Departamento de Eletronica,
Universidade de Aveiro Telecomunicacgdes e Informatica

2019

Miguel Angelo Funcoes Virtuais em Redes Veiculares Multihomed

Pereira da Silva]] .]]
Virtual Functions in Multihomed Vehicular

Networks

Departamento de Eletronica,
& Universidade de Aveiro Telecomunicacgdes e Informatica
2019

Miguel Angelo Funcoes Virtuais em Redes Veiculares Multihomed

Pereira da Silva]] . i]
Virtual Functions in Multihomed Vehicular

Networks

Dissertagdo apresentada a Universidade de Aveiro para cumprimento dos
requisitos necessarios a obtencao do grau de Mestre em Engenharia de Com-
putadores e Telematica, realizada sob a orientacao cientifica do Doutor Nuno
Miguel Abreu Luis, Investigador Auxiliar do Instituto de Telecomunicagdes de
Aveiro, e da Doutora Susana Isabel Barreto de Miranda Sargento, Professora
Catedratica do Departamento de Eletronica, Telecomunicages e Informatica
da Universidade de Aveiro.

o juri / the jury

presidente / president

vogais / examiners committee

Professsor Doutor Anténio José Ribeiro Neves
Professor Auxiliar do Departamento de Eletrénica, Telecomunicagdes e Informatica da Universi-
dade de Aveiro

Professora Doutora Ana Cristina Costa Aguiar
Professora Auxiliar do Departamento de Engenharia Eletrotécnica e de Computadores da Facul-

dade de Engenharia da Universidade do Porto

Doutor Nuno Miguel Abreu Luis
Investigador Auxiliar do Instituto de Telecomunicagdes de Aveiro (orientador)

agradecimentos /
acknowledgements

Em primeiro lugar gostaria de agradecer aos meus pais pela oportunidade
gue me deram de continuar os meus estudos. Gostaria também de agradecer
a professora Susana Sargento por me ter dado a oportunidade de fazer parte
do NAP. Gostaria também de agradecer ao Instituto de Telecomunicacdes
pelo acolhimento no decorrer deste trabalho. Agradeco também a todos os
colegas do NAP que sempre estiveram dispostos a prestar a sua ajuda e a
partilhar os seus conhecimentos. Quero agradecer também ao Doutor Miguel
Luis e a professora Susana Sargento pela orientacao e toda a ajuda prestada
durante o desenvolvimento desta dissertacao.

Palavras Chave

Resumo

Redes Veiculares Multihomed, Virtualizagdo de Fungdes de Rede, Gestao e
Orquestracao, Mobilidade, N-PMIPv6

Nas redes veiculares atuais, o nimero de servigos e aplicagées que estao a
ser usados pelos veiculos e seus ocupantes esta a aumentar. Atualmente,
a maioria dos servigos e aplicagdes estao localizados fora da Rede Veicular
0 que pode implicar um atraso adicional em servigcos que sdo sensiveis ao
atraso (e.g. seguranga nas estradas). Para além disso, estas aplicagbes e
servigos tornam-se inacessiveis sempre que a Rede Veicular perde contacto
com a infraestrutura.

Esta dissertacdo apresenta uma solugao pratica que visa minimizar o impacto
destes problemas. A solugdo concentra-se no uso de tecnologias de Net-
work Function Virtualization (NFV) para suportar o langamento de servigos
na extremidade de uma Rede Veicular com mobilidade e suporte para mul-
tihoming, permitindo assim que certos servigos estejam acessiveis em situ-
acbes de conectividade intermitente, assim como garantir menores atrasos
para servicos criticos. Estes servigos sdo compostos por Fungdes Virtuais
leves que sao lancadas na extremidade da Rede Veicular, o0 mais préximo
possivel dos utilizadores.

Para avaliar o desempenho da solugéo proposta foram desenvolvidos varios
cendrios de teste assim como casos de uso. Os resultados obtidos mostram
gue a solucao é capaz de langar servigos na extremidade de uma Rede Ve-
icular com baixos atrasos e com recuperagdo em situagées de handover e
mobilidade. Os casos de uso desenvolvidos mostram que, por exemplo, para
um servico que abrange apenas um veiculo, caso o veiculo perca ligagdo com
a infraestrutura, quer o funcionamento quer a utilizagdo do servigo ndo séo
afetados. Os casos de uso mostram também que, servigos langados usando
a solugdo, apresentam menores valores de atraso quando comparados com
0S mesmos servicos quando estes estao disponiveis na cloud.

Keywords

Abstract

Multihomed Vehicular Networks, Network Functions Virtualization, Manage-
ment and Orchestration, Mobility, N-PMIPv6

In the current Vehicular Ad-hoc Networks (VANETS), the number of services
and applications being used by the vehicles and its occupants is increasing.
Nowadays, the majority of the services and applications are located outside
the vehicular network which may imply an additional delay in services that are
delay sensitive (e.g. road safety). In addition to that, these applications and
services become inaccessible whenever the vehicular network loses contact
with the infrastructure.

This dissertation presents a practical solution that aims to minimize the impact
of these problems. The solution focuses on using Network Function Virtual-
ization (NFV) technologies to support the deployment of services at the edge
of a mobility-enabled multihomed VANET, thus allowing certain services to be
accessible in intermittent connectivity situations, as well as ensuring lower de-
lays for critical services. These services are made up of lightweight Virtual
Functions (VxFs) that are deployed at the edge of the VANET, as close as
possible to the users.

To evaluate the performance of the proposed solution several test scenarios,
as well as use cases were developed. The results obtained show that the
solution is capable of deploying services at the edge of the VANET with low
delay and with recovery when in handover and mobility situations. The uses
cases developed show that, for example, for a service which encompasses
a single vehicle, if the vehicle loses connection with the infrastructure, both
the operation and usage of the service are not affected. The use cases also
show that, services deployed using the solution have lower delay values when
compared with the same services when they are available in the cloud.

Contents

List of Figures

List of Tables

Acronyms

1

Introduction

1.1 Objectives

1.2 Contributions

1.3 Document structure

State of the Art
2.1 Vehicular Networks

211 Features.

2.1.2 Applications

2.1.3 Challenges

2.1.4 Architecture

2.2 Mobility Protocols

2.2.1 Mobile Internet Protocol version 6 (MIPv6)
222 Proxy Mobile Internet Protocol version 6 (PMIPv6)
2.23 Network Mobility (NEMO)
2.2.4 Network PMIPv6 (N-PMIPv6)
23 Multthoming
2.3.1 Stream Control Transmission Protocol (SCTP)
2.3.2 Site Multihoming by IPv6 Intermediation (SHIMG)
2.3.3 Proxy multihoming as PMIPvG6 extension
2.4 Network Function Virtualization (NFV)
2.4.1 NFV Management and Orchestration (MANO)

Contents

iii

vii

L NN e

O 0 NN N & uroa

............................. 11

242 NFEVsolutions v oo vttt e e e e e

25 Related Work oL
2.6 SUMMAIY. . . . o o e
3 Proposed Solution
3.1 SolutionDesign
3.1.1 Base Vehicular ad-hoc Network (VANET) Architecture
312 MANOSystemo
3.1.3 On-Boarded Hardware,
3.1.4 OverlayNetworks
3.2 Solution Implementation
3.21 Connectivity between MANO System and On-boarded Hardware
3.2.2 Deployment of the Overlay Networks
3.2.3 MANO System’s installation and configuration
33 Summary.
4 Evaluation
41 Testbed oo e
42 NFVsolution behaviour
421 Testscenariol
422 Testscenario 2 oo e e e e e e e e e
423 Testscenario3 e e e
424 DIsCuSSIONo e e
43 Use Cases . . v v v vt i e e e e
4.3.1 Use Case 1: Safety service in a single compute node
4.3.2 Use Case 2: Safety service in multiple compute nodes
44 DISCUSSION .+« v v v vt e e e e e e e e e e e e e

5 Conclusions and Future Work

5.1 Conclusions vt i e e e
5.2 Future Work . . . o o o e e
Bibliography

i1

25
25
26
28
28
29
30
30
32
36
38

39
39
40
40
41
42
43
44
44
46
49

51
51
52

53

21
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

3.4
3.5

41
4.2
43
4.4
45

4.6

List of Figures

PMIPVG6 protocol overview.o 10
NEMO protocol Operation OVEIVIEW v v v v v v v vttt e e e e e e 12
Multihoming framework overview L 15
NFV architectural framework 16
NEFV-MANO architectural framework 17
OpenBaton architectural framework. Lo 20
OSM Mapping to ETSINFVMANO o o o o 21
Overview of the proposed solution’s architecture. 26
Simple representation of the N-PMIPv6 based VANET. 27
Representation of the configuration process to enable connectivity between the MANO System

and the On-boarded Hardware. 32
Virtual Networks setup on the RPis (compute nodes). 34
VXLAN protocol overhead in the context of overlay networks. 35
NetRider v3. e 39
Overview of the safety serviceusedinUse Case 1. 45
Use case 1: Latency results for local vscloud VxF..o oo o000 46
Overview of the safety service used in Use Case 2 (multiple compute nodes). 47

Use case 2: showcase of the service’s communication given the disconnection of vehicle B from
the infrastructure. o e e e e e e e e e 49

Use case 2: Latency results for local vscloud VxF..o oo o000 49

il

4.1
4.2

4.3

4.4

4.5

List of Tables

Main specifications and characteristics of the equipment. o0 0L 40
Compute node queue connection status for different values of OBU loss of connection to the
INfrastruCture. o ot e e e e 41
Possible communication by a VXF to the outside of the compute node in the event of loss of
connection to the infrastructure. e 41
Possible communications between VxFs that make up a NS in the event of compute node’s loss
of connection to the infrastructure. e 42
Overview of the possible outcomes when loss of connection happens during several critical

stepsof thesolution. L 43

VANET Vehicular ad-hoc Network
MANET Mobile ad-hoc Network

AU Application Unit

C-V2X Cellular vehicle-to-everything
NFV Network Function Virtualization
NS Network Service

VNF Virtual Network Function

VxF Virtual Function

OBU On-Board Unit

RSU Road Side Unit

LMA Local Mobiliy Anchor

IaaS Infrastructure-as-a-Service
NFVI NFV Infrastructure

WAVE Wireless Access in Vehicular Environments -
IEEE 802.11p

WiFi IEEE 802.11 a/g/n

V2V Vehicle-to-Vehicle

V21 Vehicle-to-Infrastructure

GPS Global Positioning System

NAP Network Architectures and Protocols
P Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MTU Maximum Transmission Unit

QoS Quality-of-Service

MIPv6 Mobile Internet Protocol version 6
MIP Mobile Internet Protocol

NEMO Network Mobility

MN Mobile Node

HA Home Agent

FA Foreign Agent

PMIPv6 Proxy Mobile Internet Protocol version 6
MAG Mobile Access Gateway

RS Router Solicitation

RA Router Advertisement

Acronyms

PBU Proxy Binding Update

PBA Proxy Binding Acknowledgement
BCE Binding Cache Entry

MR Mobile Router

MNP Mobile Network Prefix

MNN Mobile Network Node

AR Access Router

CoA Care-of-Address

BU Binding Update

BA Binding Acknowledgement

CN Correspondent Node

FN Foreign Network

N-PMIPv6 Network PMIPv6

mMAG mobile MAG

SCTP Stream Control Transmission Protocol
TCP Transmission Control Protocol

UDP User Datagram Protocol

SHIM6 Site Multihoming by IPv6 Intermediation
UCE User Cache Entry

TM Terminal Manager

MAC Media Access Control

FM Flow Manager

IM Information Manager

FCE Flow Cache Entry

NIS Network Information Server

UIS User Information Server

RSSI Received Signal Strength Indicator
PoA Point of Attachment

NSP Network Service Provider

VIM Virtualized Infrastructure Manager
OPEX Operational Expenditure

CAPEX Capital Expenditure

VM Virtual Machine

ETSI European Telecommunications Standards Institute
ISG Industry Specification Group
OSS/BSS Operations and Business Support System
OSS Operation Support System

Vil

BSS Business Support System SenaaS Sensor-as-a-Service

MANO NFV Management and Orchestration IOS Intelligent Onboard System
VNEM Virtual Network Function (VNF) Manager SUAV Small Unmanned Aerial Vehicle
NFVO NFV Orchestrator VoIP Voice over Internet Protocol
EM Element Management RPi Raspberry Pi
FCAPS Fault, Configuration, Accounting, Performance LXC Linux Containers
and Security management VLAN Virtual LAN
VNFD VNF Descriptor VXLAN Virtual Extensible LAN
NSD Network Service (NS) Descriptor VNI VXLAN Network Identifier
OSM Open Source MANO VTEP VXLAN Tunnel Endpoint
OS Openstack IANA Internet Assigned Numbers Authority
VCA VNF Configuration & Abstraction PMTUD Path MTU Discovery
RO Resource Orchestrator NTP Network Time Protocol
NSO Network Service Orchestrator AP Access Point
VC Vehicular Cloud SBC Single-board Computer
VuC Vehicles using Clouds AMQP Advanced Message Queuing Protocol
HVC Hybrid Vehicular Clouds DHCP Dynamic Host Configuration Protocol

viii

CHAPTER

Introduction

Nowadays, providing a good Internet connection and access to various types of services
everywhere is becoming a requirement to fulfill: this is true even when inside our own vehicles.
VANETS: are seen as one of the key enablers for the always connected paradigm, providing useful
communications among vehicles, and between vehicles and the infrastructure. Besides providing
access to the Internet, vehicular communications can be used for information sharing, which may
include vehicle’s location, rest areas, fuel stations, etc., or even more important to share important
information to be used for the detection of road congestion, dangerous road conditions or even
car accidents [1].

With the 5t" generation of mobile networks gaining ground, which will include beyond the
5G New Radio and Cellular vehicle-to-everything (C-V2X) technology for vehicular commu-
nications, resource sharing and the use of softwarized networks, replacing hardware network
functions through software functions, are becoming increasingly popular. This is where the
concept of Network Function Virtualization (NFV) comes into play, a technology capable of
decoupling software from hardware, enabling flexibility, programmability and extensibility to the
network [2], [3]. Through NFV, the network functions are available in the cloud, and pushed into
the edge of the network through the connection to the cloud. However, due to the intermittent
connectivity of VANETS, the provisioning of softwarized network functions in the network
nodes, such as the On-Board Units (OBUs) in vehicles, is not straightforward.

In a typical vehicular network scenario, most of the communications that originate from the
vehicles are performed with services or applications located outside the vehicular network (i.e. on
the Internet). This happens mostly due to the types of applications and services that are used by the
vehicles” occupants, such as entertainment applications, but also due to hardware limitations and
network configurations when it comes to more useful services in a vehicular scenario, such as safety
applications. The solution that is used nowadays is to host virtualized versions of all the network
functions, that make up the services which are used by the network and its end-users, in the cloud.
This way, the VANET’s users can use the services whenever they are needed. Nevertheless, this

solution is not the best when it comes to certain types of services, such as services with delay

sensitive requirements and capabilities. Something that is also problematic in a solution like this
one is, given the fact that VANETS have a very dynamic network topology, handovers and loss of
connection are to be expected, meaning that the access to all types of services would be dependent
on the connection between the vehicles and the VANET.

Having all that in mind, the main objective of this dissertation is to develop a practical solution
which uses NFV technologies to support the deployment of lightweight Virtual Functions (VxFs)
at the edge of a vehicular network. These VxFs are typically deployed as Network Services (NSs),
which are groups of VxFs working together to provide a complex service. This work focuses
on allowing the deployment of VxFs as close as possible to the end-users. Several solutions have
explored various types of integration of cloud computing into the scope of a VANET. Most of
them are focused on the concept of Vehicular Cloud (VC), where the VANET infrastructure itself
is part of the cloud [4], or on the concept of Infrastructure-as-a-Service (IaaS) in a VANET, where
the vehicles’ resources can be used to provide different types of services [5].

The solution developed in this dissertation brings some of the cloud characteristics to the edge
of a multihomed VANET with mobility support, while at the same time making use of the IaaS
concept. By extending the NFV Infrastructure (NFVI) up to the edge of a vehicular network
with mobility and multihoming support, it is possible to explore the use of additional computing,

networking and storage resources closer to the end user.

1.1 Objectives

The main goal of this dissertation is to create a solution that aims to allow users to access
specific services even when the vehicles are not connected to the VANET, as well as reduce the
delay between the services and the user by bringing lightweight VxFs closer to the user, with the
help of general purpose hardware platforms deployed at the edge of the network. The following

list denotes the main objectives of this dissertation:

* Study the evolution of mobility and multihoming protocols’ architectures and implementa-
tions, with a specific focus on the currently used protocols;

* Study and understand how NFV technologies work;

* Study how to implement and deploy NFV technologies using open-source software;

* Design and implement a NFV solution that enables the deployment of lightweight VxFs at
the edge of a VANET;

* Evaluate the behaviour of the implemented NFV solution presented in this dissertation given
the unpredictable network conditions of a VANET;

* Design and evaluate Use Cases that demonstrate the capabilities of the solution.

1.2 Contributions

The main contributions of the work accomplished in this dissertation are:

* Creation of a solution capable of allowing the deployment of lightweight VxFs at the edge
of a VANET, by using open hardware platforms with virtualization capabilities which,
alongside OBU, are present inside the vehicles;

* The ability to allow the operation and usage of specific services even in intermittent con-
nectivity situations with the infrastructure, by having such services deployed at the edge of
the VANET, on the vehicles themselves;

* The capability of allowing lower delays for critical services, such as in the case of road safety
services;

* The ability to use different hardware platforms as the solution’s on-boarded hardware, as

long as it is compatibility with the solution’s required software.

1.3 Document structure

This dissertation is organized into the following chapters:

* Chapter 2 - State of the Art: this chapter describes the current state of the art of Vehicular
Networks, the mobility protocols used in such networks, the concepts of multihoming as
well as Network Function Virtualization (NFV) and its usage;

* Chapter 3 - Proposed Solution: this chapter presents the proposed solution, explains its
design, how it was implemented, and also all the technical challenges that arose while
integrating the NFV concept on a Vehicular Network;

* Chapter 4 - Evaluation: this chapter presents the evaluation scenarios and uses cases that
were developed in order to evaluate the proposed solution, as well as the obtained results
and their discussion;

* Chapter 5 - Conclusions and Future Work: this chapter presents the conclusions of the

work done and proposes possible goals and improvements for future work.

CHAPTER

State of the Art

This chapter covers the fundamental concepts required to understand the work done in this

dissertation. Given the fact that this dissertation is based upon both Vehicular ad-hoc Network

(VANET) and Network Function Virtualization (NFV) concepts its important to understand
all the research already done, specially in the field of VANETS, mobility and NFV. The topics

mentioned will be covered and organized as follows:

2.1

Section 2.1 - Vehicular Networks: this section presents the main concepts of a VANET,
its features, challenges, possible applications and typical architecture.

Section 2.2 - Mobility Protocols: this section presents the main mobility protocols that
exist, focusing on explaining how they operate and where they meet or fail to overcome
the requirements of a VANET.

Section 2.3 - Multihoming: this section presents some of the multihoming protocols
that exist alongside their features and shortcomings. This section will focus more on the
multihoming solution that was implemented in the VANET used in this dissertation.
Section 2.4 - Network Functions Virtualization: this section presents an introduction to
the concept of NFV, a general overview of the NFV architecture and its main components,
as well as some of the practical NFV solutions that exist.

Section 2.5 - Related Work: this section describes the related work on the field of cloud
computing and NFV solutions focusing mainly on VANET environments.

Section 2.6 - Summary: this section presents a short summary of the concepts tackled in

the present chapter.

Vehicular Networks

VANET: are a subclass of the Mobile ad-hoc Networks (MANETS), which are a promising

approach for future intelligent transportation systems. These types of networks are formed by

vehicles and fixed stations placed in specific locations. In order for vehicles to be a part of the

network, they must carry an OBU, an entity responsible for connecting the vehicle’s occupants

to the Internet via an Intra-Vehicle network, as well as, connecting to other vehicles on the
network. The fixed stations are called Road Side Units (RSUs), and as the name implies, they
are situated alongside roads and enable the communication between other RSUs and OBUs.
Given these entities, the VANET supports two main types of communications, Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I), the former being supported by the OBUs where they
communicate between each other, while the latter being supported by the RSUs that enable
communications between OBUs and RSUs (the infrastructure).

2.1.1 Features
VANET: bring a set of features, some of them being quite unique, such as [1]:

* Predicted mobility Vehicles are constrained by the road topology and layout, as well as,
the requirement to obey trafhic laws. If we combine this with the fact that the vehicles can be
equipped with Global Positioning System (GPS) technology, it makes it so that it is possible
to predict how the vehicle will move and to which locations;

* No power constraints Given the fact that an OBU sits inside a vehicle, it can be powered
by the vehicle itself, which means that as long as the vehicle has power, the OBU should
have as well. This makes it possible to support OBUs with more processing capabilities and
power requirements;

* Dynamic network topology Since vehicles can move at varying levels of speed, as in a
very slow when in a traffic jam or very fast when on a free highway, makes it so that the
network topology reacts differently. When moving slow, fewer changes to the network
topology are to be expected; the opposite is also true when the vehicle is moving fast;

* Large Scale Network If we think of a VANET in an urban setting, it is easy to see that the

network can become quite large, given the amount of vehicles that drive in the cities.

2.1.2 Applications

VANETS can provide various types of applications as seen in [1], [6], [7]. These applications

can be grouped in safety-related, traffic management and comfort (commercial) applications:

* Safety Applications Given the types of communications that VANETSs provide, it is easy
to send messages to other vehicles or to the infrastructure itself allowing for the creation
and use of safety applications that work to improve road safety and avoid accidents;

* Optimization of Traffic Management Given the information that a VANET can provide,
such as a vehicles’ current location, it is possible to better manage how the vehicles navigate
in the cities. Some examples of this could be to suggest alternative routes to vehicles in cases
of trafhic jams or to provide itineraries to points of interest;

* End-user applications These types of applications provide users with useful information
such as weather, state of the traffic and, for example, the nearest points of interest in the city;
the VANET also allows end-users to access the Internet. These types of applications aim to
improve drivers and passengers comfort levels. This is all possible due to the connectivity
that VANETS provide.

2.1.3 Challenges

Even though VANETS present numerous features and possible applications, several challenges

still arise given their nature. Some of these challenges are [1]:

* Privacy and Security Given the technologies used in VANETS, keeping the network’s
traffic private and secure becomes a hard task. This is mainly due to the Wireless Access
in Vehicular Environments - IEEE 802.11p (WAVE) technology being used, which has a
broadcast nature and does not use authentication, thus allowing for all of the network’s
trafhic to be captured by nodes not in the network;

* Signal fading and degradation As before, given the nature of the technologies used in
VANETS and given the fact that VANETS are mainly present in urban environments, which
often have obstacles between communicating nodes, leads to signal degradation which in
turn makes it so that the quality of the wireless communications decreases;

* Network Fragmentation Given the high mobility of the nodes that make up the VANET
rapid changes of the network’s topology can happen, this can lead to network fragmentation.

2.1.4 Architecture
A typical VANET architecture is comprised of several main components. These are [1]:

* Road Side Units (RSUs) are the fixed entities that sit at strategic locations allowing the estab-
lishment of communications between RSUs and OBUs, therefore enabling the connection
between the OBUs and the remaining infrastructure. These entities communicate with the
OBUs using different types of technologies such as WAVE, IEEE 802.11 a/g/n (WiFi) or
cellular. In the VANET used in this dissertation, the RSUs mainly use WAVE and WiFi
technologies;

* On-Board Units (OBUs) are the entities that sit inside the vehicles. These entities have
communication and processing capabilities, and are responsible for providing the vehicles’
occupants Internet access via an intra-vehicle network. This entity communicates with
the remaining VANET” infrastructure by connecting itself to RSUs using different types of
technologies such as WAVE, WiFi or Cellular. In the VANET used in this dissertation, the
OBUs mainly use WAVE and WiFi technologies to connect themselves to the VANET;

* Application Units (AUs) are the equipment present inside a vehicle; they can be a dedicated
equipment by providing a specific application or service, or be a normal user equipment
such as a laptop. The AUs connect themselves to the network exclusively via the OBUs

either by a wired or wireless connection.

2.2 Mobility Protocols

To support the deployment of a VANET, given the previously presented features and challenges,
a mobility protocol is required. The mobility protocol must be able to support the constant

network topology changes, and thus be able to support the movement of connected users and

their connections and sessions on the network by keeping track of them. A more extensive list of

the mobility protocol’s requirements is shown next:

* Seamless mobility As noted before, for the end users, the mobility protocol should be
transparent, that is, if the vehicle changes its point of access to the network, their connections
should be kept with the same quality;

* Multi-hop Support Given that RSUs are stationary entities, their range is limited, meaning
that OBUs that are not in range cannot connect to the network. A solution to this would
be for OBUs that are connected to RSUs to provide connectivity to other OBUs that are
not in range of an RSU;

* Internet Protocol version 6 (IPv6) support The mobility protocol should be based upon
IPv6 has it can support a larger number of nodes, something that is common when talking
about a VANET, given that its address space is larger when in comparison with that of
Internet Protocol version 4 (IPv4). Moreover IPv6 presents more features namely better
security and Quality-of-Service (QoS);

* Multihoming support The mobility protocol must support multihoming in order to use
all available connections at the time to improve network connectivity and performance;

* Ease of use A end-user sitting on a vehicle should not have to worry about how to connect
to the network or keep himself connected;

* Efficient handovers Given the fact that in a VANET the vehicles can be constantly moving,
a high number of handovers is something to be expected, so the mobility protocol should

be able to perform them as fast as possible, in an efhicient manner.

Another thing to note is that, even though mobility protocols can be seen as centralized,
distributed or even hybrid, this section focuses on the centralized protocols, since the protocol
used in this dissertation is of this type. In the next subsections, a brief history on the main mobility
protocols, their features and shortcomings will be presented. The last subsection will be dedicated
to the protocol that was used as the basis of the protocol implemented in the VANET used in this

dissertation.

2.2.1 Mobile Internet Protocol version 6 (MIPv6)

The MIPv6 [8] comes as an improvement over its IPv4 version, the Mobile Internet Protocol
(MIP) [9]. MIPV6 is based on IPv6 and, for that reason, it takes advantage of its features.
To ensure the mobility for which the protocol was created, the following three functional

entities must be present:

* Mobile Node (MN) This entity is the node that moves throughout the network while
keeping its communications;

* Home Agent (HA) This entity is where the MN registers its CoA when changing net-
works. While the MN is not in his home network, the HA intercepts trafhic destined for the
MN'’s home address and tunnels them to the MN registered CoA;

* Foreign Agent (FA) This entity is responsible for keeping the MN’s HA updated in regards
to the MN’s current CoA.

The following terminology is also important to understand how the protocol works:

* Care-of-Address (CoA) is the address given to the MN while it is visiting a Foreign
Network (FN);

* Binding Update (BU) is the message sent to the HA by the MNs in order to inform the
HA of their new CoAs.

Having had a look at the protocol’s entities and important terminology, it is possible to give

an overview of how the protocol operates:

1. When a MN moves to a FN, it sends a BU to its HA with the new CoA it got from joining
the FN. Upon receiving the BU, the HA stores the MN’s new CoA and creates its end of a
bi-directional IPv6 tunnel between itself and the MIN;

2. On the other hand, the MN creates its end of the IPv6 tunnel between itself and his HA.
With the tunnel set up, traffic that arrives at the HA which is destined to the MN is routed

via the tunnel.

Given the presented overview of the protocol, it is possible to conclude that this protocol is
not suitable for a VANET. This protocol provides terminal mobility but does not handle network
mobility, which is a crucial VANET requirement. Another set of problems present in this protocol
are the high latency values when performing handovers, the signaling overhead as well as packet
loss [10]. These aspects are not acceptable for a VANETS and its applications.

2.2.2 Proxy Mobile Internet Protocol version 6 (PMIPv6)

The PMIPv6 [11] came as an improvement to the MIPv6 protocol, the main improvement
being that now the MNs do not need to be involved in the exchange of signaling messages
between themselves and their HA. In order to present an overview of the protocol, it is important
to mention its new entities and most important terminology. Figure 2.1 shows an overview of the
PMIPv6 network architecture.

This protocol improves on the previous iteration by adding the following two entities:

* Local Mobiliy Anchor (LMA) This entity provides the same functional capabilities of
the HA present in MIPv6 while, at the same time, supporting new capabilities such as the
management of the MNs’ binding states as well as the routing process;

* Mobile Access Gateway (MAG) This entity provides connectivity to the MNs (it acts as
an RSU as explained in 2.1.4), and is responsible for tracking the MNs” movements and for
informing the LMA about the MNs’ mobility related aspects.

The following terminology is also important to understand how the protocol works:

* Binding Cache Entry (BCE) is a cache entry that keeps information about the MNs
connected to the network;

* Proxy Binding Update (PBU) is a message that is sent by a MAG to the LMA with the
intention of informing the LMA about a MN binding intention;

* Proxy Binding Acknowledgement (PBA) is a message that is sent by the LMA to the
MAG in response to a PBU message.

MAG 1

Network 1

MAG 2
Network 2

Figure 2.1: PMIPv6 protocol overview.

Having had a look at the protocol’s new entities and important terminologys, it is possible to

give an overview of how the protocol operates:

1. When a MN moves into the range of a new MAG, it sends a Router Solicitation (RS)
message to the MAG in order to initiate the connection process; upon receiving a RS from
the MN, the MAG starts its binding process.

2. The MAG sends a PBU to the LMA: if the LMA accepts the PBU, it creates a new BCE
for the MN, it creates a bi-directional IPv6 tunnel between itself and the MAG, and finally
it sends a PBA to the MAG.

3. When the MAG receives the PBA, it creates its end of the bi-directional IPv6 tunnel between
itself and the LMA and performs all the necessary configurations in order to connect the
MN to the network; the MAG also sends a Router Advertisement (RA) message to the MN
in order for it to configure its network interface.

4. When a MN disconnects from a MAG, the MAG will detect the disconnection and will
start the process of removing the binding state for that MN, and it will inform the LMA of
the MN’s disconnection. After a timeout, the LMA will remove the MN’s BCE. If the IPv6
tunnel that is created between the MAG and LMA is not being used by any other MNss, it

is also removed.

This protocol still does not meet all the requirements of a VANET, specifically the requirement
that the network moves alongside the MN. In this protocol the MNs are the only entities that
have mobility: they can move throughout the networks provided by the MAGs which are static.

10

2.2.3 Network Mobility (NEMO)

The NEMO [12] protocol came as an extension to MIPv6 in order to enable network mobility.
The NEMO protocol enables network mobility by allowing a network and its users to keep their
sessions, even when the network changes its point of access to the Internet. In order to present
an overview of the protocol, it is important to mention its new entities and most important
terminology.

This protocol introduces the two following entities:

* Mobile Router (MR) This entity is a router capable of changing its Point of Attachment
(PoA) to the Internet; it provides a network (the mobile network) allowing devices to
connect to it and it also serves as the device’s gateway to the Internet;

* Access Router (AR) This entity is responsible for serving the MR, e.g. give it Internet
access.

The following terminology is also important to understand how the protocol works:

* Mobile Network Node (MNN) is the name given to the devices connected to the mobile
network provided by the MR;

* Mobile Network Prefix (MNP) is the IPv6 prefix assigned to the MR’s mobile network;
all nodes present in the network have this prefix.

Having had a look at the protocol’s terminology and entities, it is possible to give an overview

of how the protocol operates based on Figure 2.2:

1. When a MR connects to a new AR, the AR replies back with a RA message that contains
the MR’s new Care-of-Address (CoA) and Mobile Network Prefix (MNP) to be used in its
mobile network. The MR then sends a Binding Update (BU) to its HA in order for it to
store its new CoA.

2. Upon receiving the MR’s CoA, the HA creates a new Binding Cache Entry (BCE) with
the MR’s CoA and MNP that makes it possible to redirect the traffic to the mobile network
via the MR’s CoA. The HA then creates a bi-directional IPv6 tunnel between itself and the
MR, just before sending a Binding Acknowledgement (BA) to the MR.

3. Upon receiving the BA, the MR creates its end of the bi-directional IPv6 tunnel between
itself and the HA. Once the tunnel is established, any MNN that wants to communicate
with a Correspondent Node (CN) will do that so using the tunnel; the same thing happens
when a CN wants to communicate with a MNN.

This protocol provides network mobility, a critical VANET requirement that was missing in
the previous protocols, but it still has its problems. One of those problems, shown in [13], is the
performance limitation of the protocol when it comes to scenarios which are highly dynamic,
as in the case of VANETS. Another problem, shown in [14], is the high latency values of the

handovers when the communication links experience instability.

11

o) o] (2% (w9 o

L MR attachment .,

RA (pref2008::/64)
Confiéure CohA |

BU (flags(R,H))

Create binding cache entry
(MR_CoA <--> MNP)

Tunnel
establishment
1 Set bidirectional tunnel] Bf* (flagiR), status(@)

IP-in-IP encapsulation
Forward through MR-HA tunnel

5:MR_CoA,D:HA[:MNN, D:CN)

Decapsulate packet
Forward towards CN

SIMNN, D:CN |
S5:CN, D:MNN
IP-in-IP encapsulation
Forward through HA-MR tunnel
S:HA,D:MR_CoA[S:CN, D:MNN]

Bidirectional tunnel in NEMO BS.

MNN1 CN1 . -+
cket Decapsulate packet
L3 LI fo:wardlngl | Forward toward MNN
S:CN, D:MNN

Figure 2.2: NEMO protocol operation overview (from [13]).

2.2.4 Network PMIPv6 (N-PMIPv6)

The N-PMIPVG is a protocol that builds upon the original PMIPv6 by extending it to support
network mobility, that is accomplished by following the approach presented by the NEMO
protocol. Given the fact that this protocol builds upon PMIPv6, the major entities are the same,

the only difference is the addition of a new entity:

* mobile MAG (mMAG) This entity merges the MAG present in PMIPv6 with the MR
present in NEMO. This entity is capable of providing a mobile network to MNs while
being able to change its PoA to the network.

Having introduced the new entity in this protocol, it is possible to give an overview of how

the protocol operates:

1. The mMAG operates the same way a MN does in PMIPv6. This means that, when a mMAG
moves into the range of a new MAG (or mMAG), it sends a RS message to that MAG (or
mMAG). Once the RS is received, it starts the binding process for the connecting mMAG.

2. The MAG (or mMAG) sends a PBU to the LMA with information on the connecting
mMAG. Upon receiving the PBU, the LMA checks the PBU message to see if the message
was sent from a MAG or a mMAG. It then creates a new BCE and assigns a new prefix to
the connecting mMAG. This prefix is then sent back to the mMAG via the PBA message.
The LMA then creates its end of a bi-directional IPv6 tunnel between itself and the MAG
(or mMAG).

3. Upon receiving the PBA, the MAG (or mMAG) creates its end of the bi-directional IPv6
tunnel and sends a RA to the connecting mMAG informing it of its new network prefix in
order for it to configure its network interface.

4. When a user wants to connect itself to the network, it does that via the mMAG. The

connection process for the user is the same process shown above.

12

This protocol is the most complete of the ones presented. It provides network mobility
alongside other important requirements of a VANET. This protocol allows end-users to connect
themselves directly to the network served by the mMAG without having to perform any specific
configurations. The fact that the mMAG aggregates various users under its network means that,
when it performs a handover, only the mMAG itself (as opposed to each of the users) needs to
communicate with the LMA regarding the network’s movement. This means that the latency of

the handover process is greatly reduced.

2.3 Multihoming

Ina VANET environment, the nodes have at their disposal various types of wireless technologies
to choose from when connecting to the network, but they only connect themselves via one of
those technologies, making it so that the other options are not being taken advantage of. An
obvious solution to this problem would be to find a way to use all of the available connections.

By incorporating multihoming in a VANET environment, it is possible to make use of all avail-
able network access technologies simultaneously in order to provide better network performance,
reliability and load sharing [15], [16].

In the next subsections, a brief overview of some of the multihoming protocols alongside
their features and shortcomings will be presented. The last subsection will be dedicated to the
multihoming protocol that was developed by the Network Architectures and Protocols (NAP) !
research group and is present in the VANET used in this dissertation.

2.3.1 Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP), much like the Transmission Control
Protocol (TCP), is a connection-oriented protocol that provides message-oriented data transfers
like the User Datagram Protocol (UDP), that operates in the transport layer. One of the more
important features of SCTP is the multihoming support. At the beginning of a SCTP connection
both the endpoints exchange all the possible paths through which they can communicate with each
other, but this does not mean that all the paths will be used in the communication process. SCTP
uses one of those paths as the primary path, while the others stay as backups. This means that the
multihoming is used as a backup mechanism in this protocol. If we think of the multihoming
needs of a VANET, this protocol does not provide a proper solution.

2.3.2 Site Multihoming by IPv6 Intermediation (SHIMS6)

SHIMG [17], [18] is a protocol that enables IPv6 multihoming, allowing multihomed hosts
to make use of all the available paths to reach the network. The protocol was designed as a new
sub-layer inside the IPv6 network layer. Since the protocol gives the end-hosts a way to manage
their paths, they can choose which one is the best for them at any given time. This protocol does

indeed provide multihoming, but it does not meet all the multihoming requirements of a VANET,

"https://www.it.pt/Groups/Index/36

13

https://www.it.pt/Groups/Index/36

as can be seen by the inability to decide what type of trafhic flows through which available paths,

which in turn means that it is not possible to provide differentiated load balancing.

2.3.3 Proxy multihoming as PMIPv6 extension

Proxy multihoming as a PMIPVG extension was the name given to the multihoming extension
developed by the NAP research group [19], [20] for PMIPv6. The solution works by using
PMIPVG as the protocol responsible for the mobility of the network, while the developed multi-
homing solution is responsible for managing the multihoming process itself. This is possible due
to the addition of a set of new entities to the ones already present in PMIPv6, namely to the LMA
and the MAGs.

An overview of this multihoming solution’s framework is depicted in Figure 2.3. In order to
better understand it, a brief overview of its components will be given.

On the LMA, the following entities are present:

* Terminal Manager (TM) is the entity that was developed to overcome the PMIPv6’s

inability to correctly identify a single terminal which is connected via different interfaces.
Since PMIPV6 uses the Media Access Control (MAC) address of the connecting interface as
the user’s identifier, when a terminal connects itself using different interfaces, it assumes
that each connecting interface is a different user. The TM is then responsible for managing
a User Cache Entry (UCE) that will contain the terminals’ identifiers, their number of
connected interfaces, as well as information about each one of their connected interfaces.
The cache is updated whenever a terminal’s interface is connected or disconnected from the
network.

* Flow Manager (FM) is the entity that was developed to overcome the PMIPv6 inability
to choose through which router the terminal’s traffic should be sent. The FM was then
developed as a way to intelligently and dynamically route the terminal’s trafhic. This entity is
responsible for managing a Flow Cache Entry (FCE) that will contain information on all the
flows associated with a terminal, it is also responsible for the distribution of the trafhc and
the calculation and application of the multihoming rules based on the information gathered
by the multihoming solution’s entities.

* Information Manager (IM) is the entity responsible for keeping updated information
about the environment. The FM requests information from this entity when it needs to
determine multihoming rules.

On the MAG, the following entity is present:

* Network Information Server (NIS) is the entity responsible for providing and storing
information regarding the terminals’ points of attachment to the access network as well as
their wireless characteristics. This entity is also responsible for providing this information to
the IM.

The final entity is present on the multihoming users:

* User Information Server (UIS) is the entity responsible for keeping a database of updated

information regarding the terminals’ interfaces such as: interface name, RSSI, packet loss,

14

noise level, throughput and the PoA load. This entity has the ability to communicate with
the NIS, and thus it provides the NIS with the information it has stored.

LMA MAG MH User
PMIPv6 (layer 3) PMIPv6 (layer 3) Layer 3
Terminal Flow Information
Manager Manager Manager

1 1

1 1

1 1

1 . 1 .

' Network Information Server \ User Information Server
1 1

1 1

1 1

1 1

1 1

Comiands ev%nts inforriation comiands ev%nts inforriation Comiands ev%nts inforriation

1 1
1 1
1 1
1 1
1 1
1 1
1 1
! 1
! 1
! 1
' messages controller messages controller messages controller | !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! 1

1 ! 1 1
internal cbmmands inforr$ation : : comiands inforr?ation : : comiands inforr$ation
1 1 1 1
Link Layers (layer 2) 1 : Link Layers (layer 2) 1 : Link Layers (layer 2)
1 1
1 1
Ethernet N Ethernet vl wave Wi-Fi Cellular
1 1 1 1
1 ! 1 1

Figure 2.3: Multihoming framework overview (based on [19]).

The developed multihoming solution takes into account various real-time parameters of the
traffic flows, the characteristics of the access technologies as well as the characteristics of the
end-user’s equipment. This multihoming solution was later integrated with the N-PMIPv6
protocol instead of the PMIPv6, culminating in a solution [21] that makes use of all the features

and improvements present in both N-PMIPv6 and the presented multihoming solution.

2.4 Network Function Virtualization (NFV)

In a typical network environment, the network functions are provided by a network equipment
(like switches, routers, etc.). These equipment are made out of a combination of proprietary
software and hardware whose only job is to perform a specific task. The communication networks
and services provided by Network Service Providers (NSPs) are made up of proprietary equipment,
each one of them performing their task, resulting in network functions and services which are
not very flexible.

If a new service needs to be implemented or a service is reaching its maximum capacity, the
NSPs need to add new network equipment or replace old equipment with newer, more powerful
and capable equipment, in order to keep up with the demand. This is something that is neither
efficient nor cheap for the NSPs, resulting in having more equipment, which takes more space,
consumes more power, meaning more costs, both in terms of Operational Expenditure (OPEX)
and Capital Expenditure (CAPEX), which cannot be covered by increasing the service’s fees
without the risk of losing clients.

To come up with a solution to this problem, NSPs came together to think of a way to
replace dedicated networking equipment with more flexible alternatives still capable of performing
networking tasks. If we think about it, today’s networking equipment, which perform very
distinct tasks, have very similar technology when it comes to their hardware. The real difference
presents itself in the form of the software that runs on top of such hardware, which implements

the networking functions and services. So the NSPs got to the conclusion that, instead of having

15

dedicated networking equipment, it is possible to run the software that performs the equipment’s
tasks on powerful general purpose hardware (i.e. servers): this is what in essence NFV is.

NEFV achieves virtualized functions by virtualizing general purpose hardware, allowing for
the use of Virtual Machines (VMs). Then, the virtualized versions of the software that runs on the
dedicated network equipment, the Virtual Network Functions (VNFs), can be instantiated on the
general purpose hardware with the help of the VMs. This means that a single computer can run a
number of these VINFs, thus replacing several dedicated network equipment. Given the fact that
the functions are all virtualized, they can quickly and easily be taken down or swapped from one
VM to another when they require more resources such as processing power.

When talking about the development of NFV technologies, European Telecommunications
Standards Institute (ETSI) is the most prominent name, considering it has created an Industry
Specification Group (ISG) for the field of NFV in order to create an architecture capable of
supporting VNFs in a consistent manner. The ISG is comprised of several of the most important
telecommunication carriers, such as Deutsche Telekom, Telefénica, AT&T, Orange and more.
This group is leading the standardization in the field of NFV, in particular with their definition of

an NFV reference architecture framework [2] for NFV solutions (shown in Figure 2.4).

NFV Management and Orchestration

Os-Ma
. | NFV
; 0S8/B3S ' Orchestrator
i -+ Or-Vnfm
' EM EM2 EM3 Ve-Vnfm VNF Service, VNF and
H T L .
: : H : Infrastructure
i = = = I Manager(s) Description
i VNF 1 VNF 2 VNF 3
1 SVn-NF + + Vi-vnfm
NFVI - - -
Virtual Virtual Virtual
Computing Storage Network
- NF-Vi Virtualised Oor-Vi
Virtualisation Layer ; Infrastructure }
Vi-Ha I Manager(s)

: Hardware resources
Computing Storage Network

Hardware Hardware Hardware

®—= [xecution reference points v} Other reference points =fmm Main NFV reference points

Figure 2.4: NFV architectural framework (from [2]).

2.4.1 NFV Management and Orchestration (MANO)

One of the architectural frameworks defined by ETSI is the MANO architectural frame-
work [22] (depicted in Figure 2.5) which is the main component of the NFV architecture, and
thus, responsible for, as the name indicates, the management and orchestration of the NFV solution.

This section will give a brief overview of the MANO architectural framework’s main components.

16

Os-Ma-nfvo 1
0SS/BSS 1 NFV Orchestrator (NFVO) —/ |
. [. . . . 1
: ' : , Or-Vnfm ! : !
1 L L L L I
1
: . 7 Ns VNF NFV NFVI I
, : Catalogue Catalogue Instances Resources I
! T
. 1 ! |
1 1 |
I' Ve-vnfm-em I
EM i VNF Manager :
. 1 (VNFM)
! 1 Ve-Vnfm-vnf I
VNE } Vi-Vnfm 1
I |
Vn-Nf I :
1 Virtualized i
; Or-Vi
NEVI 1 NF-Vi Infrastructure 1
1 Manager 1
VIM
1 (VIM) NFV-MANO !

Figure 2.5: NFV-MANO architectural framework (based on [22]).

As can be seen in Figure 2.5, MANO is made up of four main blocks:

* Virtualized Infrastructure Manager (VIM) is responsible for the management of the
NFVI compute, storage and network resources in a network’s domain, such as being respon-
sible for the allocation of NFVI resources to VMs, keeping a repository with information
about which NFVI resources are being used by what VMs, etc. It is worth noting that
multiple VIMs can be present, each one being responsible for a different network domain.

* VNF Manager (VNEM) is responsible for the management of VNF instances, such as
being responsible for their life-cycles (e.g. instantiation, termination) and for their Fault,
Configuration, Accounting, Performance and Security management (FCAPS). A single
VNEM can manage multiple VNFs or various VNFMs can manage multiple VINFs.

* NFV Orchestrator (NFVO) has two main responsibilities, the first one being the orches-
tration of NFVI resources across multiple VIMs given that, as mentioned above, there can
be more than one VIM managing different NFVIs; and the second one being the life-cycle
management of Network Services (NSs). Given the fact that VNFs can be managed by
multiple VNEMs, the NFVO has to manage the creation of the NSs that involve VNFs from
different VNFMs,

* Repositories are the last main block; it is made up of four types of repositories:

VNF Catalog is the repository of all the on-boarded VINF packages. It supports the
management of the VNF packages (which contains the VNF Descriptor (VNFD), software
images, etc). The information present in the VNFD can be queried by both the NFVO and
VINEM to support different operations.

NS Catalog is the repository of all the on-boarded NSs. It supports the creation and
management of the NS deployment templates, the NS Descriptors (NSDs). These templates

17

describe the NS in terms of their VNFs and their virtual links.
NFV Instances is the repository that holds information on all NSs instances and

their VNF Instances.
NFVI Resources is the repository that holds information about the NFVI resources

that are currently either available, reserved or allocated.

In addition to these four main blocks that make up the MANO, there are four more entities
outside of the MANO’s scope, which are:

* Operations and Business Support System (OSS/BSS) refers to the OSS/BSS of a network
operator. Operation Support System (OSS) is responsible for dealing with the network,
fault, configuration and service management, while the Business Support System (BSS) is
responsible for dealing with customer, product and order management. The OSS/BSS and

the NFV are supposed to cooperate.
* Element Management (EM) is the entity responsible for the FCAPS of the functional

side of the VNFs. It is worth noting that, as mentioned above, the VNFM also does the

FCAPS for the VINFs but for their virtual side.
* Virtual Network Functions (VINFs) can be seen as the basic block of the NFV architecture.

They are the virtualized versions of the software that runs on top of the NFVL.
* NFV Infrastructure (NFVI) provides the environment in which the VNFs run. This

environment is made up of the compute, storage and networking resources, as well as a
virtualization layer. This layer is what is responsible for abstracting the actual physical
resources into virtual resources; this layer is commonly called the hypervisor. The VNFs are

then instantiated in the form of VMs on the hypervisor.

2.4.2 NFV solutions

Having given a brief overview of the MANO architectural framework’s components, it is
possible to present the main relevant NFV projects when it comes to the development of solutions

which are based on the MANO architectural frameworks.

Main VIM solutions

* OpenVIM 2 is a light implementation of a VIM, it communicates with the NFV Infrastruc-
ture (NFVI) and an OpenFlow controller in order to provide computing and networking
capabilities, as well as the ability to deploy the VMs. The project is currently part of the
Open Source MANO (OSM) project, a project that implements an open source MANO
solution aligned with the ETSI’s architectural frameworks. It is worth noting that, even
though this solution is open source, it is limited in terms of features, and usually is only used
when in conjunction with the OSM project to deploy a quick all-in-one solution used for

development.
* VMware is a company that provides cloud computing and virtualization products. One of

those products is the VMware vCloud NFV 2. This product is a commercial implementation

*https://github.com/nfvlabs/openvim
*https://www.vmware . com/products/vcloud-director.html

18

https://github.com/nfvlabs/openvim
https://www.vmware.com/products/vcloud-director.html

of a MANO solution aligned with the ETSI’s architectural frameworks. The actual VIM
solution provided by the product is the VMware vCloud Director, which is a multi-tenant
solution that provides the management of the computing, networking and storage resources.
Being a commercial product, this solution provides dedicated end-user support and is very
stable.

* Openstack (OS) * is an open source software solution for cloud computing. It consists
of several interrelated services, which are deployed as components and are responsible
for managing the computing, networking and storage resources. It also contains other
components providing more services, such as a dashboard which enable the management of
the OS services. OS is the most prominent open-source VIM solution: it is a very stable and
mature project, given the fact that it is used by many renowned companies to support their

services.

Main MANO solutions

* OpenBaton ° is an open source platform that provides an implementation of the ETSI NFV
MANO architecture framework. Its architecture can be seen in Figure 2.6. This platform is
composed of several components which provide a number of different services, some of the
most important ones are:

- An NFVO which was completely designed and implemented following the ETSI
MANO specifications;
- A driver mechanism that allows different types of VIMs without the need to change
anything in the orchestration logic;
- A generic VNFM able to manage the life cycle of VNFs based on their descriptors;
- A Juju VNEM Adapter that allows the deployment of Juju Charms ¢;
- A monitoring plugin which integrates Zabbix as monitoring system;
- A fault management system which can be used for automatic runtime management of
faults;
- A Docker VNFM and VIM driver for instantiating containers on top of the Docker
Engine.
Given the fact that OpenBaton has a driver mechanism that allows for different types of
VIMs, it is possible to integrate it with the VIM solutions presented above, such as OS. It
is a project developed by Fraunhofer FOKUS and TU Berlin, and it represents one of the
main components of the 5G Berlin initiative.

* Open Source MANO (OSM) 7 is an ETSI hosted production-quality open source MANO
stack aligned with ETSI NFV architectures. It is an operator-led ETSI community, which
includes among its members Bell, Telefénica, RIFT.io, Canonical, etc. Its architecture and

components can be seen in Figure 2.7, a brief overview of each of them is given next:

*https://www.openstack.org/

*https://openbaton.github.io/

®Juju is a service orchestration tool from Canonical that aids in the configuration and deployment of services
through the use of a set of scripts called Charms. Further explanation present in https://jaas.ai/how-it-works/

"https://osm.etsi.org/

19

https://www.openstack.org/
https://openbaton.github.io/
https://jaas.ai/how-it-works/
https://osm.etsi.org/

(_% ﬁ [i HV }[V}em](vsiem]

:
}
[}
I
I
I
|
I
i
}
(Message Queue O \
|
I
I
I
I
I
}
}
]
]
|

Ultra Reliability
[I

/
|
1
|
]
] |
]]
]]
I I
I I
I I
I I
I I
] |
|[]I
]
3 §
]]
:(Low Latency): y Y y Y v
'] [[[113}] Monitoring Juju VIM NS Genetic
:[Your network slice.. J: Driver VNFM Driver Engine VNFM
]]
]] 3
]]
]]
]]
I I
I I
I I
I I
] I
] I
]]
]]
]]
I I
I I
I I
\ 1

A A A A A

Open“Baton

Figure 2.6: OpenBaton architectural framework.

- Network Service Orchestrator (NSO) The NSO started with the RIFT.ware solu-
tion as its seed, having expanded on it. This component is able to interact with the
Resource Orchestrator (RO) and VNF Configuration and Abstraction components of
the OSM solution, in order to support the management of the Network Services (NSs),
the management of the MANO repositories (presented in subsection 2.4.1), as well as

the process of on-boarding and configuring NSs and their VNFs.

- Resource Orchestrator (RO) The RO started from the OpenMANO, another
MANO solution developed by Telefénica, which was later contributed into OSM.
This component is responsible for coordinating the compute, storage and network
resources that are required for the instantiation of the NS’s VNFs. It does that by
interacting with the VIM, which is the component that actually manages the resources.
The RO can also interact with multiple VIMs. It provides most of the functions of the
NFVO defined by the ETSI MANO framework.

- VNF Configuration & Abstraction (VCA) This component is responsible for pro-
viding the functions of the VNFM defined by the ETSI MANO framework. It is
responsible for the configuration of VNFs given the instructions present in the VNFDs.

It is based on Canonical’s Juju Charms 8,

- GUI & Design-Time Tools This component is, as the name suggests, the user in-
terface that presents users with mechanisms to interact with the NSO. It gives users
the ability to on-board VNFs and NSs (via their descriptors), as well as the ability to
launch NSs.

* RIFT.ware ? is a NFV MANO solution which is a commercial distribution of the OSM

Shttps://jaas.ai/how-it-works/
*https://www.riftio.com/riftware/

20

https://jaas.ai/how-it-works/
https://www.riftio.com/riftware/

GUI & Design-Time Tools

Network Service Orchestrator

NEV. Management and Orchestration

Resource
Qrchestrator
‘ (IncludesVIM/SDN

VNF
Configuration
& Abstraction

We-\infrm

ot L L Connectors)

—f— Main NFV reference points

Q5SM Components

Figure 2.7: OSM Mapping to ETSI NFV MANO (from [23]).

project. It aims to simplify the deployment of multi-vendor NSs, and VNFs in carrier
networks and enterprise clouds. It offers everything needed in order to have automated
end-to-end service delivery and life cycle management. RIFT.ware is a product offered
by Rift.io, a founding member of the OSM project, which has greatly contributed to its
progress, and as seen above, its most important contribution is the OSM’s NSO. All in all, it
is a well established commercial product in the field of MANO.

2.5 Related Work

During the last few years many authors have investigated ways to bring the cloud concepts to
the scope of VANET:.

Olariu et al. [5] envisioned the idea of cloud computing in the scope of VANETs. They
show that vehicles are under-utilizing their on-board computation, communication, and storage
resources, and that these can be shared among drivers or rented over the Internet to other customers,
mimicking the concept of cloud resources. The authors then provide their vision on the concept
of Infrastructure-as-a-Service (IaaS) in a VANET, where they discuss several use cases on how to
better utilize the vehicle’s resources, but they do not discuss a potential structural framework for
Vehicular Clouds (VCs).

Hussain e al. [4] follow up on the previous work by actually proposing potential framework
architectures for different types of cloud scenarios in VANETS. The authors divide VANET clouds
into three major architectures namely Vehicular Cloud (VC), Vehicles using Clouds (VuC), and
Hybrid Vehicular Clouds (HVC). The VCs are sub-divided into two types, static and dynamic:
the former refers to the stationary vehicles providing cloud services (parking lots, etc) while the

21

latter refers to clouds that are formed on demand in an ad hoc manner. When talking about VuC,
they connect VANETS to traditional clouds where the VANET users can make use of the services
hosted on the cloud while on the move. As for the HVC, they are a combination of both the VC
and VuC where they serve as consumers, since they use services from the cloud, and as producers
where the vehicles themselves provide their resources.

A pure VC solution was proposed by Zingirian er al. [24] where a cloud made up of only
vehicles was developed. It works under a new experimental service modality for vehicular platforms,
called Sensor-as-a-Service (Senaa$), that makes third-party entities have access to the vehicles’
devices and sensors. This then means that third-parties can then take advantage of those resources
to create various types of applications, such as vehicle monitoring applications.

One example of a VuC solution is the cloud-assisted system for autonomous driving developed
by Kumar er al. [25] called Carcel. This solution works on the basis of information sharing to
allow for better decisions: the autonomous cars effectively share their sensor’s information with a
cloud in order to receive information which helps them define safer and more efhicient paths. The
solution’s cloud is based on two modules: the request module which is responsible for gathering
the vehicle’s sensors information, and the planner module which aggregates the received data,
analyses it in order to detect obstacles that may be in the path of the vehicles, and then sends that
information alongside alternate paths to the vehicles.

One interesting HVC solution was presented by Bitam er al. [26], the authors call it VANET-
Cloud. Their proposed VANET-Cloud model is made up of three layers, there is the client layer
which is formed by the end-users of the cloud, be it a general user (no in the VANET) or a
VANET entity; the actual cloud layer that refers to the stationary data centers which provide
the VANET-Cloud services; and finally the communication layer which ensures communication
between the previous layers via different ways, such as Internet gateways, VANETS, 4G networks,
satellite, etc. The solution can support a variety of services, some of them being road safety services
that allow users to deal with scenarios such as accidents or collisions, or more end-user oriented
services such as web services. The authors also briefly touch on the subject of security and privacy
which will be a big concern in the future.

In [27], Zhu et al. present a solution which makes use of both cloud and NFV concepts.
Currently many automotive companies release vehicles with an Intelligent Onboard System (IOS),
which allows vehicles to have access to various types of services, such as updates on the current
traffic situation, services based on the vehicle’s current location such as nearby gas station, etc.
The problem with the IOSs is that they have a closed architecture, meaning that, they cannot
easily be upgraded to support new services. The authors propose a solution to this problem based
on NFV technologies, that can transform these IOSs into more open platforms capable of easily
being upgraded.

Another NFV solution that was developed for a different type of MANET is the solution
presented by Nogales et al. [28], where the authors designed an NFV system capable of deploying
Network Services (NSs) over a cloud platform composed of an infrastructure of Small Unmanned
Aerial Vehicles (SUAVs). The authors used the ETSI’s OSM with Openstack (OS) as the VIM,
where the SUAVs made up the NFVI. The results presented by the authors suggest that their

22

solution is capable of deploying NSs over the limited resources that the SUAVs platforms have,
with good performance as was shown with the case of a Voice over Internet Protocol (VoIP) NS.

The solution developed in this dissertation focuses more on the concept of extending the cloud
to the edge of the VANET? it can be seen as a combination of the concepts described in the last
two articles presented. Much like in [27], this dissertation aims to develop a solution which will
enhance the VANETS, making it possible to easily deploy flexibly NSs in a vehicular scenario.
The main difference is that in [27] the authors’ solution focuses on the hardware already present
on the vehicles, the I0S, in order to transform them into more open platforms. On the other
hand, in this dissertation the focus is on developing a more open and flexible solution which does
not revolve around a specific hardware platform: our solution is capable of using various types of
hardware platforms. As for the the solution presented in the last article [28], the NFV concepts
used in the work developed in this dissertation are similar to the ones presented in [28]. The
solution in [28] focuses on the deployment of its solution in a MANET infrastructure made up of

SUAVs, where in this dissertation the focus is on deploying a similar solution over a different kind
of MANET, a VANET.

2.6 Summary

This chapter presented an overview of the topics that encompass this dissertation. The concept
of VANETS was introduced alongside its features and challenges. Then, the mobility protocols
which are used in VANETS were presented culminating with the N-PMIPv6 protocol, which is the
mobility protocol used by the VANET considered in this work. Several multihoming approaches
were also presented, with emphasis on the solution currently in use by the aforementioned
VANET, the Proxy multihoming as PMIPv6 extension. An overview of NFV technologies and
its architectures was presented, as well as the main projects and solutions which are aligned with
such architectures. Lastly, the related work to the one performed in this dissertation has been

presented and discussed.

23

CHAPTER

Proposed Solution

This chapter will cover the main aspects of the solution developed in this dissertation. The
two main sections will discuss the solution’s design and implementation. Section 3.1 will discuss
the steps and choices taken when coming up with the solution’s design, while Section 3.2 will
focus on the technical aspects and challenges of the solution’s implementation, given the design
presented.

3.1 Solution Design

This dissertation studies the applicability of NFV technologies in a VANET scenario, as shown
in Chapter 1, whose main goal and motivation is to develop a solution capable of supporting
the automated deployment and configuration of moderately complex services that enhance the
VANET’s end-users experience. These services are implemented by VxFs, which can be seen
as the abstraction of VNFs. Unlike VNFs that specifically implement network functions, VxFs
can implement any type of virtual function, thus they can provide more diverse services that can
range from security to entertainment. With this objective in mind, the use of NFV technologies,
along side general purpose hardware on-boarded in the vehicles, will allow the solution to use the
hardware’s resources and virtualization to provide varied services with the help of the VxFs.

By using NFV technologies in a VANET environment, the solution offers some advantages,
such as: (1) the ability to promptly deploy services on the vehicles, by quickly instantiating and
configuring the VxFs; (2) the capability to adapt and change the services deployed on the vehicles
according to different situations (i.e. deploy specific security service in case of emergency or
deploy entertainment service when on a long trip); (3) unlike other solutions, it provides an open
platform where developers can experiment with the development of different types of services
that can be useful in a vehicular environment; (4) by using an open platform which permits
quick changes to the services that are deployed, it is possible to keep up with different vehicular
scenario’s needs by incorporating new services or scaling existing ones; (5) the use of general

purpose hardware means that it is possible to swap or expand it when required without many costs.

25

But like most solutions, even though it provides several benefits, it also presents some downfalls
and challenges which are discussed throughout the next subsections.

An overview of the proposed solution is depicted in Figure 3.1, where its design relies mainly
on the following two components:

1. The MANO system, located outside the VANET’s scope, is the component that supports

both the management and orchestration of the NFVI and the NSs;
2. The hardware on-boarded on the vehicles alongside the OBUs which supports the execution
of the NSs and VxFs.

Another important component of the proposed solution comprises the virtual networks that
will sit on top of the pre-existing VANET’s mobility network. These virtual networks will allow
the communication between every element of the proposed NFV solution. The next subsections
will give a more detailed overview of each of the components that make up the solution, as well as

justify the choices that were made.

MANO System) Virtual Networks

Management and :0 _
[Orchestration

L vim]

VxF Management

Data Communications

J

et o e e e e e e e e e e e e o e = ==

i

NFVI NFVI
Lightweight

VxFs

Lightweight
VxFs

Compute node Compute node

Figure 3.1: Overview of the proposed solution’s architecture.

3.1.1 Base VANET Architecture

The first thing to take into consideration when thinking about how to design the solution
is over what kind of VANET will the solution be deployed, what protocols will take care of its

26

mobility, what are the constraints imposed by the VANET’s architecture, what are the constraints
imposed by its mobility protocol, etc. Such questions will be discussed throughout this chapter.
Taking that into consideration, a brief presentation of the VANET’s architecture used in this
dissertation is given next.

The VANET over which the solution is to be deployed is entirely based upon the mobility
solution developed in our research group, a solution based on the Network PMIPv6 (N-PMIPv6)
architecture (presented in Section 2.2.4), with additional mechanisms developed to support trans-
parent handovers and simultaneous multihoming [19], [21]. As previously mentioned in subsec-
tions 2.1.4 and 2.2.2, the main entities of such a network are the LMA, the RSUs and the OBUs.
These are the actual physical components which make up the VANET and where the mobility
software runs. A simple representation of the VANET is depicted in Figure 3.2.

Another main aspect of this VANET, given the mobility protocol it uses, is the IPv6 support.
In this protocol, IPv6 tunnels are created between the network nodes by the mobility protocol,
which are used for protocol and data communications. As can be seen in Figure 3.2, the tunnels
between the LMA and the RSUs are IPv6/IPv6 tunnels, while the tunnels from the LMA to the
OBUs are [Pv4/IPv6 tunnels. This is worth mentioning because traffic going from the LMA to
the OBUg, and the other way around, will have an additional double tunnel header, as it has to go
through both tunnels. This presented itself as a constraint when preparing the NFVI at the edge
of the network.

Internet

IPv6/IPv6
tunnel

IPv4/IPv6
tunnel

[Rsu 1] 8 [Rs!
; WAVE @%

Client

Figure 3.2: Simple representation of the N-PMIPv6 based VANET.

27

3.1.2 MANO System

The MANO system is the component in charge of the NFV MANO of the solution’s NFVI, as
well as the deployment of the Network Services (NSs). As discussed in subsection 2.4.1, it provides
an orchestration service, through the NFV Orchestrator (NFVO) and a VNF Manager (VNFM),
as well as a Virtualized Infrastructure Manager (VIM). This component can be seen as the base of
operations; it stays outside the scope of the VANET network, in the cloud effectively.

Given the main practical implementations of the NFV MANO architectural framework
presented in subsection 2.4.2, the project that was chosen to provide the MANO functionalities in
the proposed solution for this dissertation is the Open Source MANO (OSM). This choice was
based on a few specific reasons and those are: (1) this is a project hosted by ETSI, which is the
entity that defined the NFV and MANO reference architectural frameworks [2], that provides a
production-quality, extensive and working implementation of the MANO stack; (2) it is a project
backed by a large group of network operators and other NFV related parties; (3) it has built-in
support for different types of VIMs, which allows the deployment of more complex multi-site
NSs; (4) it supports fully automatic instantiation of NSs alongside their VxFs, as well as, their
automatic configurations via the use of the Juju Charms present in the VNF Configuration &
Abstraction (VCA) component; (5) it is a fully open-source solution which provides extensive
documentation and a straightforward installation process.

As for the VIM the choice came down to Openstack (OS), since the VIM options supported
by OSM exactly the ones presented in Section 2.4.2 with the additional choice of Amazon Web
Services. OpenVIM is a solution that is part of the OSM project; it is limited in terms of features
and is typically used in conjunction with the OSM project as a all-in-one solution. Both VMware
and AWS, since they are commercial solutions, they were not considered, so that leaves OS. Given
the modular design of the OS software, when performing a minimal installation, only a handful
of services are required. The solution proposed in this dissertation works on the minimal install of
OS, given the fact that it provides all the requirements of a VIM; the only extra service that was
installed for convenience was the Horizon service, which is responsible for providing a web based

user interface to interact with the other OS services.

3.1.3 On-Boarded Hardware

The second main component that makes up the solution is the on-boarded hardware. Unlike
other solutions (see section 2.5) which make use of already existing hardware present on vehicles
to provide a platform capable of making up the NFVI, that is, capable of hosting the VxFs, this
dissertation focuses on providing a solution which is not restricted to a specific type of hardware
that will make up the NFVI, as long as it is possible to install the required software (in the case of
this dissertation, Openstack (OS) and its services).

In the proposed solution, considering the nature of the VANET used in this dissertation, the
node that sits closer to the end-user is the OBU. Therefore it would make sense to use the OBU
as the platform on which the VxFs could be deployed. However, considering that OBUs were

conceived with the intent to solely run the mobility-related software, they are limited in terms of

28

hardware resources, thus it was better to separate the VANET’s communication modules from
the solution’s computational modules. This means that it was decided to add an extra hardware
element alongside the OBUs in the vehicle, one capable of supporting the execution of the VxFs.

Considering that the hardware is going to be on-boarded on a vehicle, we need to take into
account the constraints that it presents. In terms of size, the solution cannot be based around having
a typical computer sitting inside a vehicle. This implies that the hardware has to be relatively
small in size, which in turn means that it is going to be more limited in terms of both processing
and storage capabilities. As a result, the NSs and VxFs that can be instantiated will obviously be
dependent on the hardware’s resources that are available to them; the more resources the hardware
provides, the better and more complex services are possible. Having said that, the developed VxFs
should provide their functions, but at same time, it should be taken into account the limitations of
the hardware that will host these VxFs.

Taking all that into account, for the proposed solution, we decided to use the Raspberry
Pi (RPi) as the hardware platform to be on-boarded alongside the OBUs in the vehicles. Given
the choice of using a RPi, there are some constraints; one of the most obvious is the limitation in
terms of resources; another important constraint is imposed by the fact that the RPi is restricted in
terms of its capabilities to support virtualization. The RPi does not support the typical hypervisor
alternatives, but it does support container virtualization via the use of Linux Containers (LXC), as
was presented in [29], where the authors showed that RPis were successfully able to host LXCs.
This works very well for the solution, since Openstack (OS) offers support for LXC too, making
it possible to use the RPis as the NFVI of the MANO system. The RPis will then be the compute
nodes of the OS VIM.

3.1.4 Overlay Networks

Another important component that makes up the proposed solution concerns the virtual
overlay networks that sit on top of the pre-existing VANET’s mobility network. These are the
networks that interconnect the components of the solution, the MANO system and the on-boarded
hardware. One question that might arise is why the use of virtual networks: since the VANET
already provides a network, why not use that as the way to connect the solution’s components.
When thinking about the solution, the use of the mobility network was considered but ultimately
that choice was dropped in favor of the use of virtual networks to provide the overlay networks.
This choice was based on a few specific reasons. First the software that makes up the MANO
system (namely OSM and OS) has specific networking requirements. In the case of OSM, it
requires that itself and all the compute nodes have a network interface present on the same IP
sub-network. This network is required by OSM in order for it to configure the VxFs once they are
running, as for OS it also requires that itself and its compute nodes have an interface on the same
IP sub-network, for management purposes. Second, given the way the mobility network works
on the VANET used in this dissertation, changes to it would need to be made to accommodate for
those requirements, so by using virtual networks, no major changes need to be made in order to

fulfill the networking requirements of the MANO system. Finally, the isolation of the network’s

29

traffic, by using overlay networks, the trafhc of the MANO system’s networks is isolated from the
rest of the mobility network’s traffic.

The two main virtual overlay networks are the VIM management network and the VxF
management network (depicted in Figure 3.1). The former is the network responsible for allowing
all the communications between the VIM and the compute nodes (the on-boarded hardware), i.e.,
it will enable the control of the computing, storage and networking resources of the compute
nodes; the latter is the network responsible for allowing all the communications between the
OSM’s RO and the VxFs; it will enable the management and configuration of the VxFs once they
are deployed. There is still another type of virtual networks that needs to be mentioned: these are
the virtual internal networks required for data communication between the VxFs that make up a
NS. In order for the solution to work, both the VIM and the VxF management networks have
to be pre-created on the respective nodes of the solution, particularly on the MANO system and
on the on-boarded hardware. As for the virtual internal networks which are responsible for the
data communications, these are not pre-created; they are instead created by the MANO system
whenever a NS requires such a network.

An example of this would be the deployment of a simple NS made up of two VxFs. In this
case, the MANO system would task its VIM to instantiate the VxFs on their respective compute
nodes. It would then task the VIM with setting up the VxF management network on each VxF
to later allow the MANO system’s OSM to configure the VxFs using the set of Juju Charms that
were created for each VXF. The VIM would also be tasked with creating the virtual networks
required for the data communications between the two VxFs. A more detailed explanation of

actual use cases will be given in the next chapter.

3.2 Solution Implementation

As presented in subsection 3.1.2, the software that makes up the components of the MANO
system are all based on open-source solutions. For OSM, the Release Four [30] was used; as for
Openstack (OS), the choice came down to the use of the OS Ocata release. Given the constraints
presented in subsection 3.1.3, the choice of using RPis as the on-boarded hardware, alongside
the use of LXC as the way to deploy the VxFs was made. This was a good choice given the
fact that OS also supports LXC, but this is where a slight problem appeared. At the time of the
development of the solution the OS’s virtualization library responsible for allowing the use of
LXC on the RPis was not supported for all of the OS versions; the latest version which had support
was Openstack (OS) Ocata, and so this was the version used. The next subsections will give more
detailed explanations on how the proposed solution and its components were implemented and
deployed over the top of the VANET, as well as showcase the problems faced and how they were
solved.

3.2.1 Connectivity between MANO System and On-boarded Hardware

The first and most critical step of the solution’s implementation is to establish full connectivity
between the host machine that runs the MANO system and the on-boarded hardware (i.e. RPis).

30

Given the fact that the RPis stay inside the scope of the VANET, inside the vehicles alongside the
OBUg, the communication between the MANO system and RPis will have to go through the
VANET’s mobility network. The configuration of the connectivity between the MANO system
and the RPis was done in a series of steps that all come together to allow the full connectivity in
the end. A representation of this process can be seen in Figure 3.3. Its steps will be presented next.

The first step was to make the the RPis apart of the VANET’s mobility network. The choice
for connecting the RPis to the VANET came down to using either Ethernet or WiFi. Since the
proposed solution makes use of the RPi’s wireless interface in order to be able to provide special
VxFs (explained in more detail in the last subsection), the choices were reduced to either using the
RPi’s Ethernet port or using a wireless USB adapter. Since the OBUs used in the VANET have
unused Ethernet ports, what made most sense was to use both the RPis’ and the OBUs’ Ethernet
ports to connect them, thus bringing the RPi inside the scope of the mobility network. This
was accomplished by creating an IPv4 sub-network between the RPis and the OBUs, where all
the trafhic that originates from the RPis is routed through the OBUs via the addition of a default
Internet Protocol (IP) route to the OBU (which acts as the sub-network’s gateway) and into the
mobility network’s scope.

The next step revolves around the way the mobility protocol used in the VANET works. As
said before, the protocol communication works on the basis of tunnels. The protocol creates
bi-directional tunnels from both the LMA to the RSUs as well as from the LMA to the OBUs. In
order for the RPis to be reachable from the rest of the network (e.g. from the LMA), routes to the
previously created IP sub-networks between the OBUs and the RPis needed to be added on the
LMA. These were configured on the LMA by adding an IP route to each created sub-network
via the respective IPv4/IPv6 tunnel device which connects the LMA and each OBU. With this
configuration, the RPis were now able to reach the outside of the mobility network, which means
that they could reach the Internet and most importantly for the proposed solution, they could
reach the host running the MANO system, all while using the mobility network.

The final step to establish full connectivity between the components has to do with the
configuration of the host running the MANO system. In the case of the host, not many changes
were necessary; in fact, only the addition of IP routes was necessary. Given the fact that the LMA
already had an interface outside the mobility network, for communications outside the scope of
the mobility network (e.g. communication with the Internet), the connection between the host
running the MANO system and the on-boarded RPis was enabled by simply adding IP routes to
the IP sub-networks previously created via the LMA’s outside interface.

As an example, like shown in Figure 3.3, Network 1 was setup when connecting RPi 1 to
OBU A, where OBU A acts as Network 1’s gateway. An IP route to Network 1 was then added
on the LMA, this route is responsible for routing traffic to Network 1 via the tunnel device which
connects the LMA and OBU A. Lastly an IP route was added on the MANO system to enable
communication with RPi 1.

With all these configurations complete, the full connectivity between the host running the
MANO system and the RPis was established, and the deployment of the overlay networks was

now possible.

31

MANO System S

MANO System Routes LMA Routes
RPi 1 via LMA LMA Network 1 via Tunnel LMA - OBU A
RPi N via LMA Network N via Tunnel LMA - OBU N
V4 ‘\
4 \
V4 \
V4 \
7 \
Vehicle 1 %
o o oo o oo oo oo oo oo oo o oo oo o oo = o o
Vehicle N
OBU A OBUN
RPi 1 &% RPi N &
Vehicle 1 Vehicle N

Figure 3.3: Representation of the configuration process to enable connectivity between the MANO System
and the On-boarded Hardware.

3.2.2 Deployment of the Overlay Networks

Through the connectivity between the host and the RPis, it was possible to start deploying
the support overlay virtual networks depicted in Figure 3.1. Taking into account the reasons
presented in subsection 3.1.4 on why the use of virtual networks was the best choice for the
solution, we decided to use Virtual Extensible LAN (VXLAN) as the technology responsible for
supporting these virtual networks. VXLANS are a good choice as they provide a way to create a
logical network for machines across different networks, allowing the creation of a layer 2 network
on top of an already existing layer 3 network through the help of encapsulation, thus making it
possible to create virtual overlay networks on top of the mobility network, and that way, surpass
the constraints mentioned earlier. As mentioned in subsection 3.1.4, both the VIM and VxF
management virtual networks need to be pre-configured on the host running the MANO system,
as well as on the RPis, for the solution to work. The creation of these virtual overlay networks
using VXLAN devices was done on each component of the proposed solution.

To explain how the process was done, first a brief explanation of how VXLANs work is
necessary. VXLAN [31] is an extension technology of the known Virtual LAN (VLAN): it

32

is a technology that works based on encapsulation. It encapsulates normal Layer 2 Ethernet
frames within IP using the UDP protocol via a specific port assigned by the Internet Assigned
Numbers Authority (IANA), port 4789. Much like VLAN, VXLAN has a VXLAN Network
Identifier (VINI), which defines the VXLAN broadcast domain. The main devices in the VXLAN
technology are called the VXLAN Tunnel Endpoint (VTEP): these refer to the devices that
create or receive VXLAN traffic. These are divided into two main types: hardware devices (e.g.
switches) which handle the VXLAN traffic in hardware, or software devices which handle it in
software. In the case of the software devices, which are the ones used in this dissertation, when
they receive traffic for a host of the overlay network, they encapsulate it and send it via the device
which connects that host with the underlay network, to the VTEP where the overlay network
recipient is located.

Given a brief overview of the VXLAN technology, the creation process of the virtual overlay
networks using VXLANSs can be explained. The process is the same for both the host and the

RPis with only a few obvious changes. This process is explained below:

1. Creation of the VXLAN devices A new VXLAN device is created, which acts as a
VXLAN tunnel endpoint: it is given a name, a VNI (to distinguish between different virtual
networks), the interface name which is responsible for accessing the underlay network, and
the UDP destination port set by IANA.

2. Creation of the Linux Bridges A new Linux Bridge is created: these are used to bridge
the VXLAN:S that are created in order to enable multiple VXF to share a single VXLAN
device (multiple VxFs can be running on the same RPi).

3. Setting up the Forwarding Database A new forwarding database entry is added for each
one of the remote host’s IP addresses of the underlay network. This makes it so the VXLAN
device can know how to reach the remote VTEPs.

4. Bridging the VXLAN device The VXLAN device is bridged with the help of a newly
created bridge, and an IP address for the overlay network can be assigned to this bridge.

A sample example of the configuration used in the proposed solution can be seen in the

following example:

ip link add vxlanA type vxlan id 1 dev ethO dstport 4789

brctl addbr brA

bridge fdb append to 00:00:00:00:00:00 dst <ip-remote-underlay> dev vxlanA
brctl addif brA vxlanA

ifconfig brA <ip-addr-overlay>

In the example, we observe that a VXLAN device named vxlanA with id 1 is created, with
interface erhO as the interface that connects to the underlay network. Then a Linux bridge called
brA is also created; next a forwarding database entry to the remote host’s IP address on the underlay
network is added. Lastly, the VXLAN device is bridged with the help of the newly created bridge.
With all this done, the overlay network is created and finally an IP address can be configured on
the bridge. This IP address is now an address of the overlay network and can be reached by other

nodes on the overlay network.

33

The configuration done in both the host running MANO system and the RPis follows the
process outlined above for the configuration of both the VIM and VXF management virtual overlay
networks. In the case of the host that runs the MANO system, two VXLAN devices were created
with different names and VNIs (for each management virtual network), where the interface name
was the name of the interface which can access the RPis through the underlay network. In the
case of the RPis, the same was done: two VXLAN devices were created, with the same names
and VNIs as the ones used in the host running the MANO system, where the interface name, was
the name of the interface which the RPis used to communicate with the mobility network, and
thus, the host running the MANO system. Figure 3.4 shows a better look at how the network

configuration setup at the RPis (the compute nodes) looks.

. ()
. Wireless \\
Ethernet ' :
, ' AP .
interface 3
+ | Data bridge
VXLAN VIM mgmt i
device bridge]
VXLAN VxF mgmt
device bridge
L [VXLAN [Data | . ..
devices bridges
- : - - Lightweight
VxFs
- >

Figure 3.4: Virtual Networks setup on the RPis (compute nodes).

As for the internal data communication networks, the configuration performed on the MANO
system and the RPis enables the dynamic creation of such networks between VxFs (which can
be located either at the same or at different compute nodes), as requested by the OS VIM and
according to instructions provided by the MANO system. More details on these configurations
will be provided in the next subsection.

Problems with Maximum Transmission Unit (MTU)

It is well known that, by using an overlay encapsulation protocol such as VXLAN, overhead
is going to be introduced. Figure 3.5 shows the format of a packet when using VXLAN. It is

possible to observe the overhead the protocol introduces, which comes in the form of the underlay

34

IP header, underlay UDP header, the VXLAN header which contains the protocol’s metadata and
the overlay Ethernet header. All of these create overhead that consumes a portion of the underlay
IP packet, thus reducing the MTU size available to the machines on the overlay network (in the
case of the proposed solution, the VxFs instances). This means that the network interfaces of the
machines running in the overlay network must use the underlying physical network’s MTU minus
the overhead introduced by the VXLAN protocol. As presented earlier, in the configuration that
was done on the solution’s components, the VXLAN devices used Ethernet (IEEE 802.3 Ethernet)
interfaces to access the underlay network. These have a default MTU value of 1500 Bytes, which
was the value present in the interfaces. Therefore, when created, the VXLAN devices took that
value and subtracted the 50 Bytes of overhead introduced by the protocol, ending with an MTU
value of 1450 Bytes: this was the value that was then available to the machines on the overlay

network.

VXLAN encapsulation

Underlay Underlay Underlay
Ethernet Header |IP Header| UDP Header

A A

20 Bytes 8 Bytes 8 Bytes 14 Bytes

Figure 3.5: VXLAN protocol overhead in the context of overlay networks.

With the virtual overlay networks set up and the interfaces properly configured, some tests
were conducted, but while performing those tests some issues started happening regarding the
packet exchange between MANO system and the compute nodes, specifically, packets closer to
the MTU limit in terms of size (given the MTU of 1450 Bytes) were being dropped at certain
elements of the underlying network. After some investigation, the problem started to become
apparent, given how the VANET’s mobility protocol works. As mentioned in subsection 3.1.1, it
uses two IPv6 tunnels to establish communication between the LMA and the OBUs, which means
that the traffic to and from the RPis gets encapsulated twice, once when entering the [Pv4/IPv6
tunnel between the OBU and the LMA, and again when entering the IPv6/IPv6 tunnel between
the RSU and the LMA. This means that much like with the VXLAN protocol, the double IPv6
tunnel headers consume a portion of the outer IP packet, reducing the size available for the
payload.

In the case of the mobility network, traffic that originated at either the LMA or the OBUs
did not have any problems in terms of dropping packets, as the tunnels present at each of those
components were correctly setting up their MTU values, which meant that they were correctly
taking into account both the IPv6 tunnel headers when automatically setting their MTU values.
But in the case of the overlay networks there were problems: traffic originated at either the
MANO system or the compute nodes (in the overlay network) was taking into account an MTU

value (the 1450 Bytes presented above) which was greater than the one supported by the mobility

35

network, so when a packet was of a size greater than the MTU supported by the mobility network,
it would obviously get dropped. A possible solution to this problem would be to make use of a
technique like Path MTU Discovery (PMTUD) as a way to determine the maximum MTU value
supported by a specific network path between two end-points. The use of this technique would
then make it possible to determine the maximum MTU value supported on the network path
between the MANO system and RPis. With a maximum supported MTU value, it would then
be possible to correctly configure their interfaces’ MTU with that value, that would also mean
that, when the VXLANS devices were created, they would not take into account the default 1500
Bytes MTU value of the Ethernet interfaces, but instead the new maximum MTU value that was
configured, which would make the machines in the overlay network have the correct MTU value
and thus the problem would be solved.

Unfortunately, the use of PMTUD did not work how it was intended. On some of the
hardware that makes up the VANET used in this dissertation, due to possibly hardware or software
related problems on the equipment used by the vehicular network that were not discovered, the
packets used by the PMTUD technique were sometimes being discarded, which resulted in the
process not working and consequently the maximum MTU value supported not being determined
automatically. A makeshift solution to this problem was to discover the maximum MTU value
supported by the mobility network manually without using the PMTUD technique and use that
value to configure the MTU of the bridge interfaces that bridge the VXLANSs devices on both the
host running the MANO system and on the RPis by using that value minus the VXLAN headers
size. With this solution, the issue was resolved and the overlay networks were fully operational, so

the installation and configuration of the MANO system’s components was now possible.

3.2.3 MANO System’s installation and configuration

After having the overlay networks in place and fully operational, it was possible to start
installing and configuring the components of the MANO system, that is, the Open Source
MANO (OSM) and Openstack (OS). The first component that was installed was OS. As mentioned
in subsection 3.1.2 and at the beginning of this section, OS was installed based on the minimal
installation guide of the Ocata version, with the addition of the Horizon service for providing
the web interface to interact with all the other OS’s services. The installation process was straight
forward given the guide provided by OS, but even then the main steps and configuration differences
for the proposed solution are discussed next.

In the process of installing OS, the first step was to configure IP addresses on the bridge
interfaces that bridge the VXLAN devices which are responsible for the VIM management
overlay network on both the MANO system and on the RPis, to make it possible for the OS
controller to effectively manage the compute nodes (the RPis). Once the connectivity between
all the nodes using the new addresses on the overlay network was operational, several software
packages required by OS, such as databases, synchronization software to use the Network Time
Protocol (NTP) to synchronize the OS services among different nodes, OS packages which contain
its services and more were installed. Then, it was possible to start installing the actual OS services.

The services installed were the Identity service, Image service, Compute service, Networking

36

service, and finally, the Horizon service. These are responsible for managing authentication,
virtual machine images, compute nodes, networking and the dashboard respectively. For most
of these services, the installation was straight forward given the OS install guide only requiring
slight changes. It is worth noting that, in the case of the RPis, given that they are the compute
nodes of the OS controller, only the Compute and Networking services are required and thus
only those were installed and configured.

The networking service configuration was the most interesting, since OS provides two different
options regarding networking configurations. Option 1 only supports attaching instances to
existing networks, in the case of this solution one of the pre-created overlay networks. Option
2 builds upon option 1 by also supporting the creation and attachment of instances to private
networks. As mentioned in subsection 3.1.4, the proposed solution relies on virtual internal
networks to provide data communications between the VxFs that make up a NS. This means that
option 2 was the adequate choice, given the fact that it provides a way to create these networks
which are required by the proposed solution. In OS the private networks are typically created
using overlay networks and these can be configured using different protocols supported by OS, one
of those is the VXLAN protocol which is also used in the proposed solution. To keep everything
the same throughout the solution, this was the protocol used to configure the overlay networks
which make up the OS’s private networks. Considering that the configuration was only required
on the MANO system’s OS controller, the networking configuration files were correctly edited
with the options required to support the creation of the private networks using overlay protocols,
in this case the VXLAN protocol.

Before proceeding to the installation of the MANO system’s OSM, some of its requirements
needed to be addressed first. When using OS as the OSM’s VIM, OSM imposes some requirements
and these are: (1) guarantee that the OS’s API endpoints are reachable from OSM, this is how
OSM interfaces with the OS VIM; (2) have a management network reachable from OSM, which
is required by the OSM’s VCA for configuring the VxFs once they are running using the Juju
Charms; (3) have a valid user with full permissions that OSM can use to interface with the OS
API.

The first requirement is taken care of, given the fact that the OS VIM and OSM are hosted
on the same machine, the MANO system, so communication between them is guaranteed. The
third requirement was also simple to take care of, since a new OS account with admin permissions
was created and ready to be used by OSM. As for the second requirement, some additional OS
configurations were required.

This is where the previously created VxF management network comes into play, since it is
the network that OSM will use to configure the VxFs. In order for the VxF instances (launched
by OS) to have an interface attached to this network, some additional OS configurations need
to be made. The first thing that was done was the creation of a OS virtual network in the OS
controller, which is a network used to represent the VxF management network. Then, that
virtual network was configured to provide IP addresses of a specific sub-network to any VxF
instance that would be attached to this network. After the creation and configuration of the virtual

network in the OS controller, it was possible to configure the controller and the RPis to use the

37

network. The OS configuration files of both the controller and the RPi were edited to create a
mapping between the newly created OS virtual network and their respective network interfaces
which are responsible for the VxF management network. The next step was to configure an IP
address on the bridge interface that bridges the VXLAN device, which is responsible for the VxF
management overlay network on the MANO system. This IP address was an address of the same
sub-network configured in the newly created OS virtual network, thus allowing communication
between OSM and any VxFs that were attached to that network. With all these configurations
complete, the OSM requirements were met and its installation could be started.

The installation of OSM was straight forward; the OSM website provided a simple installation
script that installed all of the OSM’s components. After the installation, the only thing left to do
was to add the OS controller as a VIM and, considering that the OS controller was previously
correctly configured to run as an OSM VIM, the process was simple.

As mentioned in subsection 3.2.1, the RPis’s wireless interfaces are used to provide a special
type of VxF, the Access Point (AP) VNF, which is used to allow the end-users to communicate
with the remaining VxFs of a NS when it is required. In order to make this possible, some more
changes on the OS controller and the RPis had to be made. The first thing was to setup the RPis’
wireless interface as an AP using the hostapd software. The next step was similar to the process
presented above regarding the configuration of the VxF management network in OS. So, on the
RPis, the OS networking configuration file was edited to add an additional mapping between a
new OS virtual network (which represents the network between the RPis’s AP and the users) and
the wireless network interface which provides the actual AP. The remaining configuration was
done on the OS controller on the MANO system where the new virtual network was created, but
unlike in the creation of the OS virtual network used to represent the VxF management network,
which was configured to give out IP addresses, in the OS virtual network used in this case no

configuration to give out IP addresses was done, as these are to be provided by the actual AP VNF.

3.3 Summary

This chapter presented the proposed solution, starting with its design and finishing with how
that design was implemented. The individual components of the proposed solution were presented
alonggside the problems that were faced and how they were solved. The implementation section
showed how the different components were configured in a way to bring together the whole
solution. This chapter showed how the proposed solution was designed to be able to be deployed
over an existing VANET without the need for major changes to the VANET itself or its mobility
protocol, by making use of different components like the overlay networks. It also presented
how the solution can be used with any type of on-boarded hardware, as long as it is compliant
with the solution’s requirements in terms of the software that it has to be able to support. It also
demonstrated how the solution is capable of instantiating NSs made up of various VxFs, which can
be placed at different points of the edge of the VANET and still have full connectivity between

them.

38

CHAPTER

Evaluation

This chapter presents the evaluation of the proposed solution. It focuses on examining how the
proposed solution behaves and on exploring its limitations considering the fact that it is deployed
over a VANET. It also presents two use cases in the form of two services that were developed with
the intent of showcasing what the solution brings to a VANET scenario. These use cases were

then evaluated in order to showcase the improvements brought by the proposed solution.

4.1 Testbed

As mentioned before, the proposed solution was developed to be deployed over a VANET. In
this dissertation the system components used to perform the evaluation and tests are the components
showcased in Figure 3.1. In the case of the VANET’s components, the LMA was running on a
dedicated computer, whereas the RSUs and OBUs are implemented in NetRiders (depicted in
Figure 4.1). These are Single-board Computers (SBCs) with IEEE 802.11p, 802.11b/g/n and
cellular interfaces. As for the proposed solution’s components, the MANO System was running
on a dedicated computer; the RPis used were RPi 3 Model B. The overall main specifications and

characteristics of the equipment used in the experiments are presented in Table 4.1.

Figure 4.1: NetRider v3.

39

Equipment CPU [MHz] Memory [MB] Linux Kernel Operating System

LMA 3600 (2 cores) 4096 4.14.3-mobility-networks Ubuntu 16.04.3 LTS
NetRider V3 680 64 3.7.4 VeniamOS 19.2
RP; 1200 (4 cores) 1024 4.438-v7+ 16.04.6 LTS
MANO System 3600 (4 cores) 8192 4.4.0-154-generic 16.04.6 LTS

Table 4.1: Main specifications and characteristics of the equipment.

4.2 NFV solution behaviour

The solution is deployed over a VANET, which as seen before, is a type of network whose
topology is constantly changing, with several disconnections and handovers. Therefore, to evaluate
the proposed solution, a number of test scenarios were created to evaluate how several critical
parts of the solution behaved when handover/disconnect situations of the OBUs (where the RPis
are connected) from the rest of the VANET, occur. These test scenarios took a more qualitative
approach, given that these are tests which will not measure network metrics (e.g. throughput).
Instead they will check if specific components of the solution, which are required for it to operate
correctly, still work when typical events of a VANET, such as handovers or loss of connection,

occur.

4.2.1 Test scenario 1

The first test scenario consisted of observing the impact of OBUs’s handovers/loss of connec-
tion to the VANET infrastructure in the communication between the Openstack (OS) controller
and the RPis (the computes nodes of the OS controller). This is done by performing han-
dovers/disconnections of different time intervals. It is shown that, for any time interval where a
disconnection happens, the communication between the OS controller and the RPis is not possible
until the connection is re-established. This is something that makes sense as the trafhc between
the RPis and the OS controller uses the mobility network, even though they communicate via the
VIM management network (a overlay network). It is worth noting that OS uses the Advanced
Message Queuing Protocol (AMQP) (in the form o RabbitMQ) to allow the OS controller and the
compute nodes to communicate in a loose manner. What happens is that, once the compute nodes
connect themselves to the OS controller, they will exchange heartbeats periodically according to
the configuration. This means that they will not get disconnected immediately from the queue
when a handover or disconnection from the infrastructure happens; that will only happen if the
duration of the disconnection is longer than the timeout value configured for the heartbeats (in the
case of the proposed solution, one minute, as can be seen in Table 4.2). Overall, this means that, if
the disconnection duration is lower than the configuration value, OS controller still considers the
compute node up and able to host new instances. This was something important to know for the

test scenario presented in subsection 4.2.3.

40

OBU loss of connection | 5(s) 15(s) 30(s) 60(s) 300 (s)

Compute node disconnection from queue ‘ no no no yes yes

Table 4.2: Compute node queue connection status for different values of OBU loss of connection to the
infrastructure.

4.2.2 Test scenario 2

The second test scenario focused on observing what would happen to the VxFs once they
were instantiated, in terms of communication, that is, what kind of communication was possible
to and from the VxFs when the OBUs, and thus the compute nodes had no connection to the
infrastructure. Something that was also tested was: if a VXF was exchanging data with a user (e.g.
providing a real-time service), would the communication be resumed without any problems after a
handover or loss of connection to the infrastructure. The results indicate that, for any time interval
where an OBU, and thus a compute node gets disconnected from the infrastructure, the VxFs
which are hosted on that compute node cannot establish communication with anything outside
that compute node. There is one exception to this, which comes from a specific type of VxF, the
Access Point (AP) VNF; in that case, communication between the VNF and the end-users which
are connected to it is possible, even when a handover or loss of connection happens, given the fact
that the communication between the VNF and the end-users does not use the mobility network.
An overview of these findings can be seen in Table 4.3.

The next point that was tested was to find out what kind of communication is possible between
the multiple VxFs which make up a NS, in the presence of handover/loss of connection to the
infrastructure. The results were different depending on where the VxFs were instantiated, that is,
if they were instantiated on the same compute node or on different compute nodes. The results
that consider all the VxFs present on the same compute node indicate that, for any time interval
where a handover or loss of disconnection happens, the VxFs can still communicate with each
other without any problems; as for when the VxFs were instantiated on different compute nodes,
the results indicate that for any time interval where one of those compute node gets disconnected,
communication between the VxFs, which are hosted on one of those compute nodes and the
remaining VxFs, is not possible. An overview of these findings can be seen in Table 4.4.

As for the final point, the recovery of the communications or sessions after a handover or
loss connection was tested, and the results indicate that as long as the communication or sessions
do not timeout (based on each specific application) until the connection to the infrastructure is
re-established, they are resumed without any problems. This result is applied to all the cases
mentioned above, meaning that the place where the VxFs are instantiated does not matter.

Compute node loss of connection to infrastructure

. Connection dependent Connection independent
VxF communication

No communication Seamless communication

Table 4.3: Possible communication by a VxF to the outside of the compute node in the event of loss of
connection to the infrastructure.

41

Compute node loss of connection to infrastructure

Multiple VxFs Same compute node Different compute nodes

hosted on Seamless communication between VxFs No communication to remote VxFs

Table 4.4: Possible communications between VxFs that make up a NS in the event of compute node’s loss
of connection to the infrastructure.

4.2.3 Test scenario 3

The third test scenario focused on testing how the proposed solution would react when a
handover/loss of connection to the infrastructure happened while a NS and its VxFs were being
instantiated or terminated. The test scenario was designed to figure out if the loss of connection
during the instantiation or termination of a NS would cause inconsistencies in any component
of the proposed solution, and thus require manual intervention to recover. This means that it is
important to know how both processes works.

This instantiation process is initiated by OSM when a NS is launched and is divided into
two main steps: first the VxFs that make up the NS that was launched are instantiated at their
respective compute nodes by OS; then, after the instantiation process is complete and the VxFs
are up and running, the OSM’s VNF Configuration & Abstraction (VCA) module launches Juju
charms which are responsible for automatically configuring the VxFs. This is accomplished by
executing predefined commands on the VxFs remotely using the SSH protocol. This means that
there are two possible points of failure in the instantiation process. The termination process is
also initiated by OSM: when the termination process of a NS is initiated, OSM orders the OS
controller to remove the VxFs by informing the compute nodes which host them that they are
no longer needed. Then, OSM deletes the Juju charms used to configure the VxFs: once that is
complete, the service is fully terminated.

The results gathered for the instantiation process show that, during the first step of the process
if a handover/loss of connection happens, depending on its duration, the OS controller will either
recover and instantiate the VxFs or it will timeout and report an error. In the case of a scenario
like the one presented in subsection 4.2.1 where the disconnection duration is long enough for the
OS controller to consider a compute node as down, when the OS controller tries to instantiate
a VxF on a compute node which is down, the instantiation will not be possible and an error is
reported. When any error occurs in the first step, OSM halts the whole instantiation process of the
NS and presents an error message. It is worth noting that, in the event that some of the VxFs that
make up the NS were instantiated but any other failed, when the NS is terminated by OSM, the
OS controller terminates any instances that might have been correctly instantiated. This means
that, when an error occurs in this step, the solution can recover without any inconsistencies by
simply terminating the NS that was launched in OSM.

As for the second step of the instantiation process where the OSM configures the VxFs, the
results show that, if a handover/loss of connection happens during the time the Juju charms try to
connect to the VxFs in order to execute the predefined configuration commands, an error occurs
and the process stops. The same applies if the disconnection happens while the configuration

42

process is in course. Like in the previous step, when the configuration reports an error, the solution
can recover without any inconsistencies, by simply terminating the NS in OSM. Possibly due to a
bug in OSM, sometimes the termination of the NS does not properly cleanup the Juju charms,
which means that manual intervention is required, but other than that the solution can recover
without any problems.

The results gathered for the termination process show that, if a handover/loss of connection
happens during the process, the OS controller and consequently OSM have to wait until the
connection is resumed between the controller and the compute nodes to complete the termination.
This is because the communication is required for the controller to be able to inform the compute
nodes that the VxFs are no longer needed and have to be removed. In the case of a scenario like
the one presented in subsection 4.2.1 where the disconnection duration is long enough for the OS
controller to consider a compute node as down, the controller reports an error and OSM skips to
removing the Juju charms. When the connection is eventually resumed, the compute nodes and
the OS controller synchronize themselves and the VxFs which are not supposed to be running are

then terminated. A general overview of these findings can be seen in Table 4.5.

Loss of connection to the infrastructure

. Lower than queue timeout Greater than queue timeout
VxFs Instantiation

Seamless recovery Error reported

) At the start of configuration During configuration
VxFs Configuration &))

Error reported Error reported

. . Lower than queue timeout Greater than queue timeout
VxFs Termination

Seamless recovery Skipped until recovery

Table 4.5: Overview of the possible outcomes when loss of connection happens during several critical steps
of the solution.

4.2.4 Discussion

The fact that the network topology of the VANETS is dynamic means that it can change
constantly. This means that the proposed solution could have experienced problems which could
have jeopardized the whole solution, given that the technologies present in the components of
the MANO system are generally used in situations where the networks which interconnect the
components are very stable and normally do not experience changes in terms of their topology.
Only recently there has been more research and experimentation with these types of technologies
on more constrained and dynamic environments, such as in the case of the solution developed in
this dissertation, where these technologies were used in a VANETS environment.

The results obtained when testing how the proposed NFV solution behaved, given that it
was deployed over a VANET, demonstrate that it is capable of providing one of its main goals:
the deployment of services at the edge of the VANET, without many inconveniences. The
test scenarios presented in the previous sections focused on determining the limitations that the

VANET imposes on the proposed solution. The results show that the communication to and from

43

the VxFs is only limited by the connection to the VANET, that is, whenever the OBUs perform
a handover or isolate themselves from the VANET, any VxFs which are hosted on the compute
nodes which are connected to one of these OBUs, loses the ability to communicate with other
VxFs deployed at other compute nodes until the OBUs regain connection to the VANET.
When it came to the instantiation and termination processes of the NSs, this was the most
critical point of the solution. The results that were obtained when testing both processes indicate
that the proposed solution is capable of handling the handovers/loss of connection that is common
in a VANET environment while performing the processes, without creating any inconsistencies
which could cause problems. Given the results, it is possible to conclude that, during any of the
processes, the compute nodes which are used to deploy the VxFs need to be connected to the
VANET without any interruptions until the process is complete. This is something that would
require the NSs to be deployed or terminated when the target vehicles were in a position where,
for the duration of the instantiation or termination process, they would not get disconnected from
the infrastructure. In a real life scenario, these processes could be performed at strategic times and

locations, such as when the vehicles are parked.

4.3 Use Cases

With the aim of presenting the possibilities given by using the proposed solution, two use
cases were developed. These uses cases focus on showcasing the range of different services which
can be developed for use in a vehicular scenario. These use cases aim to showcase the advantages
of deploying the services at the edge of the VANET, as opposed to having to access the services
on the cloud.

The services showcased by both of the use cases were created using two different Network
Services (NSs). The VxFs that were used in these NSs were developed using open-source software
solutions taking into account the limitations of the on-boarded hardware and the fact that they
run on Linux Containerss (LXCs). As for the automatic configuration of the NS’s VxFs once they
are deployed, its was done by creating the Juju charms which are used by OSM. For each VxF, a
custom Juju charm was created based on the template present in the OSM wiki [32]. Using this
template, the charms use Ansible playbooks to execute the configurations on the VxFs once they
are deployed. Once the VxFs and the respective charms were created, the NS Descriptors (NSDs)
and the VNF Descriptors (VINFDs) that are required to on-board the NSs in OSM were also
created.

4.3.1 Use Case 1: Safety service in a single compute node

The first use case consists of a NS that aims to show how a safety service could be created and
provided using the proposed solution. For this use case, the NS shown in Figure 4.2 was developed.
This NS provides a simple safety service that can be deployed on a single compute node, where a
specific VXF processes a video feed in order to detect distinct objects. The results obtained can
then can be accessed or viewed by the end-users. This NS is made up of two different VxFs, a
Object Detector VXF and a Access Point (AP) VNF. The AP VNF provides a way to support the

44

data communications between the Object Detector VXF and the video feed, and between the VxF
and the users. The AP VNF contains a Dynamic Host Configuration Protocol (DHCP) server
which is responsible for providing the necessary network configuration (such as IP addresses)
to the equipment that connects to the network it provides. As for the Object Detector VXF, it
provides object detection using software based on the open-source library TensorFlow !, the
results obtained by the software are then available through a simple HTTP server which can be
accessed by the end-user equipment.

As for the automatic configuration of this NS, two charms were created for each of the two
VxFs. In the case of the AP VNF, its charm is responsible for configuring static IP addresses,
starting the DHCP server, configuring IP network routes and enabling IP forwarding. In the
case of the Object Detector VXF, the charm is also responsible for configuring static IP addresses, IP
network routes and for starting the object detection software. After the creation of the VxFs and
their respective charms, the VNFDs and the NSD were created in order to allow the on-boarding
of both the VxFs and the NS in OSM. Once this process was complete, the NS could now be
instantiated via the MANO system’s OSM interface.

‘:

VxF VNF
Object Detectob Access Point
Compute node B v
4 A\
V4
-—>-v hicl [vehicie] — CoTT
ehicle m—) T 1
........................... _ L e
Vehicle oo oo —— ’

Figure 4.2: Overview of the safety service used in Use Case 1.

Evaluation of the use case

In order to showcase and evaluate the advantages that the proposed solution brings, the NS
developed for this use case was deployed over a VANET like the one depicted in Figure 4.2,
where both the OBU and the RPi were grouped as one as if they were inside a vehicle (like it is
depicted in the figure). Once the NS was deployed, it was possible to test and showcase the two
main advantages that the solution brings. The first one is the ability to deploy services, like the
one presented in this use case, where even when the vehicle loses connection to the VANETs
infrastructure, the service still works without any issues. The next advantage that was showcased
and tested was the lower latency that the solution can provide by allowing the deployment of the
services as close as possible to the end-users, as opposed to requiring the users to access the services
on the cloud. To showcase and test the first advantage presented, the OBU was disconnected from

the infrastructure after the deployment and configuration of the NS, given that these steps require

"https://www.tensorflow.org/

45

https://www.tensorflow.org/

stable communication with the MANO system’s components, as shown in subsection 4.2.3. As for
the second advantage, the NS was compared in terms of communication delay with a different
version of the same NS where the Object Detector VXF was deployed outside the scope of the
VANET, as a way to mimic its deployment on the cloud.

When talking about the first advantage that the solution brings, the results show that, for
this use case, the vehicle’s connection to the infrastructure (via a RSU as depicted in Figure 4.2)
is only needed to deploy or terminate the service considering that communication between the
MANO system and the compute node (the RP1) is required for those processes. When the vehicle
lost connection to the RSU, and thus to the infrastructure, it was clear that the communication
between the MANO system and the compute node was not possible, as shown previously in
subsection 4.2.1. In terms of the service that was deployed, there were no problems in terms
of communication: this made sense given the fact that, once the service is fully deployed and
configured, the communication between the VxFs that make up the service and the end-users is all
local to the vehicle, meaning that the vehicle does not need to be connected to the infrastructure
in order for the service to be operational and usable.

As for the second advantage, the results, which can be seen in Figure 4.3, show and support
the advantage presented earlier, as it is possible to see lower latency values for the communication
between both the VxXF and the video feed, as well as between the user and the VXF for the case
where the NS was deployed at the edge. The differences in terms of the delay are not huge, but
nevertheless they are significant. It is also worth noting that, in the tests that were performed,
even though the VxXF was outside the scope of the VANET, it was still close to the LMA. In a
more typical scenario, the VxFs could be hosted on a machine behind several networks and, in

that case, the network delay would be more noticeable.

13
12
11

=
o

Latency (ms)

O = N W H U1 O N 0 VO

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Time (s)

e \/xF (cloud) to Video Feed e Jser to VxF (cloud) e \/xF to Video Feed e Jser to VXF

Figure 4.3: Use case 1: Latency results for local vs cloud VxF.

4.3.2 Use Case 2: Safety service in multiple compute nodes

The second use case consists of a NS, like the first one, that aims to show a safety service,

but this time a service that involves more than one compute node. For that, the NS shown in

46

Figure 4.4 was developed. This NS provides a safety service where a video feed from one vehicle
is transcoded and the output can be viewed by others vehicles. This can be useful in situations
where smaller vehicles are trying to overtake a bigger vehicle like a truck: the video feed from
the truck is transcoded and viewed by the overtaking vehicles to check if the road is clear and
the overtake maneuver can be done safely. This NS is made up of three VxFs: two AP VNFs
and a Transcoding VXF. The AP VNF, like in the previous use case, provides a way to support the
data communications between the end-user equipment and the Transcoding VF. The AP VNF
was developed the same way as in the previous use case; as for the Transcoding VXF, it provides
video transcoding using software based on the open-source project FFmpeg and also hosts the
transcoded video output feed, so it can be accessed and viewed by other end-users.

As for the automatic configuration of this NS, much like for the previous NS, charms were
created for each of the VxFs that make up the NS. For the AP VNFs, the charms are responsible
for configuring static IP addresses, starting the DHCP server, configuring IP network routes and
enabling IP forwarding. The Transcoding VXF charm is also responsible for configuring static IP
addresses, IP network routes and most importantly, starting the transcoding and video output
feed hosting software. As in the previous use case, once the VxFs and their respective charms were
created, the VNFDs and the NSD were created to enable the on-boarding of the NS and its VxFs
into OSM. It is worth noting that, in this case, where the NS has its VxFs deployed over more
than one vehicle, specific configurations are required to instruct OSM where to deploy each VxF.
This was done by defining availability zones (i.e. sets of resources) in the OS controller and by
specifying the placement zone in which each VxFs is to be deployed on their VNFDs. After the

on-boarding process, the NS was now ready to be instantiated via the OSM interface.

| RSU_ [esu]
= Vehicle B

\ 1

AY

Disconnection

1
I
[venicle A]

VxF VNF VNF .

Transcoding > Access Point Access Point ,
; i N

:

1

Compute node 1 i \Compute node

Z

- - T e e e --

‘Vehicle A L — ‘Vehicle B e

Figure 4.4: Overview of the safety service used in Use Case 2 (multiple compute nodes).

47

Evaluation of the use case

Like for the previous use case, as a way to showcase and evaluate the possible advantages that
the proposed solution brings, the NS developed for this use case was deployed over a VANET like
the one shown in Figure 4.4 where two OBUs and two RPis were grouped as if they were inside
two different vehicles (vehicle A and B as depicted in the figure). Once the NS was deployed, it
was possible to test and showcase how a multi-vehicle NS works in the proposed solution. Like
in the previous use case, the first test consisted of performing disconnections of vehicle B’s OBU
from the infrastructure (as depicted in Figure 4.4) for a specific period of time. This use case’s NS
was also tested in terms of communication delay by comparing it with a different version of the
same NS where the Transcoding VXF was deployed outside the scope of the VANET, as a way to
mimic its deployment on the cloud.

Unlike in the previous use case, the results show that, for this NS to function properly,
connection with the VANET’s infrastructure is required at all times. For the process of instantiation
and termination, both vehicles need to be connected to the infrastructure, considering that
communication between the MANO system and the compute nodes (the RPis) is required for
these processes to complete. Furthermore, once deployed, the service requires connection to the
infrastructure for both of the vehicles, given that the service’s communication is done using the
underlay network (i.e. the mobility network). When one or both of the vehicles lost connection
to the RSU, and thus to the infrastructure, it was clear that the communications between the
vehicles was not possible, as was shown previously in subsection 4.2.2, meaning that the service
was unusable until the connection to the infrastructure was re-established for both of the vehicles.
This can be seen in Figure 4.5, where the vehicle that hosted the video feed got disconnected
from the RSU for approximately 20 seconds, and while it was disconnected, the Transcoding VXF
could not access the video feed, thus making the service unusable for that duration.

When talking about the advantage in terms of delay, the results, which are presented in
Figure 4.6, show that, for a NS like the one presented in this use case, which involves more than
one vehicle, the difference when it comes to the communication delay is not straightforward. It
is clear to see that, for the NS presented in this use case, the delay value was significantly lower
between the user and the VXF. This has a simple explanation given the fact that the user and the
VxF were located on the same compute node, which meant that the communication between them
was local. As for the latency values between the VxF and the video feed, they were significantly
greater when comparing with values for the communication between the user and the VxF. This
makes sense given the fact that, between the VxF and the video feed, the traffic has to cross the
whole mobility network from vehicle A to vehicle B and back, as opposed to between the user
and the VxF where the traffic communication is local. If the video communication is made direct,
delays will be much lower.

When talking about the latency values for the case where the VxF was deployed outside the
VANETs scope, these were very similar for both the communication between the user and the
VxF and between the VxF and the video feed. When comparing these values against the use case’s

NS where the VxFs were deployed on the vehicles, the values were obviously greater for the case

48

where the user communicated locally with the VxF, but still somewhat lower when compared
with the values for the communication between the VxF and the video feed. Much like in the
previous use case, the differences in terms of delay are not huge, yet they are significant, but it is
worth mentioning that for these tests even though the VXF was outside the scope of the VANET,
the VxF was still very close to the LMA, meaning that in a more real life scenario the VxF would

be hosted behind several more networks which would increase the delay.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Packet Loss

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Time (s)

e ST 10 VXF e \/XF to Video Feed

Figure 4.5: Use case 2: showcase of the service’s communication given the disconnection of vehicle B from
the infrastructure.

Latency (ms)
(o]

—_—————————— -~

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Time (s)
e \/xF to Video Feed (cloud) emmmmm=User to VXF (cloud) emm=\/xF to Video Feed e Jser to VXF

Figure 4.6: Use case 2: Latency results for local vs cloud VxF.

4.4 Discussion

Having developed and tested two different use cases, it is clear to see the type of advantages
that the proposed solution can bring to a VANET scenario. By using the proposed solution in a
VANET scenario, different types of services can be provided in a flexible and dynamic fashion.

49

The solution allows the deployment of services which can circumvent the loss of connection, as
well as, have lower latency values, as opposed to the typical solution where the different services
are deployed on the cloud, meaning that loss of connection to the VANET makes accessing any
of those services impossible.

The NSs that are designed to provide local services like the one presented in the first use
case, can be quickly instantiated and terminated while the vehicle has connection to the VANET;
and after that if the vehicle loses connection to the VANET, the service is unaffected and works
like normal. The proposed solution also allows NSs which can encompass multiple vehicles, like
the one presented in the second use case, but in cases like that, in order for the services to work
correctly, there has to be communication between the vehicles, meaning that the vehicles need to
be connected to the VANET.

As the results showed, the proposed solution also offers lower latency values which can be
crucial for time sensitive services, but this does not come without drawbacks. As mentioned before,
considering that the hardware that supports the VxFs is on-boarded on the vehicles, it means that
it is limited in terms of performance. When the VxFs are deployed on the cloud, they have access
to better performing and more powerful hardware which means that the services provided can
be more complex and faster in terms of processing. However, services like these require that the
vehicles have access to the cloud and, by using the services on the cloud, the latency values of the
communication increase. In essence, the proposed solution trades better hardware performance for

the ability to allow the flexible deployment of different types of services with lower latency values.

50

CHAPTER

Conclusions and Future Work

This chapter presents the final considerations and conclusions of this dissertation. It also

presents the aspects that can be improved in future work.

5.1 Conclusions

The main goal of this dissertation was to design a solution to be used in a VANET that could
enable the deployment of virtual functions at the edge of the VANET, using the network architec-
ture concept known as NFV, with the aim of being able to deploy flexible and dynamic Network
Service (NS) as close as possible to the end-users. With that in mind, the main achievements and
conclusions are presented next.

The design of a NFV solution that can be deployed over a N-PMIPv6 VANET was successfully
done. The proposed solution was able to be deployed over a real VANET without requiring any
changes to its mobility protocol and only a few changes to the VANET itself. The changes to
the VANET came in the form of networking configurations to accommodate for the addition of
the extra hardware that is on-boarded in the vehicles alongside the OBUs, in order to allow the
full communication between the solution’s components using the VANET’s mobility network.
The proposed solution focused on using the VANET’s mobility network simply as an underlay
network between the solution’s components, by creating a set of virtual networks over the mobility
network using overlay tunneling protocols, in this case VXLAN, to be used for the solution’s
communication.

The proposed solution was implemented using open-source projects and platforms which
provided the NFV architectural framework components. The choices for which ones to use were
based on solutions that provided production-quality, extensive and working implementations
of the components. In regards to the on-boarded hardware, the solution was designed in a way
that allows any kind of open hardware platform to be used in the solution as long as the required

software can be installed on it.

51

Using a number of test scenarios, the proposed solution’s behaviour was evaluated considering
the fact that it was deployed over a dynamic network topology that a VANET provides. The
results showed that the proposed solution was capable of deploying the virtual functions at the
edge of the VANET without any major problems. Finally, as a way to showcase and present what
kind of NSs are possible using the proposed solution, two use cases were developed and tested to
demonstrate the advantages of deploying such services closer to the user as opposed to having the

services on the cloud.

5.2 Future Work

Even thought the solution developed in this dissertation was capable of accomplishing its main
goals, such as the ability to deploy services at the edge of a VANET, there are still ways to improve
it in order to increase reliability and up-time of the deployed services.

For Network Services (NSs) which are made up of more than one vehicle, as shown in the
use case presented in subsection 4.3.2, when one of the vehicles loses connection to the VANET’s
infrastructure, the service becomes inaccessible given that the communication between the vehicles
is no longer possible. Something that could minimize this problem would be to make use of
the VANET’s multi-hop capabilities. This VANET feature allows vehicles to communicate with
each other even when they are not connected to the VANET, meaning that the service that was
deployed could work without connection to the vehicles connection to the VANET.

Something that would also make sense to explore and evaluate would be how the services
would behave as well as which new services could be possible when the on-boarded hardware has
more resources and a higher performance. The RPis are good platforms but they lack in terms
of resources and performance capabilities, which means that not only are the number of VxFs
that run on each RPi limited, but the NSs themselves have to be developed to take into account
those limitations, meaning that they would also be limited in terms of their complexity. By using
on-boarded hardware with more resources as the compute nodes, not only could the services
become more complex, but the number of VxFs running at each compute node would increase,
meaning that the number of services deployed at once would increase.

The addition of different elements to the VANET could also be considered. By incorporating
other elements such as SUAVs into the vehicular network’s scope, the types of NSs that could
be provided by the solution could be even more complex and dynamic given that the VxFs that
make a NS could be deployed on a mix of vehicles and SUAVs. Furthermore, by incorporating
the SUAVS, the network’s range could be extended, meaning that the vehicles could still be a part

of the network even when losing connection with the infrastructure.

52

[1]

(2]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Bibliography

S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey on vehicular ad hoc
network”, J. Netw. Comput. Appl., vol. 37, pp. 380-392, Jan. 2014, 1ssn: 1084-8045. por: 10.1016/j . jnca.
2013.02.036. [Online]. Available: http://dx.doi.org/10.1016/j.jnca.2013.02.036.

“Network Functions Virtualisation (NFV) Architectural Framework”, European Telecommunications Standards
Institute, Sophia Antipolis, France, Tech. Rep. GS NFV 002, Jan. 2014.

F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN—Key Technology Enablers for 5G
Networks”, IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2468-2478, Nov. 2017. por:
10.1109/JSAC.2017.2760418.

R. Hussain, J. Son, H. Eun, S. Kim, and H. Oh, “Rethinking Vehicular Communications: Merging VANET with
cloud computing”, in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings,
Dec. 2012, pp- 606—-609. por: 10.1109/CloudCom.2012.6427481.

M. Abuelela and S. Olariu, “Taking VANET to the Clouds”, in Proceedings of the 8th International Conference on
Advances in Mobile Computing and Multimedia, ser. MoMM 10, Paris, France, 2010, pp. 6-13, 1sBN: 978-1-4503-
0440-5. por: 10.1145/1971519.1971522.

J- Jakubiak and Y. Koucheryavy, “State of the art and research challenges for vanets”, in 2008 5th IEEE Consumer
Communications and Networking Conference, Jan. 2008, pp. 912-916. por: 10.1109/ccnc08.2007.212.

P. Papadimitratos, A. D. La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular communica-
tion systems: Enabling technologies, applications, and future outlook on intelligent transportation”, IEEE
Communications Magazine, vol. 47, no. 11, pp- 84-95, Nov. 2009. por: 10.1109/MCOM. 2009.5307471.

D. Johnson, C. Perkins, and J. Arkko, Mobility Support in [Pv6, REC 3775 (Proposed Standard), Obsoleted by
RFC 6275, Internet Engineering Task Force, Jun. 2004. [Online]. Available: http://wuw.ietf.org/rfc/
rfc3775.txt.

C. Perkins, IP Mobility Support for IPv4, REC 3344 (Proposed Standard), Obsoleted by REC 5944, updated by
RFCs 4636, 4721, Internet Engineering Task Force, Aug. 2002. [Online]. Available: http://www.ietf.org/
rfc/rfc3344.txt.

K.-S. Kong, W. Lee, Y.-H. Han, M.-K. Shin, and H. You, “Mobility management for all-ip mobile networks:
Mobile ipv6 vs. proxy mobile ipv6”, Wireless Communications, IEEE, vol. 15, pp. 36—45, May 2008. por:
10.1109/MWC.2008.4492976.

S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, Proxy Mobile IPv6, REC 5213 (Proposed
Standard), Updated by REC 6543, Internet Engineering Task Force, Aug. 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfcb213.txt.

V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, Network Mobility (NEMO) Basic Support Protocol,
RFC 3963 (Proposed Standard), Internet Engineering Task Force, Jan. 2005. [Online]. Available: http :
//wuw.ietf.org/rfc/rfc3963.txt.

S. Cespedes, X. Shen, and C. Lazo, “Ip mobility management for vehicular communication networks: Challenges
and solutions”, IEEE Communications Magazine, vol. 49, no. 5, pp. 187-194, May 2011. por: 10.1109/MCOM.
2011.5762817.

53

https://doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1016/j.jnca.2013.02.036
http://dx.doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1109/JSAC.2017.2760418
https://doi.org/10.1109/CloudCom.2012.6427481
https://doi.org/10.1145/1971519.1971522
https://doi.org/10.1109/ccnc08.2007.212
https://doi.org/10.1109/MCOM.2009.5307471
http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc3344.txt
http://www.ietf.org/rfc/rfc3344.txt
https://doi.org/10.1109/MWC.2008.4492976
http://www.ietf.org/rfc/rfc5213.txt
http://www.ietf.org/rfc/rfc5213.txt
http://www.ietf.org/rfc/rfc3963.txt
http://www.ietf.org/rfc/rfc3963.txt
https://doi.org/10.1109/MCOM.2011.5762817
https://doi.org/10.1109/MCOM.2011.5762817

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

F. Teraoka and T. Arita, “Pnemo: A network-based localized mobility management protocol for mobile
networks”, English, in ICUFN 2011 - 3rd International Conference on Ubiquitous and Future Networks, 2011,
pp- 168-173, 1sBN: 9781457711763. por: 10.1109/ICUFN.2011.5949156.

P. Savola and T. Chown, “A survey of ipv6 site multihoming proposals”, Feb. 2005, pp. 41-48, 1sBN: 953-184-
081-4. por: 10.1109/CONTEL.2005.185815

R. Kuntz, J. Montavont, and T. Noel, “Multihoming in ipv6 mobile networks: Progress, challenges, and
solutions”, IEEE Communications Magazine, vol. 51, no. 1, pp. 128-135, Jan. 2013. por: 10.1109/MCOM. 2013.
6400449.

E. Nordmark and M. Bagnulo, Shim6: Level 3 Multihoming Shim Protocol for IPv6, REC 5533 (Proposed Standard),
Internet Engineering Task Force, Jun. 2009. [Online]. Available: http://www.ietf.org/rfc/rfc5533. txt.

A. Garcia-Martinez, M. Bagnulo, and I. V. Beijnum, “The shim6 architecture for ipv6 multihoming”, IEEE
Communications Magazine, vol. 48, no. 9, pp- 152-157, Sep. 2010. por: 10.1109/MCOM. 2010.5560599.

N. Capela and S. Sargento, “An intelligent and optimized multihoming approach in real and heterogeneous
environments”, Wireless Networks, pp. 1935-1955, 2015. por: 10.1007/s11276-015-0896-1.

N. Capela and S. Sargento, “Machine learning for resources prediction in multihoming scenarios”, in 2015
IEEE Globecom Waorkshops (GC Wkshps), Dec. 2015, pp. 1-7. por: 10.1109/GLOCOMW . 2015 .7414202.

M. R. T. Oliveira, “Mobility in vehicular networks with dynamic connectivity and load balancing”, Master’s
thesis, University of Aveiro, Jan. 2016.

“Network Functions Virtualisation (NFV) Management and Orchestration”, European Telecommunications
Standards Institute, Sophia Antipolis, France, Tech. Rep. GS NFV-MAN 001, Dec. 2014.

E. O. Community. (2016). Osm release one technical overview, [Online]. Available: https://osm.etsi.org/
images/0SM-Whitepaper-TechContent-ReleaseONE-FINAL.pdf.

N. Zingirian and C. Valenti, “Sensor clouds for intelligent truck monitoring”, in 2012 IEEE Intelligent Vehicles
Symposium, Jun. 2012, pp. 999-1004. por: 10.1109/IVS.2012.6232192.

S. Kumar, S. Gollakota, and D. Katabi, “A cloud-assisted design for autonomous driving”, in Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12, Helsinki, Finland: ACM,
2012, pp. 41-46, 1sBN: 978-1-4503-1519-7. por: 10 . 1145/2342509 . 2342519. [Online]. Available: http:
//doi.acm.org/10.1145/2342509.2342519.

S. Bitam, A. Mellouk, and S. Zeadally, “Vanet-cloud: A generic cloud computing model for vehicular ad hoc
networks”, IEEE Wireless Communications, vol. 22, no. 1, pp. 96-102, Feb. 2015. por: 10.1109/MWC.2015.
7054724,

M. Zhu, J. Cao, Z. Cai, Z. He, and M. Xu, “Providing flexible services for heterogeneous vehicles: An nfv-based
approach”, IEEE Network, vol. 30, no. 3, pp. 64-71, May 2016. por: 10.1109/MNET.2016.7474346.

B. Nogales, V. Sanchez-Aguero, I. Vidal, F. Valera, and J. Garcia-Reinoso, “A nfv system to support configurable
and automated multi-uav service deployments”, Jun. 2018, pp. 39-44. por: 10.1145/3213526.3213534.

C. Pahl, S. Helmer, L. Miori,]. Sanin, and B. Lee, “A Container-Based Edge Cloud PaaS Architecture Based
on Raspberry Pi Clusters”, in 2016 IEEE 4th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), Aug. 2016, pp. 117-124. por: 10.1109/W-FiCloud.2016. 36.

A. Hoban, A. Israel, A. Tierno, C. Boyer, F. Salguero, G. G. de Blas, G. Lavado, M. Shuttleworth, M. Harper,
and M. Marchetti, “An ETSI OSM Community White Paper, OSM Release FOUR: A Technical Overview”,
European Telecommunications Standards Institute, Sophia Antipolis, France, Tech. Rep., May 2018.

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C. Wright, Virtual
eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer
3 Networks, REC 7348 (Informational), Internet Engineering Task Force, Aug. 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7348.txt.

Example VNF Charms, https://osm.etsi.org/wikipub/index.php/Example_VNF_Charms, Accessed:
2019.

54

https://doi.org/10.1109/ICUFN.2011.5949156
https://doi.org/10.1109/CONTEL.2005.185815
https://doi.org/10.1109/MCOM.2013.6400449
https://doi.org/10.1109/MCOM.2013.6400449
http://www.ietf.org/rfc/rfc5533.txt
https://doi.org/10.1109/MCOM.2010.5560599
https://doi.org/10.1007/s11276-015-0896-1
https://doi.org/10.1109/GLOCOMW.2015.7414202
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseONE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseONE-FINAL.pdf
https://doi.org/10.1109/IVS.2012.6232192
https://doi.org/10.1145/2342509.2342519
http://doi.acm.org/10.1145/2342509.2342519
http://doi.acm.org/10.1145/2342509.2342519
https://doi.org/10.1109/MWC.2015.7054724
https://doi.org/10.1109/MWC.2015.7054724
https://doi.org/10.1109/MNET.2016.7474346
https://doi.org/10.1145/3213526.3213534
https://doi.org/10.1109/W-FiCloud.2016.36
http://www.ietf.org/rfc/rfc7348.txt
https://osm.etsi.org/wikipub/index.php/Example_VNF_Charms

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Objectives
	Contributions
	Document structure

	State of the Art
	Vehicular Networks
	Features
	Applications
	Challenges
	Architecture

	Mobility Protocols
	Mobile Internet Protocol version 6 (MIPv6)
	Proxy Mobile Internet Protocol version 6 (PMIPv6)
	Network Mobility (NEMO)
	Network PMIPv6 (N-PMIPv6)

	Multihoming
	Stream Control Transmission Protocol (SCTP)
	Site Multihoming by IPv6 Intermediation (SHIM6)
	Proxy multihoming as PMIPv6 extension

	Network Function Virtualization (NFV)
	NFV Management and Orchestration (MANO)
	NFV solutions

	Related Work
	Summary

	Proposed Solution
	Solution Design
	Base VANET Architecture
	MANO System
	On-Boarded Hardware
	Overlay Networks

	Solution Implementation
	Connectivity between MANO System and On-boarded Hardware
	Deployment of the Overlay Networks
	MANO System's installation and configuration

	Summary

	Evaluation
	Testbed
	NFV solution behaviour
	Test scenario 1
	Test scenario 2
	Test scenario 3
	Discussion

	Use Cases
	Use Case 1: Safety service in a single compute node
	Use Case 2: Safety service in multiple compute nodes

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

