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Abstract: In this article, we prove an orthogonal decomposition theorem for real inner product
gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper
Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner
product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result,
we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct
also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are
characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup.
With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by
the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.
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Gyrogroups are a suitable generalization of groups, arising from the study of the parametrization
of the Lorentz transformation group made by Ungar in [1]. A vast and comprehensive collection of
results about gyrogroup theory was compiled by Ungar in the books [2] and [3] (see also the vast
list of references therein). Gyrogroups share remarkable analogies with groups. In fact, every group
forms a gyrogroup under the same operation. The three main gyrogroups associated with analytic
hyperbolic geometry are Möbius, Einstein, and Proper Velocity gyrogroups (see [3]). Each of them
has a gyrovector space structure that enables to treat analytic hyperbolic geometry similarly as in the
Euclidean case. Factorizations of Möbius gyrogroups were first studied in [4,5]. These factorizations
were used for defining continuous wavelet transforms on the unit sphere, associated to appropriate
sections in the quotient Möbius gyrogroup [6]. This makes use of strong connections between Möbius
transformations, Clifford algebras, and gyrogroups. It can be seen that the gyrogroup structure is
important in order to factorize the unit ball of n-dimensional Euclidean space Rn and to obtain sections
that allow defining dilation operators on the unit sphere ([6], Section 4). Recently, in [7], the authors
rediscovered gyrodecompositions in the Möbius gyrogroup and incorporated the gyrovector structure
in their study, however, they did not refer to previous results obtained in [5]. Using the notion of
L-subgyrogroups, Suksumran and Wiboonton studied the factorization of abstract gyrogroups, similar
to the case of groups [8], and applied the theory to a finite gyrogroup. As it is shown in this paper,
their theory does not apply here.
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The aim of this paper is to give a general theory for real inner product gyrogroups that encode a
real gyrovector space structure imposing only two conditions (see Section 2). In this way, we unify the
factorization theory for some well-known gyrogroups in the literature that are examples of real inner
product gyrogroups such as Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. Our results
can be used for constructing orthogonal gyroexpansions with respect to any orthogonal basis in a real
inner product gyrogroup, or in the construction of integral transforms such as the wavelet transform
on some manifolds, such as the sphere, the ball, or the hyperboloid.

The structure of the article is organized as follows. In Section 1, we review the basic theory of
gyrogroups and gyrovector spaces. In Section 2, we examine orthogonal decompositions of real inner
product gyrogroups and construct left and right coset spaces, gyroprojectors, quotient gyrogroups, and
give a geometric realization of the cosets using gyrolines and cogyrolines of the gyrogroup. In Section 3,
we examine fiber bundles and sections of real inner product gyrogroups inherited by the gyroprojectors.
In Section 4, we present concrete prominent examples of real inner product gyrogroups: Einstein,
Möbius, Proper Velocity, and Chen’s gyrogroups and state several theorems obtained as consequences
of the general theorems given in previous sections.

1. Preliminaries

Definition 1 (Gyrogroups). A nonempty set G, together with a binary operation⊕ on G, is called a gyrogroup
if it satisfies the following axioms.

(G1) There exists an element 0 ∈ G such that 0⊕ a = a for all a ∈ G.
(G2) For each a ∈ G, there exists an element b ∈ G such that b⊕ a = 0.
(G3) For all a, b ∈ G, there is an automorphism gyr[a, b] ∈ Aut G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (left gyroassociative law)

for all c ∈ G.
(G4) For all a, b ∈ G, gyr[a⊕ b, b] = gyr[a, b]. (left loop property)

It can be proved that the element 0 in (G1) is also a right identity and is unique, called the
gyrogroup identity. Further, the element b in (G2) is also a right inverse of a and is unique, called the
inverse of a, written 	a. A gyrogroup (G,⊕) is said to be gyrocommutative if it satisfies the following
gyrocommutative law:

a⊕ b = gyr[a, b](b⊕ a) (1)

for all a, b ∈ G.
To capture useful analogies between gyrogroups and groups there is defined as a second binary

operation in G, called the coaddition, which is denoted by � and given by

a � b = a⊕ gyr[a,	b]b (2)

for all a, b ∈ G (cf. Definition 2.7 of [2]). We have also that a � b = a � (	b).
The main cancellation laws in a gyrogroup (G,⊕) are

a⊕ (	a⊕ b) = b left cancellation law (3)

(b	 a)� a = b first right cancellation law (4)

(b � a)⊕ a = b second right cancellation law. (5)

Using the left gyroassociative law given in (G3) and the left cancellation law (3) we can write the
following gyrator identity

gyr[a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)) (6)
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from which it follows that gyr[a, b]0 = 0, i.e., gyrations are gyroautomorphisms of G that preserve the
identity element.

The next theorem shows the unique solution of the two basic gyrogroup equations.

Theorem 1. (see [2]) Let (G,⊕) be a gyrogroup, and let a, b ∈ G. The unique solution of the equation
a⊕ x = b is x = 	a⊕ b, and the unique solution of the equation x⊕ a = b is x = b � a.

Definition 2 (Real inner product gyrovector spaces, [2]). A real inner product gyrovector space (G,⊕,⊗)
(gyrovector space, in short) is a gyrocommutative gyrogroup (G,⊕) that obeys the following axioms:

(A1) G is a subset of a real inner product vector space V, G ⊆ V, from which it inherits its inner product · and
norm ‖ · ‖, which are invariant under gyroautomorphisms; that is,

gyr[u, v]a · gyr[u, v]b = a · b

for all a, b, u, v ∈ G.
(A2) G admits a scalar multiplication ⊗ satisfying for all r, r1, r2 ∈ R, a ∈ G,

(V1) 1⊗ a = a

(V2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a

(V3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)

(V4)
|r| ⊗ a
‖r⊗ a‖ =

a
‖a‖

(V5) gyr[u, v](r⊗ a) = r⊗ gyr[u, v]a

(V6) gyr[r1 ⊗ v, r2 ⊗ v] = I, I is the identity map

(A3) The set ‖G‖ = {±‖a‖ : a ∈ G} admits a real vector space structure (‖G‖,⊕,⊗) such that

(V7) ‖r⊗ a‖ = |r| ⊗ ‖a‖
(V8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

for all a, b ∈ G, r ∈ R.

Unlike in the vector case, gyroaddition ⊕ does not in general distribute with scalar multiplication.
However, gyrovector spaces possess

a monodistributive law given by

r⊗ (r1 ⊗ a⊕ r2 ⊗ a) = r⊗ (r1 ⊗ a)⊕ r⊗ (r2 ⊗ a)

for all r, r1 r2 ∈ R, a ∈ G.
The motions of a gyrovector space (G,⊕,⊗) are all its left gyrotranslations La : x 7→ a⊕ x, where

a, x ∈ G, and its automorphisms τ ∈ Aut(G,⊕,⊗) satisfying

τ(a⊕ b) = τ(a)⊕ τ(b) (7)

τ(r⊗ a) = r⊗ τ(a) (8)

τ(a · b) = τ(a) · τ(b) (9)

for all a, b ∈ G, r ∈ R.
A gyrovector space is a gyrometric space with a gyrodistance given by

d⊕(a, b) = ‖b	 a‖, ∀a, b ∈ G (10)
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that satisfies the gyrotriangle inequality (see Theorem 6.9 in [2]):

‖c	 a‖ ≤ ‖c	 b‖ ⊕ ‖b	 a‖, ∀a, b, c ∈ G. (11)

Moreover, a gyrovector space is also cogyrometric with a cogyrodistance d�(a, b) given by

d�(a, b) = ‖b � a‖, ∀a, b ∈ G (12)

that satisfies the cogyrotriangle inequality (see Theorem 6.11 in [2]):

‖a � gyr[a � b, b � c]c‖ ≤ ‖a � b‖� ‖b � c‖, ∀a, b, c ∈ G. (13)

Curves on which the gyrotriangle inequality reduces to an equality are called gyrolines, while curves
on which the cogyrotriangle inequality reduces to an equality are called cogyrolines.

Gyrolines and cogyrolines play an important role in hyperbolic analytic geometry regulated by
the gyrovector space structure. For distinct elements a and b in G, the two distinct hyperbolic line
expressions are defined by

Lg = {a⊕ (t⊗ b) : t ∈ R} Gyroline or the hyperbolic line,

Lc = {(t⊗ b)⊕ a : t ∈ R} Cogyroline or the hyperbolic dual line.
(14)

Gyrolines and cogyrolines are uniquely determined by any two distinct points contained by them.
Therefore, expressions in (14) can be replaced by

Lg
a,b = {a⊕ (t⊗ (	a⊕ b)) : t ∈ R} Gyroline passing through a at t = 0 and b at t = 1,

Lc
a,b = {(t⊗ (b � a))⊕ a : t ∈ R} Cogyroline passing through a at t = 0 and b at t = 1.

Several properties of gyrolines and cogyrolines are discussed in ([2], Chapter 6). Among them we
mention the following properties of gyrolines:

P1. Two gyrolines that share two distinct points are coincident. (Theorem 6.20)
P2. A left gyrotranslation of a gyroline is again a gyroline. (Theorem 6.21)
P3. For τ ∈ Aut(G), it holds that τ(a⊕ (t⊗ b)) = τa⊕ (t⊗ τb). (Theorem 6.37)
P4. Gyrolines are gyrogeodesics. (Theorem 6.50)

Cogyrolines are natural objects in gyrovector spaces and also have important properties. We mention
the following:

P5. Two cogyrolines that share two distinct points are coincident. (Theorem 6.53)
P6. Cogyrolines admit parallelism. (Theorem 6.65)
P7. The cogyrotranslation �d of the cogyroline (t⊗ b)⊕ a is again a cogyroline, that is, ((t⊗ b)⊕

a)� d is a cogyroline. Moreover, the cogyroline and the cogyrotranslated cogyroline are parallel.
(Theorem 6.66)

P8. Cogyrolines are cogyrogeodesics. (Theorem 6.78)

For the basic theory of gyrogroups and gyrovector spaces the interested reader is referred to [2,3,9].
Next we present the definition of subgyrogroups and L-subgyrogroups.

Definition 3. [8] Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup, denoted by
H ≤ G, if H forms a gyrogroup under the restriction of the operation inherited from G and for all a, b ∈ H,
the restriction of gyr[a, b] to H is an automorphism of H.
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Theorem 2. [8] (The subgyrogroup criterion) A nonempty subset H of G is a subgyrogroup if and only if
a⊕ b ∈ H and 	a ∈ H for all a, b ∈ H.

The notion of L-subgyrogroups was introduced in [8].

Definition 4. A subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if gyr[a, h]H = H
for all a ∈ G and h ∈ H.

For more details about factorization of gyrogroups by L-subgyrogroups, Cayley’s Theorem, and
isomorphisms theorems, see [8].

2. Orthogonal Decompositions

Trying to be as general as possible we define next a real inner product gyrogroup contained in a real
inner product space using the general addition (15).

Definition 5 (Real inner product gyrogroups). A gyrogroup (G,⊕) contained in a real inner product space
(V,+, ·) is called a real inner product gyrogroup if it contains the zero of V as the gyrogroup identity and the
binary operation ⊕ is given by

a⊕ b = φ1(a, b)a + φ2(a, b)b (15)

for all a, b ∈ G, where φi : G× G → R is a map with φi(a,	a) 6= 0 for all a ∈ G, i = 1, 2, and ⊕ satisfies
the gyrogroup axioms. Moreover, we say that the real inner product gyrogroup (G,⊕) admits orthogonal
decompositions if the following additional conditions are satisfied:

(H1) For all v ∈ V, if ‖v‖ ≤ ‖a‖ for some a ∈ G, then v ∈ G.
(H2) For all c1, c2 ∈ G such that c1 + c2 ∈ G and c1 · c2 = 0, there exist nonzero scalars λ1 = λ1(c1, c2) ∈ R

and λ2 = λ2(c1, c2) ∈ R such that (x = λ1c1, y = λ2c2) ∈ G× G is the unique solution of the system
of equations: {

φ1(x, y)x = c1

φ2(x, y)y = c2
. (16)

We remark that since the general addition a⊕ b defined in (15) satisfies the gyrogroup axioms
of Definition 1 then the functions φ1 and φ2 have to satisfy some functional equalities and relations.
In particular, since, 0⊕ b = b and a⊕ 0 = a, for all a, b ∈ G, then it implies that φ1(a, 0) = 1 and
φ2(0, b) = 1, for all a, b ∈ G. Regarding the conditions (H1) and (H2), the first condition says essentially
that G consists of a ball with finite or infinite radius in the carrier space V, while the second condition
allows us to obtain orthogonal decompositions of G, and corresponding left and right cosets of G.
Concrete prominent examples of real inner product gyrogroups that admit orthogonal decompositions
are exhibited in Section 4: Euclidean Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups.

Throughout the remainder of this article, we assume that (G,⊕) is a real inner product gyrogroup
contained in the carrier inner product space (V,+, ·) satisfying conditions (H1) and (H2).

2.1. Unique Decomposition and Orthogonal Gyroprojections

Let P be a finite-dimensional linear subspace of V and let P⊥ be its orthogonal complement in V
(that is, V = P⊕ P⊥ is an orthogonal direct sum). Define

PG = P ∩ G and P⊥G = P⊥ ∩ G. (17)

Theorem 3. If P is a finite-dimensional subspace of V, then PG and P⊥G are subgyrogroups of G.

Proof. Note that PG 6= ∅ since 0 ∈ PG. Let a, b ∈ PG. Then a, b ∈ P and a, b ∈ G. By (15), a⊕ b ∈ P
since P is closed under vector addition. By the closure property of G, a ⊕ b ∈ G. Hence, a ⊕ b ∈
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PG. Note that 0 = a⊕ (	a) = φ1(a,	a)a + φ2(a,	a)	 a, which implies 	a = −φ1(a,	a)
φ2(a,	a)

a since

φ2(a,	a) 6= 0. Hence, 	a ∈ P and so 	a ∈ PG. This proves that PG is a subgyrogroup of G. Since
the proof does not make use of the assumption of being finite-dimensional, we conclude that P⊥G is a
subgyrogroup of G as well.

According to Definition 4, PG is an L-subgyrogroup if gyr[a, h]PG = PG, for all a ∈ G and
h ∈ PG. Since gyrations are isometries of (G,⊕,⊗) that preserve the norm inherited from (V,+, ·),
the only gyrations that preserve PG are from the automorphism group of PG. Hence, PG is not an
L-subgyrogroup.

A first fundamental result that we are going to show is the conditions under which the addition
⊕ in a real inner product gyrogroup is associative.

Theorem 4. Let a, b, c ∈ (G,⊕,⊗). Then a⊕ (b⊕ c) = (a⊕ b)⊕ c if and only if a · c = 0 and b · c = 0 or
a = λ⊗ b for some λ ∈ R.

Proof. By the left gyroassociative law we have

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

We know that isometries of a real inner product space (V,+, ·) that fix the origin and an arbitrary
element c are the isometries that belong to a linear subspace orthogonal to c or the trivial isometry
(identity isometry) that belongs to a one-dimensional linear subspace of V. Therefore, since gyrations
of (G,⊕,⊗) are isometries in the carrier space V, it follows that gyr[a, b]c = c if and only if a · c = 0
and b · c = 0 or a = λ⊗ b for some λ ∈ R, i.e., either a and b belong to a linear subspace orthogonal to
c or a and b are in a given one dimensional linear subspace. Note that by axiom (V6) in Definition 2 it
follows that gyr[a, λ⊗ a]=I.

The following theorem shows that any real inner product gyrogroup G can be decomposed into
gyrosums of PG and P⊥G , where P is a finite-dimensional subspace of the carrier space V.

Theorem 5 (Unique Decomposition). Let P be a finite-dimensional subspace of V. For all c ∈ G, there are
unique elements a, u ∈ PG, b, v ∈ P⊥G such that

c = a⊕ b and c = v⊕ u. (18)

Proof. Let c ∈ G be arbitrary. Since G ⊆ V and V = P⊕ P⊥, it follows that c = c1 + c2 with c1 ∈ P
and c2 ∈ P⊥. Note that ‖c‖2 = ‖c1 + c2‖2 = ‖c1‖2 + ‖c2‖2. Hence, ‖c1‖ ≤ ‖c‖ and ‖c2‖ ≤ ‖c‖.
By hypothesis (H1), c1 ∈ G and c2 ∈ G. Since c1 + c2 = c ∈ G and c1 · c2 = 0, we have by hypothesis
(H2) that there exist scalars λ1 = λ1(c1, c2), λ2 = λ2(c1, c2) ∈ R such that (x = λ1c1, y = λ2c2) ∈ G×G
is the unique solution of the system of equations:{

φ1(x, y)x = c1

φ2(x, y)y = c2
. (19)

Set a = λ1c1 and b = λ2c2. Then a ∈ PG and b ∈ P⊥G . Furthermore, we obtain

a⊕ b = φ1(a, b)a + φ2(a, b)b

= φ1(λ1c1, λ2c2)λ1c1 + φ2(λ1c1, λ2c2)λ2c2

= c1 + c2

= c.



7 of 37

To prove uniqueness of the factorization, suppose that c = a′ ⊕ b′ with a′ ∈ PG, b′ ∈ P⊥G . Then

c1 + c2 = φ1(a′, b′)a′ + φ2(a′, b′)b′

and so c1 = φ1(a′, b′)a′ and c2 = φ2(a′, b′)b′ since the sum P⊕ P⊥ is direct. It follows that (a′, b′) is a
solution of (19). Hence, a′ = λ1c1 = a and b′ = λ2c2 = b.

Similarly, c2 + c1 = c ∈ G and c2 · c1 = 0 together imply by hypothesis (H2) that there exist scalars
λ3 = λ3(c1, c2) ∈ R and λ4 = λ4(c1, c2) ∈ R such that (x = λ3c2, y = λ4c1) ∈ G × G is the unique
solution of the system of equations (19). Regarding the first decomposition it is immediate to see that
λ3(c1, c2) = λ1(c2, c1) and λ4(c1, c2) = λ2(c2, c1), with the order of c1 and c2 being changed in λ1 and
λ2. Set v = λ3c2 and u = λ4c1. Then u ∈ PG, v ∈ P⊥G , and c = v⊕ u. Uniqueness of the factorization
can be proved in the same way.

We remark that the proof of the uniqueness of Theorem 5 could also be made using Theorem 4.

Corollary 1 (Orthogonal Decompositions). The following orthogonal decompositions of G hold:

G = PG ⊕ P⊥G and G = P⊥G ⊕ PG.

Using Theorem 5, we can define orthogonal gyroprojections of the gyrogroup (G,⊕) onto the
subgyrogroups PG and P⊥G , with respect to the decompositions G = PG ⊕ P⊥G and G = P⊥G ⊕ PG. In fact,
each element c ∈ G admits the unique decomposition c = c1 + c2 = c2 + c1, with c1 ∈ PG and c2 ∈ P⊥G
and according to Theorem 5 four orthogonal gyroprojectors can be defined:

P` : G = PG ⊕ P⊥G → PG, P`(c) = λ1(c1, c2)c1,

Qr : G = PG ⊕ P⊥G → P⊥G , Qr(c) = λ2(c1, c2)c2,

Q` : G = P⊥G ⊕ PG → P⊥G , Q`(c) = λ3(c1, c2)c2 = λ1(c2, c1)c2,

Pr : G = P⊥G ⊕ PG → PG, Pr(c) = λ4(c1, c2)c1 = λ2(c2, c1)c1,

(20)

such that
c = P`(c)⊕Qr(c) and c = Q`(c)⊕Pr(c), (21)

where the superscripts ` and r stand for “left” and “right” and indicate that the gyroprojection is on
the left or on the right of each decomposition. The following identities hold immediately:

(P`)2 = P`, (Pr)2 = Pr, (Q`)2 = Q`, (Qr)2 = Qr. (22)

Moreover, we obtain the following orthogonal gyrodecompositions:

I = P` ⊕Qr and I = Q` ⊕Pr. (23)

Corollary 2. For all a ∈ PG and b ∈ P⊥G , we have

P`(a⊕ b) = a and Qr(a⊕ b) = b,

Pr(b⊕ a) = a and Q`(b⊕ a) = b.
(24)

Proof. By (15) and Theorem 5 we have

a⊕ b = φ1(a, b)a + φ2(a, b)b = λ1(φ1(a, b)a, φ2(a, b)b)φ1(a, b)a ⊕ λ2(φ1(a, b)a, φ2(a, b)b)φ2(a, b)b
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which implies by the Unique Decomposition Theorem (Theorem 5) that{
λ1(φ1(a, b)a, φ2(a, b)b)φ1(a, b)a = a

λ2(φ1(a, b)a, φ2(a, b)b)φ2(a, b)b = b
. (25)

Hence, using the definition of the gyroprojections (20) and (25) we obtain the identities

P`(a⊕ b) = a and Qr(a⊕ b) = b.

Using similar reasonings we obtain also

Pr(b⊕ a) = a and Q`(b⊕ a) = b.

By Corollary 1 the gyrogroup (G,⊕) has two unique decompositions G = PG ⊕ P⊥G and G =

P⊥G ⊕ PG. The relation between them is given more precisely in the next theorem.

Theorem 6. Let a, b ∈ (G,⊕) such that a · b = 0. Then there exist nonzero scalars µ1(a, b) and µ2(a, b)
such that

a⊕ b = µ1(a, b)b⊕ µ2(a, b)a. (26)

Proof. Let a, b ∈ G such that a ⊥ b. Then by (15) we have

a⊕ b = φ1(a, b)a + φ2(a, b)b.

Consider now c1 = φ1(a, b)a and c2 = φ2(a, b)b. Then c1 ⊥ c2 and by Theorem 5 there exist nonzero
scalars λ3 = λ3(c1, c2) ∈ R and λ4 = λ4(c1, c2) ∈ R such that

a⊕ b = λ3(c1, c2)c2 ⊕ λ4(c1, c2)c1

= λ3(φ1(a, b)a, φ2(a, b)b)φ2(a, b)b + λ4(φ1(a, b)a, φ2(a, b)b)φ1(a, b)a.

Taking {
µ1(a, b) = λ3(φ1(a, b)a, φ2(a, b)b) φ2(a, b)

µ2(a, b) = λ4(φ1(a, b)a, φ2(a, b)b) φ1(a, b)
(27)

we obtain (26).

Corollary 3. For all a ∈ PG and b ∈ P⊥G , we have

P`(b⊕ a) = µ1(b, a)a and Qr(b⊕ a) = µ2(b, a)b,

Pr(a⊕ b) = µ2(a, b)a and Q`(a⊕ b) = µ1(a, b)b.
(28)

Proof. From Theorem 6 we have:

P`(b⊕ a) = P`(µ1(b, a)a⊕ µ2(b, a)b) = µ1(b, a)a,

Qr(b⊕ a) = Qr(µ1(b, a)a⊕ µ2(b, a)b) = µ2(b, a)b,

Pr(a⊕ b) = Pr(µ1(a, b)b⊕ µ2(a, b)a) = µ2(a, b)a,

Q`(a⊕ b) = Q`(µ1(a, b)b⊕ µ2(a, b)a) = µ1(a, b)b.

2.2. Left and Right Coset Spaces

Let H be a subgyrogroup of G. In contrast to groups, the relation

a ∼ b if and only if 	 a⊕ b ∈ H
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does not, in general, define an equivalence relation on G. In [8] this relation was modified to

a ∼ b if and only if 	 a⊕ b ∈ H and gyr[	a, b]H = H

obtaining an equivalence relation on G and leading to the notion of L-subgyrogroups. Since in
our case PG is not an L-subgyrogroup, we cannot apply the results in [8]. In the case of real inner
product gyrogroups that have attached a gyrovector space structure we are going to show that the
gyroprojection Q` (respectively, Qr) induces an equivalence relation on G so that G can be written as a
disjoint union of left (respectively, right) cosets with representatives from P⊥G .

Let P be a finite-dimensional linear subspace of V. Define ∼` by

a ∼` b if and only if 	Q`(b)⊕ a ∈ PG (29)

for all a, b ∈ G.

Theorem 7. The relation ∼` defined by (29) is an equivalence relation on G.

Proof. Let a, b, c ∈ G.
(Reflexive property) Since a = Q`(a)⊕ Pr(a), it follows from Theorem 1 we have 	Q`(a)⊕ a =

Pr(a) ∈ PG. Hence, a ∼` a.
(Symmetric property) Suppose that a ∼` b. Then	Q`(b)⊕ a ∈ PG and so there is an element c ∈ PG

such that 	Q`(b)⊕ a = c. This implies a = Q`(b)⊕ c. It follows thatQ`(a) = Q`(Q`(b)⊕ c) = Q`(b).
Since b = Q`(b)⊕ Pr(b), then we obtain from Theorem 1 that 	Q`(b)⊕ b = Pr(b). Therefore,

	Q`(a)⊕ b = 	Q`(b)⊕ b = Pr(b) ∈ PG.

Hence, b ∼` a.
(Transitive property) Suppose that a ∼` b and b ∼` c. It follows that Q`(a) = Q`(b) and Q`(b) =

Q`(c), as proved in the previous paragraph. Since 	Q`(a)⊕ a = Pr(a), we obtain that 	Q`(c)⊕ a =

	Q`(a)⊕ a = Pr(a) belongs to PG. Hence, a ∼` c.

For each b ∈ G, we denote by [b]` the equivalence class containing b determined by the relation ∼`.

Lemma 1. For all b ∈ G, [b]` = Q`(b)⊕ PG, where

Q`(b)⊕ PG = {Q`(b)⊕ u : u ∈ PG}.

Proof. Let x ∈ Q`(b)⊕ PG. Then x = Q`(b)⊕ u for some u ∈ PG. By the left cancellation law we
have 	Q`(b)⊕ x = u ∈ PG, that is, x ∼` b, which implies x ∈ [b]`. To prove the reverse inclusion,
let x ∈ [b]`. Then x ∼` b, that is, 	Q`(b)⊕ x ∈ PG. Then, there exists an element u ∈ PG such that
	Q`(b)⊕ x = u. Hence, by the left cancellation law we have x = Q`(b)⊕ u, that is, x ∈ Q`(b)⊕ PG.
Thus, [b]` = Q`(b)⊕ PG.

Theorem 8. Let P be a finite-dimensional linear subspace of V. Then the collection

{b⊕ PG : b ∈ P⊥G }

is a disjoint partition of G, that is,

G =
·⋃

b∈P⊥G

(b⊕ PG). (30)
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Proof. According to Lemma 1, we know that for all b, v ∈ P⊥G , either b⊕ PG = v⊕ PG or (b⊕ PG) ∩
(v⊕ PG) = ∅ since b⊕ PG = [b]` and v⊕ PG = [v]`. Hence, the union in (30) is disjoint. It is clear that
b⊕ PG 6= ∅ since b ∈ b⊕ PG for all b ∈ P⊥G . Let x ∈ G. By Theorem 5, x = v⊕ u for some v ∈ P⊥G ,

u ∈ PG. Hence, x ∈ v⊕ PG ⊆
⋃

b∈P⊥G

(b⊕ PG). This proves G ⊆
⋃

b∈P⊥G

(b⊕ PG) and so equality holds.

Denote by (G/PG,∼`) the set of all equivalence classes obtained by the equivalence relation ∼`.
By Lemma 1 and Theorem 8 the coset space (G/PG,∼`) represents the collection {b⊕ PG : b ∈ P⊥G }.

Corollary 4. The set (G/PG,∼`) is a left coset space of G whose cosets are of the form b⊕ PG with b ∈ P⊥G .

Next, we present the right counterpart of Theorem 8 defining first the equivalence relation that
leads to the construction of the right cosets.

Let P be a finite-dimensional linear subspace of V. Define ∼r by

a ∼r b if and only if a �Qr(b) ∈ PG (31)

for all a, b ∈ G, where a �Qr(b) = a � (	Qr(b)) and � stands for the coaddition in G defined in (2).

Theorem 9. The relation ∼r defined by (31) is an equivalence relation on G.

Proof. Let a, b, c ∈ G.
(Reflexive property) Since a = P`(a)⊕Qr(a), it follows from Theorem 1 that P`(a) = a �Qr(a).

Hence, a �Qr(a) ∈ PG and so a ∼r a.
(Symmetric property) Suppose that a ∼r b. Then a �Qr(b) ∈ PG and so there is an element c ∈ PG

such that a �Qr(b) = c. This implies a = c⊕Qr(b). It follows that Qr(a) = Qr(c⊕Qr(b)) = Qr(b).
Since b = P`(b)⊕Qr(b), we obtain from Theorem 1 that P`(b) = b �Qr(b). Therefore, b � Qr(a) =
b � Qr(b) = Pr(b) ∈ PG. Hence, b ∼r a.

(Transitive property) Suppose that a ∼r b and b ∼r c. It follows that Qr(a) = Qr(b) and Qr(b) =
Qr(c), as proved in the previous paragraph. Since a �Qr(a) = P`(a), we obtain that

a �Qr(c) = a �Qr(a) = P`(a)

belongs to PG. Hence, a ∼r c.

For each b ∈ G, we denote by [b]r the equivalence class containing b determined by the relation ∼r.

Lemma 2. For all b ∈ G, [b]r = PG ⊕Qr(b), where

PG ⊕Qr(b) = {u⊕Qr(b) : u ∈ PG}.

Proof. Let x ∈ PG ⊕ Qr(b). Then x = u⊕ Qr(b) for some u ∈ PG. Then, by the right cancellation
law we have x � Qr(b) = u ∈ PG, that is, x ∼r b, which implies x ∈ [b]r. To prove the reverse
inclusion let x ∈ [b]r. Then x ∼r b, that is, x � Qr(b) ∈ PG. Then, there exists an element u ∈ PG
such that x � Qr(b) = u. Hence, by the right cancellation law II (cf. Equation (2.63) of [3]) we have
x = u⊕Qr(b), that is, x ∈ PG ⊕Qr(b). Thus, [b]r = PG ⊕Qr(b).

Theorem 10. Let P be a finite-dimensional linear subspace of V. Then the collection

{PG ⊕ b : b ∈ P⊥G }
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is a disjoint partition of G, that is,

G =
·⋃

b∈P⊥G

(PG ⊕ b). (32)

Proof. According to Lemma 2, we know that for all b, v ∈ P⊥G , either PG ⊕ b = PG ⊕ v or (PG ⊕ b) ∩
(PG ⊕ v) = ∅ since PG ⊕ b = [b]r and PG ⊕ v = [v]r. Hence, the union in (32) is disjoint. It is clear that
PG ⊕ b 6= ∅ since b ∈ PG ⊕ b for all b ∈ P⊥G . Let x ∈ G. By Theorem 5, x = a⊕ b for some a ∈ PG,

b ∈ P⊥G . Hence, x ∈ PG ⊕ b ⊆
⋃

b∈P⊥G

(PG ⊕ b). This proves G ⊆
⋃

b∈P⊥G

(PG ⊕ b) and so equality holds.

Denote by (G/PG,∼r) the set of all equivalence classes obtained by the equivalence relation ∼r.

Corollary 5. The set (G/PG,∼r) is a right coset space of G whose cosets are of the form PG ⊕ b with b ∈ P⊥G .

2.3. Quotient Gyrogroups and the Isomorphism Theorem

The coset spaces (G/PG,∼`) and (G/PG,∼r) turn out to be gyrogroups, called left and right
quotient gyrogroups by PG, respectively.

Lemma 3. Let P be an arbitrary finite-dimensional subspace of V.

(1) For all a, b ∈ P⊥G , a⊕ PG = b⊕ PG if and only if a = b.
(2) For all a, b ∈ P⊥G , PG ⊕ a = PG ⊕ b if and only if a = b.

Proof. Let a, b ∈ P⊥G .
To prove item (1), suppose that a⊕ PG = b⊕ PG. Then a ∼` b and so 	Q`(b)⊕ a ∈ PG. Since

b ∈ P⊥G , we have Q`(b) = b. Hence, 	b⊕ a ∈ PG. Since P⊥G is a subgyrogroup of G, we also have
	b⊕ a ∈ P⊥G . It follows that 	b⊕ a ∈ PG ∩ P⊥G = {0}. Hence, 	b⊕ a = 0, which implies a = b.

To prove item (2), suppose that PG ⊕ a = PG ⊕ b. Then a ∼r b and so a �Qr(b) ∈ PG. Since
b ∈ P⊥G , we have Qr(b) = b. Hence, a � b ∈ PG. Since P⊥G is a subgyrogroup of G, we also have
a� b = a⊕ gyr[a, b](	b) ∈ P⊥G . It follows that a� b ∈ PG ∩ P⊥G = {0}. Hence, a� b = 0, which implies
a = b.

From Lemma 3 and the fact that P⊥G is a subgyrogroup of G, we obtain that the following
operations on the coset spaces (G/PG,∼`) and (G/PG,∼r) are well defined:

(a⊕ PG)⊕ (b⊕ PG) = (a⊕ b)⊕ PG, a, b ∈ P⊥G ; (33)

(PG ⊕ a)⊕ (PG ⊕ b) = PG ⊕ (a⊕ b), a, b ∈ P⊥G . (34)

In fact, the left and right coset spaces form gyrogroups, as shown in the following theorems.

Theorem 11. The left coset space (G/PG,∼`) forms a gyrogroup under the operation defined by (33).

Proof. The coset 0⊕ PG is a left identity in G/PG. For each a⊕ PG ∈ G/PG with a ∈ P⊥G , the coset
(	a)⊕ PG lies in G/PG and is a left inverse of a⊕ PG. For X = a⊕ PG, Y = b⊕ PG with a, b ∈ P⊥G ,
define

gyr[X, Y](c⊕ PG) = (gyr[a, b]c)⊕ PG, c ∈ P⊥G . (35)

If d ∈ P⊥G and if d⊕ PG = c⊕ P⊥G , then d = c by Lemma 3 and so

(gyr[a, b]d)⊕ PG = (gyr[a, b]c)⊕ PG,
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which proves that gyr[X, Y] is well defined. The proof that gyr[X, Y] fits the definition of a gyrogroup
follows the same steps as in the proof of Theorem 29 of [9] with appropriate modifications.

Proceeding in a similar fashion, we obtain the right counterpart of Theorem 11.

Theorem 12. The right coset space (G/PG,∼r) forms a gyrogroup under the operation defined by (34).

Definition 6. The gyrogroup (G/PG,∼`) in Theorem 11 is called a left quotient gyrogroup and the gyrogroup
(G/PG,∼r) in Theorem 12 is called a right quotient gyrogroup. We define the canonical projection mappings
π` and πr from G to the left and right coset spaces by

π`(c) = [c]` = Q`(c)⊕ PG, c ∈ G, (36)

πr(c) = [c]r = PG ⊕Qr(c), c ∈ G. (37)

Theorem 13 (The Isomorphism Theorem). Let P be an arbitrary finite-dimensional linear subspace of
V. Then π` restricts to a gyrogroup isomorphism from P⊥G to (G/PG,∼`) and πr restricts to a gyrogroup
isomorphism from P⊥G to (G/PG,∼r). Therefore, the following gyrogroup isomorphisms hold:

(G/PG,∼`) ∼= P⊥G ∼= (G/PG,∼r).

Proof. That π`

∣∣
P⊥G

is surjective is clear. That π`

∣∣
P⊥G

is injective follows from Lemma 3. According

to (33), π`

∣∣
P⊥G

preserves the gyrogroup operations. This shows that π`

∣∣
P⊥G

: P⊥G → (G/PG,∼`) is a

gyrogroup isomorphism. The proof for πr
∣∣
P⊥G

is similar. It follows that (G/PG,∼`) ∼= P⊥G and that

(G/PG,∼r) ∼= P⊥G .

2.4. Geometric Characterization of Cosets

In this section, we assume that (G,⊕) is a real inner product gyrogroup together with a
scalar multiplication ⊗, turning (G,⊕,⊗) a gyrovector space . The next theorem gives a geometric
characterization of the left equivalence classes b⊕ PG with b ∈ P⊥G in terms of the automorphisms of
(PG,⊕,⊗) acting on a given gyroline Lg.

Theorem 14. Let b ∈ P⊥G and let 0 6= c ∈ PG be fixed. Then

b⊕ PG = {τLg : τ ∈ Aut(PG,⊕,⊗)},

where the gyroline Lg is the gyrogeodesic given by

Lg = {b⊕ (t⊗ c) : t ∈ R}.

Proof. Let b ∈ P⊥G and 0 6= c ∈ PG. Since for any t ∈ R,

b⊕ (t⊗ c) = φ1(b, t⊗ c)b + φ2(b, t⊗ c)(t⊗ c),

we know that Lg is a gyroline in G in the plane defined by the vectors b and c. Now, we consider
a ∈ PG arbitrary. Since it is always possible to find t ∈ R such that ‖t⊗ c‖ = ‖a‖, then there exists
an automorphism τ ∈ Aut(G,⊕,⊗) such that a = τ(t⊗ c) and τ leaves PG invariant and takes each
element of P⊥G as a fixed point. This means that τ ∈ Aut(PG,⊕,⊗). In particular, since b ∈ P⊥G then
τb = b, and consequently, τ−1b = b. Then, by the invariance property P3 of gyrolines (described in
Section 1) we have

b⊕ a = b⊕ (τ(t⊗ c)) = τ(τ−1b⊕ (t⊗ c)) = τ(b⊕ (t⊗ c)).
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Thus, we get b⊕ PG = {τLg : τ ∈ Aut(PG,⊕,⊗)}.

In an analogous way, we can characterize the right equivalence classes PG ⊕ b with b ∈ P⊥G in
terms of the automorphisms of (PG,⊕,⊗) acting on a given cogyroline Lc.

Theorem 15. Let b ∈ P⊥G and 0 6= c ∈ PG be fixed. Then

PG ⊕ b = {τLc : τ ∈ Aut(PG,⊕,⊗)},

where the cogyroline Lc is the cogyrogeodesic given by

Lc = {(t⊗ c)⊕ b : t ∈ R}.

Proof. Let b ∈ P⊥G and 0 6= c ∈ PG. Since for any t ∈ R,

(t⊗ c)⊕ b = φ1(t⊗ c, b)(t⊗ c) + φ2(t⊗ c, b)b,

we know that Lc is a cogyroline in G in the plane defined by the vectors b and c. Now, we consider
a ∈ PG arbitrary. Then there exist t ∈ R and τ ∈ Aut(PG,⊕,⊗) such that a = τ(t⊗ c) and τ leaves PG
invariant. Thus, by property P3 of gyrolines since τ−1b = b, we have

a⊕ b = (τ(t⊗ c))⊕ b = τ((t⊗ c)⊕ τ−1b) = τ((t⊗ c)⊕ b).

Hence, we get PG ⊕ b = {τLc : τ ∈ Aut(PG,⊕,⊗)}.

3. Fiber Bundles and Sections of Real Inner Product Gyrogroups

We denote (G, X, π, Y) as a fiber bundle with base space X, fiber Y, and bundle map π : G → X.
A global section of the fiber bundle (G, X, π, Y) is a continuous map f : X → G such that π( f (y)) = y
for all y ∈ X, while a local section is a map f : U → G, where U is an open set in X and π( f (x)) = x
for all x ∈ U.

According with the two unique decompositions G = PG ⊕ P⊥G and G = P⊥G ⊕ PG, and using
Lemma 1, Lemma 2, (24), and (28), we can define four different fiber bundle structures on (G,⊕) with
fiber bundle mappings given by

π1 : PG ⊕ P⊥G → (G/PG,∼r) π2 : P⊥G ⊕ PG → (G/PG,∼`)

a⊕ b 7→ [a⊕ b]r = [b]r = PG ⊕ b b⊕ a 7→ [b⊕ a]` = [b]` = b⊕ PG

π3 : P⊥G ⊕ PG → (G/PG,∼r) π4 : PG ⊕ P⊥G → (G/PG,∼`)

b⊕ a 7→ [b⊕ a]r = PG ⊕ µ2(b, a)b a⊕ b 7→ [a⊕ b]` = µ1(a, b)b⊕ PG .

(38)

We remark that the mappings π3 and π4 defined in (38) correct the definitions presented in [5].
It is easy to see that the first and the second bundles are trivial ones. The first bundle π1 is

isomorphic to the trivial bundle (PG × P⊥G , P⊥G ,Qr, PG), where Qr is the projection onto the second
factor defined by:

Qr : PG ⊕ P⊥G → P⊥G , a⊕ b 7→ b.

Hence, the following diagram commutes:

G = PG ⊕ P⊥G π1−−−−→ (G/PG,∼r)

↓ id ↓ Φ1

PG ⊕ P⊥G Qr
−−−−→ P⊥G
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where Φ1 is the isomorphism between (G/PG,∼r) and P⊥G given by Φ1(PG ⊕ b) = b, for any b ∈ P⊥G .
All global sections of the first fiber bundle are given by

f (PG ⊕ b) = g(b)⊕ b,

for any continuous map g : P⊥G → PG. In fact, π1( f (PG ⊕ b)) = π1(g(b)⊕ b) = PG ⊕ b, for all b ∈ P⊥G .
The second bundle π2 is isomorphic to the trivial bundle (P⊥G × PG, P⊥G ,Q`, PG), where Q` is the

projection onto the first factor defined by:

Q` : P⊥G ⊕ PG → P⊥G , b⊕ a 7→ b.

Indeed, the following diagram commutes

G = P⊥G ⊕ PG π2−−−−→ (G/PG,∼`)

↓ id ↓ Φ2

P⊥G ⊕ PG Q`

−−−−→ P⊥G

where Φ2 is the isomorphism between (G/PG,∼`) and P⊥G given by Φ2(b⊕ PG) = b, for any b ∈ P⊥G .
All global sections of the second fiber bundle are given by

f (b⊕ PG) = b⊕ g(b),

for any continuous map g : P⊥G → PG. Note that π2( f (b ⊕ PG)) = π2(b ⊕ g(b)) = b ⊕ PG, for all
b ∈ P⊥G .

In the third and fourth bundles we will consider the sections obtained from the quotient spaces
(G/P⊥G ,∼r) and (G/P⊥G ,∼`).

In the third case if we consider for any a ∈ PG fixed the map τ
(1)
a defined by

τ
(1)
a : (G/PG,∼r)→ G

[b]r 7→ a⊕ b
(39)

with b ∈ P⊥G , which means that τ
(1)
a (G/PG,∼r) = a⊕ P⊥G is a left coset in (G/P⊥G ,∼`), we obtain a

global section. In fact, π3(τ
(1)
a ([b]r)) = π3(a⊕ b) = PG ⊕ b = [b]r, for any b ∈ P⊥G . This means that the

left cosets of (G/P⊥G ,∼`) are global sections for (G/PG,∼r).

However, if we consider the map τ
(2)
a defined for any a ∈ PG\{0} by

τ
(2)
a : (G/PG,∼r)→ G

[b]r 7→ b⊕ a
(40)

for b ∈ P⊥G , which means that τ
(2)
a (G/PG,∼r) = P⊥G ⊕ a is a right coset in (G/P⊥G ,∼r), then by (38)

we have
π3(τ

(2)
a ([b]r)) = π3(b⊕ a) = PG ⊕ µ2(b, a)b = [µ2(b, a)b]r

with µ2(b, a) given by (27) with the order of a and b being changed. Depending on the properties of the
mapping µ2 we can have global or local sections. If for a ∈ PG fixed we have {µ2(b, a)b : b ∈ P⊥G } = P⊥G
then τ

(2)
a is a global section while if {µ2(b, a)b : b ∈ P⊥G } ( P⊥G then τ

(2)
a is only a local section for the

fiber bundle defined by π3. The case a = 0 gives a global section since

π3(τ
(2)
0 ([b]r)) = π3(b⊕ 0) = π3(0⊕ b) = [b]r, for any b ∈ P⊥G . (41)
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The conclusions obtained for the sections τ
(1)
a and τ

(2)
a are valid for the fiber bundles associated to the

projection mappings π1 and π3.
In the fourth case we consider the sections τ

(3)
a and τ

(4)
a defined for any a ∈ PG by

τ
(3)
a : (G/PG,∼`)→ G

[b]` 7→ b⊕ a
(42)

and

τ
(4)
a : (G/PG,∼`)→ G

[b]` 7→ a⊕ b.
(43)

It is easy to see that τ
(3)
a is a global section for π4 since

π4(τ
(3)
a ([b]`)) = π4(b⊕ a) = b⊕ PG = [b]`

for any b ∈ P⊥G . Since τ
(3)
a (G/PG,∼`) = P⊥G ⊕ a is a right coset of (G/P⊥G ,∼r) then the right cosets of

(G/P⊥G ,∼r) are global sections for (G/PG,∼`).

Concerning τ
(4)
a we have

π4(τ
(4)
a ([b]`)) = π4(a⊕ b) = µ1(a, b)b⊕ PG = [µ1(a, b)b]`

for any a ∈ PG, where µ1(a, b) is given by (27). If for a ∈ PG fixed we have {µ1(a, b)b : b ∈ P⊥G } = P⊥G
then τ

(4)
a is a global section while if {µ1(a, b)b : b ∈ P⊥G } ( P⊥G then τ

(4)
a is only a local section for the

fiber bundle π4. The case a = 0 gives a global section since

π4(τ
(4)
0 ([b]`)) = π4(0⊕ b) = π3(b⊕ 0) = b⊕ PG = [b]`, (44)

for any b ∈ P⊥G . The conclusions obtained for the sections τ
(3)
a and τ

(4)
a are valid for the fiber bundles

associated to the projection mappings π2 and π4.
We summarize in the next theorem the duality relations between left and right cosets obtained

from the orthogonal factorization of G by PG and by P⊥G .

Theorem 16. Let PG be a subgyrogroup of (G,⊕). The following relations hold:

1. The cosets of (G/P⊥G ,∼`) are global sections for the quotient space (G/PG,∼r).
2. The cosets of (G/P⊥G ,∼r) are global sections for the quotient space (G/PG,∼r) if {µ2(b, a)b : b ∈

P⊥G } = P⊥G or local sections if {µ2(b, a)b : b ∈ P⊥G } ( P⊥G .
3. The cosets of (G/P⊥G ,∼r) are global sections for the quotient space (G/PG,∼`).
4. The cosets of (G/P⊥G ,∼`) are global sections for the quotient space (G/PG,∼`) if {µ1(a, b)b : b ∈

P⊥G } = P⊥G or local sections if {µ1(a, b)b : b ∈ P⊥G } ( P⊥G .

4. Examples of Real Inner Product Gyrogroups

In this section, we show that four standard gyrogroups known in the literature are indeed real
inner product gyrogroups that admit orthogonal decompositions.

4.1. Euclidean Einstein Gyrogroup

The (Euclidean) Einstein gyrogroup [10] consists of the open unit ball in Rn,

B = {v ∈ Rn : ‖v‖ < 1}, (45)
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endowed with Einstein addition ⊕E defined by

u⊕E v =
1

1 + 〈u, v〉

(
u +

1
γu

v +
γu

1 + γu
〈u, v〉u

)
, (46)

for all u, v ∈ B, where 〈 , 〉 denotes the inner product in Rn and γu is the Lorentz factor given by

γu =
1√

1− ‖u‖2
. Einstein addition satisfies the gamma identity

γu⊕Ev = γuγv (1 + 〈u, v〉) .

In view of (46), we define

φ1(u, v) =
1 + γu + γu 〈u, v〉
(1 + 〈u, v〉)(1 + γu)

and φ2(u, v) =
1

γu(1 + 〈u, v〉) (47)

for all u, v ∈ B. The gyrogroup identity of (B,⊕E) is the zero vector 0. Further, 	Eu = −u for all
u ∈ B. Let u, v ∈ B. By the Cauchy–Schwarz inequality,

−1 < −‖u‖‖v‖ ≤ 〈u, v〉 ≤ ‖u‖‖v‖ < 1.

Hence, 1 + 〈u, v〉 > 0. This implies that φ1(u, v) > 0 and φ2(u, v) > 0.
Clearly, the Einstein gyrogroup satisfies (H1). Suppose that u, v ∈ B, u + v ∈ B, and 〈u, v〉 = 0.

Then by (47) it is easy to see that the unique solution of the system of equations{
φ1(λ1u, λ2v)λ1u = u

φ2(λ1u, λ2v)λ2v = v

is given by λ1 = λ1(u, v) = 1 and λ2 = λ2(u, v) = γu. Thus, (x = u, y = γuv) is the solution to
the system (16), where c1 = u and c2 = v. We claim that y ∈ B. To prove the claim, suppose to

the contrary that y 6∈ B. Hence, ‖γuv‖ ≥ 1. This implies γu‖v‖ ≥ 1 and so
‖v‖2

1− ‖u‖2 ≥ 1. Hence,

‖u + v‖2 = ‖u‖2 + ‖v‖2 ≥ 1, contrary to the assumption that u + v ∈ B. Thus, y ∈ B. Hence,
the Einstein gyrogroup satisfies (H2).

Now, let P be a linear subspace of Rn, PB = P ∩ B, and P⊥B = P⊥ ∩ B. Then Rn = P ⊕ P⊥

and PB and P⊥B are subgyrogroups of the Einstein gyrogroup (B,⊕E). The next three theorems are
consequences of Theorems 5, 8, 10, 13 obtained in Section 2.

Theorem 17. Let PB be a subgyrogroup of (B,⊕E). For all w ∈ B such that w = u + v, with u ∈ PB and
v ∈ P⊥B , the unique orthogonal decompositions of w according to ⊕E are given by

w = λ1(u, v)u ⊕E λ2(u, v)v and w = λ3(u, v)v ⊕E λ4(u, v)u , (48)

where

λ1(u, v) = 1 and λ2(u, v) = γu,

λ3(u, v) = 1 and λ4(u, v) = λ2(v, u) = γv.
(49)
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As a consequence B = PB ⊕E P⊥B and B = P⊥B ⊕E PB. By (20) the orthogonal gyroprojectors of the
Einstein gyrogroup (B,⊕E) onto the subgyrogroups PB and P⊥B are given by

P`
E : B = PB ⊕E P⊥B → PB, P`

E(w) = u,

Qr
E : B = PB ⊕E P⊥B → P⊥B , Qr

E(w) = γuv,

Q`
E : B = P⊥B ⊕E PB → P⊥B , Q`

E(w) = v,

Pr
E : B = P⊥B ⊕E PB → PB, Pr

E(w) = γvu .

(50)

Theorem 18. Let PB be a subgyrogroup of (B,⊕E). Then the sets {b⊕E PB : b ∈ P⊥B } and
{PB ⊕E b : b ∈ P⊥B } are disjoint partitions of B, that is,

B =
·⋃

b∈P⊥B

(b⊕E PB) and B =
·⋃

b∈P⊥B

(PB ⊕E b). (51)

Moreover, (B/PB,∼`) = {b⊕E PB : b ∈ P⊥B } and (B/PB,∼r) = {PB ⊕E b : b ∈ P⊥B }.

Theorem 19. Let PB be a subgyrogroup of (B,⊕E). Then the following are gyrogroup isomorphisms:

(B/PB,∼`) ∼= (P⊥B ,⊕E) ∼= (B/PB,∼r).

In order to see a remarkable connection between gyroprojections and Euclidean projections, let us
refer to a version of Einstein addition defined on an open ball of Rn of radius t, where t is a positive
number. Set

Bt = {v ∈ Rn : ‖v‖ < t}.

Recall that the t-Einstein addition is defined by

u⊕Et v =
1

1 + 〈u,v〉
t2

(
u +

1
γu

v +
1
t2

γu

1 + γu
〈u, v〉u

)
(52)

for all u, v ∈ Bt and γu is redefined by γu =
(

1− ‖u‖
2

t2

)− 1
2

. When t is arbitrarily large (that is,
t → +∞), Bt expands to the whole space Rn, ⊕Et reduces to ordinary vector addition of Rn, and
γu → 1. Therefore, the orthogonal gyroprojections of the t-Einstein gyrogroup reduce to ordinary
projections of Rn:

P(u + v) = u and Q(u + v) = v,

for all u ∈ P and v ∈ P⊥.
Finally, we analyze the fiber bundles and sections of the Einstein gyrogroup arisen from the two

orthogonal decompositions B = PB⊕E P⊥B and B = P⊥B ⊕E PB. First we give the relation between these
two decompositions according to Theorem 6.

Theorem 20. Let u, v ∈ (B,⊕E) such that 〈u, v〉 = 0. Then

u⊕E v = µ1(u, v)v ⊕E µ2(u, v)u, (53)

where
µ1(u, v) =

1
γu

and µ2(u, v) = γ 1
γu v. (54)
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Proof. By (27), (47), (49), we have

µ1(u, v) = λ3(φ1(u, v)u, φ2(u, v)v) φ2(u, v) =
1

γu
,

µ2(u, v) = λ4(φ1(u, v)u, φ2(u, v)v) φ1(u, v) = λ4
(
u,

1
γu

v
)
= γ 1

γu v.

Now, we analyze the sections τ
(2)
u and τ

(4)
u defined by (40) and (43), respectively, with the changes

a↔ u ∈ PB and b↔ v ∈ P⊥B .
Since for any u ∈ PB\{0} it turns out that µ1(u, v)‖v‖ =

√
1− ‖u‖2‖v‖ is a strictly increasing

function such that µ1(u, v)‖v‖ ∈ [0,
√

1− ‖u‖2[( [0, 1[ for all v ∈ P⊥B , we conclude that {µ1(u, v)v :

v ∈ P⊥B } ( P⊥B . Then for any u ∈ PB\{0}, the section τ
(2)
u is a local section for the fiber bundles π1 and

π3 defined in (38). In the case when u = 0 the section τ
(2)
0 is a global section as seen in (41).

Concerning the section τ
(4)
u , since for each u ∈ PB we have that µ2(v, u)‖v‖ = ‖v‖√

1−(1−‖v‖2)‖u‖2
is a

strictly increasing function in the variable ‖v‖ such that µ2(0, u)‖0‖ = 0 and lim‖v‖→1 µ2(v, u)‖v‖ = 1,

we conclude that {µ2(v, u)v : v ∈ P⊥B } = P⊥B . Hence, for any u ∈ PB, it follows that τ
(4)
u is a global

section for the fiber bundles π2 and π4 defined in (38).
In Figure 1 we show the plots of µ1(u, v)‖v‖ and µ2(v, u)‖v‖, with ‖u‖, ‖v‖ < 1, that explain

the different behavior between local and global sections.

(a) (b)

Figure 1. (a) Plot of µ1(u, v)‖v‖ with ‖u‖, ‖v‖ < 1; (b) plot of µ2(v, u)‖v‖ with ‖u‖, ‖v‖ < 1, for the
Einstein gyrogroup.

By the results obtained in Section 3 and the previous conclusions we summarize in the next
theorem the duality relations between left and right cosets obtained from the orthogonal factorization
of B by PB and by P⊥B , for the Einstein gyrogroup.

Theorem 21. Let PB be a subgyrogroup of (B,⊕E). The following duality relations hold:

1. The cosets of (B/P⊥B ,∼r) are global sections for the quotient spaces (B/PB,∼`) and (B/PB,∼r), and
vice versa.

2. The cosets of (B/P⊥B ,∼`) are global sections for the quotient space (B/PB,∼r), and vice versa.
3. The cosets of (B/P⊥B ,∼`) are local sections for the quotient space (B/PB,∼`) except the identity coset

0⊕E P⊥B = P⊥B that is a global section, and vice versa.

To visualize left and right cosets we restrict now to the 3-dimensional space R3. In R3 the nontrivial
linear subspaces are of dimension 1 (straight lines passing through the origin) or dimension 2 (planes
passing through the origin). Let Le3 = {(0, 0, x3) : x3 ∈ R} be the straight line that passes through the
origin and the North Pole e3 = (0, 0, 1) and let De3 = {(x1, x2, 0) : x1, x2 ∈ R} be the plane that passes
through the origin and is perpendicular to e3. The restriction of Le3 and De3 to B3 = {x ∈ R3 : ‖x‖ < 1}
will be denoted by LB3

e3
and DB3

e3
, respectively. Then LB3

e3
and DB3

e3
are subgyrogroups of (B3,⊕E) and
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provide orthogonal gyrodecompositions of (B3,⊕E). In Figures 2 and 3 we show the left and right
cosets obtained from the orthogonal decomposition of B3 by LB3

e3
and DB3

e3
.

(a) (b)

(c) (d)

Figure 2. (a) Left cosets (B3/DB3

e3
,∼`) = {v⊕E DB3

e3
, v ∈ LB

3

e3
}; (b) gyrolines in the Einstein gyrovector

plane (projection in the xz-plane of left cosets); (c) right cosets (B3/DB3

e3
,∼r) = {DB3

e3
⊕E u, u ∈ LB

3

e3
};

(d) Cogyrolines in the Einstein gyrovector plane (projection in the xz-plane of right cosets).

(a) (b)

(c) (d)

Figure 3. (a) Left cosets (B3/LB
3

e3
,∼`) = {v⊕E LB

3

e3
, v ∈ DB3

e3
}; (b) Gyrolines in the Einstein gyrovector

plane (projection in the xz-plane of left cosets); (c) Right cosets (B3/LB
3

e3
,∼r) = {LB

3

e3
⊕E v, v ∈ DB3

e3
};

(d) Cogyrolines in the Einstein gyrovector plane (projection in the xz-plane of right cosets).

For higher dimensions (n > 3) we can have cosets with higher codimensions, which are surfaces
of revolution obtained from the action of the automorphism group of (PB,⊕,⊗) on the gyrolines and
cogyrolines shown in Figures 2 and 3. Thus, all the information of these surfaces is encoded in the
projection on an adequate plane.
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4.2. Euclidean Möbius Gyrogroup

The (Euclidean) Möbius gyrogroup [11] consists of the open unit ball B in Rn endowed with
Möbius addition ⊕M defined by

u⊕M v =
(1 + 2〈u, v〉+ ‖v‖2)u + (1− ‖u‖2)v

1 + 2〈u, v〉+ ‖u‖2‖v‖2 (55)

for all u, v ∈ B. The gyrogroup identity of (B,⊕M) is the zero vector 0, and 	Mu = −u for all u ∈ B.
A generalization of the Möius addition into the ball of any real inner product space was obtained
in [12]. Möbius addition satisfies the gamma identity

γu⊕Mv = γuγv

√
1 + 〈u, v〉+ ‖u‖2‖v‖2.

In view of (55), we define

φ1(u, v) =
1 + 2〈u, v〉+ ‖v‖2

1 + 2〈u, v〉+ ‖u‖2‖v‖2 and φ2(u, v) =
1− ‖u‖2

1 + 2〈u, v〉+ ‖u‖2‖v‖2 (56)

for all u, v ∈ B. Let u, v ∈ B. Using the Cauchy–Schwarz inequality, we have

1 + 2〈u, v〉+ ‖v‖2 ≥ 1− 2‖u‖‖v‖+ ‖v‖2 = (‖v‖ − ‖u‖)2 + (1− ‖u‖2) ≥ 1− ‖u‖2 > 0.

Hence, φ1(u, v) > 0. It is clear that φ2(u, v) > 0.
Clearly, the Möbius gyrogroup satisfies (H1). Suppose that u, v ∈ B, u + v ∈ B, and 〈u, v〉 = 0.

In the case when v = 0, set λ1 = 1 and λ2 =
1

1− ‖u‖2 . In the case when v 6= 0 and u = 0,

set λ1 =
1

1 + ‖v‖2 and λ2 = 1. In both cases, direct computations show that

φ1(λ1u, λ2v)λ1u = u and φ2(λ1u, λ2v)λ2v = v.

Further, (λ1u, λ2v) ∈ B×B. Therefore, we may assume that u 6= 0 and v 6= 0. Set

λ1 =
2

1 + ‖u‖2 + ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

(57)

and
λ2 =

2
1− (‖u‖2 + ‖v‖2) +

√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

. (58)

An elaborate computation (see [7] for details) shows that λ1 and λ2 satisfy the following equalities:

λ1(1 + λ2
2‖v‖2)

1 + λ2
1λ2

2‖u‖2‖v‖2
= 1 and

λ2(1− λ2
1‖u‖2)

1 + λ2
1λ2

2‖u‖2‖v‖2
= 1 (59)

and that λ1u, λ2v ∈ B. Hence, (x = λ1u, y = λ2v) ∈ B×B is a solution of the system of equations:{
φ1(x, y)x = u

φ2(x, y)y = v
.

Next, we prove that the solution is unique. Suppose that (x′, y′) ∈ B× B is also a solution. Hence,
φ1(x′, y′)x′ = u and φ2(x′, y′)y′ = v. Note that

0 = 〈u, v〉 = 〈φ1(x′, y′)x′, φ2(x′, y′)y′〉 = φ1(x′, y′)φ2(x′, y′)〈x′, y′〉,
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which implies 〈x′, y′〉 = 0 since φ1(x′, y′) 6= 0 and φ2(x′, y′) 6= 0. It follows that

φ1(x′, y′) =
1 + ‖y′‖2

1 + ‖x′‖2‖y′‖2 and φ2(x′, y′) =
1− ‖x′‖2

1 + ‖x′‖2‖y′‖2 . (60)

Further, φ1(x′, y′)‖x′‖ = ‖u‖ and φ2(x′, y′)‖y′‖ = ‖v‖. If v = 0, we have y′ = 0 since φ2(x′, y′) 6= 0.
This implies φ1(x′, y′) = 1 and so x′ = u. In this case, (x′, y′) = (u, 0) = (λ1u, λ2v). If v 6= 0 and
u = 0, we have x′ = 0. Hence φ2(x′, y′) = 1 and so y′ = v. In this case, (x′, y′) = (0, v) = (λ1u, λ2v).
Therefore, we may assume that u 6= 0 and v 6= 0. Set

µ1 =
1

φ1(x′, y′)
and µ2 =

1
φ2(x′, y′)

. (61)

Then µ1, µ2 > 0 and x′ = µ1u and y′ = µ2v. Direct computation shows that 1 + µ2‖v‖2 =
1

µ1
.

Furthermore, φ1(x′, y′)x′ = u, x′ = µ1u, and y′ = µ2v together imply φ1(µ1u, µ2v)µ1u = u. This

in turn implies φ1(µ1u, µ2v)µ1 = 1 since u 6= 0. Hence,
µ1(1 + µ2

2‖v‖2)

1 + µ2
1µ2

2‖u‖2‖v‖2
= 1 and we obtain that

‖v‖2µ2
2 + (1− (‖u‖2 + ‖v‖2))µ2 − 1 = 0. It follows that µ2 is a solution to the quadratic equation

‖v‖2x2 + (1− (‖u‖2 + ‖v‖2))x− 1 = 0.

If µ2 =
2

1− ‖u‖2 − ‖v‖2 −
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

were true, we would have

µ2 = − 2
−1 + ‖u‖2 + ‖v‖2 +

√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

< 0,

which is a contradiction. Hence, it must be the case that

µ2 =
2

1− ‖u‖2 + ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

= λ2.

This in turn implies µ1 =
1

1 + µ2‖v‖2 =
1

1 + λ2‖v‖2 = λ1. Hence, (x′, y′) = (λ1u, λ2v).

This proves uniqueness of the solution. Therefore, the Möbius gyrogroup satisfies (H2).
Now, let P be a linear subspace of Rn and PB = P ∩B and P⊥B = P⊥ ∩B. The next three theorems

are consequences of Theorems 5, 8, 10, 13 obtained in Section 2.

Theorem 22. Let PB be a subgyrogroup of (B,⊕M). For all w ∈ B such that w = u + v, with u ∈ PB and
v ∈ P⊥B , the unique orthogonal decompositions of w according to ⊕M are given by

w = λ1(u, v)u ⊕M λ2(u, v)v and w = λ3(u, v)v ⊕M λ4(u, v)u, (62)
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where

λ1(u, v) =
2

1 + ‖u‖2 + ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

,

λ2(u, v) =
2

1− ‖u‖2 − ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖v‖2

,

λ3(u, v) =
2

1 + ‖u‖2 + ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖u‖2

,

λ4(u, v) =
2

1− ‖u‖2 − ‖v‖2 +
√
(1− (‖u‖2 + ‖v‖2))2 + 4‖u‖2

.

(63)

We remark that the special cases u = 0 or v = 0 are included in the general solution (63). As a
consequence of Theorem 22, for each w ∈ B, if w = u + v, with u ∈ P and v ∈ P⊥ is the unique
decomposition of w, according to the orthogonal direct sum decomposition Rn = P⊕ P⊥, then the
orthogonal gyroprojections of the Möbius gyrogroup (B,⊕M) onto the subgyrogroups PB and P⊥B are
given by

P`
M : B = PB ⊕M P⊥B → PB, P`

M(w) =
2

1 + ‖w‖2 +
√
(1− ‖w‖2)2 + 4‖v‖2

u,

Qr
M : B = PB ⊕M P⊥B → P⊥B , Qr

M(w) =
2

1− ‖w‖2 +
√
(1− ‖w‖2)2 + 4‖v‖2

v,

Q`
M : B = P⊥B ⊕M PB → P⊥B , Q`

M(w) =
2

1 + ‖w‖2 +
√
(1− ‖w‖2)2 + 4‖u‖2

v,

Pr
M : B = P⊥B ⊕M PB → PB, Pr

M(w) =
2

1− ‖w‖2 +
√
(1− ‖w‖2)2 + 4‖u‖2

u .

(64)

Theorem 23. Let PB be a subgyrogroup of (B,⊕M). Then the sets {b⊕M PB : b ∈ P⊥B } and
{PB ⊕M b : b ∈ P⊥B } are disjoint partitions of B, that is,

B =
·⋃

b∈P⊥B

(b⊕M PB) and B =
·⋃

b∈P⊥B

(PB ⊕M b). (65)

Moreover, (B/PB,∼`) = {b⊕M PB : b ∈ P⊥B } and (B/PB,∼r) = {PB ⊕M b : b ∈ P⊥B }.

Theorem 24. Let PB be a subgyrogroup of (B,⊕M). Then the following are gyrogroup isomorphisms:

(B/PB,∼`) ∼= (P⊥B ,⊕M) ∼= (B/PB,∼r).

For each positive number t, recall that the t-Möbius addition is defined by

u⊕Mt v =
(1 + 2

t2 〈u, v〉+ 1
t2 ‖v‖2)u + (1− 1

t2 ‖u‖2)v

1 + 2
t2 〈u, v〉+ 1

t4 ‖u‖2‖v‖2
(66)

for all u, v ∈ Bt. Let P be a subspace of Rn. For each w ∈ Bt, if w = u + v is the unique expression of
w, according to the orthogonal direct sum decomposition Rn = P⊕ P⊥, with u ∈ P and v ∈ P⊥, then
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the orthogonal gyroprojections of the t-Möbius gyrogroup
(
after rescaling u 7→ u

t
, v 7→ v

t
, w 7→ w

t
)

are given by

P`
Mt

(w) =
2

1 + ‖w‖2

t2 +

√(
1− ‖w‖

2

t2

)2
+ 4 ‖v‖

2

t2

u,

Pr
Mt

(w) =
2

1− ‖w‖
2

t2 +

√(
1− ‖w‖

2

t2

)2
+ 4 ‖u‖

2

t2

u,

Q`
Mt

(w) =
2

1 + ‖w‖2

t2 +

√(
1− ‖w‖

2

t2

)2
+ 4 ‖u‖

2

t2

v,

Qr
Mt

(w) =
2

1− ‖w‖
2

t2 +

√(
1− ‖w‖

2

t2

)2
+ 4 ‖v‖

2

t2

v.

(67)

When t → +∞, ⊕Mt reduces to ordinary vector addition of Rn, P`
Mt

and Pr
Mt

reduce to the
ordinary projection P(u + v) = u, and Q`

Mt
and Qr

Mt
reduce to the ordinary projection Q(u + v) = v.

Further, the equivalence relation (29) reflects the Euclidean left coset relation:

u ∼` v if and only if − v + u ∈ P

and the equivalence relation (31) reflects the Euclidean right coset relation:

u ∼r v if and only if u− v ∈ P.

Now, we analyze the fiber bundles and the sections of the Möbius gyrogroup arisen from the two
orthogonal decompositions B = PB ⊕M P⊥B and B = P⊥B ⊕M PB. First we give the relation between
these two decompositions according to Theorem 6.

Theorem 25. Let u, v ∈ (B,⊕M) such that 〈u, v〉 = 0. Then

u⊕M v = µ1(u, v)v ⊕M µ2(u, v)u, (68)

where

µ1(u, v) =
2(1− ‖u‖2)

(1 + ‖u‖2)(1 + ‖v‖2) +
√
(1− ‖u‖)2(1− ‖v‖)2 + 4(1 + ‖v‖2)‖u‖2

,

µ2(u, v) =
2(1 + ‖v‖2)

(1− ‖u‖2)(1− ‖v‖2) +
√
(1− ‖u‖)2(1− ‖v‖)2 + 4(1 + ‖v‖2)‖u‖2

.

(69)
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Proof. By (27), (56), (49), and straightforward computations we have:

µ1(u, v) = λ3(φ1(u, v)u, φ2(u, v)v) φ2(u, v)

= λ3

(
1 + ‖v‖2

1 + ‖u‖2‖v‖2 u,
1− ‖u‖2

1 + ‖u‖2‖v‖2 v
)

1− ‖u‖2

1 + ‖u‖2‖v‖2

=
2(1− ‖u‖2)

(1 + ‖u‖2)(1 + ‖v‖2) +
√
(1− ‖u‖)2(1− ‖v‖)2 + 4(1 + ‖v‖2)‖u‖2

,

µ2(u, v) = λ4(φ1(u, v)u, φ2(u, v)v) φ1(u, v)

= λ4

(
1 + ‖v‖2

1 + ‖u‖2‖v‖2 u,
1− ‖u‖2

1 + ‖u‖2‖v‖2 v
)

1 + ‖v‖2

1 + ‖u‖2‖v‖2

=
2(1 + ‖v‖2)

(1− ‖u‖2)(1− ‖v‖2) +
√
(1− ‖u‖)2(1− ‖v‖)2 + 4(1 + ‖v‖2)‖u‖2

.

Now, we analyze the properties of µ1(u, v)‖v‖ and µ2(v, u)‖v‖. For any u ∈ PB\{0} we have
that µ1(u, v)‖v‖ is a strictly increasing function such that µ1(u, 0)‖0‖ = 0 and lim‖v‖→1 µ1(u, v)‖v‖ =

1−‖u‖2

1+
√

2‖u‖+‖u‖2 . Therefore, for any u ∈ PB\{0} it follows that µ1(u, v)‖v‖ ∈
[
0, 1−‖u‖2

1+
√

2‖u‖+‖u‖2

[
( [0, 1[

for all v ∈ P⊥B and, consequently, {µ1(u, v)v : v ∈ P⊥B } ( P⊥B . Then for any u ∈ PB\{0}, τ
(2)
u is a local

section for the fiber bundles π1 and π3 defined in (38). In the case when u = 0 the section τ
(2)
0 is a

global section as seen in (41).
Concerning µ2(v, u)‖v‖ it turns out that for each u ∈ PB, the function µ2(v, u)‖v‖ is strictly

increasing such that µ2(0, u)‖0‖ = 0 and lim‖v‖→1 µ2(v, u)‖v‖ = 1. Therefore, we conclude that

{µ2(v, u)v : v ∈ P⊥B } = P⊥B and, consequently, for any u ∈ PB the section τ
(4)
u is a global section for

the fiber bundles π2 and π4 defined in (38).
In Figure 4 we show the plots of µ1(u, v)‖v‖ and µ2(v, u)‖v‖, with ‖u‖, ‖v‖ < 1, for the case of

the Möbius gyrogroup.

(a) (b)

Figure 4. (a) Plot of µ1(u, v)‖v‖ with ‖u‖, ‖v‖ < 1; (b) plot of µ2(v, u)‖v‖ with ‖u‖, ‖v‖ < 1, for the
Möbius gyrogroup.

Theorem 21 about the duality relations between left and right cosets obtained from the orthogonal
factorization of B by PB and by P⊥B , holds also in the case of the Möbius gyrogroup. Analogously
to the Einstein case we restrict now to the 3-dimensional space and we show in Figures 5 and 6 the
left and right cosets obtained from the orthogonal decompositions of the gyrogroup (B3,⊕M) by the
subgyrogroups LB3

e3
and DB3

e3
.
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(a) (b)

(c) (d)

Figure 5. (a) Left cosets (B3/DB3

e3
,∼`) = {u⊕M DB3

e3
, u ∈ LB

3

e3
}; (b) gyrolines in the Möbius gyrovector

plane (projection in the xz-plane of left cosets); (c) right cosets (B3/DB3

e3
,∼r) = {DB3

e3
⊕M u, u ∈ LB

3

e3
};

(d) cogyrolines in the Möbius gyrovector plane (projection in the xz-plane of right cosets).

(a) (b)

(c) (d)

Figure 6. (a) Left cosets (B3/LB
3

e3
,∼`) = {v⊕M LB

3

e3
, v ∈ DB3

e3
}; (b) gyrolines in the Möbius gyrovector

plane (projection in the xz-plane of left cosets); (c) right cosets (B3/LB
3

e3
,∼r) = {LB

3

e3
⊕M v, v ∈ DB3

e3
};

(d) cogyrolines in the Möbius gyrovector plane (projection in the xz-plane of right cosets).
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4.3. Proper Velocity Gyrogroup

The (Euclidean) Proper Velocity (PV) gyrogroup [3] consists of the n-dimensional Euclidean space
Rn endowed with PV addition ⊕U defined by

u⊕U v =

(
βu

1 + βu
〈u, v〉+ 1

βv

)
u + v (70)

for all u, v ∈ Rn, where βu is the beta factor given by βu =
1√

1 + ‖u‖2
for all u ∈ Rn. In view of (70),

we define
φ1(u, v) =

βu

1 + βu
〈u, v〉+ 1

βv
and φ2(u, v) = 1 (71)

for all u, v ∈ Rn. The gyrogroup identity of (Rn,⊕U) is the zero vector 0. Further, 	Uu = −u for all
u ∈ Rn. Let u, v ∈ Rn. The PV addition satisfies the beta identity given by

1
βu⊕Uv

=
1

βuβv
+ 〈u, v〉 = 1 + βuβv〈u, v〉

βuβv
.

Hence, 1 + βuβv〈u, v〉 > 0 since
βuβv

βu⊕Uv
> 0. This implies

φ1(u, v) =
βu + (1 + βuβv〈u, v〉)

(1 + βu)βv
> 0.

It is clear that the PV gyrogroup satisfies (H1). Suppose that u, v ∈ Rn and that 〈u, v〉 = 0. It is
easy to see that the unique solution of the system of equations{

φ1(λ1u, λ2v)λ1u = u

φ2(λ1u, λ2v)λ2v = v

is given by λ1 = βv and λ2 = 1. Thus, the PV gyrogroup satisfies (H2) and we obtain the next three
theorems immediately as consequences of Theorems 5, 8, 10, 13 in Section 2.

Theorem 26. Let P be a subgyrogroup of (Rn,⊕U). For all w ∈ Rn such that w = u + v, with u ∈ P and
v ∈ P⊥, the unique orthogonal decompositions of w according to ⊕U are given by

w = λ1(u, v)u ⊕U λ2(u, v)v and w = λ3(u, v)v ⊕U λ4(u, v)u , (72)

where

λ1(u, v) = βv and λ2(u, v) = 1,

λ3(u, v) = λ1(v, u) = βu and λ4(u, v) = 1.
(73)

For each w ∈ Rn, if w = u + v is the unique expression of w, according to the orthogonal direct
sum decomposition Rn = P⊕ P⊥, then the orthogonal gyroprojections of the PV gyrogroup (Rn,⊕U)

onto the subgyrogroups P and P⊥ are given by

P`
U : Rn = P⊕U P⊥ → P, P`

U(w) = βv u,

Qr
U : Rn = P⊕U P⊥ → P⊥, Qr

U(w) = v,

Q`
U : Rn = P⊥ ⊕U P→ P⊥, Q`

U(w) = βu v,

Pr
U : Rn = P⊥ ⊕U P→ P, Pr

U(w) = u .

(74)
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Theorem 27. Let P be a linear subspace of Rn. Then the sets {b⊕U P : b ∈ P⊥} and {P⊕U b : b ∈ P⊥} are
disjoint partitions of Rn, that is,

Rn =
·⋃

b∈P⊥
(b⊕U P) and Rn =

·⋃
b∈P⊥

(P⊕U b). (75)

Moreover, (Rn/P,∼`) = {b⊕U P : b ∈ P⊥} and (Rn/P,∼r) = {P⊕U b : b ∈ P⊥}.

Theorem 28. Let P be a linear subspace of Rn. Then the following are gyrogroup isomorphisms:

(Rn/P,∼`) ∼= (P⊥,⊕U) ∼= (Rn/P,∼r).

Recall that t-PV addition is defined by

u⊕Ut v =

(
βu

1 + βu

〈u, v〉
t2 +

1
βv

)
u + v, (76)

for all u, v,∈ Rn, where βu is redefined by βu =
1√

1 + ‖u‖2

t2

. When t is arbitrarily large (that is,

t → +∞), ⊕Ut reduces to ordinary vector addition of Rn and βw → 1. Therefore, the orthogonal
gyroprojections of the t-PV gyrogroup reduce to ordinary projection of Rn:

P(u + v) = u and Q(u + v) = v

for all u ∈ P, v ∈ P⊥.
Now, we analyze the fiber bundles and sections of the PV gyrogroup arisen from the two

orthogonal decompositions Rn = P⊕U P⊥ and Rn = P⊥ ⊕U P. First we give the relation between
these two decompositions according to Theorem 6.

Theorem 29. Let u, v ∈ (Rn,⊕U) such that 〈u, v〉 = 0. Then

u⊕U v = µ1(u, v)v ⊕U µ2(u, v)u, (77)

where
µ1(u, v) = β 1

βv
u and µ2(u, v) =

1
βv

. (78)

Proof. By (27), (71), (73), we have

µ1(u, v) = λ3(φ1(u, v)u, φ2(u, v)v) φ2(u, v) = λ3

( 1
βv

u, v
)

= β 1
βv

u,

µ2(u, v) = λ4(φ1(u, v)u, φ2(u, v)v) φ1(u, v) =
1

βv
.

In Figure 7 we show the plots of µ1(u, v)‖v‖ and µ2(v, u)‖v‖, with ‖u‖, ‖v‖ < 1, for the PV
gyrogroup.

Since for any u ∈ P\{0}, µ1(u, v)‖v‖ = ‖v‖√
1+(1+‖v‖2)‖u‖2

is a strictly increasing function such

that µ1(u, 0)‖0‖ = 0 and lim‖v‖→+∞ µ1(u, v)‖v‖ = 1
‖u‖ , we conclude that µ1(u, v)‖v‖ ∈

[
0, 1
‖u‖
[
(

[0,+∞[, for all v ∈ P⊥. Therefore, for any u ∈ P\{0}, we have that {µ1(u, v)v : v ∈ P⊥} ( P⊥ and,
consequently, τ

(2)
u is a local section for the fiber bundles π1 and π3 defined in (38). In the case when

u = 0 the section τ
(2)
0 is a global section as seen in (41).
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(a) (b)

Figure 7. (a) Plot of µ1(u, v)‖v‖ with ‖u‖, ‖v‖ ∈ [0, 10]; (b) Plot of µ2(v, u)‖v‖ with ‖u‖, ‖v‖ ∈ [0, 10],
for the Proper Velocity (PV) gyrogroup.

Concerning the section τ
(4)
u , since for each u ∈ P we have that µ2(v, u)‖v‖ =

√
1 + ‖v‖2‖v‖ is a

strictly increasing function in the variable ‖v‖ such that µ2(0, u)‖0‖ = 0 and lim‖v‖→+∞ µ2(v, u)‖v‖ =
+∞, we conclude that {µ2(v, u)v : v ∈ P⊥} = P⊥. Hence, for any u ∈ P, it follows that τ

(4)
u is a global

section for the fiber bundles π2 and π4 defined in (38).
We can finally conclude that the same duality relations as in Theorem 21 happens for the case of

the PV gyrogroup.

Theorem 30. Let P be a subgyrogroup of (Rn,⊕U). The following duality relations hold:

1. The cosets of (Rn/P⊥,∼r) are global sections for the quotient spaces (Rn/P,∼`) and (Rn/P,∼r), and
vice versa.

2. The cosets of (Rn/P⊥,∼`) are global sections for the quotient space (Rn/P,∼r), and vice versa.
3. The cosets of (Rn/P⊥,∼`) are local sections for the quotient space (Rn/P,∼`) except the identity coset

0⊕U P⊥ = P⊥ that is a global section, and vice versa.

To visualize the left and right cosets we restrict now to the 3-dimensional space R3 and we show
in Figures 8 and 9 the cosets obtained from the orthogonal decompositions of the gyrogroup (R3,⊕V)

by the subgyrogroups Le3 and De3 .
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(a) (b)

(c) (d)

Figure 8. (a) Left cosets (R3/De3 ,∼`) = {u ⊕U De3 , u ∈ Le3}; (b) gyrolines in the PV gyrovector
plane (projection in the xz-plane of left cosets); (c) right cosets (R3/De3 ,∼r) = {De3 ⊕U u, u ∈ Le3};
(d) cogyrolines in the PV gyrovector plane (projection in the xz-plane of right cosets).

(a) (b)

(c) (d)

Figure 9. (a) Left cosets (R3/Le3 ,∼`) = {v ⊕U Le3 , v ∈ De3}; (b) gyrolines in the PV gyrovector
plane (projection in the xz-plane of left cosets); (c) right cosets (R3/Le3 ,∼r) = {Le3 ⊕U v, v ∈ De3};
(d) cogyrolines in the PV gyrovector plane (projection in the xz-plane of right cosets).

4.4. The SL(2,C) General Addition and Chen’s Gyrogroup

Einstein, Möbius, and PV gyrogroups are three different realizations of hyperbolic geometry
associated to the Lorentz group. In [13] it was shown that the algebra of the group SL(2,C) naturally
leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its
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hyperbolic geometry. A general addition for real inner product gyrogroups extended from the group
SL(2,C) is given in the next definition.

Definition 7 (SL(2,C) general addition, [13]). Let V = (V,+, ·) be a real inner product space, and let

φ : V → R+, φ : v 7→ φv

be a continuous map of a subset Vt ⊆ V into the positive real ray R+, taking v ∈ Vt into φ(v) = φv ∈ R+,
normalized by the condition φ(0) = 0. We assume that 0 ∈ Vt, and that Vt is the identity-connected component
of the preimage {v ∈ V : φ(v) ∈ R+} of R+ under φ. Furthermore, let f : R+ → R+ be a continuous,
bijective self-map of R+, satisfying the condition

f (φv) =
‖v‖

t

for an arbitrarily fixed positive constant t, such that

sinh φv

f (φv)
6= 0

for all v ∈ Vt. Then the SL(2,C) general binary operation ⊕ in Vt is given by the equation

u⊕ v =
1

sinh(φu⊕v)
f (φu⊕v)

(Cu,vu + Cvv) (79)

for all u, v ∈ Vt, where

Cu,v =
sinh φu

f (φu)
cosh φv +

(
sinh φu

f (φu)

)2 sinh φv

f (φv)

1
1 + cosh φu

u · v
t2

Cv =
sinh φv

f (φv)

and
cosh(φu⊕v) = cosh φu cosh φv +

sinh φu

f (φu)

sinh φv

f (φv)

u · v
t2 .

Furthermore, the scalar multiplication in Vt is given by the equation

r⊗ v = t f
(

r f−1
(
‖v‖

t

))
v
‖v‖ , v 6= 0

and r⊗ 0 = 0, for all v ∈ Vt and r ∈ R.

The groupoid (Vt,⊕) is a gyrocommutative gyrogroup. Moreover, it admits scalar multiplication,
⊗, turning itself into a gyrovector space (Vt,⊕,⊗). Specifying the function f in various ways results
in various binary operations in various subsets Vt of V. For instance, t-Einstein addition is recovered
from the SL(2,C) addition by choosing the function f (r) = tanh r, r ∈ R+, the t-Möbius addition
is recovered from the choice f (r) = tanh

( r
2
)
, and the t-PV addition is recovered from the choice

f (r) = sinh r (see [13] for a detailed discussion).
In view of (79), we define

φ1(u, v) =
1

sinh(φu⊕v)

f (φu⊕v)

Cu,v and φ2(u, v) =
1

sinh(φu⊕v)

f (φu⊕v)

Cv (80)
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for all u, v ∈ Vt. It is immediate to see that φ1(u, 0) = 1 and φ2(0, v) = 1 for all u, v ∈ Vt. Let us now see
the conditions that φ1 and φ2 have to satisfy such that hypothesis (H1) and (H2) hold. By construction,
hypothesis (H1) naturally holds. For the hypothesis (H2), consider u, v ∈ Vt, with u + v ∈ Vt and
u · v = 0. Since λ1u ⊥ λ2v, for all λ1, λ2 ∈ R it follows from (80) that the system of equations

φ1(λ1u, λ2v)λ1u = u and φ2(λ1u, λ2v)λ2v = v

is equivalent to

f (φλ1u⊕λ2v)

sinh(φλ1u⊕λ2v)

sinh(φ˘1u)

f (φ˘1u)
cosh(φλ2v)λ1 = 1 and

f (φλ1u⊕λ2v)

sinh(φλ1u⊕λ2v)

sinh(φλ2v)

f (φλ2v)
λ2 = 1.

The solution of the previous system depends on the choice of the functions f and φ. In the cases
of Einstein, Möbius, and PV gyrogroups we already proved that the system has a unique solution.
In [1] it was obtained another example of a real inner product gyrogroup considering the function
f (r) = sinh r

2 , r ∈ R+ in the general SL(2,C) addition (79). This addition was called Chen’s addition
and is given by

u⊕C v =

(
2

βv
− βv + 2βu

u · v
t2

)
u + βuv√

β2
uβ2

v − (β2
u + β2

v) + 2
(

1 + βuβv
u · v

t2

) (81)

for all u, v ∈ Vt = V, where βv =
1√

1 + ‖v‖2

t2

, v ∈ V. Chen’s addition satisfies the following beta

identity:
1

βu⊕Cv
=

1
βu

1
βv

√
β2

uβ2
v − (β2

u + β2
v) + 2

(
1 + βuβv

u · v
t2

)
.

The scalar multiplication associated with Chen’s addition is given by

r⊗C v = t sinh
(

r sinh−1 ‖v‖
t

)
v
‖v‖

for v 6= 0 and r⊗C 0 = 0. Thus, (V,⊕C,⊗C) becomes a gyrovector space. The gyrogroup identity of
(V,⊕C) is the zero vector 0. Further, 	Cu = −u for all u ∈ V. In view of (81), we define

φ1(u, v) =

2
βv
− βv + 2βu

u · v
t2√

β2
uβ2

v − (β2
u + β2

v) + 2
(

1 + βuβv
u · v

t2

)
φ2(u, v) =

βu√
β2

uβ2
v − (β2

u + β2
v) + 2

(
1 + βuβv

u · v
t2

)
(82)

for all u, v ∈ V. It is clear that Chen’s gyrogroup satisfies (H1) by construction. Now, we suppose that
u, v ∈ V, u + v ∈ V, and u · v = 0. Using computer algebra we can find that the unique solution of the
system of equations {

φ1(λ1u, λ2v)λ1u = u

φ2(λ1u, λ2v)λ2v = v

is given by
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λ1 =
1

√
2‖u‖

t

√√√√√√ 1 + 2
t2 (‖u‖2 + ‖v‖2)√

1 + 4
(

1 + ‖u‖2

t2

)
‖v‖2

t2 + 4 ‖v‖
4

t4

− 1,

λ2 =
1

√
2‖v‖
t

√√√√√1 + 4
(

1 +
‖u‖2

t2

)
‖v‖2

t2 + 4
‖v‖4

t4 − 1.

Now, let P be a linear subspace of V. The next three theorems are consequences of Theorems 5, 8,
10, 13 obtained in Section 2.

Theorem 31. Let P be a subgyrogroup of (Rn,⊕C). For all w ∈ Rn such that w = u + v, with u ∈ P and
v ∈ P⊥, the unique orthogonal decompositions of w according to ⊕C are given by

w = λ1(u, v)u ⊕C λ2(u, v)v and w = λ3(u, v)v ⊕C λ4(u, v)u , (83)

where

λ1(u, v) =
1

√
2‖u‖

t

√√√√√√ 1 + 2
t2 (‖u‖2 + ‖v‖2)√

1 + 4
β2

u

‖v‖2

t2 + 4 ‖v‖
4

t4

− 1,

λ2(u, v) =
1

√
2‖v‖
t

√√√√√1 +
4

β2
u

‖v‖2

t2 + 4
‖v‖4

t4 − 1,

λ3(u, v) =
1

√
2‖v‖
t

√√√√√√ 1 + 2
t2 (‖u‖2 + ‖v‖2)√

1 + 4
β2

v

‖u‖2

t2 + 4 ‖u‖
4

t4

− 1,

λ4(u, v) =
1

√
2‖u‖

t

√√√√√1 +
4

β2
v

‖u‖2

t2 + 4
‖u‖4

t4 − 1.

(84)
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For each w ∈ V, if w = u+ v, with u ∈ P and v ∈ P⊥ is the unique decomposition of w, according
to the orthogonal direct sum decomposition V = P⊕ P⊥, then the orthogonal gyroprojections of Chen’s
gyrogroup (V,⊕C) onto P and P⊥ are given by

P`
C : V = P⊕C P⊥ → P, P`

C(w) =

√√√√√√ 1 + 2
t2 (‖u‖2 + ‖v‖2)√

1 + 4
β2

u

‖v‖2

t2 + 4 ‖v‖
4

t4

− 1
1

√
2‖u‖

t

u,

Qr
C : V = P⊕C P⊥ → P⊥, Qr

C(w) =

√√√√√1 +
4

β2
u

‖v‖2

t2 + 4
‖v‖4

t4 − 1
1

√
2‖v‖
t

v,

Q`
C : V = P⊥ ⊕C P→ P⊥, Q`

C(w) =

√√√√√√ 1 + 2
t2 (‖u‖2 + ‖v‖2)√

1 + 4
β2

v

‖u‖2

t2 + 4 ‖u‖
4

t4

− 1
1

√
2‖v‖
t

v,

Pr
C : V = P⊥ ⊕C P→ P, Pr

C(w) =

√√√√√1 +
4

β2
v

‖u‖2

t2 + 4
‖u‖4

t4 − 1
1

√
2‖u‖

t

u .

(85)

Theorem 32. Let P be a linear subspace of V. Then the sets {b⊕C P : b ∈ P⊥} and {P⊕C b : b ∈ P⊥} are
disjoint partitions of V, that is,

V =
·⋃

b∈P⊥
(b⊕C P) and V =

·⋃
b∈P⊥

(P⊕C b). (86)

Moreover, (V/P,∼`) = {b⊕C P : b ∈ P⊥} and (V/P,∼r) = {P⊕C b : b ∈ P⊥}.

Theorem 33. Let P be a linear subspace of V. Then the following are gyrogroup isomorphisms:

(V/P,∼`) ∼= (P⊥,⊕C) ∼= (V/P,∼r).

Finally, when t → +∞, ⊕C reduces to ordinary vector addition of V. Surprisingly, P`
C and Pr

C
reduce again to the ordinary projectionP(u+ v) = u, andQ`

C andQr
C reduce to the ordinary projection

Q(u + v) = v. Further, the equivalence relation (29) reflects the left coset relation in (V,+):

u ∼` v if and only if − v + u ∈ P

and the equivalence relation (31) reflects the right coset relation in (V,+):

u ∼r v if and only if u− v ∈ P.

Let us now find µ1(u, v) and µ2(u, v) for Chen’s gyrogroup, according to Theorem 6.

Theorem 34. Let u, v ∈ (V,⊕C) such that u · v = 0. Then

u⊕C v = µ1(u, v)v ⊕C µ2(u, v)u, (87)
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where

µ1(u, v) =
1

√
2‖v‖
t

√√√√√√1 + 2
t2

(
‖u‖2 + ‖v‖2 + 2 ‖u‖

2 ‖v‖2

t2

)
√

1 + 4
β2

u

‖u‖2

t2

(
1 + 2‖v‖2

t2

)2
− 1,

µ2(u, v) =
1

√
2‖u‖

t

√√√√√1 +
4

β2
u

‖u‖2

t2

(
1 +

2‖v‖2

t2

)
− 1.

(88)

The proof follows by straightforward computations using (27), (82), and (84).
In Figure 10 we show the plots of µ1(u, v)‖v‖ and µ2(v, u)‖v‖ for Chen’s gyrogroup.

(a) (b)

Figure 10. (a) Plot of µ1(u, v)‖v‖ with t = 1 and ‖u‖, ‖v‖ ∈ [0, 10]; (b) plot of µ2(v, u)‖v‖ with t = 1
and ‖u‖, ‖v‖ ∈ [0, 10], for Chen’s gyrogroup.

Since lim‖v‖→+∞ µ1(u, v)‖v‖ =
t
2

√
t2+2‖u‖2

‖u‖
√

t2+‖u‖2 − 2 then for all u ∈ P\{0} we have that

µ1(u, v)‖v‖ ∈
[
0,

t
2

√
t2+2‖u‖2

‖u‖
√

t2+‖u‖2
− 2
[
( [0,+∞[, for all v ∈ P⊥. This implies that τ

(2)
u is only a

local section for the fiber bundles π1 and π3 defined in (38). In the case when u = 0 the section τ
(2)
0 is

a global section as seen in (41).
Regarding µ2(v, u)‖v‖ we have that for each u ∈ P it is a strictly increasing function in the

variable ‖v‖ such that µ2(0, u)‖0‖ = 0 and lim‖v‖→+∞ µ2(v, u)‖v‖ = +∞. Therefore, we conclude

that {µ2(v, u)v : v ∈ P⊥} = P⊥. Hence, for any u ∈ P, it follows that τ
(4)
u is a global section for the

fiber bundles π2 and π4 defined in (38).
In the case of Chen’s gyrogroup we have the same duality relations as in Theorem 30. To visualize

the left and right cosets in this case we consider V the 3-dimensional space R3 and we show in
Figures 11 and 12 the cosets obtained from the orthogonal decompositions of the gyrogroup (R3,⊕C)

by the subgyrogroups Le3 and De3 .
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(a) (b)

(c) (d)

Figure 11. (a) Left cosets (R3/De3 ,∼`) = {u⊕C De3 , u ∈ Le3}; (b) gyrolines in the Chen’s gyrovector
plane (projection in the xz-plane of left cosets); (c) right cosets (R3/De3 ,∼r) = {De3 ⊕C u, u ∈ Le3};
(d) cogyrolines in the Chen’s gyrovector plane (projection in the xz-plane of right cosets).

(a) (b)

(c) (d)

Figure 12. (a) Left cosets (R3/Le3 ,∼`) = {v⊕C Le3 , v ∈ De3}; (b) gyrolines in the Chen’s gyrovector
plane (projection in the xz-plane of left cosets); (c) right cosets (R3/Le3 ,∼r) = {Le3 ⊕C v, v ∈ De3};
(d) cogyrolines in the Chen’s gyrovector plane (projection in the xz-plane of right cosets).

5. Conclusions

We generalized the study of factorization of Möbius gyrogroups to that of real inner product
gyrogroups and proved the Unique Decomposition Theorem. This is the main theorem that leads
to other remarkable results proved in this work. It resembles the standard theorem in linear
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algebra that every inner product space has an orthogonal direct sum decomposition associated to its
finite-dimensional subspace. Because of the nonassociativity and the noncommutativity, we defined
suitable equivalence relations on real inner product gyrogroups. With the equivalence relations we
could partition a real inner product gyrogroup into left and right coset spaces. The four gyrogroups
studied to confirm the general theory allow explicit calculations of the gyroprojectors and the left
and right cosets. There are several possible applications of our results. We mention, for example,
the construction of orthogonal gyroexpansions with respect to an orthogonal basis in a real inner
product gyrogroup, or the construction of integral transforms such as the wavelet transform on some
manifolds, such as the sphere, the ball, or the hyperboloid (cf. [6,14]). Finally, it would be interesting
to generalize these results to complex gyrogroups and to the novel bi-gyrogroups (see [15]), that give
a parametrization of generalized Lorentz groups SO(m, n), m, n ∈ N, in pseudo-Euclidean spaces of
signature (m, n).
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Abbreviations

The following abbreviations are used in this manuscript:

Symbol Description
Aut G automorphism group of G
βu beta factor
⊕C Chen’s addition
� coaddition
Lc cogyroline
� cosubtraction
⊕E Einstein addition
[b]` equivalence class containing b determined by the relation ∼`

[b]r equivalence class containing b determined by the relation ∼r

∼` equivalence relation defined from the left orthogonal gyroprojector Q`

∼r equivalence relation defined from the right orthogonal gyroprojector Qr

gyr [a, b] gyroautomorphism generated by a and b
⊕ gyrogroup addition
	 gyrogroup subtraction
Lg gyroline
· inner product in an arbitrary inner product space
〈·, ·〉 inner product in Rn

π` left canonical projection
a⊕ PG left coset of PG with representative a
(G/PG,∼`) left coset space of G
La left gyrotranslation
P` left orthogonal gyroprojector associated with PG ⊕ P⊥G
Q` left orthogonal gyroprojector associated with P⊥G ⊕ PG
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γu Lorentz factor
⊕M Möbius addition
Rn n-dimensional Euclidean space
‖ · ‖ norm of a vector
Bt open ball in Rn of radius t
B open unit ball in Rn

B3 open unit ball in R3

P⊥ orthogonal complement in a vector space
De3 plane that passes through the origin and is perpendicular to the North Pole
⊕U PV addition
πr right canonical projection
PG ⊕ a right coset of PG with representative a
(G/PG,∼r) right coset space of G
Pr right orthogonal gyroprojector associated with P⊥G ⊕ PG
Qr right orthogonal gyroprojector associated with PG ⊕ P⊥G
⊗ scalar multiplication in a gyrovector space
Le3 straight line that passes through the origin and the North Pole
⊕Et t-Einstein addition
⊕Mt t-Möbius addition
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