

Nuno Valente Pinto

Carbapenemase-producing bacteria in urban aquatic environments

Bactérias produtoras de carbapenemases em ambientes aquáticos urbanos

Nuno Valente Pinto

Carbapenemase-producing bacteria in urban aquatic environments

Bactérias produtoras de carbapenemases em ambientes aquáticos urbanos

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Microbiologia, realizada sob a orientação científica da Doutora Marta Tacão, investigadora do Departamento de Biologia da Universidade de Aveiro e da Doutora Isabel Henriques, Professora Auxiliar do Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

A ciência será sempre uma busca e jamais uma descoberta. É uma viagem, nunca uma chegada. Karl Popper

o júri

presidente

Professora Doutora Sónia Alexandra Leite Velho Mendo Barroso, Professora Auxiliar c/ Agregação, Universidade de Aveiro

Professora Doutora Sónia Cristina das Neves Ferreira, Professora Auxiliar Convidada, Universidade de Aveiro

Doutora Marta Cristina Oliveira Martins Tacão, Investigadora Júnior, Universidade de Aveiro

agradecimentos

A realização deste trabalho não teria sido possível sem o apoio de várias pessoas, às quais gostaria de apresentar o meu sincero agradecimento.

Antes de mais quero agradecer à minha querida mãe, à Sara, à Professora Adelina e a todos os meus amigos que me acompanharam durante todo este percurso académico, tendo sempre palavras de apoio e incentivo, motivando-me para que seguisse sempre os meus sonhos. Gostaria também de agradecer à Professora Célia Quintas, por ter despertado em mim o gosto pela microbiologia e que me deu, durante alguns anos, as bases necessárias para que pudesse percorrer este caminho.

À Doutora Marta e à Professora Isabel Henriques o meu sincero agradecimento pela oportunidade que me deram de realizar este trabalho no laboratório incrível que é o microlab, por todo o apoio e por tudo o que me ensinaram. Doutora Marta, muito obrigado por toda a paciência e dedicação diárias que teve, ensinando-me as técnicas moleculares utilizadas neste trabalho que até à data para mim eram desconhecidas, consigo aprendi mais neste ano letivo do que alguma vez imaginei aprender.

Gostaria também de expressar o meu sincero agradecimento a todos os meus colegas do microlab, especialmente ao Rafael, Joana e José.

Por último, mas não menos importante, gostaria de agradecer ao Centro hospitalar do Baixo Vouga pela realização do MALDI-TOF.

palavras-chave	resistência a antibióticos; ambientes aquáticos urbanos; carbapenemases; elementos genéticos móveis.
resumo	A resistência a antibióticos é um problema sério e crescente a nível global. Se nada for feito, prevê-se um futuro onde as infeções que atualmente são facilmente tratáveis poderão matar milhões de pessoas anualmente. Os carbapenemos são um grupo de antibióticos de último recurso, considerados antibióticos chave no tratamento de infeções graves. A disseminação de genes que codificam enzimas capazes de hidrolisar e inutilizar estes antibióticos, através de elementos genéticos móveis (EGM), constitui uma ameaça séria à Saúde Pública. As bactérias resistentes a antibióticos (BRA) e genes de resistência a antibióticos (GRA) são frequentemente associados ao âmbito hospitalar e pouco se sabe acerca da sua presença em pequenos lagos urbanos,
	situados em áeas recreativas, onde humanos e animais poderão ser facilmente expostos. Este estudo teve como objetivo avaliar a prevalência e caracterizar bactérias produtoras de carbapenemases em sistemas aquáticos urbanos
	A prevalência de bactérias resistentes a cefotaxima e de bactérias resistentes a imipenemo foi avaliada em cinco pequenos lagos urbanos e num canal estuarino durante 6 meses. Durante esse tempo, um lago urbano mostrou consistentemente a maior taxa tanto de bactérias resistentes a imipenemo como de bactérias resistentes a cefotaxima.
	lagos urbanos e num canal estuarino. Estabeleceu-se uma coleção de 30 isolados resistentes a imipenemo, que foram posteriormente identificados e submetidos a tipagem molecular através de BOX-PCR. Estes isolados foram caracterizados com base em suscetibilidade a antibióticos, presença de genes que codificam carbapenemases, conteúdo plasmídico e ensaios de
	conjugação. Foram selecionados 3 isolados para sequenciação do genoma e os seus resistomas, mobilomas e genes associados a fatores de virulência foram avaliados.
	Os isolados atiliaram com <i>Klebsiella</i> (n = 1), <i>Raoultella</i> (n = 11), <i>Enterobacter</i> (n = 3), <i>Citrobacter</i> (n = 8) e <i>Aeromonas</i> (n = 7). A maioria deles eram resistentes a todos os antibióticos β -lactâmicos testados, 76,6 % eram organismos multirresistentes e nenhum dos antibióticos testados foi eficaz contra todos os isolados. A presença de genes que codificam carbapenemases foi detetada em 27 isolados: <i>bla</i> _{KPC} (n=20; 8 <i>Citrabacter</i> 11 <i>Paquítalla</i> e 1. <i>Enterabacter</i>): <i>bla</i> -m. (n=12; 6)
	<i>Chrobacter</i> , 11 <i>Raoultella</i> e 1 <i>Enterobacter</i>), <i>bla</i> _{GES-5} (n=13, 6 Aeromonas, 5 <i>Raoultella</i> , 1 <i>Enterobacter</i> e 1 <i>Klebsiella</i>) e <i>bla</i> _{VIM-1} (n=1; <i>Citrobacter</i>). Observou-se também a presença de dois genes que codificam carbapenemases em simultâneo (<i>bla</i> _{KPC} e <i>bla</i> _{GES-5} , n=6; <i>bla</i> _{KPC} e <i>bla</i> _{VIM-1} , n=1). Foram detetados integrões de classes 1 e 3 em 80 % e 36,7 % dos isolados, respetivamente. A presença do gene
	<i>Dla</i> _{GES-5} esteve sempre associada a integroes de classe 3. A análise genómica mostrou que o gene <i>bla</i> _{KPC-3} se encontrava associado a transposões e plasmídeos. GRA adicionais também foram detetados (ex: <i>catB3</i> , <i>aacA4-cr</i> , <i>qnrS1</i> , <i>sul1</i> , <i>dfrA14</i> , <i>tet</i> (<i>A</i>) and <i>macA</i>). Alguns dos integrões detetados possuíam vários GRA. Apesar de não ter sido possível obter transconjugantes através de ensaios de conjugação, confirmou-se a presenca de plasmídeos conjugativos através da

análise genómica. Foram detetados vários fatores de virulência nos genomas sequenciados e os organismos foram previstos como patogénicos para humanos. Com este estudo conclui-se que alguns dos ambientes aquáticos estudados possuem cargas microbianas acima do desejável e que as BRA detetadas possuíam genes de resistência a carbapenemos e a outras classes de antibióticos, habitualmente associados a EGM envolvidos em surtos graves e que podem contribuir para a disseminação de GRA entre diferentes bactérias e ambientes. São necessários estudos posteriores para elucidar a fonte destes GRA e tentar prevenir a sua disseminação, com o objetivo de abrandar a resistência a antibióticos, especialmente a resistência a antibióticos de último recurso.

keywords	antibiotic resistance; urban aquatic environments; carbapenems resistance; mobile genetic elements.
abstract	Antibiotic resistance is an increasingly serious problem globally. If nothing is done, is predictable a future where infections that are currently easily treatable would kill millions of people each year. Carbapenems are a group of last-resort antibiotics, considered key drugs in the treatment of severe infections. The spread of genes encoding carbapenem-hydrolyzing enzymes through mobile genetic elements is a serious threat to Public Health. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARG) are often associated with clinical settings and little is known about their presence in urban aquatic systems located in recreational areas, where humans and animals may be easily exposed. This study aimed to assess the prevalence and characterize carbapenemase-producing bacteria in urban aquatic systems. The prevalence of imipenem and cefotaxime-resistant bacteria was monitored in five urban ponds and in an urban estuarine channel over six months. Over this time, one urban pond showed consistently the
	highest rate of both imipenem- and cefotaxime-resistant bacteria. Imipenem-resistant bacteria were detected only in 2 urban ponds and in the estuarine channel site.
	were subsequently identified and submitted to molecular typing by BOX-PCR. These isolates were characterized regarding the antibiotic susceptibility, carbapenemase-encoding genes, plasmid content and mating assays. Three isolates were selected for whole genome sequencing and their resistome, mobilome and virulence related genetic determinants were evaluated.
	Isolates affiliated to <i>Klebsiella</i> (n = 1), <i>Raoultella</i> (n = 11), <i>Enterobacter</i> (n = 3), <i>Citrobacter</i> (n = 8) and <i>Aeromonas</i> (n = 7). Most of them were resistant to all β -lactam antibiotics tested, 76.6 % were multidrug-resistant organisms and none of the tested antibiotics was effective against all isolates. The presence of carbapenemase-encoding genes was detected in 27 isolates: <i>bla</i> _{KPC} (n=20; 8 <i>Citrobacter</i> , 11 <i>Raoultella</i> and 1 <i>Enterobacter</i>); <i>bla</i> _{GES-5} (n=13; 6 <i>Aeromonas</i> , 5 <i>Raoultella</i> , 1 <i>Enterobacter</i> and 1 <i>Klebsiella</i>) and <i>bla</i> _{VIM-1} (n=1; <i>Citrobacter</i>). The simultaneous presence of two carbapenemase genes was observed
	(bla_{KPC} and bla_{GES-5} , n=6; bla_{KPC} and bla_{VIM-1} , n=1). Class 1 and 3 integrons were detected in 80 % and 36.7 % of the isolates, respectively. The presence of bla_{GES-5} was always associated with class 3 integrons. The whole genome analysis showed that bla_{KPC-3} was found associated to transposons and plasmids. Additional ARG were also detected (e.g <i>catB3</i> , <i>aacA4-cr</i> , <i>qnrS1</i> , <i>sul1</i> , <i>dfrA14</i> , <i>tet(A)</i> and <i>macA</i>). Some of the integrons detected harboured multiple ARG. Although it was not possible to obtain transconjugants through mating assays, the presence of conjugative plasmids was confirmed by WGS
	analysis. The presence of several virulence determinants was detected in sequenced genomes and these organisms were predicted as human pathogens.
	with this study, we concluded that some of the studied aquatic environments possess microbial loads above the desirable and that the detected ARB harbored both genetic determinants of resistance to

carbapenems and to other classes of antibiotics, often associated with mobile genetic elements already linked to serious outbreaks, that may contribute to their spread among bacteria and between environments. Further studies are needed to elucidate the source of these ARG to try preventing their spread, in order to slow-down the problem of antibiotic resistance, especially the last-resort antibiotic resistance.

INDEX

I.	Introduction	. 21
1	. Antibiotics: The life-saving weapons	. 21
2	. β -lactams: The scientific path taken to cope with the emergence of resistance.	. 23
	2.1. How do they act? A molecular perspective	. 25
3	. Antibiotic resistance: one step forward, two steps backward	. 26
	3.1. Molecular mechanisms of antibiotic resistance	. 30
	3.1.1. β -lactamases: The biggest threat to β -lactams efficiency	. 31
4	. MDR organisms, a Public Health concern: Focusing on Enterobacteriaceae and	nd
A	eromonas	. 36
5	. Environment: Both final destination and origin of resistance genes	. 39
5	.1. Contamination of aquatic environments	. 41
II.	Scope and aims of this thesis	. 44
III.	Material and Methods	. 46
1	. Sampling and enumeration of resistant bacteria	. 46
2	. Molecular typing	. 47
3	. Phylogenetic affiliation	. 47
4	. Antibiotic susceptibility testing	. 48
5	. Screening of antibiotic resistance genes and integrons	. 49
6	. PCR products purification and sequencing	. 49
7	. Characterization of plasmid content	. 50
7	.1. Replicon typing	. 50
7	.2. Plasmid DNA extraction	. 50
7	.3. Screening of pBK30661 and pBK30683 plasmids	. 51
8	. Liquid conjugative mating assay	. 51
9	. Whole Genome Sequencing and analysis	. 52
IV.	Results	. 54
1	. Prevalence of cefotaxime- and imipenem-resistant bacteria in urban aquatic	
S	ystems	. 54
2	. Molecular typing and phylogenetic affiliation of imipenem-resistant isolates	. 56
3	. Antibiotic susceptibility profiles	. 64
4	. Occurrence and diversity of ARG	. 66
5	. Integron screening and characterization	. 67
6	. Plasmid content and mating assays	. 68
7	. Whole genome sequencing (WGS) analysis	. 70
7	.1. General genomic features	. 71

7.2	. In silico phylogenetic analysis	72
7.3	. Antibiotic resistance genes and mobilome analysis	80
7.4	. In silico virulence factors	95
V. I	Discussion	97
VI.	Conclusion	105
VII.	References	106
VIII.	Appendix	129

INDEX OF FIGURES

Figure 1. Examples of antibiotics and their mode of action in Gram-positive and Gram- negative bacteria (Wang et al., 2019)
Figure 2. Members of β -lactam class (Bush & Bradford, 2019)
Figure 3. a) Consumption of carbapenems in clinical settings from 2009 to 2018 in Portugal. b) Consumption of non-penicillin β lactam antibiotics during 2018 in Portugal (https://www.ecdc.europa.eu/en/antimicrobial-consumption/database/country-overview).
Figure 4. Mechanism of action of β -lactams (Adapted from Cho et al., 2014)
Figure 5. HGT mechanisms: Transformation, transduction and conjugation (Furuya & Lowy, 2006)
Figure 6. General structure of integrons. A) GC3 integration, through integrase mediated recombination between <i>attI</i> and <i>attC3</i> sites. B) GC1 excision, through integrase mediated recombination between <i>attC1</i> and <i>attC3</i> sites (Stalder et al., 2012)
Figure 7. Main mechanisms of antibiotic resistance: 1) drug efflux; 2) decrease in drug uptake; 3) drug inactivation; 4) modifications in drug target (Laws et al., 2019)
Figure 8. Timeline showing clinical implementation of antibiotics and the first report of resistance to those antibiotics. PRSA- penicillin-resistant <i>Staphylococcus aureus</i> . MRSA – Methicillin-resistant <i>Staphylococcus aureus</i> (Adapted from Iredell et al., 2015) 32
Figure 9. Classification of carbapenemases and β-lactamases according Ambler classification (Nordmann & Poirel, 2019)
Figure 10. Epidemiological stages regarding the spread of carbapenemase-producing <i>Enterobacteriaceae</i> from 2010 to 2018 in different countries in Europe in 2018 (Brolund et al., 2019)
Figure 11. The environmental resistome and its connection to human pathogens (Surette & Wright, 2017)
Figure 12. Route of urban runoffs from the origins to aquatic environments (Adapted from Almakki et al., 2019)
Figure 13. Location and designation of the sampling sites
Figure 14. Average counting of typical coliform in CFU/100 mL (log ₁₀) with standard deviation, collected in February 2019, March 2019 and from September 2019 to February 2020, from 5 ponds and an estuarine channel
Figure 15 Demonstrate of exploring maintain the second and and extremine

Figure 18. Clustering analysis of BOX-PCR patterns of all isolates used in this study, obtained from GelCompar II using Person correlation coefficient and UPGMA clustering method. The similarity cutoff value considered in this study is shown by a red line..... 62

Figure 21. Phylogenetic tree of *Citrobacter* spp. based on whole genome analysis obtained from TYGS. Species and subspecies cluster colors represent different clusters. Percent of G+C varies from white (64.0) to dark blue (69.3). δ statistic values varies from white (0.1) to brown (0.2). Genome size (bp) varies from (4.2 Mb) to (8.0 Mb), dark rectangle size represents genome size. Protein count varies from (3211) to (7675), golden rectangle size represents number of proteins. Accession numbers: NCTC10805, NZ UFVN0100003.1; ATCC 51113. NZ NAEW0000000.1; 97/99, NZ FLYB01000036.1; NZ BBMX0000000.1; GTC 1319, ATCC, 8090T, NZ_JMTA0000000.1; MBT-C3NZ_QVEK01000037.1; NCTC10786, NZ UAVY0100004.1; P080C CL, QFVP01000003.1; CIP 55.13, NZ CDHL01000056.1; A60, MVFY01000001.1; ATCC 51459, NZ JXUN00000000.1; NBRC 105722, NZ_BBNB01000030.1, BF-6, NZ_CP019987.1; CCUG 30791,

Figure 24. Phylogenetic tree of the MLSA using a bootstrap analysis with 1000 replications based on *dnaA*, *fusA*, *gyrB*, *leuS*, *pyrG*, *rpiB* and *rpoB* concatenated housekeeping genes of *Enterobacter kobei* N10 and other representatives of different groups of genus *Enterobacter*. Genbank accession numbers: LMG 27195, NZ_CP017183; DSM 16691, NZ_CP017179; DSM 16687, NZ_CP017180; DSM 14563, NZ_CP017186; 34983, NZ_CP010377; ECC1766, NZ_NEEF01000026.1; ATCC 13047, CP001918.1; SDM, NC_018079.1; EcWSU1, NC_016514.1; GN02709, NZ_LEDH00000000.1; 1131_ECLO, NZ_JWCB00000000.1; GN02468, NZ_LEDT00000000.2; DSM 16690, NZ_CP017184; SY-70, NZ_JALR00000000.1; GN03164, NZ_LECZ00000000.1; 624_ECLO, NZ_JUZQ01000000; DSM 13645, NZ_CP017181; 629_ECLO, NZ_JUZL01000000.

Figure 25. Phylogenetic tree based on whole genome analysis of the *Enterobacter kobei* N10 obtained from TYGS. Species and subspecies cluster colors represent different clusters. Percent of G+C varies from white (64.0) to dark blue (69.3). δ statistic values varies from white (0.1) to brown (0.2). Genome size (bp) varies from (4.2 Mb) to (8.0 Mb), dark rectangle size represents genome size. Protein count varies from (3211) to (7675), golden rectangle size represents number of proteins. Genbank accession numbers: Genbank accession numbers: LMG 27195, NZ_CP017183; DSM 16691, NZ_CP017179; DSM 16687, NZ_CP017180; DSM 14563, NZ_CP017186; 34983, NZ_CP010377; ECC1766, NZ_NEEF01000026.1; ATCC 13047, CP001918.1; SDM, NC_018079.1; EcWSU1. NC 016514.1: GN02709. NZ LEDH0000000.1; 1131 ECLO. NZ_JWCB00000000.1; GN02468, NZ_LEDT00000000.2; DSM 16690, NZ_CP017184; NZ JALR00000000.1; GN03164, NZ LECZ00000000.1; 624 ECLO, SY-70. NZ JUZO01000000; DSM 13645, NZ_CP017181; 629_ECLO, NZ_JUZL01000000;

Figure	32.	Virulence	factors	found	in	Citrobac	ter	freundii	F6	(a),	Raoultella
ornthino	lytic	a N9 and E	nterobac	ter sp. 1	N10	(c) obtair	ned f	from VFI)B		
	•			1							
Figure A	11. R	Resistance p	henotype	e of 30 i	sola	ites					
U		1									
Figure A	A2. (Genes anno	tated and	d relate	d su	bsystems	of	C. freund	lii F6	5. (a);	Raoultella
ornithind	olytic	<i>ca</i> N9 (b); <i>E</i>	Enteroba	cter kob	ei N	10 (c)		•			137

INDEX OF TABLES

Table 1. Main carbapenemases found in <i>Enterobacteriaceae</i> and its hydrolysis activity against different β -lactam antibiotics. (-) represents not detectable hydrolysis, (+) represents detected hydrolysis and (++) a stronger hydrolysis detected (Nordmann et al., 2012)
Table 2. Microorganisms isolated from 2015 to 2018 in European countries, the sets ofantibiotics to which they are resistant giving an MDR phenotype and the proportion theyrepresent (ECDC, 2019)
Table 3. Carbapenem-resistance genes and their genetic contexts found in different bacterial species isolated from aquatic environments. 43
Table 4. Location, designation and coordinates of the sampling sites. For ponds, areas and perimeters were estimated using Google Maps. 46
Table 5. Antibiotic discs used in this study. 4949
Table 6. Panels (multiplex-PCR), simplex-PCR and target genes
Table 7. Panels, primers and target genes for screening of pBK30661 and pBK30683 plasmids. 51
Table 8. 16S rRNA gene-based phylogenetic affiliation of bacterial isolates used in this study. Sampling dates and sites are indicated along with similarity with the type strain based on EzBiocloud database, and closest relatives based on NCBI database search. BOX-profiles for each isolate are indicated with the same letter indicating a similar BOX-profile.
Table 9. Replicon typing, integrases and carbapenemase genes detected by PCR and antibiotic susceptibility profiles
Table 10. General features of the <i>Citrobacter</i> sp. F6, <i>Raoultella ornithinolytica</i> N9 and <i>Enterobacter</i> sp. N10 draft genomes.71
Table 11. Allelic analysis and sequence type of <i>C. freundii</i> F6. 73
Table 12. ANIb and DDH values of <i>E. kobei</i> DSM13645 ^T , <i>E. kobei</i> JCM 8580 ^T and other non-type <i>E. kobei</i> strains against <i>Enterobacter</i> sp. N10
Table 13. Allelic analysis and sequence type of <i>E. kobei</i> N10. *New alleles detected in this isolate. 79
Table 14. Detected ARG in C. freundii F6 using Resfinder, CARD and NCBI (*) databases search. Genes were predicted using CARD tool and % similarity refers to protein similarity. 80
Table 15. Detected plasmids in C. freundii F6 obtained from PlasmidFinder 2.1. 83

Table 16. Detected ARG in *R. ornithinolytica* N9 using Resfinder, CARD and NCBI (*) databases search. Genes were predicted using CARD tool and % similarity refers to
 Table 17. Detected plasmids in R. ornithinolytica N9 obtained from PlasmidFinder 2.1.

 Table 18. Regions of pbk30683 detected by WGS analysis in R. ornithinolytica N9... 89
 Table 19. Detected ARG in E. kobei N10 using Resfinder, CARD and NCBI (*) databases search. Genes were predicted using CARD tool and % similarity refers to protein Table 21. Results obtained from PathogenFinder 1.1 for C. freundii F6, Raoultella Table A1. PCR primers used in bacterial typing, 16S rRNA based affiliation and Table A2 PCR programs used in PCR-based molecular typing, 16S rDNA affiliation and

 Table A3. Primers and targets used in replicon typing.
 132

 Table A4. PCR programs used in replicon typing.
 135

Table A5. Primers and targets used in screening of pBK30661 and pBK30683 plasmids.
 Table A6. PCR programs used in screening of pBK30661 and pBK30683 plasmids. 137 Table A7. ANIb, ANIm, dDDH and difference in G+C of E. kobei deposited in PATRIC database and *E. kobei* N10 against DSM 13645^T and JCM 8580^T strains. Table A8. Virulence factors and its related genes found in C. freundii F6 against Escherichia coli and Klebsiella pneumonieae databases from VFDB......143 Table A9. Virulence factors and its related genes found in R. ornithinolytica N9 against Escherichia coli and Klebsiella pneumonieae databases from VFDB......145 Table A10. Virulence factors and its related genes found in E. kobei N10 against Table A11. Proteins associated to pathogenesis found in C. freundii F6 using PathogenFinder 1.1. 153

Table A	A12.	Proteins	associated	to pa	thogenesis	found	in <i>R</i> .	orn	ithinolyti	ca N9	using
Pathoge	nFine	der 1.1									157
Tabla	۸13	Drotain	s associate	d to	nathagang	ncia fo	und	in	F kohai	N10	using
Pathoge	nFine	der 1.1			patilogene				L. KODEI		161

Abbreviations

°C	Degree Celsius
AMR	Atimicrobial resistance
ARB	Antibiotic resistant bacteria
ARG	Antibiotic resistance genes
ATU	Area of technical uncertainty
CFU	Colony forming unit
CPE	Carbapenemase-producing Enterobacteriaceae
DDD	Defined daily dose
dDDH	Digital DNA-DNA hibridization
DNA	Deoxyribonucleic acid
EARS	European Antimicrobial Resistance Surveillance Network
ECDC	European Centre for Disease Prevention and Control
ESBL	Extended-spectrum β-lactamase
EURGen-Net	European Antimicrobial Resistance Genes Surveillance Network
EuSCAPE	European Survey on Carbapenemase-Producing Enterobacteriaceae
μg	Microgram
GES	Guiana extended-spectrum β-lactamase
GC	Gene cassette
HGT	Horizontal gene transfer
KPC	Klebsiella pneumoiae carbapenemase
Km	Kilometer
L	Liter
μm	Micrometer
mL	Mililiter
mm	Milimeter
MDR	Multidrug resistant
MGE	Mobile genetic element
min	Minute
NDM	New Delhi metallo- β-lactamase
OXA	Oxacillinase
PBP	Penicillin binding protein
PCR	Polymerase chain reaction
rpm	Rotation per minute

RNA	Ribonucleic acid
VIM	Verona Integron-Borne Metallo-β-Lactamase
WGS	Whole genome sequencing
WHO	World Health Organization
WWTP	Wastewater treatment plant

I. Introduction

1. Antibiotics: The life-saving weapons

Earth is inhabited by approximately 5 X 10^{30} bacteria. Through evolutionary processes, some microorganisms have become capable of synthesizing antagonistic compounds of bacteria, known as antibiotics (Finley et al., 2013). Although mankind has used microorganisms for many centuries, to try to control microbial infections (Sengupta et al., 2013), it was Selman Waksman who in 1941 used the term "antibiotic" for the first time (Clardy et al., 2009). In 1947, Waksman published a paper, describing an antibiotic as "(...) a chemical substance, produced by micro-organisms, which has the capacity to inhibit the growth of and even to destroy bacteria and other micro-organisms. The action of an antibiotic against micro-organisms is selective in nature, some organisms being affected and others not at all or only to a limited degree (...)" (Waksman, 1947). Currently, this designation has been changing, since in addition to totally natural antibiotics, produced by environmental fungi and bacteria, there are those that are synthetically modified and those that are entirely synthetic (Aslam et al., 2018). Nowadays, an antibiotic can be defined as "an organic chemical of natural or synthetic origin that inhibits or kills pathogenic bacteria at low concentrations and possesses selective toxicity, i.e., maximal toxicity for a pathogen and minimal toxicity for the host (Bentley & Bennett, 2003). In 1909, Paul Ehrlich discovered a chemical compound derived from arsenic, the salvarsan, which proved to be effective in syphilis treatment and was the first modern antimicrobial agent. However, salvarsan did not fit into the definition made by Waksman, once it was not a natural compound produced by microorganisms (Gould, 2016; Waksman, 1947). From the 30s to the 60s of the last century, humanity experienced a period called "golden era of antibiotic discovery" (Nathan & Cars, 2014). During this period many new antibiotics were discovered (Buchy et al., 2019), including most of the naturally occurring antibiotics used today (Brown & Wright, 2016).

Penicillin was the first natural discovered antibiotic, by Alexander Fleming, in 1928, from a fungus of the genus *Penicillium* (Peterson & Kaur, 2018) and it was implemented in the clinical practice in 1943 (Palumbi, 2001). This compound proved to be less toxic with a higher activity spectrum than salvarsan and replaced it (Swain, 2018). These advances, made during the golden age of antibiotic discovery, were one of the main advances in medical field (van Hoek et al., 2011). Antibiotics, in addition to saving patients' lives, also play a crucial role in the development of medicine and surgery. This compounds allow to prevent or treat infections that can occur in patients who are

receiving chemotherapy treatments, patients with chronic diseases, patients who have undergone surgery, organ transplants, among others (Ventola, 2015), acting as both therapeutic and prophylactic agents, thus reducing morbidity and mortality, and contributing to the increase of life expectancy (van Hoek et al., 2011).

There are several antibiotic classes, which possess different modes of action. Some examples of cellular targets are cell membrane (lipopeptides), cell wall biosynthesis (β -lactams), DNA gyrase (fluoroquinolones), DNA synthesis (sulfonamides), fatty acid synthesis (chlorophenol), protein synthesis, by 30S ribosomal subunit binding (tetracyclines) or by 50S ribosomal subunit binding (macrolides, amphenicols) and RNA synthesis (rifamycins) (O'Rourke et al., 2020) (figure 1).

Figure 1. Examples of antibiotics and their mode of action in Gram-positive and Gram-negative bacteria (Wang et al., 2019)

Regarding the spectrum of action, antibiotics that are effective only against a limited set of bacteria are called narrow-spectrum antibiotics, with the advantage of preventing the formation of resistance by bacteria that are not the target of treatment. On the other hand, antibiotics that target a wide variety of bacteria are called broad-spectrum antibiotics, with the advantage of allowing physicians to treat an infection empirically, with a greater likelihood of success. However, there is a greater risk of antibiotic resistance development by bacteria that are not the target of treatment (Maxson & Mitchell, 2016; Sarpong & Miller, 2014).

There are some new antibiotics in clinical trials, however, it may take 10 years until their commercialization (Renwick & Mossialos, 2018). An example of time-consuming antibiotic development and commercialization is the platensimycin, a promising drug which act as inhibitor of FabF proteins, discovered in 2006 (Wang et al., 2006), that is still in clinical trials (Deng et al., 2019).

2. β -lactams: The scientific path taken to cope with the emergence of resistance

β-lactam antibiotics are a class of antibiotics that includes several molecules, classified according to their chemical structure (Nordmann et al., 2012). Penicillin G (benzylpenicillin), the original molecule extracted from *Penicillium rubens* by Alex Fleming in 1928, was the first β-lactam used in the clinical practice. Its clinical trials started in 1942 (Houbraken et al., 2011; Lobanovska & Pilla, 2017; Raynor, 1997). Since its discovery, many other natural and semi-synthetic β-lactams have been described (Essack, 2001). These compounds are among the most effective agents in the treatment of bacterial infections (Öztürk et al., 2015). β-lactams molecules have a β-lactam ring that can be fused to other rings, creating variable structures. Additionally, the substitutions on branches linked to the β-lactam ring influence antibacterial activity, stability against β-lactam molecule it is possible to group these molecules in subgroups: penicillins, cephalosporins, carbapenems and monobactams (Bush & Bradford, 2019; Tahlan & Jensen, 2013) (figure 2).

Figure 2. Members of β-lactam class (Bush & Bradford, 2019).

In addition to all these molecules sharing a β -lactam ring, they also have the same mechanism of action, the penicillin binding proteins (PBP) inhibition (Bush & Bradford, 2019). During the late 1960s, the emergence of β -lactamases threatened the effectiveness of penicillins (Papp-Wallace et al., 2011). Due to this, research and development of new and more stable β -lactam compounds, and also of β -lactamase inhibitors began (Bush &

Bradford, 2016). In 1979, Kahan et al., discovered thienamycin, a metabolite produced by *Streptomyces cattleya*. This new β -lactam molecule was the first representative of the carbapenems family. It had a greater spectrum of action than the natural antibiotics known to that date, acting against Gram-positive, Gram-negative bacteria including β-lactamaseproducing bacteria resistant to penicillins and cephalosporins (Kahan et al., 1979). In addition to its broad-spectrum activity, it also acted as a β -lactamase inhibitor (Papp-Wallace et al., 2011). Despite its antibacterial activity, it was chemically unstable. In 1979 it was chemically stabilized by the addition of an N-formimidoyl group, which resulted in a compound named MK0787 (Leanza et al., 1979), currently known as imipenem (Bush & Bradford, 2016). In 1985, imipenem became the first carbapenem available to treat complex microbial infections (Papp-Wallace et al., 2011). Since the prevalence of resistance to first-line antibiotic such as 3rd generation cephalosporins is increasing, physicians are forced to administer more effective drugs (Gashe et al., 2018; Lin et al., 2019; Marinho et al., 2016; Meyer et al., 2010; Shelton et al., 2016), among them, carbapenems, which are considered last-resort antibiotics. Their use is reserved, in several countries, such as Portugal, for infected patients that are seriously ill, when there is a suspicion that the infection is caused by a multi-resistant bacteria or when no other antibiotic is effective (Papp-Wallace et al., 2011; Sekyere, 2016; Tacão et al., 2015). Although carbapenems are β -lactams, such as penicillins and cephalosporins, they differ in their chemical structure (Hawkey & Livermore, 2012) and in their greater range of action when compared to penicillins, cephalosporins and β -lactam/ β -lactamase inhibitor combinations (Papp-Wallace et al., 2011). In addition to imipenem, there are other carbapenems, such as meropenem, doripenem, ertapenem, panipenem and biapenem (Codjoe & Donkor, 2018). This group of antibiotics is highly effective to treat bacterial infections and has low toxicity (Kattan et al., 2008). In Portugal, although carbapenems consumption has decreased in recent years, they still represent 20.7 % of the nonpenicillin β -lactam antibiotics used in clinical settings during 2018 (0.081 defined daily dose (DDD) per 1000 inhabitants and per day) (ECDC, 2019) (figure 3).

Figure 3. a) Consumption of carbapenems in clinical settings from 2009 to 2018 in Portugal. b) Consumption of non-penicillin β lactam antibiotics during 2018 in Portugal (https://www.ecdc.europa.eu/en/antimicrobial-consumption/database/country-overview).

2.1. How do they act? A molecular perspective

Most bacteria have an essential structural element, the cell wall, consisting of a peptidoglycan matrix, which is formed from glucan chains cross-linked by peptides (Cho et al., 2014; Lobanovska & Pilla, 2017). Cell wall is essential to maintain cell function, ensure its shape, integrity and prevent macromolecules from migrating into the cell (Lobanovska & Pilla, 2017; Raynor, 1997). Cross-linking is mediated by transpeptidases, usually called PBP, which use an active serine site to carry out their catalytic cycle (Wilke et al., 2005). The number of different types of PBP per bacterial species is variable, frequently ranging from 3 to 8, differing in affinity with which they bind to penicillin or other β-lactam antibiotics (Bush & Bradford, 2016; Nordmann et al., 2012). β-lactams act as analogs of PBP' substrates, since they resemble the structure of D-alanyl-D-alanine, binding irreversibly to Ser403 residue of PBP active site (Nordmann et al., 2012; Oliva et al., 2003) and inhibiting its catalytic activity (Raynor, 1997). Under normal conditions, peptidoglycan precursors signal for bacterial cell wall reorganization, activating cell wall autolytic hydrolases. Since transpeptidases inhibition cause precursors accumulation, digestion of existing peptidoglycan by autolytic hydrolases takes place without new peptidoglycan production (Nordmann et al., 2012). Through these autocatalytic mechanisms, leading to osmotic pressure and cell lysis, cell death occurs (Lobanovska & Pilla, 2017; Raynor, 1997) (figure 4).

Figure 4. Mechanism of action of β -lactams (Adapted from Cho et al., 2014).

3. Antibiotic resistance: one step forward, two steps backward

Since they were discovered and introduced in the clinical practice in the 1930s, antibiotics have been highly effective against bacterial infections. Nowadays, we face the problem of antibiotic resistance increasing, since bacteria carrying antibiotic resistance genes (ARG) are resistant to most commonly prescribed treatments, giving rise to more prolonged illnesses and a higher death risk (Biyela et al., 2004; Y. Yang, Liu, et al., 2017). In a broad sense, antibiotic resistance can be defined as any reduction in susceptibility of a bacterial strain when compared to the susceptible wildtype strain (Kraemer et al., 2019).

Antimicrobial resistance (AMR) is a natural and ancestral phenomenon that precedes human use of antibiotics. However, infections caused by bacteria resistant to these compounds and their rapid spread have been described after their human use to treat diseases (Agga et al., 2015; Goethem et al., 2018). Antibiotic resistance seriously compromises Public Health, causing thousands of deaths per year (Z. Zhou et al., 2018). Data collected from European Antimicrobial Resistance Surveillance Network (EARS-Net), from January to December 2015, indicate that in Europe and in countries belonging to the European economic area, 671,689 people were infected with antibiotic-resistant bacteria (ARB), of which 33,110 resulted in death (Cassini et al., 2019). Although there are some continents and countries where it is possible to quantify the AMR effect, there are also other regions where epidemiological data are scarce, making it difficult to measure the real impact of AMR globally (Marston et al., 2016). The emergence of infections caused by ARB and the lack of new antibiotics development threatens humanity to return to the pre-antibiotic era (Lamba et al., 2017). In a world without

effective antibiotics, 11 million people a year would lose their lives due to bacterial infections and there would be a reduction in the global economy of 0.1-3.1% by 2050 (O'Neill, 2014). Unfortunately, health care changes in the last 50 years, such as overuse and misuse of antibiotics have created new niches for some microorganisms to emerge as important human pathogens (Mathers et al., 2019; Ventola, 2015). The continuous increase of AMR in clinical isolates has been attributed to selective pressure exerted by anthropogenic action (Agga et al., 2015). In the environment, bacteria can be exposed during long periods of time to low concentrations of antibiotics, that are present due to release of pollutants derived from anthropogenic activities (Wistrand-Yuen et al., 2018). Excessive use of antibiotics, biocides, heavy metals and other chemicals has led to their accumulation in the environment, providing an opportunity for exposure of microbial populations to these compounds, which may select for antibiotic resistance (Almakki et al., 2019; Biyela et al., 2004; Haberecht et al., 2019). In polluted environments, ARG can be co-selected with resistance genes to other pollutants, such as heavy metal resistance genes, since they can be located on the same mobile genetic element (MGE) (Mills & Lee, 2019).

Bacterial resistance can be classified into intrinsic resistance, adaptive resistance and acquired resistance (Hughes & Andersson, 2017). In intrinsic resistance, also known as innate resistance, bacterial ability to resist to an antibiotic is due to intrinsic functional or structural properties (Aslam et al., 2018). It is a trait shared within the species level, it is independent of previous exposure to an antibiotic and is not related to horizontal gene transfer. Examples of this resistance are the natural activity of efflux pumps (Reygaert, 2018) or the slow uptake of the drug due to possession of a semi-permeable external membrane (Fernández & Hancock, 2012; Hughes & Andersson, 2017). Secondly, the adaptive resistance, is induced when a bacteria is exposed to antibiotics (Reygaert, 2018), causing a temporary increase in bacteria's ability to survive to its action and even to other antibiotics to which it was not exposed. Unlike other types of resistance, this resistance is not transferred vertically (Fernández & Hancock, 2012; Hughes & Andersson, 2017). Some examples are epigenetic modifications which can lead to efflux pump overexpression, increasing antibiotic resistance levels (Du et al., 2018). Thirdly, acquired resistance arises through mutations in chromosomal DNA or through horizontal gene transfer (HGT). Acquired resistance can also happen through a combination of these two mechanisms (Aslam et al., 2018; Giedraitienė, 2011). Resistance acquired through HGT is one of the main pathways for bacterial evolution and plays a central role in antibiotic resistance spread among clinically relevant bacteria (Mathers et al., 2019; Munita & Arias, 2016). Acquired resistance genes are usually "packaged" within mobile DNA, that is, a segment of DNA that is capable of translocating from one region of the genome to another or even between genomes (van Hoek et al., 2011). Main mechanisms of HGT are transduction, transformation and conjugation (figure 5) (Munita & Arias, 2016). The first mechanism is mediated by bacteriophages, in which bacterial DNA and phages DNA are packed together in their heads and subsequently injected into recipient bacteria. The second mechanism is based on the acquisition of naked DNA from the extracellular environment by both Gram-positive and Gram-negative competent bacteria (van Hoek et al., 2011). In this process the genes are incorporated into the genome of the recipient cell by homologous recombination or transposition. During this process, gene DNA sequences can suffer nucleotide alterations (Giedraitienė, 2011). The DNA molecule acquired by transformation may be able to replicate autonomously (e.g. plasmids) and therefore it doesn't need to be incorporated into the host DNA (van Hoek et al., 2011). Conjugation, the third mechanism, consists of HGT through cell-cell contact (Munita & Arias, 2016) and is mediated by conjugative transposons and conjugative plasmids that have all the genetic information necessary for their transfer between cells. Mobilizable elements also can be transferred through this mechanism. In this case, they use conjugation machinery of conjugative elements present in the cell to transfer themselves to another host (van Hoek et al., 2011). Through HGT mediated by conjugative plasmids, an ARG can also be transferred from a chromosome to another chromosome (Manson et al., 2010). Conjugation is very efficient with regard to HGT, for example, in the hospital setting, emergence of resistant bacteria is often associated with this mechanism, and it is believed to occur at high rates in the gastrointestinal tract of individuals who are under antibiotic treatment (Munita & Arias, 2016). Acquisition of resistance through mechanisms above described can be temporary or permanent (Reygaert W., 2018).

Figure 5. HGT mechanisms: Transformation, transduction and conjugation (Furuya & Lowy, 2006).

Integrons are genetic platforms, firstly described in 1987 (Stokes & Hall, 1989), responsible for the capture, rearrangement and expression of gene cassettes (GC), thus providing a rapid adaptive capacity to bacteria (Ghaly et al., 2019). The GC, which are free in the circular form, and linearized when are integrated into integrons (Recchia & Hall, 1995), possess a mobilizable open reading frame and an *attC* recombination site (Hall & Collis, 1995). Once the majority of GC don't harbor their own promoter, they depend on the integron promoter to be expressed (Jové et al., 2010).

Integrons have a typical structure: a gene that encodes an integrase (*intI*), a promoter (Pc) and a recombination site (*attI*) (Guérin et al., 2011). Integrase is both responsible for inserting the GC on integron, through recombination of *attC* and *attI* sites and responsible for GC excision, through recombination between *attC* sites (Stalder et al., 2012) (figure 6). The integrase is responsible for the insertion of GC in the correct orientation, ensuring that it can be expressed by the integron promoter (Nivina et al., 2016). In addition to Pc promoter, some class 1 integrons also harbour a second promoter, around 90 bp downstream away from Pc (Xiao et al., 2019).

Although integrons are not mobile by themselves, they can be associated with MGE, such as transposons and plasmids, thus contributing to the spread of ARG among bacteria (Stalder et al., 2012).

Figure 6. General structure of integrons. A) GC3 integration, through integrase mediated recombination between *attI* and *attC3* sites. B) GC1 excision, through integrase mediated recombination between *attC1* and *attC3* sites (Stalder et al., 2012).

When the bacterial cell is under stress conditions, integrase expression, reorganization of GC and capture of new determinants of resistance can be increased (Baharoglu et al., 2010; Guerin et al., 2009). Moreover, it has been suggested that the expression of integrase is regulated by SOS response. In the absence of stress condition, the repressor protein LexA binds to P_{intL} and avoids integrase transcription. On the other hand, when a bacterium is exposed to a stress condition, such as an antibiotic, the repressor protein is cleaved and the transcription of the integrase gene occurs normally, allowing the integration, excision and reorganization of GC. This expression regulation makes these structures inexpensive for the cell when are not needed (Guerin et al., 2009; Lacotte et al., 2017; Tansirichaiya et al., 2019).

3.1. Molecular mechanisms of antibiotic resistance

Antibiotic resistance can be acquired through chromosomal mutations or HGT of resistance genes, with several molecular mechanisms involved in this resistance (Rolain, 2013). The four main mechanisms that confer resistance to antibiotics are: a) decrease in drug uptake, due to changes in permeability of bacterial cell wall; b) modification of drug target due to post-translational modifications or due to genetic mutations in gene that encodes the target (Reygaert W., 2018; Aslam et al., 2018), c) drug inactivation by enzymatic modifications or hydrolysis (degradation of the antibiotic); d) drug efflux (Reygaert W., 2018; Aslam et al., 2018) (figure 7). Since interaction between antibiotic and its target is highly specific, small changes in target can influence antibiotic binding (Giedraitiene et al, 2011); Other mechanisms include the acquisition of alternative

metabolic pathways and overproduction of target enzyme (van Hoek et al., 2011). Acquisition of alternative metabolic pathways can be ensured for example by a production of an antibiotic resistant replacer enzyme, which performs the same function as the native enzyme. In this situation, antibiotic blocks native enzyme activity, however, due to the action of the replacer enzyme that is resistant to antibiotic action, cell activity is not affected (Giedraitienė, 2011).

Figure 7. Main mechanisms of antibiotic resistance: 1) drug efflux; 2) decrease in drug uptake; 3) drug inactivation; 4) modifications in drug target (Laws et al., 2019)

3.1.1. β -lactamases: The biggest threat to β -lactams efficiency

Among Gram-negative organisms, the main resistance mechanism to β -lactams is the production of degrading enzymes, known as β-lactamases (Philippon et al., 2002). βlactamases are a heterogeneous group of enzymes, with more than 1800 variants described so far, and are classified either according to their protein sequence homology, by Ambler classification, or according to their phenotypic profile, by the Bush-Jacoby-Medeiros classification (Brandt et al., 2017). In Ambler classification, β -lactamases are divided into four classes, from A to D, in which, enzymes that belong to groups A, C and D are serine β -lactamases and those belonging to group B are metallo- β -lactamases (Paterson & Bonomo, 2005). β-lactamases of Ambler classes A, C and D catalyze hydrolysis through attack using a catalytic serine, whereas in class B enzymes, which have one or two zinc ions in their active site, the attack is promoted by a hydroxide ion (Palzkill, 2018). On the other hand, in Bush-Jacoby-Medeiros classification, enzymes are grouped according to their substrate and inhibitor profiles. This classification encloses four main groups and several organizational subgroups (Paterson & Bonomo, 2005). The first β-lactamase identified, an AmpC in Escherichia coli, was described before the widespread use of β -lactams (Abraham & Chain, 1940; Jacoby, 2009), and β -lactamases were found in remote Alaska soil, demonstrating that they can be present in environmental isolates even without anthropogenic pressure (Allen et al., 2009). However, extensive use of antibiotics led to their emergence and dissemination (Tooke et al., 2019), since exposed strains are induced continuously to produce β -lactamases, which in turn also acquire mutations and modify their action spectrum (N Samaha-Kfoury & Araj, 2003) (figure 8).

Figure 8. Timeline showing clinical implementation of antibiotics and the first report of resistance to those antibiotics. PRSA- penicillin-resistant *Staphylococcus aureus*. MRSA – Methicillin-resistant *Staphylococcus aureus* (Adapted from Iredell et al., 2015).

The first plasmid encoded β -lactamase, TEM-1, was described in 1965 (Datta & Kontomichalou, 1965), having spread worldwide among different bacterial species (Grover et al., 2013). When penicillins lost their capacity to treat most bacterial infections, more potent penicillins and cephalosporins were developed (Bush, 2010). During 1980s, introduction of 3rd generation cephalosporins was a main step in the treatment of infections caused by β -lactamase producing bacteria (Paterson & Bonomo, 2005). Shortly after introduction of these cephalosporins, in 1983, a plasmid-mediated β -lactamase, capable of hydrolyzing extended-spectrum cephalosporins was described (Knothe et al., 1983). These enzymes, called extended-spectrum β -lactamases (ESBLs), evolved from β -lactamases TEM-1, TEM-2 and SHV-1, through point mutations (N Samaha-Kfoury & Araj, 2003), possessing the ability to inactivate penicillins, 1st, 2nd and 3rd generation cephalosporins. However, they do not have the ability to hydrolyze cephamycins or carbapenems and are inhibited by β -lactamase inhibitors, such as clavulanic acid (Ye et al., 2017). Another β -lactamases group is the AmpC group. These

enzymes are not inhibited by classic β -lactamase inhibitors, they confer resistance to cephamycins but do not efficiently hydrolyze cefepime (Rodriguez-Baño et al., 2018). Both ESBL and AmpC can be found in plasmids and are able to spread quickly (Barlow & Hall, 2002; Rodriguez-Baño et al., 2018). After extended-spectrum cephalosporins introduction in clinical practice, ESBLs proliferated, making treatment with these β -lactams more difficult (Bush, 2010).

Carbapenems are the drugs of choice in treatment of infections caused by ESBLs and AmpC-producing *Enterobacteriaceae* (Rodriguez-Baño et al., 2018). During the late 20th century, it seemed that almost all resistance mediated by β -lactamases could be overcome using carbapenems (Bush, 2010). Although first reports of carbapenemases were published in the 1980s (Codjoe & Donkor, 2018), until the early 1990s they were associated to certain species and were chromosome-encoded enzymes (Queenan & Bush, 2007). First report of plasmid encoded carbapenemase, IMP-1, an enzyme conferring imipenem resistance, occurred in 1990 (Watanabe et al., 1991). Since then, other carbapenemases have been isolated and characterized, encoded in MGE, such as KPC-1 in 1996 (Yigit et al., 2001) and GES-2 in 2000 (L. Poirel et al., 2001). According to Ambler classification, carbapenemases belong mainly to classes A, B and D. Although Kim et al., 2006 described a class C enzyme, CMY-10, able to hydrolyze imipenem, enzymes of this class are not considered true carbapenemases since their carbapenem hydrolysis activity is low or nonexistent (Bonomo et al., 2018; Kim et al., 2006; Nordmann & Poirel, 2019). Some examples of carbapenemases are described in figure 9.

* Some variants may possess carbapenemase activity

Figure 9. Classification of carbapenemases and β -lactamases according Ambler classification (Nordmann & Poirel, 2019).

Due to widespread and consecutive dissemination of carbapenemases, leading to carbapenem resistance, treatment options available to overcome infections caused by Gram-negative bacteria are quite limited, and in some cases, bacteria become resistant to all available antibiotics, since the MGE that carry carbapenemase genes can also possess additional resistance genes to other antibiotics (Hrabák et al., 2014). A strain is considered multidrug resistant (MDR) when it is not susceptible to one or more antimicrobials in three or more antibiotic classes (Koulenti et al., 2019). To make matters worse, MGE that harbor ARG may also have genes that encode virulence factors (Harbarth et al., 2015). In addition to this coexistence of resistance genes to various antibiotics, for example, coexistence of the KPC enzyme with other carbapenemases has been globally described (Giakkoupi et al., 2009; S. N. Richter et al., 2012; Rojas et al., 2013). Due to their significant activity as carbapenemases, the ability to hydrolyze not only carbapenems but also broad-spectrum cephalosporins and because they are globally found, KPC, VIM, NDM and IMP are considered the most relevant carbapenemases found in Enterobacteriaceae family (Poirel et al., 2012) (table 11).

S	stronger hydrolysis detected (Nordmann et al., 2012).											
	Ambler class	Name of the enzyme	Plasmid/ chromosome	Hydrolysis	ydrolysis spectrum							
				Penicillins	First generation cephalosporins	Second generation cephalosporins	Third generation cephalosporins	Aztreonam	Carbapenems			
	А	SME-1 to -3	Chromosome	++	++	-	+	+	+	Clavulanate,		
		NMC-A	Chromosome	++	++	-	+	-	++	tazobactam, sulbactam,		
		IMI-2	Plasmid	++	++	-	+	-	++			
		GES-4, -5, -6	Plasmid	++	++	+	+	-	+	NXL-104		
		KPC-2 to -12	Plasmid	++	++	-	++	+	++	Clavulanate, tazobactam, boronic acid, sulbactam		
	В	IMP-1 to -33	Plasmid	++	++	++	++	-	++	EDTA		
		VIM-1 to -33	Plasmid	++	++	++	++	-	++			
		NDM-1 to -6	Plasmid	++	++	++	++	-	+			

++

+/-

+/-

++

+/-

+/-

++

+

+

_

Table 1. Main carbapenemases found in *Enterobacteriaceae* and its hydrolysis activity against different β lactam antibiotics (-) represents not detectable hydrolysis (+) represents detected hydrolysis and (++) a

Although infections caused by ESBL-producing and carbapenemase-producing bacteria were commonly associated with healthcare settings, in recent years, communityacquired infections caused by these bacteria have increased significantly (Tanner et al., 2019). For example, a study conducted by Tang et al., reported that almost 33 % of human

++

++

++

Plasmid

Plasmid

Plasmid

KHM-1

OXA-48

OXA-181

D

++

++

++

NaCl

infections with carbapenem-resistant *Enterobacteriaceae* were community-acquired (H. J. Tang et al., 2016).

Over the past few years there has been an attempt to assess the incidence of carbapenem-producing Enterobacteriaceae (CPE) in European countries. According to the first epidemiological studies under the European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) project (Albiger et al., 2015; Glasner et al., 2013; Grundmann et al., 2010) and the European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) program (Brolund et al., 2019), countries are clustered in different stages (0, 1, 2, 2b, 3, 4 and 5) (figure 10), depending on CPE incidence, where 0 represents "no case reported" and 5 represents "endemic situation (most hospitals in a country are repeatedly seeing cases admitted from autochthonous sources)". Portugal, which in 2010 and 2013 was in phase 1 (sporadic occurrence (epidemiologically unrelated single cases)), reached to phase 2b (sporadic hospital outbreaks (unrelated hospital outbreaks with epidemiologically unrelated introduction or different strains, no autochthonous inter-institutional transmission reported)) in 2014-15 and it was in phase 3 (regional spread (more than one epidemiologically related hospital outbreak confined to hospitals that are part of the same region or health district, indicating regional autochthonous inter-institutional transmission)) in 2018. Thus, it shows a gradual increase of CPE dissemination. In 2018, in addition to Portugal, the remaining 36 European countries also reported cases of CPE (Brolund et al., 2019). In 2019, David et al., analyzed 1717 Klebsiella pneumoniae genomes, from strains studied under EuSCAPE program and observed that the predominant carbapenems resistance mechanism in Portugal was the production of KPC (David et al., 2019).

Figure 10. Epidemiological stages regarding the spread of carbapenemase-producing *Enterobacteriaceae* from 2010 to 2018 in different countries in Europe in 2018 (Brolund et al., 2019).

In addition to carbapenemases associated to MGE, there are microorganisms which harbour intrinsic carbapenemase coding genes, such as $bla_{OXA-51-Like}$ in *Acinetobacter baumannii*, bla_{L1} in *Stenotrophomonas maltophilia* and bla_{cphA} in *Aeromonas* spp., this knowledge is important to guide clinicians to choose an effective antibiotic (Lee et al., 2012; Rosso et al., 2019; Z. Yang et al., 2014).

4. MDR organisms, a Public Health concern: Focusing on *Enterobacteriaceae* and *Aeromonas*

In 2017, the World Health Organization (WHO) published a guideline indicating the most important ARB globally, for which there is an urgent need for new treatments, containing a list of priorities to guide research, discovery and development of new antibiotics (WHO, 2017). Among these microorganisms, are *Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Enterobacter* spp., coined as ESKAPE (Rice, 2008). These organisms are associated to a growing increase of antibiotic resistance, are increasingly associated with
diseases in humans and the infections caused by them take longer to be treated, being associated to a higher mortality rate (Pogue et al., 2015). In 2018, the European Centre for Disease Prevention and Control (ECDC) published an antibiotic resistance report, with data collected from 2015 to 2018 in European Union countries (ECDC, 2019). Microorganisms isolated and characterized are part of those for which WHO in 2017 has established that there is an urgent need of antibiotics research and development. Among them, there were MDR organisms. The sets of antibiotics to which the microorganisms were resistant, giving an MDR phenotype and the proportion they represent are described in table 2.

Organism	MDR resistance phenotype	number of isolates	proportion of resistant bacteria (%)
Escherichia coli	Aminopenicillins + fluoroquinolones + aminoglycosides	2814	2.3
	Aminopenicillins + third-generation cephalosporins + fluoroquinolones + aminoglycosides	5904	4.9
Klebsiella pneumoniae	Third-generation cephalosporins + fluoroquinolones + aminoglycosides	4978	13.7
	Third-generation cephalosporins + fluoroquinolones + aminoglycosides + carbapenems	1799	5.0
Pseudomonas aeruginosa	Fluoroquinolones + aminoglycosides + carbapenems	169	0.9
	[Piperacillin ± tazobactam] + fluoroquinolones + aminoglycosides + carbapenems	235	1.3
	Fluoroquinolones + ceftazidime + aminoglycosides + carbapenems	139	0.8
Acinetobacter spp.	Fluoroquinolones + aminoglycosides + carbapenems	2848	45.7
Staphylococcus aureus	MRSA + fluoroquinolones + rifampicin	254	0.5

Table 2. Microorganisms isolated from 2015 to 2018 in European countries, the sets of antibiotics to which they are resistant giving an MDR phenotype and the proportion they represent (ECDC, 2019).

Gram-negative bacteria can become MDR, since MGE can carry multiple ARG, such as carbapenemases and resistance determinants to other antibiotic classes, conferring resistance to several or all available antibiotics (Hrabák et al., 2014). Although MDR bacteria are often associated with nosocomial infections, there are some cases in which these bacteria have been quite prevalent causes of community-acquired infections, leading to an increase in exposed population at risk and the subsequent increase in the

number of infections caused by these bacteria (van Duin & Paterson, 2016; Villafuerte et al., 2020).

Organisms belonging to Enterobacteriaceae family (such as the genera Klebsiella, Raoultella, Citrobacter, Enterobacter, etc.) are Gram-negative organisms, ubiquitous in nature. Some of them can be MDR associated with severe infections in humans and animals (Djenadi et al., 2018; Duin & Doi, 2017; Potter et al., 2016). In WHO report, the Klebsiella pneumonia, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., and Providencia spp, Morganella spp microorganisms, members of Enterobacteriaceae family resistant to carbapenems and 3rd generation cephalosporins, were classified as "priority number 1", a critical group, for which discovery and development of new antibiotics are urgent. This classification was based on several criteria, such as mortality rate, if they are treatable or not, widespread presence of resistance, preventability in community and healthcare settings, trends of resistance based on 10-years data, healthcare and community burden and transmissibility (WHO, 2017). Although the CPE are now considered "top 1", this resistance phenotype was not observed when clinically use of carbapenems started. At that time, almost all Enterobacteriaceae were susceptible to them, however this is no longer true (Rida et al., 2018). One of the MGE responsible for MDR phenotypes in Enterobacteriaceae are the plasmids. For example, the plasmids incF, conjugative plasmids found in members of this family can possess resistance determinants to several antibiotics, such as carbapenems and other β -lactams, aminoglycosides, sulphonamides, quinolones and tetracycline (Rozwandowicz et al., 2018).

Other clinically relevant microorganisms are the members of *Aeromonas* genus, Gram-negative bacteria, which include clinical relevant species (Figueras et al., 2000). They inhabit aquatic environments, being also habitually found in meat, vegetables and seafood (Ugarte-Torres et al., 2018). Members of *Aeromonas* genus are considered as emerging pathogens and may cause disease both in cold-blooded animals, such as fish, and in immunocompromised individuals (Fernández-Bravo & Figueras, 2020; Janda & Abbott, 2010). In human they can cause diseases such as wound infections, septicemia, gastroenteritis (Fernández-Bravo & Figueras, 2020) Within this genus, have been described MDR strains, isolated from both aquatic environments and clinical settings (patients) (Odeyemi & Ahmad, 2015; Zhou et al., 2019). MDR plasmids have been also described in these organisms, making them resistant to several classes of antibiotics. Some studies demonstrated through conjugation assays that some of these MDR plasmids are able to conjugate and to be transferred to *Escherichia coli*, a member of the *Enterobacteriaceae* family, demonstrating that the spread of ARG through MGE is not limited to the exchange between members of the same family (Del Castillo et al., 2013; Hedges et al., 1985; Rhodes et al., 2000; Sørum et al., 2003).

5. Environment: Both final destination and origin of resistance genes

In the natural environment, bacteria have to overcome several challenges, including competition and predation. Antibiotic producing bacteria use them to deal with these challenges (Nguyen et al., 2019). In addition to genes responsible for antibiotic biosynthesis, bacteria tend to harbour ARG in the same operon, encoding a defense mechanism against their own antibiotics (D'Costa et al., 2006). On the other hand, to survive, antibiotic susceptible bacteria inhabiting the same ecological niche also tend to develop resistance mechanisms (Galán et al., 2013). Thus, the origin of ARG can be found in both antibiotic-producing and non-producing bacteria (Cantón, 2009). Once antibiotics are often found in insufficient concentrations to act as toxic agents against other bacteria, it is thought that they are able to perform other functions, such as signalling molecules for the biofilm formation (Fajardo et al., 2009). Likewise, the product of some ARG seems to play physiological functions. An example is the AmpC enzyme, which confers resistance to some β -lactams but is also involved in peptidoglycan biosynthesis (Galán et al., 2013). The resistome can be defined as "(...) the collection of all the antibiotic resistance genes, including those usually associated with pathogenic bacteria isolated in the clinics, non-pathogenic antibiotic producing bacteria and all other resistance genes", including "cryptic resistance genes (which are not necessarily expressed)" (Wright, 2007). The environmental resistome comprises ARG from different environments, such as built environments, animals, atmosphere and aquatic environments, which may interact with microorganisms present in humans (Surette & Wright, 2017) (figure 11).

Figure 11. The environmental resistome and its connection to human pathogens (Surette & Wright, 2017).

The environmental resistome is ancestral, quite diverse and can mobilized (Surette & Wright, 2017). Environmental bacteria are thought to be natural reservoirs of ARG and probably are the origin of ARG found in clinical environments (Surette & Wright, 2017; Wright, 2007). Although almost 50 years ago Benveniste & Davies noticed that aminoglycosides inactivating enzymes present in Actinomyces, producers of aminoglycosides, are similar to those found in clinically relevant bacteria (Benveniste & Davies, 1973), the role of natural environment in antibiotic resistance was ignored for many years (Surette & Wright, 2017). In recent years, genes orthologous to those present in antibiotic-producing organisms have been found in MGE present in clinically relevant bacteria (D'Costa et al., 2006). Some examples of the ARG found in clinical settings that evolved from environmental bacteria genes are: blacTX-M, from Kluyvera ascorbate (Humeniuk et al., 2002), blaoXA-48 from Shewanella spp. (Oxacillinase et al., 2004; Tacão et al., 2013; Tacão et al., 2017), bla_{OXA-181} from Shewanella xiamenensis (Potron et al., 2011), qnr-like genes from Vibrionaceae (Poirel et al., 2005a), qnrA from Shewanella algae (Poirel et al., 2005b), mecA from Staphylococcus sciuri (Wu & Tomasz, 2001) and bla_{KPC} from Chromobacterium spp. (Gudeta et al., 2016; Teixeira et al., 2020). Other ARG, with unknown origin, have been also found both in clinical settings and aquatic environments, suggesting that there may be an exchange of ARG between the environment and the clinic (Pereira et al., 2013; Tacão et al., 2014; Tacão et al., 2012). The genetic context of ARG contribute to their dissemination (Lupo et al., 2012). The genetic fraction responsible for the exchange of ARG is called mobilome (Almakki et al., 2019).

ARG found in the environment can be integrated in integrons and successively mobilized to human pathogens through plasmids and transposons (Kristiansson et al., 2011). Gillings *et al.* suggested that class 1 integrons may emerge from natural environments and that upon reaching the clinical environment, integrated in transposons, they spread to human bacteria, both commensal and pathogenic. The acquisition of ARG by pathogenic bacteria conferred an adaptive advantage against administered antibiotics (Gillings et al., 2008). Although class 3 integrons are less abundant in the clinical environment, they may play an important role in the environment (Stalder et al., 2012). The HGT is more influenced by environmental factors than by microbial phylogeny or geographic distribution. For example, HGT between human associated bacteria (microbiome) is 25 times higher than in non-human associated bacteria (Smillie et al., 2011).

5.1. Contamination of aquatic environments

ARG can be found in low-impacted environments, such as in a study by Fonseca *et al* that found metallo- β -lactamases homolog genes in water samples, collected from different pristine oceans. It is thought that these genes do not have significant clinical relevance, since they are distant homologous of clinical relevant ARG, are located on chromosome, and are present in pristine regions, not representing a threat of ARG dissemination (Fonseca et al., 2018). On the other hand, in environments with high anthropogenic pressure, such as contaminated aquatic environments, ARG may disseminate and have a high impact in human heath (Amarasiri et al., 2019; Czekalski et al., 2015; Yang et al., 2017). These ARG can be co-selected even in absence of selective pressure exerted by antibiotics (Zhang et al., 2020). Although ARG had their origin in natural environments, is the selective pressure exerted by anthropogenic activities the driven-force that accelerates the spread of these ARG (Chen et al., 2013).

Since the end of the last century, antibiotics have been considered emerging pollutants (Yang, et al., 2017) and ARG have been considered environmental contaminants since 2006 (Pruden 2006). Among the causes that contribute to the increase in the prevalence of ARG in aquatic environments, whether by selection or promotion of ARG HGT, is the overuse of antibiotics in veterinary medicine, livestock and aquacultures, where antibiotics are used as prophylactic measure, growth promoting agents and therapeutic agents; use of manure as fertilizer in agriculture, which may contain non-metabolized antibiotics; overpopulation; wildlife spread; poor sanitation and

sewerage infrastructures (Aslam et al., 2018; Vaz-Moreira et al., 2020; Wang et al., 2018). The wide use of antibiotics causes an increase in its discharges into the environment, often in active form, contributing to the spread of ARG and ARB (Gbylik-Sikorska et al., 2014; Silva et al., 2018; Marta Tacão et al., 2015)(figure 12).

Figure 12. Route of urban runoffs from the origins to aquatic environments (Adapted from Almakki et al., 2019).

Larsson *et al.* observed that effluents from a pharmaceutical industry contained a ciprofloxacin antibiotic concentration of 31,000 μ g/L, values 1000 times higher than those needed to cause the death of some bacteria (Larsson et al., 2007). Urbanization can affect surface waters quality and change the composition of aquatic microbial communities. One mechanism by which human activity directly affects surface water is through wastewater treatment process, in which human waste is collected, treated and treated wastewater is eventually released into surface waters (Lambirth et al., 2018), such as rivers, seas, oceans and lakes (Pazda et al., 2019). Wastewater treatment plants (WWTP) may receive a mixture of effluents from hospitals, communities, farms, industries and agricultural sectors, which can be contaminated with ARG and ARB, therefore they are considered the largest source of ARB and resistance genes to aquatic environment (Amarasiri et al., 2019; Devarajan et al., 2015). When wastewaters are treated in WWTP, the total microbial load is significantly reduced. Unfortunately, the

fraction that ARB represent is not proportionally reduced, and in some cases may even increase (Alexander et al., 2015; Czekalski et al., 2012).

Upon reaching aquatic environments, antibiotics and other compounds with anthropogenic origin can be retained, accumulating and persisting over the time, for this reason, these environments are considered main receptors of these compounds of anthropogenic origin (Tacão et al., 2015), acting as both ARB and ARG reservoirs (Surette & Wright, 2017). The pollution of aquatic environments also contributes to the increase of integrons, that spread to clinical environments (Lupo et al., 2012). Aquatic environments are known as ideal hotspots for ARG acquisition and dissemination (Amarasiri et al., 2019). They are inhabited by a high diversity of native bacteria that act as a large reservoir of ARG, and by allochthonous bacteria from several origins, including potential pathogens that are already resistant to antibiotics. Consequently, aquatic environments become a local of HGT and subsequent emergence of ARB (Almakki et al., 2019). Some carbapenem resistance genes and their genetic contexts found in aquatic environments are described in table 3.

Organisms	Source	Country	Gene	Genetic context	Reference
C. freundii	River	Portugal	bla _{GES-5}	Plasmid-borne class 3 integron	
K. pneumoniae	River	Portugal	bla _{KPC-3}	Plasmid-borne transposon	(Teixeira et al., 2020)
E. roggenkampii	River	Portugal	bla _{NDM-1}	Plasmid-borne transposon	
K. pneumoniae	wastewater	Portugal	bla _{GES-5}	not detected	(Manageiro et al., 2014)
K. pneumoniae	River	Philippines	<i>bla</i> крс-2	Plasmid	(Suzuki et al., 2020)
K. pneumoniae	wastewater	Austria	bla _{0XA-48} ; bla _{КРС-2}	not screened	(Galler et al., 2014)
K. pneumoniae	wastewater	Germany	bla _{NDM} , bla _{OXA-48}	not screened	(Müller et al., 2018)
Enterobacter sp.	Coastal water	Brazil	bla _{GES-5}	not screened	(Montezzi et al., 2015)
Aeromonas sp.	Coastal water	Brazil	<i>Ыа</i> _{КРС-2}	not screened	
K. pneumoniae	River	Switzerland	bla _{VIM}	not screened	(Zurfluh et al., 2013)

Table 3. Carbapenem-resistance genes and their genetic contexts found in different bacterial species isolated from aquatic environments.

In recent years, much attention has been given to rivers as reservoirs of ARG (Yang, et al., 2017). Since these aquatic systems receive sewage from urban effluents, they become the main source of ARB and ARG (Goñi-urriza et al., 2000). However, lakes have a longer retention time for pollutants, thus having a greater capacity to store and accumulate more ARG than rivers. Urban lakes have been seriously contaminated due to rapid urbanization. Due to its great role in ecological and economic area, such as ecological habitats, water sources, recreational activities and urban landscape, water quality is of great importance since there is a high probability of direct contact of this water with human beings (Yang, et al., 2017). A pond can be defined as "(...) small (1 m2 to about 5 ha), man-made or natural shallow waterbodies which permanently or temporarily hold water" Although word "lakes" are often used to describe both lakes and ponds, there is evidence that ponds are functionally different from lakes (Céréghino et al., 2008). It is important to establish and understand the role of this environment in the transmission of ARB to humans (Huijbers et al., 2015). Without inclusion of all pathways for spread of these bacteria in the environment, plans to try to contain their spread may not achieve the desired goals, thus compromising the effectiveness of existing and future antibiotics (Singer et al., 2016). Unfortunately, the role of the environment as a source of ARG and ARB dissemination and transmission is understudied (Mills & Lee, 2019).

II. Scope and aims of this thesis

Antibiotic resistance is one of the biggest threats to public health. With the increase of antibiotic resistance levels, a future without effective antibiotics is a possible scenario, where nowadays easy-to-treat infections would kill millions of people each year. The β -lactams are the most widely used class of antibiotics in a clinical setting, with several antibiotics currently used, ranging from penicillin to last-resort antibiotics, carbapenems. The use of carbapenems is frequently reserved to the clinic and administered only when no other antibiotics work. These antibiotics represent the ultimate strategy to overcome bacterial defenses and save human lives. For this reason, resistance to them is extremely worrying. Many of the studies carried out focus on the hospital environment, where carbapenem-producing bacteria are usually detected. However, natural environments, suggested as the source and a reservoir of ARG, may play an important role in the spread of antibiotic resistance. Little is known about antibiotic

resistance in urban ponds, aquatic environments in recreational areas where humans and animals can easily have direct contact with ARB.

With the constant increase in population growth and urbanization, it is expected that in the coming years, these urban environments will be more prevalent and that there will be more people in contact with them. The evaluation of the risk that they represent both in ARG dissemination and in community-acquired infections is fundamental to ensure effective Public Health measures.

Based on this knowledge, this work aimed to:

- To determine the prevalence of *Enterobacteriaceae* resistant to first-line, 3rd generation cephalosporins, and to last resort antibiotics, carbapenems, in urban aquatic systems;

- To characterize the phenotypes and genotypes of carbapenem-resistant bacteria isolated from urban aquatic systems;

- To perform whole-genome sequence analysis of clinically relevant carbapenemaseproducing *Enterobacteriaceae* isolated from urban aquatic systems.

Hence, specific aims were:

- To determine the prevalence of cefotaxime- and imipenem- resistant *Enterobacteriaceae* along a 6-month period in 5 urban ponds and 1 estuarine channel;
- To establish a collection of carbapenem-resistant isolates obtained from urban aquatic systems;
- To determine the phylogenetic affiliation, clonality, antibiotic susceptibility profiles and plasmid content of a set of carbapenem-resistant isolates;
- To detect the presence of carbapenemase-enconding genes and integrases;
- To evaluate carbapenemase-encoding genes transferability through mating assays;
- To select isolates for whole genome sequence (WGS) analysis;
- To analyze the genetic context of carbapenemase-encoding genes and other antibiotic resistance determinants;
- To estimate the virulence and pathogenicity profiles based on WGS analysis.

III. Material and Methods

1. Sampling and enumeration of resistant bacteria

Water samples were recovered from surface water using sterile glass bottles and kept in ice during transportation. Water samples were recovered from 5 urban aquatic ponds in the city of Aveiro and from an urban estuarine channel downstream of the urban pond 1 in Dos Santos Mártires channel ((figure 13), from September, 2019 to February, 2020, comprising 6 campaigns. In January, no samples were collected in the Ria de Aveiro.

Figure 13. Location and designation of the sampling sites.

Location, designation and coordinates of the sampling sites are described in table 4.

Location	Designation	Coordinates	Area (m²)	perimeter (m)	aquatic environment
Pond 1	P1	40°38'18.9"N 8°39'21.9"W	810	185	pond
Pond 2	P2	40°38'08.3"N 8°39'13.6"W	6775	548	pond
Pond 3	Р3	40°38'04.2"N 8°39'05.5"W	1126	263	pond
Pond 4	P4	40°37'57.4"N 8°39'40.3"W	4120	350	pond
Pond 5	P5	40°38'17.9"N 8°38'23.7"W	2526	379	pond
Dos Santos Mártires channel	E1	40°38'20.1"N 8°39'26.0"W	_	-	estuary

Table 4. Location, designation and coordinates of the sampling sites. For ponds, areas and perimeters were estimated using Google Maps.

Water samples were filtered using a 0.45 μ m mixed cellulose ester membrane (GN-6 Metricel®) and then membranes were placed in 50 mm Petri dishes containing m-Faecal Coliform agar (m-FC agar) (VWR), with or without antibiotics. From each location 0.1 mL, 1 mL and 100 mL of water were filtered in triplicate and placed in m-FC plates, m-FC supplemented with cefotaxime (4 μ g/mL) and m-FC supplemented with imipenem (8 μ g/mL), respectively. Plates were incubated at 37 °C for 18 hours and the typical coliform colonies (blue colonies) were counted. Lastly, colonies resistant to imipenem were selected and transferred to a new Petri plate dish containing m-FC agar supplemented with imipenem (8 μ g/mL) and incubated at 37 °C for 18 hours. This process was repeated until isolated colonies were obtained. Following purification, individual colonies were stored in 15 % glycerol at -80°C.

2. Molecular typing

Imipenem resistant strains were typed with BOX-PCR. One colony was suspended in 20 μ L of sterile distilled water and the suspension was used as DNA template. Primer used is described in table A1 (see appendix). A 25 μ L master mix was prepared containing 6.25 μ L of 5000 U NZYTaq 2x Green Master Mix (NzyTech, Portugal), 15.75 μ L of sterile distilled water and 2 μ L of primer BOXA1R (initial concentration of 10 μ M) (Versalovic et al. 1994). After that, 1 μ L of cell suspension was added to each polymerase chain reaction (PCR) tube. Negative and positive controls were added. After a short spin, PCR tubes were placed in a thermocycler. PCR program details are presented in table A2, see appendix. Amplicons were loaded onto a 1.5 % agarose gel and ran in an electrophoresis tank at 60 volts for 2 hours. Obtained results were analyzed using Gel Compar II software - version 6.1. Similarity matrix was constructed based on Pearson correlation coefficient and the dendrogram was built by the UPGMA method (Applied Maths, Belgium).

3. Phylogenetic affiliation

The 16S rRNA gene sequence analysis was used to determine phylogenetic affiliation of all isolates. For that, one colony was suspended in 20 μ L of sterile distilled water and used as DNA template. Then, a 25 μ L master mix was prepared containing 6.25 μ L of 5000 U NZYTaq 2x Green Master Mix (NzyTech, Portugal), 16.25 μ L of sterile distilled water and 0.75 μ L of primer forward (27_F) and reverse (1492_R) (initial

concentration of 10 μ M) (table A1, see appendix) and 1 μ L of cell suspension. Negative and positive controls were added. PCR conditions are presented in table A2. Amplicons were loaded on an agarose gel (1.5 %) and run in an electrophoresis tank at 90 Volts for 1 h. 16S rRNA gene fragments were sequenced and analyzed against the GenBank database at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) using BLAST software (Altschul et al., 1990) and against Ezbio Cloud database (Yoon et al., 2017). 16S rRNA gene amplicons were purified and sequenced as described below (section 5). Sequences were aligned using Clustal X v2.0 program (Larkin et al., 2007). 16S rRNA gene based phylogenetic tree was constructed using Mega-X program V10.1.7 (Kumar et al., 2018), with maximum likelihood statistical method, 1000 bootstrap replications and K2+G+I or K2 model.

When necessary, Bruker MALDI Biotyper IVD equipment was used to confirm the results obtained from 16S rRNA gene analysis. This analysis was conducted at the Hospital Infante Dom Pedro, Portugal.

4. Antibiotic susceptibility testing

Antibiotic susceptibility patterns were determined by the Kirby-Bauer Disk Diffusion Susceptibility Test (Hudzicki, 2016) against 16 antibiotics from 5 classes (table 5). For that, isolates were inoculated in LA medium supplemented with imipenem (concentration of 4 µg/mL) and incubated overnight at 37 °C. One colony from each strain was transferred to microtubes containing 500 µL of NaCl solution (0.9 %). Microtubes were vortexed and optical density was adjusted to 0.5 McFarland. A sterile swab was dipped and bacterial inoculum was spread over the plate of Muller Hinton Agar and antibiotics placed using a dispenser (Oxoid). Inoculated plates were incubated for 18 h at 37 °C. After that, inhibition halos were measured and analyzed according EUCAST Clinical Breakpoints, 2020. Quality control was performed using *Escherichia coli* ATCC 25922.

Antibiotic	Amount (µg)	Brand
Piperacillin (PRL)	30	Oxoid
Piperacillin/Tazobactam (TZP)	36	Oxoid
Cefepime (FEP)	30	Oxoid
Cefotaxime (CTX)	5	Oxoid
Ceftazidime (CAZ)	10	Oxoid
Imipenem (IPM)	10	Oxoid
Ertapenem (ETP)	10	Oxoid
Meropenem (MEM)	10	Oxoid
Aztreonam (ATM)	30	Oxoid
Tetracycline (TE)	30	Oxoid
Tigecycline (TGC)	15	Oxoid
Gentamicin (CN)	10	Oxoid
Amikacin (AK)	30	Oxoid
Ciprofloxacin (CIP)	5	Oxoid
Sulphamethoxazole/Trimethopri m (SXT)	25	Oxoid
Chloramphenicol (C)	30	Oxoid

Table 5. Antibiotic discs used in this study.

5. Screening of antibiotic resistance genes and integrons

In order to detect resistance genes (*bla*_{IMP}, *bla*_{VIM}, *bla*_{KPC}, *bla*_{GES}, *bla*_{NDM}, *bla*_{OXA-48}, *bla*_{cphA}, *bla*_{CTX-M} and *mcr1*), integrons and their variable regions (*intI1*, *intI2*, *intI3*, *intI1* 5'CS-3'CS) the same procedure of PCR amplification and detection, as described previously (2) was performed using primers and programs described in tables A1 and A2 (see appendix).

6. PCR products purification and sequencing

PCR products were purified using NZYGelpure kit (Nzytech, Portugal), through an adaption to manufacturer's protocol. Briefly, 20 μ L of PCR products and 100 μ L of binding buffer were added to 1.5 mL microtubes and mixed. In new 2 mL microtubes, spin columns were added, mixture was transferred into the spin columns and they were centrifuged for 1 minute at 12.000 rpm. The flow-throughs were discarded, 600 μ L of washing buffer was added into spin columns and they were centrifuged for 1 minute at 12.000 rpm. The flow-throughs were discarded, spin columns were placed into columns and were centrifuged at 12.000 rpm for 1 minute. Spin columns were transferred to 2 mL microtubes, 25 μ L of sterile distilled water was added to each tube, and then they were centrifuged at 12.000 rpm for 1 minute. Spin columns were discarded and microtubes containing eluted DNA were stored at -20 °C until analysis. After purification, Sanger sequencing (Eurofins Genomics, Germany) was performed.

7. Characterization of plasmid content

Replicon typing, analysis of the extracted plasmid DNA profile and screening of plasmids pBK30661 and pBK30683 by PCR were performed to determine and characterize plasmids content.

7.1. Replicon typing

Replicon typing to detect replicons belonging to 18 incompatibility groups (table 6) was performed as described by Carattoli *et al.*, 2005, following the procedure described previously (2). Primers and programs used are described in table A3 and A4 (3 multiplex-and 1 simplex-PCR). Negative and positive controls were added.

Table 6. Fallels (Inutliplex-FCK), simplex-FCK and target genes.							
Panel 1	Panel 2	Panel 3	simplex-PCR				
IncB/O	IncK/B	Incl1	Frep				
IncFIC	IncW	IncX					
IncA/C	IncFIIA	IncHI1					
IncP	IncFIA	IncN					
IncT	IncFIB	IncHI2					
	IncY	IncL/M					
	Panel 1 IncB/O IncFIC IncA/C IncP IncT	Panel 1 Panel 2 IncB/O IncK/B IncFIC IncW IncA/C IncFIIA IncP IncFIA IncT IncFIB IncY	Panel 1 Panel 2 Panel 3 IncB/O IncK/B Incl1 IncFIC IncW IncX IncA/C IncFIIA IncHI1 IncP IncFIA IncN IncT IncFIB IncHI2 IncY IncL/M				

Table 6. Panels (multiplex-PCR), simplex-PCR and target genes.

7.2. Plasmid DNA extraction

Bacterial strains were inoculated in tubes containing 3-5 mL of LB broth supplemented with imipenem (4 μ g/mL) and incubated for 14 h at optimal growth temperature at 180 rpm. Plasmid DNA was extracted using Nzytech NZYMiniprep (NZYTech, Portugal) or Zyppy Plasmid Miniprep Kit (Zymo Research, U.S.A) following manufacturer's protocol.

7.3. Screening of pBK30661 and pBK30683 plasmids

Screening of pBK30661 and pBK30683 plasmids (table 7) was performed using procedure described previously (2). Primers and programs used are described in tables A5 and A6 (see appendix). This assay was performed as described by (Liang Chen et al., 2014).

Panel	Amplification	Primer	target	Plasmid
I	1	IA-1f	IncFIA <i>repA</i>	pBK30661
		IA-1r		and
				pBK30683
	2	IA-2f	Second IncFII repA	pBK30683
		IA-2r		
П	3	IA-3f	Tn4401 upstream junction	pBK30661
		IA-3r	between chrB gene and ISKpn6	and
				pBK30683
	4	IA-4f	Tn4401 downstream junction	pBK30661
		IA-4r	between Tn4401 <i>tnpR</i> gene	and
			and neighboring Tn3 <i>tnpA</i>	pBK30683
			gene	
III	5;6	IA-5f		
		IA-56r	Region between putative	pBK30683
			cytoplasmic protein gene and	
			adenine-specific	
			methyltransferase gene (met1)	
		IA-6f	Region between hypothetical	pBK30661
			protein gene and adenine	and
			specific methyltransferase	pBK30683
			gene (<i>met1</i>)	
IV	7;8	4401v-r (3781L)	Tn4401d isoform	pBK30661
		4401v-r1	-	and
		4401v-f (3098U)		pBK30683

Table 7. Panels, primers and target genes for screening of pBK30661 and pBK30683 plasmids.

8. Liquid conjugative mating assay

Donor strains were inoculated in LA media supplemented with imipenem (4 μ g/mL). Receptor strain, *Escherichia coli* J53, was inoculated in LA media supplemented with azide (200 μ g/mL). Strains were incubated overnight at 37 °C at 180 rpm. After that, donor strains were inoculated in tubes containing 5 mL of LB broth supplemented with imipenem (4 μ g/mL) and receptor strain was inoculated in a tube containing 5 mL of TSB broth supplemented with azide (200 μ g/mL). Strains were incubated overnight in a nincubation shaker at 37 °C at 180 rpm. With a spectrophotometer, optical densities were measured at 600 nm and adjusted to 0.6-0.8 Abs using TSB medium. After that, 900 μ L

of each donor strain and receptor strain were transferred to 2 mL microtubes and centrifuged at 10.000 rpm for 5 min, supernatant was discarded and 1 mL of TSB was added. Tubes were incubated overnight at 37 °C without agitation. To perform quality control, 100 μ L of donor strain were inoculated through spread plate method in LA medium supplemented with azide (200 μ g/mL) and 100 μ L of receptor strain were inoculated in LA medium supplemented with imipenem (4 μ g/mL). Plates were incubated overnight at 37 °C. Microtubes containing donor recipient strains were centrifuged at 10.000 rpm for 5 min, supernatant was discarded, and the pellet was resuspended in 1 mL of 0.9 % NaCl. 100 μ L of the bacterial suspensions were inoculated through spread plate method on LA media supplemented with imipenem (4 μ g/mL) and azide (200 μ g/mL). Plates were incubated overnight at 37 °C. After that, selected grown colonies were transferred to LA media supplemented with imipenem (4 μ g/mL) and azide (200 μ g/mL) and incubated overnight at 37 °C. Putative transconjugants were confirmed by BOX-PCR and by screening of carbapenemase-enconding genes as described previously, in section 2.

9. Whole genome sequencing and analysis

DNA was extracted using the Wizard® Genomic DNA Purification Kit (Promega, USA) according to the manufacturer's protocol. Paired-end libraries were created using Illumina HiSeq 2500 platform. The raw reads quality was verified using FastQC software and submitted to the trimming process in order to exclude those that contained a phred quality score below 20 using Trimmomatic v.0.36 (parameters used: illuminaclip ON, slidingwindow 4:15, leading, trailing 3, crop OFF, minlen 36). The genomes were assembled using SPAdes version 3.14.0 program. Draft genomes were annotated using RAST - Rapid Annotation using Subsystem Technology (Aziz et al., 2008). The rRNA were predicted using RNAmmer 1.2 Server ((Lagesen et al., 2007) and tRNA were predicted using tRNAscan-SE 2.0 (Chan & Lowe, 2019). Sequence typing was attributed through Multi Locus Sequence Typing analysis using MLST v2.0 (Larsen et al., 2012) and PubMLST v1 (Jolley et al., 2018). ANIb (based on Blast+) and ANIm (based on Mummer) were calculated by using JSpeciesWS tool (M. Richter et al., 2015) and dDDH was calculated by using Genome-to-Genome Distance Calculator v2.1 (Auch et al., 2010). Phylogenetic trees based on whole genome analysis were obtained using Tree builder, a tool integrated on Type (Strain) Genome Server (TYGS) platform which uses FastMe 2.1.4 software to perform the analysis (Meier-Kolthoff & Göker, 2019). Pangenome comparisons were performed using PGAdb-builder V1 (Yen Yi Liu et al., 2016). Resistance genes were screened using Resfinder v3.2 (Zankari et al., 2012), CARD (McArthur et al., 2013) and compared against NCBI database using BLAST (Altschul et al., 1990). Genetic context of carbapenemases were designed using SimpleSynteny v1 tool (Veltri et al., 2016). *In silico* screening of plasmid replicons was performed using PlasmidFinder v2.1 (Carattoli et al., 2014). Virulence factors were identified using VFanalyzer from VFDB - Virulence Factor Database (Lihong Chen et al., 2005) and probability of pathogenicity was estimated using PathogenFinder 1.1 (Cosentino et al., 2013).

IV. Results

1. Prevalence of cefotaxime- and imipenem-resistant bacteria in urban aquatic systems

The results obtained from the counting of bacteria colony-forming units (CFU) and the proportion of cefotaxime- and imipenem-resistant bacteria with typical coliform morphology on m-FC agar are described in figures 14 and 15. In February 2019 and March 2019 (in the scope of a previous study), samples were collected only from Pond 1 and Pond 2. In the present study, in September 2019 no samples were collected in Dos Santos Mártires channel, Ria de Aveiro.

Figure 14. Average counting of typical coliform in CFU/100 mL (\log_{10}) with standard deviation, collected in February 2019, March 2019 and from September 2019 to February 2020, from 5 ponds and an estuarine channel.

The total CFU on m-FC agar in studied aquatic environments (5 ponds and 1 urban estuarine channel) varied from 5.7-log in Pond 1 (February 2019) to 1.7-log in Pond 2 (March 2019). In general, the Pond 1 showed the highest values (4,3-log on average) and the Pond 4 the lowest (3.4-log on average). Although a temporal variation on CFU counts was observed, no particular trend was evident from our results and variation depended on the pond.

Figure 15. Percentage of cefotaxime-resistant bacteria in the sampled ponds and estuarine channel, in February 2019, March 2019 and September 2019 to February 2020.

Temporal fluctuations in the number of cefotaxime-resistant bacteria were observed, depending on the sampled environment.

The percentage of cefotaxime-resistant bacteria ranged from 0 % for instance in Pond 4 in September 2019, October 2019 and November 2019 to 58.276 % in January 2020, also in Pond 4. In a general way, the highest values of cefotaxime-resistant bacteria were detected at Pond 1 (1.676 % on average) and the lowest amounts were detected at Pond 4 (0.05 % on average), excluding January 2020. With the exception of Pond 4 in January 2020 where 58.276 % of cefotaxime-resistant bacteria were detected, none of the other sites during the sampled months (February 2019, March 2019 and September 2019 to February 2020) exceeded 6.000 % of cefotaxime-resistant bacteria.

Imipenem-resistant bacteria were detected only in three sites: Pond 1 Pond 3 and Dos Santos Mártires channel.

The percentage of imipenem-resistant bacteria in Pond 1 was 0.97 % in February 2019, 0.01 % in March 2019, 0.16 % in September 2019, 0.01 % in October 2019 and 0.06 % in November 2019. In December 2019, January 2020 and February 2020 the percentage was lower than 0.00 %. In Pond 3 imipenem-resistant bacteria were detected only in November 2019, however it represents less than 0.00 % of total CFU. In Dos Santos Mártires Channel imipenem-resistant bacteria were detected in all months sampled, however, excluding November 2019 when 0.06 % of imipenem-resistant bacteria were detected, the remaining percentages were lower than 0.00 %.

When detected, the proportion of imipenem-resistant bacteria varied from 0.002 % (6 CFU/100 mL), for instance in Pond 1 (February 2020), up to 0.967 % (6 CFU/100 mL) in Pond 1 (February 2019). Broadly, Pond 1 was the place where higher counts of imipenem-resistant bacteria were obtained, ranging from 0.002 to 0.967 %.

2. Molecular typing and phylogenetic affiliation of imipenem-resistant

isolates

Based on the colony morphology in m-FC agar supplemented with imipenem, a total of 24 isolates were selected for further analysis. Additionally, 6 *Citrobacter* strains isolated from Pond 1 in February 2019 in a previous study were included (table 8). Imipenem-resistant bacteria found in Pond 2 in February and March 2019, in the scope of a previous study, were not included since 16S rRNA gene sequencing analysis demonstrated that the isolates collected from those samples belong to *Shewanella* genus, which harbors intrinsic mechanisms of resistance to imipenem (Potron et al., 2011; Tacão et al., 2018). Hence the collection here analysed comprised 30 isolates collected from September to February 2019 in Pond 1 (P1; n= 26 isolates), Pond 3 (P3; n=2) and Dos Santos Mártires channel (E1; n=2). Phylogenetic identification depicted from 16S rRNA gene analysis is shown in table 1, along with the closest relatives. From all 30 isolates included in this study, 8 affiliated with *Citrobacter* (26.7 %), 11 affiliated with *Raoultella* (36.7 %), 7 affiliated with *Aeromonas* (23.3 %). *Enterobacteriaceae* family represents 76.7 % (n=23) of all isolates included in this study.

Table 8. 16S rRNA gene-based phylogenetic affiliation of bacterial isolates used in this study. Sampling dates and sites are indicated along with similarity with the type strain based on EzBiocloud database, and closest relatives based on NCBI database search. BOX-profiles for each isolate are indicated with the same letter indicating a similar BOX-profile.

Isolates	Sampling site	Sampling date	Closest type strain in EzBiocloud (% similarity)	Genbank closest strain relatives (% identity; Acc. number)	16S rRNA gene fragment size (bp)	Box Profile
F1	P1	February 2019	<i>C. freundii (99.81)</i>	<i>C. freundii</i> (100; CP049015.1)	1071	A
			C. braakii (99.53)	<i>C. freundii</i> (100; LR699006.1)	_	
F2	P1	February 2019	<i>C. freundii (99.79)</i>	<i>C. freundii</i> (100; CP049015.1)	967	Α
			C. braakii (99.59)	Citrobacter sp. (100; CP047606.1)	_	
F3	P1	February 2019	C. freundii (99.81)	<i>C. freundii</i> (100; CP049015.1)	1071	Α
			C. braakii (99.53)	<i>C. freundii</i> (100; LR699006.1)	_	
F4	P1	February 2019	<i>C. freundii (99.91)</i>	<i>C. freundii</i> (100; CP049015.1)	1101	A
			C. braakii (99.64)	C. freundii (100; MK471377.1)	_	
F5	P1	February 2019	<i>C. freundii (99.80)</i>	<i>C. freundii</i> (100; CP049015.1)	1022	В
			C. braakii (99.51)	<i>C. freundii</i> (100; LR699006.1)	_	
F6	P1	February 2019	C. freundii (99.73)	Citrobacter sp. (100; CP047606.1)	1098	А
			C. braakii (99.45)	<i>C. freundii</i> (100; CP042534.1)	_	
S1	P1	September 2019	R. ornithinolytica (99.82)	<i>R. planticola</i> (99.91; LR134195.1)	1091	Е
			R. planticola (99.54)	Raoultella sp. (99.91; CP030874.1)	_	
S2	P1	September 2019	A. caviae (99.73)	A. hydrophila (99.91; MN865804.1)	1095	J
			A. enteropelogenes (99.63)	Aeromonas sp. (99.91; MK165122.1)	_	
S3	P1	September 2019	R. ornithinolytica (99.72)	<i>R. planticola</i> (100.00; LR134195.1)	1080	E
			R. planticola (99.63)	Raoultella sp. (100.00; CP030874.1)	_	
S4	P1	September 2019	R. ornithinolytica (99.82)	R. electrica (99.82; CP041247.1)	1113	E
			R. planticola (99.64)	R. planticola (99.82; LR134195.1)	_	
S5	P1	September 2019	R. ornithinolytica (99.82)	<i>R. electrica</i> (99.82; CP041247.1)	1128 E	
			R. planticola (99.65)	<i>R. planticola</i> (99.82; LR134195.1)	_	
01	P1	October 2019	R. ornithinolytica (99.81)	R. electrica (99.91; CP041247.1)	1065	E
			R. planticola (99.72)	<i>R. ornithinolytica</i> (99.91; CP033683.1)		

O2 P1		October 2019	A. caviae (99.70)	A. hydrophila (99.90; MN865804.1)	1004	J
			A. enteropelogenes (99.60)	Aeromonas sp. (99.90; MK165122.1)		
03	P1	October 2019	A. caviae (99.91)	A. caviae (100; MG737563.1)	1093	К
			A. enteropelogenes (99.82)	A. caviae (100; MG737562.1)		
04	P1	October 2019	A. caviae (99.90)	A. caviae (99.90; MN737498.1)	1028	L
			A. enteropelogenes (99.81)	A. caviae (99.90; CP039832.1)		
05	P1	October 2019	R. planticola (99.79)	R. electrica (100; CP041247.1)	969	E
			R. ornithinolytica (99.69)	<i>R. planticola</i> (100; LR134195.1)		
06	P1	October 2019	A. caviae (99.73)	A. hydrophila (99.91; MN865804.1)	1095	К
			A. enteropelogenes (99.63)	Aeromonas sp. (99.91; MK165122.1)		
07	P1	October 2019	A. veronii (99.62)	A. veronii (99.81; MT345040.1)	1057	С
			A. ichthiosmia (99.62)	Aeromonas sp. (99.81; MT026965.1)		
N1	P1	November 2020	R. ornithinolytica (100)	Raoultella sp. (100.00; MN428658.1)	959	F
			R. electrica (99.90)	<i>R. ornithinolytica</i> (100.00; MF428820.1)		
N4	P1	November 2020	A. caviae (99.91)	Aeromonas sp. (100.00; MK165122.1)	K165122.1) 1088	
			A. enteropelogenes (99.82)	A. caviae (100.00; CP024198.1)		
N5	P1	November 2020	C. portucalensis (100)	C. portucalensis (100.00; AP022378.1)	1100	D
			C. werkmanii (99.91)	C. portucalensis (100.00; CP046348.1)		
N6	P1	November 2020	<i>C. freundii (99.63)</i>	Citrobacter sp. (99.91; CP047606.1)	1080	А
			C. braakii (99.35)	C. freundii (99.91; CP042534.1)		
N8	P1	November 2020	R. ornithinolytica (100)	Raoultella sp. (99.91; MK789736.1)	1103	F
			R. electrica (99.46)	Raoultella sp. (99.91; MN540107.1)		
N9	P1	November 2020	R. ornithinolytica (100)	R. ornithinolytica (100.00; CP049752.1)	994	F
			R. electrica (99.90)	Raoultella sp. (100.00; MK789736.1)		
N10	P1	November 2020	Leclercia adecarboxylata	Enterobacter sp. (100.00; MH084944.1)	1031	Н
			(99,81)			
			E. ludwigii (99.71)	E. cancerogenus (100.00; CP025225.1)		
N11	P3	November 2020	E. cloacae subsp. cloacae	Enterobacter sp. (100.00; KF984470.1)	1098	I
			(99.82)			

			E. cloacae subsp. dissolvens (99.82)	E. cloacae (99.91; MT138639.1)		
N12	E1	November 2020	R. ornithinolytica (100)	R. ornithinolytica (100.00; CP049752.1)	1026	F
			R. electrica (99.42)	Raoultella sp. (99.90; MK600538.1)		
N13	E1	November 2020	R. ornithinolytica (100)	Raoultella sp. (100.00; MK789736.1)	1087	F
			R. electrica (99.45)	Raoultella sp. (100.00; MN540107.1)		
N14	P1	November 2020	Klebsiella michiganensis	K. michiganensis (99.91; CP024643.1)	1066	G
			(99.70)			
			К. охуtоса (99.53)	K. pasteurii (99.91; MN104669.3)		
N15	P3	November 2020	E. cloacae subsp. dissolvens	<i>E. cloacae</i> (100.00; CP020089.1)	1130	I
			(99.91)			
			E. cloacae subs. cloacae (99.73)	E. cloacae (99.91; MT138639.1)		

Further analyses were performed by building phylogenetic trees based on 16S rRNA partial gene sequences to determine the evolutionary relationships among isolates affiliated with the *Aeromonas* genus (figure 16) and with the *Enterobacteriaceae* family (figure 17).

Figure 16. 16S rRNA gene-based phylogenetic relationships between *Aeromonas* isolates obtained during this study and the closest related type strains using maximum likelihood method and a bootstrap analysis with 1000 replications. Bootstrap confidence is shown in %.

From the analysis of the phylogenetic tree, isolate O7 is part of a cluster which includes the type strains of species *A. veronii*, *A. ichthiosmia* and *A. sobria*. Isolates N4, O2, O6 and S2 are closely related and are part of the same cluster as isolates O3 and O4, along with the type strains of species *A. enteropelogenes*, *A. dhakensis* and *A. caviae*. This is a well-supported cluster with a 99 % bootstrap.

Figure 17. 16S rRNA gene-based phylogenetic relationships between *Enterobacteriaceae* isolates obtained in this study and the closest type strains. The tree was generated using maximum likelihood method with a bootstrap analysis with 1000 replications. Bootstrap confidence is shown in %.

According to the phylogenetic analysis, isolates S1, S3, S4, S5, O1, O5, N1, N8, N9, N12 and N13, collected in September, October and November 2019, belong to the genus *Raoultella* forming a well-supported cluster (98 %) with the type strains of the species included in this genus.

Isolates S1, S3, S4, S5, O1 and O5 and *R. planticola* type strain are clustered together. N14 isolate is gathered with *Klebsiella grimontii* type strain, with a bootstrap of 72 %. The phylogenetic analysis confirmed the affiliation of isolates F1, F2, F3, F4, F5, F6, N6 and N5 with the *Citrobacter* genus in a cluster supported by 69% bootstrap. Among *Enterobacter* isolates several clusters were formed within the tree. N11 and N15 isolates are clustered together with *Enterobacter cloacae* subsp. dissolvens type strain, supported by a bootstrap of 94 %, and N10 is in a different *Enterobacter* cluster. MALDI-TOF analysis confirmed that all *Raoultella* isolates affiliated to *Raoultella*

ornithinolytica.

Clonal relationships among imipenem-resistant isolates (n=30) were assessed by BOX-PCR. Araújo *et al.* used a similarity cutoff of 85 % to associate two box profiles to the same strain (Araújo et al., 2014). In our study we adjusted this value to 88 %. Clustering analysis of BOX-PCR patterns obtained from GelCompar II is shown in figure 18.

Figure 18. Clustering analysis of BOX-PCR patterns of all isolates used in this study, obtained from GelCompar II using Person correlation coefficient and UPGMA clustering method. The similarity cutoff value considered in this study is shown by a red line.

Using a cutoff of 88 %, where isolates sharing \geq 88 % of similarity were considered the same strain and < than 88 % were considered distinct strains, twelve distinct BOX profiles were observed, with 6 of them represented by a single isolate (*Aeromonas* sp. O4, *Aeromonas* sp. O7, *Citrobacter* sp. F5, *Citrobacter* sp. N5, *Enterobacter* sp. N10 and *Klebsiella* sp. N14).

Among *Citrobacter* genus 3 distinct BOX profiles were detected. The F3, F4, F1, F6, F2 and N6 bacterial isolates, collected in February 2019 and November 2019 shared at least 88 % of BOX profile similarity and as previously said, isolates F5 and N5 represented single BOX profiles.

Among *Aeromonas* genus 4 distinct BOX profiles were detected. The O2, S2 and N4 isolates shared a BOX profile similarity of at least 88 %. Within this cluster, isolates O2 and S2, collected in October 2019 and September 2019, shared a BOX profile similarity of 96 %. The O6 and O3 isolates, collected both in October 2019, shared a similarity of 96 % in BOX profiles, belonging to the same cluster. O4 and O7 isolates, as previously mentioned, have unique BOX profiles.

Among *Enterobacter* isolates, N11 and N15, collected in Pond 3, shared a similarity of 98 % and were considered identical. *Enterobacter* N10, collected in Pond 1, only shares 10 % of BOX-profile similarity with N11 and N15 isolates.

Within *Raoultella* genus two distinct BOX clusters were observed. The isolates S4, S5, O1, S3, O5 and S1, collected in September and October 2019, exhibit 88 % similarity and belong to the same BOX cluster. Isolates N1, N8, N9, N12, N13 collected in Pond 1 (N1, N8 and N9) and Dos Santos Mártires channel (N12, N13), in November 2019, shared a similarity of 94 %. These two *Raoultella* clusters shared only 50 % similarity between them.

3. Antibiotic susceptibility profiles

Antibiotic susceptibility profiles are described on table 9. Isolates included in the categories ATU (area of technical uncertainty) and R (resistant) were considered as resistant in the interpretation of antibiotic susceptibility test results.

susceptibility profiles.				
Isolate	Replicons	Integrases genes	Carbapenemase genes	Phenotypic resistance profile
<i>Citrobacter</i> sp. F1	nd	intl1	blakpc	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
			N C	MEM ATM TE TGC AK SXT
Citrobacter sp. E2	nd	intl1	hlauss	PRI T7D EED CTY CA7 IDM ETD
chrobucter sp. 12	nu	IIIIII	DIGKPC	
Citra haratan an E2		:+11	<u> - -</u>	
Citrobacter sp. F3	INCIN	INUL	DICIKPC	PRL, TZP, FEP, CTX, CAZ, IPIVI, ETP,
				MEM, ATM, TE, CIP, C
<i>Citrobacter</i> sp. F4	IncL/M	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, TE, TGC, CIP, SXT, C
<i>Citrobacter</i> sp. F5	nd	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, TE, AK, CIP, SXT, C
Citrobacter sp. F6	IncN,	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
	IncL/M			MEM, ATM, TE, CIP, SXT
Citrobacter sp. N6	IncN	intl1	bla _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
•				MEM. ATM. TE. CIP
Citrobacter sp. N5	IncN	intl1	blarpc, blavin 1	PRI TZP. FEP. CTX. CAZ. IPM. FTP.
				MEM ATM TE CN CIP SXT
R ornithinolytica S1	nd	intl1	hlaune	PRI T7P EEP CTX CA7 IPM ETP
N. Official SI	na	mar	DIGRPC	MEM ATM CN CIP SYT
P. ornithinolytica S2	nd	intl1	hlaure	DRI T7D EED CTY CA7 IDM ETD
N. OFFICIENCIA 55	nu	IIIIII	DICKPC	ALLA ATNA CNI CID SYT
D. amithing bytics C4		:+11	bla	
R. ornitninolytica 54	na	INTIL	DIOKPC	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
R. ornithinolytica S5	nd	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
R. ornithinolytica O1	nd	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
R. ornithinolytica O5	nd	intl1	Ыа _{крс}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
R. ornithinolytica N1	nd	intl1, intl3	bla _{KPC} , bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, SXT
R. ornithinolytica N8	nd	intl1. intl3	blarpc. blages.5	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
		···· · , ·····		MEM. ATM. CN. AK. SXT
R. ornithinolytica N9	nd	intl1 intl3	hlarpe hlaces	PRI T7P FFP CTX CA7 IPM FTP
			2.GINE VOGES-J	MFM ATM CN SYT
R ornithinglutica N12	nd	intl1 intl2	hlauna hlanna	DRI T7D EED CTV CA7 IDM ETD
A. Ormannolytica N12	nu	шит, шиэ	DIUKPL, DIUGES-5	MENA ATNA CNI AV SVT
D arnithing hetics N122	nd	in+11 :=+12	bla bla	
R. OFFICTION N13	nu	πιτι, πιι3	DIUKPC, DIUGES-5	rnl, 12P, FEP, CIX, CAZ, IPIVI, EIP,
				IVIEIVI, ATIVI, CN, SXT

Table 9. Replicon typing, integrases and carbapenemase genes detected by PCR and antibiotic susceptibility profiles.

Klebsiella sp. N14	nd	intl3	bla _{GES-5}	PRL, TZP, CTX, CAZ, IPM, ETP,
				MEM, CN, CIP
Enterobacter sp. N10	IncL/M	intl1, intl3	bla _{KPC} , bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CIP
Enterobacter sp. N11	nd	nd	nd	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM
Enterobacter sp. N15	nd	nd	nd	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM
Aeromonas sp. S2	nd	intl1, intl3	bla _{GES-5}	PRL, FEP, CTX, CAZ, IPM, ETP,
				MEM, CIP
Aeromonas sp. 02	nd	intl1, intl3	bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, CIP
Aeromonas sp. N4	nd	intl1, intl3	bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
Aeromonas sp. 03	nd	nd	bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
Aeromonas sp. 04	nd	intl1, intl3	bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, CIP
<i>Aeromonas</i> sp. 06	nd	nd	bla _{GES-5}	PRL, TZP, FEP, CTX, CAZ, IPM, ETP,
				MEM, ATM, CN, CIP, SXT
Aeromonas sp. 07	nd	nd	nd	IPM, ETP, MEM, CIP

Piperacillin (PRL), Piperacillin-tazobactam (TZP), Cefepime (FEP), Cefotaxime (CTX), Ceftazidime (CAZ), Imipenem (IPM), ertapenem (ETP), meropenem (MEM), aztreonam (ATM), tetracycline (TE), tigecycline (TGC), Gentamicin (CN), Amikacin (AK), ciprofloxacin (CIP), Trimethoprim-sulfamethoxazole (SXT) and Chloramphenicol (C). nd: not detected.

Since isolates were selected in culture media supplemented with imipenem, as expected all isolates were resistant to this antibiotic. Moreover, they were also resistant to other tested carbapenems (ertapenem and meropenem) (figure A1). Additionally, most isolates were resistant to all β -lactams, with exception of isolates *Klebsiella* sp. N14 (susceptible to cefepime and aztreonam), *Aeromonas* sp. S2 (susceptible to piperacillin-tazobactam and aztreonam), *Aeromonas* sp. O2 and O4 (susceptible to aztreonam) and *Aeromonas* sp. O7 (susceptible to piperacillin, piperacillin-tazobactam, cefepime, cefotaxime, ceftazidime and aztreonam). Among tested antibiotics, none was effective against all isolates. With the exception of *Enterobacter* isolates N10, N11, and N15, and *Aeromonas* isolates S2, O2, O4 and O7, all the remaining isolates (76.7 % of the total) were multidrug resistant (MDR), since they were resistant to at least one antibiotic from at least 3 different antibiotic classes (Rolain et al., 2016). Of these, all members of *Raoultella* (n=12), *Citrobacter* (n=8) and *Klebsiella* (n=1) genera were MDR.

All *Raoultella* isolates showed resistance or ATU phenotypes to all β -lactams tested and were susceptible to tested tetracyclines (tetracycline and tigecycline) and chloramphenicol. A total of 81.8 % of the *Raoultella* isolates were resistant to gentamicin

and remaining 18.2 % exhibited an ATU phenotype to this antibiotic. A fraction of the isolates (18.2 %) exhibited a resistance phenotype to amikacin and the remaining 81.2 % were susceptible. Regarding ciprofloxacin, 54.5 % of the isolates were resistant and the remaining 45.5 % were susceptible.

Klebsiella isolate exhibited a resistance phenotype to all β -lactams tested, apart from cefepime and aztreonam, for which it was susceptible. It also exhibited resistance to ciprofloxacin, ATU phenotype to gentamicin and was susceptible to the tested tetracyclines, amikacin and trimethoprim-sulfamethoxazole.

All *Enterobacter* isolates exhibited resistance or ATU phenotypes to all β -lactams tested and were susceptible to the remaining tested antibiotics, except N10 isolate which was resistant to ciprofloxacin.

All *Aeromonas* isolates were resistant to tested carbapenems, exhibiting different susceptibility profiles to the remaining β -lactams. However, most isolates, except O7 isolate, were resistant to most of the tested β -lactams. Regarding other classes of tested antibiotics, 100 % of the isolates were susceptible to tested tetracyclines, amikacin and chloramphenicol. A total of 42.9 % of the isolates were resistant to gentamicin and trimethoprim-sulfamethoxazole. Regarding ciprofloxacin, 85.7 % of the isolates were resistant and O7 isolate exhibited an ATU phenotype.

Within *Citrobacter* genus, all isolates (n=8) were resistant to all tested β -lactams and tetracycline. Some isolates were also resistant to ciprofloxacin (n=7, 87.5 %), amikacin (n=2, 25.0 %) and tigecycline (n=2, 25.0 %). Additionally, *Citrobacter* sp. N5 exhibited a resistance phenotype to at least one antibiotic of all classes of antibiotics tested (all β -lactams, tetracycline/tetracyclines, gentamicin/aminoglycosides, ciprofloxacin/fluoroquinolones, and trimethoprim-sulfamethoxazole/miscellaneous agents).

4. Occurrence and diversity of ARG

The ARG detected by PCR are described in table 3. From all tested genes encoding carbapenemases (bla_{IMP} , bla_{KPC} , bla_{NDM} , bla_{GES} , $bla_{OXA-48-like}$ and bla_{VIM}), three genes, bla_{KPC} (n=20 isolates; 66.6 %), bla_{GES} (n=13; 43.3 %) and bla_{VIM} (n=1; 3.3 %), were detected. In three isolates, *Enterobacter* sp. N11, *Enterobacter* sp. N15 and *Aeromonas* sp. O7, ARG weren't detected. The bla_{KPC} was detected in *Raoultella* (n=11; 100 % of *Raoutella* isolates), *Citrobacter* (n= 8; 100 %) and *Enterobacter* (n= 1; 33.3 %). The *bla_{GES}* was found in *Raoultella* (n=5; 45.5 % of *Raoutella* isolates), *Enterobacter* (n=

1; 33.3 %), *Aeromonas* (n= 6; 85.7 %) and *Klebsiella* (n= 1; 100 %). The *bla*_{VIM} was found only in *Citrobacter* sp. N5. In 7 isolates (representing 23.3 % of the isolates in this collection), the presence of two carbapenemase-encoding genes was detected.

Within *Raoultella* genus, isolates S1, S3, S4, S5, O1 and O5, collected in September and October 2009 in Pond 1, harboured bla_{KPC} . The N1, N8, N9, N12, N13 isolates collected in November 2019, harboured both bla_{KPC} and bla_{GES} .

Within *Enterobacter* genus, N10 strain harboured both bla_{KPC} and bla_{GES} . Within *Citrobacter* genus, N5 isolate, in addition to bla_{VIM} also harboured bla_{KPC} . The remaining isolates of this genus harboured only bla_{KPC} .

As previously mentioned, 6 *Aeromonas* isolates harboured *bla*_{GES}, so, this carbapenemase gene was present in 85.7 % isolates of this genus. The primers used to detect the *cphA* gene, encoding an intrinsic carbapenemase present in some *Aeromonas* species, did not amplified any fragment.

The amplicons of bla_{GES} , amplified by PCR were sequenced using Sanger sequencing and the variant detected in bla_{GES} positive isolates was bla_{GES-5} , which encodes a carbapenemase.

The presence of bla_{CTX-M} , a gene encoding ESBL responsible for conferring resistance to 3^{rd} generation cephalosporins and *mcr-1* gene, responsible for conferring resistance to colistin, a last-resort antibiotic, were not detected in isolates of this collection.

5. Integron screening and characterization

The results obtained from the screening of genes encoding integrases by PCR are described in table 3.

Genes encoding integrases of class 1 were detected in 24 of 30 isolates (80.0 %), namely in *Citrobacter* (n=8 isolates), *Raoultella* (n=11), *Enterobacter* (n=1) and *Aeromonas* (n=6). Genes encoding integrases of Class 3 were detected in 11 isolates, *Raoultella* (n=5), *Enterobacter* (n=1), *Aeromonas* (n=6) and *Klebsiella* (n=1), representing 36.7 % of all isolates. The presence of class 2 integrons was not detected.

All isolates belonging to the genera *Citrobacter* (n=8) and *Raoutella* (n=11) harbour the *intI1* gene. Additionally, isolates N10 (*Enterobacter*), S2, O2, O4 and N4 (*Aeromonas*) also carried an *intI1* gene.

Excluding isolate O7, all isolates belonging to the genus *Aeromonas* possess class 3 integrons. Further PCR analysis confirmed that *Aeromonas* S2, O2, O4 N4, *Raoultella*

N1, N8, N9, N12 and N13, *Klebsiella* sp. N14 and *Enterobacter* sp. N10 possessed a *bla*_{GES-5} gene cassette inserted into a class 3 integron.

The genetic context of the bla_{VIM-1} gene in *Citrobacter* sp. N5 was also determined by PCR and sequence analysis, demonstrating that the bla_{VIM-1} gene was inserted in a class 1 integron with the following gene cassette array: 1-5'CS- bla_{VIM-1} -*aacA4*-(...)*aadA1-catB2-3*'CS-*qAcE* Δ *1-sul1*. This integron also includes gene cassettes encoding resistance to aminoglycosides (*aacA4; aadA1*), chloramphenicol (*catB2*), sulfonamides (*sul1*) and quaternary ammonium detergents (*qAcE* Δ *1*).

According to results obtained from screening of class 1 integrons variable regions (5'CS-3'CS), *Citrobacter* sp. F4 and F6, *Aeromonas* spp. O4 and N4 and *Enterobacter* sp. N10 isolates seem to harbour empty integrons. However, these results should be confirmed by Sanger sequencing.

6. Plasmid content and mating assays

Plasmid DNA extraction was successful for the 30 strains as shown in figure 19, originating 15 distinct plasmid profiles (A to O).

Figure 19. Plasmid DNA profiles of all isolates.

Of these plasmid profiles, 4 were from isolates that belong to *Citrobacter* (A, B, C and F), 3 to *Raoultella* (D, E and F) 1 to *Klebsiella* (H), 2 to *Enterobacter* (I and J) and 5 to *Aeromonas* (K, L, M, N and O). Isolates *Citrobacter* sp. F5, O5, *Citrobacter* sp. N5, *Klebsiella* sp. N14, *Enterobacter* sp. N10 and *Aeromonas* spp. O3, O6, O4 and O7 (30 %) possessed unique plasmid profiles.

The *Citrobacter* F1, F2, F3, F4, F6, collected in February and *Citrobacter* N6 collected in November, which grouped in the same BOX-PCR cluster, harboured 2 different plasmid profiles (A and B).

Within the genus *Raoultella*, isolates S1, S3, S4, S5, collected in September, and O1 and O5, collected in October, grouped in the same BOX-PCR cluster, and originated 2 distinct plasmid profiles (D and E). *Raoultella* isolates N1, N8, N9, N12 and N13, collected in November in Pond 1 and Dos Santos Mártires channel, grouped in the same BOX-PCR cluster and shared the same plasmid profile.

Among *Enterobacter* isolates, two distinct plasmid profiles were identified (I and J). N11 and N15 isolates, which shared the same BOX-profile, originated identical plasmid profiles.

Among *Aeromonas* isolates, 5 distinct plasmid profiles were observed. O2, S2 and N4 isolates, collected in October, September and November shared the same plasmid profile (K). Isolates O3 and O6, which shared the same BOX-profile, originated two distinct plasmid profiles (L and M).

Replicon typing was performed for all isolates and results obtained are shown in table 2. With the primers and conditions tested, only two replicons were identified: IncL/M was observed in isolates *Enterobacter* sp. N10 and *Citrobacter* sp. F4 and F6; and the IncN replicon was detected in *Citrobacter* sp. F3, F6, N5 and N6. Thus, for isolate *Citrobacter* sp. F6 both incL/M and incN were detected.

In order to understand if pBK30661 and pBK30683 plasmids could be involved in the spread of bla_{KPC} among isolates of this collection, we chose 12 bla_{KPC} – positive isolates (based on the detected ARG, BOX-profiles and plasmid profiles) and proceeded to the detection of these two plasmids by multiplex-PCR. The results obtained are shown in figure 20.

Figure 20. Screening of pBK30661 and pBK30683 plasmids by PCR in all isolates from this study.

According to results obtained, N1, N9 and N12 isolates harbor a pBK30683-like plasmid, since they demonstrated a positive result for all 8 PCR performed, corresponding to 8 conserved regions of this plasmid.

Mating assays were conducted for all 30 isolates but under the tested conditions, no transconjugants were obtained.

7. Whole genome sequencing (WGS) analysis

Based on the results obtained with phylogenetic affiliation using 16S rRNA gene, resistance phenothypes, carbapenemase- and integrase- encoding genes detected and plasmid profiles, three isolates were selected for WGS and analysis: *Citrobacter freundii*. F6, *Raoultella ornithinolytica* N9 and *Enterobacter* sp. N10. The results obtained are described in this section.

7.1. General genomic features

The general features of the *Citrobacter* sp. F6, *R. ornithinolytica* N9 and *Enterobacter* sp. N10 draft genomes are described in table 10 and figure A2.

	Citrobacter sp. F6	R. ornithinolytica N9	Enterobacter sp. N10
Size	5,100,708 bp	6,212,323 bp	5,363,533 bp
GC Content (%)	51.7	55.2	54.4
N50	88228	110464	65421
L50	20	17	29
Number of Contigs	124	176	221
Number of	578	589	591
Subsystems			
Number of Coding	4989	6010	5129
Sequences			
Predicted tRNA	80	84	80
Predicted rRNA	2	2	1
Sequenced reads	6,124,550	7,038,940	7,008,910
Sequenced bases	1,837,365,000	2,111,682,000	2,102,673,000
Coverage	180 [×]	170 [×]	115 [×]

Table 10. General features of the *Citrobacter* sp. F6, *Raoultella ornithinolytica* N9 and *Enterobacter* sp. N10 draft genomes.

Citrobacter sp. F6 draft genome consisted of 5,100,708 bp, with a G+C content of 51.7 %, organized in 124 contigs, with 4111 predicted CDS. Most of genes are related to metabolism and cellular functions essential to cell survival. However, 126 genes related to virulence, disease and defense and 114 genes related to phages, prophages, transposable elements and plasmids were detected. The sum of these two subsystems represents a total of 5.8 % of all genes present in the cell (figure A10).

R. ornithinolytica N9 draft genome consisted of 6,212,323 bp, with a GC content of 55.2 %, organized in 176 contigs, with 4569 predicted CDS. Most of genes annotated in *R. ornithinolytica* N9 are associated to metabolism and cellular functions, however, 147 genes related to virulence, disease and defense and 107 genes related to phages, prophages, transposable elements and plasmids were detected. These two subsystems represent 5.6 % of all genes present in the cell (figure A10).

Enterobacter sp. N10 draft genome consisted of 5,363,533 bp, with a GC content of 54.4 %, organized in 221 contigs, with 4024 predicted CDS. Most of genes annotated in *Enterobacter* sp. N10 are associated to metabolism and cellular functions, however, 155 genes related to virulence, disease and defense and 73 genes related to phages,

prophages, transposable elements and plasmids were detected. It represents a total of 5.7 % of all genes present in the cell (figure A10).

7.2. In silico phylogenetic analysis

The similarity between the genome of the type strain *C. freundii* ATCC 8090^T and the genome of *Citrobacter* sp. F6 was evaluated to confirm taxonomic affiliation. For that, the average nucleotide identity based on two algorithms, ANIb, and ANIm, and the digital DNA-DNA hybridization (dDDH), and G+C content divergence were calculated. The ANIb and ANIm values were 98.32 % and 98.98 %, respectively, thus above the established threshold of 95-96% (Richter & Rosselló-Móra, 2009) for species delineation. Likewise, the predicted dDDH value of 90.50 % obtained, between *Citrobacter* sp. F6 and *C. freundii* ATCC 8090^T is above the threshold of 70 % (Chun et al., 2018) for species definition based on DDH values. Finally, G+C content differed in 0.01 % between these two genomes, thus in less than 1 % as suggested previously to occur within species (Meier-Kolthoff et al., 2014). In order to further confirm these results the draft genome of *Citrobacter* sp. F6 was analysed together with 13 *Citrobacter* genomes available (including 9 type strains) and submitted to the Type (Strain) Genome Server (TYGS) platform.

As expected, TYGS analysis confirmed that strain F6 affiliates to *Citrobacter freundii* (figure 21). Overall results based on WGS analysis (ANI, dDDH and TYGS analysis) support that strain F6 affiliates with *C. freundii*.

Figure 21. Phylogenetic tree of *Citrobacter* spp. based on whole genome analysis obtained from TYGS. Species and subspecies cluster colors represent different clusters. Percent of G+C varies from white (64.0) to dark blue (69.3). δ statistic values varies from white (0.1) to brown (0.2). Genome size (bp) varies from (4.2 Mb) to (8.0 Mb), dark rectangle size represents genome size. Protein count varies from (3211) to (7675), golden rectangle size represents number of proteins. Accession numbers: NCTC10805, NZ_UFVN01000003.1; ATCC 51113, NZ_NAEW00000000.1; 97/99, NZ_FLYB01000036.1; GTC 1319, NZ_BBMX00000000.1; ATCC, 8090T, NZ_JMTA00000000.1; MBT-C3 NZ_QVEK01000037.1; NCTC10786, NZ_UAVY01000004.1; P080C CL, QFVP01000003.1; CIP 55.13, NZ_CDHL01000056.1; A60, MVFY01000001.1; ATCC 51459, NZ_JXUN00000000.1; NBRC 105722, NZ_BBNB01000030.1, BF-6, NZ_CP019987.1; CCUG 30791, NZ_RPOI00000000.1.

MLST analysis based on *arcA*, *aspC*, *clpX*, *dnaG*, *fadD*, *lysP* and *mdh* loci showed that *Citrobacter freundii* F6 affiliated to ST 270 (table 11).

Sequence type: 270								
Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele		
arcA	100	100	435	435	0	arcA_5		
aspC	100	100	513	513	0	aspC_10		
clpX	100	100	567	567	0	clpX_12		
dnaG	100	100	444	444	0	dnaG_11		
fadD	100	100	483	483	0	fadD_7		
lysP	100	100	477	477	0	lysP_11		
mdh	100	100	549	549	0	mdh_6		

Table 11. Allelic analysis and sequence type of C. freundii F6.

<u>Raoultella ornithinolytica N9</u>

To confirm the phylogenetic affiliation of N9 strain to *R. ornithinolyitica* as suggested by previous results based on MALDI-TOF analysis, the values of ANIb, ANIm, dDDH and the difference in G+C were calculated against the type strain *R. ornithinolytica* NBRC 105727^T.

The ANIb and ANIm values of 99.16 % and 99.53 %, respectively, the dDDH value of 94.90 % and difference in % G+C of 0.47 suggest an affiliation to R. *ornithinolytica*.

Additionally, the phylogenetic affiliation based on Multi locus sequence analysis (MLSA) (figure 22) and whole genome analysis using TYGS (figure 23) were also performed. Since not all type strains of *Raoultella* species are available, whenever necessary a representative of each *Raoultella* species was used for the analysis. Hence, we selected a total of 4 *Raoultella* that together with *R. ornithinolytica* N9 were used for MLSA analysis based on *atpD*, *gyrB*, *infB* and *rpoB* concatenated housekeeping genes sequences and WG-based analysis in TYGS platform.

Both MLSA and WG based- analysis showed that strain N9 affiliates with *R*. *ornithinolytica*.

0.010

Figure 22. Phylogenetic tree of MLSA using a bootstrap analysis with 1000 replications based on *atpD*, *gyrB*, *infB* and *rpoB* concatenated housekeeping genes of *R*. *ornithinolytica* N9 and other representatives of different type strains of genus Raoultella. Genbank accession numbers: *Raoultella planticola* ATCC 33531T (JMPP01000014); *Raoultella ornithinolytica* NBRC 105727T (BCYR00000000.1) ; *Raoultella electrica* DSM 102253T (CP041247); *Raoultella terrigena* JH01 (CP050508.1).

Figure 23. Phylogenetic tree based on whole genome analysis of the *Raoultella* sp. obtained from TYGS. Species and subspecies cluster colors represent different clusters. Percent of G+C varies from white (64.0) to dark blue (69.3). δ statistic values varies from white (0.1) to brown (0.2). Genome size (bp) varies from (4.2 Mb) to (8.0 Mb), dark rectangle size represents genome size. Protein count varies from (3211) to (7675), golden rectangle size represents number of proteins. Genbank accession numbers: NBRC 105727T, BCYR00000000.1; NBRC 14941, BJNO0000000.1; GODA, NZ_CP019899.1; DSM 102253T, GCA_006711645.1.

Based on TYGS phylogenetic analysis, strain N9 belongs to *R. ornithynolitica* species.

According to all phylogenetic analysis results, strain N9 belongs to *R*. *ornithynolitica* species, supporting results obtained from MALDI-TOF.

In order to correctly affiliate *Enterobacter* sp. N10 strain, the ANIb, ANIm, dDDH, difference in GC content values were calculated against twelve putatively *E. kobei* genomes available at the Genbank database including two genomes indicated as *E. kobei* type strains: *E. kobei* DSM 13645^T, and *E. kobei* JCM 8580^T. Additionally, MLSA and whole genome analysis through TYGS platform were performed.

Genome (acc. numbers)	ANIb [%]	ANIm [%]	DDH [%]	Difference in G+C	DDH, G+C Interpretation
<i>E. kobei</i> DSM 13645 ^T (CP017181)	99.25	99.85	98.20	0.50	same species
<i>E. kobei</i> 44593 (JZXR0100000)	98.76	99.36	94.30	0.36	same species
<i>E. kobei</i> GN02825 (LEDC01000000)	98.66	99.22	93.10	0.35	same species
<i>E. kobei</i> 35730 (JZYS0100000)	98.58	99.15	92.40	0.12	same species
<i>E. kobei</i> UCI 29 (KK736271.1)	98.51	99.14	92.20	0.36	same species
<i>E. kobei</i> 8706 (LLXN00000000.1)	98.48	99.13	92.40	0.32	same species
<i>E. kobei</i> 42202 (JZYH01000000)	98.45	99.12	92.30	0.20	same species

Table 12. ANIb and DDH values of *E. kobei* DSM13645^T, *E. kobei* JCM 8580^T and other non-type *E. kobei* strains against *Enterobacter* sp. N10.

<i>E. kobei</i> MGH 23 (KI535658.1)	98.41	99.11	91.90	0.30	same species
<i>E. kobei</i> BIDMC 67 (KK736229.1)	98.39	99.09	91.60	0.33	same species
<i>E. kobei</i> SMART_635 (LPPL01000000)	98.35	99.08	91.80	0.04	same species
<i>E. kobei</i> e1326 (FJYB00000000.1)	98.34	99.08	91.60	0.50	same species
<i>E. kobei</i> JCM 8580 ^T (MKXD0000000)	79.01	58.76	23.10	1.02	distinct species

Analysis between *Enterobacter* sp. N10 and *E. kobei* DSM 13645^T revealed ANIb and ANIm values of 99.25 % and 99.85 %, respectively, thus above the established threshold of 95-96 (Richter & Rosselló-Móra, 2009) for species delineation. Likewise, the predicted dDDH value of 94.30 % obtained is above the threshold of 70 % (Chun et al., 2018) for species definition based on DDH values. Finally, G+C content differed in 0.01 % between these two genomes, thus in less than 1 % as suggested previously to be within species (Meier-Kolthoff et al., 2014). With exception to *E. kobei* JCM 8580^T, based on values obtained from ANIb, ANIm, difference in G+C and dDDH analysis, all isolates affiliated with *E. kobei*.

On the other hand, analysis between *Enterobacter* sp. N10 and *E. kobei* JCM 8580^{T} revealed ANIb and ANIm values of 79.01 % and 58.76 %, respectively, thus below the established threshold for species delineation. Additionally, the predicted dDDH value of 23.10 % obtained is below the threshold of 70 % for species definition based on DDH values (Chun et al., 2018). Lastly, G+C content differed in 1.02 % between these two genomes, thus in more than 1% as suggested previously to be distinct species (Meier-Kolthoff et al., 2014). Comparison of *E. kobei* JCM 8580^T against *E. kobei* DSM 13645^T revealed ANIb and ANIm values of 79.26 % and 84.75 %, respectively, thus below the established threshold for species delineation. Additionally, the predicted dDDH value of 23.40 % obtained is below the threshold of 70 % for species definition based on DDH values. Lastly, G+C content differed in 0.52 % between these two genomes, less than 1 %, is insufficient to discriminate these two isolates (Meier-Kolthoff et al., 2014).

All genomes belonging to *E. kobei* deposited in the PATRIC database (total of 55), 48 affiliate with *E. kobei* DSM 13645^T, 2 of them affiliate with the type strain initially deposited, *E. kobei* JCM8580^T and which were also deposited as strain type (JCM8580^T = ATCC BAA-260^T = DSM27110^T) and 5 of the isolates do not belong to *E. kobei* species, since they do not affiliate with either of the two isolates described above (table A7). The only available genomes that affiliate with the type strain JCM 8580^T are those that were deposited as a type strain to different culture collections

The MLSA was performed using *dnaA*, *fusA*, *gyrB*, *leuS*, *pyrG*, *rpiB* and *rpoB* concatenated housekeeping genes sequences retrieved from *Enterobacter* sp. N10 and another 18 genomes of *Enterobacter* spp., including *E. kobei* DSM 13645^T. Results are shown in figure 24.

Figure 24. Phylogenetic tree of the MLSA using a bootstrap analysis with 1000 replications based on *dnaA*, *fusA*, *gyrB*, *leuS*, *pyrG*, *rpiB* and *rpoB* concatenated housekeeping genes of *Enterobacter kobei* N10 and other representatives of different groups of genus *Enterobacter*. Genbank accession numbers: LMG 27195, NZ_CP017183; DSM 16691, NZ_CP017179; DSM 16687, NZ_CP017180; DSM 14563, NZ_CP017186; 34983, NZ_CP010377; ECC1766, NZ_NEEF01000026.1; ATCC 13047, CP001918.1; SDM, NC_018079.1; EcWSU1, NC_016514.1; GN02709, NZ_LEDH00000000.1; 1131_ECLO, NZ_JWCB00000000.1; GN02468, NZ_LEDT00000000.2; DSM 16690, NZ_CP017184; SY-70, NZ_JALR00000000.1; GN03164, NZ_LECZ00000000.1; 624_ECLO, NZ_JUZQ01000000; DSM 13645, NZ_CP017181; 629_ECLO, NZ_JUZL01000000.

According to MLSA results, *Enterobacter* sp. N10 affiliates to E. *kobei* species, being phylogenetically related to E. *kobei* DSM 13645^T.

To support previous results, we performed whole genome based phylogenetic analysis of *Enterobacter* sp. N10 against 18 genomes representing *Enterobacter cloacae* complex group (n=18) (chavda et al., 2016), *Enterobacter kobei* JCM 8580^T and *Enterobacter kobei* N10 and submitted to TYGS platform. The results of phylogenetic affiliation of *Enterobacter* sp. N10 based on TYGS analysis are shown in figure 25.

Figure 25. Phylogenetic tree based on whole genome analysis of the Enterobacter kobei N10 obtained from TYGS. Species and subspecies cluster colors represent different clusters. Percent of G+C varies from white (64.0) to dark blue (69.3). δ statistic values varies from white (0.1) to brown (0.2). Genome size (bp) varies from (4.2 Mb) to (8.0 Mb), dark rectangle size represents genome size. Protein count varies from (3211) to (7675), golden rectangle size represents number of proteins. Genbank accession numbers: Genbank LMG 27195, NZ_CP017183; DSM 16691, NZ_CP017179; DSM 16687, accession numbers: NZ_CP017180; DSM 14563, NZ_CP017186; 34983, NZ_CP010377; ECC1766, NZ_NEEF01000026.1; NC_016514.1; CP001918.1; NC_018079.1; ATCC 13047. SDM, EcWSU1, GN02709, NZ_LEDH00000000.1; 1131_ECLO, NZ_JWCB00000000.1; GN02468, NZ_LEDT00000000.2; DSM 16690, NZ CP017184; SY-70, NZ JALR00000000.1; GN03164, NZ LECZ00000000.1; 624 ECLO, NZ_JUZQ01000000; DSM 13645, NZ_CP017181; 629_ECLO, NZ_JUZL01000000; JCM 8580T, MKXD0000000.1.

All results, obtained from ANIb, ANIm, difference in GC, dDDH, MLSA and TYGS analysis affiliate *Enterobacter* sp. N10 to *E. kobei* when compared with *E. kobei* DSM 13645^T.

For *E. kobei* N10 multi loci typing we performed MLST analysis using MLST 2.0 tool. New alleles of *fusA*, *leuS* and *rpiB* genes were detected. These HKG sequences were submitted to pubMLST Enterobacter database (https://pubmlst.org/ecloacae/) to attribute a new locus. *fusA* was assigned as 239, *leuS* as 448 and *rpiB* as 169, respectively. After that, a MLST were performed using *dnaA*, *fusA*, *gyrB*, *leuS*, *pyrG*, *rpiB* and *rpoB* genes. Finally, a new sequence type (1378) was attributed. Results obtained are shown in table 13.

Locus	Allele	Length	Contig	Start position	End position
dnaA	71	442	3	20536	20977
fusA	239*	646	9	12959	13604
gyrB	87	434	3	24212	24645
leuS	448*	578	1	212404	212981
pyrG	254	259	16	66938	67196
rpiB	169*	607	85	4140	4746
гроВ	3	545	10	24679	25223

 Table 13. Allelic analysis and sequence type of E. kobei N10. *New alleles detected in this isolate.

 Income Allele Income Continue Conti

To further analyse the differences observed between *E. kobei* N10 and the two *E. kobei* type strains, *E. kobei* DSM13645^T and *E. kobei* JCM 8580^{T} , the core and dispensable genome analysis was performed using PGAdb-builder.

Figure 26. a) *E. kobei* N10 compared with *E. kobei* DSM 13645^T; b) *E. kobei* N10 compared with *E. kobei* JCM 8580^T. c) *E. kobei* JCM 8580^T compared with *E. kobei* DSM 13645^T.

E. kobei N10 when compared to *E. kobei* DSM 13645^{T} shares a core genome of 71 % in a total of 5734 genes, whereas when compared to *E. kobei* JCM 8580^{T} only shares 4 % of the core genome in a total of 9177 genes analyzed. The comparison of *E. kobei* JCM 8580^{T} against *E. kobei* DSM 13645^{T} reveals a set of 365 (4 %) shared genes and 8343 (96 %) not shared genes. These results are further evidence that the *E. kobei* N10 is related to *E. kobei* DSM 13645^{T} and different from *E. kobei* JCM 8580^{T} .

7.3. Antibiotic resistance genes and mobilome analysis

<u>C. freundii F6</u>

Results obtained from ARG detection based on WGS analysis are shown in this section. In order to find additional ARG, contigs where ARG were detected using CARD and Resfinder tools were analyzed trough blast searching in NCBI database. The compiled results of ARG detected through the Resfinder, CARD and NCBI in *C. freundii* F6 are described in table 14.

Table 14. Detected ARG in *C. freundii* F6 using Resfinder, CARD and NCBI (*) databases search. Genes were predicted using CARD tool and % similarity refers to protein similarity.

Resistance mechanism	Drug Class	Contig	Protein	Predicted gene	Protein similarity (%)
Drug inactivation	β-lactams	38	Class C β-lactamase	bla _{CMY-152}	99.74
Drug inactivation	β-lactams	74	Carbapenem- hydrolyzing class A β- lactamase	Ыа _{крс-з}	100
Drug inactivation	β-lactams	82	Class D β-lactamase	bla _{OXA-1}	100
Drug inactivation	Phenicols	82	Chloramphenicol acetyl transferase	catB3	100
Drug inactivation	Aminoglycosides, fluoroquinolones, ciprofloxacin	82	Aminoglycoside N(6')- acetyltransferase type 1	<i>aacA4</i> -cr	100
Drug inactivation	Macrolides	91	macrolide 2'- phosphotransferase I	mphA	100
Drug target protection	Fluoroquinolones	92	Fluoroquinolone resistance protein	QnrS1	100
Drug target replacement	Sulfonamides	82	Dihydropteroate synthase type-1	sul1	100
Drug target replacement	Diaminopyrimidine	115	Dihydrofolate reductase	dfrA14	99.34

Drug efflux	Tetracycline	16	Multidrug transporter MdfA	MdfA	87.8
Drug efflux	Aminocoumarins	21	Multidrug resistance protein MdtB	mdtC	92.69
Drug efflux	Aminocoumarins	21	Multidrug resistance protein MdtC	mdtC	92.98
Drug efflux	Fluoroquinolones	54	Multidrug export protein EmrB	emrB	95.51
Drug efflux	tetracycline, glycylcycline, rifamycin, cephalosporin, penam, phenicol, triclosan, fluoroquinolone	10	Multidrug efflux pump subunit AcrA	acrA	90.18
Drug efflux	tetracycline antibiotic, phenicol antibiotic, rifamycin antibiotic, glycylcycline, penam, cephalosporin, triclosan, fluoroquinolone	10	multidrug efflux RND transporter permease subunit protein	acrB	94.57
Drug target alteration	polymyxin and cationic antimicrobial peptides	13	Undecaprenyl- phosphate 4-deoxy-4- formamido-L-arabinose transferase	pmrF	88.47
Drug efflux	nitroimidazole antibiotic	16	Lipid A export ATP- binding/permease protein MsbA	msbA	95.19
Drug efflux	tetracycline antibiotic	93	Tetracycline resistance protein, class C	tet(A)	99.74
Drug efflux	macrolides	21	Macrolide export protein MacA	macA*	99.73
Drug efflux	macrolides	21	Macrolide export ATP- binding/permease protein MacB	macB*	100
Drug efflux	puromycin	21	Putative multidrug resistance outer	mdtQ*	100

			membrane protein MdtQ		
Drug efflux	aminocoumarins	21	Multidrug resistance protein MdtA	mdtA*	100
Drug efflux	fluoroquinolones	50	Multidrug export protein EmrA	emrA*	100
Drug target alteration	Sulfonamides	5	Dihydropteroate synthase	<i>folP</i> with mutation	47.76
antibiotic target alteration	fosfomycin	6	Hexose-6- phosphate:phosphate antiporter	<i>UhpT</i> with mutation	95.46
antibiotic target alteration	penam, cephamycin, cephalosporin)	7	Penicillin-binding protein 3	PBP3 conferring resistance	52.75
antibiotic target alteration	fosfomycin	13	Glycerol-3-phosphate transporter	<i>GlpT</i> with mutation	95.9
antibiotic target alteration	fluoroquinolones	13	DNA gyrase subunit A	Escherichia coli gyrA with mutation S83 I	90.97
antibiotic target alteration	elfamycin	124	Elongation factor Tu	<i>Escherichia</i> <i>coli EF-Tu</i> mutants	97.69
reduced permeability to drug, drug efflux and drug target alteration	tetracycline, phenicol, fluoroquinolone, rifamyc in, penam, cephalosporin, glycylcycline, monobactam, pen em, triclosan, carbapenem, cephamycin	17	Regulatory protein SoxS	<i>soxS</i> with mutation	93.46
drug efflux,drug target alteration	tetracycline, rifamycin, phenicol, penam, cepha losporin, glycylcycline, triclosan, fluoroquinolone antibiotic	39	Multiple antibiotic resistance protein MarR	<i>Escherichia coli marR</i> mutant	91.67

This analysis confirmed the presence of carbapenemase-encoding genes previously detected by PCR. Additionally, it was predicted that *C. freundii* F6 harbour genes associated with resistance to several antibiotics, such as resistance to β -lactams (*bla*_{KPC-3}, *bla*_{CMY-152}, *bla*_{OXA-1}), phenicols (*catB3*), aminocoumarins (*mdtB*, *mdtC* and *mdtA*), tetracycline (*tetA* and *mdfA*), aminoglycosides (*aacA4-cr*), fluoroquinolones (*aacA4-cr*, *qnrS1*, *emrA* and *emrB*), ciprofloxacin (*aacA4-cr*), diaminopyrimidine (*dfrA14*), sulfonamides (*sul1*), polymyxin (*pmrF*), nitroimidazole (*mbsA*), macrolides (*macA* and *macB*) and puromycin (*mdtQ*). Mutations in housekeeping genes (HKG) conferring antibiotic resistance were also detected, such as mutations in *gyrA* (fluoroquinolones), in *UhpT* (fosfomycin), in *EF-Tu* (elfamycin) and in *marR* (several antibiotics). The *pmrF* and *acrA*, genes conferring resistance to several antibiotics were also detected. The resistance phenotype observed can be justified with the detected ARG. The replicons detected in *C. freundii* F6 using PlasmidFinder 2.1 are described in table 15.

Table 15. Detected plasmids in C. freundii F6 obtained from PlasmidFinder 2.1.							
Replicon	Similarity (%)	Contig	Accession number				
IncFIA(HI1)	100	24	AF250878				
IncFII(K)	100	24	CP000648				
IncM1	100	36	U27345				
IncN	100	66	AY046276				
pKPC-CAV1321	100	53	CP011611				

Citrobacter freundii F6 harbour IncFIA, IncFII, IncM1, IncN and pKPC-CAV1321 replicons. The genetic context analysis of *bla*_{KPC-3} showed that the *bla*_{KPC-3} is flanked by *ISKpn6* and *ISKpn7* (figure 27). In the same contig other insertion sequences were identified, namely *ISPSY42-like* and additional copies of *ISKpn6* and *ISKpn7*. Using Blast searching tool against the NCBI database, the most identical region (99 %; 6632 bp) found is located on pSECR18-1644 plasmid (MT129535.1) of *Klebsiella aerogenes*, which carries a different KPC variant.

Figure 27. Representation of the genetic context of bla_{KPC-3} in *Citrobacter freundii* F6 and *Enterobacter* sp. N10 isolates and the closest region found in genbank – *Klebsiella aerogenes* pSECR18-1644 (Acc. Number MT129535.1).

Also, the presence of integrons and related sequences was inspected in the genome of *C. freundii* F6, thus the class 1 integron contained in a transposon was identified. This integron harbours gene cassettes conferring resistance to several antibiotics, such as, *sul1* (sulfonamides), *bla*_{OXA-1} (some β -lactams), *catB3* (phenicols) and *aacA4-cr* (aminoglycoside, fluoroquinolones and ciprofloxacin). Additionally, it also harbours *qacE* $\Delta 1$ gene, conferring resistance to quaternary ammonium compounds (detergents) (figure 28).

Figure 28. Genetic context of $qacE\Delta 1$, sul1, bla_{OXA-1} , catB3 and aacA4, found in a transposon-borne class 1 integron and a similar structure present in a region of a pP2G1 plasmid from *Aeromonas rivipollensis* (Genbank acc. number HE616910.2).

R. ornithinolytica N9

In order to find additional ARG, contigs where ARG were detected using CARD and Resfinder tools were analyzed trough blast searching in NCBI database. The compiled results of ARG detected through the Resfinder, CARD and NCBI in *R. ornithinolytica* N9 are described in table 16.

Table 16. Detected ARG in R. ornithinolytica N9 using Resfinder,	CARD and NCBI (*) databases search	n. Genes were predicted using CARD tool and % s	similarity refers to
protein similarity.			

Resistance mechanism	Drug class	Contig	Protein	Predicted gene	Similarity (%)
Drug inactivation	β-lactams	30	carbapenem-hydrolyzing	bla _{GES-5}	100
			class A β-lactamase		
Drug inactivation	β-lactams	30	β-lactamase	bla _{ORN-1} *	-
Drug inactivation	β-lactams	50	carbapenem-hydrolyzing	bla _{кPC-3}	100
			class A β-lactamase		
Drug inactivation	β-lactams	81	β-lactamase	bla _{MOX-3}	100
Drug inactivation	β-lactams	136	β-lactamase	bla _{OXA-9}	100
Drug inactivation	β-lactams	138	β-lactamase	bla _{OXA-10}	100
Drug inactivation	Aminoglycoside	167	Aminoglycoside	aacA4	100
			acetyltransferase AAC(6')-Ib		
Drug inactivation	aminoglycosides	136	Aminoglycoside	not predicted	-
			adenyltransferase ANT(3')-Ia		
Drug inactivation	aminoglycosides	159	Aminoglycoside	aadA1	100
			adenyltransferase ANT(3')-la		
Drug inactivation	Fosfomycin	12	Fosfomycin resistance	fosA5	89.93
			protein <i>FosA</i>		
Drug target	diaminopyrimidine antibiotic	88	Dihydrofolate reductase	drfA14	99.38
replacement					
Drug efflux	Fluoroquinolones	55	Klebsiella pneumoniae KpnH	kpnH	93.36

Drug efflux	Fluoroquinolones	55	Multidrug export protein <i>EmrA</i>	emrA*	100
Drug efflux	tetracycline, nitrofuran, glycylcycline, fluoroquinolone, diaminopyrimidine	40	Multidrug efflux RND transporter permease subunit OqxB	adeF	61.15
Drug efflux	phenicol, diaminopyrimidine, fluoroquinolone	40	Multidrug efflux RND membrane fusion protein MexE	not predicted	-
Drug efflux	streptogramin, pleuromutilin, lincosamide, macrolide, oxazolidinone, tetracycline, phenicol	81	ABC-F type ribosomal protection protein MsrE	msrE	100
Drug efflux	amphipathic compounds	23	Multidrug resistance protein D	not predicted	100
Drug efflux	nitroimidazole	5	Lipid A export ATP- binding/permease protein MsbA	msbA	92.44
Drug target alteration	fusaric acid	55	Aldehyde dehydrogenase	kpnG	94.62
Drug inactivation	macrolides	81	Macrolide 2'- phosphotransferase	mphE	100
Drug target protection	streptogramin, pleuromutilin, lincosamide, macrolide, oxazolidinone, tetracycline, phenicol	81	Macrolide efflux protein <i>msrE</i>	msrE	100
Drug inactivation	β-lactams	99	class A broad-spectrum β- lactamase TEM-1	bla _{TEM-1}	100
Drug inactivation	aminoglycoside	99	aminoglycoside O- phosphotransferase APH(6)- Id	aph(6)-Id	99.64
Drug inactivation	aminoglycoside	99	aminoglycoside O- phosphotransferase APH(3'')-Ib	<i>aph</i> (3'')-Ib	99.63
Drug target replacement	sulfonamide	99	Dihydropteroate synthase type-2	sul2	100

Drug inactivation	streptomycin		(Streptomycin kinase) protein A	strA*	100
Drug inactivation	streptomycin		(Streptomycin kinase) protein B	strB*	100
Drug target alteration	sulfonamide antibiotic	2	Dihydropteroate synthase	<i>folP</i> with mutation	49.25
Drug target alteration	cephalosporin; cephamycin; penam	7	Penicillin-binding protein 3	PBP3 conferring resistance	52.02
Drug target alteration	fluoroquinolone antibiotic	18	DNA gyrase subunit A	<i>Escherichia coli</i> <i>gyrA</i> conferring resistance S83I	90.95
Drug target alteration	fosfomycin	23	Hexose-6- phosphate:phosphate antiporter	<i>UhpT</i> with mutation	96.27
Drug target alteration	elfamycin antibiotic	161	Elongation factor Tu	<i>Escherichia coli</i> <i>EF-Tu</i> mutants	97.3
Drug target alteration; Drug efflux	fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; triclosan	32	Multiple antibiotic resistance protein <i>MarR</i>	Escherichia coli marR mutant	84.03

The genes detected by WGS confirm the results obtained with ARG screening by PCR. Additionally, it was observed that the isolate *R. ornithinolytica* N9 harbors genes associated with resistance to several antibiotics, such as to β -lactams (*bla*_{GES-5}, *bla*_{KPC-3}, *bla*_{ORN-1}, *bla*_{MOX-3}, *bla*_{OXA-9}, *bla*_{OXA-10}, *bla*_{TEM-1}), aminoglycosides (*aacA4*, *aadA1*), fosfomycin (*fosA*), diaminopyrimidine (*drfA14*), fluoroquinolones (*kpnH* and *emrA*), macrolides (*mphE*), nitroimidazole (*msbA*), fusaric acid (*kpnG*) and sulfonamides (*sul2*). In addition to these ARG, it also harbors genes that confer resistance to several antibiotics, such as *adeF* and *msrE* and genes. Genes possessing high similarity with mutated genes which confer antibiotic resistance, such as *UhpT* (fosfomycin), *gyrA* (fluoroquinolones) and *marR* (several antibiotics) were also detected. The resistance phenotype can be justified by detected ARG.

The replicons detected in *R. ornithinolytica* N9 using PlasmidFinder 2.1 are described in table 17.

Replicon	Similarity (%)	Contig	Accession number
Col(MGD2)	100	117	003789
Col(pHAD28)	95,24	103	KU674895
Col(pHAD28)	95,65	107	KU674895
Col440I	95,61	129	CP023920
FIA(pBK30683)	100	93	KF954760
FII(pBK30683)	100	48	KF954760

Table 17. Detected plasmids in R. ornithinolytica N9 obtained from PlasmidFinder 2.1.

The cointegrated FIA and FIIA replicons had been already detected by specific multiplex-PCR targeting pBK30683 plasmid. pBK30683 plasmid structure and *R*. *ornithinolytica* N9 contigs, corresponding to each part of this plasmid are described in figure 29 and table 18.

Figure 29. pBK30683 plasmid structure and *R. ornithinolytica* N9 contigs, corresponding to each part of this plasmid.

contig	contig	pb match (%	Included genes	Region
	size	identity)		
50	36174	36174/36174	met1; met2; ardB; ardA; ssb; parB; psiB,	А
		(100)	A; IS3; ftsH; prot; tnpA; tnpA; ncrY, C;	
			ncrB, A; deltachrB; ISKpn6; blaKPC-3; istB,	
			A; tnpA; tnpR	
167	572	572/572(100)	aacA4	В
136	1342	1342/1342(100)	blaOXA-9, aadA1	С
99	4705	4705/4705 (100)	blaTEM-1; straA, B; sul2; Integrase	D
128	1927	1927/1927 (100)	IS110; Tn3; IS26	E
88	6892	6891/6892 (99)	IS26; KikA; mrr; EcoRII met; EcoRII;	F
			IS6100; dfrA14	
93	5422	4470/4493 (99)	Vag C, D; resA	G
121	2454	2442/2454 (99)	IS66	Н
108	3847	3847/3847 (100)	parA; parB; umuC	Ι
64.5	23147	784/926(85)	stbB	J
80	10954	10954/10954	ardB; ardA; ssb; parB; psiB, A; ydaB	К
		(100)		
130	1793	1793/1793 (100)	klcA; ygfA	L
64.2	23147	1370/1626 (84)	klcA; ygfA	Μ
105	4132	2435/2500 (97)	klcA; ygfA; traM	Ν
64.1	23147	4118/4775 (86)	traM, A; traL, E; traK, B	0
102	4206	4204/4206 (99)	traB; traV; traC	Р
48	41028	41012/41036 (99)	traC; trbl; traW, U; trbC; traN; trbE; traE,	Q
			Q; trbB, F; traH; traG; traT; traD; traI;	
			traX; finO; yihA; nuc; FII-repA; tnpA;	
			tn2501; parA; umuC; umuC	

 Table 18. Regions of pbk30683 detected by WGS analysis in R. ornithinolytica N9.

The detected pBK30683-like plasmid, harbours nine ARG, including bla_{KPC-3} , bla_{TEM-1} , bla_{OXA-9} (β -lactams), *sul2* (sulfonamide), *aacA4*, *aadA1*, *strA*, *strB* (aminoglycosides) and *dfrA14* (trimethoprim). The *bla*_{KPC-3} is located on a Tn4401d transposon and is flanked by *ISKpn6* and *istA*, *istB* genes. The *strA* and *strB* genes present in this plasmid were not detected using the CARD and Resfinder tools, however their presence was confirmed through blast search against Genbank database.

Figure 30. Genetic context of *bla*_{GES-5} in *R. ornithinolytica* N9 constructed by SimpleSynteny tool.

The analysis of the bla_{GES-5} gene context showed that this gene was located in a class 3 integron, followed by an *aacA4* gene cassette (figure 30). Since the *aacA4* gene is located at the beginning of this contig, it is not possible to determine the following gene

cassettes of this integron. Due to the presence of the bla_{ORN-1} gene, an intrinsic β lactamase present in *R. ornithinolytica* chromosome (Walckenaer et al., 2004) and due to remaining genes present in this contig, it is thought that this carbapenemase-harboring integron is located on the chromosome.

<u>E. kobei N10</u>

In order to find additional ARG, contigs where ARG were detected using CARD and Resfinder tools were analyzed trough blast searching in NCBI database. The compiled results of ARG detected through the Resfinder, CARD and NCBI in *E. kobei* N10 are described in table 19.

 Table 19. Detected ARG in *E. kobei* N10 using Resfinder, CARD and NCBI (*) databases search. Genes were predicted using CARD tool and % similarity refers to protein similarity.

Resistance mechanism	Drug class	Contig	Protein	Predicted gene	Protein similarity (%)
Drug inactivation	-lactams	105	carbapenem-hydrolyzing class A β -lactamase	bla _{кPC-3}	100
Drug inactivation	β-lactams	116	carbapenem-hydrolyzing class A β -lactamase	bla _{GES-5}	100
Drug inactivation	β-lactams	57	class C β-lactamase	bla _{ACT-9}	100
Drug inactivation	Fosfomycin	21	Fosfomycin resistance protein FosA	fosA2	96.45
Drug inactivation	Macrolide	156	macrolide 2'-phosphotransferase I	mphA	100
Drug inactivation	Aminoglycoside	209	Aminoglycoside 6'-N-acetyltransferase	aacA4	100
Drug target	Sulfonamide	167	Dihydropteroate synthase type-1	sul1	100
replacement					
Drug efflux	Macrolide	27	Macrolide export ATP-binding/permease	тасВ	100
			protein MacB		
Drug efflux	aminocoumarin	33	Multidrug resistance protein MdtA	mdtA	100
Drug efflux	Aminocoumarin	33	Multidrug resistance protein MdtB	mdtB	100
Drug efflux	Aminocoumarin	33	Multidrug resistance protein MdtC	mdtC	99.80
Drug efflux	Quinolones, β-lactams,	39	Multidrug resistance protein RomA	ramA	92.74
	chloramphenicol,				
	tetracyclines				
Drug efflux	Fosfomycin and	46	Multidrug resistance protein MdtG	mdtG*	100
	deoxycholate				
Drug efflux	Fluoroquinolone	52	Multidrug export protein EmrA	emrA*	99.74
Drug efflux	Fluoroquinolone	52	Multidrug export protein EmrB	emrB	92.43

Drug efflux	nitroimidazole	27	lipid A ABC transporter ATP-binding protein/permease MbsA	msbA	100
Drug target alteration	fosfomycin	3	Hexose-6-phosphate:phosphate antiporter	<i>Escherichia coli</i> <i>UhpT</i> with mutation	93.95
Drug target alteration	sulfonamide	4	Dihydropteroate synthase	<i>folP</i> with mutation	48.13
Drug target alteration	cephalosporin; cephamycin; penam	7	Penicillin-binding protein 3	Haemophilus influenzae PBP3	53.1
Drug target alteration	elfamycin	9	Elongation factor Tu	<i>Escherichia coli</i> <i>EF-Tu</i> mutants	98.48
Drug target alteration	elfamycin	10	Elongation factor Tu	<i>Escherichia coli</i> <i>EF-Tu</i> mutants	98.48
Drug target alteration	fluoroquinolone	31	DNA gyrase subunit A	<i>gyrA</i> conferring resistance S83F	96.24
Drug target alteration; Drug efflux	fluoroquinolone; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol; triclosan	76	Multiple antibiotic resistance protein MarR	<i>Escherichia coli</i> <i>marR</i> mutant	89.58

The genes detected by WGS confirm ARG screening by PCR. Additionally, it was observed that the isolate *E. kobei* N10 harbors genes associated with resistance to several antibiotics, such as β -lactams (*bla*_{KPC-3}, *bla*_{GES-5}, *bla*_{ACT-9}), fosfomycin (*fosA* and *mdtG*), deoxycholate (*mdtG*), aminoglycosides (*aacA4*), macrolide (*mphA* and *macB*), sulfonamides (*sul1*), fluoroquinolones (*emrA* and *emrB*), nitroimidazole (*msbA*) and aminocoumarin (*mdtA*, *mdtB* and *mdtC*). In addition to these ARG, it also harbors the ramA MDR gene, conferring resistance to quinolones, β -lactams, chloramphenicol and tetracyclines. This isolate also harbors genes with high similarity to mutated genes that confer antibiotic resistance, such as *EF-Tu* conferring resistance to elfamycin, *gyrA* conferring resistance to fluoroquinolones and *UhpT* conferring resistance to fosfomycin. The resistance phenotype can be justified by detected ARG.

The replicons detected in *E. kobei* N10 using PlasmidFinder 2.1 are described in table 20.

Table 20. Detected plasmids in <i>E. kobei</i> N10 obtained from PlasmidFinder 2.1					
Replicon	Similarity (%)	Contig	Accession number		
Col440I	95,61	140	CP023920		
IncFIB(pECLA)	100	75	CP001919		
IncFII(pECLA)	99,6	162	CP001919		
IncM1	100	36	U27345		
IncN	99,22	107	AY046276		
IncX5	100	44	MF062700		
pKPC-CAV1321	100	28	CP011611		

Table 20. Detected plasmids in E. kobei N10 obtained from PlasmidFinder 2.1

A total of 7 replicons were detected, namely Col, IncFIB, IncFII, IncM, IncN, IncX and pKPC-CAV1321.

The genetic context of bla_{KPC-3} of *E. kobei* N10 is 100 % identical of bla_{KPC-3} genetic context found in *C. freundii* F6 and such as *C. freundii* F6 plasmid, it shares a identical region (99 %; 6632 bp) with pSECR18-1644 plasmid (MT129535.1) of *Klebsiella aerogenes*, which carries a different KPC variant (figure 19). Like in *C. freundii* F6, the genetic context of bla_{KPC-3} was analysed and showed that the bla_{KPC-3} is flanked by *ISKpn6* and *ISKpn7*. In the same contig other insertion sequences were identified, namely *ISPSY42-like* and another *ISKpn6* and *ISKpn7* sequences.

The bla_{GES-5} found in the *E. kobei* N10 is contained in a class 3 integron. In the same contig there are genes associated with mobile genetic elements, namely *repA*, *mobA* and *mobC* and the aminoglycoside resistance gene *aacA4*. This mobile structure is identical

to the plasmid pCR16 found in Rio Lis, Portugal (Teixeira et al., 2020), sharing the *bla*_{GES-5}, *intI3*, *repA*, *mobA* and *mobC* genes.

The genetic context of *bla*_{GES-5} found in *E. kobei* N10 is found in figure 31.

Figure 31. Genetic context of *bla*_{GES-5} found in *E. kobei* N10 and similar genetic contexts found in aquatic environments. plasmid pQ7 (GenBank accession no.FJ696404). CR16 (GenBank accession no. RBWI00000000) and CR11 (GenBank accession no. RBMO00000000).

7.4. In silico virulence factors

All genomes were inspected for virulence factors using the VF analyzer againt VFDB database. The results are shown in figure 32 and tables A8, A9 and A10.

Figure 32. Virulence factors found in *Citrobacter freundii* F6 (a), *Raoultella ornithinolytica* N9 and *Enterobacter* sp. N10 (c) obtained from VFDB.

The total number of virulence factors predicted were 142, 130 and 152, for *Citrobacter freundii* F6, *R. ornithinolytica* N9 and *E. kobei* N10 respectively. For all, the categories with more virulent factors attributed were secretion system, iron uptake, antiphagocytosis and adherence. *C. freundii* motility genes are in higher amount (n=14; 10 %) than in two other genomes. Genes related with stress adaptation were not detected in *R. ornithinolytica* N9.

Pathogenicity analysis was performed for all genomes using PathogenFinder 1.1 tool. The results obtained are shown in tables 21, A11, A12 and A13.

	Probability of being a human pathogen	Input proteome coverage (%)	Matched Pathogenic Families	Matched not Pathogenic Families	Result
C. freundii F6	0.843	1.95	90	7	predicted as human pathogen
R. ornithinolytica N9	0.819	1.65	90	8	predicted as human pathogen
E. kobei N10	0.739	1.75	73	18	predicted as human pathogen

Table 21. Results obtained from PathogenFinder 1.1 for *C. freundii* F6, *Raoultella ornithinolytica* N9 and *E. kobei* N10.

All strains were predicted as human pathogens with a probability varying from 0.739 in *E. kobei* N10 to 0.843 in *C. freundii* F6. The number of proteins related to pathogenic families varied from 73 in *E. kobei* N10 to 90 in *C. freundii* F6 and *R. ornithinolytica* N9.

V. Discussion

Infections caused by carbapenemase-producing bacteria (CPB) are usually associated with hospital settings (Tanner et al., 2019). Despite this, there are several studies reporting the emergence of CPB in the environment, including aquatic environments such as rivers (Aubron et al., 2005; Piedra-Carrasco et al., 2017; Teixeira et al., 2020), coastal waters, namely estuaries (Xin et al., 2019), lakes (Le Terrier et al., 2019), among others. However, little information about the presence of CPB in urban aquatic systems is available. Despite the lack of studies to assess the impact of these environments as antibiotic-resistant bacteria (ARB) and ARG reservoirs and on the spread of ARG, human exposure to these aquatic systems located in recreational areas can occur through direct contact (Hooban et al., 2020; Surette & Wright, 2017;Yang, et al., 2017). This study aimed to assess the presence and characterize CPB, focusing on the *Enterobacteriaceae* family, since it includes some of the most prevalent pathogens in hospital settings and *Enterobacteriaceae* resistant to carbapenems have been considered one of the main public health threats related with antibiotic resistance (Kotb et al., 2020; H. J. Tang et al., 2016, WHO, 2017).

Enterobacteriaceae are part of the group of bacteria commonly named coliforms (Martin et al., 2016). Coliforms are a group of microorganisms that inhabit the gut of both humans and other animals and which are used as indicators of water quality (mishra et al., 2018). In Portugal, as a quality criterion, Decree Law No. 236/98 of August 1, 1998 establishes a maximum recommendable value of 500 CFU/100 mL and a maximum admissible value of 10000 CFU/100 mL of total coliforms in surface water for human usage. In all months and sites sampled, the total coliform counts exceeded the maximum recommended value and in most of the months sampled, Pond 1, Pond 2, Pond 3 and Dos Santos Mártires channel exceeded the maximum admissible value, having in some cases been 1,3 to 50-fold higher, thus indicating that these waters have poor microbiological quality.

Although in this study the cefotaxime-resistant bacteria were not characterized, they represented a significant number comparatively to the total number of CFU found in some sampling sites. Further studies focused on the characterization of these isolates would help to understand whether this resistance is due to natural or acquired mechanisms To slow down the spread of resistance to 3rd generation cephalosporins, implies that these

antibiotics may be used for a longer time and the carbapenems reserved for extreme and punctual cases.

In this study, the percentage of imipenem-resistant bacteria varied from 0 to 1 %. However, though in low amounts, imipenem-resistant bacteria were present in Pond 1, Pond 3 and Dos Santos Mártires channel. In Pond 1 and Dos Santos Mártires channel these bacteria were found during all sampling months. In Pond 3 imipenem-resistant bacteria were found only in November 2019. On average, and over the all sampling months, pond 1 and its estuarine adjacent channel demonstrated the highest values of total coliforms load, imipenem-resistant and cefotaxime-resistant bacteria. Moreover, results demonstrated that over the sampling period there were fluctuations both in the total number and in the percentage of bacteria resistant to cefotaxime and imipenem. This neither tendentious nor stable values may be due to changes in climatic conditions, namely temperature and rainfall which can affect the survival and load of coliforms (Sampson et al., 2006; Tornevi et al., 2014) during sampling period and/or to the input of these bacteria, for instance from urban and hospital wastewaters, which are described in some situations as sources of ARG and ARB to aquatic environments (Rodriguez-Mozaz et al., 2015). Unfortunately, since there is no official source of information available about the route the water takes up to reach these water ponds, it was not possible until the end of this study to determine the primary source of these bacteria. When compared for example with a study by Teixeira et al., 2020 in river Lis, pond 1 reached values of imipenem resistant bacteria (1 %) higher than some sampled sites, demonstrating that in some cases, these environments can reach values higher than aquatic environments which receive wastewaters.

The bacterial abundance and diversity in m-FC agar also varied in each sample, demonstrating a great heterogeneity between sampling periods. Once again, it is not known if this is due to climatic conditions, and/or due to input of bacteria into these environments.

It was also verified that isolates sharing identical genomic characteristics persist in one urban pond (Pond 1) at least for 9 months. For instance, *C. freundii* F6 and *Citrobacter* N6, that were collected 9 months apart, exhibited the same BOX-profile. We also observed isolates affiliated to *Raoutella ornithinolytica* isolated from pond 1 and from its adjacent estuarine channel showing the same BOX-profiles and, suggesting that these bacteria are not limited to urban ponds. It is not known whether this is due to these bacteria being constantly added to urban ponds, or if they survive over time. Although our aim was to focus on *Enterobacteriaceae* resistant to imipenem (due to the high risk they pose to public health), bacteria belonging to the genus *Aeromonas* were also selected, due to their colonies morphological similarities with *Enterobacteriaceae* colonies in m-FC agar and due to their intrinsic resistance to carbapenems. Although they were not the focus of this study, they were maintained and characterized since the selected isolates harbored genes encoding non-intrinsic carbapenemases.

A considerable diversity of CPB, at species and strain level, with acquired mechanisms was observed, presenting different ARG, mobile genetic elements (MGE) and antimicrobial susceptibility phenotypes.

Analysis of BOX-profiles, 16S rRNA gene sequences, plasmid profiles, antibiotic susceptibility profiles, and detection of carbapenemase-encoding genes and integrase genes, suggests that *R. ornithinolytica* isolated in pond 1 (N1, N8 and N9) and in Dos Santos Mártires channel estuary (N12 and N13) are probably clonal, thus suggesting the transfer of CPB from urban ponds to the estuary. In Ria de Aveiro there are several activities, such as aquaculture, tourism, sports, fishing, among others, thus the spread of these bacteria to these aquatic environments may contribute not only for ARG dissemination but also for direct human exposure (Lillebø et al., 2019). Previous studies performed in Ria de Aveiro revealed the presence of ARG, such as several β -lactamases (*bla*_{SHV}, *bla*_{OXA-B}, *cphA*, etc) (Henriques et al., 2006) and genes conferring resistance to tetracyclines (Henriques et al., 2008), however, as far as we know, there aren't reports of carbapenem resistance genes associated to MGE in this aquatic environment.

Based on the results from the antibiotic susceptibility tests (AST), we observed that more than ³⁄₄ of the isolates are MDR, that is, resistant to at least one antibiotic from at least 3 different antibiotic classes. The β -lactams have been used for empirical treatment for more than 70 years (Thakuria & Lahon, 2013). Infections caused by members of the family *Enterobacteriaceae* and the genus *Aeromonas*, in some situations, were already associated to high mortality rates (Rosso et al., 2019; Scarsi et al., 2006). During our study we observed that the majority of isolates were resistant to almost all β -lactams tested, mainly due to the presence of carbapenemase-enconding genes such as *bla*_{GES-5} and *bla*_{KPC} conferring resistant to all β -lactams tested. Although *Aeromonas* species harbour an intrinsic carbapenemase (*cphA*) it doesn't confer resistant to other β -lactams such as cefotaxime or aztreonam (Bottoni et al., 2015). A study by Aravena-Román et al., 2012 demonstrated that amoxicillin was effective against almost all *Aeromonas* isolates, contrary to our results. In the case of *Enterobacteriaceae* family, in the past, almost all isolates were susceptible to carbapenems (Papp-wallace et al., 2011) and until 1990 known carbapenemases were associated to the chromosome of some organisms (Queenan & Bush, 2007), however we observed that almost all isolates were resistant to all β -lactams, including all carbapenems due to the presence of carbapenemases associated to MGE.

To determine which genetic determinants were involved in these resistance phenotypes and whether they were associated with mobile genetic elements, several carbapenemase- and class 1, 2 and 3 integrase encoding genes were screened.

Although with the primers and conditions used it was not possible to detect cphA gene in Aeromonas isolates, it is known that some of Aeromonas species harbor this gene that encodes carbapenems and penems resistance (Chen et al., 2012). Nevertheless, all Aeromonas isolated during this study carried blages-5, associated to class 3 integron, with the exception of Aeromonas O7, where no carbapenem resistance mechanisms were detected. Since among β -lactams antibiotics, this isolate is only resistant to carbapenems, it is thought that this resistance may be due to the presence of the *cphA* gene, once as previously mentioned, this gene confers specific resistance to carbapenems but not to other β -lactam antibiotics. Although *bla*_{GES-5} had already been found in *Aeromonas* (Girlich et al., 2012), as far as we know, this is the first report in Portugal of Aeromonas carrying *bla*_{GES-5}. This genus, associated to aquatic environments, is described as a vehicle for the spread of ARG (Piotrowska et al., 2017). Despite its intrinsic resistance to carbapenems, the presence of *bla*_{GES-5} in these organisms may represent a risk for the spread of carbapenemases to other susceptible bacteria. Among isolates belonging to Enterobacteriaceae, blages-5 were already found in Enterobacter and Klebsiella species (Gomi et al., 2018), however, as far as we know, we report for the first time its presence in R. ornithinolytica.

Regarding *Enterobacter* sp. N11 and Enterobacter N15, both isolated in pond 3, none of the targeted carbapenemase-encoding genes was detected. In *Enterobacter* species, imipenem resistance may be due to the derepression of the intrinsic *ampC* gene together with changes in cell membrane permeability (Boyd et al., 2020) or due to the presence of another carbapenemase gene not detected in this study.

For the remaining 27 isolates at least one carbapenemase gene was detected and 7 of them harbored two carbapenemase genes (bla_{KPC-3} and bla_{GES-5} or bla_{KPC-3} and bla_{VIM-1}).

The KPC encoding gene was the carbapenemase-encoding gene more prevalent in the collection, detected in 70 % of the isolates. It was identified in all *Citrobacter* (n=8), all *R. ornithinolytica* (n=11), in the only *Klebsiella* isolate and in one *Enterobacter* sp.

The IncFIA/FII conjugative plasmid pBK30683 has been described in both aquatic environments and hospital settings (Tacão et al., 2017; Teixeira et al., 2020), carrying a *bla*_{KPC} gene but also additional genetic determinants encoding resistance to 4 antibiotic classes, namely β -lactams, aminoglycosides, sulfonamides and trimethoprim (Chen et al., 2014). This plasmid was detected in two different sampling sites and is likely present in 23.81 % of *bla*_{KPC}-carrying isolates, belonging to *R. ornithinolytica* species. The resistance phenotype is according to these ARG. In Portugal pBK30683-like plasmids were already found in Lis river (Teixeira et al., 2020), and in hospital settings (Rodrigues et al., 2016; Tacão et al., 2017). Previously mentioned studies reported the presence of this plasmid in K. pneumoniae and E. coli. We report its presence for the first time in R. ornithinolytica, demonstrating that this plasmid can be present in different species. Although conjugation assays were not successful under the experimental conditions used in this study, transference of carbapenemase-encoding genes may be possible, since this plasmid carries the required conjugation machinery/genes. Although not inspected for the presence of this plasmid, N8 and N13 isolates were similar (probably clones) to isolates N1, N9 and N12 R. ornithinolytica isolates, so, they are likely to harbor pBK30683 plasmid. Even so this hypothesis should be confirmed since, as we observed in this study for other isolates, strains with identical BOX profiles may harbor distinct plasmids.

During this study it was not possible to fully characterize the bla_{VIM-1} class 1 integron, however, from the cassette array detailed so far, this integron seems highly similar to one that was detected previously in *K. pneumoniae* and *E. coli* in a hospital in Spain between 2005 and 2007 (Tato et al., 2010) with cassettes bla_{VIM-1} , *aacA4*, *dfrII*, *aadA1* and *catB2*. The *bla*_{VIM} variants are often associated to class 1 integrons (Khosravi et al., 2011; Tato et al., 2010; Yatsuyanagi et al., 2004). The *bla*_{VIM-1} is often associated with species of *Enterobacteriaceae* (Bonardi & Pitino, 2019) and it was already described in *C. freundii* (Villa et al., 2017).

The *Raoultella*, *Citrobacter*, *Enterobacter* and *Klebsiella* genera are ubiquitous in nature (Oliveira et al., 2016; Pati et al., 2018; Podschun & Ullmann, 1998; Zamani et al., 2019) and *Aeromonas* genus is well known for inhabiting aquatic environments (Senderovich et al., 2008). So, the presence of these organisms is expectable even in the

absence of anthropogenic activities. However, the presence of integrons and ARG such as *sul1* can be used as indicator of water contamination with ARG (Adelowo et al., 2018). Ponds 1, 2 and 3 seems to be connected, having the same water route. However, all CPB were collected in Pond 1 or in its adjacent estuarine channel, which suggests that there may be an input of contaminated water upstream Pond 1.

Three isolates were selected for whole genome sequencing (WGS). The coverage values, obtained in WGS of *C. freundii* F6, *R. ornithinolytica* N9 and *E. kobei* N10 are higher than 50^{x} , which has been suggested as enough to ensure good genome assembly through Illumina sequencing (Desai et al., 2013). Additionally, according to the information available regarding genomes deposited in the PATRIC database (Gillespie et al., 2011), belonging to the same species, the GC content and genome size of the three sequenced genomes are within the expected values.

The correct phylogenetic affiliation is fundamental, in both clinical and research microbiology laboratories (Franco-Duarte et al., 2019; Y. W. Tang et al., 1998).

Based on ANIb, ANIm, dDDH, MLSA, TYGS and MALDI-TOF, N9 isolate affiliated to *R. ornithinolytica* and based on ANIb, ANIm, dDDH and TYGS, F6 isolate affiliated to *C. freundii*. Moreover *C. freundii* F6 was affiliated to ST 270. This sequence type was assigned to an isolate obtained from a diarrheal patient, in ShiJiaZhuang, China, 2016 (PubMLST, isolate CitroHB2016003, id: 222), demonstrating that this STcrossed continents. Since there is no more information about this strain, genomic comparison between these two isolates is not possible.

Based on MLST analysis and *hsp60* typing, the clonal complex of *Enterobacter* members has been regrouped (Hoffmann & Roggenkamp, 2003; Miyoshi-Akiyama et al., 2013; Paauw et al., 2008). During this study, it was noted that the genomes of the *E. kobei* N10 and *E. kobei* JCM 8580^T, described as type strain of *E. kobei* species (Kosako et al., 1996) do not belong to the same species. Brady et al., 2013 observed that there are possibly two different strains deposited as type strain, namely *E. kobei* DSM 13645^T and *E. kobei* JCM 8580^T Aditionally, based on whole-genome sequence analysis and the values obtained from ANI and dDDH, *E. kobei* N10, is phylogenetically close to *E. kobei* DSM 13645^T and distant from *E. kobei* JCM 8580^T. Morand et al., 2009 grouped *Enterobacter* strains in clusters, using *hsp60* partial sequences. One of them was *hsp60* sequence of *E. kobei* ATCC BAA260^T. However, this sequence, obtained from GenBank, do not correspond to *hps60* sequence of *E. kobei* ATCC BAA260^T genome, deposited in PATRIC database. The sequence used by Morand et al., 2009 is 100 % identical to *hps60*

sequence of *E. kobei* DSM 13645 ^T, suggesting that there are sequences from 2 different organisms deposited with the same strain name. However, our results based on ANIb, ANIm, dDDH, TYGS and MLSA, strongly suggest that *E. kobei* N10 is phylogenetically related with *E. kobei* DSM 13645^T and both belong to the *E. kobei* species. Moreover, based on MLST we described a new strain of *E. kobei* N10 with three new genetic alleles (*fusA, leuS* and *rplB*) to which a new ST (1378) was assigned.

From whole-genome sequence analysis it was noted that *C. freundii* F6 and *R. ornithinolytica* N9 harbour a higher percentage (5.84 and 5.60 % respectively) of genes related to virulence, disease, defense, phages, prophages, transposable elements and plasmids than their representative type strains (3.85 and 3.38 % respectively). Further studies are needed to compare these strains with other strains of the same species, collected from different settings including hospitals and other environmental compartments.

C. freundii F6 harbors an integron array identical to an integron present in an *Aeromonas rivipollensis* P2G1 plasmid, recovered from Ter River in Ripoll, Spain (Marti & Balcázar, 2012). The presence of this integron, carrying gene cassettes encoding resistance to sulfonamides (*sul1*), phenicols (*catB3*), some β -lactams (*bla*_{OXA-1}), aminoglycoside (*aacA4-cr*) and fluoroquinolones (*aacA4-cr*) confers resistance to 5 antibiotic classes, thus conferring a MDR phenotype.

Isolates *E. kobei* N10 and *C. freundii* F6 harbour the same bla_{KPC-3} genetic context, a transposon-borne bla_{KPC-3} . It was not possible to determine if this bla_{KPC-3} -harbouring region is part of a plasmid, to which bla_{KPC-3} is usually associated (Swathi et al., 2016). The most similar (%) sequence found in NCBI database was a region of *Klebsiella aerogenes* pSECR18-1644 plasmid (MT129535.1). Our results suggest that it can be a new genetic context, however further studies are needed to confirm this hypothesis. Nevertheless, the *ISKpn6* and *ISKpn7* insertion sequences found flanking bla_{KPC-3} gene have been often described upstream and downstream of bla_{KPC-3} gene, respectively (Cuzon et al., 2011; Yi Yun Liu et al., 2016; Naas et al., 2008, 2012; D. Wang et al., 2014).

The *bla*_{GES-5} was found both on chromosome (in *R. ornithinolytica* N9) and in a plasmid (*E. kobei* N10). The fact that *bla*_{GES-5} was found in at least 2 different genetic contexts, namely chromosome and plasmid-borne, always associated to class 3 integrons (*Klebsiella* sp. N14, *Aeromonas* sp. O3, *R. ornithinolytica* N9 and *E. kobei* N10) suggests that class 3 integrons may play an important role in its dissemination. Although this class

of integrons is less prevalent than class 1, some studies suggest that they may be involved in the spread of ARG from hospital to the environment and vice-versa (Barraud et al., 2013; Simo Tchuinte et al., 2016). The genetic context of *E. kobei* N10 *bla*_{GES-5} is similar to a region found previously in a plasmid identified in a *C. freundii* isolate detected in River Lis water (Teixeira, Tacão, Pureza, et al., 2020). Further studies are necessary to understand if this genetic structure is emerging in Portuguese aquatic environments, representing a threat to ARG dissemination. This can be a worrying situation once Lis River and Pond 1 are around 100 km apart and also because these similar structures were found in two different organisms, demonstrating that it can be present in different species.

In Portugal, *bla*_{KPC-3} was already found in both clinical settings (Aires-De-Sousa et al., 2019; Caneiras et al., 2018; Manageiro et al., 2015, 2018; Rodrigues et al., 2016) and in the environment (Teixeira et al., 2020). Likewise, *bla*_{GES-5} (almost always associated with *int13*) in Portugal was also found in both hospital (Manageiro et al., 2015, 2018; Perdigão et al., 2020), and in the environment ((Manageiro et al., 2014; Teixeira, Tacão, Pureza, et al., 2020). Additionally to studies previously mentioned, a study by Gatica *et al* reported that *bla*_{GES} is one of the β -lactamases associated to integrons in WWTP from Europe, suggesting that its origin may be wastewater effluent water (Gatica et al., 2016).

We observed that in the environment, at least two isolates (*Citrobacter* F6 and *Citrobacter* N6), collected 9 months apart and with the same BOX-profile, suggesting that they are the same strain, harboured bla_{KPC} . It means that organisms possessing these enzymes either are continuously being introduced in these aquatic environments or can survive for at least 9 months in the environment where, supposedly there isn't selective pressure exerted by carbapenems. Based on literature that we found (above described), in Portugal, bla_{KPC} is more prevalent than bla_{GES-5} and is found mainly in clinical settings.

In this work we also observed that class 1 and 3 integrons can be involved in dissemination of these carbapenemase-enconding genes and other ARG which confer resistance to other antibiotic classes, once we found different ARG linked to them and bla_{GES-5} was always linked to class 3 integrons.

In silico analysis of *C. freundii* F6, *R. ornithinolytica* N9 and *E. kobei* N10 genome sequences suggests they have the potential to cause disease since they carry genes associated with virulence factors and have been predicted as human pathogens. These species have already been described as human pathogens (Hoffmann et al., 2005; L. Liu

et al., 2018; Seng et al., 2016). Despite these results and reports associating these bacteria to infections, further pathogenicity studies are needed.

Further studies are needed to fully elucidate the genetic contexts of the detected ARG, not only those that confer carbapenem resistance, but also genes that confer resistance to other antibiotics, in order to understand how these genes are circulating, disseminating and accumulating in organisms and the real risk they represent to Public Health. Since a significant diversity of ARG associated with different genetic contexts has been detected, which are often found in clinical settings and wastewater treatment plants (WWTP) effluents, it would be important to determine the possible source(s) of environmental contamination in order to stop the spread of ARG, mainly to last-resort antibiotics, since they are the last step that bacteria have to overcome to put the humanity in a scenario similar to that observed in pre-antibiotic era.

VI. Conclusion

Through this study it was possible to conclude that although the amount of CPB in studied aquatic environments is low, a significant diversity of these bacteria was detected, with carbapenemases genes being associated with different genetic contexts, some of them associated to mobile genetic elements which confer MDR phenotypes. It was also concluded that the same CPB strains were found in these aquatic environments for a long period of time and that they were able to spread to other aquatic environments. Further studies are needed to elucidate the source of these ARG and other ARG especially those conferring resistance to last-resort antibiotics, to evaluate which other natural environments can be also contaminated, how can we mitigate their dissemination and the real risk that they represent for Public Health.

VII. References

- Abraham, E. P., & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. *Journal of Engineering Mechanics*. 127(9), 927–931. https://doi.org/10.1038/146837a0
- Adelowo, O. O., Helbig, T., Knecht, C., Reincke, F., Mäusezahl, I., & Müller, J. A. (2018). High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. *PLoS ONE*, 13(11), 1–15. https://doi.org/10.1371/journal.pone.0208269
- Agga, G. E., Arthur, T. M., Durso, L. M., & Harhay, D. M. (2015). Antimicrobialresistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. *PLoS ONE*, 10(7), 1–19. https://doi.org/10.1371/journal.pone.0132586
- Aires-De-Sousa, M., De La Rosa, J. M. O., Gonçalves, M. L., Pereira, A. L., Nordmann, P., & Poirel, L. (2019). Epidemiology of carbapenemase-producing *Klebsiella pneumoniae* in a hospital, Portugal. *Emerging Infectious Diseases*, 25(9), 1632– 1638. https://doi.org/10.3201/eid2509.190656
- Albiger, B., Glasner, C., Struelens, M. J., Grundmann, H., & Monnet, D. L. (2015). Carbapenemase-producing *Enterobacteriaceae* in Europe : assessment by national experts from 38 countries, May 2015. *Euro Surveill*, 20(45), 12.
- Alexander, J., Bollmann, A., Seitz, W., & Schwartz, T. (2015). Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. *Science of the Total Environment*, 512–513, 316–325. https://doi.org/10.1016/j.scitotenv.2015.01.046
- Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., & Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. *ISME Journal*, 3(2), 243–251. https://doi.org/10.1038/ismej.2008.86
- Almakki, A., Jumas-bilak, E., Marchandin, H., & Licznar-fajardo, P. (2019). Science of the total environment antibiotic resistance in urban runoff. *Science of the Total Environment*, 667, 64–76. https://doi.org/10.1016/j.scitotenv.2019.02.183
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Amarasiri, M., Sano, D., & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. *Critical Reviews in Environmental* Science and Technology, 0(0), 1–44. https://doi.org/10.1080/10643389.2019.1692611
- Araújo, S., Henriques, I. S., Leandro, S. M., Alves, A., Pereira, A., & Correia, A. (2014). Gulls identified as major source of fecal pollution in coastal waters: A microbial source tracking study. *Science of the Total Environment*, 470–471, 84–91. https://doi.org/10.1016/j.scitotenv.2013.09.075
- Aravena-Román, M., Inglis, T. J. J., Henderson, B., Riley, T. V., & Chang, B. J. (2012). Antimicrobial susceptibilities of *Aeromonas* strains isolated from clinical and environmental sources to 26 antimicrobial agents. *Antimicrobial Agents and Chemotherapy*, 56(2), 1110–1112. https://doi.org/10.1128/AAC.05387-11
- Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. In *Infection and Drug Resistance* (Vol. 11, pp. 1645–1658). https://doi.org/10.2147/IDR.S173867

- Aubron, C., Poirel, L., Ash, R. J., & Nordmann, P. (2005). Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerging Infectious Diseases, 11(2), 260–264. https://doi.org/10.3201/eid1102.030684
- Auch, A. F., von Jan, M., Klenk, H. P., & Göker, M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. *Standards in Genomic Sciences*, 2(1), 117–134. https://doi.org/10.4056/sigs.531120
- Aziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. *BMC Genomics*, *9*, 1–15. https://doi.org/10.1186/1471-2164-9-75
- Baharoglu, Z., Bikard, D., & Mazel, D. (2010). Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. *PLoS Genetics*, 6(10), 1–10. https://doi.org/10.1371/journal.pgen.1001165
- Barlow, M., & Hall, B. G. (2002). Phylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years. *Journal of Molecular Evolution*. 314–321. https://doi.org/10.1007/s00239-002-2328-y
- Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2013). An antibiotic-resistant class 3 integron in an *Enterobacter cloacae* isolate from hospital effluent. *Clinical Microbiology and Infection*, 19(7), E306–E308. https://doi.org/10.1111/1469-0691.12186
- Bentley, R., & Bennett, J. W. (2003). What is an antibiotic? Revisited. Advances in Applied Microbiology, 52, 303–331. https://doi.org/10.1016/S0065-2164(03)01012-8
- Benveniste, R., & Davies, J. (1973). Aminoglycoside antibiotic inactivating enzymes in Actinomycetes similar to those present in clinical isolates of antibiotic resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America, 70(8), 2276–2280. https://doi.org/10.1073/pnas.70.8.2276
- Biyela, P. T., Lin, J., & Bezuidenhout, C. C. (2004). The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. *Water Science and Technology*. 50, 45–50. https://doi.org/10.2166/wst.2004.0014
- Bonardi, S., & Pitino, R. (2019). Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. *Italian Journal of Food Safety*, 8(2). https://doi.org/10.4081/ijfs.2019.7956
- Bonomo, R. A., Burd, E. M., Conly, J., Limbago, B. M., Poirel, L., Segre, J. A., & Westblade, L. F. (2018). Carbapenemase-producing organisms: a global scourge. *Clinical Infectious Diseases*, 66(8), 1290–1297. https://doi.org/10.1093/cid/cix893
- Bottoni, C., Marcoccia, F., Compagnoni, C., Colapietro, M., Sabatini, A., Celenza, G., Segatore, B., Maturo, M. G., Amicosante, G., & Perilli, M. (2015). Identification of new natural *CphA* metallo-β-lactamases *CphA4* and *CphA5* in *Aeromonas veronii* and *Aeromonas hydrophila* isolates from municipal sewage in central Italy. *Antimicrobial Agents and Chemotherapy*, *59*(8), 4990–4993. https://doi.org/10.1128/AAC.00628-15
- Boyd, D. A., Lefebvre, B., Mataseje, L. F., Gagnon, S., Roger, M., Savard, P., Longtin, J., & Mulvey, M. R. (2020). *Enterobacter* sp. N18-03635 harbouring *blaFRI-6* class A carbapenemase, Canada. *Journal of Antimicrobial Chemotherapy*, 75(2), 486– 488. https://doi.org/10.1093/jac/dkz438

- Brady, C., Cleenwerck, I., Venter, S., Coutinho, T., & De Vos, P. (2013). Taxonomic evaluation of the genus *Enterobacter* based on Multilocus Sequence Analysis (MLSA): Proposal to reclassify *E. Nimipressuralis* and *E. Amnigenus* into *Lelliottia* gen. nov. As *Lelliottia Nimipressuralis* comb. nov. and *Lelliottia Amnigena* comb. nov., respectively, *E. Gergoviae* and *E. Pyrinus* into *Pluralibacter* gen. nov. as *Pluralibacter Gergoviae* comb. nov. and *Pluralibacter Pyrinus* comb. nov., respectively, *E. Cowanii, E. Radicincitans*, E. Oryzae and *E. Arachidis* into *Kosakonia* gen. nov. as *Kosakonia Cowanii* comb. nov., *Kosakonia Radicincitans* comb. nov., *Kosakonia Oryzae* comb. nov. and *Kosakonia Arachidis* comb. nov., respectively, and *E. Turicensis, E. Helveticus* and *E. Pulveris* into *Cronobacter* as *Cronobacter Zurichensis* nom. nov., respectively, and emended description of the genera *Enterobacter* and *Cronobacter*. *Systematic and Applied Microbiology*, *36*(5), 309–319. https://doi.org/10.1016/j.syapm.2013.03.005
- Brandt, C., Braun, S. D., Stein, C., Slickers, P., Ehricht, R., Pletz, M. W., & Makarewicz, O. (2017). In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. *Scientific Reports*. 7, 1–13. https://doi.org/10.1038/srep43232
- Brolund, A., Lagerqvist, N., Byfors, S., Struelens, M. J., Monnet, D. L., Albiger, B., & Kohlenberg, A. (2019). Worsening epidemiological situation of carbapenemaseproducing *Enterobacteriaceae* in Europe, assessment by national experts from 37 countries, July 2018. *Euro Surveill.*, 9(24), 1–8. https://doi.org/10.2807/1560-7917.ES.2019.24.9.1900123
- Brown, E. D., & Wright, G. D. (2016). Antibacterial drug discovery in the resistance era. *Nature*, *529*(7586), 336–343. https://doi.org/10.1038/nature17042
- Buchy, P., Ascioglu, S., Buisson, Y., Datta, S., Nissen, M., Tambyah, P. A., & Vong, S. (2019). Impact of vaccines on antimicrobial resistance. *International Journal of Infectious Diseases*. 90, 188-196. https://doi.org/10.1016/j.ijid.2019.10.005
- Bush, K. (2010). Bench-to-bedside review : The role of β -lactamases in antibioticresistant Gram-negative infections. *Critical Care*, 14(224), 8. https://doi: 10.1186/cc8892
- Bush, K., & Bradford, P. A. (2016). β-lactams and β-lactamase inhibitors: An Overview. *Cold Spring Harb Perspect Med*, 6, 23. https://doi.org/10.1101/cshperspect.a025247
- Bush, K., & Bradford, P. A. (2019). Interplay between β-lactamases and new β-lactamase inhibitors. *Nature Reviews Microbiology*, *17*(5), 295–306. https://doi.org/10.1038/s41579-019-0159-8
- Caneiras, C., Calisto, F., da Silva, G. J., Lito, L., Melo-Cristino, J., & Duarte, A. (2018). First description of colistin and tigecycline-resistant *Acinetobacter baumannii* producing KPC-3 carbapenemase in Portugal. *Antibiotics*, 7(4), 1–11. https://doi.org/10.3390/antibiotics7040096
- Cantón, R. (2009). Antibiotic resistance genes from the environment: A perspective through newly identified antibiotic resistance mechanisms in the clinical setting. *Clinical Microbiology and Infection*, *15*, 20–25. https://doi.org/10.1111/j.1469-0691.2008.02679.x
- Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., & Threlfall, E. J. (2005). Identification of plasmids by PCR-based replicon typing. *Journal of Microbiological Methods*, 63(3), 219–228. https://doi.org/10.1016/j.mimet.2005.03.018
- Carattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., Aarestrup, F. M., & Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. *Antimicrobial Agents*
and Chemotherapy, 58(7), 3895-3903. https://doi.org/10.1128/AAC.02412-14

- Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. *The Lancet Infectious Diseases*, 19(1), 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4
- Céréghino, R., Biggs, J., Oertli, B., & Declerck, S. (2008). The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. *Hydrobiologia*, 597(1), 1–6. https://doi.org/10.1007/s10750-007-9225-8
- Chen, B., Yang, Y., Liang, X., Zhang, T., & Li, X. (2013). Metagenomic profiles of antibiotic human impacted estuary and deep ocean sediments. *Environmental Science and Technology*, 47, 12753–12760. https://doi.org/10.1021/es403818e
- Chen, Liang, Chavda, K. D., Melano, R. G., Hong, T., Rojtman, A. D., Jacobs, M. R., Bonomo, R. A., & Kreiswirth, B. N. (2014). Molecular survey of the dissemination of two *bla*_{KPC}-harboring IncFIA plasmids in New Jersey and New York hospitals. *Antimicrobial Agents and Chemotherapy*, 58(4), 2289–2294. https://doi.org/10.1128/AAC.02749-13
- Chen, Lihong, Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: A reference database for bacterial virulence factors. *Nucleic Acids Research*, 33, 325– 328. https://doi.org/10.1093/nar/gki008
- Chen, P., Ko, W., & Wu, C. (2012). Complexity of β-lactamases among clinical Aeromonas isolates and its clinical implications. Journal of Microbiology, Immunology and Infection, 45(6), 398–403. https://doi.org/10.1016/j.jmii.2012.08.008
- Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. *Cell*, 159(6), 1300– 1311. https://doi.org/10.1016/j.cell.2014.11.017
- Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., De Meyer, S., & Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. *International Journal of Systematic and Evolutionary Microbiology*, 68(1), 461–466. https://doi.org/10.1099/ijsem.0.002516
- Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics. *Current Biology*, 19(11), 1–8. https://doi.org/10.1016/j.cub.2009.04.001
- Codjoe, F. S., & Donkor, E. S. (2018). Carbapenem resistance: a review. *Medical Sciences*. 6(1), 1–28. https://doi.org/10.3390/medsci6010001
- Cosentino, S., Voldby Larsen, M., Møller Aarestrup, F., & Lund, O. (2013). PathogenFinder - distinguishing friend from foe using bacterial whole genome sequence data. *PLoS ONE*, 8(10). https://doi.org/10.1371/journal.pone.0077302
- Cuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in *bla*_{KPC} gene mobilization. *Antimicrobial Agents and Chemotherapy*, *55*(11), 5370–5373. https://doi.org/10.1128/AAC.05202-11
- Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Bürgmann, H. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. *Frontiers in Microbiology*, *3*, 1–18. https://doi.org/10.3389/fmicb.2012.00106
- Czekalski, N., Sigdel, R., Birtel, J., Matthews, B., & Bürgmann, H. (2015). Does human activity impact the natural antibiotic resistance background? Abundance of

antibiotic resistance genes in 21 Swiss lakes. *Environment International*, 81, 45–55. https://doi.org/10.1016/j.envint.2015.04.005

- D'Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. *Science*, *311*(5759), 374–377. https://doi.org/10.1126/science.1120800
- Dallenne, C., da Costa, A., Decré, D., Favier, C., & Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important βlactamases in *Enterobacteriaceae*. *Journal of Antimicrobial Chemotherapy*, 65(3), 490–495. https://doi.org/10.1093/jac/dkp498
- Datta, N., & Kontomichalou, P. (1965). Penicillase synthesis controled by infectious R factors in *Enterobacteriaceae*. *Nature Publishing Group*, 208, 239–241. https://doi.org/10.1038/208239a0
- David, S., Reuter, S., Harris, S. R., Glasner, C., Feltwell, T., Argimon, S., Abudahab, K., Goater, R., Giani, T., & Errico, G. (2019). Epidemic of carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by nosocomial spread. *Nature Microbiology*, 4, 1919–1929. https://doi.org/10.1038/s41564-019-0492-8
- Decree-Law no. 236/98 August 1, 1998 of environment ministry. Diário da República no. 176/1998, Series I-A de 1998-08-01
- Del Castillo, C. S., Hikima, J. I., Jang, H. Bin, Nho, S. W., Jung, T. S., Wongtavatchai, J., Kondo, H., Hirono, I., Takeyama, H., & Aokia, T. (2013). Comparative sequence analysis of a multidrug-resistant plasmid from *Aeromonas hydrophila*. *Antimicrobial Agents and Chemotherapy*, 57(1), 120–129. https://doi.org/10.1128/AAC.01239-12
- Deng, Y., Weng, X., Li, Y., Su, M., Wen, Z., Ji, X., Ren, N., Shen, B., Duan, Y., & Huang, Y. (2019). Late-stage functionalization of platensimycin leading to multiple analogues with improved antibacterial activity in vitro and in vivo. *Journal of Medicinal Chemistry*, 62(14), 6682–6693. https://doi.org/10.1021/acs.jmedchem.9b00616
- Desai, A., Marwah, V. S., Yadav, A., Jha, V., Dhaygude, K., Bangar, U., Kulkarni, V., & Jere, A. (2013). Identification of optimum sequencing depth especially for *de novo* genome assembly of small genomes using next generation sequencing data. *PLoS ONE*, 8(4). https://doi.org/10.1371/journal.pone.0060204
- Devarajan, N., La, A., Graham, N. D., Meijer, M., Prabakar, K., Mubedi, J. I., Elongo, V., Mpiana, P. T., Ibelings, B. W., Wildi, W., & Pote, J. (2015). Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. *Environmental Science and Technology*, 49(11), 6528–6537. https://doi.org/10.1021/acs.est.5b01031
- Djenadi, K., Zhang, L., Murray, A. K., & Gaze, W. H. (2018). Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. *Integrative Medicine Research*, *15*, 262–267. https://doi.org/10.1016/j.jgar.2018.07.013
- Duin, D. Van, & Doi, Y. (2017). The global epidemiology of carbapenemase- producing *Enterobacteriaceae*. *Virulence*, 8(4), 460–469. https://doi.org/10.1080/21505594.2016.1222343
- Essack, S. Y. (2001). The development of β-lactam antibiotics in response to the evolution of β-lactamases. *Pharmaceutical Research*, 18(10), 1391–1399. https://doi.org/10.1023/A:1012272403776
- European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.
- Fajardo, A., Linares, J. F., & Martínez, J. L. (2009). Towards an ecological approach to antibiotics and antibiotic resistance genes. *Clinical Microbiology and Infection*, 15,

14-16. https://doi.org/10.1111/j.1469-0691.2008.02688.x

- Fernández-Bravo, A., & Figueras, M. J. (2020). An update on the genus *Aeromonas*: Taxonomy, epidemiology, and pathogenicity. In *Microorganisms*. 8(1), 129. https://doi.org/10.3390/microorganisms8010129
- Fernández, L., & Hancock, R. E. W. (2012). Adaptive and mutational resistance : role of porins and efflux pumps. *Clin. Microbiol. Rev* 25(4), 661-681. https://doi.org/10.1128/CMR.00043-12
- Figueras, M. J., Guarro, J., & Martínez-Murcia, A. (2000). Clinically relevant *Aeromonas* species. *Clinical Infectious Diseases*, 30(6), 988–988. https://doi.org/10.1086/313837
- Finley, R. L., Collignon, P., Larsson, D. G. J., Mcewen, S. A., Li, X. Z., Gaze, W. H., Reid-Smith, R., Timinouni, M., Graham, D. W., & Topp, E. (2013). The scourge of antibiotic resistance: The important role of the environment. *Clinical Infectious Diseases*, 57(5), 704–710. https://doi.org/10.1093/cid/cit355
- Fonseca, E. L., Andrade, B. G. N., & Vicente, A. C. P. (2018). The resistome of lowimpacted marine environments is composed by distant Metallo-β-lactamases homologs. *Frontiers in Microbiology*, 9, 1–7. https://doi.org/10.3389/fmicb.2018.00677
- Franco-Duarte, R., Černáková, L., Kadam, S., Kaushik, K. S., Salehi, B., Bevilacqua, A., Corbo, M. R., Antolak, H., Dybka-Stępień, K., Leszczewicz, M., Tintino, S. R., de Souza, V. C. A., Sharifi-Rad, J., Coutinho, H. D. M., Martins, N., & Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms—from past to present. *Microorganisms*. 7(5), 130. https://doi.org/10.3390/microorganisms7050130
- Furuya, E. Y., & Lowy, F. D. (2006). Antimicrobial-resistant bacteria in the community setting. *Nature Reviews Microbiology*, 4(1), 36–45. https://doi.org/10.1038/nrmicro1325
- Galán, J. C., González-Candelas, F., Rolain, J. M., & Cantón, R. (2013). Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: From the resistome to genetic plasticity in the β-lactamases world. *Frontiers in Microbiology*, 4, 1–17. https://doi.org/10.3389/fmicb.2013.00009
- Galler, H., Feierl, G., Petternel, C., Reinthaler, F. F., Haas, D., Grisold, A. J., Luxner, J., & Zarfel, G. (2014). KPC-2 and OXA-48 carbapenemase-harbouring *Enterobacteriaceae* detected in an Austrian wastewater treatment plant. *Clinical Microbiology and Infection*, 20(2), O132–O134. https://doi.org/10.1111/1469-0691.12336
- Gashe, F., Mulisa, E., Mekonnen, M., & Zeleke, G. (2018). Antimicrobial resistance profile of different clinical isolates against third-generation cephalosporins. *Journal of Pharmaceutics*. 2018, 1–7. https://doi.org/10.1155/2018/5070742
- Gatica, J., Tripathi, V., Green, S., Manaia, C. M., Berendonk, T., Cacace, D., Merlin, C., Kreuzinger, N., Schwartz, T., Fatta-Kassinos, D., Rizzo, L., Schwermer, C. U., Garelick, H., Jurkevitch, E., & Cytryn, E. (2016). High throughput analysis of integron gene cassettes in wastewater environments. *Environmental Science and Technology*, 50(21), 11825–11836. https://doi.org/10.1021/acs.est.6b03188
- Gbylik-Sikorska, M., Posyniak, A., Mitrowska, K., Gajda, A., Błądek, T., Şniegocki, T., & Zmudzki, J. (2014). Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland. *Bulletin of the Veterinary Institute in Pulawy*, 58(3), 399–404. https://doi.org/10.2478/bvip-2014-0062
- Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2019). The peril and

promise of integrons: beyond antibiotic resistance. *Trends in Microbiology*, 1–10, 455-464. https://doi.org/10.1016/j.tim.2019.12.002

- Giakkoupi, P., Pappa, O., Polemis, M., Vatopoulos, A. C., Miriagou, V., Zioga, A., Papagiannitsis, C. C., & Tzouvelekis, L. S. (2009). Emerging *Klebsiella pneumoniae* isolates coproducing KPC-2 and VIM-1 carbapenemases. *Antimicrobial Agents and Chemotherapy*, 53(9), 4048–4050. https://doi.org/10.1128/AAC.00690-09
- Giedraitienė. (2011). Antibiotic resistance mechanisms of clinically important bacteria. *Medicina (Kaunas)*, 47(3), 46–137.
- Gillespie, J. J., Wattam, A. R., Cammer, S. A., Gabbard, J. L., Shukla, M. P., Dalay, O., Driscoll, T., Hix, D., Mane, S. P., Mao, C., Nordberg, E. K., Scott, M., Schulman, J. R., Snyder, E. E., Sullivan, D. E., Wang, C., Warren, A., Williams, K. P., Xue, T., Yoo, W., Zhang, C., Zhang, Y., Will, R., Kenyon, R., Sobral, B. W. (2011). Patric: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. *Infection and Immunity*, 79(11), 4286–4298. https://doi.org/10.1128/IAI.00207-11
- Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., & Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. *Journal of Bacteriology*, 190(14), 5095–5100. https://doi.org/10.1128/JB.00152-08
- Girlich, D., Poirel, L., Szczepanowski, R., Schlüter, A., & Nordmann, P. (2012).
 Carbapenem-hydrolyzing GES-5-encoding gene on different plasmid types recovered from a bacterial community in a sewage treatment plant. *Applied and Environmental Microbiology*, 78(4), 1292–1295.
 https://doi.org/10.1128/AEM.06841-11
- Glasner, C., Albiger, B., Buist, G., Andrašević, A. T., Canton, R., Carmeli, Y., Friedrich,
 A. W., Giske, C. G., & Glupczynski, Y. (2013). Carbapenemase-producing *Enterobacteriaceae* in Europe : a survey among national experts from 39 countries, February 2013. *Euro Surveill.*, 18(28), 1–7.
- Goethem, M. W. Van, Pierneef, R., Bezuidt, O. K. I., Peer, Y. Van De, Cowan, D. A., & Makhalanyane, T. P. (2018). A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils. *Microbiome*. 6(40), 1–12. https://dx.doi.org/10.1186%2Fs40168-018-0424-5
- Goldstein, C., Lee, M. D., Sanchez, S., Hudson, C., Phillips, B., Register, B., Grady, M., Liebert, C., Summers, A. O., White, D. G., & Maurer, J. J. (2001). Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. *Antimicrobial Agents and Chemotherapy*, 45(3), 723–726. https://doi.org/10.1128/AAC.45.3.723-726.2001
- Gomi, R., Matsuda, T., Yamamoto, M., Chou, P. H., Tanaka, M., Ichiyama, S., Yoneda, M., & Matsumura, Y. (2018). Characteristics of carbapenemase-producing *Enterobacteriaceae* in wastewater revealed by genomic analysis. *Antimicrobial Agents and Chemotherapy*, 62(5), 1–11. https://doi.org/10.1128/AAC.02501-17
- Goñi-urriza, M., Capdepuy, M., Arpin, C., Raymond, N., Caumette, P., & Quentin, C. (2000). Impact of an urban effluent on antibiotic resistance of riverine *Enterobacteriaceae* and *Aeromonas* spp . *Applied and Environmental Microbiology*, 66(1), 125–132. https://dx.doi.org/10.1100%2F2012%2F764563
- Gould, K. (2016). Antibiotics: From prehistory to the present day. *Journal of Antimicrobial Chemotherapy*, 71(3), 572–575. https://doi.org/10.1093/jac/dkv484
- Grundmann, H. H., Livermore, D. M., Giske, C. G., Canton, R., Rossolini, G. M., Campos, J., & Vatopoulos, A. (2010). Carbapenem-non-susceptible *Enterobacteriaceae* in Europe : conclusions from a meeting of national experts. *Euro Surveill*. 18;15(46):19711, 1–13. https://doi: 10.2807/ese.15.46.19711-en

- Gudeta, D. D., Bortolaia, V., Jayol, A., Poirel, L., Nordmann, P., & Guardabassi, L. (2016). *Chromobacterium* spp. harbour Ambler class A β-lactamases showing high identity with KPC. *Journal of Antimicrobial Chemotherapy*, *71*(6), 1493–1496. https://doi.org/10.1093/jac/dkw020
- Guerin, É., Cambray, G., Sanchez-Alberola, N., Campoy, S., Erill, I., Re, S. Da, Gonzalez-Zorn, B., Barbé, J., Ploy, M. C., & Mazel, D. (2009). The SOS response controls integron recombination. *Science*, 324(5930), 1034. https://doi.org/10.1126/science.1172914
- Guérin, E., Jové, T., Tabesse, A., Mazel, D., & Ploy, M. C. (2011). High-level gene cassette transcription prevents integrase expression in class 1 integrons. *Journal of Bacteriology*, *193*(20), 5675–5682. https://doi.org/10.1128/JB.05246-11
- Haberecht, H. B., Nealon, N. J., Gilliland, J. R., Holder, A. V, Runyan, C., Oppel, R. C., Ibrahim, H. M., Mueller, L., Schrupp, F., Vilchez, S., Antony, L., Scaria, J., & Ryan, E. P. (2019). Antimicrobial-resistant *Escherichia coli* from environmental waters in Northern Colorado. *Environmental and Public Health*, 2019, 13. https://doi.org/10.1016/j.scitotenv.2017.03.138
- Hall, R. M., & Collis, C. M. (1995). Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. *Molecular Microbiology*, *15*(4), 593–600. https://doi.org/10.1111/j.1365-2958.1995.tb02368.x
- Harbarth, S., Balkhy, H. H., Goossens, H., Jarlier, V., Kluytmans, J., Laxminarayan, R., Saam, M., Van Belkum, A., & Pittet, D. (2015). Antimicrobial resistance: One world, one fight! *Antimicrobial Resistance and Infection Control*, 4(1), 1–15. https://doi.org/10.1186/s13756-015-0091-2
- Hawkey, P. M., & Livermore, D. M. (2012). Carbapenem antibiotics for serious infections. *BMJ (Online)*, 344(7863), 1–7. https://doi.org/10.1136/bmj.e3236
- Hedges, R. W., Smith, P., & Brazil, G. (1985). Resistance plasmids of *Aeromonads*. Journal of General Microbiology, 131(8), 2091–2095. https://doi.org/10.1099/00221287-131-8-2091
- Henriques, I., Moura, A., Alves, A., Saavedra, M. J., & Correia, A. (2006). Analysing diversity among β-lactamase encoding genes in aquatic environments. *FEMS Microbiology Ecology*, 56(3), 418–429. https://doi.org/10.1111/j.1574-6941.2006.00073.x
- Henriques, I. S., Fonseca, F., Alves, A., Saavedra, M. J., & Correia, A. (2008). Tetracycline-resistance genes in Gram-negative isolates from estuarine waters. *Letters in Applied Microbiology*, 47(6), 526–533. https://doi.org/10.1111/j.1472-765X.2008.02452.x
- Henriques, Isabel S., Fonseca, F., Alves, A., Saavedra, M. J., & Correia, A. (2006). Occurrence and diversity of integrons and β-lactamase genes among ampicillinresistant isolates from estuarine waters. *Research in Microbiology*, 157(10), 938– 947. https://doi.org/10.1016/j.resmic.2006.09.003
- Hoek, A. H. A. M. van, Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: an overview. *Frontiers in Microbiology*, 2, 1–27. https://doi.org/10.3389/fmicb.2011.00203
- Hoffmann, H., & Roggenkamp, A. (2003). Population genetics of the nomenspecies *Enterobacter cloacae*. *Applied and Environmental Microbiology*, 69(9), 5306–5318. https://doi.org/10.1128/AEM.69.9.5306-5318.2003
- Hoffmann, H., Schmoldt, S., Trülzsch, K., Stumpf, A., Bengsch, S., Blankenstein, T., Heesemann, J., & Roggenkamp, A. (2005). Nosocomial urosepsis caused by *Enterobacter kobei* with aberrant phenotype. *Diagnostic Microbiology and Infectious Disease*, 53(2), 143–147.

https://doi.org/10.1016/j.diagmicrobio.2005.06.008

- Hooban, B., Joyce, A., Fitzhenry, K., Chique, C., & Morris, D. (2020). The role of the natural aquatic environment in the dissemination of extended spectrum betalactamase and carbapenemase encoding genes: A scoping review. *Water Research*, *180*, 115880. https://doi.org/10.1016/j.watres.2020.115880
- Houbraken, J., Frisvad, J. C., & Samson, R. A. (2011). Fleming's penicillin producing strain is not *Penicillium chrysogenum* but *P. rubens. IMA Fungus*, 2(1), 87–95. https://doi.org/10.5598/imafungus.2011.02.01.12
- Hrabák, J., Chudáčková, E., & Papagiannitsis, C. C. (2014). Detection of carbapenemases in *Enterobacteriaceae*: A challenge for diagnostic microbiological laboratories. *Clinical Microbiology and Infection*, 20(9), 839–853. https://doi.org/10.1111/1469-0691.12678
- Hudzicki, J. (2016). Kirby-Bauer disk diffusion susceptibility test protocol. *American Society For Microbiology*, 1–23.
- Hughes, D., & Andersson, D. I. (2017). Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. *Science*. 337(6098): 1107–1111. https://doi.org/10.1093/femsre/fux004
- Huijbers, P. M. C., Blaak, H., De Jong, M. C. M., Graat, E. A. M., Vandenbroucke-Grauls, C. M. J. E., & De Roda Husman, A. M. (2015). Role of the environment in the transmission of antimicrobial resistance to humans: A review. *Environmental Science* and *Technology*, 49(20), 11993–12004. https://doi.org/10.1021/acs.est.5b02566
- Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R., & Philippon, A. (2002). βlactamases of *Kluyvera ascorbata*, probable progenitors of some plasmid-encoded CTX-M types. *Antimicrobial Agents and Chemotherapy*, 46(9), 3045–3049. https://doi.org/10.1128/AAC.46.9.3045-3049.2002
- Iredell, J., Brown, J., & Tagg, K. (2015). Antibiotic resistance in *Enterobacteriaceae*: mechanisms and clinical implications. *BMJ*. 352, 19. https://doi.org/10.1136/bmj.h6420
- Ivone Vaz-Moreira, Catarina Ferreira, Olga C. Nunes, C. M. M. (2020). Part III socio economical perspectives and impact of AR sources of antibiotic resistance. *Antibiotic Drug Resistance*. 211-238.
- Jacoby, G. A. (2009). *AmpC* β-Lactamases. *Clinical Microbiology Reviews*, 22(1), 161–182. https://doi.org/10.1128/CMR.00036-08
- Janda, J. M., & Abbott, S. L. (2010). The genus *Aeromonas*: Taxonomy, pathogenicity , and infection. *Clinical Microbiology Reviews*. 23(1), 35–73. https://doi.org/10.1128/CMR.00039-09
- Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Research*, 3(0), 1–20. https://doi.org/10.12688/wellcomeopenres.14826.1
- Jové, T., Da Re, S., Denis, F., Mazel, D., & Ploy, M. C. (2010). Inverse correlation between promoter strength and excision activity in class 1 integrons. *PLoS Genetics*, 6(1), 10. https://doi.org/10.1371/journal.pgen.1000793
- Kahan, J. S., Kahan, F. M., Goegelman, R., Currie, S. A., Jackson, M., Stapley, E. O., Miller, T. W., Miller, A. K., Hendlin, D., Woodruff, H. B., Birnbaum, J., Mochales, S., & Hernandez, S. (1979). Thienamycin, a new β-lactam antibiotic i. discovery, taxonomy, isolation and physical properties. *The Journal of Antibiotics*, 32(1), 1–12. https://doi.org/10.7164/antibiotics.32.1
- Kattan, J. N., Villegas, M. V., & Quinn, J. P. (2008). New developments in carbapenems.

Clinical Microbiology and Infection, *14*(12), 1102–1111. https://doi.org/10.1111/j.1469-0691.2008.02101.x

- Khosravi, Y., Tay, S. T., & Vadivelu, J. (2011). Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive *Pseudomonas aeruginosa* in Malaysia. *Journal of Medical Microbiology*, 60(7), 988–994. https://doi.org/10.1099/jmm.0.029868-0
- Kim, J. Y., Jung, H. II, An, Y. J., Lee, J. H., Kim, S. J., Jeong, S. H., Lee, K. J., Suh, P. G., Lee, H. S., Lee, S. H., & Cha, S. S. (2006). Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. *Molecular Microbiology*, 60(4), 907–916. https://doi.org/10.1111/j.1365-2958.2006.05146.x
- Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of *Klebsiella pneumoniae* and *Serratia marcescens*. *Infection*, 11(6), 315–317. https://doi.org/10.1007/BF01641355
- Kosako, Y., Tamura, K., Sakazaki, R., & Miki, K. (1996). Enterobacter kobei sp. nov., a new species of the family Enterobacteriaceae resembling Enterobacter cloacae. Current Microbiology, 33(4), 261–265. https://doi.org/10.1007/s002849900110
- Kotb, S., Lyman, M., Ismail, G., Abd El Fattah, M., Girgis, S. A., Etman, A., Hafez, S., El-Kholy, J., Zaki, M. E. S., Rashed, H. A. G., Khalil, G. M., Sayyouh, O., & Talaat, M. (2020). Epidemiology of carbapenem-resistant *Enterobacteriaceae* in egyptian intensive care units using national healthcare-associated infections surveillance data, 2011-2017. *Antimicrobial Resistance and Infection Control.* 9, 2. https://doi.org/10.1186/s13756-019-0639-7
- Koulenti, Xu, Mok, Song, Karageorgopoulos, Armaganidis, Lipman, & SotiriosTsiodras.
 (2019). Novel antibiotics for multidrug-resistant Gram-positive microorganisms. *Microorganisms*, 7(8), 270. https://doi.org/10.3390/microorganisms7080270
- Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. *Microorganisms*, 7(6), 1–24. https://doi.org/10.3390/microorganisms7060180
- Kraft, C. A., Timbury, M. C., & Platt, D. J. (1986). Distribution and genetic location of Tn7 in trimethoprim-resistant *Escherichia coli*. *Journal of Medical Microbiology*, 22(2), 125–131. https://doi.org/10.1099/00222615-22-2-125
- Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegård, B., Söderström, H., & Joakim Larsson, D. G. (2011). Pyrosequencing of antibioticcontaminated river sediments reveals high levels of resistance and gene transfer elements. *PLoS ONE*. 6(2), 1-7. https://doi.org/10.1371/journal.pone.0017038
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
- Lacotte, Y., Ploy, M. C., & Raherison, S. (2017). Class 1 integrons are low-cost structures in *Escherichia coli*. *ISME Journal*, *11*(7), 1535–1544. https://doi.org/10.1038/ismej.2017.38
- Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Research*, 35(9), 3100–3108. https://doi.org/10.1093/nar/gkm160
- Lamba, M., Graham, D. W., & Ahammad, S. Z. (2017). Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India. *Environmental Science* and Technology, 51(23), 13906–13912. https://doi.org/10.1021/acs.est.7b03380
- Lambirth, K., Tsilimigras, M., Lulla, A., Johnson, J., Al-Shaer, A., Wynblatt, O., Sypolt, S., Brouwer, C., Clinton, S., Keen, O., Redmond, M., Fodor, A., & Gibas, C. (2018).

Microbial community composition and antibiotic resistance genes within a North Carolina Urban water system. *Water*, *10*(11), 1539. https://doi.org/10.3390/w10111539

- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. *Bioinformatics*, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
- Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., Jelsbak, L., Sicheritz-Pontén, T., Ussery, D. W., Aarestrup, F. M., & Lund, O. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. *Journal of Clinical Microbiology*, 50(4), 1355–1361. https://doi.org/10.1128/JCM.06094-11
- Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. *Journal of Hazardous Materials*, *148*(3), 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008
- Laws, M., Shaaban, A., & Rahman, K. M. (2019). Antibiotic resistance breakers: Current approaches and future directions. *FEMS Microbiology Reviews*, 43(5), 490–516. https://doi.org/10.1093/femsre/fuz014
- Le Terrier, C., Masseron, A., Uwaezuoke, N. S., Edwin, C. P., Ekuma, A. E., Olugbeminiyi, F., Shettima, S., Ushi, S., Poirel, L., & Nordmann, P. (2019). Wide spread of carbapenemase producers in a Nigerian environment. *Journal of Global Antimicrobial Resistance*. 21, 321-323. https://doi.org/10.1016/j.jgar.2019.10.014
- Leanza, W. J., Wildonger, K. J., Miller, T. W., & Christensen, B. G. (1979). Nacetimidoyl-and N-formimidoylthienamycin derivatives: Antipseudomonal βlactam antibiotics. *Journal of Medicinal Chemistry*, 22(12), 1435–1436. https://doi.org/10.1021/jm00198a001
- Lee, Y. T., Kuo, S. C., Chiang, M. C., Yang, S. P., Chen, C. P., Chen, T. L., & Fung, C. P. (2012). Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaoxA-51-like gene that is intrinsic to A. baumannii. Antimicrobial Agents and Chemotherapy, 56(2), 1124–1127. https://doi.org/10.1128/AAC.00622-11
- Levesque, C., Piche, L., Larose, C., & Roy, P. H. (1995). PCR mapping of integrons reveals several novel combinations of resistance genes. *Antimicrobial Agents and Chemotherapy*, 39(1), 185–191. https://doi.org/10.1128/aac.39.1.185
- Lillebø, A. I., Teixeira, H., Morgado, M., Martínez-López, J., Marhubi, A., Delacámara, G., Strosser, P., & Nogueira, A. J. A. (2019). Ecosystem-based management planning across aquatic realms at the Ria de Aveiro natura 2000 territory. *Science of the Total Environment*, 650, 1898–1912. https://doi.org/10.1016/j.scitotenv.2018.09.317
- Lin, W. P., Huang, Y. S., Wang, J. T., Chen, Y. C., & Chang, S. C. (2019). Prevalence of and risk factor for community-onset third-generation cephalosporin-resistant *Escherichia coli* bacteremia at a medical center in Taiwan. *BMC Infectious Diseases*, 19(1), 1–11. https://doi.org/10.1186/s12879-019-3880-z
- Liu, L., Wang, N., Wu, A. Y., Lin, C., Lee, C., & Liu, C. (2018). Citrobacter freundii bacteremia : Risk factors of mortality and prevalence of resistance genes. Journal of Microbiology, Immunology and Infection, 51(4), 565–572. https://doi.org/10.1016/j.jmii.2016.08.016
- Liu, Yen Yi, Chiou, C. S., & Chen, C. C. (2016). PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing. *Scientific Reports*, 6, 1–5. https://doi.org/10.1038/srep36213
- Liu, Yi Yun, Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G.,

Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism *mcr-1* in animals and human beings in China: A microbiological and molecular biological study. *The Lancet Infectious Diseases*, *16*(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

- Lobanovska, M., & Pilla, G. (2017). Penicillin's discovery and antibiotic resistance: Lessons for the future? *Yale Journal of Biology and Medicine*, 90(1), 135–145.
- Lu, S. Y., Zhang, Y. L., Geng, S. N., Li, T. Y., Ye, Z. M., Zhang, D. S., Zou, F., & Zhou, H. W. (2010). High diversity of extended-spectrum beta-lactamase-producing bacteria in an urban river sediment habitat. *Applied and Environmental Microbiology*, 76(17), 5972–5976. https://doi.org/10.1128/AEM.00711-10
- Lupo, A., Coyne, S., & Berendonk, T. U. (2012). Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. *Fronteirs in Microbiology*. 3, 1–13. https://doi.org/10.3389/fmicb.2012.00018
- Manageiro, V., Ferreira, E., Almeida, J., Barbosa, S., Simões, C., Bonomo, R. A., Caniça, M., Castro, A. P., Lopes, P., Fonseca, F., Vieira, S., Guimarães, M. A., Ribeiro, J., Oliveira, H., Pinto, M., Diogo, J., Jesus, A., Sancho, L., Rodrigues, M., Afonso, T. (2015). Predominance of KPC-3 in a survey for carbapenemase-producing *Enterobacteriaceae* in Portugal. *Antimicrobial Agents and Chemotherapy*, 59(6), 3588–3592. https://doi.org/10.1128/AAC.05065-14
- Manageiro, V., Ferreira, E., Caniça, M., & Manaia, C. M. (2014). GES-5 among the βlactamases detected in ubiquitous bacteria isolated from aquatic environment samples. *FEMS Microbiology Letters*, 351(1), 64–69. https://doi.org/10.1111/1574-6968.12340
- Manageiro, V., Romão, R., Moura, I. B., Sampaio, D. A., Vieira, L., Ferreira, E., & Caniça, M. (2018). Molecular epidemiology and risk factors of carbapenemaseproducing *Enterobacteriaceae* isolates in Portuguese hospitals: Results from European survey on carbapenemase-producing *Enterobacteriaceae* (EuSCAPE). *Frontiers in Microbiology*, 9, 1–8. https://doi.org/10.3389/fmicb.2018.02834
- Manson, J. M., Hancock, L. E., & Gilmore, M. S. (2010). Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance , and other traits. *PNAS*. 107(27), 12269–12274. https://doi.org/10.1073/pnas.1000139107
- Marinho, C. M., Santos, T., Gonçalves, A., Poeta, P., & Igrejas, G. (2016). A decade-long commitment to antimicrobial resistance surveillance in Portugal. *Frontiers in Microbiology*, 7, 1–14. https://doi.org/10.3389/fmicb.2016.01650
- Marston, H. D., Dixon, D. M., Knisely, J. M., Palmore, T. N., & Fauci, A. S. (2016). Antimicrobial resistance. *JAMA - Journal of the American Medical Association*, *316*(11), 1193–1204. https://doi.org/10.1001/jama.2016.11764
- Marti, E., & Balcázar, J. L. (2012). Multidrug resistance-encoding plasmid from *Aeromonas* sp. strain P2G1. *Clinical Microbiology and Infection*, 18(9), 1–3. https://doi.org/10.1111/j.1469-0691.2012.03935.x
- Martin, N. H., Trmcic, A., Hsieh, T. H., Boor, K. J., & Wiedmann, M. (2016). The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. *Frontiers in Microbiology*, 7, 1–8. https://doi.org/10.3389/fmicb.2016.01549
- Mathers, A. J., Crook, D., Vaughan, A., Barry, K. E., Vegesana, K., Stoesser, N., Parikh, H. I., Sebra, R., Kotay, S., Walker, A. S., & Sheppard, A. E. (2019). *Klebsiella quasipneumoniae* provides a window into carbapenemase gene transfer, plasmid rearrangements, and patient interactions with the hospital environment. *Antimicrobial Agents and Chemotherapy*, 63(6), 12.

https://doi.org/10.1128/AAC.02513-18

- Maxson & Mitchell. (2016). Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. *Physiology & behavior*. 176(1), 139-148. https://doi.org/10.1016/j.physbeh.2017.03.040
- McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O'Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., Wright, G. D. (2013). The comprehensive antibiotic resistance database. *Antimicrobial Agents and Chemotherapy*, 57(7), 3348–3357. https://doi.org/10.1128/AAC.00419-13
- Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. *Nature Communications*, *10*(1), 10. https://doi.org/10.1038/s41467-019-10210-3
- Meier-Kolthoff, J. P., Klenk, H. P., & Göker, M. (2014). Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. *International Journal of Systematic and Evolutionary Microbiology*, 64, 352–356. https://doi.org/10.1099/ijs.0.056994-0
- Meyer, E., Schwab, F., Schroeren-Boersch, B., & Gastmeier, P. (2010). Dramatic increase of third-generation cephalosporin-resistant *E. coli* in German intensive care units: Secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. *Critical Care*, 14(3), 9. https://doi.org/10.1186/cc9062
- Mills, M. C., & Lee, J. (2019). The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. *Environmental Pollution*, 255, 113143. https://doi.org/10.1016/j.envpol.2019.113143
- Miyoshi-Akiyama, T., Hayakawa, K., Ohmagari, N., Shimojima, M., & Kirikae, T. (2013). Multilocus Sequence Typing (MLST) for characterization of *Enterobacter cloacae*. *PLoS ONE*, 8(6), 1–10. https://doi.org/10.1371/journal.pone.0066358
- Montezzi, L. F., Campana, E. H., Corrêa, L. L., Justo, L. H., Paschoal, R. P., Da Silva, I. L. V. D., Souza, M. D. C. M., Drolshagen, M., & Picão, R. C. (2015). Occurrence of carbapenemase-producing bacteria in coastal recreational waters. *International Journal of Antimicrobial Agents*, 45(2), 174–177. https://doi.org/10.1016/j.ijantimicag.2014.10.016
- Morand, P. C., Billoet, A., Rottman, M., Sivadon-Tardy, V., Eyrolle, L., Jeanne, L., Tazi, A., Anract, P., Courpied, J. P., Poyart, C., & Dumaine, V. (2009). Specific distribution within the *Enterobacter cloacae* complex of strains isolated from infected orthopedic implants. *Journal of Clinical Microbiology*, 47(8), 2489–2495. https://doi.org/10.1128/JCM.00290-09
- Müller, H., Sib, E., Gajdiss, M., Klanke, U., Lenz-Plet, F., Barabasch, V., Albert, C., Schallenberg, A., Timm, C., Zacharias, N., Schmithausen, R. M., Engelhart, S., Exner, M., Parcina, M., Schreiber, C., & Bierbaum, G. (2018). Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. *FEMS Microbiology Ecology*, 94(5), 1–11. https://doi.org/10.1093/femsec/fiy057
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. *Microbiol Spectr.*, 4(2), 1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.
- N Samaha-Kfoury, J., & Araj, G. F. (2003). Recent developments in β-lactamases and extended spectrum β-lactamases. *BMJ*, *327*(22), 1209–1213. https://doi.org/10.1136/bmj.327.7425.1209
- Naas, T., Cuzon, G., Truong, H. V., & Nordmann, P. (2012). Role of ISKpn7 and deletions in *bla*_{KPC} gene expression. *Antimicrobial Agents and Chemotherapy*, 56(9),

4753–4759. https://doi.org/10.1128/AAC.00334-12

Naas, T., Cuzon, G., Villegas, M. V., Lartigue, M. F., Quinn, J. P., & Nordmann, P. (2008). Genetic structures at the origin of acquisition of the β-lactamase *bla*_{KPC} gene. *Antimicrobial Agents and Chemotherapy*, 52(4), 1257–1263. https://doi.org/10.1128/AAC.01451-07

Nathan, C., & Cars, O. (2014). Antibiotic resistance--problems, progress, and prospects. *N. England*, 371(19):1761-3. https://doi.org/10.1056/nejmp1408040

- Nguyen, B. A. T., Chen, Q. L., He, J. Z., & Hu, H. W. (2019). Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. *Science of the Total Environment*, 705, 135882. https://doi.org/10.1016/j.scitotenv.2019.135882
- Nivina, A., Escudero, J. A., Vit, C., Mazel, D., & Loot, C. (2016). Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of *attC* recombination sites. *Nucleic Acids Research*, 44(16), 7792–7803. https://doi.org/10.1093/nar/gkw646
- Nordmann, P., Dortet, L., & Poirel, L. (2012). Carbapenem resistance in *Enterobacteriaceae*: Here is the storm! *Trends in Molecular Medicine*, *18*(5), 263–272. https://doi.org/10.1016/j.molmed.2012.03.003
- Nordmann, P., & Poirel, L. (2019). Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. *Clinical Infectious Diseases*, 69, 521–528. https://doi.org/10.1093/cid/ciz824
- O'Neill, J. (2014). Antimicrobial resistance : Tackling a crisis for the health and wealth of nations. *Review on Antimicrobial Resistance*, London, United Kingdom.
- O'Rourke, A., Beyhan, S., Choi, Y., Morales, P., Chan, A. P., Espinoza, J. L., Dupont, C. L., Meyer, K. J., Spoering, A., Lewis, K., Nierman, W. C., & Nelson, K. E. (2020). Mechanism-of-action classification of antibiotics by global transcriptome profiling. *Antimicrobial Agents and Chemotherapy*, 64(3), 1–15. https://doi.org/10.1128/AAC.01207-19
- Odeyemi, O. A., & Ahmad, A. (2015). Antibiotic resistance profiling and phenotyping of *Aeromonas* species isolated from aquatic sources. *Saudi Journal of Biological Sciences*, 24(1), 65–70. https://doi.org/10.1016/j.sjbs.2015.09.016
- Oliva, M., Dideberg, O., & Field, M. J. (2003). Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: A molecular dynamics simulation study Oliva 2003 Proteins: Structure, Function, and Bioinformatics Wiley Online Library. *PROTEINS: Structure, Function, and Bioinformatics* 53:88–100, 53, 88–100. http://onlinelibrary.wiley.com/doi/10.1002/prot.10450/pdf
- Oliveira, H., Pinto, G., Oliveira, A., Oliveira, C., Faustino, M. A., Briers, Y., Domingues, L., & Azeredo, J. (2016). Characterization and genome sequencing of a *Citrobacter freundii* phage CfP1 harboring a lysin active against multidrug-resistant isolates. *Applied Microbiology and Biotechnology*, 100(24), 10543–10553. https://doi.org/10.1007/s00253-016-7858-0
- Oxacillinase, C., Poirel, L., He, C., & Nordmann, P. (2004). Chromosome-encoded Ambler class D β-Lactamase of *Shewanella oneidensis* as a progenitor of carbapenem-hydrolyzing oxacillinase. *Society*, 48(1), 348–351. https://doi.org/10.1128/aac.48.1.348-351.2004
- Öztürk, H., Ozkirimli, E., & Özgür, A. (2015). Classification of beta-lactamases and penicillin binding proteins using ligand-centric network models. *PLoS ONE*, *10*(2), 1–23. https://doi.org/10.1371/journal.pone.0117874
- Paauw, A., Caspers, M. P. M., Schuren, F. H. J., Leverstein-van Hall, M. A., Delétoile, A., Montijn, R. C., Verhoef, J., & Fluit, A. C. (2008). Genomic diversity within the

Enterobacter cloacae complex. *PLoS ONE*, *3*(8), 11. https://doi.org/10.1371/journal.pone.0003018

- Palumbi, S. R. (2001). Humans as the world's greatest evolutionary force. *Science*, 293(5536), 1786–1790. https://doi.org/10.1126/science.293.5536.1786
- Palzkill, T. (2018). Structural and mechanistic basis for extended-spectrum drugresistance mutations in altering the specificity of TEM, CTX-M, and KPC βlactamases. *Frontiers in Molecular Biosciences*, 5, 1–19. https://doi.org/10.3389/fmolb.2018.00016
- Papp-wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. *Antimicrobial Agents and Chemotherapy*, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
- Paterson, D. L., & Bonomo, R. A. (2005). Clinical update extended-spectrum betalactamases: a Clinical update. *Clinical Microbiology Reviews*, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657
- Pati, N. B., Doijad, S. P., Schultze, T., Mannala, G. K., Yao, Y., Jaiswal, S., Ryan, D., Suar, M., Gwozdzinski, K., Bunk, B., Mraheil, M. A., Marahiel, M. A., Hegemann, J. D., Spröer, C., Goesmann, A., Falgenhauer, L., Hain, T., Imirzalioglu, C., Mshana, S. E., Chakraborty, T. (2018). *Enterobacter bugandensis*: A novel enterobacterial species associated with severe clinical infection. *Scientific Reports*, 8(1), 1–11. https://doi.org/10.1038/s41598-018-23069-z
- Patricia P. Chan;, & Lowe;, T. M. (2019). Structural and functional annotation of eukaryotic genomes with GenSAS in gene prediction - methods and protocols. *Gene Prediction: Methods and Protocols, Methods in Molecular Biology*, 1962(0), 1–29. https://doi.org/10.1007/978-1-4939-9173-0
- Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. *Science of the Total Environment*, 697, 21. https://doi.org/10.1016/j.scitotenv.2019.134023
- Perdigão, J., Modesto, A., Pereira, A. L., Neto, O., Matos, V., Godinho, A., Phelan, J., Charleston, J., Spadar, A., de Sessions, P. F., Hibberd, M., Campino, S., Costa, A., Fernandes, F., Ferreira, F., Correia, A. B., Gonçalves, L., Clark, T. G., & Duarte, A. (2020). Whole-genome sequencing resolves a polyclonal outbreak by extendedspectrum beta-lactam and carbapenem-resistant *Klebsiella pneumoniae* in a Portuguese tertiary-care hospital. *Microbial Genomics*, 15. https://doi.org/10.1099/mgen.0.000349
- Pereira, A., Santos, A., Tacão, M., Alves, A., Henriques, I., & Correia, A. (2013). Genetic diversity and antimicrobial resistance of *Escherichia coli* from Tagus estuary (Portugal). *Science of the Total Environment*, 461–462, 65–71. https://doi.org/10.1016/j.scitotenv.2013.04.067
- Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. *Fronteirs in Microbiology*. 9, 1– 21. https://doi.org/10.3389/fmicb.2018.02928
- Philippon, A., Arlet, G., & Jacoby, G. A. (2002). Plasmid-determined AmpC-type βlactamases. Antimicrobial Agents and Chemotherapy, 46(1), 1–11. https://doi.org/10.1128/AAC.46.1.1
- Piedra-Carrasco, N., Fàbrega, A., Calero-Cáceres, W., Cornejo-Sánchez, T., Brown-Jaque, M., Mir-Cros, A., Muniesa, M., & González-López, J. J. (2017). Carbapenemase-producing *Enterobacteriaceae* recovered from a Spanish river ecosystem. *PLoS ONE*, 12(4), 1–11. https://doi.org/10.1371/journal.pone.0175246
- Piotrowska, M., Przygodzinska, D., Matyjewicz, K., & Popowska, M. (2017). Occurrence

and variety of ß-lactamase genes among *Aeromonas* spp. isolated from urban wastewater treatment plant. *Frontiers in Microbiology*, *8*, 1–12. https://doi.org/10.3389/fmicb.2017.00863

- Podschun, R., & Ullmann, U. (1998). *Klebsiella pneumoniae* as nosocomial pathogens: epidemiology and resistance. *Clinical Microbiology Reviews*, 23(3), 240–249. https://:doi.10.1128/CMR.11.4.589
- Pogue, J. M., Kaye, K. S., Cohen, D. A., & Marchaim, D. (2015). Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. *Clinical Microbiology* and *Infection*, 21(4), 302–312. https://doi.org/10.1016/j.cmi.2014.12.025
- Poirel, L., Weldhagen, G. F., Naas, T., De Champs, C., Dove, M. G., & Nordmann, P. (2001). GES-2, a class A β-lactamase from *Pseudomonas aeruginosa* with increased hydrolysis of imipenem. *Antimicrobial Agents and Chemotherapy*, 45(9), 2598– 2603. https://doi.org/10.1128/AAC.45.9.2598-2603.2001
- Poirel, Laurent, Liard, A., Rodriguez-Martinez, J. M., & Nordmann, P. (2005). Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. Journal of Antimicrobial Chemotherapy, 56(6), 1118–1121. https://doi.org/10.1093/jac/dki371
- Poirel, Laurent, Potron, A., & Nordmann, P. (2012). OXA-48-like carbapenemases: The phantom menace. *Journal of Antimicrobial Chemotherapy*, 67(7), 1597–1606. https://doi.org/10.1093/jac/dks121
- Poirel, Laurent, Rodriguez-Martinez, Jose-Manuel, Mammeri, H., Alain, L., & Patrice, N. (2005). Origin of plasmid-mediated quinolone resistance determinant *QnrA*. *Antimicrobial Agents and Chemotherapy*, 49, 3523–3525. https://doi.org/10.1128/AAC.49.8.3523
- Poirel, Laurent, Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. *Diagnostic Microbiology and Infectious Disease*, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
- Potron, A., Poirel, L., & Nordmann, P. (2011). Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in *Shewanella xiamenensis*. *Antimicrobial Agents and Chemotherapy*, 55(9), 4405–4407. https://doi.org/10.1128/AAC.00681-11
- Potter, R. F., Souza, A. W. D., & Dantas, G. (2016). The rapid spread of carbapenemresistant *Enterobacteriaceae*. *Drug Resistance Updates*, 29, 30–46. https://doi.org/10.1016/j.drup.2016.09.002
- Queenan, A. M., & Bush, K. (2007). Carbapenemases: The versatile β-lactamases. *Clinical Microbiology Reviews*, 20(3), 440–458. https://doi.org/10.1128/CMR.00001-07
- Raynor, B. D. (1997). Penicillin and ampicillin. *Primary Care Update for Ob/Gyns*, 4(4), 147–152. https://doi.org/10.1016/S1068-607X(97)00012-7
- Recchia, G. D., & Hall, R. M. (1995). Gene cassettes: A new class of mobile element. *Microbiology*, 141(12), 3015–3027. https://doi.org/10.1099/13500872-141-12-3015
- Renwick, M., & Mossialos, E. (2018). What are the economic barriers of antibiotic R&D and how can we overcome them? *Expert Opinion on Drug Discovery*, 13(10), 889– 892. https://doi.org/10.1080/17460441.2018.1515908
- Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. *AIMS Microbiology*, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
- Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., & Pickup, R. W. (2000). Distribution of oxytetracycline resistance plasmids between *Aeromonads* in

hospital and aquaculture environments: Implication of Tn1721 in dissemination of the tetracycline resistance determinant *tetA*. *Applied and Environmental Microbiology*, *66*(9), 3883–3890. https://doi.org/10.1128/AEM.66.9.3883-3890.2000

- Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. *The Journal of Infectious Diseases*, *197*(8), 1079–1081. https://doi.org/10.1086/533452
- Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. *Proceedings of the National Academy of Sciences of* the United States of America, 106(45), 19126–19131. https://doi.org/10.1073/pnas.0906412106
- Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., & Peplies, J. (2015). JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics*, 32(6), 929–931. https://doi.org/10.1093/bioinformatics/btv681
- Richter, S. N., Frasson, I., Franchin, E., Bergo, C., Lavezzo, E., Barzon, L., Cavallaro, A., & Pal, G. (2012). KPC-mediated resistance in *Klebsiella pneumoniae* in two hospitals in Padua, Italy, June 2009-December 2011: Massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units. *Gut Pathogens*, 4(1), 1. https://doi.org/10.1186/1757-4749-4-7
- Rida, R. H., Al Laham, N. A., & Elmanama, A. A. (2018). Carbapenem resistance among clinical and environmental gram-negative isolates recovered from hospitals in Gaza strip, Palestine. *Germs*, 8(3), 147–154. https://doi.org/10.18683/germs.2018.1142
- Rodrigues, C., Bavlovic, J., Machado, E., Amorim, J., Peixe, L., & Novais, Â. (2016).
 KPC-3-producing *Klebsiella pneumoniae* in Portugal linked to previously circulating non-CG258 lineages and uncommon genetic platforms (Tn4401d-IncFIA and Tn4401d-IncN). *Frontiers in Microbiology*, 7, 8. https://doi.org/10.3389/fmicb.2016.01000
- Rodriguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I., & Pascual, A. (2018). Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing *Enterobacteriaceae*. *Clinical Microbiology Reviews*, 31(2), 1–42. https://doi.org/10.1128/cmr.00079-17
- Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. *Water Research*, 69, 234–242. https://doi.org/10.1016/j.watres.2014.11.021
- Rojas, L. J., Mojica, M. F., Blanco, V. M., Correa, A., Montealegre, M. C., De La Cadena, E., Maya, J. J., Camargo, R. D., Quinn, J. P., & Villegas, M. V. (2013). Emergence of *Klebsiella pneumoniae* coharboring KPC and VIM carbapenemases in Colombia. *Antimicrobial Agents and Chemotherapy*, 57(2), 1101–1102. https://doi.org/10.1128/AAC.01666-12
- Rosso, F., Cedano, J. A., Parra-Lara, L. G., Sanz, A. M., Toala, A., Velez, J. F., Hormaza, M. P., Moncada, P. A., & Correa, A. (2019). Emerging carbapenem-resistant *Aeromonas* spp. infections in Cali, Colombia. *Brazilian Journal of Infectious Diseases*, 23(5), 336–342. https://doi.org/10.1016/j.bjid.2019.08.005
- Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B., Mevius, D. J., & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in *Enterobacteriaceae*. *Journal of Antimicrobial Chemotherapy*, 73(5), 1121–1137. https://doi.org/10.1093/jac/dkx488

- Sampson, R. W., Swiatnicki, S. A., Osinga, V. L., Supita, J. L., McDermott, C. M., & Kleinheinz, G. T. (2006). Effects of temperature and sand on *E. coli* survival in a northern lake water microcosm. *Journal of Water and Health*, 4(3), 389–393. https://doi.org/10.2166/wh.2006.524
- Sarpong, E. M., & Miller, G. E. (2014). Narrow- and broad-spectrum antibiotic use among U.S. children. *Health Services Research*, 50(3), 830–846. https://doi.org/10.1111/1475-6773.12260
- Scarsi, K. K., Feinglass, J. M., Scheetz, M. H., Postelnick, M. J., Bolon, M. K., & Noskin, G. A. (2006). Impact of inactive empiric antimicrobial therapy on inpatient mortality and length of stay. *Antimicrobial Agents and Chemotherapy*, 50(10), 3355–3360. https://doi.org/10.1128/AAC.00466-06
- Sekyere, J. O. (2016). Current state of resistance to antibiotics of last-resort in South Africa: A review from a public health perspective. *Frontiers in Public Health*, *4*, 11. https://doi.org/10.3389/FPUBH.2016.00209
- Senderovich, Y., Gershtein, Y., Halewa, E., & Halpern, M. (2008). *Vibrio cholerae* and *Aeromonas*: Do they share a mutual host? *ISME Journal*, 2(3), 276–283. https://doi.org/10.1038/ismej.2007.114
- Seng, P., Boushab, B. M., Romain, F., Gouriet, F., Bruder, N., Martin, C., Paganelli, F., Bernit, E., Treut, Y. P. Le, Thomas, P., Papazian, L., Raoult, D., & Stein, A. (2016). Emerging role of *Raoultella ornithinolytica* in human infections: A series of cases and review of the literature. *International Journal of Infectious Diseases*, 45, 65–71. https://doi.org/10.1016/j.ijid.2016.02.014
- Sengupta, S., Chattopadhyay, M. K., & Grossart, H. P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. *Frontiers in Microbiology*, 4, 1–13. https://doi.org/10.3389/fmicb.2013.00047
- Shelton, E. C., Jones-dias, D., Caniça, M., & Manageiro, V. (2016). Molecular epidemiology of *Klebsiella Pneumoniae* carbapenemase. *Superbugs*, 15, 57-71. ISBN: 978-1-63484-412-3
- Silva, I., Tacão, M., Tavares, R. D. S., Miranda, R., Araújo, S., Manaia, C. M., & Henriques, I. (2018). Fate of cefotaxime-resistant *Enterobacteriaceae* and ESBLproducers over a full-scale wastewater treatment process with UV disinfection. *Science of the Total Environment*, 639, 1028–1037. https://doi.org/10.1016/j.scitotenv.2018.05.229
- Simo Tchuinte, P. L., Stalder, T., Venditti, S., Ngandjio, A., Dagot, C., Ploy, M. C., & Barraud, O. (2016). Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. *International Journal of Antimicrobial Agents*, 48(4), 431–434. https://doi.org/10.1016/j.ijantimicag.2016.06.018
- Singer, A. C., Shaw, H., Rhodes, V., Hart, A., & Balcazar, J. L. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. *Frontiers in Microbiology*. 7, 1–22. https://doi.org/10.3389/fmicb.2016.01728
- Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. *Nature*, 480(7376), 241–244. https://doi.org/10.1038/nature10571
- Sørum, H., L'Abée-Lund, T. M., Solberg, A., & Wold, A. (2003). Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrobial Agents and Chemotherapy, 47(4), 1285–1290. https://doi.org/10.1128/AAC.47.4.1285-1290.2003
- Stalder, T., Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2012). Integron

involvement in environmental spread of antibiotic resistance. *Frontiers in Microbiology*, *3*, 1–14. https://doi.org/10.3389/fmicb.2012.00119

- Stokes, H. W., & Hall, R. M. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. *Molecular Microbiology*, 3(12), 1669–1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x
- Surette, M. D., & Wright, G. D. (2017). Lessons from the environmental antibiotic resistome. Annual Review of Microbiology, 71(1), 309–329. https://doi.org/10.1146/annurev-micro-090816-093420
- Suzuki, Y., Nazareno, J., Nakano, R., Mondoy, M., Nakano, A., & Bugayong, P. (2020). Carbapenemase-producing *Enterobacteriaceae* from hospital sewage and river water in the Philippines. *Applied and Environmental Microbiology*, 86(2), 1–10.
- Swathi, C. H., Chikala, R., Ratnakar, K. S., & Sritharan, V. (2016). A structural, epidemiological & genetic overview of *Klebsiella pneumoniae* carbapenemases (KPCs). *Indian J Med Res*, 144, 21–31. https://doi.org/10.4103/0971-5916.193279
- Tacão, Marta;, Moura, A., Correia, A., & Henriques, I. (2014). Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. *Water Research*, 48(1), 100–107. https://doi.org/10.1016/j.watres.2013.09.021
- Tacão, Marta, Araújo, S., Vendas, M., Alves, A., & Henriques, I. (2018). Shewanella species as the origin of bla_{OXA-48} genes: insights into gene diversity, associated phenotypes and possible transfer mechanisms. International Journal of Antimicrobial Agents, 51(3), 340–348. https://doi.org/10.1016/j.ijantimicag.2017.05.014
- Tacão, Marta, Correia, A., & Henriques, I. (2012). Resistance to broad-spectrum antibiotics in aquatic systems: Anthropogenic activities modulate the dissemination of *bla*_{CTX-M}-like genes. *Applied and Environmental Microbiology*, 78(12), 4134–4140. https://doi.org/10.1128/AEM.00359-12
- Tacão, Marta, Correia, A., & Henriques, I. (2013). Environmental Shewanella xiamenensis strains that carry bla_{OXA-48} or bla_{OXA-204} genes: Additional proof for bla_{OXA-48}-Like gene origin. Antimicrobial Agents and Chemotherapy, 57(12), 6399– 6400. https://doi.org/10.1128/AAC.00771-13
- Tacão, Marta, Correia, A., & Henriques, I. S. (2015). Low prevalence of carbapenemresistant bacteria in river water: Resistance is mostly related to intrinsic mechanisms. *Microbial Drug Resistance*, 21(5), 497–506. https://doi.org/10.1089/mdr.2015.0072
- Tacão, Marta, Tavares, R. dos S., Teixeira, P., Roxo, I., Ramalheira, E., Ferreira, S., & Henriques, I. (2017). *mcr-1* and *bla*_{KPC-3} in *Escherichia coli* sequence type 744 after meropenem and colistin therapy, Portugal. *Emerging Infectious Diseases*, 23(8), 1419–1421. https://doi.org/10.3201/eid2308.170162
- Tahlan, K., & Jensen, S. E. (2013). Origins of the β-lactam rings in natural products. *Journal of Antibiotics*, 66(7), 401–410. https://doi.org/10.1038/ja.2013.24
- Tang, H. J., Hsieh, C. F., Chang, P. C., Chen, J. J., Lin, Y. H., Lai, C. C., Chao, C. M., & Chuang, Y. C. (2016). Clinical significance of community- and healthcare-acquired carbapenem-resistant *Enterobacteriaceae* isolates. *PLoS ONE*, 11(3), 1–8. https://doi.org/10.1371/journal.pone.0151897
- Tang, Y. W., Ellis, N. M., Hopkins, M. K., Smith, D. H., Dodge, D. E., & Persing, D. H. (1998). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic Gram-negative bacilli. *Journal of Clinical Microbiology*, 36(12), 3674–3679. https://doi.org/10.1128/jcm.36.12.3674-3679.1998
- Tanner, W. D., VanDerslice, J. A., Goel, R. K., Leecaster, M. K., Fisher, M. A., Olstadt,

J., Gurley, C. M., Morris, A. G., Seely, K. A., Chapman, L., Korando, M., Shabazz, K. A., Stadsholt, A., VanDeVelde, J., Braun-Howland, E., Minihane, C., Higgins, P. J., Deras, M., Jaber, O., Gundlapalli, A. V. (2019). Multi-state study of *Enterobacteriaceae* harboring extended-spectrum beta-lactamase and carbapenemase genes in U.S. drinking water. *Scientific Reports*, 9(1), 1–8. https://doi.org/10.1038/s41598-019-40420-0

- Tansirichaiya, S., Mullany, P., & Roberts, A. P. (2019). Promoter activity of ORF-less gene cassettes isolated from the oral metagenome. *Scientific Reports*, 9(1), 1–11. https://doi.org/10.1038/s41598-019-44640-2
- Tato, M., Coque, T. M., Baquero, F., & Cantón, R. (2010). Dispersal of carbapenemase blavIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in *Enterobacteriaceae* and *Pseudomonas aeruginosa*. Antimicrobial Agents and Chemotherapy, 54(1), 320–327. https://doi.org/10.1128/AAC.00783-09
- Teixeira, P., Tacão, M., Baraúna, R. A., Silva, A., & Henriques, I. (2020). Genomic analysis of *Chromobacterium haemolyticum*: insights into the species resistome, virulence determinants and genome plasticity. *Molecular Genetics and Genomics*, 295, 1001–1012. https://doi.org/10.1007/s00438-020-01676-8
- Teixeira, P., Tacão, M., Pureza, L., Gonçalves, J., Silva, A., Cruz-Schneider, M. P., & Henriques, I. (2020). Occurrence of carbapenemase-producing *Enterobacteriaceae* in a Portuguese river: *bla*_{NDM}, *bla*_{KPC} and *bla*_{GES} among the detected genes. *Environmental Pollution*, 260, 113913. https://doi.org/10.1016/j.envpol.2020.113913
- Thakuria, B., & Lahon, K. (2013). The beta-lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. *Journal of Clinical and Diagnostic Research*, 7(6), 1207–1214. https://doi.org/10.7860/JCDR/2013/5239.3052
- Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β-Lactamases and β-Lactamase Inhibitors in the 21st Century. *Journal of Molecular Biology*, 431(18), 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002
- Tornevi, A., Bergstedt, O., & Forsberg, B. (2014). Precipitation effects on microbial pollution in a river: Lag structures and seasonal effect modification. *PLoS ONE*, 9(5), 10. https://doi.org/10.1371/journal.pone.0098546
- Ugarte-Torres, A., Perry, S., Franko, A., & Church, D. L. (2018). Multidrug-resistant *Aeromonas hydrophila* causing fatal bilateral necrotizing fasciitis in an immunocompromised patient: A case report. *Journal of Medical Case Reports*, *12*(1), 1–7. https://doi.org/10.1186/s13256-018-1854-1
- van Duin, D., & Paterson, D. (2016). Multidrug resistant bacteria in the community: Trends and lessons learned. *Infect Dis Clin North Am.*, 30(2), 377–390. https://doi.org/10.1016/j.idc.2016.02.004.Multidrug
- Veltri, D., Wight, M. M., & Crouch, J. A. (2016). SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. *Nucleic Acids Research*, 44, W41–W45. https://doi.org/10.1093/nar/gkw330
- Ventola, C. L. (2015). The Antibiotic resistance crisis part 1: Causes and threats. *Pharmacy and Therapeutics*, 40(4), 277–283.
- Villa, J., Arana, D. M., Viedma, E., Perez-Montarelo, D., & Chaves, F. (2017). Characterization of mobile genetic elements carrying VIM-1 and KPC-2 carbapenemases in *Citrobacter freundii* isolates in Madrid. *International Journal of Medical* Microbiology, 307(6), 340–345.

https://doi.org/10.1016/j.ijmm.2017.07.001

- Villafuerte, D., Aliberti, S., Soni, N. J., Faverio, P., Marcos, P. J., Wunderink, R. G., Rodriguez, A., Sibila, O., Sanz, F., Martin-Loeches, I., Menzella, F., Reyes, L. F., Jankovic, M., Spielmanns, M., Restrepo, M. I., Aruj, P. K., Attorri, S., Barimboim, E., Caeiro, J. P., Labra, L. (2020). Prevalence and risk factors for *Enterobacteriaceae* in patients hospitalized with community-acquired pneumonia. *Respirology*, 25(5), 543–551. https://doi.org/10.1111/resp.13663
- Waksman, S. (1947). What is an antibiotic or an antibiotic substance? *Mycologia*, 39(5), 565–569. https://doi.org/10.1080/00275514.1947.12017635
- Walckenaer, E., Poirel, L., Leflon-Guibout, V., Nordmann, P., & Nicolas-Chanoine, M. H. (2004). Genetic and biochemical characterization of the chromosomal class A βlactamases of *Raoultella* (formerly *Klebsiella*) *planticola* and *Raoultella ornithinolytica*. *Antimicrobial Agents and Chemotherapy*, 48(1), 305–312. https://doi.org/10.1128/AAC.48.1.305-312.2004
- Wang, D., Hou, W., Chen, J., Mou, Y., Yang, L., Yang, L., Sun, X., & Chen, M. (2014). Characterization of the *bla*_{KPC-2} and *bla*_{KPC-3} genes and the novel *bla*_{KPC-15} gene in *Klebsiella pneumoniae*. *Journal of Medical Microbiology*, *63*, 981–987. https://doi.org/10.1099/jmm.0.073841-0
- Wang, J., Soisson, S. M., Young, K., Shoop, W., Kodali, S., Galgoci, A., Painter, R., Parthasarathy, G., Tang, Y. S., Cummings, R., Ha, S., Dorso, K., Motyl, M., Jayasuriya, H., Ondeyka, J., Herath, K., Zhang, C., Hernandez, L., Allocco, J., Singh, S. B. (2006). Platensimycin is a selective *fabF* inhibitor with potent antibiotic properties. *Nature*, 441(7091), 358–361. https://doi.org/10.1038/nature04784
- Wang, M., Liu, P., Xiong, W., Zhou, Q., Wangxiao, J., Zeng, Z., & Sun, Y. (2018). Ecotoxicology and environmental safety fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manuresoil microcosms. *Ecotoxicology and Environmental Safety*, 147, 817–823. https://doi.org/10.1016/j.ecoenv.2017.09.055
- Wang, T. Z., Kodiyanplakkal, R. P. L., & Calfee, D. P. (2019). Antimicrobial resistance in nephrology. *Nature Reviews Nephrology*, 15(8), 463–481. https://doi.org/10.1038/s41581-019-0150-7
- Watanabe, M., Iyobe, S., Inoue, M., & Mitsuhashi, S. (1991). Transferable imipenem resistance in *Pseudomonas aeruginosa*. Antimicrobial Agents and Chemotherapy, 35(1), 147–151. https://doi.org/10.1128/AAC.35.1.147
- Wilke, M. S., Lovering, A. L., & Strynadka, N. C. J. (2005). β-lactam antibiotic resistance: a current structural perspective. *Antimicrobials*. 8, 525–533. https://doi.org/10.1016/j.mib.2005.08.016
- Wistrand-Yuen, E., Knopp, M., Hjort, K., Koskiniemi, S., Berg, O. G., & Andersson, D. I. (2018). Evolution of high-level resistance during low-level antibiotic exposure. *Nature Communications*, 9(1), 12. https://doi.org/10.1038/s41467-018-04059-1
- World Health Organization (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. *32*(1), 76-77.
- Wright, G. D. (2007). The antibiotic resistome: The nexus of chemical and genetic diversity. *Nature Reviews Microbiology*, 5(3), 175–186. https://doi.org/10.1038/nrmicro1614
- Wu, S. W. E. I., & Tomasz, A. (2001). Recruitment of the *mecA* gene homologue of *Staphylococcus sciuri* into a resistance determinant and expression of the resistant phenotype in *Staphylococcus aureus*. *Society*, 183(8), 2417–2424. https://doi.org/10.1128/JB.183.8.2417
- Xiao, L., Wang, X., Kong, N., Cao, M., Zhang, L., Wei, Q., & Liu, W. (2019).

Polymorphisms of gene cassette promoters of the class 1 integron in clinical Proteusisolates.FrontiersinMicrobiology,10,1–12.https://doi.org/10.3389/fmicb.2019.00790

- Xin, R., Zhang, K., Wu, N., Zhang, Y., & Niu, Z. (2019). The pollution level of the bla_{OXA-58} carbapenemase gene in coastal water and its host bacteria characteristics. *Environmental Pollution*, 244, 66–71. https://doi.org/10.1016/j.envpol.2018.10.023
- Yang, Y., Liu, W., Xu, C., Wei, B., & Wang, J. (2017). Chemosphere antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze river, China : Effect of land use and sediment characteristics. *Chemosphere*, 178, 19–25. https://doi.org/10.1016/j.chemosphere.2017.03.041
- Yang, Y., Xu, C., Cao, X., Lin, H., & Wang, J. (2017a). Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. *Ecotoxicology*, 26(6), 831–840. https://doi.org/10.1007/s10646-017-1814-3
- Yang, Y., Xu, C., Cao, X., Lin, H., & Wang, J. (2017b). Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. *Ecotoxicology*, 26, 831–840. https://doi.org/10.1007/s10646-017-1814-3
- Yang, Z., Liu, W., Cui, Q., Niu, W., Li, H., Zhao, X., Wei, X., Wang, X., Huang, S., Dong, D., Lu, S., Bai, C., Li, Y., Huang, L., & Yuan, J. (2014). Prevalence and detection of *Stenotrophomonas maltophilia* carrying metallo-β-lactamase *bla*_{L1} in Beijing, China. *Frontiers in Microbiology*, 5, 1–7. https://doi.org/10.3389/fmicb.2014.00692
- Yatsuyanagi, J., Saito, S., Harata, S., Suzuki, N., Ito, Y., Amano, K. I., & Enomoto, K. (2004). Class 1 integron containing metallo-β-lactamase gene blavIM-2 in Pseudomonas aeruginosa clinical strains isolated in Japan. Antimicrobial Agents and Chemotherapy, 48(2), 626–628. https://doi.org/10.1128/AAC.48.2.626-628.2004
- Ye, Q., Wu, Q., Zhang, S., Zhang, J., & Yang, G. (2017). Antibiotic-resistant extended spectrum ß-lactamase- and *Enterobacteriaceae* isolated from retail food products and the Pearl river in Guangzhou, China. *Frontiers in Microbiology*. 8, 1–12. https://doi.org/10.3389/fmicb.2017.00096
- Yigit, H., Queenan, A. M., Anderson, G. J., Domenech-sanchez, A., Biddle, J. W., & Steward, C. D. (2001). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of *Klebsiella pneumoniae*. *Antimicrobial agents and Chemotherapy*. 45(4), 1151–1161. https://doi.org/10.1128/AAC.45.4.1151
- Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of *16S rRNA* gene sequences and whole-genome assemblies. *International Journal of Systematic and Evolutionary Microbiology*, *67*(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755
- Zamani, I., Bouzari, M., Emtiazi, G., Ghasemi, S. M., & Chang, H. I. (2019). Molecular investigation of two novel bacteriophages of a facultative methylotroph, *Raoultella* ornithinolytica: first report of *Raoultella* phages. Archives of Virology, 164(8), 2015–2022. https://doi.org/10.1007/s00705-019-04282-1
- Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F. M., & Larsen, M. V. (2012). Identification of acquired antimicrobial resistance genes. *Journal of Antimicrobial Chemotherapy*, 67(11), 2640–2644. https://doi.org/10.1093/jac/dks261
- Zhang, M., Wan, K., Zeng, J., Lin, W., Ye, C., & Yu, X. (2020). Co-selection and stability

of bacterial antibiotic resistance by arsenic pollution accidents in source water. *Environment International*, *135*, 11. https://doi.org/10.1016/j.envint.2019.105351

- Zhou, Y., Yu, L., Nan, Z., Zhang, P., Kan, B., Yan, D., & Su, J. (2019). Taxonomy, virulence genes and antimicrobial resistance of *Aeromonas* isolated from extraintestinal and intestinal infections. *BMC Infectious Diseases*, 19(1), 1–9. https://doi.org/10.1186/s12879-019-3766-0
- Zhou, Z., Feng, W., Han, Y., Zheng, J., Chen, T., Wei, Y., Gillings, M., Zhu, Y., & Chen, H. (2018). Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. *Environment International*, 121, 1155– 1161. https://doi.org/10.1016/j.envint.2018.10.032
- Zong, Z. (2012). Discovery of *bla*_{OXA-199}, a chromosome-based *bla*_{OXA-48}-like variant, in *Shewanella xiamenensis*. *PLoS ONE*, 7(10), 1–5. https://doi.org/10.1371/journal.pone.0048280
- Zurfluh, K., Hächler, H., Nüesch-Inderbinen, M., & Stephan, R. (2013). Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing *Enterobacteriaceae* isolates from rivers and lakes in Switzerland. *Applied and Environmental Microbiology*, 79(9), 3021–3026. https://doi.org/10.1128/AEM.00054-13

VIII. Appendix

Table A1 PCR primers used in bacterial typing, 16S rRNA based affiliation and screening of ARG and integrons.

Target	Primers	Final concentration (µM)	Annealing (ºC)	Program	Amplicon size (bp)	Source
BOX element	BOXA1R: CTACGGCAAGGCGACGCTGACG	0.4	53	Q	variable	Versalovic et al., 1994
16S rDNA	27_F: AGA GTT TGA TCC TGG CTC AG 1492_R: GGY TAC CTT GTT AAC GAC TT	0.3	52	Н	1400	Lane, 1991
bla _{IMP}	IMP_F: GAA TAG AGT GGC TTA ATT GTC IMP_R: GGT TTA AYA AAA CAA CCA CC	0.3	55	В	232	(Henriques et al., 2006)
Ыа _{viм}	VIM_F: GAT GGT GTT TGG TCG CAT ATC G VIM_R: GCC ACG TTC CCC GCA GAC G	0.3	58	В	475	(Henriques et al., 2006)
Ыа _{кРС}	KPC_F: CAT TCA AGG GCT TTC TTG CTG C KPC_R: ACG ACG GCA TAG TCA TTT	0.3	55	В	538	(Dallenne et al., 2010)
bla _{GES}	GES_F: AGT CGG CTA GAC CGG AAA G GES_R: TTT GTC CGT GCT CAG GAT	0.3	57	D	399	(Dallenne et al., 2010)
Ыа _{NDM}	NDM_F: GGT TTG GCG ATC TGG TTT TC NDM_R: CGG AAT GGC TCA TCA CGA TC	0.3	52	E	621	(Laurent Poirel et al., 2011)
bla _{OXA-48}	blaOXA4854I_F: AGC AAG GAT TTA CCA ATA AT blaOXA4854I_R: GGC ATA TCC ATA TTC ATC	0.3	50	I	571	(Zong, 2012)

bla _{CphA}	AER_F: GCCTTGATCAGCGCTTCGTAGTG	0.3	60	В	670	(Henriques et
	AER_R: GCGGGGATGTCGCTGACGCAG					al., 2006)
<i>bla</i> _{стх-м} (Lu)	CTX_F: SCV ATG TGC AGY ACC AGT AA	0.3	55	А	600	(Lu et al.,
	CTX_R: GCT GCC GGT YTT ATC VCC					2010)
mcr-1	CLR5_F: CGG TCA GTC CGT TTG TTC	0.3	58	0	320-350	(Liu et al.,
	CLR5_R: CTT GGT CGG TCT GTA GGG					2016)
Intl1	Int1_F: ACA TGC GTG TAA ATC GTC	0.3	55	С	280	(Kraft et al.,
	Int1_R: CTG GAT TTC GAT GAC GGC					1986)
	ACG					
Intl2	Int2_F: ACG GCT ACC CTC TGT TAT	0.3	50	С	233	(Goldstein et
	Int2_R: TTA TTG CTG GGA TTA GGC					al., 2001)
Intl3	IntI3_F: AGT GGG TGG CGA ATG AGT G	0.3	50	С	600	(Goldstein et
	IntI3_R: TGT TCT TGT ATC GGC AGG TG					al., 2001)
Intl1 variable	Int1_F: ACA TGC GTG TAA ATC GTC	0.3	50	В	variable	
region	VIM_R: GCC ACG TTC CCC GCA GAC G					
<i>IntI3</i> variable	IntI3_F: AGT GGG TGG CGA ATG AGT G	0.3	50	В	variable	
region	GES_R: TTT GTC CGT GCT CAG GAT					
Integron Class 1	5'-CS: GGC ATC CAA GCA GCA AG	0.3	55	G	variable	(Levesque et
Variable region	3'-CS: AAG CAG ACT TGA CCT GA					al., 1995)
Integron Class 1	VIM_F: GAT GGT GTT TGG TCG CAT ATC	0.3	50	В	variable	
variable region	G					
	3'-CS: AAG CAG ACT TGA CCT GA					
Integron Class 1	VIM_F: GAT GGT GTT TGG TCG CAT ATC	0.3	50	В	variable	
variable region	G					
	Sul1_R: AAA AAT CCC ATC CCC GGR TC					
Integron Class 1	VIM_F: GAT GGT GTT TGG TCG CAT ATC	0.3	50	В	variable	
variable region	G					
	qacE_R: CAA GCT TTT GCC CAT GAA GC					

- 0	0				
	Program A			Program G	
94 ºC	2 min	× 1	94 ºC	5 min	×1
94 ºC	15 s	× 30	94 ºC	30 s	× 30
Υ₀C	30 s		A ōC	30 s	
72 ºC	45 s		72 ºC	3 min	
72 ºC	10 min	×1	72 ºC	10 min	× 1
	Program B			Program H	
94 ºC	5 min	×1	94 ºC	3 min	× 1
94 ºC	30 s	× 30	94 ºC	1 min	× 30
A ōC	30 s		Y ₀C	1 min	
72 ºC	1 min		72 ºC	2 min	
72 ºC	7 min	×1	72 ºC	10 min	× 1
	Program C			Program I	
94 ºC	5 min	×1	93 ºC	2 min	× 1
94 ºC	30 s	× 30	93 ºC	30 s	× 40
ΛōC	30 s		Y ₀C	30 s	
72 ºC	30 s		68 ºC	1 min	
72 ºC	7 min	×1	68 ºC	5 min	× 1
	Program D			Program O	
94 ºC	10 min	×1	94 ºC	15 min	× 1
94 ºC	40 s	× 30	94 ºC	30 s	× 25
Υ₀C	40 s		Y ₀C	90 s	
72 ºC	1 min		72 ºC	1 min	
72 ºC	7 min	×1	72 ºC	10 min	× 1
	Program E			Program Q	
94 ºC	10 min	×1	94 ºC	7 min	× 1
94 ºC	30 s	× 36	94 ºC	1 min	× 30
Υ₀C	40 s		Y ₀C	1 min	
72 ºC	50 s		65 ºC	8 min	
72 ºC	5 min	×1	65 ºC	16 min	× 1

Table A2. PCR programs used in PCR-based molecular typing, 16S rDNA affiliation and screening of ARG genes and integrons.

T 11 10	D '	1		1	•	1.	
	Primare	and	tarate	11000	1n	ranlicon	tuning
LADIC AJ.	1 I IIIICI S	anu	largets	uscu	ш	TCDIICOII	typing.
							· J F G

Inc group	Primer name	DNA sequence	Target site	Amplicon size
HI1	HI1 Forward	GGA GCG ATG GAT TAC TTC AGT AC	parA-parB	471
	HI1 Reverse	TGC CGT TTC ACC TCG TGA GTA		
HI2	HI2 Forward	TTT CTC CTG AGT CAC CTG TTA ACA C	iterons	644
	HI2 Reverse	GGC TCA CTA CCG TTG TCA TCC T		
11	I1 Forward	CGA AAG CCG GAC GGC AGA A	RNAI	139
	I1 Reverse	TCG TCG TTC CGC CAA GTT CGT		
X	X Forward	AAC CTT AGA GGC TAT TTA AGT TGC TGA	ori γ	376
		T		
	X Reverse	TGA GAG TCA ATT TTT ATC TCA TGT TTT		
		AGC		
L/M	L/M Forward	GGA TGA AAA CTA TCA GCA TCT GAA G	repA,B,C	785
	L/M Reverse	CTG CAG GGG CGA TTC TTT AGG		
N	N Forward	GTC TAA CGA GCT TAC CGA AG	repA	559
	N Reverse	GTT TCA ACT CTG CCA AGT TC		
FIA	FIA Forward	CCA TGC TGG TTC TAG AGA AGG TG	iterons	462
	FIA Reverse	GTA TAT CCT TAC TGG CTT CCG CAG		
FIB	FIB Forward	GGA GTT CTG ACA CAC GAT TTT CTG	repA	702
	FIB Reverse	CTC CCG TCG CTT CAG GGC ATT		
W	W Forward	CCT AAG AAC AAC AAA GCC CCC G	repA	242
	W Reverse	GGT GCG CGG CAT AGA ACC GT		
Y	Y Forward	AAT TCA AAC AAC ACT GTG CAG CCT G	repA	765
	Y Reverse	GCG AGA ATG GAC GAT TAC AAA ACT TT		
Р	P Forward	CTA TGG CCC TGC AAA CGC GCC AGA AA	iterons	534
	P Reverse	TCA CGC GCC AGG GCG CAG CC		
FIC	FIC Forward	GTG AAC TGG CAG ATG AGG AAG G	repA2	262

	FIC Reverse	TTC TCC TCG TCG CCA AAC TAG AT		
A/C	A/C Forward	GAG AAC CAA AGA CAA AGA CCT GGA	repA	465
	A/C Reverse	ACG ACA AAC CTG AAT TGC CTC CTT	_	
Т	T Forward	TTG GCC TGT TTG TGC CTA AAC CAT	repA	750
	T Reverse	CGT TGA TTA CAC TTA GCT TTG GAC	_	
FIIS	FIIS Forward	CTG TCG TAA GCT GAT GGC	repA	270
	FIIS Reverse	CTC TGC CAC AAA CTT CAG C	_	
F	FrepB Forward	TGA TCG TTT AAG GAA TTT TG	RNAI/repA	270
	FrepB Reverse	GAA GAT CAG TCA CAC CAT CC	_	
K/B	K/B Forward	GCG GTC CGG AAA GCC AGA AAA C	RNAI	160
	K Reverse	TCT TTC ACG AGC CCG CCA AA	_	
B/O	B/O Reverse	TCT GCG TTC CGC CAA GTT CGA	RNAI	159

	Panel 1-3			Frep	
94 ºC	5 min	×1	94 ºC	5 min	× 1
94 ºC	1 min	× 30	94 ºC	1 min	× 30
60 ºC	30 s		52 ºC	30 s	
72 ºC	1 min		72 ºC	1 min	
72 ºC	5 min	×1	72 ºC	5 min	× 1

Table A4. PCR programs used in replicon typing.

Primer	Primer sequence	Target	Amplicon size
name			
IA-1f	GCC GTC CTT TCT GTG ACA AAT CA	IncFIA <i>repA</i>	516
IA-1r	GGA TGG ACT GTG GGC ACG TT		
IA-2f	CCG TTT CTG TGT CAT TTG CTC CT	Second IncFII repA	250
IA-2r	CTT ATA GTG AGA CGG CCG GAA CC		
IA-3f	ATA CCG GTG CCG CCA TGC TGC G	Tn4401 upstream junction between chrB gene	213
IA-3r	TCG TCA TGC CGC GGA CCA CCC C	and ISKpn6	
IA-4f	CCG GCA TCA CCG GCC CTC ACC T	Tn4401 downstream junction between Tn4401	515
IA-4r	ACA CTC CCG GCT GTG CGC CTG A	<i>tnpR</i> gene and neighboring Tn3 <i>tnpA</i> gene	
IA-5f	CGA TGA CGT GGA GAG CAG TA		534
IA-56r	TCC CGA GAA TGA ATC TGG AC	Region between putative cytoplasmic protein	
		gene and adenine-specific methyltransferase gene	
		(<i>met1</i>)	
IA-6f	CGT GCA TTC GGT GAC TAA AA	Region between hypothetical protein gene and	768
		adeninespecific methyltransferase gene (met1)	
4401v-r	CAC AGC GGC AGC AAG AAA GC	Tn4401d isoform	
(3781L)			
4401v-r1	GCA AGC CGC TCC CTC TCC AG		635
4401v-f	TGA CCC TGA GCG GCG AAA GC		314
(3098U)			

Table A6. PCR programs used in screening of pBK30661 and pBK30683 plasmids.

Dup	V					
95 ºC	95 ºC 4 min					
95 ºC	30 s					
60 ºC	30 s	× 35				
72 ºC	1 min					
72 ºC	7 min	× 1				

Figure A1. Resistance phenotypes of 30 isolates.

Figure A2. Genes annotated and related subsystems of C. freundii F6. (a); Raoultella ornithinolytica N9 (b); Enterobacter kobei N10 (c).

			against D	SM 136	45T					aga	<mark>inst JCN</mark>	1 8580T			
Strain	Acc number	ANIb [%]	Aligne d [%]	ANI m [%]	Aligne d [%]	dDD H [%]	dif G+C	Same specie s	ANIb [%]	Aligne d [%]	ANI m [%]	Aligne d [%]	dDD H [%]	dif G+C	Same specie s
E. kobei N10		99.5 F	91.19	99.8 F	93.30	98.2	0.5	+	79.05	65.64	84.6	35.05	23.1	1.02	-
E. kobei 42-12	BJEX01000000	99.1 0	87.36	99.4 3	88.03	95.30	0.05	+	78.68	65.86		34.42	22.60	0.57	-
E. kobei E14	VTUD01000000	98.8 3	87.92	99.1 8	89.41	92.50	0.05	+	78.96	65.73	84.5 7	35.10	23.00	0.48	-
<i>E.</i> kobei MUGSI 253		98.7 7	86.57	99.1 8	87.86	92.80	0.02	+	78.99	65.37	84.5 0	35.03	23.00	0.55	-
<i>E. kobei</i> MUGSI 253		98.7 6	86.57	99.1 8	87.86	92.80	0.06	+	78.99	65.37	84.5 0	35.04	23.00	0.58	-
<i>E. kobei</i> CRE54	PXKD01000000	98.7 5	89.05	99.1 2	90.61	91.70	0.07	+	78.94	66.63	84.6 2	35.41	23.10	0.59	-
E. kobei CRE71	PXKA01000000	98.6 2	84.82	99.1 6	85.92	92.50	0.04	+	79.02	64.96	84.6 3	34.96	23.10	0.48	-
<i>E. kobei</i> EB P8 L5 01.19	CP043511	98.6 1	87.05	99.1 4	87.77	92.10	0.31	+	79.00	65.86	84.7 7	34.76	23.30	0.84	-
<i>E. kobei</i> C16	CP042578	98.6 1	88.33	99.1 0	89.30	91.60	0.51	+	78.88	66.14	84.6 8	34.96	23.30	1.03	-
<i>E. kobei</i> WCHEK045523	CP032897	98.5 9	87.42	99.0 6	88.20	91.50	0.20	+	78.89	66.20	84.6 1	35.10	23.30	0.73	-
<i>E. kobei</i> 2485STDY543836 1	UNXB01000000	98.5 9	86.14	98.8 8	90.22	20.40	0.23	+	79.36	68.09	84.6 0	42.44	23.20	0.30	-
<i>E. kobei</i> MUGSI_221		87.0 4	77.24	88.2 9	74.67	33.50	0.29	-	79.05	66.89	84.4 4	36.64	22.90	0.23	-

Table A7. ANIb, ANIm, dDDH and difference in G+C of *E. kobei* deposited in PATRIC database and *E. kobei* N10 against DSM 13645^T and JCM 8580^T strains.

E. kobei		87.0	77.21	88.2	74.66	33.50	0.41	-	79.05	66.87	84.4	36.63	22.90	0.11	-
MUGSI_221		4		9							4				
<i>E. kobei</i> MER	QGLV01000000	98.8	86.76	99.2	88.55	92.90	0.12	+	78.92	65.60	84.4	34.91	23.00	0.40	-
		6		1							9				
<i>E. kobei</i> 145e9	QMCN01000000	98.8	88.33	99.1	90.35	92.60	0.02	+	79.02	66.11	84.6	35.48	23.20	0.50	-
		4		9							8				
E. kobei 121J9	QMC001000000	98.8	86.29	99.2	89.29	92.70	0.19	+	79.04	65.45	84.6	35.04	23.20	0.33	-
		2		0							8				
E. kobei 149G8	QMCJ01000000	98.8	87.88	99.2	89.83	92.60	0.04	+	79.05	65.84	84.6	35.31	23.10	0.56	-
		1		1							6				
<i>E. kobei</i> 151B8	QMCI01000000	98.7	88.20	99.0	90.86	91.30	0.09	+	78.82	66.14	84.4	34.72	22.90	0.43	-
		4		6							7				
<i>E. kobei</i> 145F2	QMCM01000000	98.6	87.05	99.1	88.85	92.30	0.08	+	78.88	65.16	84.4	34.73	23.00	0.44	-
		9		7							9				
E. kobei	BEGI01000000	98.6	88.18	99.1	89.43	91.70	0.42	+	79.15	67.07	84.8	35.77	23.30	0.94	-
TUM11131		8		2							5				
TUM11131 <i>E. kobei</i> ICBEaBL-	NIHL00000000	8 98.6	86.94	2 99.0	89.75	91.70	0.53	+	78.83	64.96	5 84.5	34.58	23.00	1.06	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2)	NIHL00000000	8 98.6 7	86.94	2 99.0 8	89.75	91.70	0.53	+	78.83	64.96	5 84.5 0	34.58	23.00	1.06	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6	NIHL00000000 QMCK01000000	8 98.6 7 98.5	86.94 88.66	2 99.0 8 99.1	89.75 90.37	91.70	0.53	+ +	78.83 78.98	64.96 66.10	5 84.5 0 84.6	34.58 35.25	23.00	1.06	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6	NIHL00000000 QMCK01000000	8 98.6 7 98.5 6	86.94 88.66	2 99.0 8 99.1 0	89.75 90.37	91.70 91.50	0.53	+ +	78.83 78.98	64.96 66.10	5 84.5 0 84.6 3	34.58 35.25	23.00	1.06	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5	NIHL00000000 QMCK01000000 QMCL01000000	8 98.6 7 98.5 6 98.5	86.94 88.66 88.95	2 99.0 8 99.1 0 99.1	89.75 90.37 90.38	91.70 91.50 91.40	0.53 0.15 0.15	+ + + +	78.83 78.98 78.98	64.96 66.10 66.14	5 84.5 0 84.6 3 84.6	34.58 35.25 35.28	23.00 23.20 23.10	1.06 0.67 0.68	- - - -
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5	NIHL00000000 QMCK01000000 QMCL01000000	8 98.6 7 98.5 6 98.5 5	86.94 88.66 88.95	2 99.0 8 99.1 0 99.1 0	89.75 90.37 90.38	91.70 91.50 91.40	0.53 0.15 0.15	+ + + +	78.83 78.98 78.98	64.96 66.10 66.14	5 84.5 0 84.6 3 84.6 2	34.58 35.25 35.28	23.00 23.20 23.10	1.06 0.67 0.68	- - -
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000	8 98.6 7 98.5 6 98.5 5 98.3	86.94 88.66 88.95 87.48	2 99.0 8 99.1 0 99.1 0 98.9	89.75 90.37 90.38 89.17	91.70 91.50 91.40 89.70	0.53 0.15 0.15 0.35	+ + + + +	78.83 78.98 78.98 78.73	64.96 66.10 66.14 66.84	5 84.5 0 84.6 3 84.6 2 84.4	34.58 35.25 35.28 35.10	23.00 23.20 23.10 22.90	1.06 0.67 0.68 0.88	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000	8 98.6 7 98.5 6 98.5 5 98.3 7	86.94 88.66 88.95 87.48	2 99.0 8 99.1 0 99.1 0 99.1 0 98.9 6	89.75 90.37 90.38 89.17	91.70 91.50 91.40 89.70	0.53 0.15 0.35	+ + + + + +	78.83 78.98 78.98 78.73	64.96 66.10 66.14 66.84	5 84.5 0 84.6 3 84.6 2 84.4 8	34.58 35.25 35.28 35.10	23.00 23.20 23.10 22.90	1.06 0.67 0.68 0.88	- - - -
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4 <i>E. kobei</i> PECIMP	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000 QHMI01000000	8 98.6 7 98.5 6 98.5 5 98.3 7 87.1	86.94 88.66 88.95 87.48 78.27	2 99.0 8 99.1 0 99.1 0 98.9 6 88.3	89.75 90.37 90.38 90.38 89.17 76.12	91.70 91.50 91.40 89.70 33.90	0.53 0.15 0.15 0.35 0.25	+ + + + +	78.83 78.98 78.98 78.73 79.21	64.96 66.10 66.14 66.84 66.17	5 84.5 3 84.6 2 84.4 8 84.4 8	34.58 35.25 35.28 35.10 36.50	23.00 23.20 23.10 22.90 23.10	1.06 0.67 0.68 0.88 0.77	- - - - -
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4 <i>E. kobei</i> PECIMP	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000 QHMI01000000	8 98.6 7 98.5 6 98.5 5 98.3 7 98.3 7 87.1 3	86.94 88.66 88.95 87.48 78.27	2 99.0 8 99.1 0 99.1 0 98.9 6 88.3 1	89.75 90.37 90.38 89.17 76.12	91.70 91.50 91.40 89.70 33.90	0.53 0.15 0.15 0.35 0.25	+ + + + -	78.83 78.98 78.98 78.73 79.21	64.96 66.10 66.14 66.84 66.17	5 84.5 3 84.6 2 84.6 2 84.4 8 84.6 3	34.58 35.25 35.28 35.10 36.50	23.00 23.20 23.10 22.90 23.10	1.06 0.67 0.68 0.88 0.77	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4 <i>E. kobei</i> PECIMP <i>Enterobacter</i> sp.	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000 QHMI01000000 JZXR01000000	8 98.6 7 98.5 6 98.5 5 98.3 7 87.1 3 99.0	86.94 88.66 88.95 87.48 78.27 89.22	2 99.0 8 99.1 0 99.1 0 98.9 6 88.3 1 99.4	89.75 90.37 90.38 89.17 76.12 90.72	91.70 91.50 91.40 89.70 33.90 94.60	0.53 0.15 0.15 0.35 0.25 0.14	+ + + + - + + + +	78.83 78.98 78.98 78.73 78.73 79.21	64.96 66.10 66.14 66.84 66.17 67.07	5 84.5 0 84.6 3 84.6 2 84.4 8 84.6 3 84.9	34.58 35.25 35.28 35.10 36.50 36.42	23.00 23.20 23.10 22.90 23.10 23.40	1.06 0.67 0.68 0.88 0.77 0.67	- - - - - -
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4 <i>E. kobei</i> PECIMP <i>Enterobacter</i> sp. 44593	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000 QHMI01000000 JZXR01000000	8 98.6 7 98.5 6 98.5 5 98.3 7 87.1 3 99.0 5	86.94 88.66 88.95 87.48 78.27 89.22	2 99.0 8 99.1 0 99.1 0 98.9 6 88.3 1 99.4 2	89.75 90.37 90.38 89.17 76.12 90.72	91.70 91.50 91.40 89.70 33.90 94.60	0.53 0.15 0.15 0.35 0.25 0.14	+ + + + + + + +	78.83 78.98 78.98 78.73 79.21 79.22	64.96 66.10 66.14 66.84 66.17 67.07	5 84.5 3 84.6 2 84.6 2 84.4 8 8 4.6 3 84.9 3	34.58 35.25 35.28 35.10 36.50 36.42	23.00 23.20 23.10 22.90 23.10 23.40	1.06 0.67 0.68 0.88 0.77 0.67	-
TUM11131 <i>E. kobei</i> ICBEaBL- III-03(2) <i>E. kobei</i> 149H6 <i>E. kobei</i> 149H5 <i>E. kobei</i> 131G4 <i>E. kobei</i> PECIMP <i>Enterobacter</i> sp. 44593 <i>Enterobacter</i> sp.	NIHL00000000 QMCK01000000 QMCL01000000 QMCU01000000 QHMI01000000 JZXR01000000 LEEC01000000	8 98.6 7 98.5 6 98.5 5 98.3 7 87.1 3 99.0 5 98.8	86.94 88.66 88.95 87.48 78.27 89.22 87.06	2 99.0 8 99.1 0 99.1 0 98.9 6 88.3 1 99.4 2 99.1	89.75 90.37 90.38 89.17 76.12 90.72 88.27	91.70 91.50 91.40 89.70 33.90 94.60	0.53 0.15 0.15 0.35 0.25 0.14	+ + + + + + + + + + + + + + + + +	78.83 78.98 78.98 78.73 79.21 79.22 78.82	64.96 66.10 66.14 66.84 66.17 67.07 65.83	5 84.5 0 84.6 3 84.6 2 84.4 8 84.6 3 84.9 3 84.3	34.58 35.25 35.28 35.10 36.50 36.42 34.62	23.00 23.20 23.10 22.90 23.10 23.40 22.80	1.06 0.67 0.68 0.88 0.77 0.67	- - - - - - -

<i>Enterobacter</i> sp.	LEEK01000000	98.7	88.20	99.1	89.90	92.20		+	78.96	66.54	84.6	35.20	23.10		-
GN02275		6		6			0.05				2			0.48	
Enterobacter sp.	LDCL01000000	98.7	87.08	99.1	88.54	92.30	0.09	+	78.89	65.86	84.4	34.98	22.90	0.43	-
GN02225		4		5							9				
E. kobei UTA41	JAAMLZ0100000	98.6	87.86	99.1	89.15	91.60	0.42	+	78.94	66.22	84.5	35.27	23.00		-
	01	7		1							9			0.94	
Enterobacter sp.	JZYH01000000	98.6	88.01	99.1	89.37	91.90	0.30	+	78.96	65.74	84.5	35.12	23.00	0.82	-
42202		7		2							0				
Enterobacter sp.	JZYS01000000	98.6	88.69	99.1	90.03	91.90		+	78.95	66.20	84.7	34.98		1.15	-
35730		7		1			0.62				0		23.00		
E. kobei	VKUW01000000	98.6	88.88	99.1	90.40	91.60	0.09	+	78.80	65.78	84.4	35.04	23.00	0.43	-
AS012401		3		4							8				
<i>Enterobacter</i> sp.	LEEQ01000000	98.5	87.71	99.1	88.87		0.07	+	78.90	66.26	84.4	35.12	22.90	0.45	-
GN02204		8		3		91.70					9				
E. kobei 070	CP050073	98.4	87.76	99.0	88.62	90.90	0.18	+	78.88	66.10	84.6	35.16	23.20		-
		9		3							7			0.70	
Enterobacter sp.	LDCJ0100000	98.4	85.89	99.1	86.80	90.70	0.13	+	78.90	66.42	84.5	34.88	23.00	0.66	-
GN02186		6		0							2				
E. kobei	UNXN01000000	87.7	80.43	88.6	79.42	35.20	0.19	-	78.85	67.81	84.3	35.81	22.70	0.71	-
2485STDY543837		9		8							7				
4															
Enterobacter sp.	LECY01000000	98.8	86.99	99.1	87.74	92.30	0.05	+	78.80	66.45	84.3	34.59	22.80	0.48	-
GN03191		3		5							8				
Enterobacter sp.	LEDC0100000	98.7	89.02	99.1	90.59	92.00	0.15	+	78.94	66.70	84.6	35.41	23.10	0.68	-
GN02825		8		4							1				
Enterobacter sp.	LEDW01000000	98.5	87.99	99.1	89.26	91.80	0.23	+	78.98	66.09	84.5	35.18	23.00	0.75	-
GN02454		7		4							8				
E. kobei DSM	CP017181								78.96	65.68	84.7	34.85	23.40	0.52	-
13645T											5				
E. kobei BH-18	JSVH00000000	98.7	84.10	99.1	86.07	92.60	0.12	+	78.87	64.19	84.5	34.28		0.41	-
		9		4							2		23.10		

E. kobei	LVUX00000000	98.7	87.70	99.0	89.63	91.60	0.01	+	78.89	66.02	84.4	34.92	23.00	0.51	-
GN06078		3		9							7				
E. kobei	FKLS0000000	98.6	88.77	99.1	89.95	92.10	0.60	+	78.96	66.49	84.8	35.20	23.40	1.13	-
3380STDY602736		5		1							0				
3															
E. kobei ECC3026	LYUS0000000	98.6	87.13	99.1	87.99	92.20	0.25	+	79.05	66.08	84.5	35.55	23.00	0.77	-
		4		3							9				
E. kobei ECC3047	LYUT0000000	98.6	87.15	99.1	88.00	92.20	0.25	+	79.04	66.08	84.5	35.51	23.00	0.77	-
		3		3							9				
E. kobei	LVUM00000000	98.6	86.38	99.1	87.40	92.10	0.08	+	78.82	65.84	84.4	34.65	22.90	0.44	-
GN05680		2		2							6				
E. kobei	LPPL01000000	98.5	86.59	99.1	87.73	91.80	0.54	+	79.03	65.91	84.6	35.09	23.00	1.06	-
SMART_635		1		3							9				
<i>E. kobei</i> EkBL-II-	NEWG0000000	90.5	80.34	91.2	82.46	43.20	1.17	-	79.15	64.17	84.5	36.85	23.20	0.65	-
14(1)		2		4							6				
E. kobei JCM	MKXD0000000	79.2	63.91	84.7	34.29	23.40	0.52	-							
8580T		6		5											
<i>E. kobei</i> E. kobei	FYBC00000000	79.2	63.67	84.5	34.13	23.10	0.54	-	100.0	99.49	99.9	99.84	99.00	0.02	+
DSM27110T		4		9					0		9				
<i>E. kobei</i> ATCC	FTNJ00000000	79.1	63.07	84.5	33.64	23.00	0.55	-	99.99	98.92	99.9	99.38		0.03	+
BAA-260T		1		8							8		99.10		

Virulence factor	gene	length	contig
Adherence			
Agf/Csg	csgA	450	77
E. coli common pilus (ECP)	есрА	588	49
Hemorrhagic E. coli pilus (HCP)	hcpA	438	7
Hemorrhagic E. coli pilus (HCP)	hсpВ	1383	7
Hemorrhagic <i>E. coli</i> pilus (HCP)	hcpC	1203	7
P fimbriae	рарС	2472	49
Type I fimbriae	fimA	555	60
Type I fimbriae	fimC	693	60
Type I fimbriae	fimD	2613	4
Type I fimbriae	fimD	2427	7
Type IV pili	pilW	927	2
Type IV pili	pilW	888	4
Type IV pili	pilW	939	6
Type IV pili	pilW	885	23
type 3 fimbriae	mrkC	2613	4
Curli fibers	csgG	684	77
Lateral flagella	lfhA	1722	49
Autotransporter			
EhaB, AIDA-I type	ehaB	2850	73
Invasion			
Invasion of brain endothelial cells (lbes)	ibeB	1386	44
Invasion of brain endothelial cells (Ibes)	ibeC	1734	8
Flagella	cheB	1050	1
Flagella	cheR	873	1
Flagella	cheW	504	1
Flagella	cheY	411	1
Flagella	cheZ	651	1
Flagella	motA	888	1
Iron uptake			
Aerobactin siderophore	iutA	2181	22
Hemin uptake	chuA	1983	19
Hemin uptake	chuS	1032	19
Hemin uptake	chuT	840	10
Hemin uptake	chuU	1005	10
Hemin uptake	chuU	963	19
Hemin uptake	chuW	1338	10
Hemin uptake	chuX	495	10
Hemin uptake	chuY	624	10
Iron/managanease transport	sitA	918	47
Iron/managanease transport	sitB	816	47
Iron/managanease transport	sitC	858	47

Table A8. Virulence factors and its related genes found in *C. freundii* F6 against *Escherichia coli* and *Klebsiella pneumonieae* databases from VFDB.

Iron/managanease transport	sitD	840	47
Heme transport	shuV	780	19
Pyoverdine	pvdH	1386	51
Heme transport	shuV	771	10
Secretion system			
Flagella (cluster I)	fliS	408	1
T4SS effectors	-	1125	23
T6SS-II	clpV	2574	43
Flagella (cluster I)	flgB	417	34
Flagella (cluster I)	flgC	405	34
Flagella (cluster I)	flgD	681	34
Flagella (cluster I)	flgE	1287	34
Flagella (cluster I)	flgF	756	34
Flagella (cluster I)	flgG	783	34
Flagella (cluster I)	flgH	564	34
Flagella (cluster I)	flgI	1098	34
Flagella (cluster I)	flgJ	951	34
Flagella (cluster I)	flgK	1659	34
Flagella (cluster I)	flgL	954	34
Flagella (cluster I)	flgM	294	34
Flagella (cluster I)	flhA	2079	1
Flagella (cluster I)	flhB	1152	1
Flagella (cluster I)	flhC	582	1
Flagella (cluster I)	flhD	342	1
Flagella (cluster I)	fliA	720	1
Flagella (cluster I)	fliE	315	1
Flagella (cluster I)	fliF	1683	1
Flagella (cluster I)	fliG	999	1
Flagella (cluster I)	fliH	708	1
Flagella (cluster I)	flil	1371	1
Flagella (cluster I)	fliJ	444	1
Flagella (cluster I)	fliL	468	1
Flagella (cluster I)	fliM	1005	1
Flagella (cluster I)	fliN	414	1
Flagella (cluster I)	fliP	738	1
Flagella (cluster I)	fliQ	270	1
Flagella (cluster I)	fliR	786	1
Flagella (cluster I)	fliZ	462	1
Toxin			
Colicin-like Usp	usp	1644	2
Antiphagocytosis			
Capsular polysaccharide	rmlC	573	1
Capsule		936	56
Capsule	uge	807	1
Capsule	wbaP	1005	1

Capsule	-	1089	1
Capsule	-	900	1
Capsule	-	1407	1
Capsule	-	1167	1
Capsule	-	906	56
Capsule	-	1395	56
Capsule	-	1371	56
Capsule	-	1212	56
Capsule		480	56
Capsule		966	56
Capsule		1122	56
Capsule		2163	56
Capsule		423	56
Capsule		1047	56
Capsule		1122	56
Capsule		2163	56
Capsule		423	56
Capsule		1047	56
Biofilm formation			
PNAG (Polysaccharide poly-N-	pgaC	1335	4
acetylglucosamine)			
Fimbrial adherence determinants	fine F	F 2 7	
	JIMF	537	60
	JIIIII fina M	584	60
FIM	JITTIVV	594	0U
	SICB	450	ZI 77
Agi/Csg	LSYA	450	//
Agi/Csg	LSYB	480	//
Agi/Csg		330 CE1	//
Agi/Csg	csgD	651	//
	CSGF		//
	JIMA fimD	2022	60
	finall	1000	60
	JIIIIH fim 7	1008	60
FIII		2445	21
Stc	SILL	2445	21
Aorobactin	iut A	7101	
Ent siderophere	ant	756	22
Ent siderophore	entP	250 050	2
Ent siderophore	ontC	1100	2
Ent siderophore	entD	1100	2
Ent siderophore	ent	1611	2
	ente	2001	2
Ent siderophore	ents	3091 1220	2
Ent siderophore	ents	1236	2
Ent siderophore	fepA	2274	2
-----------------------------------	------	------	----
Ent siderophore	fepB	930	2
Ent siderophore	fepC	798	2
Ent siderophore	fepD	972	2
Ent siderophore	fepG	993	2
Ent siderophore	fes	1218	2
Motility			
Flagella	flaA	1272	1
Flagella	motB	930	1
nonfimbrial adhrence determinants			
MisL	misL	2811	6
RatB	ratB	6381	9
SinH	sinH	2172	9
Efflux Pump			
AcrAB	acrA	1194	10
AcrAB	acrB	3114	5
AcrAB	acrB	3150	10
Nutritional factor			
Allantoin utilization	allA	582	10
Allantoin utilization	allR	693	10
Allantoin utilization	allS	927	10
Regulation			
RcsAB	rcsA	552	1
RcsAB	rcsB	642	13
Serum resistance			
LPS rfb locus	-	810	1
LPS rfb locus	-	1440	56

Table A9. Virulence factors and its related genes found in *R. ornithinolytica* N9 against *Escherichia coli* and *Klebsiella pneumonieae* databases from VFDB.

Virulence factor	gene	length	contig
Adherence			
Type 3 fimbriae	mrkA	582	20
Type 3 fimbriae	mrkA	618	44
Type 3 fimbriae	mrkB	702	20
Type 3 fimbriae	mrkB	702	44
Type 3 fimbriae	mrkC	2439	20
Type 3 fimbriae	mrkC	2487	44
Type 3 fimbriae	mrkD	996	20
Type 3 fimbriae	mrkD	741	44
Type 3 fimbriae	mrkF	588	20
Type 3 fimbriae	mrkF	597	44
Type 3 fimbriae	mrkH	588	20
Type 3 fimbriae	mrkl	516	20
Type 3 fimbriae	mrkl	585	44
Type 3 fimbriae	mrkl	585	65

Type 3 fimbriae	mrkJ	582	20
Type 3 fimbriae	mrkJ	645	44
Type I fimbriae	fimA	549	20
Type I fimbriae	fimB	606	20
Type I fimbriae	fimC	657	20
Type I fimbriae	fimD	2535	2
Type I fimbriae	fimD	2526	20
Type I fimbriae	fimD	2511	44
Type I fimbriae	fimE	597	20
Type I fimbriae	fimF	534	20
Type I fimbriae	fimG	504	20
Type I fimbriae	fimH	906	20
Type I fimbriae	fiml	531	20
Type I fimbriae	fimK	1449	20
Hemorrhagic E.coli pilus (HCP)	hofC	1206	7
The tad locus	tadA	1302	30
Type IV pili	pilW	954	48
E. coli common pilus (ECP)	есрА	636	31
E. coli common pilus (ECP)	есрВ	669	31
E. coli common pilus (ECP)	есрС	2454	31
E. coli common pilus (ECP)	ecpD	1623	31
E. coli common pilus (ECP)	есрЕ	645	31
Hemorrhagic <i>E.coli</i> pilus (HCP)	hcpA	432	7
Hemorrhagic <i>E.coli</i> pilus (HCP)	hсpВ	1386	7
Hemorrhagic <i>E.coli</i> pilus (HCP)	hcpC	1206	7
Type I fimbriae	fimD	2469	40
Tap type IV pili	tapD	798	7
The tad locus	tadA	1302	30
Type IV pili	pilW	837	12
Type IV pili	pilW	978	79
Invasion			
Invasion of brain endothelial cells (Ibes)	ibeB	1386	73
Invasion of brain endothelial cells (Ibes)	ibeB	1386	77
Iron uptake			
Aerobactin siderophore	iutA	2193	15
Hemin uptake	chuS	1032	13
Hemin uptake	chuU	996	13
Iron/managanease transport	sitA	918	13
Iron/managanease transport	sitB	822	13
Iron/managanease transport	sitC	852	13
Iron/managanease transport	sitD	858	13
Salmochelin siderophore	iroB	1113	31
Salmochelin siderophore	iroD	1236	31
Salmochelin siderophore	iroE	900	21
Salmochelin siderophore	iroN	2184	16

Yersiniabactin siderophore	fyuA	1980	3
Yersiniabactin siderophore	irp1	9492	3
Yersiniabactin siderophore	irp2	6024	3
Yersiniabactin siderophore	ybtA	960	3
Yersiniabactin siderophore	ybtE	1578	3
Yersiniabactin siderophore	ybtP	1749	3
Yersiniabactin siderophore	ybtQ	1803	3
Yersiniabactin siderophore	ybtS	1311	3
Yersiniabactin siderophore	ybtT	681	3
Yersiniabactin siderophore	ybtU	1059	3
Yersiniabactin siderophore	ybtX	1260	3
Acinetobactin	basG	1137	43
Pyoverdine	pvdH	1386	10
Ent siderophore	entA	756	1
Ent siderophore	entB	852	1
Ent siderophore	entC	1188	1
Ent siderophore	entE	1611	1
Ent siderophore	entS	1242	1
Ent siderophore	fepA	2232	70
Ent siderophore	fepB	960	1
Ent siderophore	fepC	795	1
Ent siderophore	fepD	987	1
Ent siderophore	fepG	993	1
Regulation			
RcsAB	rcsA	519	3
RcsAB	rcsB	642	18
Secretion system			
T6SS-I	clpV/tssH	2601	54
T6SS-I	dotU/tssL	690	54
T6SS-I	hcp/tssD	432	2
T6SS-I	hcp/tssD	492	54
T6SS-I	icmF/tssM	3291	75
T6SS-I	impA/tssA	1602	75
T6SS-I	отрА	1482	54
T6SS-I	sciN/tssJ	498	75
T6SS-I	tssF	1755	75
T6SS-I	tssG	1086	75
T6SS-I	vasE/tssK	1305	54
T6SS-I	vgrG/tssl	2331	54
T6SS-I	vipA/tssB	498	54
T6SS-I	vipB/tssC	1491	54
T6SS-II	clpV	2472	28
T6SS-III	impF	471	75
SCI-I T6SS		471	75
T2SS	exeF	1215	7

T2SS	exel	366	7
T6SS-III		924	1
Antiphagocytosis			
Capsule		630	6
Capsule		891	21
Capsule		1395	21
Capsule		909	21
Capsule		1434	21
Capsule	WZC	2166	21
Capsule	-	849	6
Capsule	-	1167	21
Capsule	-	555	21
Capsule	-	870	21
Capsule	-	1065	21
Capsule	-	1377	21
Capsule	-	1134	21
Capsule	-	1068	24
Biofilm formation			
AdeFGH efflux pump/transport	adeG	3153	40
autoinducer			
Endotoxin			
LUS	lgtF	747	4
Nutritional factor		0.07	47
Allantoin utilization	allS	927	1/
Serum resistance		4005	21
		1305	21
LPS rfb locus		891	21
LPS rtb locus		1155	21
LPS rfb locus		1893	21
LPS rfb locus		1011	21
LPS rfb locus		960	29
Stress adaptation			
Catalase	katA	1395	92
Manganese transport system	mntB	864	13
Ettlux pump			
AcrAB	acrA	1086	1
AcrAB	acrB	3081	1
AcrAB	acrB	3147	1

Virulence factor	gene	length	contig
Serum resistance			
LPS rfb locus		3567	44
LPS rfb locus		1332	44
LPS rfb locus		912	44
LPS rfb locus		1005	66
LPS rfb locus	rmlD	891	44
LPS rfb locus	wbbL	831	44
LPS rfb locus	-	1398	33
Adherence			
Type I fimbriae	fimA	564	2
CFA/I fimbriae	cfaB	507	15
Curli fibers	csgA	390	45
Hemorrhagic <i>E.coli</i> pilus (HCP)	hcpA	402	7
Hemorrhagic <i>E.coli</i> pilus (HCP)	hсpВ	1365	7
Hemorrhagic <i>E.coli</i> pilus (HCP)	hofB	1365	7
P fimbriae	рарС	2442	34
Type I fimbriae	fimC	666	2
Type I fimbriae	fimC	672	41
Type I fimbriae	fimD	2511	1
Type I fimbriae	fimD	2409	3
Type I fimbriae	fimD	2409	5
Type I fimbriae	fimD	2436	23
Type I fimbriae	fimD	2535	32
Curli fibers	csgF	351	15
Antiphagocytosis			
Capsule	cpsG_1	1269	30
Capsule	wzb	399	104
Capsule	-	1389	33
Capsule	-	900	33
Capsule	-	1341	33
Capsule	-	1392	33
Capsule	-	1365	33
Capsule	-	1224	33
Capsule	-	966	33
Capsule	-	1122	33
Capsule	-	2163	33
Capsule	-	444	33
Capsule	-	1047	33
Capsule	-	555	44
Capsule	-	891	44

Table A10. Virulence factors and its related genes found in *E. kobei* N10 against *Escherichia coli* and *Klebsiella pneumonieae* databases from VFDB.

Capsule	-	867	44
Capsule	-	1065	44
Capsule	-	1323	66
Capsule	-	1065	66
Capsule	-	1407	66
Capsule	-	1167	66
Capsule	-	969	104
Capsule		897	66
Capsule		2220	104
Autotransporter			
EhaB, AIDA-I type	ehaB	2775	46
Invasion			
Invasion of brain endothelial cells	ibeB	1386	8
(Ibes)			
Invasion of brain endothelial cells	ibeB	1386	71
	chal	2021	
	cheA	2031	5
	cneB	300 202	5
		723	5
	cnew	504	5
	cheY	390	5
	cheZ	630	5
Flagella	motA	834	5
Iron uptake		1740	
Aerobactin siderophore	iucA	1/43	12
Aerobactin siderophore	iucB	948	12
Aerobactin siderophore		1/43	12
Aerobactin siderophore	iucD	1326	12
Aerobactin siderophore	iutA	2145	12
Hemin uptake	chuA	1983	64
Hemin uptake	chuS	1029	64
Hemin uptake	chuU	993	64
Iron/managanease transport	sitA	894	101
Iron/managanease transport	sitB	807	101
Iron/managanease transport	sitC	858	101
Iron/managanease transport	sitD	840	101
Heme transport	shuV	792	64
Pyoverdine	pvdH	1377	104
Ent siderophore	entA	762	58
Ent siderophore	entB	855	58
Ent siderophore	entC	1188	58
Ent siderophore	entE	1611	58
Ent siderophore	entF	3744	101
Ent siderophore	entS	1236	58
Ent siderophore	fepA	2214	101

Ent siderophore	fepB	960	58
Ent siderophore	fepC	774	58
Ent siderophore	fepD	1017	58
Ent siderophore	fepG	993	58
Ent siderophore	fes	1197	101
Secretion system			
EPS type II secretion system	epsE	1476	9
(Vibrio)	epsE	1479	59
Hcp secretion island-1 encoded type		537	35
VI secretion system (H-T6SS)			
Hcp secretion island-1 encoded type		1500	35
VI secretion system (H-T6SS)		2620	
Hcp secretion island-1 encoded type	clpV1	2628	35
	ργρΠ	1677	Q
(Aeromonas)	εχεΠ	1902	 59
	ργρΕ	1200	59
TTSS (SPI-1 encode)	iaaR	<u>тгој</u> <u>Д</u> Д1	59
	clnV/tssH	2820	60
	vin A /tssR		00
	vipA/tssD	1520	
		1339	102
	imnA	1150	02
Elagella (cluster I)	flaP	1152	95
	flaC	417	45
	flaD	405 600	45
	flar	1200	45
	JIYE	1209	45
	JIYF flaC	752	45
	flall	705	45
	JIGH	1000	45
	JIYI	1098	45
	JIGJ	954	45
	JIGK	1641	45
	flat	930 204	45
	JIYIVI flb A	294	45
	finA filon	2079	5
	JINB	1149	5
Flagella (cluster l)	finc	579	5
	finD	336	5
Flagella (cluster I)	fliA	690	12
		215	12
Flagella (cluster I)	fliE	315	
Flagella (cluster I) Flagella (cluster I)	fliE fliF	1632	12
Flagella (cluster I) Flagella (cluster I) Flagella (cluster I)	fliE fliF fliG	1632 999	12 12
Flagella (cluster I) Flagella (cluster I) Flagella (cluster I) Flagella (cluster I)	fliE fliF fliG fliH	1632 999 708	12 12 12

Flagella (cluster I)	fliJ	444	12
Flagella (cluster I)	fliL	471	12
Flagella (cluster I)	fliM	1005	12
Flagella (cluster I)	fliN	405	12
Flagella (cluster I)	fliP	738	12
Flagella (cluster I)	fliQ	252	12
Flagella (cluster I)	fliR	786	12
Flagella (cluster I)	fliS	411	12
Flagella (cluster I)	fliZ	552	12
Biofilm formation			
AdeFGH efflux pump/transport	adeG	3153	47
autoinducer			
PNAG (Polysaccharide poly-N-	pgaC	1272	29
acetylglucosamine)			
	acrA	1069	<u>ר</u>
AcrAB	acrP	2147	2
		2114	<u></u>
	ucrB	3114 1005	20
ACIAB	иств	1995	20
	htrD	000	0
	IIUD	000	0 2
103	iytr	//1	5
100	what /rfhD	1222	66
LOS	wbaP/rfbP	1323	66
LOS Fimbrial adherence determinants	wbaP/rfbP	711	66
LOS Fimbrial adherence determinants Agf/Csg Fim	wbaP/rfbP csgG fimD	1323 711 2562	66 15 2
LOS Fimbrial adherence determinants Agf/Csg Fim	wbaP/rfbP csgG fimD fimE	1323 711 2562 522	66 15 2 2
LOS Fimbrial adherence determinants Agf/Csg Fim Fim	wbaP/rfbP csgG fimD fimF fimH	1323 711 2562 522 1008	66 15 2 2 2
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim	wbaP/rfbP csgG fimD fimF fimH fimI	1323 711 2562 522 1008 507	66 15 2 2 2 2
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti	wbaP/rfbP csgG fimD fimF fimH fimI stiB	1323 711 2562 522 1008 507 672	66 15 2 2 2 2 2 2 2 41
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC	1323 711 2562 522 1008 507 672 2238	66 15 2 2 2 2 2 2 41 41
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stiB	1323 711 2562 522 1008 507 672 2238 2295	66 15 2 2 2 2 2 41 41 41
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Sti	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stiB	1323 711 2562 522 1008 507 672 2238 2295 2376	66 15 2 2 2 2 2 41 41 41 41
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiB stiC stjB stjB stjB	1323 711 2562 522 1008 507 672 2238 2295 2376 621	66 15 2 2 2 2 41 41 41 41 41 4 14
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjB stjC stjC	1323 711 2562 522 1008 507 672 2238 2295 2376 621 624	 66 15 2 2 2 2 41 41 41 4 14 4 14 14 14
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Others	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiB stiC stjB stjB stjC stjC stjC	1323 711 2562 522 1008 507 672 2238 2295 2376 621 624	 66 15 2 2 2 41 41 4 14 4 14 14
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Others O-antigen	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjC stjC	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624	 66 15 2 2 2 2 41 41 41 44 14 14 33
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Others O-antigen Begulation	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjB stjC stjC	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197	 66 15 2 2 2 41 41 41 4 14 4 14 33
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Others O-antigen Regulation	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjC stjC stjC stjC	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197	 66 15 2 2 2 2 41 41 41 4 14 4 14 33 12
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Sti Stj Stj Stj Stj Stj Others Others O-antigen Regulation RcsAB	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjB stjC stjC stjC 	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197 1197	66 15 2 2 2 41 41 41 41 33 12 31
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Stj Others O-antigen Regulation RcsAB Immune evasion	<pre>wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjC stjC stjC rcsA rcsB</pre>	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197 1197	 66 15 2 2 2 41 41 41 4 14 4 33 12 31
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Stj Others Others O-antigen Regulation RcsAB RcsAB	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjC stjC stjC 	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197 1197 477 651	66 15 2 2 2 41 41 41 41 33 12 31 19
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Sti Stj Stj Stj Stj Stj Others O-antigen Regulation RcsAB RcsAB Immune evasion	wbaP/rfbP csgG fimD fimF fimI stiB stiC stjB stjC stjC stjC stjC rcsA rcsB gtrB	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197 1197 477 651	 66 15 2 2 2 41 41 41 41 44 14 33 12 31 19
LOS Fimbrial adherence determinants Agf/Csg Fim Fim Fim Fim Sti Sti Sti Stj Stj Stj Stj Stj Stj Others O-antigen Regulation RcsAB RcsAB Immune evasion LPS glucosylation	wbaP/rfbP csgG fimD fimF fimH fimI stiB stiC stjB stjC stjC stjC stjC stjC 	1323 711 2562 522 1008 507 672 2238 2295 2376 621 621 624 1197 1197 477 651 477 651 918	66 15 2 2 2 41 41 41 41 33 12 31 19 5

Contig	Accession ID	Organism	Protein function	ldentity (%)
64	CP001138	Salmonella enterica subsp. enterica serovar Agona str. SL483, complete genome.	type I site-specific deoxyribonuclease, HsdR family	97.84
1	CP001127	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633, complete genome.	ATP-dependent protease	98.39
108	CP001125	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	99.77
1	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.1
43	CU928158	Escherichia fergusonii ATCC 35469 chromosome, complete genome.	inorganic polyphosphate/ATP-NAD kinase	98.63
11	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.74
89	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	ISEc8 transposase	99.61
1	CP001127	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633, complete genome.	phage portal protein, lambda family	98.43
100	CU928164	Escherichia coli IAI39 chromosome, complete genome.	Group II intron-encoded reverse transcriptase/maturase	100.0
3	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	L-carnitine/gamma- butyroβine antiporter	98.22
29	XXX	Salmonella enterica subsp. enterica serovar Typhi str. CT18	XXX	97.85
4	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	98.11
6	CP000886	Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7, complete genome.	hypothetical protein	97.49
48	CP000243	Escherichia coli UTI89, complete genome.	Nucleoside permease NupC	98.75
55	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	100.0
56	AP010960	Escherichia coli O111:H- str. 11128 DNA, complete genome.	predicted colanic acid polymerase WcaD	98.27
24	CP000966	Klebsiella pneumoniae 342 plasmid pKP91, complete sequence.	plasmid partition protein A	100.0
93	CP001125	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	100.0

32	CP001138	Salmonella enterica subsp. enterica serovar Agona str. SL483, complete genome.	secretion protein HlyD	97.88
			family protein	
6	XXX	Salmonella enterica subsp. enterica serovar Typhi str. CT18	XXX	97.76
6	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.88
1	CP000886	Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7, complete genome.	hypothetical protein	97.66
27	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	98.36
24	CP000966	Klebsiella pneumoniae 342 plasmid pKP91, complete sequence.	plasmid partition parB protein	100.0
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	mediator of plasmid stability	99.38
67	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative membrane protein	97.83
47	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	97.72
7	CP000243	Escherichia coli UTI89, complete genome.	30S ribosomal protein S2	97.51
6	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative carbohydrate kinase	98.69
6	CP001127	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633, complete genome.	PTS system mannose/fructose/sorbose family IID component	97.89
17	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	97.45
56	AP010960	Escherichia coli 0111:H- str. 11128 DNA, complete genome.	predicted glycosyl transferase WcaA	98.93
11	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	100.0
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	98.82
25	CP001127	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633, complete genome.	nitrite transporter NirC	99.26
75	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative elongation factor	98.42
3	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.23
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	99.57
6	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative PTS system protein	99.2
43	CP000038	<i>Shigella sonnei</i> Ss046, complete genome.	conserved hypothetical protein	98.37
9	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	ribonuclease III	99.12
40	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.52

24	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	putative plasmid SOS	99.17
15	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	97.93
119	CP001125	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	100.0
93	CP000604	<i>Salmonella enterica</i> subsp. enterica serovar Newport str. SL254 plasmid pSN254, complete sequence.	tetracycline repressor protein R, class A	100.0
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	mediator of plasmid stability	99.55
6	CP000857	Salmonella enterica subsp. enterica serovar Paratyphi C strain RKS4594, complete genome.	two-component system response regulator protein	97.46
2	CP000800	Escherichia coli E24377A, complete genome.	flavodoxin	98.3
82	CP000863	Acinetobacter baumannii ACICU, complete genome.	aminoglycoside 6'-N- acetyl transferase type Ib	97.49
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	100.0
9	CP000243	Escherichia coli UTI89, complete genome.	RNA polymerase sigma E	98.95
65	CP001063	Shigella boydii CDC 3083-94, complete genome.	IS1 protein InsB	97.73
7	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.34
26	AP010960	Escherichia coli 0111:H- str. 11128 DNA, complete genome.	predicted acyl transferase WcaF	98.91
27	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	YfbU domain protein	97.56
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	99.4
5	CP000243	<i>Escherichia coli</i> UTI89, complete genome.	50S ribosomal subunit protein L13	97.89
42	FN554766	<i>Escherichia coli</i> 042 complete genome.	conserved hypothetical protein	98.15
14	CP000468	Escherichia coli APEC 01, complete genome.	conserved hypothetical protein	97.69
38	CP000857	Salmonella enterica subsp. enterica serovar Paratyphi C strain RKS4594, complete genome.	co-chaperonin GroES	100.0
63	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative phage tail completion protein	97.97
42	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; inner membrane lipoprotein	98.64

38	CP000604	Salmonella enterica subsp. enterica serovar Newport str. SL254 plasmid pSN254, complete sequence.	quaternary ammonium compound-resistance	100.0
			protein SugE1	
23	CP000247	Escherichia coli 536, complete genome.	thioredoxin 1	100.0
63	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative phage tail protein	100.0
24	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	putative plasmid SOS inhibition protein B	99.3
24	CP000650	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN5, complete sequence.	putative antirestriction protein	98.59
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	99.28
10	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative methylated-DNA methyltransferase	99.03
4	CP001654	Dickeya dadantii Ech703, complete genome.	conserved hypothetical protein	99.21
43	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.11
22	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	histidine triad nucleotide- binding protein 2	97.48
7	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	cell division protein FtsL	99.17
40	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	preprotein translocase auxillary subunit	99.09
89	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	ISEc8 transposase	100.0
20	AE017220	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67, complete genome.	Transposase insN for	99.0
			insertion sequence element IS	
19	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	98.11
24	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	Hypothetical protein	100.0
34	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	100.0
29	AE014075	Escherichia coli CFT073, complete genome.	Unknown pentitol	99.01
			phosphotransferase	
			enzyme II, B component	
2	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	100.0
19	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	98.99
24	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	putative cytoplasmic protein	100.0

5	CP000034	Shigella dysenteriae Sd197, complete genome.		conserved hypothetical	98.51
				protein	
2	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.		hypothetical protein	97.96
10	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence		haemolysin expression	100.0
				modulating protein	
15	FN392235	<i>Erwinia pyrifoliae</i> DSM 12163 complete genome, culture collection DSM:121	63.	hypothetical protein	97.56
93	CP000604	Salmonella enterica subsp. enterica serovar Newport str. SL254 plasmid pSN2	254, complete	conserved hypothetical	100.0
		sequence.		protein	
42	CP000948	<i>Escherichia coli</i> str. K12 substr. DH10B, complete genome.		CP4-57 prophage;	97.44
				predicted inner membrane	
				protein	100.0
1	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.		nypotnetical protein	100.0
	CP000649	Kiebsiella pheumoniae subsp. pheumoniae MGH 78578 plasmid pKPN4, com	plete sequence.	nypotnetical protein	100.0
26	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete ge	enome.	conserved hypothetical	98.65
		Klabsiella proumoniae NTULL K2014 DNA complete geneme		protein	00 11
5	AP000725	Repsiend pheumonide NTOR-N2044 DNA, complete genome.		acid/amine transport	96.11
				nrotein	
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4. com	plete sequence.	hypothetical protein	100.0
24	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4, com	plete sequence.	hypothetical protein	100.0
22	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	· · ·	hypothetical protein	98.33
		, , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Table A12. Proteins associated to pathogenesis found in R. ornithinolytica	N9 using PathogenFine	ler 1.1.	
Contig	Accession ID	Organism	Protein function		Identity (%)
48	CP000648	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN3,	oriT nicking-unwi	nding	98.97
		complete sequence.			
48	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3,	F pilus assembly a	and aggregate stability	100.0
		complete sequence.	protein		0.0 50
2	CP000880	Salmonella enterica subsp. arizonae serovar 62:24,223:, complete genome.	hypothetical prot	ein	96.58
21	CP000970	Escherichia coli SMS-3-5, complete genome.	glycosyl transfera	se family 8	98.89
27	CP000964	Klebsiella pneumoniae 342, complete genome.	anthranilate synt	hase, component II	97.18
12	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	4-hydroxyphenyla	acetate 3-hydroxylase	99.04
123	CU928164	Escherichia coli IAI39 chromosome, complete genome.	Group II intron-ei	ncoded reverse	100.0
			transcriptase/mat	urase	
47	CP000604	Saimonella enterica subsp. enterica serovar Newport str. SL254 plasmid	transposase InsA		99.8
		pSN254, complete sequence.			

33	CP000964	Klebsiella pneumoniae 342, complete genome.	ascorbate-specific permease IIC component	96.78
59	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	galactose-proton symport of transport system	96.98
69	CP000964	Klebsiella pneumoniae 342, complete genome.	phage portal protein, HK97 family	99.76
54	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	nucleoside permease	98.0
108	CP000650	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN5, complete sequence.	plasmid partition protein A	99.25
78	CP000965	Klebsiella pneumoniae 342 plasmid pKP187, complete sequence.	protein SopA	97.94
2	CP000964	<i>Klebsiella pneumoniae</i> 342, complete genome.	autoinducer-2 ABC transporter, periplasmic autoinducer-2-binding protein LsrB	96.14
3	CP000026	<i>Salmonella enterica</i> subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	catabolic threonine dehydratase	96.05
99	CP001125	<i>Salmonella enterica</i> subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	100.0
18	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	acetyl-CoA carboxylase β subunit	97.54
150	CP000650	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN5, complete sequence.	mediator of plasmid stability	98.6
3	AE017042	Yersinia pestis biovar Microtus str. 91001, complete genome.	transcriptional regulator YbtA	96.87
5	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	outer membrane protein 1a	100.0
7	CP000243	Escherichia coli UTI89, complete genome.	30S ribosomal protein S2	97.1
23	CP000026	<i>Salmonella enterica</i> subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	putative carbohydrate kinase	97.39
12	CP000964	<i>Klebsiella pneumoniae</i> 342, complete genome.	3,4-dihydroxyphenylacetate 2,3- dioxygenase	97.19
9	AE017220	<i>Salmonella enterica</i> subsp. enterica serovar Choleraesuis str. SC-B67, complete genome.	transcriptional regulation of aerobic, anaerobic respiration, osmotic balance (CRP family)	96.8
50	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	98.43
99	CP000641	Shigella sonnei Ss046 plasmid pSS04	pA, complete sequence.	100.0
12	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	2-oxo-hepta-3-ene-1,7-dioic acid hydratase	99.63
12	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	deoxyribose-phosphate aldolase	97.68
21	CP000970	Escherichia coli SMS-3-5, complete genome.	O-antigen export system permease protein RfbA	99.61
50	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	99.03

36	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	96.4
56	CP000964	Klebsiella pneumoniae 342, complete genome.	thiazole biosynthesis protein ThiG	96.88
21	CP000970	Escherichia coli SMS-3-5, complete genome.	O-antigen export system ATP-binding	100.0
			protein RfbB	
35	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	ribonuclease III	96.46
34	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	99.03
5	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	arginine 3rd transport system periplasmic	97.12
			binding component	
39	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	putative regulator	96.28
48	CP000966	Klebsiella pneumoniae 342 plasmid pKP91, complete sequence.	type-F conjugative transfer system pilin acetylase TraX	97.1
47	CP000648	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	F pilin acetylation	97.1
6	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	uridine kinase	96.24
156	CP001125	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	100.0
44	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	96.14
75	BA000007	Escherichia coli O157:H7 str. Sakai DNA, complete genome.	putativa replication protein	99.53
154	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	mediator of plasmid stability	96.91
		complete sequence.		
19	CP000783	Enterobacter sakazakii ATCC BAA-894, complete genome.	hypothetical protein	96.53
95	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	hypothetical protein	100.0
62	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	100.0
		complete sequence.		
35	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	RNA polymerase sigma-70 factor	98.95
68	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	flavodoxin	96.59
174	CP000057	Haemophilus influenzae 86-028NP, complete genome.	transposon Tn3 resolvase	100.0
88	CP001063	Shigella boydii CDC 3083-94, complete genome.	IS1 protein InsB	96.59
7	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.35
26	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	98.39
13	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	96.79
20	CP000964	Klebsiella pneumoniae 342, complete genome.	type-1 fimbrial protein	97.25
48	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3,	surface exclusion	100.0
		complete sequence.		

99	FM180570	Escherichia coli 0127:H6 E2348/69 plasmid pE2348-2, strain E2348/69.	UNKNOWN	100.0
28	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	putative prophage protein for establishment of lysogeny	98.82
80	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	99.4
28	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	putative prophage phage head completion	98.21
		······································	protein	
2	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	ribosomal protein L13	98.59
7	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	conserved hypothetical protein	96.05
45	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	transcriptional repressor for methionine biosynthesis	98.1
57	CP000857	<i>Salmonella enterica</i> subsp. enterica serovar Paratyphi C strain RKS4594, complete genome.	co-chaperonin GroES	96.91
48	CP000648	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	hypothetical protein	99.32
2	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	96.99
24	CP000247	Escherichia coli 536, complete genome.	thioredoxin 1	96.33
139	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; partial transposase of	100.0
			insertion element IS911A	
50	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	97.12
121	CP000244	Escherichia coli UTI89 plasmid pUTI89, complete sequence.	hypothetical protein	97.76
102	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	100.0
102	CP000649	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN4, complete sequence.	hypothetical protein	100.0
7	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	cell division protein	99.17
14	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	preprotein translocase auxillary subunit	97.27
69	CP000964	Klebsiella pneumoniae 342, complete genome.	HNH endonuclease domain protein	97.87
121	CP001063	Shigella boydii CDC 3083-94, complete genome.	IS66 family element, orf2	100.0
15	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	100.0
59	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	putative ferredoxin	100.0
16	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	cellobiose-specific PTS family enzyme IIB component	99.06
33	CP000243	Escherichia coli UTI89, complete genome.	putative PTS system IIB protein; subunit of SgaTBA, a putative PTS permease	98.02

102	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	100.0
		complete sequence.		
24	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	twin arginine translocase protein A	96.39
1	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	cold shock protein	97.1
62	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	putative cytoplasmic protein	100.0
		complete sequence.		
25	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	conserved hypothetical protein	96.63
92	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; IS1 repressor protein InsA	100.0
33	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150,	conserved hypothetical protein	97.06
		complete genome.		
48	CP000648	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3,	inner membrane protein	100.0
		complete sequence.		
3	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	conserved hypothetical protein	96.39
1	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete sequence.	haemolysin expression modulating protein	97.22
48	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	F pilin synthesis	100.0
		complete sequence.		
154	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	100.0
		complete sequence.		
90	CP000824	Citrobacter koseri ATCC BAA-895 plasmid pCKO2, complete sequence.	hypothetical protein	97.3
12	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	putative amino acid/amine transport	96.23
			protein	
102	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	100.0
		complete sequence.		
77	AP006726	Klebsiella pneumoniae NTUH-K2044 plasmid pK2044 DNA, complete genome.	hypothetical protein	100.0
80	CP000649	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN4,	hypothetical protein	100.0
		complete sequence.		

Table A13. Proteins associated to pathogenesis found in E. kobei N10 using PathogenFinder 1.1.

Contig	Accession number	Organism	Protein function	Identity (%)
34	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete	hypothetical protein	96.74
		genome.		
65	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; predicted dehydratase	97.71
123	CP001125	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	99.83
87	CU928158	Escherichia fergusonii ATCC 35469 chromosome, complete genome.	inorganic polyphosphate/ATP-NAD kinase	96.92

161	AP006726	Klebsiella pneumoniae NTUH-K2044 plasmid pK2044 DNA, complete	hypothetical protein	99.62
21	ΔΡΩΩ6725	klebsiella pneumoniae NTUH-K2044 DNA complete genome	1-hydroxynhenylacetate 3-hydroxylase	97.69
60	DO517526	Escherichia coli APEC 01 plasmid pAPEC-01-R complete sequence	ISEC8 transnosase	98.83
165	CU928164	Escherichia coli IAI39 chromosome, complete genome	Group II intron-encoded reverse	90.85
105	00020104	Eschendid con Alss enfondsome, complete genome.	transcriptase/maturase	55.0
129	CP000514	Marinobacter aquaeolei VT8, complete genome	RND efflux system outer membrane	99.8
	0.00001.		lipoprotein, NodT family	0010
6	CP000964	Klebsiella pneumoniae 342, complete genome.	4-hydroxybenzoate decarboxylase, subunit C	97.26
53	AE014075	Escherichia coli CFT073, complete genome.	Galactose-proton symporter	95.7
65	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; predicted sugar transporter	98.91
50	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.03
49	CP001120	Salmonella enterica subsp. enterica serovar Heidelberg str. SL476, complete	integrase	96.05
		genome.		
9	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	98.73
129	CP000514	Marinobacter aquaeolei VT8, complete genome.	protein of unknown function DUF214	99.75
26	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	96.08
129	CP000514	Marinobacter aquaeolei VT8, complete genome.	efflux transporter, RND family, MFP subunit	98.69
22	AP010960	Escherichia coli O111:H- str. 11128 DNA, complete genome.	hypothetical protein	99.15
3	CP001063	Shigella boydii CDC 3083-94, complete genome.	DNA replication and repair protein RecF	95.52
1	CP000468	Escherichia coli APEC O1, complete genome.	UDP-galactose-4-epimerase	95.56
66	CP000886	Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7, complete	hypothetical protein	95.65
		genome.		
18	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete	3-phenylpropionate dioxygenase, alpha	95.59
		sequence.	subunit	
4	CP000243	Escherichia coli UTI89, complete genome.	malate dehydrogenase	95.83
22	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete	hypothetical protein	97.67
75	CD000640	genome.	modiator of placmid stability	07 50
15	CF000049	complete sequence		57.32
11	CP000822	Citrobacter koseri ATCC BAA-895. complete genome.	hypothetical protein	95.38
23	CP000243	Escherichia coli UTI89, complete genome.	30S ribosomal protein S2	97.93
172	CP001383	Shigella flexneri 2002017, complete genome.	ISEhe3, transposase orfB	97.55
136	CP001339	Thioalkalivibrio sp. HL-EbGR7, complete genome.	ABC-type phosphate/phosphonate transport	98.61
			system, periplasmic component	

83	CP000266	Shigella flexneri 5 str. 8401, complete genome.	conserved hypothetical protein	95.75
43	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	98.0
44	CP000647	Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete	Glycosyltransferase	98.55
		sequence.		
136	CP001339	<i>Thioalkalivibrio</i> sp. HL-EbGR7, complete genome.	ATP-binding protein of phosphonate ABC transporter	99.64
136	CP001339	Thioalkalivibrio sp. HL-EbGR7, complete genome.	phosphate ABC transporter permease	100.0
27	CP000800	Escherichia coli E24377A, complete genome.	pyruvate formate-lyase 1-activating enzyme	96.34
1	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	96.8
65	U00096	Escherichia coli str. K-12 substr. MG1655, complete genome.	CP4-6 prophage; predicted DNA-binding transcriptional regulator	96.03
17	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete genome.	ribonuclease III	95.4
2	CP000880	<i>Salmonella enterica</i> subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	98.55
22	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	TerY1	98.58
129	CP000514	<i>Marinobacter aquaeolei</i> VT8, complete genome.	ABC transporter related	99.58
28	CP001125	<i>Salmonella enterica</i> subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM1963	10, complete sequence.	98.44
79	CP000964	Klebsiella pneumoniae 342, complete genome.	3-dehydro-L-gulonate-6-phosphate decarboxylase	96.76
15	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.0
9	CP000783	Enterobacter sakazakii ATCC BAA-894, complete genome.	hypothetical protein	98.27
1	CP000800	Escherichia coli E24377A, complete genome.	flavodoxin	95.45
20	CP000647	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578, complete sequence.	hypothetical protein	100.0
22	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	TerX	100.0
209	CP000863	Acinetobacter baumannii ACICU, complete genome.	aminoglycoside 6'-N-acetyl transferase type Ib	98.91
70	CP000243	Escherichia coli UTI89, complete genome.	RNA polymerase sigma E	98.95
129	CP000514	Marinobacter aquaeolei VT8, complete genome.	transcriptional regulator, TetR family	99.5
23	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	97.35
6	CP001144	Salmonella enterica subsp. enterica serovar Dublin str. C	2021853, complete genome.	96.79
11	CP000886	Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7, complete genome.	hypothetical protein	96.45

73	AP010960	Escherichia coli O111:H- str. 11128 DNA, complete genome.	hypothetical protein	98.33
48	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	hypothetical protein	99.34
4	CP000243	Escherichia coli UTI89, complete genome.	50S ribosomal subunit protein L13	97.89
35	CP000783	Enterobacter sakazakii ATCC BAA-894, complete genome.	hypothetical protein	96.88
24	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	transcriptional repressor for methionine biosynthesis	97.14
22	AP006726	<i>Klebsiella pneumoniae</i> NTUH-K2044 plasmid pK2044 DNA, complete genome.	Tn903 transposase	100.0
129	CP000514	Marinobacter aquaeolei VT8, complete genome.	conserved hypothetical protein	100.0
57	CP000857	<i>Salmonella enterica</i> subsp. enterica serovar Paratyphi C strain RKS4594, complete genome.	co-chaperonin GroES	96.91
22	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	TerW	100.0
161	AP006726	<i>Klebsiella pneumoniae</i> NTUH-K2044 plasmid pK2044 DNA, complete genome.	hypothetical protein	98.63
30	CP000247	Escherichia coli 536, complete genome.	thioredoxin 1	99.08
92	CP000784	Enterobacter sakazakii ATCC BAA-894 plasmid pESA2, complete sequence.	hypothetical protein	100.0
66	CP000036	Shigella boydii Sb227, complete genome.	putative alpha helix protein	95.5
7	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, complete genome.	cell division protein FtsL	95.87
2	CP000243	Escherichia coli UTI89, complete genome.	hypothetical protein YajC	99.09
69	CP000034	Shigella dysenteriae Sd197, complete genome.	IS911 ORF1	99.0
92	CP000784	Enterobacter sakazakii ATCC BAA-894 plasmid pESA2, complete sequence.	hypothetical protein	100.0
161	AP006726	<i>Klebsiella pneumoniae</i> NTUH-K2044 plasmid pK2044 DNA, complete genome.	hypothetical protein	100.0
82	CU928162	Escherichia coli ED1a chromosome, complete genome.	Putative transcriptional regulator	100.0
198	DQ517526	Escherichia coli APEC O1 plasmid pAPEC-O1-R, complete sequence.	ISEc8 transposase	100.0
114	CP000648	<i>Klebsiella pneumoniae</i> subsp. pneumoniae MGH 78578 plasmid pKPN3, complete sequence.	Hypothetical protein	96.3
41	CP000880	<i>Salmonella enterica</i> subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	97.44
10	CP000822	Citrobacter koseri ATCC BAA-895, complete genome.	hypothetical protein	96.04
79	CP001113	Salmonella enterica subsp. enterica serovar Newport str. SL254, complete	ascorbate-specific phosphotransferase	98.02
		genome.	enzyme IIB component	
16	CP000880	Salmonella enterica subsp. arizonae serovar 62:z4,z23:, complete genome.	hypothetical protein	97.98

149	CP000243	Escherichia coli UTI89, complete genome.	conserved hypothetical protein YihD	95.51
1	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	cold shock protein	100.0
124	AE014073	Shigella flexneri 2a str. 2457T, complete genome.	IS1 orfB	100.0
22	CP000034	Shigella dysenteriae Sd197, complete genome.	IS1 ORF1	97.8
54	CP000800	Escherichia coli E24377A, complete genome.	IS1, transposase orfA	97.8
124	CP000948	Escherichia coli str. K12 substr. DH10B, complete genome.	CP4-6 prophage; IS1 repressor protein InsA	100.0
26	CP000026	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150,	conserved hypothetical protein	98.53
		complete genome.		
4	CP000034	Shigella dysenteriae Sd197, complete genome.	conserved hypothetical protein	97.01
6	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	putative cytoplasmic protein	95.89
14	AP006725	Klebsiella pneumoniae NTUH-K2044 DNA, complete genome.	putative amino acid/amine transport protein	98.11
71	CP000783	Enterobacter sakazakii ATCC BAA-894, complete genome.	hypothetical protein	100.0