
Results in Engineering 6 (2020) 100104
Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.editorialmanager.com/rineng/Default.aspx
Qualitatively-improved identified parameters of prestressed concrete
catenary poles using sensitivity-based Bayesian approach

F. Alkam a,*, I. Pereira b, T. Lahmer a,**

a Institute of Structural Mechanics (ISM), Bauhaus-Universit€at Weimar, 99423, Germany
b Department of Mathematics, CIDMA, University of Aveiro, Portugal
A R T I C L E I N F O

Keywords:
Prestressed concrete catenary poles
Bayesian inference
Inverse problems
Sensitivity analysis
TMCMC
Vibration test
3-Point bending test
* Corresponding author.
** Corresponding author.

E-mail addresses: feras.alkam@uni-weimar.de (F

https://doi.org/10.1016/j.rineng.2020.100104
Received 28 November 2019; Received in revised f
2590-1230/© 2020 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

Prestressed, spun-cast ultrahigh-strength concrete catenary poles have been used widely for electric train systems;
for example, thousands of these poles have been installed along high-speed train tracks in Germany. Given the
importance of the functionality of train systems, adequate attention has not been paid to catenary poles in
research and the literature. Questions regarding the integrity of catenary poles still exist. This study contributes to
identify the actual material properties of the poles of interest because the parameter identification is an essential
process for any subsequent evaluation of the integrity of catenary poles. Accordingly, a sensitivity-based Bayesian
parameter identification approach is developed to estimate the real material properties of the poles using mea-
surements from multiple experiments and numerical models. This approach integrates the sensitivity of time-
dependent measurements into the Bayesian inference, which improves the quality of inferred parameters
considerably in comparison with classic Bayesian approaches applied in similar case of studies. Furthermore, the
proposed approach combines observations of multiple experiments conducted on full-scale poles using a proba-
bilistic uncertainty framework, which provides informative data used in the parameter identification process.
Besides, Bayesian inference quantifies the uncertainty of inferred parameters and estimates the hyperparameters,
such as the total errors of the observations. The proposed approach utilizes the efficiency of the transitional
Markov Chain Monte Carlo algorithm for sampling from the posterior in both levels of Bayesian inference,
namely, the unknown parameters and the hyperparameters. The results show the significant influence of the
sensitivity concept in improving the quality of the posterior and highlight the importance of identifying the real
material properties during the evaluation of the behavior of existing structures, rather than using the charac-
teristic properties from the datasheet. Applying the proposed approach looks very promising when applied to
similar applied case studies.
1. Introduction

Poles are used worldwide to support power transmission, telephone
and telegraph lines, street lighting, antenna masts, and overhead power
lines for electric trains. For many years, poles were made of wood, steel,
and concrete. In the early years of the 20th century, concrete poles were
made of normal reinforced concrete [1]. The quality of concrete poles
increased rapidly by developing some techniques, such as prestressed
concrete, spun-cast methods, and advanced curing processes [2]. This
improves the durability of the poles, making them lighter and stronger,
able to withstand more cyclic loads and increasing their resistance to
environmental conditions [3,4]. Compared to steel poles, the prestressed,
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spun-cast concrete poles become more feasible, cheaper, have a longer
operational life, and lower lifetime costs [5]. Catenary poles are structural
members that suspend the catenary systems of electric trains. Prestressed,
spun-cast catenary poles made from ultrahigh-strength concrete have
been widely used in the electric train systems. For example, thousands of
this type of poles have been installed in Germany along new high-speed
train tracks, reaching a speed of 330km h�1.

Given their importance to the functionality of the entire train system,
scant attention has been paid to the behavior of the catenary poles in the
literature, especially for those supporting train systems. Researches were
mainly focused on the train-induced vibration and their effects on the
catenary system and surroundings without paying adequate attention to
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catenary poles. These are included (but are not limited to) the verifica-
tion of train-induced ground vibrations [6,7], the interaction of
train-induced vibration with surrounding soil and nearby structures [8],
the collapse of noise protection walls along high-speed trains tracks [9],
and the interaction of the pantograph of train and the catenary cables
[10–12]. Therefore, questions about their integrity are still open.

A research project has built to track the behavior of the hollow sec-
tion, spun-cast, prestressed ultrahigh-strength concrete catenary poles
that are used in the high-speed electric train systems. The behavior of the
poles under various actions (namely, static, environmental, and dynamic
actions) is studied, considering the long-term changes in the material of
the pole [13,14]. This project has been divided into three phases. In the
first phase, which is the focus of this paper, actual material properties are
identified, using measurements conducted on full-scale poles. In the
second phase, data extracted from a Structural Health Monitoring (SHM)
system installed on three poles along the train track, is analyzed. The
third phase covers the future status and damage detection over the life of
the poles.

Parameter estimation as a statistical term, or Parameter Identification
(PI) as an engineering term, is currently one of the essential tasks of
engineering and science, especially with the increasing capacity of
computers that makes it more practical and efficient [15]. In engineering
science, the PI process is generally associated with Uncertainty Quanti-
fication (UQ) frameworks solving ill-posed inverse problems due to
imperfection of models, parameter uncertainty, and noisy measurements
[16,17]. Moreover, the sensitivity of the parameters plays a vital role in
finding solutions to inverse problems. The sensitivity makes the solution
unstable, as a small change in the inputs can lead to a significant change
in the estimated model parameters [18]. Two UQ frameworks are
commonly used for identifying the parameters of systems, namely, the
deterministic and the probabilistic approaches.

The deterministic solution of inverse problems uses the least-squares
approach by minimizing the residuals between observations and model
prediction. Regularization techniques (for example, Tikhonov regulari-
zation), can efficiently deal with the ill-posedness of inverse problems by
adding the prior knowledge of the input parameters [19]. In determin-
istic UQ frameworks, the covariance matrix represents parameters un-
certainties by estimating the local sensitivity of parameters at the optimal
point, or the so-called Markov estimator [20,21].

The probabilistic UQ framework has two concepts, namely, the Fre-
quentist and Bayesian concepts. The Frequentist concept uses the infor-
mation contained in the sample, where observations are considered in
terms of probability density functions, and the parameters can be esti-
mated by least squares or Maximum Likelihood Estimators (MLEs) [22].
The Bayesian Inference combines two kinds of information: the prior
information given by the parameter with the information contained in
data; specifically, combines the prior probabilities of parameters with the
probabilities of observations, conditional on given parameter values. The
output is deduced in terms of probability distributions of the specified
parameters, which makes it easy to quantify uncertainties by calculating
the statistical properties of these distributions [15]. Bayesian inference is
utilized to solve inverse problems efficiently [23]. One of the main
challenges of using the Bayesian approach is extracting the information
from the posterior density. Sampling methods are considered feasible
alternatives to evaluate the posterior rather than the analytical integra-
tion. Most efficient sampling methods depend on Markov chain Monte
Carlo (MCMC) methods [24].

As mentioned, this paper covers the first phase of the research project
and has mainly two goals. First, identifying the actual material properties
of the poles to use them later in evaluating the behavior of the poles and
analyzing data obtained from the SHM system. Second, providing a
sensitivity-based Bayesian approach that improves the quality of identi-
fied parameters by solving the problem caused by the low sensitivity of
the likelihood with respect to some parameters during the PI process.
This distinguishes this case study from other classic PI problems and
increases its complexity; however, it is an additional motivation to adapt
2

the classic Bayesian approach to achieve the desired objectives.
In the proposed approach, measurements of multiple experimental

tests and results models done using the Finite Element Method (FEM) are
conjugated. The results show the efficiency of considering the sensitivity
of measurements on the quality of inferred parameters. Moreover, the
results highlight the importance of using actual material properties
rather than using characteristic values provided by manufacturers in the
datasheet.

In Section 2, a detailed overview of Bayesian inference, and how it
can be adapted to cover the aim of the current study, is provided. This is
followed by the proposed solution in Section 3. The solution is built in
two strategies that show both classical and proposed Bayesian ap-
proaches. The case study is presented in Section 4. The application is
illustrated in Section 5 and followed by results and discussion in Section
6.

2. Methodology

2.1. Forward model

In this study, three types of parameters are considered: input pa-
rameters subjected to uncertainty x 2 X ⊆Rm, non-physical input pa-
rameters ξ 2 Z , and well-known deterministic input parameters, d 2 D .
In addition, hyperparameters θ 2 Θ are sometimes needed to describe the
vague uncertainty of parameters.

The outputs of the predictive model are y 2 Y with an output space
Y ⊆Rn. In engineering applications, y represents the ‘real’ observations of
the given system, which practically cannot be measured due to the un-
certainty of the experimental models. It is more convenient to use the
measured observation ~y 2 ~Y ⊆Rn, such as, ~y ¼ yþ η. The total prediction
error η considers the discrepancy between the model prediction and the
real system, and discrepancy between the response of the real system and
measurands [25].

Using a forward operator G , the mapping from the input parameters x
to the measured outputs ~y defines the forward model M , such that

M : X �Z �D → ~Y ðx; ξ; dÞ 7! ~y ¼ G ðx; ξ; dÞ þ η : (1)

2.2. Inverse problems

In many engineering applications, the observations of the system ~y⊆
Rn can be measured without knowing their inputs x⊆Rm. In this case,
given the forward operator G and the observations ~y, the inputs to be
inferred are such that Eq. (1) holds. This type of inverse problem is referred
to by engineers as a PI process [15]. The problem is considered as a
well-posed problem if it fulfills the triple: existence, uniqueness, and sta-
bility. Practically, inverse problems are ill-posed as they mostly suffer
from one or more of the three-mentioned causes [26]. Solving inverse
problems becomes harder due to imperfection of the model, un-
certainties, and noisy measurements [22]. Different techniques overcome
the difficulties, for example, by utilizing informative priors, or so-called
regularization techniques in the deterministic framework. In the proba-
bilistic frameworks, the Bayesian inference is effectively used.

2.3. Bayesian inverse problems

The Bayesian approach, as a probabilistic framework of the UQ,
overcomes the difficulties of solving inverse problems by considering the
stochastic model of Eq. (1) such that ~Y ¼ G ðX; ξ; dÞ þ E [18], which is
achieved by considering the observations as random variable
~Y ¼ f~Y1;⋯; ~YngT 2 Rn, which has the probability distribution P~Y with a

PDF πð~yÞ > 0. ~Y represents the multiple outputs of the given case study.
Their realizations ~y ¼ f~y1;⋯; ~yngT are observed directly from
measurements.

The unknown parameter X ¼ fX1;⋯;XmgT 2 Rm is a random variable



F. Alkam et al. Results in Engineering 6 (2020) 100104
with a prior density πXðxÞ ¼ π0ðxÞ. The error E 2 Rn is a random variable
that is mutually independent of X and has a probability distribution PE

with an appropriate density πEðηÞ [27]. Based on Bayes’ Theorem, the
posterior probability distribution of X given the observed data ~Y is
written such that

πðxj~yÞ¼ πð~yjxÞ � π0ðxÞ
πð~yÞ : (2)

Thus, Eq. (2) shows the four-pillars for solving inverse problems in the
Bayesian approach: the posterior πðxj~yÞ, the likelihood πð~yjxÞ, the evidence
πð~yÞ, and the prior π0ðxÞ [28].

The prior density π0ðxÞ represents any available knowledge of the
system before the data are collected. This can be retrieved from similar
systems or prior experience [29]. Nevertheless, the prior can be built into
a hierarchical model based on the observed data. In this case, unknown
parameters x are modeled conditionally on unknown hyperparameters θX .
These hyperparameters are considered as random variablesΘX with prior
density distributionsΘXgπΘX ðθXÞ. This makes the prior, such that π0ðx; θXÞ
and increases the number of inferred parameters [30].

However, it is common to consider the observations ~Y and hyper-
parameters of the inputs ΘX as mutually independent, that is, πð~yjx;
θXÞ¼ πð~yjxÞ. Thus, the stochastic forward model is updated such that ~Y ¼
G ðX;ΘX ; ξ;dÞ þ E. In most cases, input parameters are conditionally in-
dependent, then the prior of the unknown parameters are evaluated from
πðx; θXÞ ¼

Qm
i¼1πðxijθXÞ.

In some case studies, the realizations η ¼ fη1;⋯; ηngT of the total
errors E are not well-known (for example, because they are not quanti-
fied through experiments). By this, additional hyperparameters θE with a
prior distribution πΘE ðθEÞ are added to unknown parameters. θE is needed
to define the density distribution of the errorEfπEðη; θEÞ. Assuming that θE
is mutually independent of x and θX , the joint prior distribution is writ-
ten, as follows:

π0ðx; θX ; θEÞ¼
�Ym

i¼1

πðxijθXÞ
�
� πΘX ðθXÞ � πΘE ðθEÞ : (3)

The likelihood πð~yjxÞ in Eq. (2) is a function of y with x fixed. To
evaluate this, the Bayesian inference utilizes the concept of MLE from the
Frequentist approach. This means that the specifications of the likelihood
are based on the error model, which leads to πð~yjxÞ :¼ πð~y � G ðx;ξ;dÞÞ, in
other words L ðx; ξ; dj~y; θEÞ, where L is the likelihood function [31].
Assuming random variables E to be independent and identically
distributed (iid), the likelihood function [23] is estimated, as follows:

πð~yjxÞ�L ðx; ξ; dj~y; θEÞ¼
Ym
i¼1

πEð~yi �G iðx; ξ; dÞ;ΣiiÞ ; (4)

with Σii being the ith component of the main diagonal of matrix Σ.
Accordingly, the posterior in Eq. (2) is described as follows:

πðx; θX ; θEj~yÞ¼ πð~yjxÞ � π0ðx; θX ; θEÞ
πð~yÞ : (5)

The denominator of Eq. (5), the so-called evidence, is independent of
x and represents the probability density of ~y for all values of x. Hence, it is
considered as a normalization constant and evaluated by the integral
over all the possible joint densities of ~y such as

z¼ πð~yÞ¼
Z
X

Z
Z

Z
ΘX

Z
ΘE

L ðx; ξ; dj~y; θEÞ π0ðx; θX ; θEÞ dx dξ dθXdθE : (6)

As a result, the posterior in Eq. (5) is written as a statement of pro-
portionality, such as πðx;θX ;θEj~yÞ∝πð~yjxÞ � π0ðx;θX ;θEÞ.

Finally, the posterior density πðxj~yÞ is a probability distribution that
provides the full information of the unknown parameters x, based on the
observations y. In some case studies, the interest is only in estimating the
statistical moments, for example, the mean and the variance, as Quantity
3

of Interests (QoIs). Here, keep in mind that the normalization constant z
should be included to have the right values of QoIs. In other cases, the
maximum a posteriori (MAP) estimator bxMAP, or mode as statistically
named, is estimated. Thus, MAP represents the values of inferred pa-
rameters with the highest probabilities of occurrence, without the need
to calculate the normalization factor z [32], such that

bxMAP ¼ argmax
x2ℝm

πðxj~yÞ : (7)

One of the challenges of the Bayesian approach is extracting infor-
mation from the posterior. Any parameter can be inferred directly
through the marginalization of the posterior over the rest of the param-
eters such as πðxij~yÞ ¼

R
πðxj~yÞ dxei ; where xei ¼ ðx1;⋯; xi�1; xiþ1;⋯; xmÞ

denotes the parameters except xi. In most cases, this cannot be solved
analytically without using other simplification methods, such as
asymptotic approximation [33], or by using stochastic sampling such that
MC integration, and importance sampling [34]. Practically, MCMC al-
gorithms are used for drawing the parameter distributions from the
posterior, even those that are complex and high-dimensional [24].
2.4. Markov chain Monte Carlo

The MCMC method combines the Markov chain and MC integration
for constructing chains whose stationary distribution is the posterior. The
densities of parameters based on the observations are the realizations of
the Markov chain [32,35]. Many different MCMC algorithms have been
developed over in recent years. Most are mainly based on the probability
of proposing the future state, for example, Metropolis-Hastings (MH),
Gibbs sampling, and Slice sampling [36,37].

Among MCMC algorithms, the Transitional Markov chain Monte
Carlo (TMCMC) is a widely used algorithm for solving both levels of the
Bayesian inference, for example, parameter identification, model selec-
tion, and model averaging problems [38]. Because of its high efficiency,
it is popular in engineering practice and inspiring in the research field
[39,40]. The TMCMC algorithm overcomes many of the MH drawbacks,
such as, stationary distribution of the chain, jumping step, correlation of
accepted samples, and convergence of the chain [41–43]. Compared to
the standard MH algorithm, drawn posterior density using TMCMC has
better quality with a smaller number of samples [44]. Besides, TMCMC is
suitable for sampling from multiple models, estimating the evidence of
the Bayesian model class. It also overcomes the difficulty of sampling
from complex models [45]. These reasons offer motivation to utilize the
TMCMC algorithm in this study.

3. Proposed approach

The primary goal of the proposed approach is to improve the quality
of inferred parameters. In this sense, the available observations of the
conducted experiments are utilized and managed in two strategies to
reach the target, as shown in Fig. 1. After implementing the proposed
strategies, the quality of the results is compared. Then, the results with
the best quality from one of the applied strategies are selected.
3.1. Strategy 1 (S1)

In this All-in-one strategy (S1), the observations of different experi-
ments, or even the observations of different sensors in the same experi-

ment, are formed in one observations vector ~Y ¼ f~Y1
;⋯; ~Y

KgT that has
the corresponding models M ¼ fM 1;⋯;M KgT . K represents the number
of conducted experiments, where the observations of the kth experiment

are ~Y
k ¼ f~Yk

1;⋯; ~Y
k
nkg

T
. The realizations of these random variables are

~yk ¼ f~yk1;⋯; ~yknkg
T 2 Rnk .

The global likelihood becomes



Fig. 1. The proposed approach of PI.
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�
~Y
1
;⋯; ~Y

K ��x; ξ; d� � πEð~y�Gðx; ξ; dÞ;ΣÞ;
Table 1
The nominal geometry of the poles.

Dimension Nominal value

Length, L [m] 10
Outer diameter at the bottom, dbot [mm] 400
Outer diameter at the top, dtop[mm] 250
Wall thickness at the bottom, tbot[mm] 62
Wall thickness at the top, ttop[mm] 52

Table 2
The nominal material properties of the poles.

Material Value

Concrete
Concrete grade C80/95
Prestressing
Prestressing strands 7/1600 St 1680/1880
Number of strands, nst 10
Area of the strand, Ast [mm2] 70
where Σ ¼ diagfΣ1;⋯;ΣKg 2 RN�N is the global covariance matrix and
N ¼ PK

k¼1n
k. Assuming that data in each experiment are conditionally

independent given the unknowns, the likelihood in Eq. (4) is updated, as
follows:

L
�
x; ξ; dj~y1;⋯;~yK ; θE

�¼ YK
k¼1

L k�x; ξ; d��~yk; θkE�; (8)

where L kðx; ξ; d��~yk; θkEÞ ¼ Qnk
i¼1πEð~yki �G k

i ðx; ξ; dÞ;Σk
i Þ is the likelihood of

the observations of the kth experiment.
The posterior is written as πðx;θX ;θE

��~y1;⋯;~yKÞ∝πð~y1;⋯;~yK
��xÞ � π0ðx;θX ;

θEÞ. It can be evaluated as normal using (for example) the TMCMC al-
gorithm or any other appropriate method.

3.2. Strategy 2 (S2)

In the stochastic UQ framework utilized in the PI process, the concept
of sensitivity plays a key role in finding unknowns. The more the given
model is sensitive to the unknown parameter, the lower is the uncertainty
of this inferred parameter. In this sense, an adapted sequential Bayesian
approach is built, named the sensitivity-based strategy (S2), to achieve the
goal of increasing the quality of the identified parameters.

The observations ~y are classified into K subsets, based on the sensi-
tivity of the unknown parameters, that is, ~y ¼ f~y1;⋯;~yKgT of the forward
model M of the considered system. Then, the Bayesian updating frame-
work is sequentially applied in a step-wise manner associated with the
obtained subsets, by assuming the mutual independence of the obser-
vation subsets, in other words, πð~y1;⋯;~yKÞ ¼ QK

k¼1πð~ykÞ.
In the first step at k ¼ 1, the joint prior π0ðx; θX ; θEÞ and the first set of

observations ~y1 are utilized to build the posterior, as follows:

π1
�
x; θX ; θE

��~y1�¼L 1ðx; ξ; dj~y1Þ � π0ðx; θX ; θEÞ
πð~y1Þ : (9)

In the following steps, the posterior of the previous step πðx; θX ; θEj~y1Þ
and the corresponding set of observations ~yk are used, until the end of the
observations subsets is reached, that is, k ¼ 2;⋯;K. The posterior of the
step kth could then be generalized to
4

πk
�
x; θX ; θE

��~y1;⋯;~yk
�¼L kðx; ξ; dj~ykÞ � πk�1ðx; θX ; θEj~yk�1Þ

k : (10)

πð~y Þ

In each step, the parameters are inferred by implementing the MCMC
method, namely, the TMCMC algorithm. However, this increases the
computational time of the whole process because the parameters are
inferred at each sub-step. At the same time, it is still reasonable and has
significant advantages in improving the convergence of the MCMC al-
gorithm and enhancing the quality of the identified parameters.

4. Case study

4.1. Introduction

The case study utilizes the catenary poles installed along the high-
speed train track between Erfurt and Halle/Leipzig in Germany. The
case study provides a unique opportunity to analyze a newly-built
structure at different stages: production, installation, and service life.
To achieve this, a short-term experimental program and a long-term
monitoring system were developed to collect the statistical data of the
real system. The experimental program was implemented in the labora-
tory through a series of short-term tests to verify the properties of the
spun-cast poles. This included (but was not limited to) the verification of
geometry, vibration tests, and 3-point bending test. More details about
this program are available in Ref. [46]. However, the tests used in this
study are described in detail in Section 4.3.
4.2. Geometry and materials

The studied structure is 10 m in height with tapered hollow circular
sections. The outer diameter at the bottom end is 400 mm and reduces
linearly to 250 mm at the top of the pole. The pole is produced by a
spinning method. The geometric of the spun-cast pole is summarized in
Table 1.

Nominal material properties of the structure were extracted from the
datasheet and are summarized in Table 2.
4.3. Experimental program

4.3.1. Vibration test
A pole was tested in a vibration test in free-free setup by hanging it in

a horizontal position using two ropes, as shown in Fig. 2. A set of twelve
1D accelerometers (type PCB Peizotronics 393A03) were attached to the
pole to measure the accelerations in the horizontal and vertical di-
rections, according to the test setup. Two of the sensors were fixed to the
Initial prestressing stress, σPT [MPa] 975



Fig. 2. The vibration test of the pole – schematic experimental setup.
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top end of the pole, and considered as reference sensors while the rest
were configured in two measurement setups to increase the quantity and
quality of the identified mode shapes and natural frequencies.

Moreover, a hammer with an appropriate hardness of impact tip was
used to excite the structure in three positions in both horizontal and
vertical directions. The procedure was repeated for each sensor-setup. In
the first sensor-setup, the sensors were attached with an in-between
distance of 2.0 m. Then, these sensors were moved 1.0 m toward the
bottom of the pole to form the second measuring setup, as shown in
Fig. 2.

Data was acquired at a sampling rate of 4096 Hz. The modal pa-
rameters were identified using the recorded accelerations from the two
setups. The data were analyzed using the Operational Modal Analysis
(OMA), based on the output-only data [47]. The covariance-driven
version of the Stochastic Subspace Identification (SSI) method [48]
was implemented to compute the covariances of the identified system
and modal parameters using the MACEC toolbox [49] (for further
reading about SSI, refer to Ref. [50]). The modal parameters of the first
five modes in both horizontal and vertical directions were identified. The
results of the SSI analysis are shown in Fig. 3 for vertical direction. The
identified natural frequencies f and the damping ratios ζ are listed in
Table 3.

4.3.2. 3-Point bending test
Later, the same pole was tested in a 3-point bending setup. The pole

was tested horizontally in a simply-supported setup. The supports were
made to fit the circular shape of the pole. The pole was supported at1.5 m
from each of the ends, resulting in a mid-span of7 m. The schematic
experiment setup is shown in detail in Fig. 4. The pre-specified dis-
placements were applied vertically at mid-span in steps by a servo-
hydraulic piston, until the failure of the pole, as shown in Fig. 5.

During the test, deflection of the pole was recorded continuously,
using Inductive Displacement Transducers (IDT) in three positions, P1,
Fig. 3. The results of the SSI analysis of the pole in the vertical direction: the sin
gram (right).

Table 3
The Natural frequencies f and the damping ratios ζ of the first five mode shapes of th

Mode shapea 1 - v 2 - v 3 - v 4 - v 5 -

f[Hz] 15.56 42.67 81.72 131.69 192
ζ [%] 0.87 0.72 0.28 0.38 0.4

a ði�vÞ; ði�hÞ are the ith mode shape in vertical and horizontal directions, respecti

5

P2, and P3, as shown in Fig. 4. The maximum load was 81 kN corre-
sponding to deflection of 110 mm, 63 mm, 71 mm at the points P1, P2,
and P3, respectively (see the dash-dotted lines in Fig. 10). It was evident
that the measured loads and deflections were more than those calculated
from the preliminary analysis by approximately 20%. These increments
are ascribed to the differences between the ‘real’ properties of the
structure and the nominal values mentioned in the datasheet. These
differences indicate the importance of identifying the real geometry and
material properties before evaluating the actual behavior of the structure.

For greater understanding and in-depth verification of the nature of
the structure and the ongoing test, a deflection-wise sensitivity analysis is
accomplished. This analysis is fundamental to this study as it shows the
most dominant parameters at each step of the test. In this analysis, we
discretize the envelope of the load-deflection hysteresis curve and
implement a sensitivity analysis. As a result, Sobol sensitivity indices [51,
52], based on the variance method at each discretization point, are
calculated.

The results of the sensitivity analysis at P1 are shown in Fig. 6. As a
conclusion, the modulus of elasticity Ec is dominant in the first part of the
test up to a deflection of 6 mm. For the deflection values between 6 and
80 mm, both the concrete tensile strength fctm and the prestressing initial
strain εPT are the leading parameters. For the remainder, until the failure
point is reached, the compression strength of the concrete fcm and the
concrete strain at maximum compressive stress, εc become the most
critical parameter.
4.4. Modeling

4.4.1. Theoretical background
The vertical displacement under the forced lateral vibration of a non-

uniform beam can be described by the general equation of motion [53]
that describes the behavior of the given structure under the conducted
experiments
gular values of the output covariance matrix (left), and the stabilization dia-

e un-damaged pole [46].

v 1 - h 2 - h 3 - h 4 - h 5 - h

.43 15.56 42.17 81.09 131.58 192.68
7 0.33 0.33 0.36 0.26 0.81

vely, i ¼ 1;⋯;5.



Fig. 4. 3-point bending test – schematic experimental setup.

Fig. 5. The applied loading regime of the 3-point bending test: the applied displacements at the mid-span (left), and the corresponding piston loads (right).

Fig. 6. Stacked sensitivity indices at the point P1: first-order sensitivity indices Si (left), and total effects sensitivity indices STi (right).
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∂2

∂x2 EIðxÞ ∂
2w
∂x2 ðx; tÞ þ ρAðxÞ ∂2w

∂t2 ðx; tÞ¼ f ðx; tÞ ; (11)

� �

where E is equivalent young's modulus of the section; IðxÞ is second
moment of inertia of the cross-section of the beam about the horizontal
axis. ρ is the equivalent mass density, and AðxÞ is the cross-sectional area.
w denotes the vertical displacement under the external force per unit
length f ðx;tÞ. x is the axial coordination of the beam, and t represents the
time.

Based on Eq. (11) the natural frequencies of the structure together
with the corresponding mode shapes can be determined. The common
analytical solution of the selected structure is given, as follows:

f i ¼ λ2i
2πL2

ffiffiffiffiffiffiffiffiffiffi
EIbot
ρAbot

s
; i ¼ 1; 2; 3;⋯ ; (12)

where f i is the natural frequency corresponding to the ith mode shape, λi is
a constant; L is the length of the beam. The terms Ibot and Abot denote the
moment of inertia of the cross-section at the bottom of the pole, and the
cross-sectional area at the bottom of the pole, respectively [54]. In
addition, the bending behavior of the beam is well studied and described
in the literature (see, for example [53]) and can be well calculated by Eq.
(11).
6

4.4.2. Numerical model
A fully-detailed FEMmodel to simulate each of the experimental tests

was built. The concrete material was simulated using volume elements
with eight nodes, each with three degrees of freedom. The sizes of vol-
ume elements were approximately 50 � 50 � 25 mm in the longitudinal,
circumferential, and radial directions, respectively. Further, the pre-
stressing strands were simulated using 3D truss elements with two nodes
and three degrees of freedom at each node.

The concrete constitutive model was carefully built to match the
linear and nonlinear behavior of the concrete. The selected model covers
both softening and hardening behavior of the concrete in tension and
compression, respectively. The selected model covers two main failure
mechanisms: tensile cracking, and compressive crushing. Moreover, the
selected concrete constitutive model has the advantage of simulating
material in the post-cracking phase, which is mainly required for the
simulation pole in the 3-point bending test [55].

The stress-strain curves of concrete in compression and tension were
derived from the FibModel Code 2010 [56]. The concrete in compression
follows a parabolic curve until the material attains fcm corresponding to a
strain of εc. Then, it is followed by strain softening until the concrete
reaches a crushing strain εcu of 3.1‰. The behavior of concrete in tension
is considered linear until the mean tensile strength of concrete fctm is
reached. Then, it reduces linearly to the maximum tensile strain of the
concrete. The constitutive model of the steel follows the elastic-plastic
behavior to demonstrate the expected behavior during the 3-point
bending test.
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To accelerate the different analyses in this study, surrogate models to
overcome the heavy computations of the numerical models were used.
non-parametric regression models were built, based on the Kriging
method [57]. To assure that the surrogate models matched the numerical
models to an acceptable tolerance, the Root Mean Squared Error (RMSE),
the Coefficient of Determination (CoD), and the Predicted Coefficient of
Determination (PoD) of different models were calculated.

5. Application

5.1. General considerations

The flow chart in Fig. 7 depicts the implementation of the proposed
approach to infer the unknown parameters x of the given case study using
the available observations ~y. This is achieved based on three tracks (T1,
T2, and T3) that are shown in Table 4. In the tracks T1 and T2, the
proposed strategies (S1 and S2) are applied, in parallel, using the ob-
servations of the 3-point bending test of the pole. Then, the most relevant
results of one of the applied strategies are consequently chosen. In track
T3, some of the identified parameters are selected as informative priors
for the PI process, using the observations of the vibrations test and
strategy S1.

For the sake of this study, the geometry parameters, the properties of
the reinforcement bars, and the prestressing stands were considered as
deterministic parameters d. The geometry of the corresponding model
M is built, based on the nominal values that are shown in Table 1. The
exceptions are the thicknesses of the walls where the measured values
from the laboratory are applied. The nominal properties of the pre-
stressing and the reinforcement steel are applied as listed in Table 2.

From the UQ framework and the engineering point of view, the key
parameters that have a significant influence on the behavior of the pole
Fig. 7. Implementation of the proposed strategies of PI.

Table 4
The applied tracks.

Track Observations Strategy Identified parameters

T1 Bending test S1 εPT ; fcm ;εc ; fctm;Ec
T2 Bending test S2 εPT ; fcm ;εc ; fctm;Ec
T3 Vibration test S1 Ec;ρc
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are the concrete properties and the strains of the prestressing strands. For
this reason, the vector of the unknown parameters is
x � fεPT ; fcm; εc; fctm; Ec; ρcgT .

Except for the prestressing initial strain εPT , the prior densities of the
unknown parameters x are assigned to follow PDFs of uniform distribu-
tions. This is because the prior knowledge of parameters is not enough to
formulate informative priors. The priors π0ðxÞ are carefully bounded,
based on the available information and engineering prejudgment
considering the values recommended by fib Model Code 2010 [56], that

is, π0ðxÞ eU ða;bÞ, as listed in Table 5.
Based on the measurements (see Section 4.3.2), the prior distribution

of εPT follows a normal distribution π0ðεPT Þ eN ðμPT ; σ2PTÞ with unknown
mean μPT and variance σ2PT . In this case, the literature recommends
considering the conjugate priors of the hyperparameters θx as the normal
distribution for the unknown mean and the inverse gamma distribution
for the unknown variance [29]. Accordingly, the priors of the mean μPT
and the variance σ2PT are chosen, such as π0ðμPTÞ eN ð3:1;0:4Þ and

π0ðσ2PTÞ eI G ð5:0;0:126Þ, respectively. This corresponds with a maximum
a Priori MAPrσ2PT ¼ 0:021 and a standard deviation SDσ2PT

¼ 0:018. Be-

sides, the variance of the total errors σ2E is chosen to be a global hyper-

parameter θE has a uniform prior distribution π0ðσEÞ eU ð0:005; 0:1Þ,
which makes sense in this case. Moreover, due to some physical in-
terpretations, the independency between the parameters was assumed.

The errors E is selected to have a multivariate Gaussian distribution

E eN ð0;ΣÞ with zero-means EðηÞ ¼ 0. Σ represents the symmetric, and
positive-semidefinite covariance matrix that is unknown (at least in this
case), and is estimated through the applied framework. For uncorrelated
errors, the covariance matrix becomes Σ ¼ σ2E diagf~y1;⋯; ~yng2 2 Rn�n,
where σ2E is the variance of the errors η.
5.2. Tracks T1 and T2 (bending test)

The proposed strategies S1 and S2 are implemented in parallel. Then,
the results of different applied strategies are compared to detect their
respective advantages. Two criteria measure the quality of the inferred
parameters: the uncertainty represented by the variance of the parame-
ters, and the shape of the posterior distribution. The realizations of the
observations ~yi � δi are created from the deflections δi of the pole at
different time steps at the specified point P1, P2, and P3, see Section
4.3.2.

Strategy S1 is applied by calculating the likelihood from Eq. (4) using
the observation ~y. To apply strategy S2, the observations are divided into
three subsets, based on the sensitivity indices derived in Section 4.3.2,
such that K ¼ 3 and ~y ¼ f~y1;~y2;~y3gT . The corresponding deflection
ranges of the subsets are specified in Table 6. In this step, the unknown
Table 5
The uninformative priors of the parameters.

Parameter PDFs

Concrete compressive strength, fcm[MPa] U ð80;120Þ
Concrete strain at maximum compressive stress, εc[‰] U ð2:5;3:0Þ
Concrete tensile strength, fctm[MPa] U ð4:0;6:0Þ
Concrete Modulus of Elasticity, Ec[GPa] U ð43;53Þ
Concrete density, ρc[gcm�3] U ð2:1;2:5Þ

Table 6
The classification of the observations ~y (strategy S2). The deflection at mid-span
(Point P1) as a reference.

Step Observation subset Deflection range [ mm] Sensitive parameters

1 ~y1 [0–6] Ec
2 ~y2 (6–80] fctm; εPT
3 ~y3 (80–110] fcm; εc
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parameters vector x � fεPT ; fcm; εc; fctm;EcgT are inferred, where the
concrete density ρc cannot be identified in this step due to the nature of
the measurements.

At the end of the tracks T1 and T2, the unknown parameters are
estimated by sampling from the posterior πðμPT ;σ2PT ; fcm; εc; fctm;Ec;σ2E

��δÞ.
For this reason, the TMCMC algorithm is run for Ns ¼ 5 � 103 samples.
Then, the statistical moments of the inferred parameters are calculated.
5.3. Track T3 (vibration test)

In this track, strategy S1 is applied by using the observations vector ~y
consisting of the natural frequencies that are derived in Section 4.3.1,
that is, ~yi � f i. Two parameters can be identified through this track
corresponding to the linear behavior of the structure in the vibration test,
namely, x � fEc; ρcgT .

From Eq. (12), it can be seen that f i∝
ffiffiffiffiffiffiffiffiffiffiffi
Ec=ρc

p
. This means that only the

fixed ratio κ ¼ Ec=ρc can be identified. The values of Ec and ρc are un-
identifiable, because any values of Ec and ρc that satisfy κ is valid as a
Fig. 8. Comparing the results of the applied Bayesian approaches: the sensitivity-
based approach and the All-in-one approach.

Table 7
The properties of the posteriors of the identified parameters using the Bayesian str
deviation SD.

Parameter εPT[‰] fcm[MPa] εc[‰]

MAP 3.16 103.11 2.87
μ 3.20 104.63 2.76
SD 0.10 3.20 0.13

Table 8
The properties of the posteriors of the identified parameters using the Bayesian str
deviation SD.

Parameter εPT[‰] fcm[MPa] εc[‰]

MAP 3.16 105.36 2.73
μ 3.17 105.10 2.74
SD 0.03 1.36 0.04
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solution. To overcome this, the posterior of Ec from track T2 is used as an
informative prior in this track, because it revealed better results. This
makes ρc identifiable and results in obtaining the posteriors of Ec and ρc.
In this track, 5 � 103 samples are drawn from the posterior πðEc; ρc; σ2E

��fÞ
using the TMCMC algorithm.

6. Results and discussion

The results of tracks T1 to T3 are depicted in Fig. 8. The proposed
sensitivity-based strategy adds significant improvements to the quality of
the inferred parameters leading to more accurate posteriors with smaller
variances. This is because the sensitivity-based S2 strategy is built in a step-
wise manner. In each step, it focuses on inferring highly sensitive pa-
rameters, which leads to an increase in the quality of inferred parameters.
Moreover, the obtained posteriors of these sensitive parameters are used
in the following step as a formative prior, which also leads to an
improvement in the quality of the other parameters. On the contrary, in
the All-in-one S1 strategy, the sensitivity of the parameters is averaged on
the full set of data, which results in losing some information that is
embedded in the available observations. This results in inferring pa-
rameters at a lower quality. This emphasizes that uncertainty and
sensitivity are associated, as mentioned in Section 3.2.

However, the mean values of unknown parameters are inferred by
both strategies with good agreement. A summary of the statistical
properties of parameters is listed in Tables 7 and 8. It is clear, how much
these values differ from the nominal properties that are provided in the
datasheet of the structure. The inferred parameters are 20% higher than
the nominal values (see Section 4.2). This shows the importance of the PI
process as an essential step before evaluating the behavior of the
structure.

Correlations of different pairs of parameters are verified by the scatter
plots of the samples. Fig. 9 (left) shows the high negative correlation of
parameters εPT and fctm in the model of the 3-point bending test. These
two parameters are correlated with a linear Pearson coefficient of cor-
relation ρεPT ;fctm ¼ � 0:87. From an engineering point of view, this is
correct, as the higher the applied prestressing strain εPT , the lower is the
required tensile strength of the concrete fctm to have the same cracking
moment of the given cross section.

According to the results of track T3, the parameters Ec and ρc are
highly correlated with a correlation coefficient of ρEc ;ρc ¼ 0:9, as shown
in Fig. 9 (right). This result is expected, as discussed in Sections 4.3.1 and
5.3. However, it supports the findings of this work. In addition, the listed
hyperparameters in Table 9 are sampled from the posterior. Among these
hyperparameters, σE evaluates the total errors η of the PI process. The
inferred MAP values of the σE are 0.034 and 0.041 for the observations of
bending and vibration tests, respectively, which are reasonable for the
types of experiments implemented, and the numerical models.
ategy S1: the Maximum A Posteriori MAP, the mean value μ, and the standard

Ec[MPa] fctm[GPa] ρc ½gcm�3�
48.29 5.01 2.32
48.63 4.83 2.34
1.25 0.36 0.06

ategy S2: the Maximum A Posteriori MAP, the mean value μ, and the standard

Ec[MPa] fctm[GPa] ρc ½gcm�3�
48.06 5.11 2.32
48.49 4.98 2.33
0.32 0.11 0.04



Fig. 9. The correlations of the identified parameters: tracks T1 and T2 using the 3-point bending test (left), track T3 using the vibration test (right).

Fig. 10. Validation of the results using mean values of the identified parameters and the bending test model. The deflections are presented at the points P1 (left), P2
(middle), and P3 (right).

Table 9
The properties of the posteriors of the hyperparameters: theMaximum A Posteriori
MAP, the mean value μ, and the standard deviation SD.

Hyperparameter σE[-]a σE[-]b μPT[‰]b σ2PT [-]
b

MAP 0.041 0.034 2.72 0.015
μ 0.040 0.029 2.86 0.023
SD 0.0067 0.0037 0.18 0.007

a,b Using the observations of vibration and bending test, respectively.
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7. Validation of results

To validate the identified parameters, the mean values of the iden-
tified parameters from strategy S2 are used as the FEM model inputs.
However, the results of the FEM are compared with the corresponding
observations.

In the case of the bending test, the results of the FEM model are
Table 10
Validation of the results - vibration test, based on the identified parameters through the
used as reference.

Mode shape a 1 - v 2 - v 3 - v 4 - v 5

f [Hz] 15.54 42.09 81.16 131.76 19
Difference [%] 0.13 1.36 0.69 0.05 0.

a ði�vÞ; ði�hÞ are the ith mode shape in vertical and horizontal directions, respecti
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plotted against the hysteresis loops of the force-deflection derived from
the measurements of the bending test. Fig. 10 depicts agreement between
the experimental measurements of the bending test at points P1, P2, and
P3, together with the outputs of the FEM model.

In the samemanner, the first five natural frequencies in the horizontal
and vertical direction (according to the test setup) are derived from the
FEM model using the inferred parameters. The results are listed in
Table 10. The trivial differences show that the results of the FEM model
conform (with high accuracy) with the experimental observations of the
vibration test.

Finally, the inferred parameters are verified by comparing them with
conventional values of the concrete properties that are specified by the
different engineering standards. Accordingly, the equations of the Fib
Model Code 2010 [56], which specifies the concrete properties based on
the compressive strength of the concrete fcm, are utilized. Thus, the MAP
values of the fcm from Table 8 are used. The calculated properties show
‘sensitivity-based’ Bayesian approach. The natural frequencies listed in Table 3 are

- v 1 - h 2 - h 3 - h 4 - h 5 - h

2.83 15.37 41.65 80.35 130.48 191.04
21 1.22 1.23 0.92 0.84 0.85

vely, i ¼ 1;⋯;5.



Table 11
The concrete properties based on the recommendation of the Fib code [56] and
the MAP of the fcm ¼ 105:36 MPa. The MAP values listed in Table 3 are used as
reference.

Parameter fcm[MPa] εc[‰] Ec[MPa] fctm[GPa]

value 105.36 2.90 47.10 5.18
Difference [%] – 6.20 3.10 1.40
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that the inferred parameters are in line with the recommended values of
the given code with relatively acceptable tolerance, as shown by the
differences in Table 11.

8. Conclusion

The Bayesian probabilistic approach was applied to identify unknown
parameters of the given structure. First, the empirical Bayesian approach
was implemented through the All-in-one strategy (S1), where six pa-
rameters were inferred by utilizing the FEM model and observations of
the multiple experiments.

To improve the quality of inferred parameters, an adapted sequential
Bayesian approach was proposed. This approach was implemented
through the sensitivity-based strategy (S2) by dividing the observations
into subsets based on the sensitivity of the parameters. Then, the
Bayesian approach was applied in a sequential manner, considering the
posterior of the current step as prior to the subsequent step.

In both strategies, the TMCMC algorithmwas used to sample from the
posterior. The results showed a considerable improvement in the quality
of the inferred parameters and confirmed the associations between the
uncertainty and the sensitivity of the parameters. Furthermore, consid-
ering the unknown total errors as hyperparameters allowed to evaluate
the total errors of the whole PI process.

In the validation step, a perfect agreement was achieved when using
the mean values of the inferred parameters as inputs for the numerical
model to compare results to the experimental observations. Additionally,
it is proved that the inferred properties of the concrete were in line with
the recommended values of the Fib Model Code 2010 for the same
compressive strength. It has to be noted that the determined concrete
compressive strength increased considerably concerning the values used
in design due to the use of high strength concrete and the ongoing
hardening process after the normative compressive strength at the age of
28 days, which is mandatory for the design.

The considerable deviation between the inferred parameters and the
nominal ones drew attention to the importance of the PI process before
conducting any study on the existing structures. This emphasized the
argument at the beginning of this paper and laid the foundations for a
more appropriate implementation of the subsequent phases of this study.
Furthermore, applying the proposed approach looks very promising to
similar applied case studies and systems that have time-dependent
measurements.
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