
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2020

Guilherme Moura Reis
Correia Gil

Modelação e simulação de equipamentos de rede
para Indústria 4.0

Modelation and simulation of network equipment
for Industry 4.0

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2020

Guilherme Moura Reis
Correia Gil

Modelação e simulação de equipamentos de rede
para Indústria 4.0

Modelation and simulation of network equipment
for Industry 4.0

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação científica do
Doutor Paulo Bacelar Reis Pedreiras, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e do
Doutor Luís Emanuel Moutinho da Silva, Professor Adjunto Convidado da Es-
cola Superior de Tecnologia e Gestão de Águeda.

Dedico esta dissertação à minha família, namorada e amigos pelo
apoio que me deram.

o júri / the jury

presidente / president Prof. Doutor Manuel Bernardo Salvador Cunha
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Prof. Doutor Luís Miguel Pinho de Almeida
Professor Associado, Faculdade de Engenharia da Universidade do Porto

Prof Doutor Luís Emanuel Moutinho da Silva
Professor Adjunto Convidado, Universidade de Aveiro

agradecimentos /
acknowledgements

Gostaria de agradecer, em primeiro lugar, aos meus orientadores, Professor
Doutor Paulo Pedreiras e Professor Doutor Luís Moutinho, pela excelente
orientação e dedicação que proporcionaram ao longo deste percurso.
Obrigado por estarem disponíveis sempre que precisasse, pela paciência em
tolerar os meus erros e pela forma como me trataram. Espero que tenham
tido tanto gosto em trabalhar comigo como eu tive com ambos desejando
que, num futuro próximo, continuaremos a trabalhar juntos.

obrigado à minha namorada, Andreia Andrade, por ser aquela pessoa
que me consegue relaxar até nos momentos mais difíceis. Obrigado por todo
o amor que me deste e por todos os momentos que passámos juntos nestes
últimos cinco anos. Agora vais ter de ficar comigo para o resto da vida :p.

obrigado aos meus amigos por todo o apoio e ajuda que me deram
nestes últimos cinco anos. Em particular gostaria de agradecer ao Ivo
Oliveira, Marco Sousa e Miguel Tavares por todos os bons momentos que
despendemos a jogar às copas no aquário do DETI enquanto deveria estar a
trabalhar na dissertação.

por último, mas não com menor importância, obrigado à minha família
por me aturar nestes últimos meses, nos quais estivemos de ficar confinados.
Eu sei que às vezes posso ser um bocado chato. Obrigado aos meus pais,
Zé Toninho e Geninha, por todo o apoio, carinho e dedicação que me deram
ao longo da minha vida e por me fazerem a pessoa que sou hoje, o filho
favorito ;).

Palavras Chave Redes de Comunicação Tempo-Real, Simuladores de Redes, Ethernet
Tempo-Real, Indústria 4.0.

Resumo Atualmente o setor industrial tem vindo cada vez mais a optar por tecnologias
digitais de forma a automatizar todos os seus processos. Este desenvolvi-
mento surge de noções como Indústria 4.0, que redefine o modo de como
estes sistemas são projetados. Estruturalmente, todos os componentes
destes sistemas encontram-se conectados numa rede complexa conhecida
como Internet Industrial das Coisas. Certos requisitos advêm deste conceito,
no que toca às redes de comunicação industriais, entre os quais se destacam
a necessidade de garantir comunicações tempo-real bem como suporte a
uma gestão dinâmica dos recursos, os quais são de extrema importância.
Várias linhas de investigação procuraram desenvolver tecnologias de rede
capazes de satisfazer tais exigências. Uma destas soluções é o "Hard
Real-Time Ethernet Switch" (HaRTES), um switch Ethernet com suporte a
comunicações de tempo-real e gestão dinâmica de Qualidade-de-Serviço
(QoS), requisitos impostos pela Indústria 4.0.

O processo de projeto e implementação de redes industriais pode, no
entanto, ser bastante moroso e dispendioso. Tais aspetos impõem limitações
no teste de redes de largas dimensões, cujo nível de complexidade é
mais elevado e requer o uso de mais hardware. Os simuladores de redes
permitem atenuar o impacto de tais limitações, disponibilizando ferramentas
que facilitam o desenvolvimento de novos protocolos e a avaliação de redes
de comunicações.

No âmbito desta dissertação desenvolveu-se um modelo do switch HaRTES
no ambiente de simulação OMNeT++. Com um objetivo de demonstrar uma
solução que possa ser utilizada em redes de tempo-real industriais, esta
dissertação apresenta os aspetos fundamentais do modelo implementado
bem como um conjunto de experiências que o comparam com um protótipo
laboratorial já existente, no âmbito da sua validação.

Keywords Real-Time Communication Networks, Network simulators, Real-Time Ether-
net, Industry 4.0.

Abstract Currently, the industrial sector has increasingly opted for digital technologies
in order to automate all its processes. This development comes from
notions like Industry 4.0 that redefines the way these systems are designed.
Structurally, all the components of these systems are connected in a complex
network known as the Industrial Internet of Things. Certain requirements
arise from this concept regarding industrial communication networks. Among
them, the need to ensure real-time communications, as well as support for
dynamic resource management, are extremely relevant. Several research
lines pursued to develop network technologies capable of meeting such
requirements. One of these protocols is the Hard Real-Time Ethernet Switch
(HaRTES), an Ethernet switch with support for real-time communications and
dynamic resource management, requirements imposed by Industry 4.0.

The process of designing and implementing industrial networks can,
however, be quite time consuming and costly. These aspects impose
limitations on testing large networks, whose level of complexity is higher and
requires the usage of more hardware. The utilization of network simulators
stems from the necessity to overcome such restrictions and provide tools to
facilitate the development of new protocols and evaluation of communications
networks.

In the scope of this dissertation a HaRTES switch model was devel-
oped in the OMNeT++ simulation environment. In order to demonstrate a
solution that can be employed in industrial real-time networks, this dissertation
presents the fundamental aspects of the implemented model as well as a set
of experiments that compare it with an existing laboratory prototype, with the
objective of validating its implementation.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objectives . 2
1.3 Document Outline . 2

2 Theoretical Real-Time and Ethernet concepts 5
2.1 Real-Time Systems . 5

2.1.1 Classification of real-time systems . 6
2.1.2 Task Model . 7
2.1.3 Scheduling . 8
2.1.4 Schedulability Analysis . 14
2.1.5 Hierarchical Scheduling . 16

2.2 Real Time communications . 17
2.2.1 Communication paradigms . 18

2.3 Ethernet . 19
2.3.1 Ethernet Frame . 19
2.3.2 Ethernet Switch . 20

2.4 Real-time protocols over Ethernet . 23
2.4.1 Real-time protocols on COTS switches . 23
2.4.2 Real-time protocols on customized hardware 25

3 An FTT-Enabled Switch - HaRTES 29
3.1 The Flexible Time Triggered paradigm . 29

3.1.1 FTT Elementary cycle . 30
3.2 Flexible Time Triggered Switch Ethernet . 31

3.2.1 FTT-SE master architecture . 32
3.2.2 FTT-SE slave architecture . 33
3.2.3 FTT-SE communication model . 34

3.3 Hard Real Time Ethernet Switch . 35
3.3.1 HaRTES internal architecture . 36
3.3.2 HaRTES communication description . 38
3.3.3 Advances over the HaRTES implementation 40

4 Network Simulators 47
4.1 Overview of different network simulators . 47

i

ii CONTENTS

4.1.1 ns-3 . 49
4.1.2 OMNET++ . 49
4.1.3 QualNet . 50
4.1.4 NetSim . 51
4.1.5 OPNET . 51
4.1.6 TrueTime . 52

4.2 A comparative analysis of network simulators . 54
4.3 The OMNeT++ framework . 57

4.3.1 Model Structure . 57
4.3.2 NED Language . 59
4.3.3 Messages and Packets . 60
4.3.4 OMNeT++ Architecture . 61
4.3.5 Analysis facilities . 64
4.3.6 Third party libraries . 65

5 Implementing HaRTES switch model on OMNeT++ 71
5.1 Traffic isolation with IEEE 802.1Q in a Ethernet switch model 72
5.2 A server-based scheduling framework for Ethernet switches 75

5.2.1 Switch Architecture . 76
5.2.2 Implementation of the hierarchical server-based framework 77

5.3 HaRTES simulation model . 88
5.3.1 HaRTES switch . 90
5.3.2 FTT Compliant nodes . 94

6 Validation of the implemented OMNeT++ simulation models 97
6.1 Validation of the IEEE 802.1Q simulation model . 97

6.1.1 Experiment 1 - Homogeneous traffic set . 98
6.1.2 Experiment 2 - Heterogeneous message set . 100

6.2 Validation of the server-based scheduling model . 101
6.2.1 Experiment 1 - Assessing the model control capabilities 102
6.2.2 Experiment 2 - Realistic network simulation 104

6.3 Comparing the performance of the frameworks in Ethernet switches 106
6.3.1 Experiment 1 - Normal operation . 108
6.3.2 Experiment 2 - Abnormal node operation . 108

6.4 Experimental validation of HaRTES simulation model 111
6.4.1 Temporal isolation between the traffic classes 112
6.4.2 Traffic confinement within the asynchronous subsystem 117

7 Closure 121
7.1 Conclusions . 121
7.2 Future Work . 122

References 123

List of Figures

2.1 Scheduling algorithms. 9
2.2 Standard Ethernet IEEE 802.3 Data frame. 19
2.3 Internal structure of an Ethernet switch (from R. Marau, L. Almeida and P. Pedreiras

[13], 2006). 21
2.4 Standard IEEE 802.1Q Ethernet VLAN-tag frame. 21
2.5 Typical FTT-SE system architecture. 24
2.6 ETHERNET PowerLink communication cycle (based from [2]). 25
2.7 PROFINET-IRT communication cycle (based from [19]). 26
2.8 Typical AFDX architecture (based from [2]). 27

3.1 FTT paradigm Elementary Cycle structure (based from [2]). 30
3.2 FTT-SE master/slave architecture (based from [20]). 32
3.3 HaRTES architecture. 36
3.4 HaRTES internal architecture (from [22]). 37
3.5 HaRTES communication model (based from [2]). 39
3.6 Distinct four phases of the proposed protocol over the FTT elementary cycle (from Guillermo

Rodriguez-Navas, Julián Proenza [24], 2013). 41
3.7 Network behavior throughout the different four phases of the protocol (from Guillermo

Rodriguez-Navas, Julián Proenza [24], 2013). 41
3.8 A general architecture of the proposed server-based hierarchy (from Rui Santos et al [25],

2011). 43
3.9 Example of idle-time insertion (from Rui Santos et al [25], 2011). 44

4.1 Abstract structure of network simulators (from J.Suárez et al. [29], 2015). 48
4.2 OMNeT++ IDE (from [35]). 50
4.3 NetSim GUI (from [42]). 51
4.4 OPNET architecture (from Saba Siraj et al. [44], 2012). 52
4.5 TrueTime Simulink blocks (from [47]). 53
4.6 OMNeT++ module structure. 58
4.7 OMNeT++ connection types. 58
4.8 Example of a NED file structure: a) network; b) simple module; c) compound module. . 59
4.9 OMNeT++ cMessage and cPacket class properties. 61
4.10 OMNeT++ architecture (from András Varga and Rudolf Horning [51], 2008) 61
4.11 Embedded OMNeT++ architecture (from András Varga and Rudolf Horning [51], 2008). 62
4.12 OMNeT++ Tkenv. 63
4.13 OMNeT++ main environment. 63
4.14 OMNeT++ Analysis tool. 64
4.15 OMNeT++ dataset example. 65
4.16 Example of a user-defined chunk for a .msg file (from [36]). 68
4.17 Example of chunk manipulation (from [36]). 68
4.18 Example of packet tagging in INET (from [36]). 69

5.1 Ethernet switch architecture developed by INET. 72

iii

iv LIST OF FIGURES

5.2 Ethernet switch ports with the implemented framework in OMNeT++. 73
5.3 Ethernet switch ports: a) with the implemented framework; b) without the framework in

OMNeT++. 74
5.4 Processor class implemented in OMNeT++. 75
5.5 Multi-level server-based hierarchy representation. 76
5.6 Hierarchical server-based framework architecture. 77
5.7 The server-based framework employed in the INET Ethernet switch. 77
5.8 Sequence Chart of the transmissions within the switch. 78
5.9 Server Unit architecture. 79
5.10 ServerUnit implementation in OMNeT++ NED file. 80
5.11 StreamManagementUnit C++ class. 81
5.12 Example of an XML file with the properties of a leaf server. 82
5.13 ServerUnit implementation in OMNeT++. 82
5.14 Section of the leaf components C++ class. 84
5.15 VerificationUnit processing algorithm. 86
5.16 VerificationUnit selection algorithm. 87
5.17 Example of multi-level server Hierarchy. 87
5.18 Resulting 3D Vector from the first verification process. 88
5.19 HaRTES switch and FTT-slave architectures for OMNeT++ (from Knezic et al. [60], 2014). 89
5.20 Implemented HaRTES switch architecture for OMNeT++ 89
5.21 HaRTES switch in OMNeT++. 90
5.22 Example of an XML file with the forwarding table contents. 92
5.23 HaRTES elementary cycle structure. 93
5.24 FTT compliant nodes architecture. 95

6.1 Experimental setup used to validate the IEEE 802.1Q modeled switch. 98
6.2 IEEE 802.1Q: Latency measurements for Experiment 1. 99
6.3 Server-based scheduling: Experimental setup. 101
6.4 Server-based scheduling: Inter-arrival timings for Experiment 1. 103
6.5 Server-based scheduling: Servers’ capacity over time for Experiment 1 (Mode 1). 104
6.6 Server-based scheduling: Latency Histograms in µs. 105
6.7 Experimental setup employed to compare switch models. 106
6.8 Switch Comparison: Server-based structure employed throughout the experiments. 107
6.9 HaRTES: Experimental setup. 112
6.10 HaRTES Temporal isolation: Jitter affecting the Trigger messages. 113
6.11 HaRTES Temporal isolation: Inter-arrival values for Experiment 1. 113
6.12 HaRTES Temporal isolation: Inter-arrival timings (simulator). 115
6.13 HaRTES Temporal isolation: Inter-arrival timings (hardware) (from Luis Silva et al. [64]). 115
6.14 HaRTES Temporal isolation: Inter-arrival moments theoretical description. 116
6.15 HaRTES Asynchronous Traffic confinement: Histogram of transmissions inside the EC

(simulator). 118
6.16 HaRTES Asynchronous Traffic confinement: Histogram of transmissions inside the EC

(hardware) (from Rui Santos et at [65]). 118
6.17 HaRTES Asynchronous Traffic confinement: Asynchronous and non-real-time traffic

throughput. 119

List of Tables

4.1 Table with generic characteristics of different Network Simulators [32], [44], [46],[49], [48]
,[50]. 56

4.2 Table with the INET models for wired and wireless communications [36]. 67

5.1 Properties stored in the StreamManagementUnit. 81
5.2 VerificationUnit table with all the simulation branch servers’ properties. 85
5.3 VerificationUnit table with all the simulation leaf servers’ properties. 85
5.4 Properties stored in the SRDB/NRDB module. 91

6.1 IEEE 802.1Q: Generated traffic properties for Experiment 1. 98
6.2 IEEE 802.1Q: Statistical values for Experiment 1. 99
6.3 IEEE 802.1Q: Latency values for Experiment 2. 101
6.4 Server-based scheduling: Generated traffic properties for all three modes of Experiment 1. 102
6.5 Server-based scheduling: Server properties for Experiment 1. 102
6.6 Server-based scheduling: Requests to the server-based framework. 103
6.7 Server-based scheduling: Statistical values for Experiment 1. 103
6.8 Server-based scheduling: Generated traffic properties for Experiment 2. 105
6.9 Server-based scheduling: Latency values for Experiment 2. 105
6.10 Switch Comparison: Generated traffic properties in the experimental scenarios. 107
6.11 Switch Comparison: Servers’ properties throughout all four experiments. 107
6.12 Switch Comparison: Experiment 1 results. 108
6.13 Switch Comparison: Streams’ modifications. 109
6.14 Switch Comparison: Experiment 2 results with the highest priority stream (S0) altered. . 109
6.15 Switch Comparison: Experiment 2 results with an intermediate highest stream (S1) altered.110
6.16 Switch Comparison: Experiment 2 results with a lower priority stream (S2) altered. . . . 110
6.17 HaRTES Temporal isolation: Generated traffic properties for both experiments. 112
6.18 HaRTES Temporal isolation: Assigned reservations properties for Experiment 2. 114
6.19 HaRTES Temporal isolation: Observed values for Experiment 2. 115
6.20 HaRTES Asynchronous Traffic confinement: Generated traffic properties for both experiments.117
6.21 HaRTES Asynchronous Traffic confinement: Assigned reservations properties for Experi-

ment 1. 117

v

Glossary

ART Asynchronous Requirements Table
AW Asynchronous Window
CAN Controller Area Network
COTS Commercial-Of-The-Shelf
CSMA/CD Carrier-Sense Multiple-Access with

Collision Detection
DES Destributed Embedded Systems
DM Deadline Monotonic
DS Deferrable Server
DRTS Distributed Real-Time Systems
EC Elementary Cycle
EDF Earliest Deadline First
EDP Explicit Deadline Periodic
ET Event-Triggered
FCFS First-Come First-Served
FTT Flexible Time-Triggered
FTTRS Flexible-Time-Triggered Replicated

Star
FTT-SE Flexible Time-Triggered Switched

Ethernet
HaRTES Hard Real-Time Ethernet Switch
HSF Hierarchical Scheduling Framework
IDE Integrated Development

Environment

LAN Local Area Networks
MAC Media Access Control
mit Minimum Interarrival Time
NED Network Description
NRT Non real-time
OSI Open Systems Interconnection
QoS Quality-of-Service
RM Rate Monotonic
SLA Service Level Agreement
SRDB System Requirements Database
SRT Synchronous Requirements Table
SW Synchronous Window
TM Trigger Message
TT Time-Triggered
TS Timeline Scheduling
TSN Time-Sensitive Networking
VID Virtual Local Area

Network (VLAN) Identifier
VLAN Virtual Local Area Network
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

vii

CHAPTER 1
Introduction

Contents
1.1 Problem Statement . 1

1.2 Objectives . 2

1.3 Document Outline . 2

The concept of Industry 4.0 is used to describe the current industrial revolution which proceeds
the three previous ones. In the 18th century, the shift from manual labor to mechanical
production, through steam and water power, led to the first industrial revolution. The
second industrial revolution occurred during the late 19th century, with the introduction of
electricity in the manufacturing process which improved the production by creating assembly
lines. Throughout the 1970s, the third revolution stemmed from the introduction of digital
electronics and communication technologies in the industrial sector. Industry 4.0 forecasts
the digitalization of the industrial process using three major technologies: Internet- of-
Things, Cyber-Physical Systems and Cloud Computing. In this transformation, computer
systems, sensors and intelligent machines are integrated into a single network, also known
as Industrial Internet-of-Things (IIoT). As several connected systems can interact with each
other, exchanging information grants more flexibility and autonomy to factories with machines
autonomously analyzing data, predicting failures and self-reconfigure when necessary. Besides
gains in flexibility, Industry 4.0 has significant improvements in efficiency and cost reduction,
productivity, human-machine interaction and product quality.

1.1 Problem Statement

Although the notion of Industrial Internet of Things offers considerable advantages for indus-
trial sector, the need to interconnect the factory different components makes the requirements
of industrial communication networks increasingly demanding. As the exchange of real-time
information between the several applications is essential for the accuracy and correctness of
the system, the implementation of a communication system that guarantees their timeliness
requirements, is a crucial process in the development of this kind of networks.

Among the different industrial communication infrastructures employed over the years, Eth-
ernet quickly became the most widely used due to several advantages that the protocol

1

2 CHAPTER 1. INTRODUCTION

provided. As the non-deterministic arbitration mechanisms of standard Ethernet did not
guarantee the capability of meeting the, often strict, real-time requirements of industrial
applications, several researchers strived to add support for real-time traffic over switched
Ethernet. Such technologies include Time-Sensitive Networking (TSN) and Hard Real-Time
Ethernet Switch (HaRTES) protocols. However, the process of developing and testing in-
dustrial networks using physical hardware can be complex, expensive and, for certain case
studies, considerably limited. The development of network simulators allows to circumvent
these issues. The creation of software models of the prototypes used in the industrial sector
makes the process of designing industrial networks significantly easier, cheaper and faster.
This work aims to integrate technologies from Industry 4.0 and network simulators with the
development of a HaRTES switch simulation model for industrial real-time networks.

1.2 Objectives

The main objectives of this dissertation are:

• Study of industrial real-time Ethernet protocols, focusing on technologies that use the
FTT paradigm;

• Survey of network simulators used in the scope of industrial applications and selection
of one of them;

• Implementation of simulation models for real-time Ethernet switches and their subsequent
validation;

• Analysis of the retrieved results.

1.3 Document Outline

This dissertation is organized as follows:

• Chapter 2 : starts by introducing some concepts regarding real-time systems and
scheduling techniques for both synchronous and asynchronous real-time traffic. Then, it
addresses the Ethernet protocol and presents some existing real-time technologies based
on Ethernet switching.

• Chapter 3 : is dedicated to the FTT-enable switch, HaRTES. It starts by introducing
the FTT paradigm and its implementation over switched Ethernet, the FTT-SE protocol.
Then discusses the objectives and architecture of the new switch and compares it to
its previous technology. Lastly, some improvements performed over the HaRTES are
presented.

• Chapter 4 : presents some of the most commonly used network simulators and compares
them to find the best candidate to implement the proposed switch. The chapter finishes
with a detailed description of the selected simulator.

1.3. DOCUMENT OUTLINE 3

• Chapter 5 : describes the created simulation models and their components.

• Chapter 6 : is dedicated to the experiments conducted to validate the developed models
and the result analysis.

• Chapter 7 : presents the conclusions of the dissertation and some possible lines for
future research.

CHAPTER 2
Theoretical Real-Time and Ethernet

concepts

Contents
2.1 Real-Time Systems . 5

2.1.1 Classification of real-time systems 6

2.1.2 Task Model . 7

2.1.3 Scheduling . 8

2.1.4 Schedulability Analysis . 14

2.1.5 Hierarchical Scheduling . 16

2.2 Real Time communications . 17

2.2.1 Communication paradigms . 18

2.3 Ethernet . 19

2.3.1 Ethernet Frame . 19

2.3.2 Ethernet Switch . 20

2.4 Real-time protocols over Ethernet . 23

2.4.1 Real-time protocols on COTS switches 23

2.4.2 Real-time protocols on customized hardware 25

This chapter presents some basic concepts regarding real-time systems and the Ethernet proto-
col, which are fundamental for understanding concepts introduced throughout this dissertation.
It initiates with the discussion of real-time scheduling algorithms and communications. The
chapter closes with the presentation of Ethernet technologies and real-time communication
protocols over the Ethernet switch.

2.1 Real-Time Systems

Sectors such as chemical, nuclear and flight control, automotive applications and military
systems potentially experience extreme consequences when the timeliness constraints of their
systems are not met [1]. Therefore, when designing these systems, i.e., real-time systems,
besides having to consider the correctness of the computed results, also required to guarantee

5

6 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

that computations, as well as communications, for the case of distributed real-time systems,
satisfy specific timing requirements, being deadline one of the more common ones.

2.1.1 Classification of real-time systems

In real-time systems, computational activities are described as a set of real-time tasks. Each
task is commonly characterized by its individual deadline, a constraint that restricts the task
response time, and can be classified depending on the consequences of a missed deadline [1]:

• Soft: When a task misses a deadline produces, it might produce useful results for the
system, although the delay may cause degradation to its quality and performance.

• Firm: The tasks results after a missed deadline have no utility for the system. Despite
there may be some performance degradation, these are tolerable depending on their
frequency, but there are no catastrophic consequences that result from such events.

• Hard: The tasks results after a missed deadline are useless. Furthermore, catastrophic
consequences, such as human losses or significant costs, may emerge.

Depending on the type of task handled, real-time systems can then be classified as [1]:

• Soft Real-Time: Systems that only handle firm and/or soft real-time tasks. These
are usually used in applications where the miss of a deadline is less critical such as
video/audio encoding and decoding, video streaming and image processing.

• Hard Real-Time: Systems that execute at least one hard real-time task. Also known
as safety-critical systems, these are used in several activities: missile control, airplane
control and nuclear plant control.

Real-time systems are generally associated with a set of tasks. Tasks can normally have three
different constraints [1]: temporal constraints, precedence constraints and resources
constraints.

• Temporal constraints: typically associated with each task’s deadline. However, it
can also be correlated to the window (Upper and lower bounds in which a task must
finish its execution), synchronization (Temporal boundary of the difference between
two generated events), or the distance of a task (time limit between completion and
consequent activation).

• Precedence constraints: associated with the order that the tasks are executed. If
a task (Ta) can only execute after another task (Tb) finishes, Tb is specified as the
predecessor of Ta. If a task has no predecessors, it is nominated as beginning task
whereas tasks with no successors are called ending tasks.

• Resources constraints: applied to a set of tasks whenever they must access the same
resource (shared resource) to continue their execution. For such cases it is necessary to
ensure that it is not accessed simultaneously by multiple tasks (mutual exclusion).

2.1. REAL-TIME SYSTEMS 7

The previously explained constraints will influence the moment when tasks are executed.
Real-time systems have an entity responsible for selecting the following task to execute from
a current set which is designated scheduler. It is possible to perform a scheduling analysis
to assess, if a given task set is schedulable (there is at least one feasible schedule), and then
arrange the task order by applying scheduling algorithms. Besides the scheduler, a generic
real-time system/kernel has the subsequent components [2]:

• Task Manager: responsible for creating, deleting, setting the initial activation and
updating each task state.

• Time Manager: accountable for activating the tasks, verifying time constraints and
measure time intervals.

• Resource Manager: grants mutual exclusion of a shared resource to the tasks (mutexes,
semaphores, etc.).

• Task Dispatching: picks the selected task from the scheduling process and puts it in
execution.

Even though a real-time system is formed by multiple entities, the scheduler is the one that
requires more attention because it is the responsible structure for implementing complex
algorithms that arrange the execution order of a task set. The following sections briefly
explain several real-time scheduling concepts.

2.1.2 Task Model

A task [1] is a computational process that performs a specific instruction executed by the
CPU. It can be classified as periodic, aperiodic and sporadic depending on its activation.
Periodic tasks arrive regularly with a fixed time interval between two consecutive activations
(inter arrival-time). Sporadic tasks are also activated regularly but with a minimum inter
arrival-time instead of a fixed one. Finally, for aperiodic tasks, their arrival cannot be predicted
nor constrained and can only be characterized by probabilistic means.
A set of periodic tasks can be characterized by the following model:

Γ = {τi(Ci, Ti, φi, Di, P ri), i = 1, 2, ..., n} (2.1)

where:

• Ci is the worst case computation time required to compute task τi, also designated as
Worst-Case Execution Time (WCET);

• Ti is the period of task τi;

• φi is the initial phase of task τi (the task first activation offset time);

• Di is the relative deadline of task τi;

8 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

• Pri is the priority of task τi;

The release/activation time (ri,k/ai,k) and absolute deadline (di,k) of the kth instance of a
task τi can be computed as:

ri,k = φi + (k − 1)Ti, i ∈ N (2.2)

di,k = ri,k + Ti = φi + kTi, i ∈ N (2.3)

The model (2.1) can be applied to sporadic tasks if the period parameter (Ti) is changed to
the minimum inter-arrival activation time (Tmiti) and the phase parameter (φi) is excluded:

Γ = {τi(Ci, Tmiti, Di, P ri), i = 1, 2, ..., n} (2.4)

For aperiodic tasks, the release instant and absolute deadline value can be computed as follows:

ri,k ≥ ri,k−1 + Tmiti, i ∈ N (2.5)

di,k = ri,k +Di, i ∈ N (2.6)

2.1.3 Scheduling

In real-time systems, the scheduler is responsible for assigning each task execution (scheduling)
by applying different algorithms and rules (scheduling algorithms). According to [1], the
scheduler requires three sets to create a schedule: a set of n tasks Γ = {τ1, τ2, ..., τn}, a set
of m processors P = {P1, P2, ..., Pn} and a set of s types of resources R = {R1, R2, ..., Rn}.
Besides these, precedence relations between tasks can be specified through cyclic graphs.
The scheduler ensures the execution of all tasks under the imposed constraints by assigning
processors from P and resources from R to tasks from Γ. Real-time scheduling algorithms can
be classified as [1]:

• Preemptive vs Non Preemptive:

– – In preemptive algorithms, a task execution can be interrupted by assigning the
processor to another one..

– In non-preemptive algorithms, a task always completes its execution when it is
assigned to the processor.

• Static vs Dynamic (priorities):

– In Static priority algorithms, the scheduler selects the task order based on their
fixed priorities. These are assigned to each task before their release.

– In Dynamic priority algorithms, the task’s priorities may vary through the system
execution, and the scheduling is based on these changeable parameters.

2.1. REAL-TIME SYSTEMS 9

• Offline vs Online:

– In Offline scheduling, the scheduling algorithm is applied to the task set before their
activation. The generated scheduler is then stored and executed during run-time.

– In Online scheduling, all the scheduling decisions are made in run-time, whenever
a task completes its execution or a new one is added to the task set.

• Optimal vs Sub-Optimal/Heuristic:

– A scheduling algorithm is optimal if it minimizes the cost function assigned to
the task set. However, if the cost function was not defined, an optimal scheduling
algorithm is one able to find a feasible schedule for the task set, provided that one
exists, computed with an algorithm of the same class.

– A heuristic algorithm is one that tends to find the optimal schedule using heuristic
functions.

A common taxonomy used for real-time scheduling is illustrated in Figure 2.1. The algorithms
are generally divided into online and offline scheduling, with offline being more suitable for
complex algorithms with high computational requirements. However, it is less flexible as,
unlike online scheduling, it does not support changes that may occur in the system. Regarding
online scheduling, it can be further classified depending on the priorities assigned to the tasks:
static or dynamic. Both these categories can be preemptive or non-preemptive.

Figure 2.1: Scheduling algorithms.

2.1.3.1 Periodic Task Scheduling

The following segments present some of the most used techniques [1]: Timeline Scheduling (TS),
Rate Monotonic (RM), Deadline Monotonic (DM) and Earliest Deadline First (EDF).

10 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

2.1.3.1.1 Offline Scheduling

Timeline Scheduling

Timeline Scheduling (TS) [1], also known as Cyclic Executive, is a scheduling algorithm that
splits the time interval assigned to the tasks execution in equal segments of time (time slots).
Each task is allocated to a given time slot in a way that all their requirements (frequency
and deadline) are respected. In the TS algorithm, a time slot is denominated Minor Cycle,
whereas the hyperperiod (minimal time interval from which the scheduler repeats itself) is
designated Major Cycle. Prior to the system’s execution, a schedule, in which all the tasks are
associated with Minor Cycles for a whole Major Cycle, is created and stored in a scheduling
table. The dispatcher then uses it and executes each task in their predetermined Minor cycle.
Even though this type of scheduling algorithm has a low complexity level, being an offline
technique makes it limited in terms of flexibility.

2.1.3.1.2 Online Scheduling

Fixed Priorities - Rate Monotonic

Rate Monotonic (RM) [3] is an online preemptive algorithm based on fixed priorities where
task’s priorities (Pi) are assigned monotonically based on their periods, with lower periods
corresponding to higher priorities:

∀τi,τj ∈ Γ : Ti < Tj → Pi > Pj (2.7)

Since it is an online technique, whenever a new task is activated or a running one completed,
the scheduler must select, at run-time, the task with the shortest period in the set for execution.
Furthermore, as the RM is a preemptive algorithm, running tasks can be interrupted if a new
one with a shorter period is activated. The Rate Monotonic was proven to be the optimal
algorithm among all the fixed-priorities techniques by Liu and Layland [3], for Di = Ti. They
demonstrated that any fixed-priority scheduling algorithm can only schedule a task set if it is
schedulable with RM.

Fixed Priorities - Deadline Monotonic

The Deadline Monotonic (DM) algorithm was created as an extension of Rate Monotonic
by Leung and Whitehead [4]. It is an online technique with fixed priorities in which tasks
have relative deadlines shorter or equal to their periods, i.e., Ci ≤ Di ≤ Ti. Following the
DM scheduling, priorities are monotonically assigned according to the relative deadlines (Di),
with tasks with lower deadlines being assigned higher priorities. Similar to Rate Monotonic,
the Deadline Monotonic is also a preemptive algorithm, meaning that an executing task can
be interrupted when a new one with a lower deadline is activated. Furthermore, the DM
algorithm was also proven to be an optimal fixed-priority algorithm by Liu and Layland [3],
meaning that the fixed-priority scheduling conditions applied to RM are also used in this
algorithm.

2.1. REAL-TIME SYSTEMS 11

Dynamic Priorities - Earliest Deadline First

The Earliest Deadline First (EDF) [3] is a preemptive technique based on dynamic priorities
in which the tasks relative deadlines are equal to their periods: ∀τi∈Γ : Di = Ti. In EDF, the
tasks priorities are assigned according to their absolute deadlines (di), i.e., tasks with earlier
deadlines relatively to the current execution time assigned higher priorities:

∀τi,τj ∈ ΓTa : di < dj → Pi > Pj , Ta ∈ R (2.8)

where ΓTa is subset of Γ, composed by ready tasks at the time instant Ta, and (di, dj)
the absolute deadlines at Ta for both tasks τi and τj . Comparing to the Rate Monotonic
scheduling algorithm, the EDF is capable of achieving higher utilization factors while reducing
the preemption levels of the overall system and guaranteeing timeliness. Nonetheless, it is a
more complex technique, which can be problematic for systems with low processing power
due to the algorithm’s high run-time overhead.

2.1.3.2 Aperiodic Task Scheduling

Asynchronous tasks [1], commonly external to the system, are event-triggered based and
cannot be controlled by the scheduler. Hence, in order to maintain the real-time system
requirements, with the integration of both synchronously and asynchronously task sets, some
mechanisms are applied to the latter so that their overall interference can become predictable
(deterministic) or, at least, bounded.

For that purpose, two types of techniques were created, one based on fixed priorities and
the other on dynamic priorities. Some of these algorithms will be presented in the following
segments.

2.1.3.2.1 Background Scheduling

In Background Scheduling [1], the aperiodic traffic is only processed when there are no periodic
tasks ready to execute. Although this procedure makes this algorithm very simple, there are
no guarantees that the time constraints of the aperiodic jobs will be satisfied, particularly in
high periodic load systems. Therefore, this method should only be used for aperiodic task
sets with limited timeless constraints and low periodic loads.

2.1.3.2.2 Server-based Scheduling

Server-based scheduling [1] is a technique that makes use of a periodic task (server) to act as
a proxy of associated sporadic or aperiodic tasks. A server can be described by a given period
Ts, and an execution time Ci (server capacity or budget). The server is scheduled just like a
regular periodic task by the scheduler and, when active, allows requests execution made by
aperiodic or sporadic tasks within its budget.

The server-based scheduling mechanisms are divided into static and dynamic priority scheduling.
Some of the static-priority most well-known algorithms are [1]:

12 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

• Polling Server (PS): The polling server activates every Ts, replenishes its capacity,
and executes any aperiodic requests within its budget. If the server capacity is exhausted
or there are no requests during its activation, it suspends and loses all its budget (if
it has any). Aperiodic requests that arrive during the suspended state must wait for
the replenishment in the next activation state. In a polling server, whenever a task
execution time surpasses the server capacity, it is suspended. Thus, the interference
caused by both aperiodic and periodic tasks is the same. As requests that arrive after
the server activation must wait to be processed, even if there are no other higher priority
active tasks, the general response time of this server is not satisfactory.

• Deferrable Server (DS): The deferrable server is an algorithm also characterized by a
periodic replenishment with period Ts and execution time Ci. Similar to a Polling Server,
a DS executes aperiodic requests within its budget, which is replenished periodically.
However, in this case, instead of depleting its capacity in the absence of requests,
the server preserves its budget until each period completion or its exhaustion. This
improvement allows better response times compared to the Polling Server. Nevertheless,
the possibility for aperiodic tasks to execute at any point within the server period causes
a drawback in the schedulability of the periodic traffic.

• Sporadic Server (SS): Similar to the deferrable server, the sporadic server preserves
its capacity until it is exhausted by aperiodic requests. The main difference is that, in
this server type, the server capacity budget is only replenished when it is used. These
procedures reduce the sporadic server impact when scheduling periodic tasks. The main
disadvantage is the complexity of its implementation.

• Priority Exchange (PE): Akin to the polling server, at the beginning of each period
(Ts), the priority exchange server replenishes its capacity and checks for aperiodic
requests. These servers are modeled as high priority tasks and can exchange their budget
with low priority ones. If the server has the set highest priority, it executes all pending
aperiodic requests within its budget. On the other hand, in the presence of higher
priority periodic tasks, the server grants its budget for the task execution. This type
of mechanism improves the schedulability. However, it increases the complexity and
worsens the response time.

Dynamic priority server scheduling is not implemented in the HaRTES architecture. Never-
theless, for the sake of completeness, two types of schedulers will be explained [1]:

• Total Bandwidth Server (TBS): The total bandwidth server is a dynamic priority-
based algorithm implemented to overcome the Sporadic Server limitation regarding the
requests delays, which result from long server periods. The main concept of the TBS is
that, while handling the aperiodic workload, the processor utilization never exceeds a
defined bound Us. In this algorithm, whenever a new aperiodic task is added to the

2.1. REAL-TIME SYSTEMS 13

system at t = rk, it receives the total server bandwidth, if possible. The deadline dk
assigned to the kth request that arrived at rk is computed as:

dk = max(rk, dk−1) + Ck
Us

(2.9)

where Ck is the request execution time and Us the server utilization factor (bandwidth).
Upon receiving a deadline, the tasks are inserted into a queue where they are treated as
normal periodic tasks to be scheduled by the EDF algorithm. Although the average
response time for aperiodic tasks is smaller, when comparing to other dynamic/static
priority servers, Spuri and Buttazzo [1] proved that a set of n periodic tasks with a
utilization rate of Up is only schedulable with the EDF by the TBS with a utilization
factor of Us when:

Up + Us ≤ 1 (2.10)

The main advantages of this server are its simplicity and low overhead. On the other
hand, it requires a priority knowledge of the server capacity and is vulnerable to overruns.

• Constant Bandwidth Server (CBS): The constant bandwidth server is a dynamic
priority-based server. The CBS algorithms guarantee that a server contribution to the
total utilization factor is always smaller than the total possessed bandwidth (Us), even
in the occurrence of overheads. A constant bandwidth server is characterized by a
budget cs and a pair of values (Ts, Qs), where Qs is the maximum budget and Ts the
server period. The server bandwidth (Us) is computed as: Us = Qs

Ts
. When a request

is added to the system, a mew scheduling deadline is assigned and afterwards stored
in an EDF queue. While executing, whenever a task demands more bandwidth than
the reserved (executes more than expected), its deadline is postponed, i.e., the tasks
priority decreases due to the EDF rules. By doing so, the task interference on the overall
workload is reduced. The CBS algorithm is defined as follows:

– At each instant, a deadline ds,k is associated to the server and, at the beginning,
ds,0 = 0.

– All of the servers jobs Ji,j receive dynamic deadlines di,j , which are equal to the
servers deadline, i.e., di,j = ds,k. Whenever a job is executed, the server budget
(cs) is decreased by the same amount.

– When the server total budget is depleted (cs = 0), it is recharged with the
maximum valued pre-defined cs = Qs, and a new server deadline is generated:
ds,k+1 = ds,k + Ts.

– A constant bandwidth server is defined as active at a time instant t if there is at
least one pending job Ji,j so that ri,j ≤ t < fi,j , otherwise is said to be idle. Note
that ri,j is the instant the job Ji,j arrives and fi,j , the worst-case finish time of the
respective job.

14 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

– Whenever the server is active and a job Ji,j arrives, it is stored in a queue of
pending requests.

– At any time the server is idle and a job Ji,j arrives, the server’s deadline ds,k is
computed as follows:

if cs ≥ (ds,k − ri,j)Us, the deadline ds,k stays equal

otherwise a new one is generated ds,k+1 = ri,j + Ts ∧ cs = Qs

– After a job is finished, the next pending request is assigned to the current budget
and deadline. If there are no requests, the server becomes idle.

Compared to a TBS, CBS has higher complexity due to the dynamic capacity man-
agement with similar response times for aperiodic requests. However, it has better
performance whenever the tasks WCET has a high variance. A set of n periodic hard
tasks, with a utilization factor Up only can be schedulable with the EDF algorithm,
using a set of m constant bandwidth servers with a processing factor Us =

∑m
i=1 Usi, if

condition (2.10) is verified.

2.1.4 Schedulability Analysis

Schedulability analysis is a computation performed by the scheduler and allows to determine,
a priori, if a task set is feasible, i.e., all the time constraints of each task will be met. In [1],
the most distinguished approaches are based on the utilization rate and response time. The
former has generally lower computational complexity but is more pessimistic when compared
to other approaches. Response time analysis tests are more complex, thus require systems
with higher computational power. Nonetheless, they tend to be less pessimistic, providing
more precise results.

2.1.4.1 Utilization based tests

Utilization tests are based on the fraction of time a processor spends to execute a task set
Γ = {τ1, τ2, ..., τn}. This factor, generally represented as U, is calculated by the sum of each
tasks contribution (uτi):

uτi = Ci
Ti

(2.11)

For a uniprocessor system with n tasks, the utilization factor can be computed as:

U =
n∑
i=1

(
Ci
Ti

)
(2.12)

By calculating this value, and comparing it to a certain threshold, it is possible to confirm
if the task set is schedulable. This bound depends on the system characteristics (task set
deadlines, periods and applied scheduling algorithm).

2.1. REAL-TIME SYSTEMS 15

In their study, Liu and Layland [3], proved that, for uniprocessor systems, any task set Γ
of n periodic and independent tasks can be schedulable with the RM policy if the following
inequality is verified:

U ≤ n(2
1
n − 1) (2.13)

2.1.4.2 Response Time based tests

Response time based tests are associated with the Worst-Case Response Time (WCRT), i.e.,
the maximum interval between arrival and finish time of a task. For each task, the scheduler
verifies if the WCRT is higher than their respective deadline and, if it occurs at least once,
the entire set is not schedulable.

For fixed-priority preemptive systems, Joseph and Pandya [5], showed that, for a periodic
task τi, its longest response time Ri is obtained by the sum of its computation time Ci and
the amount of interference that it can suffer from higher priority tasks in the system Ii:

Ri = Ci + Ii (2.14)

The maximum amount of interference occurs when a task τi and the remaining higher priority
tasks (hp(i)) are released at the same time, also know as critical instant:

Ii =
∑

∀j∈hp(i)

(⌈
Ri
Ti

⌉
× Cj

)
(2.15)

Computing equations (2.14) and (2.15) results:

Ri = Ci +
∑

∀j∈hp(i)

(⌈
Ri
Ti

⌉
× Cj

)
(2.16)

Equation (2.16) can be solved by the following iteration method:

Rn+1
i = Ci +

∑
∀j∈hp(i)

(⌈
Rni
Ti

⌉
× Cj

)
(2.17)

The iteration starts at R0
i and stops when Rn+1

i = Rni or when Rni > Di , i.e., when the
longest response time exceeds the task deadline. Audsley et.al [6] improved this analysis in
order to address the non-preemption effects of resource sharing. In this analysis, equation
(2.14) is reformulated by adding a blocking factor caused by lower priority tasks Bi:

Ri = Ci + Ii +Bi (2.18)

The blocking factor can be solved as:

Bi =

0, lep(i) = ∅

maxj∈lep(i){Cj} lep(i) 6= ∅
(2.19)

where lep represents the set of tasks with lower priority than τi.

It is important to highlight that, for this analysis, the critical instant is different due to the
blocking factor. Now it happens when both τi and the remaining higher priority tasks are
released, immediately afterward a lower priority task that blocks τi starts its execution.

16 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

2.1.5 Hierarchical Scheduling

Hierarchical scheduling or Hierarchical Scheduling Framework (HSF) [7], [8], are techniques
implemented to simplify issues imposed by systems with global scheduling analysis. Apart
from their complexity, these systems are more suitable for situations when the information
about the systems applications established are a priori (closed systems). Nonetheless, there are
multiple sectors where closed systems are not fitting as they are unable to execute applications
during run-time that have not been scheduled together with the current set. Thus, different
methodologies such as HSF were developed to overcome these problems.

Hierarchical scheduling allows fragmentation of global and complex systems into a set of
subsystems whose individual analysis simplifies the scheduling problem. A hierarchical
scheduling framework is typically represented as a tree, similar to the ones used in data
structures (binary trees). Each component/subsystem is represented by nodes. These are
independent structures hence, they all have individual schedulers to schedule their local task
set. Each component also includes an interface that simplifies the integration of different nodes
in the system by modeling their individual requirements into a single real-time requirement.
Furthermore, it is also used to allocate resources between different hierarchy levels (parent →
child).

According to Shin and Lee [7], [8], the following properties must be verified in any hierarchical
scheduling framework:

• Independence: each node schedulability analysis must be performed independently to
all other components of the same hierarchical level.

• Separation: the interaction between parent and child nodes is made through an
interface that abstracts their inner complexity.

• Universality: all the components are independent. Thus any scheduling algorithm can
be applied to them.

• Composability: the scheduling analysis of a parent component considers all its chil-
dren’s requirements. As such, these are only schedulable if all their children’s time
requirements are satisfied.

These properties are feasible using techniques based on server architectures as they have
efficient methodologies to control resource distribution. Such scheduling techniques provide
transparency when allocating virtual resources (fraction of the capacity of the corresponding
hardware resources) to the components of the hierarchy. Consequently, server-based structures
can be considered suitable for component-based scheduling interfaces.

A model for the construction of HSF was presented by Shin and Lee [7], [8]. In this model,
a component C is defined as a triplet (W, R, A), where W represents the workload (task
set), R the resources available and A the scheduling algorithm that defines how the resources
are shared by the workload. Using this nomenclature, two functions were established: (i) the

2.2. REAL TIME COMMUNICATIONS 17

demand bound function and (ii) supply bound function. The former, dbfA(W,t), quantifies
the maximum workload W that can be submitted to resource R under the scheduling policy
A during a time interval t. The later, sbfR(t), computes the minimum possible resources that
R can provide through a certain time interval t. Resource R satisfies the submitted workload
W if:

dbfA(W, t) ≤ sbfR(t), ∀t ∈ R+ (2.20)

Furthermore, the authors also defined a real-time model, Γ(Π,Θ), which characterizes the
periodic allocation of the resource R by workload W. This periodic model represents a resource
supply that provides Θ resource units periodically, every Π time units. Consequently, the
supply bound function, sbfΠ(t), can be defined as:

sbfΠ(t) =

bΘ +max{0, t− a− bΠ}, t ≥ Π−Θ

0, t < Π−Θ
(2.21)

where:

a = 2(Π−Θ) ∧ b =
⌊ t− (Π−Θ)

Π
⌋

(2.22)

The model proposed by Shin and Lee, Γ(Π,Θ), was generalized for hierarchical frameworks
by Arvind et al. [9] and named Explicit Deadline Periodic (EDP). This model is also
characterized by a triplet, Ω = (Π,Θ,∆), which represents a resource supply that periodically
provides, every Π time units, Θ resources units during ∆ time units, where ∆ ≤ Π. Thus,
the periodic model Γ(Π,Θ) can be defined as (Π,Θ,Π) using the EDP structure. The supply
bound function, sbfΩ(t), is now computed as:

sbfΩ(t) =

bΘ +max{0, t− a− bΠ}, t ≥ ∆−Θ

0, t < ∆−Θ
(2.23)

where:

a = (Π + ∆− 2Θ) ∧ b =
⌊ t− (∆−Θ)

Π
⌋

(2.24)

2.2 Real Time communications

As previously described, the task’s execution on real-time systems is highly conditioned by
their temporal constraints. A set of real-time systems interconnected by communication
systems (networks) is generally known as Distributed Real-Time Systems (DRTS). Contrarily
to standard real-time systems, which only impose time constraints on the tasks execution,
DRTS also enforce these restrictions on exchanging messages within the network. There-
fore, these systems behavior depends on both timeliness execution of the real-time nodes
and communication systems capability of transmitting messages while satisfying timeliness

18 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

requirements. Communication systems that can provide such services are known as real-time
communication systems [10].

Equally to real-time systems, which must properly schedule the task set to satisfy the time
requirements, communication networks must also apply scheduling techniques when multiple
nodes use a shared medium to exchange messages. Its purpose is to control the access of each
device to the network so that the overall system time specifications can be maintained. Similar
to task scheduling, techniques used in communication networks can also be classified into: (i)
soft, hard and non-real-time, when referring to their time constraints, or (ii) periodic, aperiodic
and sporadic, according to their activation. Although this allows the use of scheduling methods
applied to tasks, such as scheduling analysis, to be used in the network domain, there are
several network-specific issues in distributed real-time systems, such as, e.g., the lack of
preemption, that require suitable adaptations.

2.2.1 Communication paradigms

To initiate communications, i.e., message exchanging between network nodes, real-time com-
munication systems can use two distinct approaches, time-triggering and event-triggering
[10]:

• Time-Triggered (TT): In systems following the time-trigger paradigm, message
transmissions within the network only occurs at specific temporal instants. Those
moments are defined in a scheduling table that the network nodes must follow. Therefore,
all the nodes must be synchronized and have a common time reference so that the
triggering of messages happens at the defined instants. The scheduling table can be
built prior to the system activation, i.e., offline, or online, while the system is operating.

• Event-Triggered (ET): Regarding systems that use the event-trigger paradigm, the
transmission of application messages is triggered upon the occurrence of an asynchronous
event, meaning that they can occur at arbitrary time instants, and cannot be controlled
by the network. However, using the minimum inter-arrival time between consecutive
events, it is possible to determine the upper bounds for the response time of these
systems.

When comparing both paradigms, time-trigger communications are more suitable for syn-
chronized systems, where they can provide low latency and jitter when handling messages.
Regarding event-trigger strategies, due to the unpredictability of asynchronous traffic dis-
patching, these approaches are more fitting to handle sporadic messages with low latency.
Nonetheless, upon receiving an overload of asynchronous messages, these procedures may
suffer from high jitter and latency. Thus, to solve these issues, systems may ignore less
important requests, only executing higher priority tasks, or switch to a time-trigger approach.

Several real-time systems use time and event-trigger approaches when handling both syn-
chronous and asynchronous messages. The main advantages of employing both topologies are

2.3. ETHERNET 19

the increase in flexibility on the overall system and costs reduction. However, the two distinct
traffics must be temporally isolated so that the asynchronous nature of event-trigger messages
can not interfere with the time-trigger traffic. This can be done by assigning bandwidth
restricted sections to different traffic classes.

2.3 Ethernet

Ethernet is a communication technology for connecting devices, being the most commonly
used to construct Local Area Networks (LAN). It was approved and released by the IEEE as
IEEE 802.3 [11] in 1983, with CSMA/CD mechanisms. Carrier-Sense Multiple-Access with
Collision Detection (CSMA/CD) is a collision-based protocol where multiple nodes can access
the medium (Multiple Access - MA). However, each one must first confirm if the medium
is idle before sending data (Carrier Sense - CS). Even with these measures, there still is
the possibility that two distinct nodes start their transmissions at the same instant, thus
resulting in a collision. This is detected as they keep sensing the medium even after sending
the data, which stops the transmission (Collision Detection - CD). Both devices must then
wait a random time interval and retry. The process is repeated a maximum number of times
or until the transmission process is completed.

2.3.1 Ethernet Frame

The standard Ethernet IEEE 802.3 data frame is illustrated in Figure 2.2 [11].

Figure 2.2: Standard Ethernet IEEE 802.3 Data frame.

The several fields present on the frame have the following functions:

• Preamble: used to establish the synchronization of the receiver devices.

• Start of Frame Delimiter (SFD): sequence of 8 bits with the value "10101011". It
indicates the termination of the preamble and the start of the Ethernet frame.

• Destination and Source Media Access Control (MAC) Addresses: used to
identify the destination and source network interfaces, respectively.

20 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

• Length or Type: value between 0 to 216− 1 that indicates the length of the payload or
the protocol encapsulated in the data payload (e.g., 0x800 for IPv4 datagrams, 0x86DD
for IPv6 datagrams).

• Payload: field that contains the data to be sent/received. It can range from 46 to 1500
bytes.

• PAD: field used for padding, whenever the minimum imposed size of 64 bytes for the
frame is not reached.

• Frame Check Sequence (FCS): value generated by the transmission device, used for
error detection by other nodes upon receiving the MAC frame.

2.3.2 Ethernet Switch

Ethernet switches emerged in 1990 as a mean to overcome the existing issues in Ethernet
networks, specifically the lack of non-determinism from the CSMA/CD arbitrary methods,
misusage of the accessible bandwidth, and absence of traffic isolation. A switch or bridge
is an interconnection device that operates at the data link layer of the Open Systems
Interconnection (OSI) reference model (second layer). Contrarily to Ethernet hubs, these
devices have mechanisms that reduce the bandwidth wastage which result from broadcasting
receiving frames to unnecessary network nodes. Instead, the switch forwards the data only
through specific destination ports, thus increasing the overall throughput.

The general structure for the internal architecture of an Ethernet switch is illustrated in Figure
2.3. Upon the arrival of a new message, the frame is first buffered at the input ports, where
its destination addresses are analyzed, and then moved towards the buffers of the appropriate
destination port. However, if that output port is busy, the frame is stored in a queue for later
transmission. Most current switches can handle the incoming traffic rate at the reception.
Therefore, the input queues are generally smaller and do not build-up. The output queues,
however, may rapidly fill-up if several frames arrive in short time intervals. As the frames are
processed according to a First-Come First-Served (FCFS) scheduling policy, higher priority
messages can be delayed by the transmission of lower priority ones. To overcome these issues,
the IEEE 802.1D [12] standard was proposed.

Following the IEEE 802.1D standard, switches may have a limit of eight parallel queues for
the distinct priority levels. It is important to highlight that, for these types of switches, the
scheduling policy used to process received messages will strongly impact the timing behavior
on the network.

2.3. ETHERNET 21

Figure 2.3: Internal structure of an Ethernet switch (from R. Marau, L. Almeida and P.
Pedreiras [13], 2006).

Some of the Ethernet switches, following the IEEE 802.1D standard, had issues separating
the incoming traffic into classes with different Quality-of-Service (QoS) requirements. To
solve these problems, the original IEEE 802.3 data frame was extended to a set of standards
that improve the traffic segregation. These included the IEEE 802.1Q for VLAN tagging
and IEEE 802.1p and IEEE 802.1AC for priority identifier. A standard Ethernet frame with
VLAN-tagging is illustrated in Figure 2.4 [14].

Figure 2.4: Standard IEEE 802.1Q Ethernet VLAN-tag frame.

The fields of the 802.1Q tag have the following functions:

• Tag Protocol Identifier (TPID): 16-bit field with a fixed value of 0x8100 that
identifies the frame as an Ethernet 802.1Q-tagged frame. It is located in the same
position as the standard Ethernet Type/Length field for untagged frames.

• Priority Code Point (PCP): indicates the frame priority level, which can go from 0
to 7.

22 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

• Drop eligible indicator (DEI): 1-bit field that may be used in conjunction with PCP
that indicates if a frame can be dropped in the event of an obstruction.

• VLAN Identifier (VID): specifies the VLAN to which the frame belongs. There are
two reserved values: 0x000 and 0xFFF. The former indicates that the frame does not
belong to a VLAN, and the 802.1Q tag only specifies its priority. The later is reserved
for future implementation.

The forwarding mechanism for switches that do not support traffic segregation, i.e., do not use
the IEEE 802.1Q VLAN tags, rely on MAC addresses. These devices have a forwarding table
that maps the addresses of network nodes to the switch port, to which they are physically
connected. The table can be static, with pre-configured addresses, or dynamically updated
whenever a new frame arrives. However, if the MAC destination address of a given message is
not registered on the forwarding table, the switch forwards the data to all the connected devices
through broadcasting. Otherwise, frames are transmitted exclusively to their corresponding
end-nodes. Ethernet switches support three types of forwarding addresses [14]:

• Unicast: forwarding a frame from the source node directly to the destination device
thought the association of the MAC address to the connected output port.

• Multicast: forwarding a frame from a source device to a group of nodes. For this
process, the IEEE 802.3 specifies distinct MAC addresses to define multicast groups. The
forwarded frame is then received by all the nodes that belong to that group. Multicast
protocols operate at the Network layer (layer 3) of the OSI model. Some Ethernet
switches handle traffic at layer 3, supporting multicast addresses. However, pure layer 2
switches process multicasting as standard broadcasting.

• Broadcast: implies the forwarding of a frame from the source device to the remaining
nodes connected to the switch. The specific address 0xFFFFFFFFFFFF is set as the
frame destination address. The switch recognizes it as a broadcasting address and
forwards the frame to all output ports except the one that sent the frame.

Lastly, regarding switching methodologies, it is also important to distinguish the two different
methods used:

• Store-and-forward: The frame is firstly stored by the switch before being dispatched.
This procedure allows the error verification inspecting the FCS field. Frames that pass
the verification process are dispatched while others are discarded.

• Cut-through: The frame is forwarded by the switch while being received. The switch
starts the forwarding process after processing the MAC destination address or VID for
VLAN-tagged frames.

Although the former method is more reliable, since it prevents error propagation on the overall
network, the latter mechanism is generally faster, which decreases the switch latency.

2.4. REAL-TIME PROTOCOLS OVER ETHERNET 23

2.4 Real-time protocols over Ethernet

As previously mentioned, standard Ethernet lacks the capabilities and determinism required
for real-time networks. One of the reasons is the CSMA/CD mechanisms that may cause
indefinite delays when collisions occur. Although this problem has been partially solved
by the Ethernet switches development, these devices introduced other issues such as packet
drops in overload situations and switching delays. In order to enforce real-time behavior in
Ethernet switches, several solutions have been proposed. These can be categorized into two
major groups: (i) relying on Commercial-Of-The-Shelf (COTS) Ethernet Switches; (ii) using
customized Ethernet hardware.

2.4.1 Real-time protocols on COTS switches

The first group includes techniques as traffic shaping, master-slave protocols that can improve
the efficiency of how the device handles incoming messages, e.g., QoS management, admission
control, scheduling. These are used by different protocols such as Flexible Time-Triggered
Switched Ethernet (FTT-SE) [13], and ETHERNET Powerlink [15].

2.4.1.1 Flexible Time Triggered - Switch Ethernet (FTT-SE)

The FTT-SE [13] is a COTS-based protocol to obtain real-time communications over switched
Ethernet networks. It is an adaptation of the FTT-Ethernet [16] that follows the Flexible
Time-Triggered (FTT) paradigm [17] and uses a master/multi-slave architecture. On the
other hand, the FTT-SE master addresses multiple slaves with a single poll, thus reducing
the protocol overhead. Since it follows the FTT paradigm, the communications are organized
in fixed duration slots, known as Elementary Cycle (EC). Starts with the FTT master
broadcasting a specific message, the Trigger Message (TM), which contains the periodic
schedule for the current EC. The protocol supports both synchronous and asynchronous traffic.
The first is scheduled and polled directly by the FTT master whereas the other is managed in
the background, in the remaining EC time after handling the periodic traffic.

A standard architecture for systems based on the FTT-SE can be depicted in Figure 2.5. In
Section 3.2, a more detailed explanation regarding the internal architecture of the FTT-SE
and the management of synchronous and asynchronous traffic is presented.

24 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

Figure 2.5: Typical FTT-SE system architecture.

2.4.1.2 Ethernet PowerLink (EPL)

ETHERNET PowerLink [15] is a real-time protocol based on standard IEEE 802.3 Ethernet
that allows deterministic data transmission. The EPL has a master-slave control mechanism
operating at the data link layer of the OSI model. This mechanism allows the master
controlling the medium access through explicit messages. Besides preventing collisions, this
technique also grants high determinism to the network, as non-deterministic methods used in
the standard Ethernet such as CSMA/CD, are not activated.

The communications are divided into a sequence of cycles. Each has phases (time intervals)
where the periodic (isochronous) and aperiodic (asynchronous) traffic is processed. In the EPL
protocol, the master is known as Managing node. This node controls the communications
by sending message requests at specific instants to a particular node. The slaves (Controlled
nodes) react to those messages by sending a response containing the data. As such, it is
the managing node that schedules both periodic and aperiodic traffic by triggering each of
them every cycle phase. A cycle of the EPL protocol can be divided into four distinct phases
(Figure 2.6):

• Start Phase: All nodes are synchronized to the master node’s clock. This is achieved
by transmitting, at the beginning of each cycle, a specific message designated Start of
Cycle (SoC).

• Isochronous Phase: The managing node triggers the periodic traffic and assigns a
time slot for each node to transfer their critical data by sending a poll request frame.

2.4. REAL-TIME PROTOCOLS OVER ETHERNET 25

Addressed nodes answer with a poll response. As the data transmitted is broadcasted,
the communications are based on a producer-consumer model.

• Asynchronous Phase: The managing node allows a single particular node to send an
aperiodic message. The master sends a Start of Asynchronous frame (SoA), and the
replying node answers with a message containing the data. Standard IP-based protocols
such as TCP/IP can be used during this phase.

• Idle Phase: Time interval without communications. Provides low jitter between
consecutive cycles.

Figure 2.6: ETHERNET PowerLink communication cycle (based from [2]).

2.4.2 Real-time protocols on customized hardware

The use of COTS hardware includes a major limitation: only nodes that comply with the
associated protocols can be integrated into the network. This implies that: (i) standard
Ethernet nodes cannot be used since they can jeopardize the real-time services, and (ii)
malfunctioning nodes can risk the system timeliness. Both problems can be solved by
introducing management and control mechanisms in the Ethernet switch. This way, it is still
possible to use COTS hardware and software, while real-time services can be integrated into
specific layers.

2.4.2.1 Profinet-IRT

PROFINET is an industrial Ethernet standard developed by PROFIBUS & PROFINET
International. Real-time communications can be achieved by PROFINET IO or PROFINET
Component Based Automation (CBA) protocols. PROFINET CBA operates the component-
based communications using TCPI/IP for data exchanging between machines and real-time
(RT) communications to achieve the time requirements. PROFINET IO uses exclusively
real-time and isochronous real-time communications (IRT) for distributed I/O designed for
fast data exchange.

PROFINET-IRT [18] is part of the PROFINET protocol for high deterministic networks and
fast cycle times, with values reaching 250 µs. To achieve strict and tight deadlines, PROFINET

26 CHAPTER 2. THEORETICAL REAL-TIME AND ETHERNET CONCEPTS

introduced the Enhanced Real-Time Ethernet Controller (ERTEC) for isochronous Ethernet
communications. The principle behind PROFINET-IRT consists of splitting each cycle into
phases, in which a specific type of traffic is sent (Figure 2.7).

One phase is for IRT traffic, i.e., all the non-IRT messages are buffered and only IRT frames
are transmitted. The other is used for both real-time and non-real-time traffic for standard
address-based Ethernet communications. Although this method provides traffic isolation,
it also requires efficient planning to obtain the communication schedule. The scheduler,
responsible for this procedure, plans the IRT time slots. The remaining time slots will depend
on the number of frames sent in each phase.

Figure 2.7: PROFINET-IRT communication cycle (based from [19]).

Each schedule is calculated for a system specification and includes information regarding
network topology, producer’s and consumer’s data amount, and connection characteristics
(cable length, type of medium, cable delay, etc.). As a result, whenever there is a change in
the system, a new schedule must be created.

2.4.2.2 Avionics full duplex switched Ethernet (ADFX)

Avionics Full Duplex Switched Ethernet (AFDX) [20] is a network communication specification
based on the IEEE 802.3 and ARINC 664, part 7 standards. The latter one defines the
electrical and protocol specifications for high deterministic data exchange between avionic
subsystems. As depicted in Figure 2.8, an AFDX network is formed by Avionic Subsystems
and AFDX switches. The subsystems, e.g., flight computer control and global positioning
system contains an AFDX End system that provides an interface to transmit data via Ethernet
frames between the network nodes. Furthermore, AFDX networks implement two redundant
networks using two independent switches to increase the system robustness. As such, every
Avionic Subsystem has two pairs of Ethernet ports to send and receive redundant frames from
both switches.

2.4. REAL-TIME PROTOCOLS OVER ETHERNET 27

Figure 2.8: Typical AFDX architecture (based from [2]).

The central feature of AFDX networks is their communication channels, virtual links (VL).
These channels allow communications between one source and multiple destination end-systems
through unidirectional logical connections. Each virtual link has a dedicated bandwidth,
controlled by traffic shapers at the end systems, which impose a minimum time interval
between consecutive messages defined as bandwidth allocation gap (BAG).

Regarding standard switches that route incoming frames according to Ethernet MAC addresses,
AFDX network messages are routed according to a 16-bit value named Virtual Link ID.
Moreover, AFDX switches also introduced frame filtering and traffic policing to control VL
requirements and prevent the interference of misbehavior subsystems.

CHAPTER 3
An FTT-Enabled Switch - HaRTES

Contents
3.1 The Flexible Time Triggered paradigm . 29

3.1.1 FTT Elementary cycle . 30

3.2 Flexible Time Triggered Switch Ethernet 31
3.2.1 FTT-SE master architecture . 32

3.2.2 FTT-SE slave architecture . 33

3.2.3 FTT-SE communication model . 34

3.3 Hard Real Time Ethernet Switch . 35
3.3.1 HaRTES internal architecture . 36

3.3.2 HaRTES communication description 38

3.3.3 Advances over the HaRTES implementation 40

As discussed in the previous chapter, DRTS are highly dependent on the communication
subsystem capability to accurately exchange messages between nodes without jeopardizing
the system timeliness. As time passed, the DRTS requirements evolved, with higher flexibility
demands to support online modifications to the system configuration, which were solved with
the creation of the FTT paradigm. As such, this chapter starts by introducing this protocol,
followed by the description of an Ethernet-based switched technology to which it was applied,
the FTT-SE. Lastly, the chapter closes with the presentation of HaRTES, a modified Ethernet
switch based on the FTT paradigm.

3.1 The Flexible Time Triggered paradigm

The Flexible Time Triggered paradigm [17] is a communication model that enables DRTS
to exchange real-time messages while maintaining both flexibility and timeliness guarantees.
Contrarily to other communication protocols, the FTT paradigm supports online communi-
cation changes to the message set that arrive, e.g., from dynamic QoS management. This
paradigm operates at several layers in the OSI model, however it requires an existing network
protocol, implemented on the physical layer, to be deployed.

The FTT paradigm is based on a master-slave architecture. The master node, responsible
for handling the communications, contains all the information regarding traffic requirements,

29

30 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

scheduling policy, QoS management, and admission control. To inform the slaves about the
scheduling arrangements, the FTT master uses a master/multi-slave transmission control
where it periodically broadcasts a specific message named trigger message (TM) with the
information about the current schedule. The slave nodes, on the other hand, receive the TM
and decode them in order to verify whether they are or are not producers of any scheduled
message. This procedure has two consequences: (i) the system overhead decreases as the
traffic triggering can be done using a single TM, and (ii) the whole network timeliness will
depend on the master node timeliness.

There are several instances of the FTT paradigm being applied to different network technologies,
such as the FTT-CAN, that operates in Controller Area Network (CAN), the FTT-Ethernet,
employed in bus network topologies, and based on shared Ethernet, the FTT-SE and HaRTES,
both based on COTS switched Ethernet and applied to star network topologies. However, the
latter is a custom Ethernet switch, whereas the former utilizes legacy switches. Nonetheless,
despite being implemented in different technologies, the following FTT properties are still
present:

• High flexibility for handling synchronous traffic.

• Online admission control for real-time traffic.

• Support dynamic modifications for both the traffic properties and scheduling policies.

• Support different classes of traffic (synchronous and asynchronous real-time and non-
real-time traffic) with temporal isolation.

3.1.1 FTT Elementary cycle

In the FTT paradigm, the communications are organized in a sequence of time-slots with
a fixed duration designated Elementary Cycles (EC). As depicted in Figure 3.1, each EC
begins with the transmission of a TM by the FTT master. It synchronizes the slave nodes
and informs them about the cycle scheduled messages. The remainder of each EC is divided
into two distinct windows, Synchronous Window (SW) and Asynchronous Window (AW),
that handle the synchronous and asynchronous traffic, respectively.

Figure 3.1: FTT paradigm Elementary Cycle structure (based from [2]).

The duration of each elementary cycle can be configured, and it is defined as LEC time
units. This interval specifies the communication resolution since all traffic characteristics, i.e.,
deadlines, periods, phases, are multiples of this parameter. Within each EC, it is possible to
distinguish four intervals that, overall, define each cycle length:

3.2. FLEXIBLE TIME TRIGGERED SWITCH ETHERNET 31

• LTM : time interval that includes the broadcasting of a TM by the FTT master plus a
guard window for propagation differences between nodes.

• TAT (turn-around time): period required by the FTT slaves to process and decode
the TM.

• lsw(i): asynchronous window time length. It is a variable parameter that depends on
the number of synchronous messages scheduled in the current EC (EC(i)). However, it
is possible to define a maximum value for this window (LSW), thus always guaranteeing
minimum bandwidth for handling the asynchronous traffic.

• law(i): duration of the asynchronous window. It can be calculated as the current EC
remaining time:

law(i) = LEC − LTM − TAT − lsw(i) (3.1)

Equation 3.1 can be reformulated using the the synchronous window maximum size,
thus also guaranteeing a minimum length for this window:

LAWmin = LEC − LTM − TAT − LSW (3.2)

There is also temporal isolation within each EC that prevents the asynchronous traffic from
interfering with the synchronous one. This is done by guaranteeing that transmissions only
begin if they are completed within each EC window. Lastly, an idle internal (α), may also be
used at the end of the asynchronous window, before the next EC, whenever a message does
not fit in the window, and the cycle must be delayed until the following one.

3.2 Flexible Time Triggered Switch Ethernet

The FTT-SE [13] is a real-time communication protocol for COTS Ethernet switches based
on the FTT paradigm. It was designed for master/multi-slave network architectures where
the master node (FTT master) is responsible for the whole network traffic management. As
such, each slave node transmits its communication requirements to the master, which then
creates a schedule and broadcasts it using Trigger Messages. This schedule is based on the
FTT paradigm Elementary Cycles, which provides separate time windows for synchronous
and asynchronous transmissions.

Slave nodes transmit FTT packets through communication channels designated streams. Each
stream is characterized by a specific traffic class (synchronous or asynchronous) and has
specific time requirements. Furthermore, a single stream can have multiple subscribers. For
messages to be scheduled, FTT slaves must register their streams in FTT master. Therefore,
the master node is responsible for managing the streams, whereas, by sending particular
control requests to the master, the slaves, handle their operations (e.g., creation, modification).
With the communication requirements registered, the master can then broadcast the TM
and, after decoding it, slaves transmit their produced packets if instructed. This mechanism

32 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

provides control of FTT communications to the master, making it responsible for maintaining
the timeliness and the system integrity.

Figure 3.2: FTT-SE master/slave architecture (based from [20]).

3.2.1 FTT-SE master architecture

The internal architecture of the FTT master, illustrated in Figure 3.2 by the shaded area,
contains five essential structures.

• Application Interface: allows access to services for system management. While the
FTT master can access these locally with the appropriate software, slave nodes need to
transmit specific asynchronous control messages created by their applications. Accessible
services with this interface include: system configuration (e.g., set the EC duration),
message management and information acquisition (e.g., jitter or latency values).

• System Requirements Database (SRDB): a central repository that stores all
the information regarding the messages’ characteristics (real and non-real-time) and
parameters for the system configuration. Within the SRDB it is possible to distinguish
three different tables: (i) Synchronous Requirements Table (SRT), (ii) Asynchronous
Requirements Table (ART), and (iii) Non-Real-Time Requirements Table (NRT) for
the three distinct traffic classes.

The SRT contains the properties of Ns synchronous messages processed in the system.

SRT ≡ {SMi(DLCi, Ci, Phi, Pi, Di, P ri, ∗Xfi), i = 1..Ns} (3.3)

where SMi represents a message, DLCi its data length in bytes, Ci the transmission
time, including overheads, Phi the initial phase (if defined), Pi the period for periodic

3.2. FLEXIBLE TIME TRIGGERED SWITCH ETHERNET 33

messages or Minimum Interarrival Time (mit) for aperiodic, Di the deadline, Pri the
messages’ fixed priority and lastly ∗Xfi is a specific data structure defined in the SRT
to enhance the system functionalities.

The ART contains the properties of Na asynchronous messages including both, the
ones with and without timeliness constraints:

ART ≡ {AMi(DLCi, Ci,miti, Di, P ri), i = 1..Na} (3.4)

where AMi is used to represent each message. The rest of the table is similar to 3.3
except for the absence of both the initial phase and the additional data structure. The
Period parameter is replaced by the minimum inter-arrival time (mit).

Lastly, the non-real-time traffic, which is handled with a best-effort policy, has no
timeliness constraints. Therefore, the FTT master only needs to know the producer
streams and the size of their largest message. The NRT contains these properties for
Nn streams that produce non-real-time messages.

NRT ≡ {NMi(SIDi,MAX_DLCi,MAX_Ci, P ri), i = 1..Na} (3.5)

where each message is represented with NMi. The SIDi property identifies the message
sender node, MAX_DLCi the data length of the largest transmitted message in bytes,
MAX_Ci the maximum transmission time, and Pri the node non-real-time priority.

• EC Scheduler: operates online and, according to the information stored in the SRDB,
creates an EC-based schedule according to a specific algorithm (EDF, RM, and DM
currently supported). It uses the content from both synchronous and asynchronous
real-time tables as well as the system configuration to determine which synchronous
messages should be transmitted.

• Admission Control: invoked whenever the real-time message set is altered. Uses
different schedulability tests based on the scheduling algorithm employed and the SRDB
content to assess the timeliness constraints of real-time traffic.

• Dispatcher: builds the trigger message with the created EC-schedule. It is posteriorly
broadcasted to every device connected to the switch.

3.2.2 FTT-SE slave architecture

The FTT slaves, also known as stations, have a simpler architecture compared to the FTT
master, having three relevant structures, as illustrated in Figure 3.2.

• Application Interface: structure with similar functionalities as the one presented
in the FTT master. As such, it provides a set of services for traffic management.

34 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

Regarding the real-time traffic, which is triggered by the master node, applications
may request modifications to the stream, i.e., filter the produced and received messages
or set call-back for specific events (e.g., occurrence of a missed deadline). Lastly, the
asynchronous traffic is generated by the slave application and must be signalled to the
master so it can be triggered and posteriorly processed.

• Node Requirements Database (NRDB): central repository identical to the SRDB
for slave nodes. It contains information regarding the streams’ properties and require-
ments.

• FTT Interface Layer : responsible for receiving and decoding the TM and transmit
the node messages according to the EC schedule. Upon receiving a new frame, this
interface scans the NRDB and checks if the message ID belongs to the set that should
be locally received and processed. If so, the frame is stored in a queue with a FCFS
priority policy otherwise, it is discarded.

3.2.3 FTT-SE communication model

Regarding the scheduling of synchronous traffic, the FTT-SE master node uses an online
scheduler that may consider the messages’ priorities, either dynamic or static, when creating
the schedule. The FTT-SE synchronous scheduling model can be represented by a set of Ns

periodic streams (SMi) stored in the SRT.

STR = {SMi : SMi(Ci, Di, Ti, Oi, Si, {R1
i ...R

ki
i)}, i = 1...Ns} (3.6)

where is Ci each stream message transmission time, Di the stream deadline, Ti its period and
Oi the offset, being the latter three parameters expressed in integer multiples of ECs. Lastly,
Si represents the sender node and Ri the stream receiving nodes. It is important to highlight
that large messages are fragmented and sent as a set of packets sequentially scheduled by the
FTT master.

The EC-scheduler uses the information present in the SRT, builds the schedule, and encodes
it in trigger messages, which are posteriorly broadcasted by the Ethernet switch. The slaves
receive and process them and, afterward, transmit their scheduled packets to the switch,
which queues them locally until they are forwarded. The FTT master also holds information
regarding the type of address of a given message: unicast, multicast1, and broadcast. As such,
it can build specific schedules that improve the throughput of the system by parallelizing the
communications.

One significant downfall of this protocol is that it depends on the FTT slaves to have specific
network drives (FTT compliant) to communicate following the protocol rules, otherwise the
system timeliness is jeopardized. As these drives are entities that transmit and receive packets,

1Some switches do not support multicast addressing and, in those cases, multicast is treated as standard
broadcast, as explained in Section 2.3

3.3. HARD REAL TIME ETHERNET SWITCH 35

they allow nodes to register their streams in the FTT master, decode trigger messages and
provide isolation between the local software application and the FTT structure.

When it comes to the asynchronous traffic, this protocol implements a time-triggered
approach similar to the one used for the synchronous type. If not properly constrained,
asynchronous messages could jeopardize the FTT communication paradigm, as their trans-
missions could be made outside the appropriate window. To prevent such situations, the
FTT-SE uses the master node to control transmissions of both synchronous and asynchronous
messages. This is accomplished by the master through the use of trigger messages, which poll
asynchronous traffic so it can be transmitted in the appropriate time window. This type of
traffic can be modelled by a set of Na aperiodic streams (AMi) stored in the ART:

ART = {AMi : AMi(Ci, Di, Tmiti, Si, {R1
i ...R

ki
i)}, i = 1...Na} (3.7)

Comparatively to synchronous stream structure (3.6), this model only differs in the absence
of the offset parameter and the messages period is replaced by the inter-arrival time Tmiti.
Concerning to the non-real-time traffic, this class is treated as asynchronous traffic but only
handled in the background with a best-effort policy within the asynchronous window.

The technique used by the FTT master to poll asynchronous traffic as it does for the
synchronous type is advantageous when it comes to controlling access to the communications
medium. However, the poll of sporadic messages does not always result in transmission.
Consequently, this method can be very inefficient bandwidth efficiency terms. A signaling
mechanism for master/multi-slave architectures with full-duplex switches was proposed to
solve such problem. This scheme takes advantage of the parallelism available for full-duplex
structures to send the status of slaves’ asynchronous queues while the TM is being broadcasted.
Readers are referred to [21] for more detailed information.

Lastly, significant measures have been implemented in regard to traffic isolation and asyn-
chronous traffic signalling for master-slave Ethernet protocols. In order to ensure that
asynchronous messages do not overlap the synchronous window of the next elementary cycle,
FTT master only allows their transmissions if they finish within the respective EC window,
thus ensuring empty queues at the switch ports for broadcasting the next TM.

3.3 Hard Real Time Ethernet Switch

HaRTES [2] is an Ethernet switch based on the FTT paradigm that provides real-time
communication services. It was developed as a means to overcome the FTT-SE limitations, in
particular, the constraint that all slave nodes need to be FTT-compliant, i.e., they require a
specific network device driver to respect the EC-schedules and its respective timings. Since
these drivers may not be available to different operating systems, several network nodes

36 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

will not respect the protocol schedules, resulting in failures on the timeliness constraints.
To overcome this problem, the FTT master and Ethernet switch, which were originally
separated on the FTT-SE protocol (Figure 2.5), were combined in a single device (Figure
3.3). Therefore HaRTES maintains a master-slave architecture for the network and applies
the flexible time-triggered paradigm for the communications.

Figure 3.3: HaRTES architecture.

The integration of the FTT master within the Ethernet switch provides traffic confinement,
maintains the most significant FTT-SE characteristics and improves the following aspects:

• The asynchronous traffic is now autonomously triggered by network nodes instead of
being polled by the master, thus simplifying the handling of this traffic class.

• Blocking at the switch input ports unauthorized real-time transmissions preventing
them from interfering with the rest of the system, improving the system integrity, and,
simultaneously, the integration of non-FTT-compliant nodes.

• Diminishes the jitter and latency of the TM transmissions, enhancing the overall network
synchronization.

3.3.1 HaRTES internal architecture

The general architecture of the previously explained Ethernet switch is illustrated in Figure
3.4. This structure can be divided into four functional sections: FTT master module,
Input ports module, Output ports module, Memory Pool.

3.3. HARD REAL TIME ETHERNET SWITCH 37

Figure 3.4: HaRTES internal architecture (from [22]).

3.3.1.1 FTT master module

The FTT master module, represented in Figure 3.4 by the shaded area, is responsible for the
overall management and decision making logic of the switch. It can be subdivided into different
blocks that perform specific tasks, namely Admission Control, QoS manager, Scheduler, Packet
Forwarding and Dispatcher. The SRDB is the central repository for all information regarding
traffic management, just as in the FTT-SE protocol. It contains properties that can be divided
into three different groups:

• Message attributes for synchronous and asynchronous traffic: transmission times, peri-
ods/minimum inter-arrival times, offsets, sender nodes, priorities, deadlines.

• Global configuration information: elementary cycle duration, maximum synchronous
window duration, time required to transmit the TM to all nodes, turn-around nodes
time, asynchronous window duration.

• Resources information allocated to each traffic class: phases duration, buffer memory.

In the event of occurring a modification in the message set, the Admission Control, together
with the QoS Manager and the SRDB, assert the timing guarantees of ongoing communications.
The Scheduler is responsible for periodically scan the SRDB and build a list of synchronous
messages to be transmitted in the following EC. This new EC-schedule is broadcasted within
the TM by the dispatcher.

3.3.1.2 Input ports module

To integrate both FTT and non-FTT compliant nodes in the network, the HaRTES first
operation, at the input ports module, is to classify packets into synchronous, asynchronous

38 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

and non-real time. This operation consists of inspecting the packets’ header and stored them
in the dedicated memory pool queues. Non-real time packets are appended to the non-real
time queue, while real-time messages are first subjected to a validation process. If valid,
these are stored in the designated memory pool (synchronous or asynchronous), otherwise
they are discarded. Lastly, FTT request packets targeted to the FTT master are handled
by the Admission Control and QoS manager. If the request is not feasible, the system keeps
unchanged. Otherwise, the SRDB is modified with the processed request content.

The synchronous packets validation process consists of analyzing the EC-schedule and detecting
if any failures occur. For asynchronous messages, this process involves examining the inter-
arrival time and size. Whenever a message is stored in the memory pool module, specific
pointers that point to the data packet are generated and forwarded to the target output ports.
Regarding non-real-time packets, the forward mechanism employed is the standard Ethernet
MAC address procedure. On the other hand, for FTT real-time traffic, the switch employs
a producer-consumer model. Therefore, when a new FTT message is received, the Packet
forwarding module inquires the SRDB to determine which ports have consumers attached
and updates the output queues of the designated ports.

3.3.1.3 Output ports module

Each output port is composed by three pointer queues, one for each traffic type, and a
dispatcher. Each queue stores pointers for packets stored in the memory pool which will
be transmitted in that port. Connected to these queues is the dispatcher, the responsible
module for packet transmissions. It is in charge for keeping the temporal information about
the elementary cycle and, throughout each cycle, send packets pointed by each queue in the
appropriate EC phase.

3.3.1.4 Memory Pool

Validated packets are stored in designated memory queues, keeping each traffic class inde-
pendent and, at the same time, avoiding memory exhaustion for real-time packets. Since
real-time traffic is subject to a registration process, it is possible to pre-allocate the required
memory amount to guarantee enough resources to them all.

3.3.2 HaRTES communication description

As a result of being a derivative of FTT-SE, HaRTES shares many of the characteristics
presented in the FTT paradigm. The HaRTES master node organizes the communications
by transmitting successive ECs divided into two windows: synchronous and asynchronous
(Figure 3.5).

The synchronous traffic is scheduled and triggered by the FTT master by broadcasting, at
the beginning of each EC, the trigger messages containing the current EC-schedule. The
FTT-compliant nodes receive and decode the TMs and transmit their scheduled packets. The

3.3. HARD REAL TIME ETHERNET SWITCH 39

scheduling of the synchronous traffic is made online, based on a specific scheduling policy
such as RM or EDF.

Regarding the asynchronous traffic, the FTT master applies server-based scheduling techniques
[23]. Furthermore, this traffic type is triggered by the slave nodes and handled by the master
without interfering with the synchronous class. Upon receiving the slave messages, the switch
stores them in dedicated memory pools and transmits them when suitable.

Figure 3.5: HaRTES communication model (based from [2]).

3.3.2.1 HaRTES synchronous subsystem

Compared to FTT-SE, HaRTES has significant gains when handling synchronous traffic. First,
as TMs are generated within the switch, synchronous messages can be polled directly by
the FTT master. Consequently, the aggregation of the FTT master and Ethernet switch
is transparent to the rest of the nodes. When compared to the FTT-SE protocol in which
the TM must go through the protocol stack before reaching the switch itself, HaRTES TM
transmissions have less jitter and latency. The other improvement is the capability of blocking
unauthorized real-time communications, both synchronous and asynchronous, at the switch
input ports, thus not interfering with the remainder system. However, if the slave nodes
require a message to be transmitted synchronously, they still need the FTT compliant driver
to perform synchronous hard-real time communications. Without the drivers, TMs sent by
the FTT master cannot be processed.

3.3.2.2 HaRTES asynchronous subsystem

Regarding the asynchronous traffic, HaRTES provides significant simplifications. Compared
to the FTT-SE, HaRTES does not require this specific traffic to be polled, it is triggered
by the slave nodes and queued inside the switch in dedicated memory when received. To

40 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

transmit the asynchronous traffic, HaRTES applies hierarchical, server-based mechanisms.
Therefore, producer nodes must perform an explicit registration in which they declare the
stream properties (e.g., minimum inter-arrival time, transmission time). These allow the
switch to allocate the necessary resources and assign a server to each stream.

Both asynchronous and non-real-time traffic is transmitted in the asynchronous windows. The
former is sent until the server depletes its capacity. On the other hand, the latter type is
processed solely when there are no queued asynchronous messages or when all the streams
associated servers are budget depleted.

3.3.3 Advances over the HaRTES implementation

To enhance the properties of HaRTES, several solutions have been proposed. This section
focuses on implementations made to improve traffic management in the switch. The first one
focuses on total order broadcast and multicast mechanisms for synchronous messages [24]
while the other addresses hierarchical server-based scheduling for asynchronous traffic [25].

3.3.3.1 Real-Time and Consistent Multicast in HaRTES

Total order broadcast is a specific type of broadcasting in which a set of processes receive the
same sequence of messages, i.e., if a correct process receives two distinct messages, n followed
by m, then all the remaining correct processes must receive n before m. It is associated with
fault-tolerance mechanisms, which assume that almost no failures occur in the system. Several
works have been made to combine the FTT-paradigm with such mechanisms [26], [27].

Total order broadcast is accomplished if the following three properties are fulfilled:

• Agreement: if a participant process receives a message n, then all other participants
will eventually receive that message.

• Integrity: for a message n, every participant process receives n just once, and only if n
was previously broadcasted.

• Validity: if a participant process correctly broadcasts a message n, then all the
participants will receive n.

In order to simplify the implementation of the protocol in HaRTES, the authors considered
three fault tolerance assumptions proposed in the scope of the Flexible-Time-Triggered
Replicated Star (FTTRS) [28], a mechanism for TM replication in star topology networks: (i)
the device has services to prevent error propagation, e.g., transmissions occurring out of the
appropriate windows, (ii) the switch successfully transmits consecutive TM without errors,
and (iii) the probability of failure in HaRTES is negligible. These assumptions, together with
HaRTES mechanisms, specifically a property in which an EC-schedule implicitly provides
the order of synchronous messages, lead to the following conclusion: if the slaves process the
delivered messages in the same order as the one administered by the EC-schedule, in an EC,

3.3. HARD REAL TIME ETHERNET SWITCH 41

Agreement implies total order.Therefore, as long as the nodes receive the same messages, the
HaRTES scheduler guarantees the order in which they are delivered is always identical.

To achieve the first two properties, the proposed protocol associates sections of the EC
structure, between the transmission of two consecutive TM, into four phases, as illustrated in
Figure 3.6. Figure 3.7 shows the behavior of the network components during each phase.

Figure 3.6: Distinct four phases of the proposed protocol over the FTT elementary cycle
(from Guillermo Rodriguez-Navas, Julián Proenza [24], 2013).

Figure 3.7: Network behavior throughout the different four phases of the protocol (from
Guillermo Rodriguez-Navas, Julián Proenza [24], 2013).

The first phase, i.e., Schedule Phase, is similar to the standard FTT paradigm, in which the
master node broadcasts the TM with the EC schedule. Upon decoding the message, the slaves
are informed about the producer streams of that cycle. In the following phase, the Broadcast
phase, all the producers broadcast their scheduled messages within the synchronous window.
In the third phase, the Acknowledge phase, each subscriber of the broadcasted messages
informs the master about the transmissions outcome. They send, through the asynchronous
window, a positive notification (ACK) if that message was received or a negative notification
(NAK) if otherwise.

The end of the asynchronous window, also named as Accept point, marks the initiation of
the last phase, the Accept. During this phase, the master uses the information received

42 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

from the subscribers to decide whether the broadcasted message is accepted. Based on the
SRDB content, the master knows how many ACK must be transmitted for a given message.
Consequently, if the expected number is not reached the message is aborted, otherwise it
can be processed. At the Accept point, the master also builds a specific vector, designated
EC-status vector (EC-SV), which indicates what messages are accepted and can be delivered.
This vector has similar functionalities as an EC-schedule, and it is also transmitted in the
trigger message. Upon receiving and decoding the TM, the subscribers process the messages.
This instant is designated as Delivery Point.

To attain Validity, the authors present two different alternatives. The first consists of
implementing an automatic re-scheduling algorithm identical to the one used in the FTT-CAN
to re-transmit erroneous messages by the master. Although it can be easily implemented, this
method can delay the messages retransmission for a full EC duration as the last phase of this
protocol is located at the end of each cycle and there is no time to recreate a new schedule.
In the second method, the master reserves some bandwidth specifically for retransmissions.
Assuming that the number of aborted messages is low, the master reserves bandwidth in the
EC for any retransmission required, which are scheduled in the EC-SV of the broadcasted TMs.
If no retransmissions occur, the slaves use the unused bandwidth during the asynchronous
window. Compared to the first approach, this method has higher complexity but does not
delay retransmissions.

3.3.3.2 Hierarchical served-based traffic scheduling over HaRTES

As explained in the previous chapter, hierarchical scheduling is used to simplify complex
systems scheduling by fragmenting them into multiple subsystems, which can then be managed
individually. When applied to complex DRTS, together with server-based architectures, these
structures provide composability, i.e., a parent node schedulability depends only on its
requirements as well as its children requirements. The following section focuses on a multi-
level hierarchy architecture designed to handle asynchronous traffic in Ethernet switches, that
was applied to HaRTES. It also describes a schedulability analysis based on the response time
of such structures for Ethernet switches.

The proposed structure, depicted in figure 3.8, illustrates a tree in which a node represents a
server. The nodes at the lowest level of the hierarchy are designated as leaves while the others
are known as branches. The purpose of this architecture is to divide the system resources
through multiple servers. Therefore, a parent node handles a section of the bandwidth and
share it among their children. To prevent the children from excessive bandwidth usage, parents
have a local scheduler that manages their access to the resource. The entities that consume
the bandwidth, i.e., streams, are connected to the leaf nodes, with a single stream being
commonly associated with only one server. This architecture was designed to support dynamic
reconfigurations within the structure for both the servers’ organization (e.g., add/remove
serves) and individual characteristics. These are made through specific requests transmitted
by the nodes to the switch. These reconfigurations can, however, jeopardize the timeliness of

3.3. HARD REAL TIME ETHERNET SWITCH 43

the system. Thus, to prevent possible issues, the switch assesses if the temporal requirements
of all servers and streams, after the request outcome, are met.

Using the authors’ notation, each component (servers and streams) is represented by Γyx ,
where y identifies the hierarchy level and x the component within that level, as illustrated in
Figure 3.8. The following model defines a set of asynchronous streams:

ASyx = (Cyx , Tmityx ,Mmaxyx ,Mminyx , Pyx , RTyx , Dyx) (3.8)

where Cyx is the transmission time of the stream messages, Tmityx the minimum interarrival
time, Dyx the stream deadline, Pyx the associated leaf server, RTyx the computed response
time, and Mminyx and Mmaxyx , the minimum and maximum size of the streams’ packets
respectively.

The model which characterizes the servers (3.9), uses similar notation as the one used in the
streams (3.8). However, it this case, Cyx represents the server capacity, Tmityx its replenishing
time, Dyx the deadline, Pyx its parent, RTyx a computed upper bound of the server response
time, and Mminyx and Mmaxyx , the minimum and maximum packet transmission times.
This nomenclature will be used when explaining the schedulability tests proposed by the
authors.

Srvyx = (Cyx , Tyx ,Mmaxyx ,Mminyx , Pyx , RTyx , Dyx) (3.9)

Figure 3.8: A general architecture of the proposed server-based hierarchy (from Rui Santos
et al [25], 2011).

As previously described, the schedulability analysis verifies if the results of a request may cause
failures in the components’ deadlines. The proposed algorithm is based on DM and considers
the following two constraints: (i) preemptions can occur, but not during packet transmission
and (ii) exceeding the server capacity is not allowed. To prevent overruns (constraint (ii)),
this algorithm inserts an idle-time whenever a server cannot process a full packet with the

44 CHAPTER 3. AN FTT-ENABLED SWITCH - HARTES

current capacity it possesses. As shown in Figure 3.9, this procedure delays packet executions
until the capacity budget is replenished. The idle-time is strictly associated with message
transmissions and thus impacts the response time. Therefore, it is important to know the
maximum value that this interval can influence on a server, which is equal to its maximum
packet transmission time (Mmax). When a modification request surges, the algorithm verifies
the impact caused by the Mmax and Mmin changes on the hierarchy and evaluates the results.
This is made through two distinct phases.

Figure 3.9: Example of idle-time insertion (from Rui Santos et al [25], 2011).

In the first phase, the impact of the Mmax and Mmin modifications on all the hierarchy
levels is assessed. Starting from the lower levels, parent servers, inherit the Mmax and Mmin
values of their children. Therefore, at the end of this phase, the top-level component will have
the maximum and minimum packet transmission times among all streams. Lastly, it is also
verified if every server has enough capacity to process the largest packet they can receive:

∀Γyx,y=1...Nlevels,x=1...Ncomponents , Cyx ≥Mmaxyx (3.10)

If this condition fails, the request is denied, the structure configuration stays the same, and
the analysis terminates, otherwise it continues to the next phase.

The second phase consists of analyzing the hierarchy schedulability by computing the worst-
case response-time (RTyx) of each component, and compare those results to their respective
deadlines. For this, the authors use a technique based on two specific functions used in
hierarchical scheduling analysis, the request bound function, and the supply bound function.
The latter, rbfyx(t), quantifies the maximum load received by a parent component (ΓPyx

) of a
given server (Γyx) until the instant t. The submitted load comes from the server itself together
with both interference and blocking off higher and lower priority components, respectively.
The former function, sbfPyx

(t), computes the minimum bandwidth supply provided by a
parent component of Γyx to its children at the instant t. The response time is then computed
using the following equation:

RTyx = ωyx +M last
yx

ωyx = earliest t > 0 : rbfyx(t) = sbfPyx

(3.11)

3.3. HARD REAL TIME ETHERNET SWITCH 45

where M last
yx

= Mminyx and ωyx , the lapse from when the server becomes ready until its last
packet starts being transmitted. The request bound function can then be obtained from:


rbfyx(t) = IHyx(t) +BLyx + Cyx −M last

yx

IHyx =
∑

Γyj∈hp(Γyx)

⌈
t
Tyj

⌉
× Cyj

BLyx = max
Γyj∈lpe(Γyx)

Mmaxyx

(3.12)

where IHyx is the higher priority load generated and submitted by the parent component
of Γyx until the instant t and BLyx , is a blocking term associated with the non-preemptive
transmissions between messages. This factor is maximized by the maximum transmission
time of all lower priority components (lpe(Γyx)).

The supply bound function, on the other hand, can be calculated using the EDP model,
previously explained in Section 2.1.5. Using this model a server component can be defined as:
Γyx = (Πyx ,Θyx ,∆yx) = (Tyx , Cyx −Mmaxyx , RTyx −Mmaxyx) and the function itself can
be obtained using (2.23). Lastly, by assessing if the worst-case response of every component
Γyx (obtained from 3.11) is equal or lesser than their respective deadlines, it is verified if the
hierarchy is feasible :

∀Γyx,y=1...Nlevels,x=1...Ncomponents , RTyx ≥Mmaxyx (3.13)

Similar to the previous phase, a failed test for a single component means that the hierarchy
stays unchanged, and the schedulability analysis terminates.

CHAPTER 4
Network Simulators

Contents
4.1 Overview of different network simulators 47

4.1.1 ns-3 . 49
4.1.2 OMNET++ . 49
4.1.3 QualNet . 50
4.1.4 NetSim . 51
4.1.5 OPNET . 51
4.1.6 TrueTime . 52

4.2 A comparative analysis of network simulators 54
4.3 The OMNeT++ framework . 57

4.3.1 Model Structure . 57
4.3.2 NED Language . 59
4.3.3 Messages and Packets . 60
4.3.4 OMNeT++ Architecture . 61
4.3.5 Analysis facilities . 64
4.3.6 Third party libraries . 65

N etwork simulators play an essential role in the development and testing of communica-
tion networks. These allow engineers and researchers to create experiments and evaluate
networks’ performance while reducing costs and time associated with setting up physical
setups, particularly for large and sophisticated systems. Additionally, simulators facilitate
the test and validation of new protocols and technologies in a controlled environment. This
chapter reviews some of the current network simulators and compares them to find the best
candidate to implement the previously explained switch model (HaRTES). It starts with a
summary description of six different simulators and their principal features, followed by their
comparison. The chapter concludes with a presentation of the main aspects and components
of the chosen simulation framework (OMNeT++).

4.1 Overview of different network simulators

Generally speaking, the central purpose behind network simulators is to create virtual models
that capture the behavior of physical networks and their devices. These models can then be

47

48 CHAPTER 4. NETWORK SIMULATORS

easily used and modified, thus allowing the analysis of different experimental scenarios whose
real-world implementation could be more complex, expensive, and time-consuming. Figure
4.1 depicts an abstraction architecture of network simulators. The simulation models, e.g.,
switches, hubs, routers, are implemented through a kit of several algorithms and structures,
depending on the programming language employed. The simulations are then based on a set
of parameters determined by the user, e.g., traffic rate, scheduling algorithm, number of nodes,
and so forth. When completed, the simulator returns a set of metrics whose purpose is first
to validate the implemented model and, subsequently, analyze the performance of different
networks using the previously verified models [29].

Figure 4.1: Abstract structure of network simulators (from J.Suárez et al. [29], 2015).

Most of the existing network simulators are discrete event-based, i.e., both the system and the
nodes’ operation are modeled by a (discrete) sequence of time events. The simulator then stores
pending events by the order in which they are triggered. As such, the simulations themselves
are just the execution of the successively stored events. Computer networks are mostly
simulated using discrete-event software since the behavior of their protocols can be modeled
by a finite state machine. Consequently, simulations are generally faster as the simulators
can jump from between consecutive states [29]. Furthermore, discrete-event simulators have
better performance in terms of flexibility and computer overhead when compared to other
types (examples of non discrete-based simulators include GrooveNet[30] and NCTUns[31]).

Selecting the best simulator is not a straightforward task. Depending on the application, some
network simulators may be more appropriate than others. For example, when designing wired
based networks (e.g., Ethernet protocol), it is better to use simulators that already have such
models implemented. Other relevant traits when studying such tools include their scalability,
availability, data manipulation (analysis software), user interface, and so forth. The following
section presents six different discrete-event network simulators, ns-3, OMNeT++, QualNeT,
NetSim, OPNET and TrueTime, and compares them based on some of their generic technical
and user characteristics. Readers are referred to [32],[33] for more information regarding the
those simulators and others not examined.

4.1. OVERVIEW OF DIFFERENT NETWORK SIMULATORS 49

4.1.1 ns-3

Network Simulators (NS), is a series of three discrete-event simulators, ns-1, ns-2, and the
latest one, ns-3 [34]. Regarding the latter one, ns-3 is an open-source and free software licensed
under the GNU GPLv2 license for development and use. It was developed as an improvement
of ns-2, thus allowing compatibility between the models of its predecessor to be used. The
main language used to write the simulations and core models is C++, with bindings available
in Python.

The ns-3 supports both simulations and emulations using sockets with animators to visualize
the results. One key feature of ns-3 is the possibility of integrating physical nodes into the
network through emulation. The simulator includes specific net devices that, when associated
with the host system, provide emulation capabilities. Examples include sending data from an
ns-3 simulation to a real physical network or transmit data from a physical node to an ns-3
simulation.

The simulator also includes a real-time scheduler that allows interactions with external real-
time systems. This scheduler synchronizes the simulation clock with the external time base.
Thus, between consecutive events, the simulator compares the next event execution time with
the external clock to keep the system synchronization. If that event is scheduled a given
instant t in the future, the simulator stays idle until the "real" time reaches that moment. It
then executes the event and repeats the process.

The simulation results are stored in generated pcap trace files for debugging. To maintain a
large number of high-quality validated models, ns-3 relies on the vast community of developers
and users to update, debug and develop new models. It includes models for, for example, wired
and wireless communications, device-to-device communication protocols, and Software-Defined
Networking (SDN) devices.

4.1.2 OMNET++

OMNET++ [35] is a modular and extensible library and framework based on C++, funda-
mentally used for building computer networks and network simulations. Although being often
quoted as a network simulator, OMNET++ includes the primary tools to write simulations,
but itself does not provide any components specifically for computer networks; these appli-
cation areas are supported by independent simulation models (e.g., INET [36] for Ethernet,
Internet protocols, etc., SimuLTE [37] for LTE (User-Plane) models).

OMNET++ implements a component-based architecture for networks, which are built with
specific structures designated simple modules, programmed in C++. It then uses an infras-
tructure to assemble simulations from these components using a specific high-level language,
Network Description (NED). Within the ned files, users can define several parameters for
their implemented networks. These can be static (e.g., link speed, number of nodes) or
dynamic (e.g., scheduling policy utilized). Dynamic parameters are configured during the
network initialization. Lastly, OMNeT++ includes an Eclipsed-based Integrated Development

50 CHAPTER 4. NETWORK SIMULATORS

Environment (IDE) (Figure 4.2), graphical run-time, extensions for real time-simulations,
network emulation, database integration and other functions.

Figure 4.2: OMNeT++ IDE (from [35]).

4.1.3 QualNet

Quality Networking (QualNet) [38] is a network simulation software developed for planning,
testing, and training network models with high precision of their real behavior. It is a
commercial version of GloMosim [39],[40], with exclusive licenses for academic use, written
purely in C++. The models used by the simulator are divided into nodes and links. The
former ones are entities that represent network elements and endpoints (routers, switches,
satellites, mobile phones, radios, sensors, PCs, servers, firewalls, etc.). The latter type serves
as connections that interconnect nodes (LAN segments, internet circuits, radio transmissions,
Wi-Fi signals, and so on). QualNet also includes an extensive range of libraries with models
for wired and wireless networks, sensor networks, mobile ad hoc network (MANET), and
WiMAX (IEEE 802.16). Some of the features provided by the simulator are [38], [32]:

• Processing Speed: allows users to run multiple analyses while changing the model/simu-
lation parameters in a short-time.

• Scalability: simulation of large networks with high fidelity.

• Model Fidelity: high fidelity protocol models for accurate simulation behaviors.

• Extensibility: the simulation tools can connect to other hardware or software applications.

4.1. OVERVIEW OF DIFFERENT NETWORK SIMULATORS 51

4.1.4 NetSim

NetSim [41] is a discrete event-based simulator for network simulation and protocol modeling.
NetSim has three distinct versions, Academic, Standard and Pro, which require a specific
license for their usage. It comes with a GUI (Figure 4.3) for easy network creation (click
and drop services) and testing (animated simulations that execute autonomously or can
be controlled by the user). Netsim also includes support for emulations where physical
components can be connected to the created networks.

Figure 4.3: NetSim GUI (from [42]).

NetSim provides performance metrics of the different components (e.g., throughput, simulation
time, generated, and dropped packets), from the network itself to its nodes or packets. It
includes an in-built environment that allows the user to create specific models using C-code
or extended some of the implemented algorithms provided by the simulator. NetSim includes
in-built models for wired and wireless networks, IoT networks, cognitive radio networks,
Vehicular Adhoc Networks, etc. Furthermore, it provides interfaces for external software such
as MATLAB, SUMO and WIRESHARK, depending on the version used. Besides being a
commercial simulator, a negative point of NetSim is being a single processer event simulator.
A single event queue is used to store the events [32].

4.1.5 OPNET

OPNET [43] stands for Optimized Network Engineering Tool. It is a high level, event-based
commercial network simulator useful for testing large and complex networks. OPNET provides
a powerful graphical interface so users can implement the networks and create the components
with an object-oriented programming language (C++). The simulation configurations (e.g.,
network topology) are initialized using a provided GUI, through specific XML files or C library
calls.

52 CHAPTER 4. NETWORK SIMULATORS

In OPNET, the simulation stores all the events in a global list. These are scheduled based on
the timing order of the list and, when completed, are removed. The event list is managed by
the simulation kernel. This entity requests events from modules, inserting them in the list
and delivers them when they reach the top of the list. Upon reaching the head of the list, the
event becomes an interrupt which is then delivered by the kernel to the appropriate module,
that processes it (Figure 4.4).

Figure 4.4: OPNET architecture (from Saba Siraj et al. [44], 2012).

The purpose of the OPNET is to optimize the networks costs, efficiency, performance, viability,
and scalability. As such, simulations can be easily reconfigured and repeated. It supports
multiple network configurations, protocols, traffic, and user applications with the combination
of nodes (fixed, mobile, or satellite), links (simplex, duplex, wired or wireless) and subnets.
This simulator also includes a comprehensive development environment for fast and easy
simulation results analysis.

4.1.6 TrueTime

TrueTime [45] is a Matlab/Simulink based simulator for network embedded real-time systems.
The software consists of models of real-time kernels and networks, as Simulink [46] library
blocks (Figure 4.5) [47]:

• Kernel block: simulates an event-based real-time kernel, executes real-time tasks
and interrupts handlers based on a scheduling policy selected by the user. It also
includes other features such as data logging, task synchronization, and task activation
graphs. The TrueTime simulator kernel is structured as a real-time kernel, with several
implemented queues for the different objects (tasks, interrupts handlers, timers). It
includes n ready queues for objects ready to execute, a time queue for scheduled objects,
and different waiting queues for tasks that try to access monitors, mailboxes, and
semaphores. These are managed by the kernel or calls to the kernel.

• Network blocks: simulate the behavior of several link-layer MAC protocols (Ethernet,
CAN, Round Robin, PROFINET, FDMA, and TDMA for wired communications and

4.1. OVERVIEW OF DIFFERENT NETWORK SIMULATORS 53

WLAN and ZigBee for wireless). However, it does not support higher-level applications.
Despite the communication type, the TrueTime network blocks always generate the net-
work nodes transmission schedule. For wired communications specifically, the scheduling
policy employed will depend on the network parameters (data rate, minimum frame
size, loss probability, etc.). It supports direct address transmissions or broadcasting.
Regarding wireless communications, devices cannot send and receive packets at the
same instant. It is also required to take into account packet loss and attenuation for
radio signals as well as interference from other nodes for shared medium networks.
The wireless network block provides multi-path propagation, reflection and shadowing.
Network parameters include transmission power, receiver sensibility, data rate and
others.

• Battery blocks: simulate battery-powered devices (charged or discharged). It supports
dynamic consumption, i.e., users can increase or decrease the kernel CPU speed to
increase or decrease power usage, respectively.

Figure 4.5: TrueTime Simulink blocks (from [47]).

In the TrueTime simulator, the several network components are structured into tasks and
interrupt handlers and implemented by users as M-files or in C++ functions. Tasks can be
periodic or aperiodic. For the former type, these are created by the local periodic timer. The
aperiodic tasks, however, can be created in response to an external event. Tasks contain several
properties, some of which are dynamically updated by the kernel throughout the simulation
(e.g., absolute deadline, release time) while others are static and only adjusted by the user
(e.g., WCET, period). The drawbacks of this simulation software include the impossibility
to access the simulation models for further analysis, lack of support for higher-level network
protocols and slow simulations for larger models.

54 CHAPTER 4. NETWORK SIMULATORS

4.2 A comparative analysis of network simulators

When comparing the different network simulators, there are several approaches one could
take. If the software tools performance were the main requirement, a series of tests would be
performed to evaluate which simulator is the most efficient. This procedure, however, is not
possible since not all the previously described simulators can be acquired. Furthermore, even
if the simulator has, for example, good computation time or low memory usage, if it does not
possess the required models to implement the HaRTES model (e.g., models for Ethernet-based
communications), its utility, in the scope of this dissertation, is worse than other simulators
with inferior performance. Thus, before comparing the most relevant existing simulators, a
series of necessary requirements to implement the HaRTES switch model were established:

• Availability: The simulator must be open-source. Although several organizations
provide academic licenses, the overall process of inquiring the license can be very timing
consuming. By selecting an open-source simulator, the software learning process can
commence immediately after choosing it.

• Easiness: The selected simulator must be easy to use and fast to learn. As the available
time to implement the switch model is limited, picking a simulator that includes such
features, facilitates considerably the overall process. Other important properties include
easiness in: (i) changing the simulation parameters, (ii) code implementation and (iii)
model creation, i.e., the simulator should include a user-friendly GUI.

• User Community: By default, a good simulator is one that is widely used. If the
software tool is regularly utilized, it receives several updates with new protocols models
and other features. Furthermore, a big user community can be useful when certain
implementations issues appear, which can be answered via forums.

• Available Models: For the implementation of the HaRTES switch model, several
computer network models are required. These include the Ethernet protocol (interfaces
for receiving and dispatching frames between nodes) and the OSI layers for transmitting
messages between the network nodes. These models are essential so that the switch
implementation is the focus of this study.
Documentation is also a crucial focus when learning how to use the different provided
simulation models. Besides providing the models, the simulator must properly describe
how to use and employ them.

After conducting a general analyzation of the previously described simulators, it was determined
which one would be the best choice to implement the HaRTES switch model. Firstly, a table
containing each of the simulators’ characteristics was created, Table 4.1. This table is divided
into technical (programming language, integrated applications, available networks, etc.) and
user characteristics (easy to use, free license and so forth).

Based on the table characteristics and the requisites previously presented, QualNet, NetSim
and OPNET are immediately discarded as they required a paid license for their utilization.

4.2. A COMPARATIVE ANALYSIS OF NETWORK SIMULATORS 55

From the remaining three open-source simulators, TrueTime appears to be the one that least
fits the profile of the intended simulator. Its low utilization by the research community is
demonstrated in the software version, with the last update being made in 2016. For those
reasons, the simulator was discarded.

For the remaining two simulators, ns-3 and OMNeT++, they both have high academic
utilization (more than a thousand papers published in ieeexplore), thus resulting in being
regularly updated. A study conducted by Zarrad and Alsmadi [48] demonstrated that
OMNeT++ has a better performance than ns-3 for certain properties such as CPU usage
and simulation run time while it is more inefficient in others. Overall, both simulators could
be used to implement the switch simulation model however, considering the timeline of the
dissertation, OMNeT++ would be more beneficial since it is easier to work and faster to learn.

56 CHAPTER 4. NETWORK SIMULATORS
T
ab

le
4.
1:

Ta
bl
e
w
ith

ge
ne

ric
ch
ar
ac
te
ris

tic
s
of

di
ffe

re
nt

N
et
w
or
k
Si
m
ul
at
or
s
[3
2]
,[
44

],
[4
6]
,[4

9]
,[
48

],
[5
0]
.

N
S-
3

O
M
N
eT

+
+

Q
ua

lN
et

N
et
Si
m

O
P
N
E
T

Tr
ue

T
im

e

Te
ch
ni
ca
l

C
ha

ra
ct
er
is
tic

In
te
ra
ct
io
n
w
ith

re
al
-t
im

e
sy
st
em

s
Po

ss
ib
le

Po
ss
ib
le

Po
ss
ib
le

Po
ss
ib
le

Po
ss
ib
le

Po
ss
ib
le

A
na

ly
si
s
To

ol
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N
o

Sc
al
ab

ili
ty

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

G
en

er
at
es

Tr
ac
e

Fi
le
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Av
ai
la
bl
e

N
et
w
or
ks

W
ire

d,
W

ire
le
ss
,

A
D
H
O
C
,M

A
N
E
T
,

SD
N
,V

A
N
E
T
,e

tc
.

W
ire

d,
W

ire
le
ss
,

A
D
H
O
C
,M

A
N
E
T
,

SD
N
,W

B
A
N
,e

tc
.

W
ire

d,
W

ire
le
ss
,

SD
N
,A

D
H
O
C
,

M
A
N
E
T
,e

tc
.

W
ire

d,
W

ire
le
ss
,

Io
T
,B

G
P

ne
tw

or
ks
,

C
el
lu
la
r
ne
tw

or
ks
,e

tc
.

W
ire

d,
W

ire
le
ss
,

A
D
H
O
C
,M

A
N
E
T
,

R
ad

io
ne

tw
or
ks
,e

tc
.

W
ire

d
an

d
w
ire

le
ss

ne
tw

or
ks

P
ro
ce
ss
in
g

Sp
ee
d

M
od

er
at
e

G
oo

d
E
xc
el
le
nt

E
xc
el
le
nt

E
xc
el
le
nt

-

G
U
I
su
pp

or
t

G
oo

d
G
oo

d
E
xc
el
le
nt

E
xc
el
le
nt

E
xc
el
le
nt

G
oo

d

La
ng

ua
ge

C
+
+
,P

yt
ho

n
C
+
+

Pa
rs
ec

C
+
+

C
,J

av
a

C
(C

+
+
)

M
at
la
b,

C
+
+

E
nv

iro
nm

en
t
O
S

W
in
do

w
s,

Li
nu

x,

un
ix

W
in
do

w
,L

in
ux

,

un
ix
,M

A
C

O
S

W
in
do

w
s,

Li
nu

x,

D
O
S

W
in
do

w
s
7

(S
P
1
or

hi
gh

er
),

W
in

8
or

W
in

10
.

W
in
do

w
s,

Li
nu

x,

So
la
r

W
in
do

w
,L

in
ux

,

M
A
C

O
S
(r
eq
ui
re
s

M
at
la
bR

20
12
a
w
ith

Si
m
ul
in
k
7.
9
or

la
te
r)

U
se
r

C
ha

ra
ct
er
is
tic

s

E
as
y
to

U
se

H
ar
d

E
as
y

M
od

er
at
e

E
as
y

E
as
y

E
as
y

Le
ar
ni
ng

cu
rv
e

M
od

er
at
e

Sh
or
t

Sh
or
t

Sh
or
t

M
od

er
at
e

M
od

er
at
e

D
oc
um

en
ta
tio

n
E
xc
el
le
nt

G
oo

d
E
xc
el
le
nt

E
xc
el
le
nt

G
oo

d
G
oo

d

U
pd

at
es

R
ec
en
t

(1
8/
09
/2
01
9)

R
ec
en
t

(1
3/
01
/2
02
0)

R
ec
en
t

(1
9/
02
/2
02
0)

R
ec
en
t

(2
0/
01
/2
02
0)

"B
et
a"

D
at
ed

(4
/0
2/
20
19
)

O
ld

(6
/4
/2
01
6)

Li
ce
ns
e

O
pe

n-
So

ur
ce

O
pe

n-
So

ur
ce

C
om

m
er
ci
al

C
om

m
er
ci
al

C
om

m
er
ci
al

O
pe

n-
So

ur
ce

A
ca
de

m
ic

U
til
iz
at
io
n

Ve
ry

H
ig
h

Ve
ry

H
ig
h

M
od

er
at
e

Po
or

Ve
ry

H
ig
h

Po
or

4.3. THE OMNET++ FRAMEWORK 57

4.3 The OMNeT++ framework

OMNeT++ [51] is an open-source, C++ based, discrete-event framework design for modeling
and simulating computer networks, multiprocessors and distributed systems. As previously
mentioned, OMNeT++ is a framework, i.e., it does not provide the simulation components
for the various network areas, e.g., computer networks. Instead, it presents the essential tools
to write the simulations while specific application models (e.g., Ethernet, PPP, Wi-fi, etc.)
are created independently by the user community and employed in OMNeT++ as libraries.
This framework was designed to support the creation of large-scale networks. For this, it uses
a hierarchical architecture which allows the re-utilization of components.

4.3.1 Model Structure

The OMNeT++ networks, also known as models, are built with reusable structures named
modules, which communicate with each other via message passing. In OMNeT++, the
network itself is a module (the top-level one), which may contain submodules and themselves
may contain other submodules, thus a hierarchical structure is formulated, whose levels are
unlimited. Modules that contain submodules are designated compound modules. On the
other hand, the ones at the hierarchy lowest level are termed simple modules. These are active
modules that contain the algorithms that model the the different components behavior. Simple
modules are written in as a set of C++ functions supported by the OMNeT++ simulation
class library, thus providing flexibility when implementing the network components. To write
these structures code, OMNeT++ provides an Integrated Development C++ Environment,
so there is the possibility to create, test, and debug the code without the need for additional
software. Simple modules can be combined to create compound modules.

Simple modules communicate with each other by transmitting messages directly to the
destination module or through a series of connections and gates, i.e., input/output ports.
(Figure 4.6). Indirect messaging is normally employed for wired communications when different
network components gates are connected via connections, i.e., the communication path is
known and created in advance. On the other hand, direct messaging is generally used for
wireless communications, where the communication path is not known in advance. For the
latter type, instead of using the connections, a destination module pointer is firstly obtained,
which then allows transmitting the data to the desired module.

Messages can be actual frames or packets from communication networks, costumers for
queueing networks, and other types, depending on the simulated application. These can be
transmitted between different modules or directly within the module itself, i.e., self-messages,
which can be used to implement, for example, timers. For wired communications, messages
travel through a series of connections that always start and end in simple modules. These
paths have three different properties: (i) propagation delay, (ii) data rate, and (iii) bit rate.
These can be individually specified for each connection created or defined as a unique link for
re-utilization with the channel type (Figure 4.7). All these components and connections are
then assembled into networks using a specific type of language known as NED.

58 CHAPTER 4. NETWORK SIMULATORS

Figure 4.6: OMNeT++ module structure.

Figure 4.7: OMNeT++ connection types.

4.3. THE OMNET++ FRAMEWORK 59

4.3.2 NED Language

In OMNeT++, network structures and topologies are described in a specific file that uses
NED, a high-level description language. When writing such entities, OMNeT++ provides both
code and graphical-based approaches that allow a more accessible environment for editing.
Usually, within a NED file, the simple modules are declared, and the compound modules and
networks are defined, including creation of their respective gates, connections, and internal
parameters (Figure 4.8). Parameters are variables used to pass configuration properties for
the simple modules. These can be different types, e.g., int or boolean, and can be accessed
when initiating the simulation, thus granting higher flexibility for the users.

Figure 4.8: Example of a NED file structure: a) network; b) simple module; c) compound
module.

Regarding Figure 4.8, some details should be highlighted. Firstly, every structure (simple,
compound modules, and networks) have a defined package at the beginning of the file. This
package must be included when using the module in other NED files. Another important aspect
is the modules parameters. Simple and compound modules can declare local parameters (e.g.,
int nodeId, xml initialRDB) and define their values in their individual NED files. However,
these can also be defined by other compound modules that use them as submodules as
illustrated in Figure 4.8 c). In this case, the initialRDB parameter of the reqRDB simple
module is defined in the Slave compound module. Lastly, when employing different submodules,
it is possible to declare them with a different name (e.g., in the Slave compound module, the
reqRDB simple module is termed nrdb). This is useful when the same module is employed
several times in a compound module (Figure 4.8, a)).

60 CHAPTER 4. NETWORK SIMULATORS

Besides the previous characteristics, the NED language also includes the following features
[52]:

• Hierarchical structure: decreases the complexity of projects by disassembling complex
modules into simpler ones.

• Component-based: simple and compound modules can be reusable, thus allowing the
usage of component-based libraries, e.g., INET.

• Interfaces: Module and channels interface placeholders can be used instead of concrete
modules and channels. The latter ones can then be determined during the network setup
by specific parameters. Considering, for example, a compound module with a submodule
named etherApp of the type IetherApp, which is a module interface, etherApp may be
one of the different types of IetherApp (etherApp8021Q, etherApp8023, etc.), depending
on a parameter chosen by the user.

• Inheritance: modules and channels can be subclassed. The derived components can
employ new parameters, gates, submodules, and connections.

• Packages: a Java-like package structure was implemented in the NED language to
reduce the risk of name clashing between models.

• Inner-Types: channels and module types used by a compound module can be created
within that module to reduce namespace pollution.

• Metadata: it is possible to annotate the different structures within the NED file
(modules, gates, connections) in the parameters. They carry extra information that can
be used in several applications in OMNeT++.

Upon designing the desired network, this can be initiated in specific INI files, which are
used to set up the configurations and input data for the simulation Therefore, OMNeT++
separates the different aspects of the simulation throughout different types of files. The
modules’ behavior is implemented in C++ files, the network structure and the components
parameters are defined in NED files, and the simulation desired variables and initiation are
set in INI files.

4.3.3 Messages and Packets

As previously explained, messages are essential for communications between the created
modules. These can be represented by the cMessage and cPakcet classes, provided by
OMNeT++, and used in the simple modules source files. The former class is used to represent
events, messages, jobs, and other simulation entities. It includes different properties such as
name, message kind, and time stamp. The latter type represents packets, frames, application
messages, and so forth. It adds length (bits or bytes), bit error flags, and encapsulation
capabilities to the cMessage class. Nonetheless, both classes have predefined parameters that
cannot be modified (Figure 4.9), which may restrict some applications.

4.3. THE OMNET++ FRAMEWORK 61

Figure 4.9: OMNeT++ cMessage and cPacket class properties.

In order to solve this issue, the framework allows the creation of unique messages and packets
that are subclasses of cMessage or cPacket, respectively. These are designed in specific MSG
files (.msg) with all their associated variables defined by the user. After completing the code,
during the compilation, the message compiler is invoked and generates two files a .h and .cc.
The header file will contain the class declaration and must be included in the source file of
a simple module that uses the created message, similar to a C++ library. The source file
will contain the header subclass implementation, as well as the code, that allows the message
variables manipulation.

4.3.4 OMNeT++ Architecture

The local architecture of OMNeT++ is depicted in Figure 4.10. It comprises the Model Com-
ponent Library, the simulation kernel (Sim), and the user interfaces libraries (Envir, Cmdev,
and Tkenv). The Model Component Library comprises the different modules (compound and
simple) compiled code. The simulated network (simulation model) is built by the simulation
kernel when the simulation is executed. The different user interface libraries then execute
the simulation. They defined how the simulation is visualized (animated or not), control the
overall simulation execution (e.g., start, stop, repeat the simulation, record, advance events),
where the results go, and so forth.

Figure 4.10: OMNeT++ architecture (from András Varga and Rudolf Horning [51], 2008)

62 CHAPTER 4. NETWORK SIMULATORS

An important feature of OMNeT++ is the possibility of replacing the existing user interfaces
or embed the OMNeT++ environment into other applications (Figure 4.11). This procedure is
possible because: (i) the simulator includes generic interfaces between the class library (Sim)
and user libraries (Envir, Tkenv, Cmdev) and (ii) all the libraries are physically separated.

Figure 4.11: Embedded OMNeT++ architecture (from András Varga and Rudolf Horning
[51], 2008).

4.3.4.1 User Interfacers

As previously mentioned, in OMNeT++, the simulations are executed in the provided user
interfaces, Envir, Tkenv, and Cmdev [51]. Cmdev is mostly used to run simulation via
command line (batch execution), making it a fast procedure. For a more user-friendly and
simple debugging approach, the GUI of Tkenv can be utilized (Figure 4.12). It has three
essential methods:

• Automatic Animation: this feature provides message flow animation between the simu-
lated network different modules.

• Module Output Window: It is a unique window used to display the information output
of individual modules or groups of them. Allows for printf()-style debugging.

• Object Inspector : It is a specific GUI window within the Tkenv with the properties of
the inspected module. It can be used to verify the simulation object content in the
desired way (histogram, graphs, individual values) or change it during any point of the
simulation.

4.3. THE OMNET++ FRAMEWORK 63

Figure 4.12: OMNeT++ Tkenv.

Lastly, the Envir interface is the main interface of OMNeT++. It is used to design the
different networks in the NED files, implement the simple models’ behavior via C++ functions,
analyze the simulation results, create and initiate simulations, and so on. (Figure 4.13).
All the previous features are provided by OMNeT++ without the necessity of additional
programming.

Figure 4.13: OMNeT++ main environment.

64 CHAPTER 4. NETWORK SIMULATORS

4.3.5 Analysis facilities

Analyzing the simulation results is a crucial task for validating the implemented models.
Depending on the application, such results can be better represented in the form of histograms
(e.g., transmission jitter) or, for other situations, standard line graphs (e.g., switch throughput).
The process of analyzing this data can be, however, a lengthy process. Furthermore, users
tend to repeat the same simulations multiple times, only changing some of its parameters,
meaning that, depending on the software, the same plot must be created every time the
simulation is completed. As such, it is important that analysis tools include simple approaches
for searching the results as well as providing some data and graph automation so that the
overall process can be easier and less time consuming.

The result analysis in OMNeT++ can be done within the framework with its simulation tools
or using other software programs. To use the analysis tool, users must first select either a
scalar (.sca) or vector (.vec) file. These are automatically generated after the simulation ended.
Afterward, the Simulation IDE creates the Analysis Files (AFN) with the simulation results
in form of scalars, vectors, and histograms. The user can then scan and plot the obtained
data (Figure 4.14). They can also create specific patterns termed datasets with the desired
data (Figure 4.15). Whenever the selected files are altered by a re-simulation, the dataset
contents (variables, graphs) are automatically updated. Besides the previous procedure, other
programs such as Python, Matlab, and Octave can be used to analyze the information. When
employing these tools, the results must be first exported to the programs required formats
using the scavetool of OMNeT++.

Figure 4.14: OMNeT++ Analysis tool.

4.3. THE OMNET++ FRAMEWORK 65

Figure 4.15: OMNeT++ dataset example.

4.3.6 Third party libraries

The majority of the different computer network models, e.g., Ethernet, CAN, Wi-fi, Bluetooth,
Cyber-Physical Systems, etc., are developed by the OMNeT++ community as independent
libraries and employed in the main framework. Examples include:

• NeSTiNg [53]: Provides simulation models for TSN.

• CloudNetSim++ [54]: A simulation toolkit for the simulation of distributed datacen-
ter architectures, energy models, and high-speed data centers communication networks.
It includes support for several Service Level Agreement (SLA) policies, scheduling
algorithms, and modules for the datacenter components and selected by the users.

• FLoRA [55]: A simulation framework to perform LoRA based networks. Networks
are constructed using different LoRA components, gateways, and a network server. It
accurately models the LoRA physical layer with the incorporation of both collisions and
capture effects. It also includes statistics of every node energy consumption.

• NETA [56]: A simulation framework developed for OMNeT++ to the network security
field. Its purpose is to simulate attacks in heterogeneous networks. Furthermore, it tests
and validates the effectiveness of security techniques/solutions and compares different
employed defense techniques.

Readers are referred to [35] for a list of all the different community libraries developed for
OMNeT++. Note that most of them require the utilization of both OMNeT++ and INET,
an extensive library that includes most computer communication network models. As this
framework was required for the implementation of the HaRTES switch model, it will be
presented in more detail.

66 CHAPTER 4. NETWORK SIMULATORS

4.3.6.1 INET framework

INET [36] is an open-source library and provides an extension to OMNeT++. It contains
several simple and compound modules for validating new protocols. It also includes several
of the standard protocols’ models for computer communication networks simulation. Just
like OMNeT++, this framework is built around message passing between the assembled
modules. The INET framework includes several components that, when combined, form
different network devices such as switches or hubs. Users can create new ones or modify
the already programmed depending on the application. An important property of INET is
that this framework benefits from OMNeT++ interfaces and kernel. As such, the creation,
parameterization, debugging and models testing can all be done within the Simulation IDE.
The INET includes simulation models for several layers of the OSI model as well as other
applications [36]:

• Application layer models: Models for the OSI model last layer (layer 7). Includes
several traffic generator models such a constant and variable bit-rate traffic generator,
HTTP traffic generator, DCHP protocol and others.

• Transport layer models: Includes models for transferring variable-length data se-
quences between the network nodes with QoS. INET as its own TCP simulation models,
UDP, SCTP, and RTP with extensions (RTP Profile for Audio and Video Conferences
with Minimal Control, and MPEG video payload).

• Network layer models: Includes models for transferring variable-length data se-
quences from a source to destination nodes across networks. Models implemented
include IPv4, ICMPv4, ARP, etc.

• Routing models: Provides several modules for routing protocols in computer networks,
i.e., how routers distribute the data to the destination node. These include link-state
routing, OSPFv2, BGPv4, and others.

• MANET Routing models: Models for Mobile Ad hoc networks. Includes table-driven
routing protocols (DSDV), on-demand routing protocol (DSR).

• MPLS models: Provides simulation models for multi-protocol label switching networks,
including LDP modules for the LDP protocol (does not support the CR-LDP protocol)
and RSVP modules for implementing the RSVP-TE control protocol.

• Wired and Wireless communication models: Models for wired and wireless-based
protocol communications. As these modules are the ones mostly employed to create
computer networks, they are detailed in Table 4.2.

4.3. THE OMNET++ FRAMEWORK 67
T
ab

le
4.
2:

Ta
bl
e
w
ith

th
e
IN

ET
m
od

el
s
fo
r
w
ire

d
an

d
w
ire

le
ss

co
m
m
un

ic
at
io
ns

[3
6]
.

C
om

m
un

ic
at
io
n
T
yp

e
P
ro
to
co
l

D
es
cr
ip
tio

n

W
ire

d

C
om

m
un

ic
at
io
ns

P
P
P

In
cl
ud

es
m
od

ul
es

fo
r
si
m
ul
at
in
g
si
m
pl
e
P
P
P

lin
ks

w
ith

en
ca
ps
ul
at
io
n/

de
ca
ps
ul
at
io
n
an

d
qu

eu
ei
ng

se
rv
ic
es
.

Fe
at
ur
es

su
ch

as
lin

k
co
nfi

gu
ra
tio

n
an

d
m
ai
nt
en

an
ce

fr
om

th
is

pr
ot
oc
ol

ar
e
no

t
im

pl
em

en
te
d.

E
th
er
ne

t

IN
E
T

pr
ov

id
es

se
ve
ra
lm

od
ul
es

fo
r
th
e
E
th
er
ne

t
pr
ot
oc
ol
.
It

in
cl
ud

es
m
od

el
s
fo
r
cl
as
si
c
E
th
er
ne

t
(1
0M

bp
s)
,

Fa
st

E
th
er
ne

t
(1
00
M
bp

s)
,a

nd
G
ig
ab

it
E
th
er
ne

t
(1
00
0M

bp
s)
.
It

co
m
pr
is
es

tw
o
M
A
C

im
pl
em

en
ta
tio

ns
w
ith

an
d
w
ith

ou
t
th
e
C
SD

M
/C

D
m
ec
ha

ni
sm

s.
T
he

E
th
er
ne

t
fr
am

es
su
pp

or
te
d
ar
e
ra
w

E
th
er
ne

t,
E
th
er
ne

t-
II
,

an
d
E
th
er
ne

t
SN

A
P

fr
am

es
.
T
he

IN
E
T

al
re
ad

y
ha

s
a
fu
nc
tio

na
ls

w
itc

h
an

d
hu

b
m
od

el
s.

ST
P

Si
m
ul
at
io
n
m
od

ul
es

fo
r
sp
an

ni
ng

tr
ee

pr
ot
oc
ol

ne
tw

or
ks
.

R
ST

P
Si
m
ul
at
io
n
m
od

ul
es

fo
r
ra
pi
d
sp
an

ni
ng

tr
ee

pr
ot
oc
ol

ne
tw

or
ks
.

T
T
E

C
on

ta
in
s
m
od

ul
es

fr
om

C
oR

E
4I
N
E
T

[5
7]
,a

n
ex
te
ns
io
n
of

IN
E
T

fo
r
re
al
-t
im

e
E
th
er
ne

t,
fo
r
T
im

e-
Tr

ig
ge
re
d

E
th
er
ne

t
si
m
ul
at
io
ns
.

W
ire

le
ss

C
om

m
un

ic
at
io
ns

W
i-F

i(
80
2.
11
)

In
cl
ud

es
m
od

ul
es

fo
r
80
2.
11
b
an

d
80
2.
11
g
pr
ot
oc
ol
s
(a
d
ho

c
an

d
in
fr
as
tr
uc
tu
re

m
od

es
).

D
oe
s
no

t
su
pp

or
t

fr
ag
m
en
ta
tio

ns
,p

ow
er

co
ns
um

pt
io
n,

an
d
po

lli
ng

.

W
AV

E
(8
02
.1
1p

)
M
od

ul
es

fo
r
th
e
80
2.
11
p
pr
ot
oc
ol

ba
se
d
on

th
e
M
iX

iM
[5
8]
,a

m
od

el
in
g
fr
am

ew
or
k
fo
r
O
M
N
eT

+
+

fo
r

w
ire

le
ss

ne
tw

or
ks

(m
ob

ile
an

d
fix

ed
).

LR
-W

PA
N
s
(8
02
.1
5.
4)

Se
ve
ra
lm

od
ul
es

ba
se
d
on

th
e
M
iX

iM
im

pl
em

en
ta
tio

ns
fo
r
U
D
B
,N

ar
ro
w
B
an

d,
an

d
C
SD

A
.

LT
E

Im
pl
em

en
te
d
m
od

ul
es

fo
r
bo

th
LT

E
C
on

tr
ol
-P

la
ne

an
d
U
se
r
P
la
ne

pr
ot
oc
ol
s.

R
eg
ar
di
ng

th
e
la
tt
er

on
e,

in
cl
ud

es
se
ve
ra
lf
ea
tu
re
s
su
ch

as
bu

ffe
rin

g,
P
D
U

co
nc
at
en

at
io
n,

C
Q
I
re
ce
pt
io
n
at

th
e
M
A
C

la
ye
r,

U
M

(U
na

ck
no

w
le
dg

ed
M
od

e)
an

d
A
M

(A
ck
no

w
le
dg

e
M
od

e)
se
gm

en
ta
tio

n
fo
r
th
e
R
LC

la
ye
r,

se
ve
ra
le

N
od

eB

m
od

el
s
(M

ac
ro
,m

ic
ro
,p

ic
o
eN

od
eB

s)
.

68 CHAPTER 4. NETWORK SIMULATORS

In INET, the different protocols and applications communicate using a specific message class
termed Packet. This class was purposely developed to facilitate the protocols communications,
e.g., construction, encapsulation/decapsulation, fragmentation, aggregation, and overall packet
manipulation. It can represent Ethernet frames, TCP segments, IP datagrams, and other
type of data.

The Packet structure is built on top of another data structure known as chunks. INET comes
with several C++ classes for chunks such as BytesChunk and BitsChunk for raw bytes and
bit chunks, respectively or SequenceChunk for ordered sequence chunks. However, just as in
OMNeT++, user can define their chunks in MSG files with the FieldsChunk subclass (Figure
4.16) for specific applications or protocols. Packets may also contain several chunks. To access
them, the chunk API provides several functions (e.g., fragmentation and merging) (Figure
4.17).

Figure 4.16: Example of a user-defined chunk for a .msg file (from [36]).

Figure 4.17: Example of chunk manipulation (from [36]).

When communicating between different protocols, packets may require specific metadata,
e.g., IEEE 802.1Q header for priority-based Ethernet communications. The INET packets

4.3. THE OMNET++ FRAMEWORK 69

can include such information in the form of tags. The tags are attached to the whole packet
(packet tags) or to a specific region (region tags). Figure 4.18 depicts an example of a packet
tagging procedure. Tags can be classified as: (i) requests tags (e.g., MacAddressReq) that carry
information from higher to lower protocol layers, (ii) indication tags (e.g., InterfaceInd) that
provide information from lower to higher layers, and (iii) plain tags (e.g., PacketProtocolTag)
that contain some metadata information.

Figure 4.18: Example of packet tagging in INET (from [36]).

CHAPTER 5
Implementing HaRTES switch model

on OMNeT++

Contents
5.1 Traffic isolation with IEEE 802.1Q in a Ethernet switch model 72
5.2 A server-based scheduling framework for Ethernet switches 75

5.2.1 Switch Architecture . 76
5.2.2 Implementation of the hierarchical server-based framework 77

5.3 HaRTES simulation model . 88
5.3.1 HaRTES switch . 90
5.3.2 FTT Compliant nodes . 94

As discussed in chapter 4, OMNeT++ provides a modular-based structure for the implementa-
tion of its simulation models. This feature is specifically helpful when the simulated system is
highly complex. As sections of the system architecture can be individually validated, and then
put together in a single simulation model, this type of approach makes the implementation
process easier. Thus, the development process of the created simulation models was based on
such features.

Even though the main focus of this dissertation is a HaRTES switch simulation model, an IEEE
802.1Q model was first implemented. As this was the standard that introduced traffic isolation
capabilities on Ethernet switches, there was some interest in comparing its performance with
other real-time protocols. Afterwards, a server-based scheduling framework, whose purpose is
to handle asynchronous communications in HaRTES, was developed. Since the management
of the asynchronous traffic is not made in the FTT master itself, but on a separate structure
[2], this framework can be implemented and tested without being included in the HaRTES
switch. Furthermore, it can be incorporated in other Ethernet switches. Subsequently, the
focus was on completing the HaRTES simulation model.

This chapter addresses the development of the several simulation models implemented in the
simulator environment Omnet+. It starts with the description of an IEEE 802.1Q switch
module, followed by a hierarchical server-based scheduling module designed for Ethernet
switches. The chapter closes with the presentation of the HaRTES simulation model with the
server-based framework incorporated, to handle the asynchronous traffic.

71

72 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

5.1 Traffic isolation with IEEE 802.1Q in a Ethernet switch model

The IEEE 802.1Q protocol was originally developed to solve issues in standard Ethernet, in
particular, the lack of support for traffic segregation and prioritization. Even though the
introduction of distinct queues to separate the traffic classes, with different QoS requirements,
provided some levels of traffic isolation, it was not enough for the implementation of priority-
based networks with large sets of real-time streams. Nonetheless, there is still some interest in
comparing the performance of standard IEEE 802.1Q Ethernet switches and other Ethernet
real-time protocols.

In OMNeT++, the majority of the protocols’ simulation models, including the standard
Ethernet protocol, are included in the INET library. However, the implemented Ethernet
switch model does not include the eight priority queues defined by the IEEE 802.1Q standard.
In this scope, extensions to the INET Ethernet switch model were conceived in order to add
support for traffic segregation, provided by the IEEE 802.1Q protocol.

The the developed framework primary components operate at the output ports of an Ethernet
switch. Figure 5.1 depicts an overview of the switch model implemented in INET, an
OMNeT++ library. It comprises two essential modules, the SwitchingUnit, and the Ethernet
Ports (eth[n]), where n is the number of ports. The former is responsible for selecting the
destination ports of incoming messages based on the information stored in the macTable and
on the destination address field of received Ethernet frames. The latter one, which functions
as both an ingress and egress port, contains the MAC components. It models the reception
and transmission of Ethernet frames between network nodes.

Figure 5.1: Ethernet switch architecture developed by INET.

5.1. TRAFFIC ISOLATION WITH IEEE 802.1Q IN A ETHERNET SWITCH MODEL73

The implemented queuing structure is imported at the switch output ports. It comprises a
frame classifier module (Processor) and eight FIFO queues (Figure 5.2). Processed packets
reach the classifier before being transmitted and are stored in the appropriate queue. For this,
the component analyzes the IEEE 802.1Q header, more precisely the priority indicator (PCP
field), and enqueues the frame according to this value. The mapping between the PCP value
and the different priority queues follows the default IEEE 802.1Q mapping table [12]. In this
table, the different traffic classes are numbered from 0 to 7, which represents the lowest and
the highest dispatching priority levels, respectively. Priority level 7 is typically associated with
the highest priority traffic class, class 7. However, traffic class 0 is associated with priority
level 1, while priority level 0 is translated into traffic class 1 due to legacy reasons [14]. As
such, priority level 1 represents the lowest priority level of this framework.

Figure 5.2: Ethernet switch ports with the implemented framework in OMNeT++.

The MAC module, responsible for dispatching the messages, informs the classifier whenever
the port can transmit a new packet. As such, when a new request is made, the module
searches for the highest priority stored frame and forwards it to the MAC component. As the
switching delay for processing a message is almost negligible for the INET components, users
can define a processing latency for the classifier to simulate a real word switch. Figure 5.3
illustrates a frame flow through the different modules from ingress to egress for the INET
switch with and without the developed framework.

74 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

Figure 5.3: Ethernet switch ports: a) with the implemented framework; b) without the
framework in OMNeT++.

The methods and variables employed by the module that performs all the logic in the
implemented framework, e.g., the Processor, are shown in Figure 5.4. This C++ class has
two variables: SWLatency, which is defined by the user and models the switch latency, and
portFree, a boolean variable that indicates if the egress port can transmit a packet. Regarding
its methods, this class comprises six different functions:

• initialized: Called at the start of each simulation. Sets the value for SWLatency, i.e.,
acquires the user-defined latency;

• handleMessage: Invoked whenever a new Ethernet message is received or a timer, i.e.,
self-message, is triggered. The former goes through a classification process and, based
on the outcome, is stored in the appropriate priority queue. The latter are used to
simulate the switching latency. Whenever a timer is triggered, the ForwardPacket()
method is called, so that the next highest priority packet can be dispatched;

• StorePacket(): Distinguishes priority-based Ethernet frames from the standard ones.
Standard Ethernet frames are automatically assigned the lowest priority. On the other
hand, for priority-based frames, the method acquires the PCP value from the IEEE
802.1Q header. It then calls the PCP mapping method to store the messages according
to their priority levels;

• PCPmapping: Maps the PCP value according to the previously described table. It then
stores the packet in the appropriate priority queue;

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES75

• ForwardPacket(): Searches for the highest priority packet and sends it to the MAC
module;

• getNext(): A public method called by the MAC module informing that the port is free,
thus a new transmission can occur.

Figure 5.4: Processor class implemented in OMNeT++.

With the module-based architecture developed in OMNeT++, users can effortlessly remove
the implemented structure from the INET Ethernet switch or add it to their own models.

5.2 A server-based scheduling framework for Ethernet switches

Although switched Ethernet networks include several advantages such as low-cost hardware
and large bandwidth, standard COTS Ethernet switches were not designed with the required
features to support real-time communications. To address these issues, several Real-time
Ethernet (RTE) protocols have been proposed. However, despite the mechanisms employed,
server-based scheduling in RTE protocols is rather limited, as there is no support for arbitrary
server policies or hierarchical composition. In this scope, a server-based framework for Ethernet
switches was implemented in the OMNeT++ simulation environment. The implemented
architecture focuses on features not available in RTE protocols, specifically the lack of support
for hierarchical structuring.

Server-based scheduling is a technique used to control the interference caused by asynchronous
messages. As their activation cannot be synchronized and controlled by a scheduler, it can

76 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

jeopardize the timeliness of the periodic ones. Thus, such mechanisms are employed to make
asynchronous traffic more deterministic. Despite guaranteeing the associated traffic temporal
requirements, a significant disadvantage arising from this type of technique is the scheduling
analysis, which is done globally. This can be particularly difficult for complex systems. To
address these issues, methodologies based on hierarchical scheduling have been proposed. As
described in Section 2.1.5, HSF simplifies the systems scheduling analysis by segmenting them
into more simplistic subsystems that can be examined individually.

These frameworks are commonly represented by a tree, i.e., an association of different compo-
nents interconnected. When combining multi-level hierarchical scheduling with server-based
techniques, each individual component is a server that can be represented as Γyx , where y
is the hierarchy level and x the component identifier (Figure 5.5). The components at the
hierarchy lowest level are designated Leaf servers. They process incoming messages from the
streams and consume the system bandwidth. The remaining, known as Branch servers, handle
a system bandwidth section and share it through their children.

Figure 5.5: Multi-level server-based hierarchy representation.

5.2.1 Switch Architecture

The proposed simulation model makes use of the standard Ethernet switch developed by
INET, a library of OMNeT++, (represented by the shaded area), and incorporates the
hierarchical server-based structure (represented by the clearer area), as illustrated in Figure
5.6. The implemented framework is entirely isolated from the central switching block created
by INET (Figure 5.7),which is mainly responsible, for example, for performing forwarding
decisions based on MAC addresses. On the other hand, the hierarchical unit is responsible
for dispatching messages to the associated egress port according to the policies defined by
server-based framework.

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES77

Figure 5.6: Hierarchical server-based framework architecture.

Figure 5.7: The server-based framework employed in the INET Ethernet switch.

As the server-based framework was purposely implemented not to interfere with the switching
block, users can easily remove the structure to simulate the standard Ethernet switch behavior
or add their own modules to handle the synchronous traffic. However, a classifier module
would be required to direct the TT and ET traffic to the correct structures.

5.2.2 Implementation of the hierarchical server-based framework

The ReceptionUnit module, directly connected to the switching block, functions as a demulti-
plexer. It receives packets from the SwitchingUnit and, based on results from the switching
process, sends them to the appropriate ServerUnit. Within the ServerUnit, packets are
subsequently stored on different servers, which control the resources available in the network.
The TransmissionUnit, which acts as a multiplexer, forwards the packets to the respective
egress ports. This module also notifies when a given egress port is currently free. Based on
the size of a message that is going to be dispatched, the TransmissionUnit calculates the time

78 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

required to send the frame together with headers and overheads, and creates a timer. When
triggered, the module requests a new packet from the ServerUnit and repeats the process.
Note that this component can have several timers, depending on the output ports number.

Figure 5.8 illustrates a sequence chart example of the several transactions that occur between
the different blocks. Initially, all egress ports are available hence, the TransmissionUnit
automatically forwards the processed packet. While the switch is transmitting the message,
two new ones arrive. As the port is currently busy, these are held in the ServerUnit queues.
When the transmission is completed, the timer created by the module is triggered, which
makes it request a new frame. The ServerUnit scans for the highest priority packet stored
and sends it, thus repeating the process.

Figure 5.8: Sequence Chart of the transmissions within the switch.

The ServerUnit, specific for each output port, is a compound module that contains the various
components of the multi-level server hierarchy. Figure 5.9 describes its internal blocks. It
includes the different servers (leaves and branches), the StreamManagementUnit and the local
scheduler, composed by both the VerificationUnit and SelectionUnit. Incoming packets are
received by the StreamManagementUnit, which then sends them to the appropriate leaf server,
thus acting as a demultiplexer. The leaf and branch servers are responsible for controlling the
network resources. The former type stores the packets while the latter provides the necessary
resources for their processing. Whenever the egress port is free, the scheduler, based on the
employed scheduling algorithm, selects which leaf server should operate.

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES79

Figure 5.9: Server Unit architecture.

To build the server hierarchy in OMNeT++, the user must specify the number of branch
and leaf components used as well as connect them according to the desired structure in
the NED file. Figure 5.10 depicts the ServerUnit implementation in the NED file. This
compound module has several parameters, some of which define the number of leaf and branch
servers employed in the structure (e.g., LeafComponents and BranchComponents, respectively).
When using these parameters, the hierarchy can be built using a vector-based approach,
i.e., instead of creating each leaf and branch server individually, these are generated as a
standard vector (branch[BranchComponents], leaf[LeafComponents]), which can be accessed
individually. This approach is specifically helpful when the structure has multiple levels with
several components. Note that both parameters have default values. However, these can be
changed in the initialization file, when setting up the simulation properties.

The creation of the server-based hierarchy is made when connecting the different components.
Similar to other programming languages, the NED language enables the user to use both
logical conditions and loops (e.g., if...else, while), when connecting the modules. By taking
advantage of such features, several hierarchies can be implemented and saved in a single file.
Then, during the simulation parameterization, when defining the number of leaf and branch
servers employed, one of them is utilized. In Figure 5.10, the hierarchy illustrated is used in the
simulation when the number of branch servers is one (BranchComponents == 1). However,
by adopting this sort of approach, dynamic modifications within the structure, e.g., number of
servers and their type, are not possible during run-time. Nonetheless, reconfigurations of the
existing components, e.g., period or capacity, can be made at any time during the simulations.

80 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

Figure 5.10: ServerUnit implementation in OMNeT++ NED file.

5.2.2.1 Stream Management Unit

Within each ServerUnit exists the StreamManagementUnit. It is a simple module that
associates packets from the different streams to the appropriate leaf servers. Likewise, it
dispatches processed packets from those components to the TransmissionUnit so they can
be forwarded to the respective end-nodes. This module can also process reconfiguration
requests sent by streams to alter some hierarchy parameters, e.g., change stream and server
association. The C++ class of this module is depicted in Figure 5.11. The module main
variable is the C+ vector Streams. It contains the association between streams and servers.
The StreamManagementUnit methode are the following:

• intialize(): Called at the start of each simulation. Based on the simulation properties
(number of nodes, number of each server type), sets the values for the different variables;

• handleMessage(): Received packets can have two sources: the leaf servers or the
ReceptionUnit. The former is ready for being dispatched by the switch thus are sent to
the TransmissionUnit. The latter are stored in the servers;

• forwardToSever(): Sends the packet to the appropriate leaf server, based on the mapping
between the streams and servers;

• processStreamReconfigurationPacket(): Processes a reconfiguration packet that involves
the streams (e.g., add, remove, and modify an existing association). Any alteration
involves changing the Stream vector;

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES81

• processServerReconfigurationPacket(): Acts as a validator method for the servers’ recon-
figuration packets. Packets whose destination server does not exist in the hierarchy are
discarded. Calls the informLeafComponent()/informBranchComponent() methods for
non discarded packets;

• informLeafComponent()/informBranchComponent: Invoked whenever reconfiguration
packets pass the validation process. Sends the content of the packet to the server;

• parseXMLFile(): Reads an XML file with the association between the servers and the
streams. Fills the Stream vector based on the file content (Table 5.1).

Table 5.1: Properties stored in the StreamManagementUnit.

Parameter Description Value

Stream Id Stream Identifier [0, 232 − 1]
Server Id Leaf server NED identifier [0, 232 − 1]

Figure 5.11: StreamManagementUnit C++ class.

82 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

5.2.2.2 Leaf Component

The leaf components are compound modules that process incoming messages whenever they
have enough resources. These servers parameters are initialized using information from a
specific XML file (Figure 5.12) that contains their period, capacity, priority (for static priority
scheduling), and hierarchy parameters (x and y, Γyx). As the XML file holds the properties
for several leaf and branch servers, the first two parameters (e.g., Type and ID) are used as
filters. This way, each server only gets the content referred to their type and ID. Each leaf
component has an associated FIFO queue to store the messages sent by streams (Figure 5.13),
which are transmitted whenever the ServerUnit scheduler assigns the server to execute.

Figure 5.12: Example of an XML file with the properties of a leaf server.

Figure 5.13: ServerUnit implementation in OMNeT++.

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES83

As the components are based on the Deferrable Server (DS) scheduling algorithm, their capacity
budget is replenished periodically. Thus, each server has a local timer that, when triggered,
restores the capacity of the component. As previously mentioned, streams can transmit
specific requests to modify some properties within the hierarchy. If the new configuration
involves the server parameters exclusively, the leaf components can directly process these
requests.

The leaf component C++ class includes several methods and variables, some of which are
only used to print useful information to the user or store data for analysis. Therefore, instead
of presenting all the module methods, only the most important are described (Figure 5.14):

• intialize(): Invoked at the start of each simulation. Initializes the module variables, i.e.,
sets their values based on the simulation parameters. It also calls a specific method to
read the XML file and get the server properties;

• handleMessage(): Received packets can be self-messages, which are handled by the
handleSelfMessage() method, or Ethernet frames. For the latter type, this function calls
the storePacket() method;

• handleSelfMessage: Called whenever the replenishing timer is triggered. The server
capacity budget is recharged with the maximum value defined, and a new timer is
created. The updateVerificationUnit() method is invoked afterwards;

• updateVerificationUnit(): This method updates the VerificationUnit with the server
current parameters(current capacity, stored packets, size of the largest stored packet).
The information is then used to select the next server to operate;

• storePacket(): Whenever an Ethernet packet is received, this method is invoked. It
stores the packet in the queue. If the FIFO queue is full, i.e., storedPackets = queueSize,
the received packet is discarded;

• processPacket(): This method is invoked by the SelectionUnit whenever the server is
selected to operate. It gets the next stored packet (i.e., top of the FIFO queue) and
sends it to the StreamManagementUnit so it can be dispatched by the switch. Afterward,
the server properties are updated (e.g., capacity decreased, number of stored packets
decreased, size of the largest stored packet updated), thus the updateVerificationUnit()
is invoked. The server also sends a message to the parent with the resources spent to
process the packet.

• reconfigureParameters(): Invoked by the StreamManagementUnit whenever a server
reconfiguration packet passes the initial validation process. This packet content(e.g.,
priority, capacity, period) is sent to the server. Based on this information, the server
assesses if the modifications are feasible (e.g., capacity ≥ maxPacketSize, period > 0).

84 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

Figure 5.14: Section of the leaf components C++ class.

5.2.2.3 Branch Component

Each branch component provides a section of the network resources (i.e., bandwidth) to their
children so they can process messages. Therefore, whenever a connected leaf server processes
a packet, the branch capacity decreases by the same amount. Note that it is not only the
immediate branch that has to reduce its budget. All the servers in the path from the root to
the leaves must decrease their capacity. Hence, starting from the lowest level of the hierarchy,
the components send specific messages informing the following level the quantity to decrease.

Similar to leaf components, branch parameters are also initialized using an XML file. Fur-
thermore, as they are also based on Deferrable Server scheduling algorithm, their capacity is
limited and can be depleted. Thus, within each component exists a periodic timer to replenish
the capacity budget of the server.

As the branch component implementation is very similar to leaf servers, only some of its main
methods are explained:

• handleSelfMessage(): Function used for replenish the capacity budget of the server;

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES85

• updateCapacity(): Invoked whenever a child leaf server processes a packet. The compo-
nent sends a message with the capacity spent in that process. The branch server then
decreases the same amount from its own capacity;

• updateVerificationUnit(): Called whenever the server parameters are altered (e.g., capac-
ity replenishment). Informs the VerificationUnit about the current server parameters
(e.g., current capacity).

5.2.2.4 Scheduler

The scheduler, composed by both VerificationUnit and SelectionUnit simple modules, is
responsible for selecting the appropriate server to execute based on the system current
parameters. These parameters are stored in two tables that exist within the VerificationUnit,
one for each type (Table 5.2 and Table 5.3). Both tables are updated whenever occurs a
process that modifies the components’ current properties, e.g., replenishing of their capacities,
processing a packet.

Table 5.2: VerificationUnit table with all the simulation branch servers’ properties.

Branch
Component

Capacity
(Bytes) Period (s) Priority Parent

Component
Γ10 5000 0.001 - -
Γ20 3000 0.005 1 Γ10
...

Γyx

Table 5.3: VerificationUnit table with all the simulation leaf servers’ properties.

Leaf
Component

Capacity
(Bytes) Period (s) Priority Size of the largest

stored Packet
Number of

stored Packets
Parent

Component
Γ21 20 0.01 2 0 0 Γ10
Γ30 1000 0.02 2 1000 1 Γ20
Γ31 1400 0.03 1 700 2 Γ20
...

Γyx

Based on both tables, and the algorithm illustrated in Figure 5.15, the VerificatioUnit assesses
which current leaf components can process their stored messages. As such, starting from
the first entry of Table 5.2, the module analyses if any leaf components satisfy the following
conditions:

1. Leaf component current budget ≥ Largest stored packet size.

2. Number of stored packets > 0.

Note that the first condition implies that, for certain situations, resources may not be correctly
used. As the scheduler verifies the largest stored packet, instead of the next in the queue,

86 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

servers, with enough capacity budget to process smaller packets, can be prevented from
operating. Nonetheless, this type of approach makes the scheduling analysis easier.

If any of the two conditions fail, the module advances to the next entry. Otherwise, it starts
examining the successful component parent. The VerificationUnit knows the associations
between servers through the Parent Component (Γyx) column in both tables. The y section
of this parameter (hierarchy level) can be either null, for the root component, or bigger than
zero, thus pointing to the parent level. Hence, the module analyses if the following server has
enough resources:

• Branch component current capacity ≥ Leaf largest stored packet.

If this condition is satisfied, the following branch in the path is tested, otherwise, the process
is stopped, and the module repeats the previous steps for the next leaf table entry. If all the
branch servers, including the root, satisfy the preceding condition, all the previously examined
components are added to a vector that holds the available servers for execution. Note that the
leaf table entries are not ordered by priorities thus, the VerificationUnit must always repeat
the complete process for all leaf components.

Figure 5.15: VerificationUnit processing algorithm.

Using the vector with all available servers, the VerificationUnit selects the one with the highest
priority to execute using the algorithm depicted in Figure 5.16. Starting from the hierarchy
second level, the module selects, for each level, the highest priority component stored in the
vector. This process is based on the RM algorithm or static priorities. Upon reaching the
first leaf component, the module informs the SelectionUnit which server should operate.

5.2. A SERVER-BASED SCHEDULING FRAMEWORK FOR ETHERNET SWITCHES87

Figure 5.16: VerificationUnit selection algorithm.

Based on the information from the VerificationUnit, the SelectionUnit requests a server
to process one of its stored packets (i.e., invokes the previously described leaf component
method, processPacket()). This structure is also responsible for starting the scheduling process.
Whenever a transmission is completed, the TransmissionUnit informs this module that the
port is currently free, which then informs the SelectionUnit to start the scheduling process.

In summary, the VerificationUnit is responsible for the scheduling algorithm itself while the
SelectionUnit starts the scheduling process and administers its results. Note that all the
previously described processes could have been made in a single scheduler module. However,
because OMNeT++ supports a modular-based structure, by creating two distinct modules
with different functions, the system becomes simpler. To better understand the previous
mechanisms, a simple example is shown (Figure 5.17).

Figure 5.17: Example of multi-level server Hierarchy.

Figure 5.17 presents a multi-level server hierarchy example with each component current
properties. In this example, the leaves’ budget is equal to the stream frame maximum size.

88 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

Thus, only one frame can be sent in each period. Based on the properties displayed in the
figure, and considering that all the egress ports are currently available, all three leaf servers
can presently process their packets. Consequently, the VerificationUnit creates a 3D vector
with every component, as depicted in Figure 5.18.

Starting from the Hierarchy Level column second position and, based on the RM algorithm,
the VerificationUnit determines that the server with the highest priority is Γ21. As that
server has no children, it denotes that it is a leaf thus, it is selected to execute. Following
the sending completion, the TransmissionUnit requests another packet. A new 3D vector
is created, except this time, component Γ21 is not added. Consequently, for the hierarchy
second level, component Γ20 is selected as the one with the highest priority, followed by Γ30

for the third. This server can immediately execute as it has no children. The process is later
repeated, and the last server, Γ31, is selected for execution.

Figure 5.18: Resulting 3D Vector from the first verification process.

5.3 HaRTES simulation model

In the scope of the FT4FTT [59] project, which aims to improve reliability and flexibility in
Destributed Embedded Systems (DES) via fault tolerance mechanisms, a simulation model of
HaRTES for OMNeT++ was implemented, whose purpose is to evaluate the efficiency of such
mechanisms in a convenient and faster environment. Both the HaRTES switch and FTT-slaves
simulation models (Figure 5.19), designing by Knezic et al. [60], were specifically created to
study a procedure that improves the FTT-compliant nodes synchronization by replicating the
trigger messages and transmitting them multiple times. Therefore, when originally designed,
the authors focused specifically on the switch synchronous subsystem. Consequently, both
asynchronous and Non real-time (NRT) communications were not supported. The HaRTES
simulation model, implemented in the scope of this dissertation, is based on the original
Knezic et al. model and completes it by introducing the server-based framework presented in
the previous section (Section 5.2) to handle both the asynchronous and non-real-time traffic.

5.3. HARTES SIMULATION MODEL 89

Figure 5.19: HaRTES switch and FTT-slave architectures for OMNeT++ (from Knezic et
al. [60], 2014).

The general architecture of the proposed model for OMNeT++ is illustrated in Figure 5.20.
The HaRTES switch model comprises three distinct types of modules. The ones that were
developed by INET, the FT4TT modules that remained untouched, and lastly, the newly
added components to process the asynchronous traffic as well as an updated FT4TT modules
version. As the original HaRTES model was implemented in 2014, with the current version
of OMNeT++ and INET, it was required to update several of its original components to
recent software versions. Furthermore, several modifications were also necessary to incorporate
asynchronous communication subsystem.

Figure 5.20: Implemented HaRTES switch architecture for OMNeT++

The INET modules include the FIFO Queues employed to store the different messages
processed by the switch. They also comprise an Ethernet Interface that contains a MAC and

90 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

EtherEncap components responsible for transmitting Ethernet messages between the physical
and data link layers. The remaining modules, based on the blocks described in Section 3.3.1,
are presented in the following segments.

5.3.1 HaRTES switch

An overview of the HaRTES switch simulation model in the OMNeT++ IDE is depicted in
Figure 5.21.

Figure 5.21: HaRTES switch in OMNeT++.

5.3.1.1 FTT Master

The FTT Master, responsible for the management and decision making within the switch,
comprises the srdb, scheduler, admissionControl, dispatcher and forwarder simple modules.

The SRDB module contains all the properties regarding the system synchronous and asyn-
chronous streams. The information stored in this component is essential for building the
scheduler, validating the packets as well as dispatching them to the appropriate egress ports,
and distribute the resources throughout the server-based framework. At the beginning of
every simulation, this module is initialized using the information from a specific XML file.
Table 5.4 contains the kind of data stored in the file that is registered during the initialization.

5.3. HARTES SIMULATION MODEL 91

Table 5.4: Properties stored in the SRDB/NRDB module.

Parameter Description Value

StreamType Real-time traffic class 0 (TT), 1 (ET)
StreamReq Id Stream Identifier]0, 232 − 1]

Size Frame length, in bytes.
Excludes all the 802.3 headers and FCS as well as other FTT overheads]46, 1500]

Deadline Frame absolute deadline [0, 232 − 1] in ECs

Priority Frame absolute priority.
Higher values equals to higher priority levels]1, 232 − 1]

Publisher List of streams’ ingress ports —

General

Subscribers List of streams’ egress ports —

TT Period Periodicity of frames]0, 232 − 1] in ECs

Mit Minimal inter arrival time between frames]0, 232 − 1] µsET Server Associated Deferrable server identifier [0, 232 − 1]

The Scheduler is responsible for periodically construct the EC schedule. As such, within the
module, the trigger messages are created and subsequently sent to the dispatcher. The the
elementary cycle duration is defined by the user in the initiation file. This value can range
between [1, 232 − 1] ms, with a default value of 1ms. Note that the LTM and TAT duration
(Figure 3.1) is, by default, 10 µs each, thus giving enough time for the FTT nodes to receive
the TM messages and process them. As it was implemented, this module uses the attributes
in the SRDB to constructs the EC schedules based on the RM or EDF algorithm (selected by
the user in the initialization file).

The admissionControl module comprises both QoS Manager and Admission Control blocks.
This component is responsible for managing possible changes in the SRDB. These modifications
are requested by the FTT slaves through Slave-to-Master asynchronous requests named update
slave requests (Req). As these are asynchronous packets, their transmission is not limited to
any window. Reconfiguration requests include the modification of a registered synchronous or
asynchronous stream (e.g., add or remove subscribers, alter the period/tmit, message size,
and priority) or the server reservation modification (e.g., alter period, capacity budget, and
priority). Note that these are only basic reconfiguration services as no assessment algorithm
was implemented to validate the reconfiguration requests.

The FTT master dispatcher comprises three distinct simple modules: (i) the fwdTbl, (ii) the
dispatcher and (iii) the forwarder. The first one, the forwarding table, is a module that contains
the association between the egress ports and the streams subscribers. Instead of standard
MAC addresses, the forwarding rule is based on Stream Ids with a publisher/subscriber model.
Consequently, the table content stems from a specific XML file that is scanned through the
simulation initialization. Figure 5.22 presents an XML file example used to initialize the table.
The first value corresponds to the Ethernet port (it can range between [0, 232 − 1]) whereas,
the second is the stream identifier.

92 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

Figure 5.22: Example of an XML file with the forwarding table contents.

The dispatcher and forwarder are responsible for dispatching messages to the end-nodes of the
network. The latter module uses the content from both the SRDB and the forwarding table
to transmit packets to the streams’ publishers. It also broadcasts the TM at the start of every
EC, upon constructed by the scheduler, and sends the Slave requests to the admission Control.
The former simple module requests the creation of a new EC schedule, gets the packets from
the Sync FIFO queue, and notifies the server-based framework the initiation and duration of
the asynchronous window. As these distinct processes can only occur in specific time slots,
the dispatcher contains two periodic timers, which, when triggered, notify the initiation of a
new elementary cycle and a new asynchronous window, respectively.

5.3.1.2 Switching structures

The remaining switching blocks include both Input and Output Ports, Memory Pool,
and the Server-based framework that handles the asynchronous and non-real-time traffic.

Both ingress and egress ports of the Ethernet switch are from the INET library, whose
function is to transmit and receive packets between the network components as described in
Section 5.1. Upon the reception of a new frame, the classifier module classifies the packet
into synchronous, asynchronous and non-real-time. Non-real-time packets are directly stored
in non-real-time FIFO queue, whereas the remaining ones go through a validation process.
Based on the contents from the SRDB, and the current EC schedule, the validator simple
module, assesses if the synchronous messages are scheduled in the current elementary cycle.
Regarding asynchronous packets, this module examines if the publisher stream is registered
in the SRDB. Synchronous and asynchronous messages that pass the validation process are
enqueued in the appropriate FIFO queues, while others are discarded.

In order to incorporate the server-based framework described in Section 5.2 in the HaRTES
switch, some minor adjustments were required. As this structure processes both real and
non-real time traffic, a new Background server was introduced in all the ServerUnits. This
component has the lowest priority of the hierarchy and is directly connected to the root
component (Figure 5.23). It has infinite bandwidth but is limited to the resources available
throughout the asynchronous window.

5.3. HARTES SIMULATION MODEL 93

Figure 5.23: HaRTES elementary cycle structure.

The asynchronous and non-real-time traffic can only be transmitted through the duration of
the asynchronous window. To guarantee traffic isolation and prevent these messages from
interfering with the broadcasting of the trigger messages, some measures were introduced.
The first one was to limit the resources available for the servers. Consequently, the hierarchy
top component has a capacity budget equal to the asynchronous window duration, which is
replenished at the start of every elementary cycle.

The second measure guarantees that asynchronous or non-real-time transmissions can only
initiate if they are completed before the start of the next elementary cycle. It is important
to highlight that the FTT protocol already implements mechanisms that prevent overruns
between the traffic classes. These include a Guard Window introduction at the end of the
asynchronous window, in which no new transmissions can start. This window is normally as
large as the largest packet in the network, thus ensuring that all the egress ports are available
for transmitting the TM. However, as the previous statement is not always guaranteed (i.e.,
the size of the Guard Window can be smaller than the network packets), the framework
verifies the following conditions:

1. Transmissions can only start during the asynchronous window;

2. Transmissions must cease before the start of the next EC.

The Guard Window usage has, however, a significant inconvenience as an available bandwidth
portion is not used. As such, since the framework continuously checks the shown conditions
before any transmission, the Guard Window can be completely removed, improving the switch
efficiency.

94 CHAPTER 5. IMPLEMENTING HARTES SWITCH MODEL ON OMNET++

To achieve this procedure, at the start of the asynchronous window, the dispatcher module
notifies the ServerUnits the moment it starts, its length (LAW), and the guard window (GW)
duration. Therefore, when selecting the next server to execute, the framework scheduler first
verifies if the transmission starts within the asynchronous window. Then, if so, assesses if
the time required to transmit the largest and highest priority stored frame together with the
maximum switching latency (ε) is shorter than the available time in the window (Equation
5.1):

tsch + Ci + ε ≤ tAW + LAW +GW (5.1)

where tsch is the instant the scheduling process starts, Ci the frame transmission time, and
tAW the time instant when the asynchronous window started. Note that, when the guard
window is removed, GW = 0.

If the condition is verified, the packet is transmitted. Otherwise, no other messages are
forwarded throughout the rest of the window. This means that, for certain circumstances, the
resources are not optimally used, as lower priority messages could still be transmitted at these
intervals if they are large enough. However, this type of approach eases the schedulability
analysis.

The initialization of leaf servers’ properties (period, capacity, priority) was modified to acquire
the information from the SRDB or from an XML file as it was formerly implemented, based
on the user decision. By using the SRDB format, the switch assigns the necessary resources to
each reservation. The servers’ parameters can also be altered by Slave-to-Master modification
requests.

5.3.2 FTT Compliant nodes

The architecture of FTT compliant nodes is depicted in Figure 5.24. Alike the HaRTES
switch model, the INET modules to transmit and receive Ethernet frames (Eth) are reused.

The nrdb module is the FTT slave equivalent of SRDB for the HaRTES switch. Consequently,
its data is referred exclusively to the node itself. Similar to the switch procedure, this module
content is initialized using an XML file whose parameters are shown in Table 5.4.

The dispatcher module receives the TM transmitted by the switch, decodes it, and, based on
the EC schedule, generates the synchronous messages. Regarding the asynchronous subsystem,
this module has a local timer for the creation of asynchronous packets. As this class of traffic is
non-deterministic, the timer can range between [mit, 3×mit]. The structure of both messages
is constructed by the dispatcher using the NRDB contents (destination, source, size, and
so forth) whereas, the data is provided by the Application (app). The dispatcher delivers
both real-time and non-real-time frames to the application module, targeted by other network
nodes. The application can also create Slave-to-Master requests to alter some NRDB contents
and, consequently, the SRDB if feasible. These are forwarded directly to the switch by the
dispatcher.

5.3. HARTES SIMULATION MODEL 95

Figure 5.24: FTT compliant nodes architecture.

CHAPTER 6
Validation of the implemented
OMNeT++ simulation models

Contents
6.1 Validation of the IEEE 802.1Q simulation model 97

6.1.1 Experiment 1 - Homogeneous traffic set 98

6.1.2 Experiment 2 - Heterogeneous message set 100

6.2 Validation of the server-based scheduling model 101

6.2.1 Experiment 1 - Assessing the model control capabilities 102

6.2.2 Experiment 2 - Realistic network simulation 104

6.3 Comparing the performance of the frameworks in Ethernet switches 106

6.3.1 Experiment 1 - Normal operation 108

6.3.2 Experiment 2 - Abnormal node operation 108

6.4 Experimental validation of HaRTES simulation model 111

6.4.1 Temporal isolation between the traffic classes 112

6.4.2 Traffic confinement within the asynchronous subsystem 117

This chapter presents the experiments conducted to validate the correctness of the simulation
models described in Chapter 5. It starts with the individual validation of the IEEE 802.1Q
protocol model, followed by the evaluation of a hierarchical server-based framework simulation
model. The chapter concludes with the assessment of the HaRTES OMNeT++ model with
the server-based framework incorporated.

6.1 Validation of the IEEE 802.1Q simulation model

As addressed in Section 2.3, standard Ethernet did not provide the capabilities to isolate
traffic different classes with different QoS requirements. These features were introduced with
the IEEE 802.1Q standard, which extended the IEEE 802.3 Ethernet frame with a specific
priority identifier field, and introduced different priority queues at the switch output ports. In
Section 5.1, an OMNeT++ simulation model that provides such features to standard Ethernet
switches was described.

97

98
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

The following segment presents the experimental results from the implemented simulation
model as well as their analysis. The experiments focus is the correctness of the control
algorithm and the model traffic segregation capabilities, which classify the messages according
to different priorities. The experimental setup used to conduct the different experimental
scenarios is illustrated in Figure 6.1. It consists of an Ethernet switch and five nodes. The
switch links were configured for 100 Mbit/s and the internal latency ε is about 5 µs1.

Figure 6.1: Experimental setup used to validate the IEEE 802.1Q modeled switch.

In order to validate the implemented IEEE802.1Q simulation model, two experiments were
conducted: Exp1, in which a homogeneous set of synchronous messages was employed, to
assess if the control algorithm is correctly processing the frames according to their priorities,
and Exp2, in which the model was tested using a heterogeneous traffic set, to evaluate the
model performance in a more realistic situation. The the generated traffic properties are
presented in Table2 6.1.

Table 6.1: IEEE 802.1Q: Generated traffic properties for Experiment 1.

Experiment Node Traffic Type Priority (PCP) Payload (Bytes) Ti/Tmiti(µs) Destination Node

Exp1

1 Synchronous (S1) 4 500 350 0
2 Synchronous (S2) 3 500 350 0
3 Synchronous (S3) 2 500 350 0
4 Synchronous (S4) 1 500 350 0

1 Synchronous (S1) 4 1200 400 0
2 Synchronous (S2) 3 1200 400 0

3 Asynchronous
Sporadic (A3) 2 900 350 0Exp2

4 Asynchronous
Aperiodic (A4) 1 1000 - 0

Note: The payload size does not include the frame headers and other overheads from the OSI Data link layer.

6.1.1 Experiment 1 - Homogeneous traffic set

In the first experiment, all nodes are perfectly synchronized in time. Consequently, all streams’
packets reach the switch at the same instant, thus being easier to verify the order in which

1This value is based on several Ethernet switches datasheets ([61], [62], [63]), which, for 100 Mbit/s links,
have an local latency ranging from 3 to 7 µs.

2For this analysis scope, the streams’ deadlines and offsets (for the synchronous type), were not considered.

6.1. VALIDATION OF THE IEEE 802.1Q SIMULATION MODEL 99

they are dispatched. All streams generate synchronous packets with a transmission time (Ci)
of 42 µs (Table 6.1). Figure 6.2 illustrates the latency values measured for each stream and
Table 6.2 presents the statistical breakdown of the observed data.

Figure 6.2: IEEE 802.1Q: Latency measurements for Experiment 1.

Table 6.2: IEEE 802.1Q: Statistical values for Experiment 1.

Stream Latency (µs)

Min Max Mean

S1 90.07 90.07 90.07
S2 138.34 138.34 138.34
S3 185.97 185.97 185.97
S4 233.61 233.61 233.61

Total number of samples: 10000

The obtained results demonstrate the correct traffic prioritization by the implemented model
as the streams’ latency values increase the lower their priorities, with the observed minimum
of 90 µs for the highest priority stream (S1) and the maximum latency of 233 µs for the
lowest priority stream (S4). As the streams are perfectly synchronized, there is always a
47 µs interval between the reception of consecutive frames. This value accounts for the
transmission duration (42 µs), together with the switch local latency (5 µs). As the sum of all
the transmission times is always lesser than the streams’ periods, there is never interference
between two consecutive sets of created messages.

100
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

6.1.2 Experiment 2 - Heterogeneous message set

In this experiment, the generated traffic set now includes both TT and ET messages. Conse-
quently, frames can be received at different time instants and thus, blocking can now occur,
and distinct interference patterns can emerge on the egress link. Note that both circumstances
only happen because frames cannot be preempted while being transmitted. Table6.1 describes
the generated message set.

Frames from stream 1, the higher priority stream, can be immediately dispatched upon
reaching the switch or, for the worst-case situation, are delayed because of blocking caused by
the largest frame full transmission from a lower priority stream (BA4 = CA4). It is important
to highlight that theoretically, messages from S2 would result in the highest interference.
However, for this case, as this stream is synchronized with S1, such a situation never occurs.
Thus, the latency of stream 1, LS1, can range between:

LS1 =

min = 2× CS1 + ε

max = (2× CS1 + ε) +BA4

For stream 2, all messages experience interference from the highest priority stream (IS1)
because they are synchronized in time. They may also suffer blocking from lower priority
frames if the same conditions applied to stream 1 occur:

LS2 =

min = (2× CS2 + ε) + IS1 , IS1 = CS1 + ε

max = (2× CS2 + ε) + IS1 +BA4

For sporadic messages, the maximum latency results from blocking caused by the complete
transmission of the lower priority aperiodic message, and interference from the two synchronous
ones stored at the switch output queues. On the other hand, the minimum value occurs if the
packet reaches the switch and all the queues are empty and the ports free:

LA3 =

min = 2× CA3 + ε

max = (2× CA3 + ε) + IS1 + IS2 +BA4

Lastly, for the aperiodic stream, the worst-case situation occurs if the frames of all four streams
reach the switch at the same instant. In such circumstances, the latency is considerably
increased by the duration of three higher priority complete transmissions:

LA4 =

min = 2× CA4 + ε

max = (2× CA4 + ε) + IS1 + IS2 + IA3

The subsequent table, Table 6.3, presents the theoretical ranges expected for the messages’
latency values as well as the experimental measurements of 100000 generated packets for each
stream.

6.2. VALIDATION OF THE SERVER-BASED SCHEDULING MODEL 101

Table 6.3: IEEE 802.1Q: Latency values for Experiment 2.

Stream Ltheo (µs) Lexp (µs)

Min Max Min Max Mean

S1 201.64 283.96 201.36 283.96 195.86
S2 304.96 387.28 303.97 386.60 212.97
A3 153.64 442.60 153.33 441.23 313.33
A4 169.64 455.60 169.36 453.25 210.69

The results demonstrate a small discrepancy between some theoretical and experimental
values, which accounts for 1 µs for both maximum and minimum ranges. Nonetheless, all the
measurements are within the expected theoretical ranges, with the highest latency with the
highest latency (453 us) observed for the lowest priority stream, and the lowest latency value
(283 us) for the highest priority stream.

6.2 Validation of the server-based scheduling model

This section details the conducted experiments that evaluate the implemented server-based
scheduling framework, described in Section 5.2, and the results analysis. When evaluating
the model, three central features were considered: (i) the control algorithm correctness,
(ii) the possibility to make several online reconfigurations to the hierarchy and (iii) the
capability to handle multiple streams with different requirements. The experimental setup,
used throughout the different scenarios, is illustrated in Figure 6.3. It comprises four nodes
and an Ethernet switch with the configured hierarchical structure depicted. Each stream
priority is set according to the associated servers’ static priorities. For both experiments, the
switch links operate at 100 Mbit/s, and the device latency ε is considered to be 5 µs.

Figure 6.3: Server-based scheduling: Experimental setup.

102
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

Altogether, two experiments were made: Exp1, in which the model was tested using a
homogeneous synchronous traffic set, to assess the server-based scheduling algorithm, i.e., if
the servers’ execution is based on hierarchy priorities and if the structure limits the streams’
bandwidth, and Exp2, that simulates a typical real-time network with several asynchronous
streams, whose latency values are measured.

6.2.1 Experiment 1 - Assessing the model control capabilities

In the first experimental scenario (Exp1), three streams generate synchronous messages with
a transmission time (Ci) of 114 µs. As the streams are perfectly synchronized in time, their
frames reach the switch at the same instant. The servers, employed to manage the streams’
bandwidth, have capacity budgets that allow only one frame transmission per replenishing
period (Table 6.5). Each flow is handled by a single component at the hierarchy second or
third level. In order to assess how the resources are distributed within the framework, the
servers’ periods were configured to operate in three distinct modes. Table 6.4 and table 6.5
lists the streams and servers properties for each mode, respectively.

Table 6.4: Server-based scheduling: Generated traffic properties for all three modes of
Experiment 1.

Source
Node Traffic Type Associated

Server Priority Payload (Bytes) Ti(µs)
Destination

Node

0 Synchronous (S0) Γ30 2 1400 1000 3
1 Synchronous (S1) Γ31 1 1400 1000 3
2 Synchronous (S2) Γ21 3 1400 1000 3

Table 6.5: Server-based scheduling: Server properties for Experiment 1.

Server Priority Capacity
Budget (Bytes)

Period (µs)

Mode 1 Mode 2 Mode 3

Γ10 - 4500 300 300 4000
Γ20 1 3000 600 600 600
Γ21 2 1400 1000 2000 2000
Γ30 2 1400 1000 2000 2000
Γ31 1 1400 1000 2000 2000

Mode changes were performed online, during simulation, with nodes issuing a reconfiguration
request to the framework. The parameters of these configuration requests are presented in
Table 6.6. Figure 6.4, illustrates the observed inter-arrival values for each stream. Figure 6.5
depicts the servers’ capacity throughout the experiment for Mode 1. Lastly, Table 6.7 presents
a statistical breakdown of the observed latency and inter-arrival timings for each stream.

6.2. VALIDATION OF THE SERVER-BASED SCHEDULING MODEL 103

Table 6.6: Server-based scheduling: Requests to the server-based framework.

Reconfiguration requests

Server Operation Producer Capacity (Bytes) Period (µs)

Γ21 Mod. Period S2 1400 2000
Γ31 Mod. Period S0 1400 2000
Γ31 Mod. Period S1 1400 2000

Γ10 Mod. Period S0 4500 4000

Figure 6.4: Server-based scheduling: Inter-arrival timings for Experiment 1.

Table 6.7: Server-based scheduling: Statistical values for Experiment 1.

Stream Latency (µs) (Mode 1) Mean Inter-arrival (µs)

Min Max Mean Mode 1 Mode 2 Mode 3

S0 351.01 351.01 351.01 999.97 1999.92 3999.84
S1 469.33 469.33 469.33 999.97 1999.93 3999.84
S2 232.69 232.69 232.69 999.96 1999.92 3999.85

Total number of samples: 75000

104
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

Figure 6.5: Server-based scheduling: Servers’ capacity over time for Experiment 1 (Mode 1).

The results from this experiment show that the framework is processing the packets according
to the desired algorithm, with higher priority frames being dispatched first. As all packets
reach the switch at the same time, the lower priority are always delayed because of interference,
with a 119 µs value for stream 0 and 237 µs for stream 1 (Table 6.7). This situation is enhanced
by the results of Figure 6.5, which confirms that Γ21 is the first to execute, followed by Γ30

and then Γ31. Note that the presented latency values are only regarding Mode 1 because,
for the remaining two modes, the frames’ latency values are influenced by interference and
blocking between messages and the servers’ replenishing periods.

The experimental results also demonstrate that the servers’ capacity budget limit the streams’
bandwidth consumption. Note that such restrictions are not only imposed by the associated
components but also by higher level components. As the servers can only process one frame
per period, whenever their periods increased, the inter-arrival timings followed this growth,
always coinciding with the servers’ periods, as shown in Figure 6.4 and Table 6.7.

6.2.2 Experiment 2 - Realistic network simulation

For the second experiment, all flows are asynchronous with their properties presented in Table
6.8. Similar to Exp1, the servers were configured to process only one frame with the available
capacity budget. Figure 6.6 illustrates the latency histogram for each stream, and Table 6.9
presents a statistical counterpart of the obtained values.

6.2. VALIDATION OF THE SERVER-BASED SCHEDULING MODEL 105

Table 6.8: Server-based scheduling: Generated traffic properties for Experiment 2.

Source
Node Traffic Type Associated

Server Priority Payload (Bytes) Tmiti(µs)
Destination

Node

0 Asynchronous
Sporadic (A0) Γ30 2 1100 650 3

1 Asynchronous
Sporadic (A1) Γ31 1 1000 700 3

2 Asynchronous
Sporadic (A2) Γ21 3 1200 650 3

Table 6.9: Server-based scheduling: Latency values for Experiment 2.

Stream Ltheo
3(µs) Lexp(µs)

Min Max Min Max Mean

A0 185.64 371.28 184.69 365.32 198.66
A1 169.32 368.28 168.69 316.67 303.97
A2 201.64 291.96 200.69 287.01 218.77

Total number of samples: 100000

Figure 6.6: Server-based scheduling: Latency Histograms in µs.

The results show that the maximum observed values were all below the analysis upper bounds,
with a maximum latency of 365 µs for stream 0. This difference can result from the worst-case
situation not being generated. Nevertheless, the minimum latency measured for all streams is
moderately close to the expected results, with less than 1 µs of difference between values.

3The theoretical analysis was based on the same methodology described in section 6.1.2.

106
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

6.3 Comparing the performance of the frameworks in Ethernet
switches

In the previous sections, two distinct structures to manage real-time traffic in Ethernet
switches were individually validated. The former assigns distinct priorities to the traffic
classes, thus improving their separation at the switch ports. The latter, employed to handle
the asynchronous traffic, provides resource control as well as dynamic reconfigurability to
the system. The following segment presents several experiments in which those frameworks,
together with a standard Ethernet switch model, implemented by INET, were compared.

Altogether, two different scenarios were examined: the first, in which all the nodes respect
the established stream properties, the second contains some "badly behaved nodes" that do
not respect the negotiated reservations. The experiments purpose is to evaluate the different
simulation models performance for resource distribution and traffic segregation. As such, two
different metrics are measured and compared between experiments: (i) the number of packets
dropped by the switch relative to each stream and (ii) the minimum and maximum latency
values for each stream.

The experimental setup employed to assess the models is illustrated in Figure 6.7. It comprises
an Ethernet switch connected to seven different nodes, with six distinct flows and one receiver
node. The purpose of having only one receiver node is to force both blocking and interference
between messages so that increases in latency values are easily discerned. Table 6.10 holds
the streams’ parameters. Figure 6.8, illustrates the hierarchical structure employed in the
server-based switch. These are based on Deferrable servers, and their budgets are configured
to allow only one frame transmission per period (Table 6.11). For the different experiments,
the switch links are configured to 100 Mbit/s, and its internal latency is approximately 5 µs.
Furthermore, to simulate a real switch with limited memory, the queues, at the output ports,
were parameterized to store at most 100 packets at a time.

Figure 6.7: Experimental setup employed to compare switch models.

6.3. COMPARING THE PERFORMANCE OF THE FRAMEWORKS IN ETHERNET
SWITCHES 107

Table 6.10: Switch Comparison: Generated traffic properties in the experimental scenarios.

Source
Node Traffic Type Associated

Server Payload (Bytes) Ti/Tmiti(µs) Priority Destination
Node

0 Synchronous (S0) Γ30 1400 1500 6 6
1 Synchronous (S1) Γ32 1100 2500 4 6
2 Synchronous (S2) Γ34 1200 3000 2 6

3 Asynchronous
Sporadic (A3) Γ31 1000 2300 5 6

4 Asynchronous
Sporadic (A4) Γ33 700 6000 3 6

5 Asynchronous
Aperiodic (A5) Γ35 1400 - 1 6

Figure 6.8: Switch Comparison: Server-based structure employed throughout the experi-
ments.

Table 6.11: Switch Comparison: Servers’ properties throughout all four experiments.

Server Priority Capacity Budget (Bytes) Period (µs)

Γ10 - 15000 800
Γ20 3 5000 1000
Γ21 2 3000 1000
Γ22 1 5000 1000
Γ30 2 1400 1500
Γ31 1 1000 2000
Γ32 2 1100 2500
Γ33 1 700 6000
Γ34 2 1200 3000
Γ35 1 1400 5000

108
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

6.3.1 Experiment 1 - Normal operation

As it was previously mentioned, the first scenario was structured to simulate a network
where all the nodes operate normally. Table 6.12 exhibits the results for 100000 single packet
instances for each stream.

Table 6.12: Switch Comparison: Experiment 1 results.

S0 S1 S2 A3 A4 A5

Packets Dropped 0 0 0 0 0 0

Latency
(µs)

Min 228.69 180.69 196.69 164.69 116.69 228.69
Max 576.67 362.21 461.39 524.47 398.42 550.58Inet Switch

Mean 288.73 183.24 212.89 187.79 120.09 230.95

Hierarchical
server-based

switch

Packets Dropped 0 0 0 0 0 0

Latency
(µs)

Min 228.69 180.69 196.69 164.69 116.69 228.69
Max 343.37 494.12 589.66 388.17 505.93 599.46
Mean 275.35 184.46 227.83 184.91 123.42 231.22

Ethernet with
IEEE 802.1Q

switch

Packets Dropped 0 0 0 0 0 0

Latency
(µs)

Min 229.34 181.13 197.34 165.33 117.34 229.34
Max 344.74 495.72 591.35 389.45 507.85 601.38
Mean 276.18 185.13 228.60 185.70 124.11 231.88

The experiment results demonstrate that, for this specific situation, the three switch models
have similar performances. As all nodes operate has it was supposed to, there are no dropped
packets. Regarding the latency values, there are some minor deviations for both minimum
and mean values between the three models, with less than 2 µs differences. For the maximum
latency, however, there are some noticeable variances between the INET and the priority-based
switches. This difference results from the switching rule employed by the devices, FIFO policy
for the INET switch, and priority-based for the remaining two.

6.3.2 Experiment 2 - Abnormal node operation

In the second experiment, the streams were purposely altered so that their generated load would
use close to 100% of the corresponding link, thus not respecting the associated reservations.
This behavior was tested for three distinct situations: (i) the altered stream has the highest
priority (S0), (ii) the modified stream as an intermediate priority (S1) and (iii) the modified
stream has a lower priority (S2). For all three circumstances, upon transmitting 50000 packets,
the streams revert to their normal behavior (identical to Exp1). Table 6.13 presents the
streams’ modifications. The results of the three described situations are shown in Table 6.14,
Table 6.15 and Table 6.16, respectively.

6.3. COMPARING THE PERFORMANCE OF THE FRAMEWORKS IN ETHERNET
SWITCHES 109

Table 6.13: Switch Comparison: Streams’ modifications.

Stream Priority Normal behavior Abnormal behavior

Period (µs) Load (Mbit/s) Period (µs) Load (Mbit/s)

S0 6 1500 7.5 100 100
S1 4 2500 3.5 100 89
S2 2 3000 3.2 100 97

Table 6.14: Switch Comparison: Experiment 2 results with the highest priority stream (S0)
altered.

S0 S1 S2 A3 A4 A5

Inet Switch

Packets Dropped 3227 1029 1004 1228 330 178

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max - - - - - - - - - - - - - - - - - -
Mean 5688.28 329.65 317.95 335.85 178.40 256.98

Hierarchical
server-based

switch

Packets Dropped 46566 0 0 0 0 0

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max - - - 404.03 474.37 393.03 513.36 565.35
Mean - - - 186.57 213.67 180.83 121.46 230.43

Ethernet with
IEEE 802.1Q

switch

Packets Dropped 0 2241 1858 2483 764 322

Latency
Min 229.34 181.13 197.34 165.33 117.34 229.34
Max 344.74 - - - - - - - - - - - - - - -
Mean 270.94 6049.93 6053.01 6064.57 5693.98 5445.66

- - - (Indication indication that the deadlines were infringed)

Relatively to Exp1, the results show that the first created scenario has a significant impact on
the switch performance, particularly for the IEEE 802.1Q model. For the two switch models
with priority-based policies, this situation will force them to prioritize the messages of S0
that are continuously being generated. However, in the server-based switch, the bandwidth
utilization is restricted by the framework. Therefore, if stream 0 uses the associated server
resources, other servers can start processing their stored messages. The difference between the
Exp1 and Exp2 results regarding S0 stems from the server replenishing period. As stream 0
period was decreased to 100 µs while the associated server stayed the same, the server reaches
saturation faster. Consequently, accumulated packets have to wait for the replenishment
instant for being transmitted, thus increasing their latency. Furthermore, due to insufficient
storage, newly arriving packets are continuously being discarded.

Regarding the IEEE 802.1Q switch, because it has "unlimited" bandwidth, it always dispatches
messages from stream 0 first. Thus, there is nearly no difference between the Exp1 results
and this situation for that stream. On the other hand, all the remaining packets were delayed
to the point that their latency values reached 5s. Lastly, for the INET switch, the results
exhibit an increase in all the streams’ maximum and mean latency as well as the number of
dropped packets. As messages priority is irrelevant, only the order in which they arrive at the

110
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

ports, lowering the streams’ period resulted in more packets being stored than the ones being
dispatched.

Table 6.15: Switch Comparison: Experiment 2 results with an intermediate highest stream
(S1) altered.

S0 S1 S2 A3 A4 A5

Inet Switch

Packets Dropped 1248 1355 283 756 99 80

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max 9506.21 9470.93 9450.37 9433.52 9389.50 9476.95
Mean 475.16 4618.23 331.03 317.74 177.76 255.74

Hierarchical
server-based

switch

Packets Dropped 0 47901 0 0 0 0

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max 343.77 - - - 541.95 388.16 485.52 670.65
Mean 270.67 - - - 202.62 184.04 122.80 230.07

Ethernet with
IEEE 802.1Q

switch

Packets Dropped 0 1539 1573 0 638 261

Latency
Min 229.34 181.13 197.34 165.33 117.34 229.34
Max 345.33 - - - - - - 389.44 - - - - - -
Mean 270.94 5070.10 5173.01 185.85 4828.01 4584.99

Table 6.16: Switch Comparison: Experiment 2 results with a lower priority stream (S2)
altered.

S0 S1 S2 A3 A4 A5

Inet Switch

Packets Dropped 2443 78 3638 1204 346 167

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max - - - - - - - - - - - - - - - - - -
Mean 333.27 371.10 4898.39 283.42 157.68 249.00

Hierarchical
server-based

switch

Packets Dropped 0 0 48234 0 0 0

Latency
Min 228.69 180.69 196.69 164.69 116.69 228.69
Max 345.69 494.11 - - - 388.16 505.92 570.71
Mean 243.674 185.61 - - - 182.74 122.21 230.53

Ethernet with
IEEE 802.1Q

switch

Packets Dropped 0 0 7703 0 0 260

Latency
Min 229.34 181.13 197.34 165.33 117.34 229.34
Max 344.73 495.71 - - - 389.44 507.84 - - -
Mean 245.62 186.73 5575.60 184.29 123.60 4567.65

The remaining two scenarios results show that the server-based switch performance did
not diverge from the first situation because the hierarchical structure limits the bandwidth
utilization throughout the various components. The results confirm that the stream with the
highest latency and packets dropped is always the one whose behavior is purposely changed,
stream 1 and stream 2. As those streams are rapidly depleting the associated server capacity
budget, more packets are being discarded while waiting for the replenishment instant.

The INET switch also has a similar performance in all three experimental scenarios. Never-
theless, there is a small difference between the last two regarding the number of discarded

6.4. EXPERIMENTAL VALIDATION OF HARTES SIMULATION MODEL 111

packets that stems from the streams’ loads. For the former, stream 1 generates a load of 89
Mbit/s, whereas, in the latter, stream 2 uses 97% of the respective uplink. Consequently,
there are fewer packets dropped for the former scenario.

In IEEE 802.1Q switch, the difference in the messages’ priorities considerably changes the
way whole traffic is processed. For the second scenario, in which the modified stream has a
medium priority (S1), higher priority frames, from stream 0 and stream 3, are always processed
first. Thus their latency values did not differ from the results of Exp1. Regarding the lower
priority streams latency, these reached values above 5s because of interference caused by all
the higher priority packets stored. For the last experimental scenario, when the altered stream
has a lower priority (S2), all the remaining traffic, except from stream 5, is prioritized first.
Therefore, the stream behavior does not influence the majority of the system.

The results from the second experiment show that the server-based switch has the best traffic
confinement capabilities because the hierarchy restrains the streams’ bandwidth. Thus, when
one of them starts using more resources, there is no impact on the others. It is important to
highlight that the hierarchy structure, as well as the servers’ parameters, will considerably
influence the switch performance. Regarding the IEEE 802.1Q switch, although this device
has mechanisms to handle priority-based traffic, it has a poor performance when restricting
the bandwidth consumption of higher priority streams, thus preventing lower priority packets
from being processed. Lastly, the INET switch does not possess any capability to handle
messages with different priorities. Therefore, both higher and lower priority streams have
their latency values increased by a significant amount.

6.4 Experimental validation of HaRTES simulation model

The final section exhibits the results obtained from a HaRTES simulation model with the
server-based scheduling framework integrated to manage the asynchronous traffic. Different
experiments have been carried out to assess: (i) the switch traffic isolation capabilities, and
(ii) the classification and confinement within the asynchronous window when managed by a
server-based framework. Figure 6.9 depicts the experimental setup. It comprises the HaRTES
switch and four nodes, from which two generate TT and ET real-traffic, one transmits NRT
packets, and the remaining is the network receiver end-node. Throughout the experiments,
the links are configured to 100 Mbit/s, and the switch internal latency (ε) can range from 2.0
to 2.44µs.

4These values were based on experiments conducted by Rui Santos [2], in a HaRTES switch laboratory
prototype.

112
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

Figure 6.9: HaRTES: Experimental setup.

6.4.1 Temporal isolation between the traffic classes

The following segment assesses the temporal isolation between the different traffic classes in
the HaRTES switch model. The different flows properties throughout the experiments are
shown in Table 6.17.

Table 6.17: HaRTES Temporal isolation: Generated traffic properties for both experiments.

Experiment Node Traffic
Type Frame (Bytes) Ti/Tmiti(µs) Destination Node

1 Synchronous 1029 1000 2
3 Synchronous 1029 2000 2Exp1
4 Non Real-Time 829 67 2

1 Synchronous 64 1000 2
3 Asynchronous 1014 130 2Exp2
4 Non Real-Time 1514 130 2

(Note: The frame size includes the Ethernet headers and overheads)

6.4.1.1 Experiment 1 - Synchronization assessment

For the first experiment, the FTT-master, responsible for managing the traffic within the
switch, implements EC of 1 ms, which 45% is assigned to the synchronous window, 53% for
the asynchronous window and 2% for the TM transmission (LTM) and respective processing
by the FTT nodes (TAT). Note that the guard window was purposely disabled to demonstrate
that the model prevents the NRT traffic from blocking the TM in the following elementary
cycle. For this scenario, Nodes 1 and 3 generate 1kB synchronous real-time packets to Node 2.
Node 4, the non-FTT compliant, sends 800B messages to Node 2 separated by the minimum

6.4. EXPERIMENTAL VALIDATION OF HARTES SIMULATION MODEL 113

inter-frame gap, generating a load close to 100% of the uplink (Table 6.17). Packets that
exceed the 45% load provided by the switch to the asynchronous window are automatically
discarded. Figure 6.10 depicts a jitter histogram that affected the TM receptions. Figure 6.11
presents the inter-arrival of the different synchronous and non-real-time messages.

Figure 6.10: HaRTES Temporal isolation: Jitter affecting the Trigger messages.

Figure 6.11: HaRTES Temporal isolation: Inter-arrival values for Experiment 1.

The results show that the synchronization of the FTT compliant nodes is never affected by the

114
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

NRT traffic. Figure 6.10 illustrates the high precision of TM transmissions by the switch with
jitter reaching values inferior to 1 ns, even when one of the links was used close to 100% of its
capability. Furthermore, the inter-arrival measurements confirm that the temporal isolation
provided by HaRTES as the interference between the non real-time and time-triggered traffic
is eliminated by the device. As such, the frames inter-arrival timings is always their respective
periods, one EC for Node 1, and two ECs for Node 3. Regarding the non real-time packets,
the minimum value of 70 µs corresponds to the transmission of a frame together with the
switch latency. Whereas, the maximum value corresponds to part of the asynchronous window
not utilized, the full duration of the synchronous window, and the transmission of a frame.

6.4.1.2 Experiment 2 - Comparison between the HaRTES simulation model and hardware
prototype isolation capabilities

The procedures for the second scenario were taken directly from an experiment conducted
by Luis Silva et al. in a hardware prototype of HaRTES extended for OpenFlow [64]. The
FTT-master creates elementary cycles with 1 ms duration, with the following parametrization:
150 µs assigned to the synchronous window, 700 µs to the asynchronous window, 130 µs to the
guard window, and the remaining time to the transmission and decoding of trigger messages.
The properties of each traffic flow are presented in Table 6.17. With the minimal frame-gap
of 130µs, the NRT and ET flows generate an approximate load of 94 Mbit/s and 64 Mbit/s,
respectively. Table 6.18 compiles the properties of the employed reservations to handle the
different traffic classes.

To evaluate the system performance, the authors chose as metrics the messages inter-arrival
times. Figure 6.12 and Figure 6.13 depict the inter-arrival timings of each traffic flow for the
simulation and the hardware results, respectively. Table 6.19 shows a statistical counterpart
of the measurements.

Table 6.18: HaRTES Temporal isolation: Assigned reservations properties for Experiment 2.

Traffic
Type Reservation Properties

Synchronous Asynchronous Window 1 packet per EC

Asynchronous Deferrable Server Capacity Budget (Bytes): 1014
Period: 1 EC

Capacity Budget (Bytes): 8750Non Real-Time Background Server Period: 1 EC

6.4. EXPERIMENTAL VALIDATION OF HARTES SIMULATION MODEL 115

Figure 6.12: HaRTES Temporal isolation: Inter-arrival timings (simulator).

Figure 6.13: HaRTES Temporal isolation: Inter-arrival timings (hardware) (from Luis Silva
et al. [64]).

Table 6.19: HaRTES Temporal isolation: Observed values for Experiment 2.

Traffic Flow Inter-arrival in µs (simulator) Inter-arrival in µs (hardware)

Min Max Mean Min Max Mean

Synchronous 999.65 1000.33 1000.00 986.00 999.00 992.05
Asynchronous 999.65 1000.33 1000.00 986.30 999.00 992.04
Non Real-Time 123.20 506.99 190.43 121.00 479.00 160.63

116
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

The results demonstrate that the simulation model and the laboratory prototype have similar
behaviors. The synchronous and asynchronous inter-arrival timings correspond to the streams’
period and the reservations’ maximum load, respectively, just as in the HaRTES prototype.
However, regarding the non-real-time packets, there is a notable deviation between the
measurements. This difference probably stems from the switch processing latency. For the
simulation, the considered switch latency ranges from [2.0, 2.4] µs based on measurements
made by Rui Santos [2]. However, these may no longer correspond to the currently existing
prototype values. This metric is relevant as it affects when the packets are forwarded,
specifically the non-real-time. Figure 6.14 illustrates the situations corresponding to the
different inter-arrival timings measured. The minimum value of 123 µs is the transmission
time of a frame together with the minimum switch latency. The maximum inter-arrival of 507
µs occurs whenever a frame finishes its transmission at the start of the guard window. Thus,
the following packet is delayed the window remaining duration, the synchronous window full
length, and the transmission of asynchronous and non real-time packets. Lastly, the other
measured value of 383 µs happens when a transmission starts immediately before the guard
window.

Figure 6.14: HaRTES Temporal isolation: Inter-arrival moments theoretical description.

The differences between the prototype and the simulation results could not be determined
as these can also arise from issues in the HaRTES prototype implementation that will be
investigated. An advantage of conducting experiments in network simulators and comparing
the results with hardware-based tests is the possibility of encountering implementation issues
in the prototype that could be difficult to identify.

6.4. EXPERIMENTAL VALIDATION OF HARTES SIMULATION MODEL 117

6.4.2 Traffic confinement within the asynchronous subsystem

The second segment evaluates the switch capabilities to classify the different asynchronous
traffic and confine its consumption to the asynchronous window duration through the use
of a server-based scheduling framework. Table 6.20 shows the streams properties for the
experimental scenarios.

Table 6.20: HaRTES Asynchronous Traffic confinement: Generated traffic properties for
both experiments.

Experiment Node Traffic
Type Payload (Bytes) Ti/Tmiti(µs) Destination Node

3 Asynchronous 1500 123 2Exp1 4 Non Real-Time 1500 123 2

3 Asynchronous 1500 – 2Exp2 4 Non Real-Time 1500 – 2
– (Indication that the inter-frame gap deviates throughout the experiment)

6.4.2.1 Experiment 1 - Assessment of the server-based traffic confinement capabilities

In the first experimental scenario, the nodes generate a mix of ET and NRT traffic. FTT-
master implements 1 ms elementary cycles, with 28% assigned to the synchronous window,
54% to the asynchronous window, 16% to the guard window, and 2% to TM transmissions.
Throughout the scenario, Node 3 transmits 1500B asynchronous real-time packets with a
minimum inter-frame gap, thus using 100% of the uplink. Node 4 also generates a load close
to 100% of the respective link with 1500B non-real-time packets (Table 6.20). Table 6.21
presents the reservations properties created to manage the asynchronous window.

The previously described procedure was performed in a laboratory prototype by Rui Santos
et al.[65]. Figures 6.15 and 6.16 present a histogram of the time elapsed between TM
transmissions and the remaining packets in each EC for the simulation model and HaRTES
prototype, respectively.

Table 6.21: HaRTES Asynchronous Traffic confinement: Assigned reservations properties
for Experiment 1.

Traffic
Type Reservation Properties

Asynchronous Deferrable Server Capacity Budget (Bytes): 3000
Period: 2 EC
Capacity Budget (Bytes): 6750Non Real-Time Background Server Period: 1 EC

118
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

Figure 6.15: HaRTES Asynchronous Traffic confinement: Histogram of transmissions inside
the EC (simulator).

Figure 6.16: HaRTES Asynchronous Traffic confinement: Histogram of transmissions inside
the EC (hardware) (from Rui Santos et at [65]).

Figure 6.15 confirms that the scheduling framework prioritizes the asynchronous real-time
traffic, which is processed at the beginning of the asynchronous window, whereas, non-real-time
packets are transmitted in the window remaining time. Note that, the ET and NRT bars
overlap at the start of the asynchronous window. The deferrable server, with the capacity
budget established, can only process two packets every two elementary cycles. Meanwhile, the
background server uses the remaining time available in the window. Thus, at worst, it can
transmit three packets after the transmission of the asynchronous traffic or use the complete
duration of the AW to process five packets. The results show that, before the new a EC

6.4. EXPERIMENTAL VALIDATION OF HARTES SIMULATION MODEL 119

initiation, during the guard window, no frames are transmitted. Although not mandatory, the
guard window ensures that the ports are always ready to dispatch the TM in the following
EC.

The results also show that the simulation model has a similar performance to the switch
prototype. It is important to highlight that, in Figure 6.16, the histogram asynchronous bars
were presumably shifted to demonstrate this traffic class prioritization as its transmission can
never overlap the synchronous window. Another aspect that can explain some differences
between the results is the switch latency. As the authors did not specify a value, the considered
switch latency of [2.0,2.4] µs was based on measurements obtained in [2], from the same
author.

6.4.2.2 Experiment 2 - Evaluating the switch throughput

Experiment 2 assesses the framework confinement capabilities within the asynchronous window.
Throughout the last experiment, Node 3 transmits 150B real-time asynchronous messages to
Node 2 with an inter-frame gap that ranges from 1 Mbit/s to 100 Mbit/s. Node 4 sends 600B
non-real-time packets to the same destination, also with a variable load that reaches 100%
of the uplink. The traffic is managed in HaRTES by the same server hierarchy employed in
the previous experimental scenario. Furthermore, the EC parametrization is also identical to
Experiment 1. Figure 6.17 illustrates the switch throughput for 60000 consecutive ECs, with
and without the Guard Window implementation.

Figure 6.17: HaRTES Asynchronous Traffic confinement: Asynchronous and non-real-time
traffic throughput.

Initially, the switch only dispatches asynchronous messages. These are sent by Node 3, with
an inter-frame gap of 1 ms, decreasing over time until it reaches 100% of the uplink. The
non-real-time traffic is triggered at t = 12s and has a similar behavior. At second 26, the
Deferrable Server maximum load of 3000B is reached. As it can only process two frames
per two EC, additional arriving packets are discarded within the switch. At second 30, the

120
CHAPTER 6. VALIDATION OF THE IMPLEMENTED OMNET++ SIMULATION

MODELS

background server also reaches saturation, with the load corresponding to the remaining of the
asynchronous window. The asynchronous stream is deactivated at t = 35s, which enables the
background server to use the respective window complete duration. Consequently, the NRT
throughput increases until it reaches the window maximum load. At second 40, the stream is
reactivated with the same behavior as before. This causes the non real-time throughput to
decreased, and both return to the previous saturation values at second 52.

As expected, by completely remove the Guard Window, the non real-time traffic throughput
increases whereas, the asynchronous traffic behavior stays identical since the deferrable server
capacity budget limits the stream bandwidth utilization. As the switch can only process one
packet at a time and, taking into account the switch latency, the top component capacity
budget is never totally depleted. Consequently, the throughput of both traffic classes never
reaches the available 70 Mbit/s.

The results of the experiments show the effectiveness of server-based scheduling in the HaRTES
switch. The servers constrain the bandwidth usage in critical situations where the input
ports are overloaded, thus solely allowing transmissions to occur through the elementary cycle
respective window. The framework also has efficient capabilities to allocate the resources
within the hierarchy without risking the requirements of the attached real-time streams. As
the deferrable server stopped processing real-time packets, the background server was able to
reclaim the remaining bandwidth available. Moreover, the asynchronous stream reactivation
was not affected by the non real-time load.

CHAPTER 7
Closure

Contents
7.1 Conclusions . 121

7.2 Future Work . 122

7.1 Conclusions

The advances in industrial infrastructures that emerged from the 4th Industrial Revolution
impose strict timeliness requirements as well as high flexibility for their communication
systems. Technologies based on real-time Ethernet such as the HaRTES switch provide such
properties, with support for both real-time and non-real-time communications as well as a
dynamic Quality-of-Service (QoS) management services.

As the limitations imposed by the development and testing of industrial networks have been
growing with larger and complex systems, the utilization of network simulators provides several
benefits in this sector. Among which, the possibility of examining specific circumstances
that, with physical prototypes would be complicated, stands out. Recognizing the previous
statement, a OMNeT++ Ethernet switch simulation model for industrial real-time networks
was developed. The proposed model is based on HaRTES, an Ethernet switch based on the
FTT paradigm, with a server-based framework to manage the asynchronous communications.

The individual assessment of the server-based framework took place before being employed in
the HaRTES switch to guarantee the correctness of the structure. Both the control algorithm
and the capabilities to perform online modifications were evaluated in different experimental
scenarios. Lastly, the developed HaRTES model was validated throughout a set of experiments,
some of which, directly compared with a physical prototype. The main aspects considered were
the isolation between the different traffic classes and the confinement within the asynchronous
window. The results demonstrate that the transmission of Trigger Messages is never interfered
with by asynchronous and non-real time traffic, with low jitter values even in high load
situations. Consequently, the FTT slaves are correctly synchronized as the inter-arrival of
their messages is always equal to their periods. Furthermore, within the asynchronous window,
the model prioritizes sporadic frames and transmits them first, as the non-real-time traffic is
continuously handled by a background server with the remaining resources available.

121

122 CHAPTER 7. CLOSURE

The developed models achieved satisfactory results since the observed behaviors agreed with
the technologies they intend to simulate. This type of tool has proven to be quite useful,
specifically in the ease of changing the simulations parameters. As it was required to repeat
the same experiments several times to try to simulate certain specific situations, the use of a
simulator made this process fast and easy. Another simulator advantage is the possibility of
discovering potential failures in the hardware implementations.

7.2 Future Work

Future works may include:

• Complete the switch and slave models to support all the different types of FTT requests.

• Address the worst-case response time scheduling analysis of the server-based framework
for dynamic reconfigurations.

• Develop additional server-based scheduling algorithms for the asynchronous framework.

• Add support for multi-switch network topologies.

References

[1] G. C. Buttazzo, Hard real-time computing systems: Predictable scheduling algorithms and applications,
3. Springer, 1998, vol. 36, p. 126, isbn: 0387231374. doi: 10.1016/s0898-1221(98)90205-x.

[2] R. Santos, “Enhanced ethernet switching technology for adaptive hard real-time applications”, PhD
thesis, Universidade de Aveiro, 2007.

[3] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment”, Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973, issn: 1557735X. doi:
10.1145/321738.321743.

[4] J. Y. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic, real-time
tasks”, Performance Evaluation, vol. 2, no. 4, pp. 237–250, 1982, issn: 01665316. doi: 10.1016/0166-
5316(82)90024-4.

[5] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System”, The Computer Journal,
vol. 29, no. 5, pp. 390–395, Jan. 1986, issn: 0010-4620. doi: 10.1093/comjnl/29.5.390.

[6] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Applying new scheduling theory to
static priority pre-emptive scheduling”, Software Engineering Journal, vol. 8, no. 5, p. 284, 1993, issn:
02686961. doi: 10.1049/sej.1993.0034.

[7] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees”, Proceedings -
Real-Time Systems Symposium, no. December, pp. 2–13, 2003. doi: 10.1109/real.2003.1253249.

[8] ——, “Compositional real-time scheduling framework with periodic model”, Transactions on Embedded
Computing Systems, vol. 7, no. 3, 2008, issn: 15399087. doi: 10.1145/1347375.1347383.

[9] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework using EDP resource models”,
Proceedings - Real-Time Systems Symposium, no. December, pp. 129–138, 2007, issn: 10528725. doi:
10.1109/RTSS.2007.36.

[10] H. Kopetz, Real-Time Systems. Springer US, 2011. doi: 10.1007/978- 1- 4419- 8237- 7. [Online].
Available: https://doi.org/10.1007%2F978-1-4419-8237-7.

[11] “Ieee standard for ethernet”, IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015), pp. 1–5600,
2018.

[12] “Ieee standard for local and metropolitan area network–bridges and bridged networks”, IEEE Std
802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), pp. 1–1993, 2018.

[13] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communication over COTS Ethernet
switches”, IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS,
no. June 2014, pp. 295–302, 2006. doi: 10.1109/wfcs.2006.1704170.

[14] 802.1Q-2018 - IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged Networks.
2018, isbn: 9781504449298. [Online]. Available: https://ieeexplore.ieee.org/document/8403927.

[15] Ethernet Powerlink - EPSG Ethernet Powerlink. [Online]. Available: https://www.ethernet-powerlink.
org/.

[16] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, “FTT-Ethernet: A flexible real-time communication
protocol that supports dynamic QoS management on Ethernet-based systems”, IEEE Transactions on
Industrial Informatics, vol. 1, no. 3, pp. 162–172, 2005, issn: 15513203. doi: 10.1109/TII.2005.852068.

[17] P. Pedreiras and L. Almeida, “The flexible time-triggered (FTT) paradigm: An approach to QoS
management in distributed real-time systems”, Proceedings - International Parallel and Distributed
Processing Symposium, IPDPS 2003, no. June, 2003. doi: 10.1109/IPDPS.2003.1213243.

123

https://doi.org/10.1016/s0898-1221(98)90205-x
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1109/real.2003.1253249
https://doi.org/10.1145/1347375.1347383
https://doi.org/10.1109/RTSS.2007.36
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007%2F978-1-4419-8237-7
https://doi.org/10.1109/wfcs.2006.1704170
https://ieeexplore.ieee.org/document/8403927
https://www.ethernet-powerlink.org/
https://www.ethernet-powerlink.org/
https://doi.org/10.1109/TII.2005.852068
https://doi.org/10.1109/IPDPS.2003.1213243

124 REFERENCES

[18] Isochronous Real-Time (IRT) Communication - PROFINET University. [Online]. Available: https://
profinetuniversity.com/profinet-basics/isochronous-real-time-irt-communication/ (visited
on 06/24/2020).

[19] F. Scope, “PROFINET Real-Time Communication”, PROFIBUS International, p. 17, 201. [Online].
Available: http://www.profibus.org.pl/index.php?option=com%7B%5C_%7Ddocman%7B%5C&%7Dtask=
doc%7B%5C_%7Dview%7B%5C&%7Dgid=28.

[20] M. E. Yanik, “Full Duplex Switched Ethernet (Afdx) Data Bus”, Microelectronics, Guidance and
Electro-Optics Division ASELSAN Inc., no. OCTOBER 2007, 2007.

[21] R. Marau, P. Pedreiras, and L. Almeida, “Signaling asynchronous traffic over a {M}aster-{S}lave
{S}witched {E}thernet protocol”, Proc. on the 6th {I}nt. {W}orkshop on {R}eal {T}ime {N}etworks
({RTN}’07), no. June 2014, 2007.

[22] Welcome to the FTT home page. [Online]. Available: https://paginas.fe.up.pt/%7B~%7Dftt/
sections/Flavours/index.html%7B%5C#%7Dftt%7B%5C_%7Dswitch (visited on 06/08/2020).

[23] R. Santos, P. Pedreiras, M. Behnam, T. Nolte, M. Mrtc, and L. Almeida, “Schedulability Analysis for
Multi-level Hierarchical Server Composition in Ethernet Switches”, Proceedings of the 9th International
Workshop on Real-Time Networks, 2010. [Online]. Available: http://hartes.av.it.pt/files/papers/c-
2010-rtn.pdf.

[24] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible, real-time and consistent multicast in
FTT/HaRTES Switched Ethernet”, IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA, pp. 1–4, 2013, issn: 19460740. doi: 10.1109/ETFA.2013.6648153.

[25] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida, “Multi-level hierarchical scheduling
in ethernet switches”, Embedded Systems Week 2011, ESWEEK 2011 - Proceedings of the 9th ACM
International Conference on Embedded Software, EMSOFT’11, pp. 185–193, 2011. doi: 10.1145/
2038642.2038671.

[26] J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca, “Achieving fault tolerance in ftt-can”, in 4th IEEE
International Workshop on Factory Communication Systems, 2002, pp. 125–132.

[27] S. Derasevic, J. Proenza, and M. Barranco, “Using ftt-ethernet for the coordinated dispatching of tasks
and messages for node replication”, in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), 2014, pp. 1–4.

[28] D. Gessner, J. Proenza, M. Barranco, and A. Ballesteros, “A Fault-Tolerant Ethernet for Hard Real-Time
Adaptive Systems”, IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2980–2991, 2019,
issn: 19410050. doi: 10.1109/TII.2019.2895046.

[29] F. J. Suárez, P. Nuño, J. C. Granda, and D. F. García, Computer networks performance modeling and
simulation, October 2017. 2015, pp. 187–223, isbn: 9780128011584. doi: 10.1016/B978-0-12-800887-
4.00007-9.

[30] R. Mangharam, D. Weller, R. Rajkumar, P. Mudalige, and F. Bai, “GrooveNet: A hybrid simulator for
vehicle-to-vehicle networks”, in 2006 3rd Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, MobiQuitous, 2006, isbn: 1424404991. doi: 10.1109/MOBIQ.2006.
340441.

[31] S. Y. Wang and Y. B. Lin, “NCTUns network simulation and emulation for wireless resource man-
agement”, Wireless Communications and Mobile Computing, vol. 5, no. 8, pp. 899–916, 2005, issn:
15308669. doi: 10.1002/wcm.354.

[32] M. Kabir, S. Islam, M. Hossain, and S. Hossain, “Detail comparison of network simulators”, International
Journal of Scientific & Engineering Research, vol. 5, no. May 2015, pp. 203–218, 2014. doi: 10.13140/
RG.2.1.3040.9128.

[33] R. L., M. J., and A. J., “Survey on Network Simulators”, International Journal of Computer Applications,
vol. 182, no. 21, pp. 23–30, 2018. doi: 10.5120/ijca2018917974.

[34] Ns-3, Ns-3 | a Discrete-Event Network Simulator for Internet Systems, 2018. [Online]. Available:
https://www.nsnam.org/ (visited on 05/04/2020).

https://profinetuniversity.com/profinet-basics/isochronous-real-time-irt-communication/
https://profinetuniversity.com/profinet-basics/isochronous-real-time-irt-communication/
http://www.profibus.org.pl/index.php?option=com%7B%5C_%7Ddocman%7B%5C&%7Dtask=doc%7B%5C_%7Dview%7B%5C&%7Dgid=28
http://www.profibus.org.pl/index.php?option=com%7B%5C_%7Ddocman%7B%5C&%7Dtask=doc%7B%5C_%7Dview%7B%5C&%7Dgid=28
https://paginas.fe.up.pt/%7B~%7Dftt/sections/Flavours/index.html%7B%5C#%7Dftt%7B%5C_%7Dswitch
https://paginas.fe.up.pt/%7B~%7Dftt/sections/Flavours/index.html%7B%5C#%7Dftt%7B%5C_%7Dswitch
http://hartes.av.it.pt/files/papers/c-2010-rtn.pdf
http://hartes.av.it.pt/files/papers/c-2010-rtn.pdf
https://doi.org/10.1109/ETFA.2013.6648153
https://doi.org/10.1145/2038642.2038671
https://doi.org/10.1145/2038642.2038671
https://doi.org/10.1109/TII.2019.2895046
https://doi.org/10.1016/B978-0-12-800887-4.00007-9
https://doi.org/10.1016/B978-0-12-800887-4.00007-9
https://doi.org/10.1109/MOBIQ.2006.340441
https://doi.org/10.1109/MOBIQ.2006.340441
https://doi.org/10.1002/wcm.354
https://doi.org/10.13140/RG.2.1.3040.9128
https://doi.org/10.13140/RG.2.1.3040.9128
https://doi.org/10.5120/ijca2018917974
https://www.nsnam.org/

125

[35] J. Heidemann and U. S. C. Isi, “OMNeT++ Discrete Event Simulator”, Audio, no. March, pp. 1–9,
2002. [Online]. Available: https://omnetpp.org/%20https://omnetpp.org/%7B%5C%%7D5Cnhttp:
//www.omnetpp.org.

[36] INET, INET Framework - INET Framework, 2019. [Online]. Available: https://inet.omnetpp.org/.

[37] SimuLTE - LTE User Plane Simulator for OMNeT++ and INET. [Online]. Available: https://simulte.
com/%20http://simulte.com/ (visited on 06/29/2020).

[38] I. SCALABLE Network Technologies, QualNet - Network Simulation, 2019. [Online]. Available: https:
//www.scalable-networks.com/products/qualnet-network-simulation-software-tool/%7B%5C#
%7D%20https://www.scalable-networks.com/qualnet-network-simulation.

[39] L. Bajaj, M. Takai, R. Ahuja, and K. Tang, “Glomosim: A Scalable Network Simulation Environment”,
Compare A Journal Of Comparative Education, vol. 28, no. 1, pp. 154–161, 1999. doi: 10.1.1.45.7167.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7167%7B%
5C&%7Drep=rep1%7B%5C&%7Dtype=pdf.

[40] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A library for parallel simulation of large-scale wireless
networks”, Proceedings of the Workshop on Parallel and Distributed Simulation, PADS, pp. 154–161,
1998. doi: 10.1109/pads.1998.685281.

[41] NetSim-Network Simulator & Emulator | Home. [Online]. Available: https://www.tetcos.com/ (visited
on 05/04/2020).

[42] T. Libraries and G. Started, “NetSim User Manual”, vol. ver 11.1, pp. 1–244, 2019.

[43] OPNET, OPNET Network Simulator - Opnet Projects, 2009. [Online]. Available: http://opnetprojects.
com/opnet-network-simulator/ (visited on 05/04/2020).

[44] S. Siraj, A. K. Gupta, and Badgujar-Rinku, “Network Simulation Tools Survey”, International Journal
of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 4, June 2012, vol. 1,
no. 4, pp. 201–210, 2012. [Online]. Available: http://www.nsnam.org/ns-3-13/download/.

[45] TrueTime | Automatic Control. [Online]. Available: http://www.control.lth.se/research/tools-
and-software/truetime/ (visited on 05/04/2020).

[46] Mathworks, Simulink - Simulation and Model-Based Design - MATLAB & Simulink, 2015. [Online].
Available: https://www.mathworks.com/products/simulink.html%20https://uk.mathworks.com/
products/simulink.html%7B%5C%%7D0Ahttps://www.mathworks.com/products/simulink.html%7B%
5C%%7D0Ahttps://uk.mathworks.com/products/simulink.html (visited on 06/29/2020).

[47] A. Cervin, “TrueTime : Simulation of Networked and Embedded Control Systems”, Simulation,

[48] A. Zarrad and I. Alsmadi, “Evaluating network test scenarios for network simulators systems”, Inter-
national Journal of Distributed Sensor Networks, vol. 13, no. 10, pp. 1–17, 2017, issn: 15501477. doi:
10.1177/1550147717738216.

[49] R. L. Patel, “Survey on Network Simulators”, Tech. Rep. 21, 2018, pp. 975–8887.

[50] M. C. Gayathri and D. R. Vadivel, “An Overview: Basic Concept of Network Simulation Tools”,
International Journal of Advanced Research in Computer and Communication Engineering ICITCSA
2017 Pioneer College of Arts and Science, Coimbatore, vol. 6, no. 1, 2017, issn: 2319-5940. doi:
10.17148/IJARCCE.

[51] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment”, SIMUTools 2008 -
1st International ICST Conference on Simulation Tools and Techniques for Communications, Networks
and Systems, 2008. doi: 10.4108/ICST.SIMUTOOLS2008.3027.

[52] S. Manual, “OMNeT++: Simulation Manual”, user’s Manual Version 4.4.1, pp. 1–511, 2001, issn:
1522-9653. doi: 10.1016/j.joca.2010.07.004. [Online]. Available: https://doc.omnetpp.org/
omnetpp/manual/%7B%5C#%7Dcha:overview%20https://omnetpp.org/doc/omnetpp/manual.

[53] Protocol Simulations |. [Online]. Available: https://1.ieee802.org/protocol-simulations/ (visited
on 06/30/2020).

https://omnetpp.org/%20https://omnetpp.org/%7B%5C%%7D5Cnhttp://www.omnetpp.org
https://omnetpp.org/%20https://omnetpp.org/%7B%5C%%7D5Cnhttp://www.omnetpp.org
https://inet.omnetpp.org/
https://simulte.com/%20http://simulte.com/
https://simulte.com/%20http://simulte.com/
https://www.scalable-networks.com/products/qualnet-network-simulation-software-tool/%7B%5C#%7D%20https://www.scalable-networks.com/qualnet-network-simulation
https://www.scalable-networks.com/products/qualnet-network-simulation-software-tool/%7B%5C#%7D%20https://www.scalable-networks.com/qualnet-network-simulation
https://www.scalable-networks.com/products/qualnet-network-simulation-software-tool/%7B%5C#%7D%20https://www.scalable-networks.com/qualnet-network-simulation
https://doi.org/10.1.1.45.7167
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7167%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7167%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.1109/pads.1998.685281
https://www.tetcos.com/
http://opnetprojects.com/opnet-network-simulator/
http://opnetprojects.com/opnet-network-simulator/
http://www.nsnam.org/ns-3-13/download/
http://www.control.lth.se/research/tools-and-software/truetime/
http://www.control.lth.se/research/tools-and-software/truetime/
https://www.mathworks.com/products/simulink.html%20https://uk.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://www.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://uk.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html%20https://uk.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://www.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://uk.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html%20https://uk.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://www.mathworks.com/products/simulink.html%7B%5C%%7D0Ahttps://uk.mathworks.com/products/simulink.html
https://doi.org/10.1177/1550147717738216
https://doi.org/10.17148/IJARCCE
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027
https://doi.org/10.1016/j.joca.2010.07.004
https://doc.omnetpp.org/omnetpp/manual/%7B%5C#%7Dcha:overview%20https://omnetpp.org/doc/omnetpp/manual
https://doc.omnetpp.org/omnetpp/manual/%7B%5C#%7Dcha:overview%20https://omnetpp.org/doc/omnetpp/manual
https://1.ieee802.org/protocol-simulations/

126 REFERENCES

[54] CloudNetSim++ - Toolkit for Distributed Data Center Simulations. [Online]. Available: https://
omnetpp.org/download-items/CloudNetSim.html (visited on 06/30/2020).

[55] M. Slabicki and G. Premsankar, Home | FLoRa - A Framework for LoRa simulations. [Online]. Available:
https://flora.aalto.fi/ (visited on 06/30/2020).

[56] NETA. [Online]. Available: https://nesg.ugr.es/index.php/en/neta-2 (visited on 06/30/2020).

[57] Simulation - CoRE Group. [Online]. Available: https://core-researchgroup.de/projects/simulati
on.html (visited on 06/30/2020).

[58] MiXiM. [Online]. Available: http://mixim.sourceforge.net/ (visited on 06/30/2020).

[59] FT4FTT | Systems, Robotics & Vision Group. [Online]. Available: http://srv.uib.es/ft4ftt/ (visited
on 07/04/2020).

[60] M. Knezic, A. Ballesteros, and J. Proenza, “Towards extending the OMNeT++ INET framework for
simulating fault injection in ethernet-based Flexible Time-Triggered systems”, 19th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA 2014, pp. 1–4, 2014. doi: 10.
1109/ETFA.2014.7005319.

[61] D. Sheet, “PACSystems Industrial Ethernet Switches”, no. April, 2020.

[62] P. Highlights, “7010T Gigabit Ethernet Data Center Switches 7010T Series | Platform Overview High
Availability”,

[63] T. Hpe, E. I. S. Series, F. Ethernet, E. I. S. Series, S.-b. G. Ethernet, and G. E. Sfp, “HPE 3600 EI
Switch Series”,

[64] L. Silva, P. Goncalves, R. Marau, and P. Pedreiras, “Extending OpenFlow with industrial grade commu-
nication services”, IEEE International Workshop on Factory Communication Systems - Proceedings,
WFCS, pp. 0–3, 2017. doi: 10.1109/WFCS.2017.7991965.

[65] R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira, D. Ieeta, U. D. Aveiro, and L. Almeida,
“Robust and Efficient Server-Based Communication over Switched Ethernet”,

https://omnetpp.org/download-items/CloudNetSim.html
https://omnetpp.org/download-items/CloudNetSim.html
https://flora.aalto.fi/
https://nesg.ugr.es/index.php/en/neta-2
https://core-researchgroup.de/projects/simulation.html
https://core-researchgroup.de/projects/simulation.html
http://mixim.sourceforge.net/
http://srv.uib.es/ft4ftt/
https://doi.org/10.1109/ETFA.2014.7005319
https://doi.org/10.1109/ETFA.2014.7005319
https://doi.org/10.1109/WFCS.2017.7991965

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem Statement
	Objectives
	Document Outline

	Theoretical Real-Time and Ethernet concepts
	Real-Time Systems
	Classification of real-time systems
	Task Model
	Scheduling
	Schedulability Analysis
	Hierarchical Scheduling

	Real Time communications
	Communication paradigms

	Ethernet
	Ethernet Frame
	Ethernet Switch

	Real-time protocols over Ethernet
	Real-time protocols on COTS switches
	Real-time protocols on customized hardware

	An FTT-Enabled Switch - HaRTES
	The Flexible Time Triggered paradigm
	FTT Elementary cycle

	Flexible Time Triggered Switch Ethernet
	FTT-SE master architecture
	FTT-SE slave architecture
	FTT-SE communication model

	Hard Real Time Ethernet Switch
	HaRTES internal architecture
	HaRTES communication description
	Advances over the HaRTES implementation

	Network Simulators
	Overview of different network simulators
	ns-3
	OMNET++
	QualNet
	NetSim
	OPNET
	TrueTime

	A comparative analysis of network simulators
	The OMNeT++ framework
	Model Structure
	NED Language
	Messages and Packets
	OMNeT++ Architecture
	Analysis facilities
	Third party libraries

	Implementing HaRTES switch model on OMNeT++
	Traffic isolation with IEEE 802.1Q in a Ethernet switch model
	A server-based scheduling framework for Ethernet switches
	Switch Architecture
	Implementation of the hierarchical server-based framework

	HaRTES simulation model
	HaRTES switch
	FTT Compliant nodes

	Validation of the implemented OMNeT++ simulation models
	Validation of the IEEE 802.1Q simulation model
	Experiment 1 - Homogeneous traffic set
	Experiment 2 - Heterogeneous message set

	Validation of the server-based scheduling model
	Experiment 1 - Assessing the model control capabilities
	Experiment 2 - Realistic network simulation

	Comparing the performance of the frameworks in Ethernet switches
	Experiment 1 - Normal operation
	Experiment 2 - Abnormal node operation

	Experimental validation of HaRTES simulation model
	Temporal isolation between the traffic classes
	Traffic confinement within the asynchronous subsystem

	Closure
	Conclusions
	Future Work

	References

