost packets were experienced
using the developed mechanism, which was able to redirect the flow to the Wi-Fi slice
maintaining the user’s QoE.

0 10 20 30 40
Timeline (s)

0

0.5

1

1.5

T
h

o
u

g
h

p
u

t
(M

b
p

s
)

t
1

t
2

t
3

LTE Wi-Fi Video in congested eNB

Figure 4.10: Video throughput over time for mobile offloading scenario [16].

Regarding to the signaling, table 4.3 presents the impact of the control signaling of
the evaluated offloading scenario. Since the REST (used for interfacing SDN applications
and the controller) imposes high overhead (e.g., sending 107 bytes of data required
410 bytes), the slicing creation message was implemented via dedicated UDP signaling.
As such, for 14 bytes, this dedicated message had an impact of 60 bytes. For SB
communication, OF and OVSDB were used for route updates and OvS configuration
(create tunnels) on-the-fly, respectively. While each route update had an average
impact of 178 bytes, tunnel creation had an impact of 20 Kbytes. This was due to the
information exchanged between the OvS and SDN controller, where both share status
before and after creating the new port/tunnel. Nevertheless, the tunnel is created only
at the first communication of each eNB and/or AP. Regarding to the OF flow_stats
message for data update in the vUE, it had an impact of 332 bytes for each message
sent every 5s. As such, for this 40s scenario it had an impact of 2.6Kbytes. Moreover,
as the UE’s active flows increase, the payload of the OF flow_stats reply message (8b)
increases.

82

Table 4.3: Impact of dedicated signalling messages for mobile offloading scenario [16].

Function (in Fig. 4.9) Protocol Payload (bytes) Total impact (bytes)
UE’s (de)attachment (4/13) REST 107 410
Create tunnel (3/11) OVSDB 19131 21298
Create Slice (8) UDP 14 60
Route update (5/12/14) OF 112 178
UE’s flows info: periodic (7a) OF 72 138
UE’s flows info: periodic (7b) OF 128 194

4.2.4.2 Dynamic 3GPP slice reconfiguration

This scenario focuses on network slice optimization for the highly variable UE’s data
traffic, by reducing resources consumed by network slices that are no longer in use after
a UE handovers from them. Here, the framework of the previous section was slightly
changed, allowing the 3GPP and non-3GPP access network being provided from different
entities (MNO and ISP, respectively). For this, the Over-the-Top (OTT) virtualizes
the UE connectivity context in the cloud, and communicates with telecommunication
operators (MNO and ISP) to update the UE’s connectivity status and current data
requirements. In addition, the OTT uses the vUE to anchor the UE to the network
and mask underlying radio and network slices into a E2E slice. Here, connectivity
context is defined as the UE’s current link conditions, active access technologies and
surrounding (e.g., neighbor cells). Also, the OTT represents a third-party providing a
service that ensures the optimal connection and QoE for its UE, by negotiating with
the MNO and OTT to ensure the UE’s communication requirements and the optimal
network slice resource allocation, masking underlying slices in an E2E slice. This results
in an SDN-based inter-technology handover transparent to the end-points. The network
architecture for this scenario is presented in Figure 4.11

A proof-of-concept implementation was deployed in an in-house testbed and tested for
TCP and UDP data traffic, for both upload and download streams. The control signaling
for both protocols and stream direction are similar, and illustrated in Figure 4.12. With
the purpose of facilitating the procedures flow, Figure 4.12 presents the core network
of the three providers as single entity. The framework was implemented using the
guidelines presented in sub-section 4.2.2 and sub-section 4.2.3, for non-3GPP and 3GPP,
respectively. The experiments were run 25 times, with the results presenting their
average with a confidence interval of 95%.

4.2.4.2.1 Scenario signalling

In Figure 4.12, initially the UE is connected to the LTE network, and downloading (or
uploading) data (1). Passing by an AP, the UE attaches to the non-3GPP network (2)

83

vGW
(MNO)

vGW
(ISP)

MME

HSS

eNB

AP

FlexRAN
SDRAN

Controller

MNO's SDN
Controller

ISP's SDN
Controller

Context
Updater vUE

vGW
(OTT)

OF

REST

OF

OF

OF

OF
REST

S1-MME

REST

REST
S6a

S11

ISP blocks MNO blocks OTT blocksWireless
Slices

Control communication
Data communication

FlexRAN Protocol

Correspondent
Node

UE

Physical Network Virtualised Network

Figure 4.11: Network architecture considering an OTT [23].

and informs its virtual counterpart via an OF packet_in message (3). In turn, if it results
in an handover policy, the vUE updates the flow tables of its physical counterpart (4)
and in the virtual Gateway (vGW) (via context updater) via OF flow_modification
messages. When the handover is completed, the OTT (through the context updater
and via REST) notifies the MNO (5), which optimizes the wireless resources of 3GPP
slices, by moving the UE for a slice with less capabilities. Since the UE’s datapath is
anchored in the OTT network by the vUE, masking underlying slices in a E2E slice, the
handover process becomes transparent and seamless to both the UE and the CN (6).

Moving away from the AP, the link strength to the non-3GPP reaches a minimum
threshold and the UE informs its virtual counterpart (7). In turn, the OTT notifies the
MNO (8), allowing it to prepare and optimize the UE’s slice requirements to receive the
data by moving it to a slice with more capabilities. After switching the UE’s attached
slice, the MNO informs the OTT, which in turn updates the flow tables of the UE and
vGW (9) via OF flow_modification messages. Again, as the UE’s datapath is anchored
in the OTT’s network, underlying slices are masked in a E2E slice and the handover
procedures become transparent to the UE and CN (10). As result, the OTT is able to
communicate with telecommunication operators and dynamically handover the UE’s
data among heterogeneous wireless slices with the purpose of guaranteeing the optimal
UE’s connection and wireless resource allocation.

4.2.4.2.2 Scenario evaluation

Figure 4.13 illustrates the download and upload throughputs for both wireless networks.
Also, the 3GPP network was divided in 2 slices, in order to switch the UE considering
its current data communication requirements. The LTE slice A was configured with 25%
of the total bandwidth (approximately 3.5 Mbps of bandwidth). Contrary, slice B was

84

UE eNB ISP CNAP MNO

event
connection up

 (Wi-Fi)

slice
handover

OTT
[vUE]

update
flow table

update
flow table

(2) network attachment

(1) Data traffic (UDP / TCP)

event
connection going

down (Wi-Fi)
slice

handover
update

flow table
update

flow table

(6) Data traffic (UDP / TCP)

(10) Data traffic (UDP / TCP)

(3) connection status update (OF)

(4) flow-based rule (OF)

(5) update UE's slice (REST)

(7) connection status update (OF)

(8) update UE's slice (REST)

(9) flow-based rule (OF)

Figure 4.12: High-level message sequence for the deployed OTT scenario [23].

configured with 70%, accomplishing approximately 10.5 Mbps. Regarding to Wi-Fi, it
allows approximately 50 Mbps, however the instantiated Wi-Fi slice was set to 20 Mbps.
Finally, evaluated streams were generated using iperf3 network tool.

Figure 4.13a illustrates the throughput over time for TCP and UDP data when
a user was downloading data. In the figure, it is noted that both slices maximum
allowed bandwidth was accomplished, and as the UE moved to the Wi-Fi slice (at 10s),
the throughput increased from 10Mbps (or 15Mbps when UDP) to 20Mbps. On the
background, as the UE offloaded the data to the Wi-Fi slice, the OTT notified the
MNO, which in turn optimized its wireless resources by switching the UE to a slice
with less priority and bandwidth (i.e., LTE slice A). Before disconnecting from the
Wi-Fi slice (at 20s), the UE informed the OTT, which in turn notified the MNO that
the UE soon will require an higher bandwidth. When the UE moved back to the LTE,
it was already attached to slice B.

Finally, the throughput for uploading data is presented in Figure 4.13b. Here, the
throughput behavior was similar to the downloading data. Nevertheless, the LTE
network offers less bandwidth capacity for upload than for download. As such, the
maximum throughput for the LTE slice B was approximately 4Mbps and 11Mbps,
for TCP and UDP, respectively. Contrary, the Wi-Fi slice kept its throughput on the
pre-established 20Mbps. As in the downloading experiment, the MNO optimized its

85

wireless resources by switching the UE’s attached slice, after and before the offloading
to the Wi-Fi slice. Finally, the handover, for both experiments, from/to the LTE slice
to/from the Wi-Fi slice took approximately 7(±2)ms and 50(±14)ms, on the vUE and
the UE, respectively.

0 5 10 15 20 25 30
Timeline (s)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

bp
s)

Download TCP
Download UDP

(a) Download data throughput over
time.

0 5 10 15 20 25 30
Timeline (s)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

bp
s)

Upload TCP
Upload UDP

(b) Upload data throughput over
time.

Figure 4.13: Experimental results of the proposed OTT architecture [23].

4.3 Network slicing for corporate environments

This section focuses on how network slicing enhances the remote access to private
networks while on the move. Keeping this in mind, the framework proposed in this
chapter, Figure 4.3, assumes that the MNO instantiates the necessary building blocks
to support corporations with remote working communications. Such building blocks
may include, for example, mobility management, slice mechanisms and corporation
services (e.g., internal portals).

Figure 4.14 illustrates a simplified scenario, where the MNO provides a slice to the
corporate, supporting inter-slice mobility, and with corporation services instantiated in
the cloud. Here, the access to the corporation services are ensured via the “vCorp-GW”
and monitored by the vUEs (along with the “context updater”). The vUE is a virtual
representation in the cloud, of the physical UE of the corporations’ employees, and
readily provides input to the network flow mobility management entities on behalf of its
physical counterpart. Also, the vUE allows the corporation to dynamically manage the
physical UE by setting the requirements for QoS and security level of each collaborator.

When the user leaves the corporate network’s Wi-Fi, this movement is perceived by
the MNO (i.e., indicated by link events sent by the UE), which triggers the creation of
a dedicated slice for the UE over this new network. This slice receives the redirected
UE’s flows to allow a transparent access the corporate-based services. Whenever the

86

UE changes to another network, the process is repeated, with a new slice being created
therein, and the previous slice being released for resources optimization.

In this line, UEs of the corporation are able to remotely access corporation services
both from the mobile (e.g., LTE) and the Wi-Fi networks without Virtual Private
Network (VPN) configuration (through a VPN client). Also, allowing physical resource
sharing (i.e., the AP) among different corporations and/or MNOs in public places, the
proposed framework extends such features and dynamically instantiating dedicated
slices to be accessed by the specific corporation’s collaborators.

For implementation simplicity purposes only, the proof-of-concept exploits the fact
that the MNO and ISP reside on the same entity and assumes a trustable network
underlying the framework, with Generic Routing Encapsulation (GRE) tunnels being
used without encryption. Nevertheless, this framework’s architecture is designed
to support secured tunneling protocols. In fact, OvS supports Internet Protocol
Security (IPSec) tunneling and there are associated software patches in order to support
GTP6.

HSS
VM

MME
VM

SGW-C
VM

PGW-C
VM

SGW-U
VM

PGW-U
VM

SDN ControllersSDN Controllers

3GPP Access

non-3GPP Access

eNB

AP

UE

AAA
VM

S11S6a

SWx

S1-MME

SB API

NB API

Slice Selector
VM

STa

S2a

S5

Context Updater
VM

vUEvUEvUE
VM

GW-U
VM

SDN Controllers

Corporate’s
slice core

Slice Creator
VM

Figure 4.14: Proposed mobile network architecture for corporate environments [17].

4.3.1 Network entities interactions

This section presents the interactions among network entities for the proposed corporate
environments. Figure 4.15 illustrates the high-level message sequence of the proposed
scenario, which (similarly to the one presented in section 4.2.1) is described as follows.

6OvS pacth for GTP: https://patchwork.ozlabs.org/patch/579431/

87

When an UE attaches to the network via a 3GPP access (i.e., LTE) the MNO
validates the UE and uses the slice selector and context updater, to establish the user
data requirements.

When the UE is connected to LTE and detects a non-3GPPP (e.g., Wi-Fi) access
of the operator in its surroundings (i.e., via a known SSID) with link quality above
a pre-established threshold, the UE notifies the vUE (messages #2a/#2b) with the
identification of the AP7. To notify its virtual counterpart, the UE sends an UDP
message (#2a) towards the vCorp-GW, which in turn redirects to the context updater
as an OF packet_in message (#2b). The context updater is responsible for updating
the vUE information. If this results in an offloading decision by the network, the vUE
(along with the context updater) requests a non-3GPP slice (#3) to the Slice creator via
an UDP message with the AP and slice identification (i.e., which corporation and/or
level of security). Then a dedicated slice (via a unique SSID) for the user (or group of
users, depending of the security and mobility policies) is instantiated in the AP (#4).
Here, the proposed framework explores wireless virtualization by deploying multiple
SSIDs with different wireless security encryptions on-demand using a mobile core with
support for non-3GPP access (as presented in section 4.2.1) .

Furthermore, in this scenario, the procedures for flow handover between slices
is triggered by an offloading policy (e.g., UE connected to the Wi-Fi slice), where
the context updater updates the flow table of the GW (message #5) redirecting the
data flow from the licensed LTE to the unlicensed Wi-Fi access network, via an OF
flow_modification message. Here, the trigger was the UE attachment to the non-3GPP
slice, which was notified to the context updater by the MME via a REST message.
When the link strength of the Wi-Fi connection crosses a pre-established threshold,
the UE reports this to its virtual counterpart (messages #7a/#7b), triggering the
redirection from the Wi-Fi to the LTE (message #8), in order to seamlessly keep the
data connection (message #9).

In addition, Figure 4.16 presents an overview of the datapath for enterprise’s
authorized and non-authorized users. Since UE#1 is an authorized enterprise user, its
data traffic is redirected towards the vCorp-GW (i.e., in the 3GPP slice), both from
3GPP and non-3GPP access. Also, the UE#1 is attached to the AP via a dedicated
slice (i.e., unique SSID), allowing the physical resource sharing of the AP with the
UE#2. The UE#2 can (eventually) connect to both 3GPP and non-3GPP, but being
an unauthorized user, its data traffic is redirected to the default 3GPP slice, with no
access to the corporation services.

7UE SSID detection: To enhance the UE with this capability an application was developed and
implemented in the UE.

88

UE eNB Context
Updater

Slice
creator/selector

AP

UE Connected to LTE

MNO's SSID

MNO's SSID
detected

MNO's SSID
Corporate's SSID

Instantiate
new SSID

Corporate's SSID
detected

UE Connects to non-3GPP slice (Wi-Fi)

vCorp
GW

(3) Instantiate non-3GPP slice on APx (UDP)

(4) Instantiate non-3GPP slice (UDP)

Gets UE's
connection update
from MME (REST)

(5) update datapath (OF)

Update flowtable
(offloading)

Corp
Service

Signal level
threshold

UE Disconnects to non-3GPP slice (Wi-Fi)

(8) update datapath (OF)

Update flowtable
(remove offloading)

(2a) non-3GPP slice opportunity (UDP) (2b) non-3GPP slice opportunity (OF)

(6) UDP data

(9) UDP data

(1) UDP data

(7a) link quality update (UDP) (7b) link quality update (OF)

Figure 4.15: High-level message sequence for non-3GPP slice instantiation [17].

SP-GW

 vCorp-GWUE#1

eNB

AP Corp
Services

InternetUE#2

Dedicated SSID

Figure 4.16: Deployed datapath simplification, where UE#1 is a registered UE of the
corporation and UE#2 is a regular user [17].

4.3.2 Proof-of-concept scenario evaluation

This section evaluates and discusses the proof-of-concept implementation in terms
of handover performance and overhead in over-the-air data traffic. The experiments
were run 50 times with the results being presented with a confidence interval of 95%.
Next, the overhead introduced by VPN clients (the OpenVPN was used as example) is

89

discussed and compared with the proposed framework, focusing on overhead introduced
per packet.

4.3.2.1 Packet overhead

Figure 4.17 depicts the overhead per data packet introduced by the proposed framework
in wireless and wired connections, comparing it to the usage of IPSec instead of GRE
and to the use of OpenVPN for remote access. The use of a client such as OpenVPN in
the UE improves communication security on the wireless medium, however increases the
over-the-air overhead as a trade-off. For example, using OpenVPN in a TUN-style tunnel
over UDP and default TLS options, about 69bytes of overhead are increased to each
packet. In the proposed framework, the VPN tunnel stops at the AP and/or eNB, and
uses a dedicated slice (i.e., a unique SSID when connected via Wi-Fi), saving overhead
over-the-air. Additionally, the proposed mechanism also reduces the overhead in the
wired connection, since a GRE tunnel encapsulation increases 24bytes. Also, as a security
enhancement, IPSec can be used in tunnel mode with an overhead cost of 52bytes.
In this context, there is a trade-off between security degree and overhead introduced
per packet: despite that the overhead might not seem much, when considering highly
scaled networks, this additional overhead can affect network equipments’ performance
when dealing with multiple VPNs at high speed connections. As such, extending
the VPN service by dynamically instantiating a dedicated SSID, (while retaining the
ability for the UE to authenticate to it using its SIM card information via EAP-AKA),
reduces the overhead over the air and processing time by the forwarding devices, while
(potentially) saving energy by avoiding the data encryption in the UE. As final note,
when considering shared wireless environments (e.g., home and shopping center), the
proposed framework has the advantage of aggregating users per server avoiding multiple
VPN connections to the server, reducing overhead.

Payload

IP hdr
(~20 bytes)

wlan hdr
(24 - 30
bytes)

Payload

IP hdr
(~20 bytes)

GRE tunnel
(24 bytes)

wireless wired

(a)

Payload

IP hdr
(~20 bytes)

wlan hdr
(24 - 30
bytes)

Payload

IP hdr
(~20 bytes)

IPSec
tunnel
mode

(~52 bytes)

en
cr

yp
te

d

wireless wired

(b)

Payload

IP hdr
(~20 bytes)

wlan hdr
(24 - 30
bytes)

Payload

IP hdr
(~20 bytes)

OpenVPN
(~69 bytes)

en
cr

yp
te

d

en
cr

yp
te

d

OpenVPN
(~69 bytes)

wireless wired

(c)

Figure 4.17: Packet overhead when considering: (a) GRE tunnel (b) IPSec in tunnel mode.
(c) OpenVPN [17].

90

4.3.2.2 Handover performance

In order to assess this proof-of-concept in terms of handover performance (achieved
throughput over time and downtime) corporation services were virtualized in the cloud
and accessible through the vCorp-GW. Figure 4.18 illustrates an UDP stream handover
mimicking a scenario with remote working while on the move. The iperf3 application
was used in order to generate UDP flows with a pre-established bandwidth, facilitating
the visualization of the impact caused by the proposed framework over the QoS.

In the evaluation tests, the UE acted as an UDP client and requested an enterprise
service with a bandwidth of 50Mbps. Initially, the user was in the corporation perimeter
and was connected to the corporate services via Wi-Fi with an SSID associated to a
specific type of user: guest, premium (e.g., CEOs and CTOs) or staff. On its way home
the user was able to telework via LTE (from 25s to 63s), and, upon arrival to home (at
63s), a dedicated SSID was dynamically instantiated in its home Wi-Fi. This avoided
the necessity of a VPN client service in the UE, while saving signaling over-the-air. As
discussed in section 4.2.2, the non-3GPP slice took about 10s to be instantiated and
the UE took another 9s to detect and to attach the slice. For simplification, in the
evaluated scenario, the network preemptively instantiated the non-3GPP slice in the
user’s home network, saving the instantiation delay in the offloading mechanism. For
this, the network can exploit localization services of current smartphones or pre-schedule
the slice instantiation. In this context, since the vUE works on behalf of the UE for
network management decisions, the UE informs the vUE of neighbor cell and/or current
location, allowing the network to preemptively take procedures to adapt (or instantiate)
slices.

The evaluated scenario was compared with the throughput for a dual interface UE
(Wi-Fi and LTE) where no handover mechanisms was applied. Here, the user was
attached to a Wi-Fi and LTE networks simultaneously and was accessing the corporation
services through VPN. As such, as the UE changes access network, the VPN requires a
reconnection (for evaluation proposes 3s was assumed) to the server. In this line, when
the UE disconnected from the Wi-Fi (at 25s) the VPN tried to reconnect through the
LTE, negatively affecting the achieved throughput. Moreover, when the UE connected
to a new Wi-Fi network (at 62s), another VPN reconnection was required in order to
offload the traffic via Wi-Fi. Comparing to the proposed framework, the VPN client
scenario originated a throughput loss of 8% between VPN reconnections.

Finally, it is necessary to look for ways to offload the traffic to non-3GPP access
(such as the Wi-Fi) while keeping or enhancing the QoS. This gains more value when
considering places of social gathering (e.g., shopping centers), since BSs support a
limited number of LTE connections due to the finite spectrum that can be used at one

91

physical location, leading to degraded service quality for customers [92]. Also, studies,
such as [93], show that Wi-Fi is typically more energy efficient than LTE, pointing out
that offloading to Wi-Fi will usually reduce the UE energy consumption.

0 10 20 30 40 50 60 70 80
Timeline (s)

0

10

20

30

40

50

60
T

h
o

u
g

h
p

u
t

(M
b

p
s
)

Wi-Fi LTE Wi-Fi

Our mechanism VPN reconnection

Figure 4.18: Throughput over time for the corporate scenario [17].

4.4 Chapter Considerations

This chapter introduced network slicing to the architecture proposed in chapter 3, while
performing the necessary adaptations for compatibility with 3GPP networks. As such,
leveraged by SDN, NFV and network slicing, the framework architecture proposed in
this chapter is capable of abstracting the partitioning of the network to verticals, while
providing the necessary requirements by dynamically reconfiguring the network and
allowing inter-slice mobility in heterogeneous environments. The proposed architecture
was implemented for proof-of-concept based in OAI and FlexRAN. Results showcased
that, despite some of the mechanisms exposed to an increasing amount of slices were
able to cope with the experimented scenario’s demands, existing technical approached
still need to be further enhanced in order to allow not only a larger number of multiple
isolated slices, but also to efficiently handover UEs among slices.

In addition, exploring the core convergence of multiple access technologies (namely,
LTE and Wi-Fi), the proposed framework was evaluate for remote working in corporate
scenarios. In this context, the proposed framework instantiates a core network slice
for a corporation and dynamically re-instantiates it at the target network, as the user
moves away from the corporation, whether it is in a 3GPP or non-3GPP technology.
This solution was further supported by creating a virtualized representation of the UE,
the vUE, which provides support for the mobility process. In this way, the configuration
of a VPN client in the UE becomes unnecessary as it is transparent to the user. Here,

92

a VPN service was defined as a mechanism that allows the remote access to private
networks.

Moreover, this chapter incremented the validation of SDN flow-based mobility
management mechanisms (research question Q1), supported by a virtualized mobile
network architecture (research question Q3) which facilitates a distributed design by
allowing dynamic instantiation of NFs (research question Q4) and network slices. These
architectural aspects (research question Q5) were enabled by the introduction of the slice
creator and slice selector entities, allowing the network’s control entities (e.g., MME and
HSS) to be shared among network slices, however still providing the necessary datapath
isolation for serving multiple different service type communications (i.e., vertical use
cases). Additionally, despite MME maintaining the intra-3GPP mobility responsibility,
inter-3GPP mobility decisions were moved to the vUE, allowing (if necessary) to isolated
the UE’s context, while anchoring the user’s data traffic, for both intra- and inter-3GPP
handovers (research question Q6 and Q7). Nevertheless, the vUE communicates with the
remaining network entities via REST messages, for acquiring user’s data requirements
(HSS and MME) and requesting the instantiation of network slices (slice creator and
slice selector).

Finally, this chapter reuses partial material of the outcomes achieved through the
following publications authored by the candidate: scientific journals [17], [21], [23] and
international conference proceedings [16], [22].

93

CHAPTER 5
Slice Management and

Orchestration

“Network management of entities in 5G systems will
be able to automate and orchestrate a range of life cycle
management processes, and will be capable of coordinating
complex dynamic systems of applications, cloud, transport
and access resources.”

— Ericsson

This chapter enhances the architecture discussed in the previous chapter, by creating
mechanisms for dynamic VNFs and, ultimately, slice instantiation and orchestration. In
the light of this, the developed framework leverages SDN, NFV and MANO mechanisms
to dynamically instantiate virtual CPEs (vCPEs) and periodically monitor the data
traffic in the vCPE for migrating the vCPE (with near-zero downtime) on the basis of
predefined data requirements. This is followed by a slice management and orchestration
framework (akin Slice Management and Orchestration (SliMANO)) entity for abstracting
the instantiation of E2E network slices, which are composed by a chain of both PNFs
and VNFs. In this line, the proposed SliMANO framework is a plug-in based system that
requests network resources and coordinates the interaction among network orchestration
entities for its instantiation and chaining in order to perform an E2E slice. These
entities could range from MANO, network controllers and RAN controllers.

95

5.1 Orchestrating Slice-based Points of Attachments

In telecommunications, the term Customer Premises Equipment (CPE) is usually defined
as the equipment installed in the customer’s premises to provide network services. Thus,
a CPE can have multiple forms and features (e.g., telephone headsets, set-top-boxes or
subscriber routers). In this context, here the CPE and vCPE are defined as the Wi-Fi
PoA and vPoA (presented in previous chapters), respectively, and equivalent to a home
router.

In light of this, and as presented in chapter 2, NFV and SDN have captured network
operators’ attention due to their flexibility and adaptability to new environments, while
promising to overcome the need for proprietary networking hardware and open their
approach for new verticals and monetization [94]. Also, service providers become able
to optimally position virtualized service functions based on precise user’s needs (e.g.,
entertainment and/or professional usage) while incorporating policies into the decision
process [95]. However, as usage requirements associated to CPEs (i.e., from its user or
users) vary over time, limitations can manifest from sub-optimal resource allocation or
unexpected link usage (e.g., due to the unexpected rise in consumption of bandwidth-
demanding applications). As such, it becomes critical to dynamically and flexibly
monitor and adapt the CPEs resources based on real-time statistics and analytics.
In this context, NFs currently hosted in the physical CPE (pCPE) can be moved to
virtual environments, creating virtual counterparts (i.e., vCPEs) that implement the
necessary NFs [95]–[97]. Furthermore, telco-operators’ services started to be proposed
for cloud-based deployment in Platform as a Service (PaaS) environments, allowing for
a faster deployment as well as abstracting the developer from the infrastructure [98].

This section proposes a framework that dynamically instantiates vCPEs in a PaaS
after the power up of a pCPE. In this context, the vCPE is composed by a chain of
containerized VNFs (CVNFs) that can be added or removed as required through SDN
mechanisms. Contrary to proposals of the literature, this allows the VMs to serve
more than one pCPE without requiring the sharing of VNFs among vCPEs and still
ensuring traffic isolation. Also, given this profile-dependency, along with associated
functionalities and traffic requirements, the proposed framework integrates MANO-
compliant mechanisms, and leverages standardized APIs for dynamic instantiation and
removal of vCPEs on multiple Point of Deployments (PoDs) (e.g., core, edge or fog)
considering predefined traffic requirements. Additionally, due to the highly dynamic
traffic patterns, traffic requirements may change with time, leading to sub-optimal
resource usage and service placement. To manage this, the framework is capable of
migrating the vCPE to a cluster (or PoD) that best fits optimal requirements.

96

5.1.1 Framework overview

The framework proposal for allowing the vCPE deployment in PaaS environments is
depicted in Figure 5.1, where the architecture can be defined in three layers: i) the VIM
enables the implementation of an IaaS, allowing the sharing of data-center hardware
resources; ii) the NFVO orchestrates the VMs that deploy the VNFs; and iii) the
container orchestrator engine (COE) orchestrates and manages a cluster of VMs for
deploying CVNFs, resulting in a PaaS environment. Finally, the vCPE is created by
chaining multiple CVNFs.

PaaS / COE
(Docker Swarm)

Resources

IaaS / VIM
(OpenStack)

NFVO
(OSM)

Infrastructure

Containers

VMs

CVNF#2

CVNF#1 CVNF#3

VNF #1

VNF #2

VNF #3

Figure 5.1: Proposed architecture for vCPE over PaaS [20].

This results in a framework where the infrastructure owner and the operator are
two different entities (as proposed in chapter 4, Figure 4.1). In this context, the
infrastructure owner is able to tenant platforms for service deployment to the network
operator, avoiding the need for operators to own their own infrastructure. As such,
the motivational scenario, considers a use case in which the operator requests a PaaS
for deploying vCPEs with pre-established SLAs. In the light of this, the framework
features a scenario where the operator provides, in a plug and play approach, a pCPE
with predefined requirements (e.g., E2E delay and bandwidth). Therefore, as the pCPE
powers up and gains connectivity, it establishes a connection with the network controller
(i.e., SDN controller). On verifying the pCPE type and requirements, the controller, in
turn, requests the instantiation of a new vCPE with a list of the necessary NFs (e.g.,
firewall, DHCP and Domain Name System (DNS)) and their location (i.e., type of
cluster, edge or core) considering the initial predefined requirements. However, due to
the dynamics of the different types of traffic usually imposed on the pCPEs/vCPEs,
such requirements may vary over time. As such, the network controller periodically
monitors traffic patterns transversing vCPEs, verifying if requirements are being met.

97

For a proof-of-concept scenario, a subscribing wireless router (hereafter, defined as
pCPE) that initially has its CVNFs instantiated in the core’s data-center was considered.
However, as the end-users change its traffic patterns to services with constrained E2E
delays, such as Ultra High Definition (UHD) live streams and/or augmented reality,
the vCPE is migrated to the edge’s cluster that better suits the necessary requirements
(e.g., an edge deployment provides lower latency by employing network resources that
are closer to the user).

5.1.1.1 Framework Entities

Here, a vCPE is defined as one or multiple chained CVNFs instantiated in a virtual
environment. In this context, the framework features a scenario (Figure 5.2) where the
infrastructure owner tenants a network operator by instantiating a network controller
(i.e., the SDN controller) and a cluster of nodes for deployment of CVNFs (event #0). As
such, since the operator does not have control over the infrastructure, the infrastructure
manager offers a PaaS for the deployment of CVNFs. In this way, as the pCPE powers
up and connects to the network, it triggers the SDN controller (event #1), which in
turn requests a new vCPE to the service orchestrator (event #2). The VNF Manager
triggers the instantiation of the required CVNFs (event #3) for the vCPE, with the
SDN controller being notified of their deployment (event #4). Finally, the controller
reconfigures the datapath via the SDN substrate, interconnecting the pCPE and the
vCPE via a L3 tunnel (event #5&7). The involved network entities are described as
follows.

Master
Slave#1

Slave#n

Network agent

Service
Orchestrator

vCPE Cluster (Docker swarm)

SDN controller

(1)

(2)
(3)

(4)

(6)(5)
&
(7)

(7)

Cloud VIM (OpenStack)

Resource
Orchestrator

VNF
Manager

OSM

(0)

(0)

(0)

W-NIC NIC

OvS

Network
agentPNF

CPE#1

OvS

CVNF#1 CVNF #2

vCPE#1
vCPE#k

Figure 5.2: Architecture overview for vCPE over PaaS [20].

• MANO: it instantiates, configures and monitors VNFs in IaaS environments, via
pre-built descriptors. It is composed by three fundamental building blocks: (i) the

98

Service Orchestrator, which manages network services by requesting, scheduling
and instantiating VNFs to the Resource Orchestrator, while using the VNF
Manager for VNFs’ configuration; (ii) the Resource Orchestrator, which requests
the instantiation of VNFs to the VIM (e.g., OpenStack); and (iii) VNF Manager,
which uses the network descriptors to perform the necessary configuration over
the VNFs.

• Cloud-VIM: it controls and manages the compute, storage and network resources
of the NFV infrastructure. It can accommodate multiple tenants that are seen
as different VIMs by the MANO. Here, edge and core cloud-VIMs are similar
but providing different E2E delays. Also, it can accommodate multiple network
operators, by deploying and offering a PaaS.

• Network controller: it ensures network operations features, and requests the
instantiation of VNFs and CVNFs to the MANO, while dynamically reconfiguring
the datapath and the chaining of CVNFs. As such, it is owned by the operator
and manages its PaaS.

• Cluster: the cluster is composed of a set of nodes (VMs) enclosing CVNFs
instances that have been requested by the network controller (i.e., SDN controller).
The cluster of nodes can be seen as a PaaS environment, since it allocates
the instantiated CVNFs requested by the operator (via SDN controller). Also,
the cluster is able to scale the number of nodes up or down (as necessary),
while monitoring their state and alerting the network controller in high-load and
migration scenarios.

• physical CPE (pCPE): it stands as a physical node that implements PNFs
for providing wireless capabilities. Thus, remaining NFs are offloaded and per-
formed in cloud premises (as presented for the “partially virtualized” approach in
section 3.1.3).

• virtual CPE (vCPE): a virtual entity that enhances its physical counterpart
(i.e., the pCPE) capabilities by implementing CVNFs. These CVNFs can be
deployed in the centralized cloud, in edge clouds or in the pCPE itself. In
the proposed scenario, the vCPE is a chain of containerized VNFs (via SDN
mechanisms), deployed over a PaaS.

5.1.1.2 Proof-of-Concept Implementation and Deployment

This section describes the implementation and deployment details of the proposed
framework for proof-of-concept scenarios of section 5.1.2 and section 5.1.3.

The framework was implemented in an in-house data-center running OpenStack
Queens as cloud-VIM and OSM (release 5) as MANO. OSM was running in a VM
of the data-center with 4 vCPUs and 8 GB of 1 RAM. The cluster of nodes for

99

vCPE instantiation was implemented using Docker Swarm, enhanced with Prometheus1

for metric monitoring and featured a developed application for containerized VNFs
instantiation when triggered by the OSM. For proof-of-concept purposes the number of
nodes of the cluster ranges from 1 to 5, each one with 1 vCPU and 1 GB of RAM.

Triggers to add or remove nodes (i.e., VMs) to the cluster, or to migrate the vCPE
among cluster nodes use the CPU workload. Thus, to produce workload, the stress-ng2

tool was used, obligating the CPU to cross the pre-established process usage thresholds
and triggering the SDN controller for possible vCPE migration, or the MANO to add
or remove cluster’s nodes. In this context, the first trigger is sent to the SDN controller
when the VM crosses the 85% of workload for possible vCPE migration (i.e., the SDN
controller verifies which vCPEs are instantiated in the overloaded node, and depending
on the SLA the vCPE can be migrated). When the cluster reaches 85% of workload
(and maintains it during 5 minutes), the developed network agent alerts the MANO,
which in turn instantiates a new VM and adds it to the cluster. Similarly, when the
workload drops to less than 30% (and maintains it during 5 minutes), the MANO is
triggered and removes the cluster’s node with less load (after migrating the vCPE to
another node).

For the scenario presented section 5.1.3, in order to mimic the edge and core data-
centers, two different OpenStack tenants were used, providing the vision of different
VIMs to the OSM. Also, to emulate different network characteristics for both edge and
core, a traffic processing delay (increasing E2E delay) and traffic loss were added to the
core’s cluster using the traffic control Linux application.

The video headend is also specific for section 5.1.3 and was implemented in a VM
with 8 vCPU and 16 GB of RAM, using the VLC application as video server. The
VLC application allows to transmit and transcode a stored video as a livestream via
HTTP. Here, the Big Buck Bunny video in HD and UHD formats was used. The
proof-of-concept deployment was evaluated using the VLC application in an One Plus 6
smartphone and an Apple iPad Mini 4 for the UHD and HD video clients, respectively.
As network controller, the Ryu SDN controller was used and a SDN application was
developed for performing the instantiation, migration and triggering procedures above
described.

Finally, the pCPE was implemented in an APU2C4 with 4 GB RAM running Ubuntu
server 14.04 LTS. When the pCPE powers up it connects to the network, notifies the
controller for initial setup configuration, creating a Wi-Fi network in IEEE 802.11n at
5GHz using the hostapd and isc-dhcp-relay software in a Docker container. Likewise,
the vCPE is instantiated as a set of CVNFs (i.e., DHCP server, DNS and firewall)

1Prometheus: https://prometheus.io
2stress-ng: https://kernel.ubuntu.com/~cking/stress-ng/

100

attached to an OvS bridge. VNFs were based on Alpine Linux containers, using the
isc-dhcp-server and iptables.

Next, two different scenarios are evaluated. Section 5.1.2 evaluates a migration
scenario where a vCPE is instantiated in an already existent cluster’s node and then
(due to KPIs) migrated to other node of the cluster. Otherwise, section 5.1.3 initially
instantiates a new node into the core’s cluster to accommodate the vCPE, however due
to the traffic requirements, the vCPE is migrated to the edge’s cluster.

5.1.2 Migration among cluster’s nodes

This sections describes the high-level sequence message for a dynamic instantiated
vCPE over a PaaS environment scenario, followed by its evaluation and discussion in
terms of instantiation and migration delays.

5.1.2.1 Scenario description

Figure 5.3 illustrates the high-level signaling for the instantiation of a vCPE upon
its power up, and its migration upon a high-load notification from its cluster. Such
procedures are described as follows. Note that the following signaling assumes the day 0
(Figure 5.3, event #0) already occurred, thus the cluster was already instantiated and
ready for vCPE deployment.

5.1.2.1.1 vCPE instantiation

Upon its power up, the CPE tries to establish communication to the SDN controller via
OVSDB (message #1). Identifying the pCPE (through its system_id), the controller
establishes such connection with it and requests to the MANO a node to instantiate the
vCPE jointly with the required network functions (message #2). In turn, the MANO
(message #3) verifies the load of each node of the cluster and instantiates the required
VNFs (as Docker containers) in the node with more available resources at that time
(message #4). If needed, the MANO may instantiate a new node attached to the cluster
to better support current communications and the instantiation of new vCPEs. After
the VNFs’ instantiation, the cluster directly notifies the SDN controller (message #6),
which in turn starts biding both the pCPE and the vCPE via SDN mechanisms (i.e.,
OvSDB and OF).

In this context, the controller instantiates a new OvS bridge in both the CPE and its
virtual counterpart (message #7), attaches the requested CVNFs to the vCPE bridge
(message #8), and creates a L3 tunnel between the pCPE and the vCPE (message #9).
Finally, the vCPE is attached to the output bridge (message #10) and flow tables are
updated, allowing to offload not only the Internet traffic to/from the pCPE to the
vCPE, but actually to offload NFs and perform chaining of CVNFs (message #11).

101

5.1.2.1.2 vCPE migration

As described above, this framework monitors the workload of the cluster and scales the
number of cluster nodes up and down. This allows the framework to maintain the SLAs
initially defined between the infrastructure owner and the operator. As such, the cluster
has a monitoring system for collecting metrics (e.g., CPU, memory and input/output
load) and alerts the controller when a pre-established threshold is crossed.

For proof-of-concept purposes, a simulated high-load scenario is illustrated. In
this line, when the load crosses a configurable predetermined threshold, the cluster
alerts the SDN controller (message #12), which in turn verifies the pCPEs/vCPEs
instantiated in such node, and if necessary requests to the MANO to migrate the
vCPEs with higher priority (message #13). This migration is composed by two main
procedures: (i) a new set of VNFs (message #18) attached to a new OvS bridge
(message #18:21) is instantiated in a node with more available resources (creating
a clone of the vCPE); and (ii) VNFs and the OvS bridge are removed from the old
associated node (message #24:26). Between these two stages, the controller updates
the tunnel end-point (message #22) and flow tables (message #23) in the pCPE,
implementing a make-before-break approach.

Note that this procedure is a proof-of-concept for a high-load scenario and that
the framework is extensible enough to accommodate more mature procedures and
monitoring systems. Additionally, the framework also implements a scale up and down
of the number of cluster nodes, even though this work focuses on the pCPE/vCPE
architecture and its migration among the cluster’s nodes.

102

SDN
controller

(1) new connection (OVSDB)
(2) stack instantiation request (REST)

(5) stack instantiation requested (REST)

(10) attached containers to OvS bridge (OVSDB)

(7a/b) instantiate new OvS bridge (OVSDB)

(9a/b) create tunnel ports (OVSDB)

(11a/b) update flow tables (OF)

(3a/b) verifies the load of cluster's nodes (SSH)

Node
Swarm Cluster

(12) high load node alert (REST)

(22) update tunnel end-points (OVSDB)

(24) delete vCPE's bridge from old node (OVSDB)
(25) delete old ports from old output bridge(OVSDB)
(26a) stack remove request (REST)

(26c) stack remove requested (REST)

Node

CPE power up

(8) attach vCPE to output bridge (OVSDB)

CPE Migration

(6) stack instantiated (REST)

(4) stack instantiation request (SSH)

(14a/b) verifies the load of cluster's nodes (SSH)

(16) stack instantiation requested (REST)
(17) stack instantiated (REST)

(15) stack instantiation request (SSH)

(26b) stack remove (SSH)

(13) stack instantiation request (REST)

(21) attached containers to OvS bridge (OVSDB)

(18a/b) instantiate new OvS bridge (OVSDB)

(20) create tunnel ports (OVSDB)
(19) attach vCPE to output bridge (OVSDB)

(26d) stack remove completed (REST)

(23a/b) update flow tables (OF)

CPE MANO

Figure 5.3: High-level signaling for instantiation and migration in PaaS architectures [20].

5.1.2.2 Scenario evaluation

This section evaluates the framework proposal in terms of instantiation and migration
delay, as well as the throughput. Experiments were run 50 times, with the results
presenting their average with a 95% of confidence interval.

5.1.2.2.1 Instantiation delay

Figure 5.4a presents the overall delay of the instantiation of a vCPE, upon its trigger
by the pCPE. Also, Table 5.1 decomposes such delay into the different stages of the
instantiation. These stages were measured in the SDN controller and are directly related
to the high-level signaling presented in Figure 5.3. To be fully operational, the vCPE
took about 16s (from message #2 to #11). This time accounted the instantiation (9.5s,
from message #2 to #6), OvS bridge configuration (6.28s, from message #6 to #10)
and messages update (0.14s, from message #10 to #11).

103

Instantiation Migration0

5

10

15

20

25

30

35

40
De

la
y

(s
)

(a) Overall instantiation and migration.

10 12 14 16 18 20
delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

eC
DF

Instantiation (clone) Remove

(b) vCPE migration delay.

Figure 5.4: Instantiation and migration delay of a vCPE [20].

5.1.2.2.2 Migration delay

The migration delay of the vCPE was measured at the SDN controller, with the
overall delay being presented in Figure 5.4a and decomposed in Table 5.1. In addition,
Figure 5.4b presents the CDF and eCDF of the migration delay decomposed in the
two stages of the procedure (i.e., instantiation of a clone vCPE and removal of the
old vCPE, as presented in the previous section). In this line, the complete migration
procedure took 37s. Nevertheless, this delay can be decomposed in two sub-procedures:
first, the instantiation of a clone vCPE in the cluster node with more available resources
and the datapath reconfiguration (about 18s, from message #13 to #23d); and second,
the removal of the original vCPE (about 18s, from message #24 to #26d). Thus, the
vCPE became operational 18s after the migration request, with the pCPE using this
virtual entity as its counterpart to enhance its features and capabilities.

Table 5.1: Instantiation and migration delays [20].

Messages (Fig.5.3) Delay (s)
from #2 to #6 9.46 (±0.25)
from #6 to #7 2.63 (±0.29)

Instantiation from #7 to #8 0.14 (±0.00)
from #8 to #9 0.66 (±0.01)
from #9 to #10 2.85 (±0.06)
from #10 to #11 0.14 (±0.00)
from #12 to #13 0.13 (±0.03)
from #13 to #22 18.42 (±1.07)
from #22 to #23 0.01 (±0.00)
from #23 to #24 0.19 (±0.01)

Migration from #24 to #25 0.07 (±0.00)
from #25 to #26a 0.11 (±0.01)
from #26a to #26d 18.30 (±0.43)

104

5.1.2.2.3 Migration impact over throughput

In order to measure the impact of the migration procedure in ongoing throughput, an
experiment featuring both UDP and TCP streams (generated using the iperf33 tool)
was conducted. This experimented was conducted 50 times, however since the migration
trigger occurs in different points of experiment time, Figure 5.5 illustrates an aleatory
selected run. As discussed in section 5.1.1.2, the migration is triggered by increasing
the CPU load on the VM where the vCPE resides.

For the UDP traffic, the throughput was not negatively affected by the migration of
the vCPE among VMs of the cluster. In Figure 5.5, the workload of the VM crossed the
pre-established threshold at 12s of the experiment runtime, with the cluster’s network
engine triggering the SDN controller at that time (message #12, in Figure 5.3). The
migration was completed after 29s of experiment runtime (message #23, in Figure 5.3).
After this, the old vCPE was removed, however with the pCPE already using the
“cloned” vCPE as its virtual counterpart.

Regarding to TCP traffic, Figure 5.5 shows that despite a “make-before-break”, a
minimal throughput decreased occurred at second 29 during 1.5s. This behavior was
mainly due to the fact that after migrating the vCPE to a new cluster node, a gratuitous
Address Resolution Protocol (ARP) was sent towards the network to update the new
L2 location of the vCPE.

0 5 10 15 20 25 30 35 40
Timeline (s)

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
UDP

Figure 5.5: Throughput over time in a migration scenario [20].

5.1.3 Migration among Point of Deployment

In this section, the framework was extended in order to allow the vCPE migration
among PoDs. As such, the instantiation process of vCPEs remains similar to the

3iperf3: https://iperf.fr

105

previous scenario, but with the added benefit of selecting the initial PoD (e.g., core)
and migrating it to another location (e.g., edge) considering current user requirements.
Figure 5.6 presents an overview of the proposed scenario. Next the high-level sequence
message for a dynamic instantiation of a vCPE is described, followed by its evaluation
in terms of impact over an on-going livestream video in a migration between PoDs
event.

Master

Slave#1

Slave#n

Network agent

Service

Orchestrator

vCPE Cluster (Docker swarm)

SDN controller

(1)

(2)

(3)

(4)

(5)

(7)

Core data-center / Cloud VIM (OpenStack)

Resource

Orchestrator

VNF

Manager

OSM

(0)

(0)

(0)

W-NIC NIC

OvS

PNF

CPE#1

Network

agent

OvS

CVNF#1 CVNF #2

vCPE#i

Master

Slave#1

Slave#n

Network agent

vCPE Cluster (Docker swarm)

OvS

CVNF#1 CVNF #2

vCPE#1

(0)

MEC data-center / Cloud VIM (OpenStack)

Figure 5.6: Migration among PoDs scenario overview [19].

5.1.3.1 Scenario description

Figure 5.7 presents the instantiation and migration high-level signaling of a vCPE
upon a new pCPE connection. The use case scenario assumes that the edge’s cluster
provides an environment optimized for traffic with more constrained requirements
when compared to the core’s cluster, by offering less E2E delay and less traffic and
computational workload.

5.1.3.1.1 vCPE Instantiation

In a scenario where pCPE is predefined with less constrained traffic requirements, the
SDN controller requests the dynamic instantiation of its NFs in the core network via
MANO. Similarly to the previous scenario (section 5.1.2), first, the MANO requests
the instantiation of a new node (message #2 and #3). Then, it waits for the new
node (i.e., VM) to be joined to the cluster (message #4), and requests the CVNFs
instantiation (message #5). After the instantiation of the CVNFs (message #8), the
cluster notifies the SDN controller, which in turn proceeds to bind the pCPE and vCPE
via SDN mechanisms (OVSDB and OF). Thus, an OvS bridge is instantiated in both
pCPE and vCPE (message #9a/b) along with a tunnel to redirect data traffic from the

106

pCPE towards its virtual counterpart (message #10a/b). Here, the VNFs are deployed
in containers and attached to the OvS bridge (message #11), while the service chain is
ensured via OF flow-based rules (message #12a/b).

5.1.3.1.2 Traffic awareness and migration

Despite being initially deployed either in the core or edge data-centers, this framework
allows vCPEs to be migrated among them. This is especially important when considering
pCPEs/vCPEs with highly dynamic traffic. For example, in a subscriber router (pCPE)
scenario, one may infer that it usually will be used for web browsing traffic, therefore
initially deploying it in the core data-center. However, livestreaming and online gaming
are gaining more followers, where E2E delay is a high valued requirement. In this
line, users may infer that the imposed delay by virtualizing the pCPE in the cloud
will downgrade the QoE. In this context, in a scenario where the vCPE is initially
instantiated in a cluster with less restricted data traffic requirements (i.e., core’s cluster),
but due the high dynamic traffic consumption it may require more powerful resources
or better E2E delay, this framework migrates the vCPE to a new cluster via SDN-based
mechanisms, with near-zero downtime and without negatively affecting the QoE.

In the proof-of-concept, the end-user (i.e., UE) requests an UHD livestream (message
#13a/b), while in the background the SDN controller monitors the traffic requirements
of the vCPE via OpenFlow (message #14a/b). Detecting that data requirements are
changing and that the vCPE is no longer capable of ensuring such requirements, the
SDN controller migrates the vCPE to a cluster able to fulfill the necessary requirements
(e.g., E2E delay). Such procedure is composed by two stages: first, the instantiation of
a clone vCPE in the edge’s cluster (from message #15 to message #23); second, the
removal of the initial (old) vCPE of the core’s cluster (from message #25 to message
#26d), to free resources. Nevertheless, the livestream is redirected as soon as the edge’s
vCPE is ready (message #23a/b, where the traffic is redirected via OF flow-based rules).
Next, the monitor and video detection mechanism for the proof-of-concept scenario is
presented.

5.1.3.1.3 Video traffic detection

For proof-of-concept purposes, the livestream video detection was implemented leverag-
ing SDN mechanisms. The SDN controller periodically (each 5s) monitors the traffic
that is currently transversing the vCPEs via OF messages (OF stats message, Figure 5.7
message #14a/b). Therefore, the SDN controller requests the current flow statistics
(e.g., bitrate, protocol, ports) and verifies if it matches with a livestream flow (triggering
a vCPE migration). Nevertheless, note that this mechanism was developed for proof-

107

of-concept purposes, and that the framework does not mandate a specific detection
procedure, being flexible enough to the accommodate more robust mechanisms for
predictive data traffic detection.

vC
PE

 (o
ld

)

vC
PE

 (c
lo

ne
)

vC
PE

vC
PE

SDN
controller

(1) new connection (OVSDB)

(5) stack instantiation request (REST)

(7) stack instantiation requested (REST)

(11) attached containers to OvS bridge (OVSDB)

(9a/b) instantiate new OvS bridge (OVSDB)
(10a/b) create tunnel ports (OVSDB)

(12a/b) update flow tables (OF)

(22) update tunnel end-points (OVSDB)

(25) delete vCPE's bridge from old node (OVSDB)
(26a) stack remove request (REST)

(26c) stack remove requested (REST)

vCPE instantiation

vCPE migration

(8) stack instantiated (REST)

(6) stack instantiation request (SSH)

(14a/b) traffic monitoring (OF)

(17) stack instantiation requested (REST)
(18) stack instantiated (REST)

(16) stack instantiation request (SSH)

(26b) stack remove (SSH)

(15) stack instantiation request (REST)

(21) attached containers to OvS bridge (OVSDB)

(19) instantiate new OvS bridge (OVSDB)
(20) create tunnel ports (OVSDB)

(26d) stack remove completed (REST)

(23a/b) update flow tables (OF)

pCPE MANO Node
Edge's Cluster

Node Node
Core's Cluster

Node

Verify pCPE
pre-defined

requirements

UHD livestream
video detection

UE requests
UHD video

video
headend

UE requests
UHD video

video
headend

(24a/b) livestream video (HTTP)

(13a/b) livestream video (HTTP)

(2) node instantiation request (REST)
(3) node instantiation request (REST)

(4) Request cluster's nodes (REST)

Figure 5.7: High-level signalling for vCPE instantiation and migration among PoDs [19].

5.1.3.2 Scenario evaluation

This section evaluates the framework proposal in terms of instantiation and migration
delay, as well as the vCPE live migration impact over the QoE of a HD and UHD
livestream video. Experiments were run 50 times, with the results presenting their
average with a 95% of confidence interval. Additionally, a demo4 was recorded and is
publicly available online.

4Demo: https://atnog.github.io/5G-VCoM/demos/vcpe.html

108

5.1.3.2.1 Instantiation delay

The instantiation delay of a new vCPE was measured in both edge and core clusters.
Table 5.2 decompose such delays in three main procedures which are directly related to
Figure 5.7: (i) cluster node (or VM) instantiation (from message #1 to #4b); (ii) the
instantiation of the CVNFs (from message #5 to #8); and (iii) the service chain
configuration via SDN mechanisms (from message #8 to #12a/b).

From Table 5.2 it is noted that more than 60% of the instantiation delay was related
to the new cluster node (i.e., an OpenStack VM) instantiation (i.e., 63s). To this,
it is added the CVNFs instantiation, accounting for 20% of the delay. Finally, the
edge’s cluster presented similar results. The main difference resides on the CVNFs
instantiation, mainly due to the fewer configuration parameters.

5.1.3.2.2 Migration delay

For the migration delay, in order to avoid the 63s of the VM instantiation, an available
node was preemptively instantiated in the edge’s cluster for the vCPE’s CVNFs deploy-
ment. In this line, the SDN controller took about 10s for video detection5, while the
vCPE clone instantiation and the video redirection (from message #15 to #24) took
18s. Thus, the framework took about 28s, since the user requested the video until the
vCPE was migrated to the edge’s cluster. Finally, the core’s vCPE was deleted, and
took almost 25s.

Table 5.2: vCPE instantiation and PoD migration delays [19].

Messages (Fig.5.7) Delay (s)
Instantiation from #1 to #4b 63.14 (±0.60)
into core’s POD from #5 to #8 22.25 (±0.53)

from #8 to #12a/b 16.34 (±0.42)
Instantiation from #1 to #4b 62.86 (±0.63)
into edge’s POD from #5 to #8 10.64 (±0.35)

from #8 to #12a/b 14.11 (±0.51)
Migration from #13 to #14 10.54 (±1.09)
from from #15 to #24 18.26 (±2.38)
core to edge from #25 to #26d 24.84 (±1.64)

5Video detection delay: this delay results from the fact that this framework requests the flow
statistics with 5s periodicity, and usually at least 2 messages are required for the detection.

109

5.1.3.2.3 End-to-end delay

As mentioned before, in our proof-of-concept deployment, the main difference between
core and edge clusters is the E2E delay. Thus, the edge’s cluster provides a reduced E2E
delay (when compared with the core’s cluster), making it more suitable for scenarios
with more constrained delays, such as livestreaming, online gaming and augmented
reality.

For proof-of-concept, and since both clusters were deployed in an in-house data-
center, a delay of 100ms and 5% packet loss on the core’s cluster nodes (section 5.1.1.2)
was imposed. As such, the RTT6 between an attached UE and the video headend was
measured, transversing both the core and edge clusters. The edge’s cluster presented
3.96(±12.66)ms, while the core’s presented 166.87(±65.07)ms. As expected, due to the
random loss of packets in the core’s cluster, the QoE of the end-user was negatively
impacted (discussed in the next sub-section). Conversely, the E2E delay increase did not
negatively impact the video QoE, nor significantly delayed it, with the UE’s hardware
being a key contributor to the performance of the decoding process.

5.1.3.2.4 Video throughput impact

Since the migration was not triggered at the same experiment time in all the runs, Fig-
ure 5.8a illustrates the video throughput (captured in the pCPE for both HD and UHD)
of just one run (the one recorded for the online demo) where the migration occurred
at 26s of the experiment. Additionally, throughputs are compared, in Figure 5.8b,
corresponding to a scenario where the core’s cluster begins (at 7s) to randomly loss
packets with a 5% of probability.

In this context, Figure 5.8a compares the achieved video throughput of a migration
scenario with a scenario without packet loss. At the moment of migration (at 26s),
the downtime, although near-zero, made the server re-adjust the throughput in the
followed seconds (from 26s to 29s), and return to the regular throughput after stabilizing.
Similarly, Figure 5.8b illustrates the impact of the packet loss at the core’s cluster (from
7s to 27s), with the video throughput returning to expected values after the migration
to the edge’s cluster (at 27s).

Finally, for both HD and UHD livestreams, the migration of the vCPE to the edge’s
cluster, was performed with a near-zero downtime and did not negatively impact the
QoE of end-users (as can be seen on the online demo). In fact, in the scenario of
Figure 5.8b, the QoE was actually increased, since the videos throughput was resumed

6The RTT was measured by running 1000 Internet Control Message Protocol (ICMP) packets,
with results showing their average delay and standard deviation. A symmetric delay for both directions
was assumed.

110

0 10 20 30 40 50 60
Timeline (s)

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (M

bp
s)

FHD (pCPE)
UHD (pCPE)
FHD (pCPE)
 without loss
UHD (pCPE)
 without loss
migration
 moment

(a) Video throughput of the online demo.

0 10 20 30 40 50 60
Timeline (s)

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (M

bp
s)

FHD (pCPE)
UHD (pCPE)
FHD (pCPE)
 without loss
UHD (pCPE)
 without loss
migration
 moment
throughput
 loss period

(b) Video throughput imposing packet
loss on the core’s cluster.

Figure 5.8: Live migration impact in on-going HD and UHD livestreams [19].

to the expected values. In this way, the migration mechanism allows the framework to
instantiate vCPEs with pre-established SLAs and when sub-optimal characteristics are
detected, it migrates and re-dimensions the vCPEs as the service levels change over
time.

5.1.3.2.5 Final remarks

Comparing the vCPE architecture with a regular CPE implementation, where all NFs
are performed in the physical hardware, this proposal presents a greater degree of
flexibility and modularization, since VNFs can be dynamically added and removed
to/from the chain as needed. Notwithstanding, in terms of E2E delay, the proposed
architecture presented an increase of 39% of delay (3.35(±8.95)ms of RTT), when
compared to a similar architecture but without virtualization (2.41(±8.30)ms of RTT).
Nevertheless, as illustrated in Table 5.3, the global registered throughput7 was not
negatively impacted for both UDP and TCP types of traffic.

Table 5.3: Comparison of virtualized- and non-virtualized CPE approaches.

CPE approach Bandwidth (Mbps) TCP Re-transmissions
non-virtualised 79.85 (±1.6) 142 (±8)
virtualised 78.20 (±0.75) 90 (±4)

7The throughput was measured using the iperf3 tool to generate the traffic. Results present the
average with a 95% confidence interval of 100 runs.

111

5.2 Slice Management and Orchestration

The ETSI Industry Specification Group for NFV [99] has evidenced the need for on-
demand deployment of network virtualization and softwarization capabilities, in order
to enable the different service types. In this line, the NFVO orchestrates VNFs by
deploying and configuring VNFs in a predefined set of VIMs, allowing the creation of a
network slices. Also, ETSI standardized the functionalities of network components, with
solutions for slicing orchestration from both academia and open-source organizations
(such as ETSI itself and Linux Foundation) following these specifications (presented in
section 2.2.2.1).

Works such as [100]–[102] envision automated mechanisms to deploy and manage
network slices for cloud-based mobile networks. Moreover, existing solutions, such as
OSM and FlexRAN, are limited to a specific scope: while some are more focused on
RAN slice management, others are focused on slices based on network functions chaining
within a data-center leaving PNFs out-of-scope. Notwithstanding, E2E network slices
are composed by multiple slices (e.g., a radio slice chained with an infrastructure slice),
which are orchestrated by different entities. As such, there is a need for a network entity
able to interact and coordinate the overall network slicing life cycle management. In
this context, the proposed architecture of chapter 4 already considered such interactions
with the different entities to be performed by an SDN application along with the Ryu
SDN controller. However, the diversity of SDN controllers and MANO frameworks
creates the urge to develop a third-party entity for supporting such diversity.

In the light of this, this section proposes a framework that follows the 3GPP
specification [52] for the management and orchestration of E2E network slices. The
proposed framework, named SliMANO, is an ETSI-compliant E2E network slice manager
and orchestrator that abstracts network slicing actions (e.g., instantiation, decommission
and reconfiguration) from the responsible network orchestration entities (i.e., MANO,
SDN controller and RAN controller). When compared with the architecture proposed
in chapter 4, SliMANO replaces and enhances the slice creator and slice selector entities
(which were implemented as SDN applications).

5.2.1 SliMANO’s Overview

The automated deployment of E2E slices and the multi-domain of its service orches-
tration requires a new level of abstraction of the initial proposed framework. As such,
SliMANO is presented as a plug-in system of network modules that enables the slice
orchestration to be agnostic of both MANO and VIM frameworks and, ultimately, of
SDN controllers. Figure 5.9 illustrates the motivational scenario, where for deploying
E2E network slices over the physical network, different networks need to operate and

112

coordinate actions. For example, while the NFVO instantiates network services in
data-centers and the RAN controller manages 3GPP radio slices, the SDN controller
re-configures the datapath interconnecting PNFs and VNFs. Figure 5.10 depicts the
SliMANO architecture divided in three main building blocks, namely the SliMANO
Core, SliMANO Plug-in Framework and SliMANO Agents Framework.

SliMANO

NFVOSDN controllerRAN controller

end-to-end network slices

Figure 5.9: SliMANO’s motivational scenario [24].

5.2.1.1 SliMANO Core

The core building block is responsible for coordinating SliMANO’s functionalities. In
this line, currently it implements three main components, described as follows.

• Slice life-cycle management: It handles operations related to network slice
resources, such as their update (to modify the resource’s behavior) and deletion.

• Slice monitoring: This module is responsible for monitoring the resources
allocated to each network slice instance. In case of resource failure, it notifies
the slice life-cycle management, which in turn verifies how to recover from the
failure (if possible). In addition, the slice monitoring module manages the slice
resources and its capability to meet the imposed QoS. This results in a highly
scalable service assurance system and effective closed-loop life-cycle management.

• Slice orchestration: It verifies the availability of resources for the instantiation
of a network slice. Also, it is responsible for requesting the necessary resources to
the entitled entities (e.g., MANO, SDN controller, FlexRAN controller). Resources
can be a NFVO Network Service (NS), a SDN application or a network slice in a
RAN.

5.2.1.2 SliMANO Plug-in Framework

This block allows SliMANO to be a generic framework, by building an API between the
core (via plug-ins) and agents, facilitating the continuous development of new plug-ins

113

and respective agents. Note that each plug-in has its correspondent agent for external
communication.

• NFVO plug-in: It builds a contract to communicate with NFVOs. For example,
in a scenario where OSM is the NFVO, the plug in uses the OSM agent for
performing the necessary operations involving OSM (e.g., instantiate and delete
NSs).

• Network controller plug-in: Similarly, it uses the respective agent to request
operations to the network controllers (e.g., reconfigure the datapath and establish
QoS), such as SDN controllers.

• RAN plug-in: It performs operations (via agents) on 3GPP-based network slices
(e.g., re-dimension RAN slices).

5.2.1.3 SliMANO Agents Framework

As mentioned above, the agents framework is coupled with the plug-in framework. Thus,
it performs the actions requested by plug-ins to the respective external network entities.

• NFVO agents: The NFVO agents perform the actions on the respective NFVO
external entity. As such, it is required to develop an agent for each supported
NFVO (e.g., OSM, ONAP, Cloudify, etc.). Usually, actions to the NFVOs are
performed via REST APIs.

• Network controller agents: Similarly, a network controller agent for each sup-
ported controller (e.g., ODL, ONOS, Ryu), in order to request network operations,
such as the reconfiguration of the datapath for interconnecting VNFs.

• RAN agents: The RAN agent requests actions to the 3GPP network. For exam-
ple, the FlexRAN exposes a REST API for radio slice instantiation, reconfiguration
and removal.

• Northbound Interface (NBI): Finally, the NBI allows a client (e.g., a network
entity, network operator or network administrator) to request the instantiation
of a network slice. This request is made via REST, with the SliMANO’s NBI
translating the request to the necessary network operations.

114

SliMANO

Message Bus

SliMANO Core

Slice Lifecycle
Management Slice Monitoring

SliMANO Plugin Framework

NFVO Plugin

Slice Orchestration

SDN
Controller

Plugin
RAN Plugin

SliMANO Northbound REST API

SliMANO Agents Framework

SliMANO DB

NFVO agents

Ryu
agent

OSM
agent

FlexRAN
agent

Controller agents RAN agents

Figure 5.10: SliMANO’s architecture [24].

5.2.2 High-level of sequence message for instantiation and delete action

This section presents a proof-of-concept scenario where the SliMANO instantiates a
network slice in the data-center via a supported NFVO. Here, a network slice is defined
as an E2E chain of NSIs. Figure 5.11 depicts the high-level signaling of such procedure.

5.2.2.1 Network slice instantiation

As explained in the previous section, the NBI translates the request to network op-
erations. The instantiation of a NSI is divided into two main procedures, namely
deployment and configuration.

First, on the engine side, SliMANO verifies the dependencies of the requested NSI
with other NSIs, deploying such dependencies if necessary. As such, SliMANO verifies
the availability of a plug-in for deploying the required NFV via a supported NFVO, and a
plug-in for a support network controller to apply the required network actions. Fulfilling
the dependencies, SliMANO internally employs a set of workers for the deployment of
the necessary resources into the correspondent external entities (such as, the NFVO).
Here, each resource deployment is managed by an engine worker, which in turn is also
responsible for ensuring the necessary operations conformity. After each operation
completion, the respective worker informs the result (success or fail) to the core engine.
Note that, usually, each resource operation execution is done by only one worker, which
communicates with a plug-in for applying actions to external entities (e.g., the NFVO).
The resources request to the external network entities may involve its configuration.

115

Alternatively, it is possible to apply further configuration through actions defined in
the payload of the NSI request.

Finally, the network slice’s configuration is stored in the database, and feedback is
retrieved to the network slice requester (i.e., client) using the user provided callback.

5.2.2.2 Network slice deletion

Similarly to the instantiation procedure, for deleting a NSI the client requests it through
SliMANO’s NBI via REST. The NBI validates the payload and proceeds with a request
to the core’s engine. The engine gets the NSI’s information from the database, and
starts a Life-cycle Management (LCM) instance for the delete action. In turn, the
LCM instantiates a delete task for each resource of the NSI. These tasks contact the
corresponding agent (via its core plug-in) to perform the delete action via the respective
resource manager (i.e., the NFVO)8.

opt

deploy
nsi/nssi

loop

NBI Engine
(core) Plugin Agent NFVO

(OSM) VNFClient

create	nsi
create	nsi

store	NSI	in	
database

verify	if	additional	
NSIs	are	required

Callback

network slice instantiation

configure
nsi/nssi

configure	VNF

return
configure	VNF

return
opt

opt

deploy	VNF

deploy	VNF
deploy	VNF

return
return

return

(a)

NBI Engine
(core) Plugin Agent NFVO

(OSM) VNFClient

network slice delete

delete	nsi
delete	nsi

Get	NSI	info	
from	DB

opt

delete
nsi/nssi

loop delete	VNF

delete	VNF

delete	VNF
return

return
return

Delete	NSI	
from	DB

(b)

Figure 5.11: High-level signaling for NSI: (a) instantation; and (b) deletion [24].

5.2.3 Proof-of-Concept Implementation and Evaluation

This section presents the implementation details of the SliMANO architecture, followed
by the proof-of-concept deployment of the scenario described in section 5.2.2 and
illustrated in Figure 5.11.

The proof-of-concept scenario was deployed in an in-house data-center running
OpenStack Queens as VIM and OSM release 5 as MANO9. Regarding computational
resources, OSM was deployed in a VM with 4 vCPUs and 8GB of RAM, and SliMANO
was deployed in a VM with 2 vCPUs and 4GB of RAM. For Docker containers or-
chestration, Docker Compose was used with the containers being deployed in a single

8In the current version, the delete action callback was not implemented. Thus, the client needs to
verify the correct operation by requesting the available NSIs via SliMANO’s NBI.

9ONAP was not tested due to system requirements restrictions.

116

host. Finally, in order to compare SliMANO’s performance in terms of overall delay,
the scenario was also deployed using the NetSlice feature of OSM introduced in release
5 [103], which allows the instantiation of network slices.

5.2.3.1 SliMANO vs OSM NetSlice: Functional comparison

SliMANO aims to be a generic and modular solution and in order achieve that, SliMANO
base architecture was built upon microservices. Due to that fact, it provides a high
degree of flexibility in component development. Hence, the possibility of deploying new
plug-ins/agents to support new kinds of network entities requires low effort.

The previous mentioned characteristic is a key comparison point between SliMANO
and OSM’s NetSlice module. OSM NetSlice is an OSM internal module that only
has an interface with OSM’s internal components and, therefore, suffers from limited
expandability. The module processes network slice templates, which are composed by
a set of NSs and their interconnection definition. This interconnection can be made
internally in the OSM target if all the NSs described in the template are located in that
OSM instance. The interconnection could be made between different OSM instances if
there are NSs that need to be deployed on different OSM instances. For that case, OSM
has a component called WAN Infrastructure Manager (WIM) that is responsible for
configuring a multi-site network to interconnect those NSs. At the time of this writing,
in the tested OSM version, this component is in development stage and still cannot be
used.

The SliMANO can achieve the same OSM WIM functionality by describing the in-
terconnection in the slice template, with the former using the configured plug-ins/agents
to configure it. Nevertheless, like the OSM WIM, this functionality is under develop-
ment. The main advantage of SliMANO over OSM’s NetSlice module is the fact that,
as mentioned above, SliMANO is not dependent of any internal framework interface,
component or framework. And as a consequence of that, SliMANO is more expandable
than OSM’s NetSlice module, as it has the capability to support different kinds of
frameworks and network premises with a relatively low development effort.

Regarding to standards fulfillment, both solutions follow 3GPP slice management
specification [52]. Thus, both of them are on par in that regard.

5.2.3.2 SliMANO’s implementation

SliMANO was developed in Python and implemented following a microservices architec-
ture. Here, the Nameko10 framework was used, offering Remote Procedure Call (RPC)
services over Advanced Message Queuing Protocol (AMQP). In this line, SliMANO’s
core and agent components were implemented in different Docker containers, and using

10Nameko: https://www.nameko.io

117

the RabbitMQ11 message broker for asynchronous messaging. Finally, for the database,
MariaDB12 was used. The microservices architecture in conjunction with Docker con-
tainers increases deployment flexibility, allowing each SliMANO’s component to be
deployed in a single host or dispersed among hosts.

5.2.3.3 Scenario Evaluation and Discussion

This section experimentally evaluates SliMANO framework and compares the results
with the NetSlice feature of OSM release 5. The proof-of-concept scenario deploys
multiple OSM NSs with 1 VNF, which in turn is composed by 2 Virtual Deployment
Units (VDUs) deployed on Openstack VIM as VMs. For evaluation purposes, the NS
is a Kubernetes13 cluster that contains a VNF. with a master and a worker node as
VDUs. The experiments were run 50 times, with results presenting their average with
a confidence interval of 95%.

5.2.3.3.1 Network slice deployment delay

Table 5.4 compares the SliMANO’s overall instantiation and delete delays of a network
slice with the NetSlice feature of OSM release 5.

As can be seen, for both instantiation and delete actions, and independently of the
number of the NSs (and, consequently, VNFs with their VDUs) per slice, the SliMANO
and OSM presented similar results. Nevertheless, despite SliMANO presented slightly
faster deploys when more than 2 NSs were considered, it showed slightly longer values for
a single NS deployment, and for network slice deletion. However, such delay increments
were all under 3 seconds, which are negligible when compared against the overall
procedure delay.

Table 5.4: Overall OSM and SliMANO delay for instantiation and delete of a network
slice [24].

Orchestrator Action 1 NS[seconds] 2 NS[seconds] 5 NS[seconds] 10 NS[seconds]

OSM
Instantiation 58.00±1.45 107.29±1.75 258.64±2.96 499.53± 2.33
Delete 20.16±0.01 28.39±1.11 51.49±0.94 95.09±1.44

SliMANO
Instantiation 60.55±1.16 108.74±1.69 254.87±5.77 498.07±5.32
Delete 22.70±0.06 29.99±1.47 53.71±0.42 94.13± 2.91

11RabbitMQ: https://www.rabbitmq.com
12MariaDB: https://mariadb.org
13Kubernetes: https://kubernetes.io/

118

5.2.3.3.2 Internal components delay

In order to evaluate the delay imposed by SliMANO in the overall network slice
instantiation procedure, the time delay of SliMANO’s internal components for different
network slice dimensions was measured. Thus, Table 5.5 presents the instantiation
and delete delays imposed by SliMANO’s NBI and core components for network slices
of 1, 2, 5 and 10 NSs. As mentioned above, each NS is composed by 1 VNF with 2
VDUs. Thus, for example, in the 10 NS scenario, SliMANO instantiates 10 VNFs and
20 VDUs.

Table 5.5: SliMANO’s components delay for instantiation and delete of a network slice [24].

Component Action 1 NS[ms] 2 NS[ms] 5 NS[ms] 10 NS[ms]

NBI
Instantiation 169.02±3.66 165.14±3.16 168.38±3.07 166.36± 2.76
Delete 175.12±2.36 178.38±3.11 174.96±2.90 176.30±3.50

Core
Instantiation 274.48±5.06 291.74±4.81 463.54±7.63 719.58±25.42
Delete 294.74±5.14 326.44±6.31 388.90±10.26 524.28±12.46

Comparing the values of instantiation and delete actions, it is noted that SliMANO
imposed similar delays for both instantiation and deletion actions. This results from
the fact that both actions have similar procedures (as illustrated in Figure 3.2.2).
Additionally, the overall delay imposed by SliMANO is composed by the NBI and core
engine. The delay of the SliMANO’s NBI remained constant for the evaluated slice
dimensions. Contrarily, the SliMANO’s core increased its delay as the number of NSs
(and consequently VNFs and VDUs) increased. This was mainly due to the fact that as
the number of deployed NSs increases, the operations related with thread creation for
each NS at the beginning and the ones related to the persistence at the end of deploying
are taking more processing time to accomplish. Moreover, Nameko RPC framework
adds some significant amount of delay, mainly because it sets up a new connection to
the message broker for each remote service (in this case a service corresponds to one
agent), which impacts efficiency.

5.2.3.3.3 Final remarks

OSM and ONAP are two well known open-source MANO architectures that recently
added the slice management capabilities. However, such capabilities are restricted to
their internal functionalities, such as its own NFVO. Contrarily, SliMANO offers an
external solution agnostic of both the physical and virtual environment, allowing the
integration of different NFVOs, SDN controllers and RAN controllers. Nevertheless,
being an external solution, SliMANO adds a degree of delay, mainly due to the com-

119

munications among network entities14. However, this cost can be seen as negligible
when compared with the overall instantiation delay of a network slices (Table 5.4). In
contrast, SliMANO offers a lightweight and independent solution for slice management
and orchestration that abstracts the operator from the NFVOs and other network
resource managers.

5.3 Chapter Considerations

This chapter enhanced the architecture proposed in chapter 4 by adopting MANO
mechanisms. This allowed the framework to flexibly and dynamically instantiate
network entities and services. A proof-of-concept scenario where upon a connection
of a SDN-enabled pCPE with wireless access capabilities, the framework dynamically
instantiates the necessary NFs in the cloud over a PaaS. In this way, an infrastructure
owner is able to define a SLA for a Docker Swarm cluster of VMs and tenant it to an
operator. In turn, the operator has full control of the data-path configuration via SDN
mechanisms to migrate the vCPE among nodes of the cluster (or even among clusters)
with near-zero downtime, allowing to balance the workload of the cluster.

In addition, a new framework entity was introduced to the architecture presented
in chapter 4 for replacement of the slice creator and slice selector. The network slice
management and orchestration (akin, SliMANO) entity is a plug-in based system that
follows the ETSI specifications in order to operate with multiple MANO and VIM
entities, providing a new level of abstraction to the deployment of network slices. Initial
results shown that delays result from the NBI and are associated to SliMANO operating
as an entity that is external to the orchestrator. Nonetheless, such delays are negligible
in regards to the total duration of an orchestration operation, and are a result from the
added flexibility the framework provides in comparison with other solutions, enabling
the development of new slice mechanisms agnostic to the underlying network, VIM and
MANO entities and procedures.

In this context, this chapter integrated SDN, NFV and slicing solutions with MANO-
complaint mechanisms enhancing the architecture design by enabling the dynamic
instantiation of network entities and VNFs distributing the datapath in multiple
PoDs (research question Q4). This can be also transported to the control path, by
instantiating control entities (e.g., the vUE) in other PoDs. Lastly, the introduction of
the SliMANO enhanced how network orchestrators (MANO, RAN and SDN controller)
request network slices through REST communications (research question Q8), allowing
mobility management entities (such as the vUE) to explore the existence of multiple

14As shown in results, the major delay was imposed by HTTP REST interfaces of both the NBI
and SBI to communicate with the other components (e.g. NFVO, SDN controller).

120

slices for handovering users (or flows) between access networks and slices (research
question Q6).

Finally, this chapter reuses partial material of outcomes achieved through publica-
tions in international conference proceedings [19], [20], [24] authored by the candidate.

121

CHAPTER 6
Conclusion and Future Directions

“A Cloud-Native 5G Architecture is Key to Enabling Di-
versified Service Requirements.”

— Huawei Technologies Co.

The main goal of this thesis was to contribute to the 5G research community by developing
and architectural framework capable of abstracting mobility mechanisms of involved
endpoints in heterogeneous and multi-slice wireless environments, leveraged by SDN,
NFV and slicing technologies. Chapter 2 introduced such technologies, presenting as
well the related work, specially when associated to wireless scenarios. The framework
architecture basis was presented in chapter 3, and further extended to support slicing
mechanisms and infrastructure orchestration, in chapter 4 and chapter 5, respectively.
To conclude, this thesis made efforts to contribute towards the upcoming 5G networks by
studying how SDN and NFV can be used to enhance and abstract mobility mechanisms
in heterogeneous and multi-slice environments, as well as mask underlying slices into a
single end-to-end slice.

123

6.1 Review of Achievements

The thesis explored the feasibility of mobility management procedures through the adop-
tion of SDN and NFV mechanism, while focusing network slicing architectural aspects.
Also, MANO mechanisms were integrated envisioning a standardised management and
orchestration of network resources, and a flexible deployment and maintenance of NFV
services. As presented in chapter 1, this study allowed the candidate to contribute to
national and intentional projects, as well to the research community through publi-
cations as book chapter [14], scientific journals [15], [17], [21], [23] and international
conference proceedings [11]–[13], [16], [18]–[20], [22], [24], authored by the candidate.

In this line, the candidate initially applied softwarization and visualization concepts
for an holistic architecture where the core network was access-agnostic. Here, the
virtualization of the UE (i.e., the vUE) was proposed and evaluated in different use
cases and triggered scenarios [12], [13]. Also, following the cloufication trend, not only
the UE was virtualized but also the wireless AP, allowing the control and management
of the APs to be realized in the vAP. The virtualization of both the AP and the UE
added a greater degree of simplicity on the cross-technology handover, since most of the
control signaling was performed in cloud, where UE’s wireless context was analyzed,
potentially benefiting from the enhanced computational power and the anchoring of the
traffic. These studies resulted in a book chapter [14]. Also, taking advantage of the fact
the current smartphones are equipped with multiple sensors and wireless technologies
(e.g. accelerometer and bluetooth) and that the wireless context was processed in cloud,
it was developed a mechanism where selective parts of the UE’s context were moved to
nearby devices, such as smart TVs or set-top-boxes [15].

The initial architecture was agnostic to the wireless access technology and able to
dynamically instantiate virtual instances of both APs and UEs in the cloud, while
(remotely and on-the-fly) redirecting data traffic among wireless access technologies.
Nevertheless, beyond this flexibility and holistic vision, 5G networks aim the capability
of being tailored to the emerging highly demand services (e.g., virtual reality). As such,
concepts of network slicing were introduced to this architecture, and mechanisms where
non-3GPP slices were dynamically instantiated for data (and video) offloading [16] were
proposed. Also, such mechanisms were extended in order to enable the instantiation
of network slices for allowing the access to corporation’s internal services avoiding
the use of VPN clients on user devices (i.e., the UE) [17]. Detecting that non-3GPP
slices, specifically Wi-Fi slices, does not guarantee the pre-established bandwidth
for “greedy” UDP upstream traffic, the use of SDN-enabled UEs allows the network
(through the vUE) to dynamically set different service requirements directly in the UE
via SDN SB interfaces [22]. Extending this work, the mechanism was tested under

124

scenarios where the 3GPP network adapts the slices depending of the current traffic
of the UE, while jumping between 3GPP and non-3GPP networks [23]. In [21], the
architecture framework was discussed aiming to provide insight on the challenges and
impact associated with the deployment of an increasing amount of slices, using the
same available infrastructural resources to instantiate sub-slices tailored to use cases
and vertical tenants.

In parallel, the candidate developed architectures involving CPE and its virtual-
ization (i.e., vCPE) [18]–[20]. Here, the candidate proposed SDN-based architectures
for virtualizing the network functions of CPE, while seamless and transparently of-
floading the data traffic to the users. Also, this was supported by MANO-complaint
mechanisms, not only the dynamic instantiation of the vCPE, but also its migration
upon network triggers. Finally, the proposed network architecture was enhanced by the
introduction of the slice management and orchestration entity (akin, SliMANO) [24].
Here, SliMANO is responsible for the life-cycle management of end-to-end slices, by
instantiating, updating and deleting them NSIs. Also, SliMANO abstracts specificities
of the network orchestrators (i.e., MANO, RAN and SDN controllers) from the slice
requester.

As result, the thesis answers initial self-imposed questions as follows.

6.1.1 Fulfillment of research questions

Q1. What will be the actual benefits of SDN flow-based mobility management control
in 5G environments?

The deployment of SDN flow-based mobility management allows a greater degree of
flexibility and granularity, while contributing to a more homogenized network in terms
of protocols. As presented in chapter 3, SDN-based mechanisms can be applied in
wireless networks to enable handovers between different wireless interfaces, with the
added benefit of providing remote management functionalities. Results showcased
inter-technology flow-based handover with no packet loss and reduced delay. Also, in
chapter 4, the same mechanisms were deployed over slice-based and 3GPP-complaint
networks, demonstrating its feasibility.

Q2. Which NFV architectural mechanisms should be deployed (and devised) to
support the integration of SDN in wireless environments?

NFV along with SDN is a key enabler for future slice-based networks. As presented
in chapter 3, and further explored in chapter 4 and chapter 5, NFV allows to move
network functions to the cloud, enabling network decisions to be performed therein, and
facilitating the traffic redirection between access networks and slices. In this context,

125

NFV mechanisms such as infrastructure virtualization add a greater degree of flexibility
to SDN in wireless environments by simplifying network devices hardware and offloading
wireless control decisions (e.g., attachment and association) to the cloud.

Q3. How will a composed SDN and NFV solution perform for wireless and mobile
environments?

While SDN enables inter-technology handovers, NFV allows a flexible anchoring of the
datapath in different network points. Furthermore, the addition of network slicing allows
the extension of logically isolated networks towards the end-devices avoiding the usage of
tunnels over-the-air in certain use cases, resulting in seamless inter-technology and inter-
slice handovers with no packet loss, showcasing its feasibility. In this context, different
scenarios were implemented and experimentally evaluated, where: (i) in chapter 3, a
NFV was used to virtualize the UE and SDN for data-path re-configuration on the
fly, allowing the specific flows of the UE to be redirected to nearby devices; and (ii)
in chapter 4, a corporate scenario leverages SDN and network slicing mechanisms for
reducing overhead over-the-air.

Q4. How would such a solution evolve into a pure distributed design, while still
maintaining its cloud-based behavior?

In virtualized network architectures, mechanisms can be developed in order to dynami-
cally instantiate VNFs in different network locations (e.g., core, edge or fog), allowing
to distribute (and redistribute) the network entities (or NFs) across the cloud network
as necessary. In chapter 5, the migration of VNFs was experimentally evaluated in
terms of impact on on-going traffic. Results showcased a greater degree of flexibility
and modularization of virtualized equipments, by enabling their dynamic instantiation,
reconfiguration and adding the VNFs to the function chain as needed.

Q5. Which would be the key architectural aspects of a SDN/NFV-based wire-
less/mobile enhanced control infrastructure that would be transited into a network slice
architecture, and which would be the requirements and benefits involved?

The flexibility provided by SDN and NFV makes them the key enablers for the de-
ployment of slice-based networks. While NFV enables the virtualization of NFs, SDN
enables the dynamic reconfiguration of the datapath for chaining PNFs and VNFs, that
ultimately creates a logically-isolated network for supporting a certain service type (i.e.,
a network slice). This allows MNOs to run their networks in IaaS environments and
dynamically reconfigure their network to serve certain use cases.

126

Q6. How should mobility management be implemented in a Network Slice architecture
and which resources should be shared between slices?

In this thesis, the UE’s context was virtualized into the core network, and named as
vUE. This vUE was capable of interacting with remaining network entities in order
to perform handovers and request slices. In this line, the vUE is considered to be
an isolated entity dealing with the control decisions of its physical counterpart (i.e.,
UE), with the UE’s datapath being anchored in strategic points of the network slice
(chapter 4). To retrieve information about available networks the vUEs interact with
an SDN controller entity, which is shared among the different network slices.

Q7. What level of isolation should mobility management have, should it be an
independent building block?

For 5G slice-based networks [52], the 3GPP states that shared and non-shared core
network functions can be integrated into shared access network slices. Considering this,
5G architectures allow the configuration of network slices optimized to serve certain
use cases, where an isolated mobility management function offers traffic isolation and
granularity, while a shared function offers greater scalability. In this line, in this thesis,
the vUE is considered an isolated entity responsible for the mobility management
decisions of the physical UE (providing a greater degree of granularity of active data
flows). Nevertheless, in the architecture of chapter 3, the EPC’s MME was conceived as
a control entity shared among access network slices of the same MNO serving multiple
UEs. From 5G perspective, similarly to the architecture of chapter 3, the AMF can
also be shared among slices of the same access network.

Q8. How will a mobility management building block communicate with the remaining
blocks of a network slice?

As discussed in chapter 2, the 3GPP envisions 5G network systems with service-based
interactions [25]. This approach simplifies the context exchange between entities, by
providing a modular framework capable of accommodate multiple suppliers. As such, the
mobility management building block (in this thesis, the vMN/vUE for inter-technology
and inter-slice mobility) is able to interact with remaining network entities for slice
related events (e.g., update and/or instantiation) through HTTP-based communications,
such as REST (as implemented in chapter 4 and chapter 5).

127

6.2 Future Directions

Telecommunication environments have been evolving towards a SBA. In fact, in release
15 [25] the 3GPP already considers the service provisioning through HTTP-based micro-
services the 5G system architecture. The adoption of such service-based models allows
5G core network operations to evolve towards cloud-native operations for interaction of
among highly dynamic virtualized services instances.

As such, with the current tendency for virtualization, it is expected that future
mobile systems will adopt SBA and micro-services for both radio and core networks,
as well as for data-centres and its virtual services. Also, such architecture envisions a
holistic vision of a combined fixed/wireless access over a highly functional Anything as
a Service (XaaS) infrastructure, including terminal devices. As presented in chapter 3,
section 3.2, this opens a path towards a deviceless communications for optimizing user
experiences and where the execution of tasks are not coupled with a single device and
may be moved to any suitable device which has exposed the corresponding micro-service
identifiers.

Nevertheless, this decomposition into micro-services across the network brings a
greater degree of complexity for ensuring execution correctness, while properly resolving
runtime resource conflicts. Moreover, the devices (such as smartphones) become more
volatile and operating in a multi-ownership by allowing resource sharing among users.
In this context, the vision of a multi-access and multi-ownership SBA for fixed/wireless
environments creates highly dynamic cloud-native network, but with great challenges
in terms of execution correctness.

128

References

[1] Cisco, Cisco Visual Networking Index: Forecast and Trends, 2017-2022 White Paper, Accessed
on 27.03.2019, Feb. 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/service- provider/visual- networking- index- vni/white- paper- c11-
741490.html.

[2] ——, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022
White Paper, Accessed on 27.03.2019, Feb. 2019. [Online]. Available: https://www.cisco.
com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-738429.html.

[3] NGMN, Next Generation Mobile Networks Alliance, 5G White Paper, Fev 2015. [Online].
Available: https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/
NGMN_5G_White_Paper_V1_0.pdf.

[4] Ericsson, 5G Systems White Paper, Jan. 2015. [Online]. Available: https://www.ericsson.
com/res/docs/whitepapers/what-is-a-5g-system.pdf.

[5] ——, Ericsson Mobility Report: Mobile traffic Q1 2016, Jun. 2016. [Online]. Available: https:
//www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, ‘OpenFlow: Enabling Innovation in Campus Networks’, SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008, issn: 0146-4833.

[7] B. Pfaff and B. Davie, ‘The open vswitch database management protocol’, 2013.

[8] A. Gudipati, D. Perry, L. E. Li, and S. Katti, ‘SoftRAN: Software Defined Radio Access
Network’, HotSDN ’13, pp. 25–30, 2013. doi: 10.1145/2491185.2491207. [Online]. Available:
http://doi.acm.org/10.1145/2491185.2491207.

[9] Y. Cai, F. Yu, and S. Bu, ‘Cloud Radio Access Networks (C-RAN) in Mobile Cloud Computing
Systems’, in Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE
Conference on, Apr. 2014, pp. 369–374. doi: 10.1109/INFCOMW.2014.6849260.

[10] X. J. L. E. Li, L. Vanbever, and J. Rexford, ‘CellSDN: Software-defined Cellular Core Networks’,
2013.

[11] F. Meneses, C. Guimares, D. Corujo, and R. L. Aguiar, ‘SDN-based Mobility Management:
Handover Performance Impact in Constrained Devices’, in 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), Feb. 2018, pp. 1–5. doi:
10.1109/NTMS.2018.8328716.

[12] F. Meneses, D. Corujo, C. Guimaraes, and R. L. Aguiar, ‘An abstraction framework for flow
mobility in multi-technology 5G environments using virtualization and SDN’, in 2017 IEEE
Conference on Network Softwarization (NetSoft), Jul. 2017, pp. 1–5. doi: 10.1109/NETSOFT.
2017.8004217.

[13] F. Meneses, C. Guimarães, D. Corujo, and R. L. Aguiar, ‘Handover Initiation Comparison in
Virtualised SDN-based Flow Mobility Management’, in 2018 IEEE Symposium on Computers

129

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf
https://www.ericsson.com/res/docs/whitepapers/what-is-a-5g-system.pdf
https://www.ericsson.com/res/docs/whitepapers/what-is-a-5g-system.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://doi.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/2491185.2491207
https://doi.org/10.1109/INFCOMW.2014.6849260
https://doi.org/10.1109/NTMS.2018.8328716
https://doi.org/10.1109/NETSOFT.2017.8004217
https://doi.org/10.1109/NETSOFT.2017.8004217

and Communications (ISCC), Jun. 2018, pp. 00 404–00 409. doi: 10 . 1109 / ISCC . 2018 .
8538696.

[14] F. Meneses, C. Guimarães, D. Corujo, and R. L. Aguiar, ‘Experimental Wireless Network
Deployment of Software-Defined and Virtualized Networking in 5G Environments’, in Emerging
Wireless Communication and Network Technologies: Principle, Paradigm and Performance,
K. V. Arya, R. S. Bhadoria, and N. S. Chaudhari, Eds. Singapore: Springer Singapore, 2018,
pp. 335–360, isbn: 978-981-13-0396-8. doi: 10.1007/978- 981- 13- 0396- 8_17. [Online].
Available: https://doi.org/10.1007/978-981-13-0396-8_17.

[15] F. Meneses, C. Guimarães, T. Magalhães, D. Gomes, D. Corujo, and R. L. Aguiar, ‘Device-
less Communications: Cloud-Based Communications for Heterogeneous Networks’, Wireless
Personal Communications, vol. 100, no. 1, pp. 25–46, May 2018, issn: 1572-834X. doi:
10.1007/s11277-018-5621-9. [Online]. Available: https://doi.org/10.1007/s11277-018-
5621-9.

[16] F. Meneses, R. Silva, D. Santos, D. Corujo, and R. L. Aguiar, ‘Using SDN and Slicing for
Data Offloading over Heterogeneous Networks Supporting non-3GPP Access’, in 2018 IEEE
29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 2018, pp. 1–6. doi: 10.1109/PIMRC.2018.8580969.

[17] ——, ‘An Integration of Slicing, NFV and SDN for Mobility Management in Corporate
Environments’, Transactions on Emerging Telecommunications Technologies, May 2019.

[18] J. Filipe, F. Meneses, A. Rehman, D. Corujo, and R. L. Aguiar, ‘A performance comparison of
containers and unikernels for reliable 5g environments’, in 2019 15th International Conference
on the Design of Reliable Communication Networks (DRCN) - Special Session on Disaster
Resilience of Communication Networks, 2019, pp. 1–5.

[19] F. Meneses, M. Fernandes, T. Vieira, D. Corujo, S. Figueiredo, A. Neto, and R. L. Aguiar,
‘Traffic-aware live migration in virtualized cpe scenarios’, in IEEE Workshop on Mobility
Support in Slice-based network control for heterogeneous environments (MOBISLICE) (IEEE
NFV-SDN workshops), 2019, pp. 1–6.

[20] F. Meneses, M. Fernandes, T. Vieira, D. Corujo, A. Neto, and R. L. Aguiar, ‘Dynamic modular
vcpe orchestration in platform as a service architectures’, in IEEE 8th International Conference
on Cloud Networking (CloudNet), 2019, pp. 1–6.

[21] F. Meneses, R. Silva, D. Corujo, and R. L. Aguiar, ‘Micro and Macro Network Slicing: an
experimental assessment of the impact of increasing numbers of slices’, Wireless Personal
Communications, May 2019.

[22] F. Meneses, D. Corujo, A. Neto, and R. L. Aguiar, ‘Sdn-based end-to-end flow control in
mobile slice environments’, in IEEE Workshop on Mobility Support in Slice-based network
control for heterogeneous environments (MOBISLICE) (IEEE NFV-SDN workshops), Nov.
2018, pp. 1–5.

[23] F. Meneses, R. Silva, D. Corujo, A. Neto, and R. L. Aguiar, ‘Dynamic network slice resources
reconfiguration in heterogeneous mobility environments’, Internet Technology Letters, May
2019.

[24] F. Meneses, M. Fernandes, D. Corujo, and R. L. Aguiar, ‘Slimano: An expandable framework
for the management and orchestration of end-to-end network slices’, in IEEE 8th International
Conference on Cloud Networking (CloudNet), 2019, pp. 1–6.

[25] 3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects (3GPP-TS), System Architecture for the 5G System, 2018.

[26] R. Silva, ‘Offloading mechanisms for mobile networks using SDN in virtualized environments’,
Master’s thesis, Universidade de Aveiro, Portugal, 2017.

130

https://doi.org/10.1109/ISCC.2018.8538696
https://doi.org/10.1109/ISCC.2018.8538696
https://doi.org/10.1007/978-981-13-0396-8_17
https://doi.org/10.1007/978-981-13-0396-8_17
https://doi.org/10.1007/s11277-018-5621-9
https://doi.org/10.1007/s11277-018-5621-9
https://doi.org/10.1007/s11277-018-5621-9
https://doi.org/10.1109/PIMRC.2018.8580969

[27] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects
(3GPP-TS), General Packet Radio Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access (Release 16) (3GPP TS 23.401), 2018.

[28] O. N. Foundation, SDN architecture [online], 2013. [Online]. Available: https : / / www .
opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/
TR_SDN_ARCH_1.0_06062014.pdf.

[29] ONF, Open Networking Foundation, TR-256 Applying SDN Architecture to 5G Slicing, Apr.
2016.

[30] R. Jain and S. Paul, ‘Network Virtualization and Software Defined Networking for Cloud
Computing: a Survey’, IEEE Communications Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[31] W. H. Chin, Z. Fan, and R. Haines, ‘Emerging technologies and research challenges for 5G
wireless networks’, Wireless Communications, IEEE, vol. 21, no. 2, pp. 106–112, 2014.

[32] O. N. F. W. M̃. W. Group, WMWG Charter Application [online], 2013. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/working-groups/
charter-wireless-mobile.pdf.

[33] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu, Pantou : OpenFlow 1.0 for OpenWRT, 2011.
[Online]. Available: http://www.openflow.org/wk/index.php/OpenFlow%5C_1.0%5C_for%
5C_OpenWRT.

[34] K. Pentikousis, Y. Wang, and W. Hu, ‘Mobileflow: Toward software-defined mobile networks’,
Communications Magazine, IEEE, vol. 51, no. 7, pp. 44–53, Jul. 2013.

[35] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, ‘SoftCell: Scalable and Flexible Cellular Core
Network Architecture’, in Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’13, ACM, 2013.

[36] C. Guimaraes, D. Corujo, R. Aguiar, F. Silva, and P. Frosi, ‘Empowering Software Defined Wire-
less Networks through Media Independent Handover Management’, in Global Communications
Conference (GLOBECOM), 2013 IEEE, Dec. 2013, pp. 2204–2209.

[37] C. Guimaraes, D. Corujo, and R. Aguiar, ‘Enhancing OpenFlow with Media Independent
Management capabilities’, in Communications (ICC), 2014 IEEE International Conference
on, Jun. 2014, pp. 2995–3000.

[38] C. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. Contreras, H. Jin, and J. Zúniga,
‘An Architecture for Software Defined Wireless Networking’, Wireless Communications, IEEE,
vol. 21, no. 3, pp. 52–61, Jun. 2014, issn: 1536-1284. doi: 10.1109/MWC.2014.6845049.

[39] P. D. et al., ‘BEST-AP: Non-intrusive estimation of available bandwidth and its application
for dynamic access point selection’, Computer Communications, vol. 39, pp. 78–91, 2014.

[40] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H. Kim, and T. Nadeem,
‘meSDN: Mobile Extension of SDN’, in Proceedings of the Fifth International Workshop on
Mobile Cloud Computing & Services, ser. MCS ’14, Bretton Woods, New Hampshire, USA:
ACM, 2014, pp. 7–14, isbn: 978-1-4503-2824-1.

[41] F. Meneses, D. Corujo, C. Guimarães, and R. L. Aguiar, ‘Multiple Flow in Extended SDN
Wireless Mobility’, in 2015 Fourth European Workshop on Software Defined Networks, Sep.
2015, pp. 1–6. doi: 10.1109/EWSDN.2015.52.

[42] F. Meneses, D. Corujo, C. Guimaraes, and R. L. Aguiar, ‘Extending SDN to End Nodes
Towards Heterogeneous Wireless Mobility’, in 2015 IEEE Globecom Workshops (GC Wkshps),
Dec. 2015, pp. 1–6. doi: 10.1109/GLOCOMW.2015.7414073.

131

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-wireless-mobile.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-wireless-mobile.pdf
http://www.openflow.org/wk/index.php/OpenFlow%5C_1.0%5C_for%5C_OpenWRT
http://www.openflow.org/wk/index.php/OpenFlow%5C_1.0%5C_for%5C_OpenWRT
https://doi.org/10.1109/MWC.2014.6845049
https://doi.org/10.1109/EWSDN.2015.52
https://doi.org/10.1109/GLOCOMW.2015.7414073

[43] N. Makris, K. Choumas, C. Zarafetas, T. Korakis, and L. Tassiulas, ‘Forging Client Mobility
with OpenFlow: an experimental study’, in IEEE Wireless Communications and Networking
Conference, Apr. 2016.

[44] P. Bispo, ‘A Software Defined Network Controller Quantitative and Qualitative Analysis’,
Master’s thesis, Universidade de Aveiro, Portugal, 2017.

[45] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, ‘A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable Networks’, IEEE
Communications Surveys Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014, issn: 1553-877X.
doi: 10.1109/SURV.2014.012214.00180.

[46] V.-G. Nguyen, T.-X. Do, and Y. Kim, ‘SDN and Virtualization-based LTE Mobile Network
Architectures: A comprehensive survey’, Wireless Personal Communications, vol. 86, no. 3,
pp. 1401–1438, 2016.

[47] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, ‘Towards Programmable
Enterprise WLANS with Odin’, in Proceedings of the first workshop on Hot topics in software
defined networks - HotSDN ’12, New York, New York, USA: ACM Press, Aug. 2012, p. 115,
isbn: 9781450314770. doi: 10.1145/2342441.2342465.

[48] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo, ‘CloudMAC - An
OpenFlow based Architecture for 802.11 MAC layer processing in the Cloud’, in 2012 IEEE
Globecom Workshops, IEEE, Dec. 2012, pp. 186–191, isbn: 978-1-4673-4941-3. doi: 10.1109/
GLOCOMW.2012.6477567.

[49] M. Bansal, J. Mehlman, S. Katti, and P. Levis, ‘OpenRadio: A Programmable Wireless
Dataplane’, HotSDN ’12, pp. 109–114, 2012. doi: 10.1145/2342441.2342464. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342464.

[50] R. Mijumbi, J. Serrat, J. Gorricho, S. Latre, M. Charalambides, and D. Lopez, ‘Management and
orchestration challenges in network functions virtualization’, IEEE Communications Magazine,
vol. 54, no. 1, pp. 98–105, Jan. 2016, issn: 0163-6804. doi: 10.1109/MCOM.2016.7378433.

[51] G. N. ETSI, ETSI GS NFV 002 V1.2.1 Network Functions Virtualisation (NFV); Architectural
Framework, 2014.

[52] 3GPP, Study on management and orchestration of network slicing for next generation network,
spec.: 28.801 version: 15.1.0, Jan. 2018.

[53] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.-Y. Huang, P.
Kazemian, M. Kobayashi, J. Naous, et al., ‘Carving research slices out of your production
networks with OpenFlow’, ACM SIGCOMM Computer Communication Review, vol. 40, no. 1,
pp. 129–130, 2010.

[54] 3GPP, Study on Architecture for Next Generation System, Jun. 2015.

[55] S. Wang, X. Wu, H. Chen, Y. Wang, and D. Li, ‘An optimal slicing strategy for SDN based
smart home network’, in Smart Computing (SMARTCOMP), 2014 International Conference
on, Nov. 2014, pp. 118–122. doi: 10.1109/SMARTCOMP.2014.7043848.

[56] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, ‘Resource slicing in virtual wireless
networks: A survey’, IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 462–476, 2016.

[57] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, ‘LTE wireless virtualization and spectrum
management’, ser. Wireless and Mobile Networking Conference (WMNC), 2010 Third Joint
IFIP, IEEE, 2010, pp. 1–6.

[58] ——, ‘LTE mobile network virtualization’, Mobile Networks and Applications, vol. 16, no. 4,
pp. 424–432, 2011.

132

https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1145/2342441.2342465
https://doi.org/10.1109/GLOCOMW.2012.6477567
https://doi.org/10.1109/GLOCOMW.2012.6477567
https://doi.org/10.1145/2342441.2342464
http://doi.acm.org/10.1145/2342441.2342464
https://doi.org/10.1109/MCOM.2016.7378433
https://doi.org/10.1109/SMARTCOMP.2014.7043848

[59] M. Li, L. Zhao, X. Li, X. Li, Y. Zaki, A. Timm-Giel, and C. Gorg, ‘Investigation of network
virtualization and load balancing techniques in LTE networks’, ser. Vehicular Technology
Conference (VTC Spring), 2012 IEEE 75th, IEEE, 2012, pp. 1–5.

[60] A. Banchs, P. Serrano, P. Patras, and M. Natkaniec, ‘Providing throughput and fairness
guarantees in virtualized WLANs through control theory’, Mobile Networks and Applications,
vol. 17, no. 4, pp. 435–446, 2012.

[61] K. Nakauchi, Y. Shoji, and N. Nishinaga, ‘Airtime-based resource control in wireless LANs for
wireless network virtualization’, ser. Ubiquitous and Future Networks (ICUFN), 2012 Fourth
International Conference on, IEEE, 2012, pp. 166–169.

[62] D.-E. Meddour, T. Rasheed, and Y. Gourhant, ‘On the role of infrastructure sharing for mobile
network operators in emerging markets’, Computer Networks, vol. 55, no. 7, pp. 1576–1591,
2011.

[63] M. Jiang, M. Condoluci, and T. Mahmoodi, ‘Network slicing management amp; prioritization
in 5G mobile systems’, in European Wireless 2016; 22th European Wireless Conference, May
2016, pp. 1–6.

[64] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, ‘From network sharing to multi-tenancy:
The 5G network slice broker’, IEEE Communications Magazine, vol. 54, no. 7, pp. 32–39, Jul.
2016, issn: 0163-6804. doi: 10.1109/MCOM.2016.7514161.

[65] X. Zhou, R. Li, T. Chen, and H. Zhang, ‘Network slicing as a service: enabling enterprises’
own software-defined cellular networks’, IEEE Communications Magazine, vol. 54, no. 7,
pp. 146–153, Jul. 2016, issn: 0163-6804. doi: 10.1109/MCOM.2016.7509393.

[66] Q. Wang, J. Alcaraz-Calero, M. B. Weiss, A. Gavras, P. M. Neves, R. Cale, G. Bernini, G.
Carrozzo, N. Ciulli, G. Celozzi, et al., ‘SliceNet: End-to-End Cognitive Network Slicing and
Slice Management Framework in Virtualised Multi-Domain, Multi-Tenant 5G Networks’, in
2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), IEEE, 2018, pp. 1–5.

[67] A. de la Oliva, X. Li, X. Costa-Perez, C. J. Bernardos, P. Bertin, P. Iovanna, T. Deiss, J.
Mangues, A. Mourad, C. Casetti, et al., ‘5G-TRANSFORMER: Slicing and Orchestrating
Transport Networks for Industry Verticals’, IEEE Communications Magazine, vol. 56, no. 8,
pp. 78–84, 2018.

[68] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nussbaum, and R.
Ghaddab, ‘OpenAirInterface: an open LTE network in a PC’, ser. Proceedings of the 20th
annual international conference on Mobile computing and networking, ACM, 2014, pp. 305–308.

[69] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis, ‘FlexRAN: A flexible
and programmable platform for software-defined radio access networks’, in Proceedings of
the 12th International on Conference on emerging Networking EXperiments and Technologies,
ACM, 2016, pp. 427–441.

[70] S. Sarkar, C. Becker, J. Kunz, A. Sarbhai, G. Annasamymani, S. K. Kasera, and J. V. d.
Merwe, ‘Enabling WiFi in Open Access Networks’, in Proceedings of the 4th ACM Workshop
on Hot Topics in Wireless, ACM, 2017, pp. 13–17.

[71] K. Koutlia, A. Umbert, S. Garcia, and F. Casadevall, ‘RAN slicing for multi-tenancy support
in a WLAN scenario’, in Network Softwarization (NetSoft), 2017 IEEE Conference on, IEEE,
2017, pp. 1–2.

[72] J. Pérez-Romero, O. Sallent, R. Ferrús, and R. Agustí, ‘On the configuration of radio resource
management in a sliced RAN’, in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, IEEE, 2018, pp. 1–6.

[73] C. E. Perkins, ‘IP mobility support for IPv4, revised’, 2010.

133

https://doi.org/10.1109/MCOM.2016.7514161
https://doi.org/10.1109/MCOM.2016.7509393

[74] A. Rasem, M. St-Hilaire, and C. Makaya, ‘A comparative analysis of predictive and reactive
mode of optimized PMIPv6’, in 2012 8th International Wireless Communications and Mobile
Computing Conference (IWCMC), IEEE, 2012, pp. 722–727.

[75] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, B. Patil, et al., ‘Proxy mobile ipv6’,
2008.

[76] J. C. Zúniga, C. J. Bernardos, A. de la Oliva, T. Melia, R. Costa, and A. Reznik, ‘Distributed
mobility management: a standards landscape’, IEEE Communications Magazine, vol. 51, no. 3,
pp. 80–87, 2013.

[77] H. Guo, L. Wang, B. Duan, C. Liu, and Z. Liu, ‘LMA/HA Discovery Mechanism on the
interaction between MIPv6 and PMIPv6’, in 2009 5th International Conference on Wireless
Communications, Networking and Mobile Computing, IEEE, 2009, pp. 1–4.

[78] F. Giust, A. De la Oliva, and C. J. Bernardos, ‘Mobility management in next generation mobile
networks’, in 2013 IEEE 14th International Symposium on‘ A World of Wireless, Mobile and
Multimedia Networks’(WoWMoM), IEEE, 2013, pp. 1–3.

[79] F. Giust, L. Cominardi, and C. J. Bernardos, ‘Distributed Mobility Management for Future
5G Networks: Overview and Analysis of Existing Approaches’, no. January, pp. 142–149, 2015.

[80] J. Costa-Requena, ‘SDN integration in LTE mobile backhaul networks’, in The International
Conference on Information Networking 2014 (ICOIN2014), IEEE, 2014, pp. 264–269.

[81] L. Valtulina, M. Karimzadeh, G. Karagiannis, G. Heijenk, and A. Pras, ‘Performance evaluation
of a SDN/OpenFlow-based Distributed Mobility Management (DMM) approach in virtualized
LTE systems’, in 2014 IEEE Globecom Workshops (GC Wkshps), IEEE, 2014, pp. 18–23.

[82] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol, and N. McK-
eown, ‘OpenRoads: Empowering research in mobile networks’, ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, p. 125, Jan. 2010, issn: 01464833. doi: 10.1145/
1672308.1672331.

[83] Y. Grunenberger and F. Rousseau, ‘Virtual access points for transparent mobility in wireless
LANs’, in 2010 IEEE Wireless Communication and Networking Conference, IEEE, 2010,
pp. 1–6.

[84] M. E. Berezin, F. Rousseau, and A. Duda, ‘Multichannel virtual access points for seamless
handoffs in IEEE 802.11 wireless networks’, in 2011 IEEE 73rd Vehicular Technology Conference
(VTC Spring), IEEE, 2011, pp. 1–5.

[85] Y.-E. Lin and T.-M. Tsai, ‘Creation, management and migration of virtual access points in
software defined WLAN’, in 2015 International Conference on Cloud Computing and Big Data
(CCBD), IEEE, 2015, pp. 313–320.

[86] Nokia, Dynamic end-to-end network slicing for 5G: Addressing 5G requirements for diverse
services, use cases, and business models. White Paper, 2016. [Online]. Available: http://www.
hit.bme.hu/~jakab/edu/litr/5G/NOKIA_dynamic_network_slicing_WP.pdf.

[87] O. N. F. Documentation, ‘OpenFlow Switch Specification’, Jun. 2012. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf.

[88] J. Barraca, D. Gomes, and R. L. Aguiar, ‘Amazing – advanced mobile wireless playground’,
English, in Testbeds and Research Infrastructures. Development of Networks and Communities,
ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, T. Magedanz, A. Gavras, N. Thanh, and J. Chase, Eds., vol. 46,
Springer Berlin Heidelberg, 2011, pp. 219–230, isbn: 978-3-642-17850-4.

134

https://doi.org/10.1145/1672308.1672331
https://doi.org/10.1145/1672308.1672331
http://www.hit.bme.hu/~jakab/edu/litr/5G/NOKIA_dynamic_network_slicing_WP.pdf
http://www.hit.bme.hu/~jakab/edu/litr/5G/NOKIA_dynamic_network_slicing_WP.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[89] H. Li, G. Shou, Y. Hu, and Z. Guo, ‘WiCloud: Innovative uses of network data on smart
campus’, in 2016 11th International Conference on Computer Science & Education (ICCSE),
IEEE, 2016, pp. 461–466.

[90] 3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects (3GPP-TS), Architecture enhancements for non-3GPP accesses (Release 15) (3GPP
TS 23.402), 2018.

[91] M. I. Sanchez, A. de la Oliva, and C. J. Bernardos, ‘Experimental analysis of connectivity
management in mobile operating systems’, Computer Networks, vol. 94, pp. 41–61, 2016.

[92] A. Baheti, Extensible Authentication Protocol Vulnerabilities and Improvements,
https://scholarworks.sjsu.edu/etd_projects/425, ; Online; accessed 1 Jun 2018, 2015.

[93] J. M. R. Castillo, H. Lundqvist, and C. Qvarfordt, ‘Energy consumption impact from wi-fi
traffic offload’, ser. Wireless Communication Systems (ISWCS 2013), Proceedings of the Tenth
International Symposium on, VDE, 2013, pp. 1–5.

[94] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, ‘SDN/NFV-Based Mobile Packet Core
Network Architectures: A Survey’, IEEE Communications Surveys Tutorials, vol. 19, no. 3,
pp. 1567–1602, thirdquarter 2017, issn: 1553-877X. doi: 10.1109/COMST.2017.2690823.

[95] V. A. Cunha, I. D. Cardoso, J. P. Barraca, and R. L. Aguiar, ‘Policy-driven vCPE through
dynamic network service function chaining’, in 2016 IEEE NetSoft Conference and Workshops
(NetSoft), Jun. 2016, pp. 156–160. doi: 10.1109/NETSOFT.2016.7502463.

[96] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento, ‘Cloud4NFV: A platform for
Virtual Network Functions’, in 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet), Oct. 2014, pp. 288–293. doi: 10.1109/CloudNet.2014.6969010.

[97] A. Kimura, S. Kawano, H. Tsuchiya, S. Homma, and A. Okada, ‘Evaluation of Virtual
Customer Premises Equipment Prototype System with Open Source Software’, in 2018 IEEE
7th International Conference on Cloud Networking (CloudNet), Oct. 2018, pp. 1–3. doi:
10.1109/CloudNet.2018.8549554.

[98] A. Mimidis, E. Ollora, J. Soler, S. Bessem, L. Roullet, S. Van Rossem, S. Pinneterre, M.
Paolino, D. Raho, X. Du, J. Chesterfield, M. Flouris, L. Mariani, O. Riganelli, M. Mobilio,
A. Ramos, I. Labrador, A. Broadbent, P. Veitch, and M. Zembra, ‘The Next Generation
Platform as a Service Cloudifying Service Deployments in Telco-Operators Infrastructure’, in
2018 25th International Conference on Telecommunications (ICT), Jun. 2018, pp. 399–404.
doi: 10.1109/ICT.2018.8464838.

[99] N. ETSI, GS NFV-MAN 001 V1. 1.1 Network Function Virtualisation (NFV); Management
and Orchestration, 2014.

[100] A. Devlic, A. Hamidian, D. Liang, M. Eriksson, A. Consoli, and J. Lundstedt, ‘NESMO:
Network slicing management and orchestration framework’, in 2017 IEEE International
Conference on Communications Workshops (ICC Workshops), IEEE, 2017, pp. 1202–1208.

[101] A. G. Dalla-Costa, L. Bondan, J. A. Wickboldt, C. B. Both, and L. Z. Granville, ‘Maestro:
An NFV orchestrator for wireless environments aware of VNF internal compositions’, in 2017
IEEE 31st International Conference on Advanced Information Networking and Applications
(AINA), IEEE, 2017, pp. 484–491.

[102] B. Sousa, L. Cordeiro, P. Simoes, A. Edmonds, S. Ruiz, G. A. Carella, M. Corici, N. Nikaein,
A. S. Gomes, E. Schiller, et al., ‘Toward a fully cloudified mobile network infrastructure’, IEEE
Transactions on Network and Service Management, vol. 13, no. 3, pp. 547–563, 2016.

[103] OSM Release FIVE Technical Overview, version: 1.0, ETSI, Jan. 2019. [Online]. Available:
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf.

135

https://doi.org/10.1109/COMST.2017.2690823
https://doi.org/10.1109/NETSOFT.2016.7502463
https://doi.org/10.1109/CloudNet.2014.6969010
https://doi.org/10.1109/CloudNet.2018.8549554
https://doi.org/10.1109/ICT.2018.8464838
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Methodology

	Achievements and Contributions of the thesis
	Thesis structure

	State of the art and development tools
	5G System Architecture
	Software Defined Networking and Network Function Virtualization as key enablers
	Software Defined Networking
	Network Function Virtualization

	The role of Network Slicing
	Slicing initiatives and implementation efforts for different slice dimensions

	Mobility Management for 5G networks
	Evaluation tools, software and frameworks
	Softwarization tools
	Virtualization Platforms
	MANO frameworks
	Network slicing tools
	Wireless testbed

	Chapter Considerations

	A Virtualized SDN-enabled Framework for Mobile and Network Devices
	Network Architecture
	Network Controller
	Enabling end-devices with SDN capabilities
	Points of Attachment virtualization
	Integrating vMN and vPoA for bringing user context to the cloud

	Towards a deviceless communication
	Involved entities and their integration with virtualization concepts
	Use case description
	Proof-of-Concept evaluation

	Chapter Considerations

	Inter-slice Mobility Management
	Slice-based network overview
	Vertical slices and use cases

	Framework Architecture Enhancements
	Network procedures
	Wi-Fi slices implementation and evaluation
	3GPP slices implementation and evaluation
	Proof-of-concept evaluation for mobility scenarios in dynamic slice environments

	Network slicing for corporate environments
	Network entities interactions
	Proof-of-concept scenario evaluation

	Chapter Considerations

	Slice Management and Orchestration
	Orchestrating Slice-based Points of Attachments
	Framework overview
	Migration among cluster's nodes
	Migration among Point of Deployment

	Slice Management and Orchestration
	SliMANO's Overview
	High-level of sequence message for instantiation and delete action
	Proof-of-Concept Implementation and Evaluation

	Chapter Considerations

	Conclusion and Future Directions
	Review of Achievements
	Fulfillment of research questions

	Future Directions

	References

