
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2017/2018

Pedro Miguel André
Alagoa João

Identificação de Aplicações de Vídeo em Canais
Protegidos com Aprendizagem Automática

Identification of Video Applications over Protected
Channels with Machine Learning

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2017/2018

Pedro Miguel André
Alagoa João

Identificação de Aplicações de Vídeo em Canais
Protegidos com Aprendizagem Automática

Identification of Video Applications over Protected
Channels with Machine Learning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação científica do Doutor
Paulo Jorge Salvador Serra Ferreira, Professor auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutora Ana Maria Perfeito Tomé
professora associada da Universidade do Porto

vogais / examiners committee Prof. Doutor Mário João Gonçalves Antunes
professor adjunto do Instituto Politécnico de Leiria

Prof. Doutor Paulo Jorge Salvador Serra Ferreira
professor auxiliar da Universidade de Aveiro

Palavras Chave aprendizagem automática, percepção em redes, classificação de tráfego.

Resumo Com a adoção de tráfego cifrado a tornar-se a norma e a crescente utiliza-
ção de técnicas de obfuscação de tráfego, as empresas têm cada vez mais
dificuldades em aplicar políticas de uso nas suas redes, bem como garan-
tir o seu bom funcionamento. Os utilizadores têm mais conhecimentos tec-
nológicos, sendo facilmente capazes de contornar ferramentas de filtros de
conteúdo online com a utilização de túneis protegidos como VPNs. Conse-
quentemente, técnicas como DPI, que já estão ultrapassadas devido à sua
impraticabilidade, tornam-se cada vez mais ineficazes. Além disso, todos os
regulamentos que têm vindo a ser estabelecidos por governos e organizações
internacionais sobre a privacidade dos cidadãos tornam a tarefa de monito-
rização de uma rede cada vez mais difícil. Este documento apresenta uma
plataforma escalável e facilmente instalável para identificação de aplicações
numa rede empresarial, focando-se em aplicações de vídeo. Esta abordagem
deve ser eficaz independentemente do contexto e organização da rede, com
o objectivo de ser uma ferramenta útil no processo de supervisão de redes.
O modelo proposto oferece um compromisso entre a capacidade de super-
visionar uma rede e assegurar a privacidade dos trabalhadores. A avaliação
de resultados indica que é possível identificar serviços web em ligações esta-
belecidas sobre canais protegidos com uma precisão geral de 95%, usando
informações de baixo-nível dos pacotes que não comprometem informação
sensível dos trabalhadores.

Keywords machine-learning, network awareness, traffic classification.

Abstract As encrypted traffic is becoming a standard and traffic obfuscation techniques
become more accessible and common, companies are struggling to enforce
their network usage policies and ensure optimal operational network perfor-
mance. Users are more technologically knowledgeable, being able to circum-
vent web content filtering tools with the usage of protected tunnels such as
VPNs. Consequently, techniques such as DPI, which already were consid-
ered outdated due to their impracticality, become even more ineffective. Fur-
thermore, the continuous regulations being established by governments and
international unions regarding citizen privacy rights makes network monitoring
increasingly challenging. This work presents a scalable and easily deployable
network-based framework for application identification in a corporate environ-
ment, focusing on video applications. This framework should be effective re-
gardless of the environment and network setup, with the objective of being a
useful tool in the network monitoring process. The proposed framework offers
a compromise between allowing network supervision and assuring workers’
privacy. The results evaluation indicates that we can identify web services that
are running over a protected channel with an accuracy of 95%, using low-level
packet information that does not jeopardize sensitive worker data.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 State of the Art 5

2.1 Overview of encryption protocols . 5

2.1.1 IPSec . 5

2.1.2 TLS/SSL . 6

2.1.3 SSH . 7

2.1.4 OpenVPN . 8

2.2 Network monitoring . 8

2.3 Network traffic classification approaches . 10

2.3.1 Port-based classification . 10

2.3.2 Deep packet inspection . 11

2.3.3 Statistical based classification . 12

2.3.4 Machine learning techniques . 14

2.3.4.1 Basic Machine Learning (ML) concepts 14

2.3.4.2 Performance measurement . 15

2.3.4.3 Types of learning . 16

2.3.4.3.1 Supervised learning . 16

2.3.4.3.2 Unsupervised learning 18

2.3.4.3.3 Semi-supervised learning 19

i

2.3.4.3.4 Ensemble methods . 21

2.3.4.4 Hybrid methods . 21

2.4 Privacy rights and ethical aspects of network monitoring 21

2.4.1 Information privacy laws . 22

2.4.2 Network and device surveillance in the workplace 22

3 A Framework for Network Service Identification 23

3.1 System overview . 24

3.2 Building the ML model . 24

3.2.1 Goal identification . 25

3.2.2 Data retrieval . 25

3.2.3 Data preprocessing . 26

3.2.3.1 Standardization . 27

3.2.3.2 Sample size definition and silence values 28

3.2.3.3 Features . 31

3.2.3.4 Feature dimensionality and reduction 34

3.2.4 Feature engineering . 34

3.2.5 ML Model training and evaluation . 35

3.3 Live Traffic Analysis . 36

3.3.1 System architecture . 37

3.3.1.1 Capture module . 38

3.3.1.2 Processing module . 40

3.3.1.3 Server Side . 44

3.3.1.4 Client Side . 44

4 Experimental setup, results and analysis 45

4.1 Network traffic acquisition . 45

4.1.1 Capture devices and configuration . 45

4.1.2 Tunneled traffic . 47

4.1.2.1 SSH tunnel with dynamic port forwarding 47

4.1.2.2 OpenVPN tunnel . 48

4.1.3 Labeling . 48

4.2 Dataset composition . 49

4.2.1 Considered classes . 49

4.2.1.1 Acestream . 50

4.2.1.2 Netflix . 50

4.2.1.3 Youtube . 51

4.2.1.4 Twitch . 52

ii

4.2.1.5 Overview of all classes . 52

4.2.2 Processed dataset characteristics . 53

4.3 Classification and results evaluation . 57

4.3.1 Training with tunneled traffic . 58

4.3.1.1 Identifying video category . 58

4.3.1.2 Identifying specific video application 61

4.3.2 Training without tunneled traffic . 64

4.3.2.1 Identifying video category . 64

4.3.2.2 Identifying specific video application 65

4.4 Summary . 65

5 Conclusions and future work 67

References 71

Appendix A 79

Video category identification results . 79

Video application identification results . 82

Appendix B 85

iii

List of Figures

2.1 TLS/SSL packet structure. 6

2.2 Secure Shell (SSH) packet structure. 7

2.3 Network TAP diagram. 9

2.4 Port mirroring example diagram. 9

2.5 A labeled training set for supervised learning (e.g., spam classification)[35]. 16

2.6 Unsupervised learning example. 19

2.7 Semi-supervised learning example. 20

3.1 Diagram of the two-level prediction system. 23

3.2 Framework overview. 24

3.3 Building an ML model process. 24

3.4 Data preprocessing pipeline. 26

3.5 An example of standardization in a sine wave. 28

3.6 Samples structure. 29

3.7 Normalization example. 30

3.8 Normalization example with inactive time buckets identification. 31

3.9 Scalogram of the down_bytes attribute of a video sample. 32

3.10 Detection of spikes in a scalogram. 33

3.11 Comparison of dimensional spaces before and after applying Principal Components Analysis

(PCA) reduction [80]. 34

3.12 Example of a 5-fold Cross-validation (CV). 36

3.13 Live system architecture. 37

3.14 Technologies used in each component of the system. 38

3.15 Time diagram describing the processing of the messages when a delay occurs. 41

3.16 Interaction of the Capture and Processing modules in detail, with scheduled processing. 42

3.17 Worker task algorithm. 43

3.18 Framework overview with shared objects. 43

4.1 Captured packets by each machine. 47

v

4.2 Diagram of an SSH tunnel using a SOCKS proxy. 47

4.3 Diagram of a OpenVPN tunnel. 48

4.4 Distribution of the protocols contained in the dataset. 49

4.5 Uploaded and downloaded bytes of Acestream across all network settings 50

4.6 Uploaded and downloaded bytes of Netflix across all network settings. 51

4.7 Uploaded and downloaded bytes of Youtube across all network settings 51

4.8 Uploaded and downloaded bytes of Twitch across all network settings. 52

4.9 Average packet size for each service (bytes) . 53

4.10 Scatter matrix of some silence period related features. 54

4.11 Histogram of silence periods for video applications. 55

4.12 Histogram of silence periods for non-video applications. 55

4.13 Parallel coordinates plot for outgoing packet features and outgoing bytes features. 56

4.14 Parallel coordinates plot for incoming bytes features. 56

4.15 Training set and test set for the training without tunnel traffic scenario. 57

4.16 Receiver Operating Characteristic (ROC) curve for the best CV score of Random Forest

classifier video traffic identification (best case). 59

4.17 Normalized confusion matrix for video application classification (best case). 62

4.18 Normalized errors of confusion matrix for video application classification (best case). . . . 63

5.1 Comparison of the sliding window method and the current method for extracting samples

from packet captures. 68

vi

List of Tables

2.1 Official port numbers of some well-known protocols. 10

2.2 Example of a binary confusion matrix. 15

3.1 Time bucket attributes. 27

3.2 Structure of a packet attribute file. 27

4.1 Used machines for capturing network data. 46

4.2 Download/Upload ratio for each class. 52

4.3 Random samples from the dataset. 54

4.4 Random Forest Classifier with AdaBoost results for identifying video traffic. 58

4.5 Random Forest Classifier with AdaBoost results using different feature groups for video

identification (best case). 60

4.6 CV accuracy after applying standardization and PCA to the feature set. 60

4.7 Test accuracy after applying standardization and PCA to the feature set. 61

4.8 Random Forest Classifier with AdaBoost results using different feature groups for video

application identification (best case). 63

4.9 Random Forest Classifier results for idetifying video traffic (training without tunneled traffic). 64

4.10 Comparison of the accuracy of the classifier when adding pseudo-periodic components

features. 65

1 Video category identification results. 80

2 Video category identification results (training without tunneled traffic.) 81

3 Video application identification results. 83

4 Video application identification results (training without tunneled traffic.) 84

vii

Glossary

ACL Access Control List
AI Artificial Intelligence
AMQP Advanced Message Queueing Protocol
ANN Artificial Neural Networks
API Application Programming Interface
BLINC BLINd Classification
CAIDA Center for Applied Internet Data

Analysis
CPU Central Processing Unit
CV Cross-validation
CWT Continuous Wavelet Transform
DBSCAN Density-based spatial clustering of

applications with noise
DNS Domain Name Server
DPI Deep Packet Inspection
EU European Union
FN False Negative
FP False Positive
FTP File Transfer Protocol
GDPR General Data Protection Regulation
GIL Global Interpreter Lock
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure or

HTTP over TLS
IANA Internet Assigned Number Authority
IETF Internet Engineering Task Force
IMAP Internet Message Access Protocol
IP Internet Protocol
IPSec Internet Protocol Security
ISP Internet Service Provider
kNN k-Nearest Neighbor
MAC Message Authentication Code
ML Machine Learning

NN Neural Networks
NSA National Security Agency
OvO One vs. One
OvR One vs. Rest
P2P Peer to Peer
PCA Principal Components Analysis
POP3 Post Office Protocol
QoS Quality of Service
REST Representational State Transfer
RFC Request for Comments
ROC Receiver Operating Characteristic
RSA Rivest-Shamir-Adleman
RTP Real-time Transport Protocol
SCP Secure copy
SFTP Secure File Transfer Protocol
SIP Session Initiation Protocol
SNAP Stanford Network Analysis Platform
SPAN Switch Port Analyzer
SPID Statistical Protocol IDentification
SSH Secure Shell
SSL Secure Sockets Layer
SSLv3 Secure Sockets Layer version 3
SVM Support Vector Machines
TCP Transmission Control Protocol
TLS Transport Security Layer
TAP Test Access Point
TN True Negative
TP True Positive
UDP User Datagram Protocol
VFDT Very Fast Decision Tree
VM virtual machine
VPN Virtual Private Network

ix

CHAPTER 1
Introduction

Traffic monitoring has always been a vital task for network management. It is used to
understand the behavior of traffic flows, to expose security breaches and policy enforcement.
Identification of network services using traffic classification is a conventional method to
enforce corporate policies, such as blocking certain websites or checking personal e-mail.
It can also be utilized to detect attacks at the application level. Although methods like
Deep Packet Inspection (DPI) are widely used, they rely on expensive computational power
and are not viable for a real-time system. Furthermore, governments and international
unions are establishing new regulations regarding citizen privacy rights[1], as described
in Section 2.4. Thus, with the need for protection of data and user privacy becoming
exponentially important, making approaches that depend on content inspection raises ethical
issues. Additionally, massive data breaches are becoming a trend, with events such as the
National Security Agency (NSA) disclosures of mass surveillance programs and the Equifax
data leaks throughout the year of 2017 becoming more and more common. For this reason,
data encryption is becoming increasingly adopted, undermining the efficiency of traditional
network monitoring methods.

One of the most essential methods of encryption, Transport Security Layer (TLS), is becoming
more prominent. Although designed to be used in critical tasks such as banking transactions
and sending secure e-mails, with the ascending amount of web services replacing offline services,
TLS application has spread to a wide range of services. According to the Google Transparency
Report[2], around 95% of web pages accessed via Google Chrome were loaded over Hyper
Text Transfer Protocol Secure or HTTP over TLS (HTTPS) as of August 2018.

1.1 Motivation

In light of the above, companies are struggling to deploy monitoring systems that are effective
in applying Quality of Service (QoS) policies and estimating the performance of network
applications in a way that complies with the security and privacy standards. On the other

1

hand, users of a network can take advantage of these limitations to access illicit content that
does not conform to the company rules. For instance, according to a survey conducted by
the AMA/ePolicy Institute[3], the primary concerns of employers that actively block access
to the web are workers visiting adult sites with pornographic content, game sites and social
networking services (96%, 61%, 50%, respectively). In another recent survey[4], about 37% of
respondents admitted watching TV shows and movies at work. Despite the fact this type of
content can be blocked with the utilization of specific software such as OpenDNS, sometimes
this is not the ideal practice, as knowledgeable users can easily bypass these systems through
the use of proxies or by merely changing the local machine’s Domain Name Server (DNS). Plus,
with the usage of protected channels such as SSH tunnels or Virtual Private Network (VPN),
the effort of enforcing network policies becomes hugely complex. However, it is an absolute
necessity, particularly in companies with a large workforce, as the corporate resources should
be spent on productive work for the company. Other methods of traffic monitoring/blocking
and their limitations will be discussed in Section 2.3.

1.2 Contributions

In this dissertation, a network-based framework for service identification will be presented,
focusing on video applications. Since this approach should consider both security and privacy,
the collected data should be non-intrusive, using only low-level traffic statistics to make
predictions. It should be effective in identifying a given service in a timely way, regardless
of the network setup and underlying protocols, with a strong focus on protected channels.
Although traffic classification problems have been studied extensively throughout the years,
there is a lack of contributions regarding the context of VPNs and protected tunnels. This
study aims to help fill that gap in the field, by providing insight into how modern classification
techniques behave when the network environment becomes unfamiliar. Despite the fact that
this work will focus on video application classification, the proposed framework should be able
to adapt to any type of application, which is proposed when future work is discussed in ??

Besides proposing an ML model for identifying video traffic and video applications, this work
also presents a framework for live traffic analysis, using the results from the creation of the
classification model. This framework should be scalable, easily deployable and should work in
real-time. Although this framework is designed to be used at a corporate level, it can also be
adapted and used by internet service providers for traffic shaping purposes.

In Chapter 2, the most common encryption protocols will be presented (Section 2.1). After
establishing how networks can be monitored (Section 2.2), we go into detail about the evolution
of traffic classification and the challenges the field is currently facing. We conclude this chapter
by discussing individual privacy rights in the light of recent regulations in Section 2.4.

In Chapter 3, we begin to explain the proposed framework for service identification in real
time. Firstly, we describe the process of creating ML models and how to approach every
component of the development. Secondly, we describe the architecture of the developed

2

real-time system, along with its requirements, used technologies and explain each decision
made during development.

In Chapter 4, we describe the experiment to build an accurate traffic classifier with detail.
It opens with the used methods to build the private dataset, describing its composition and
characteristics of each class. Then the results are presented and discussed.

We conclude with Chapter 5, explaining the contributions of our work and how it could be
enhanced. All the developed code for this dissertation is available online.1

1https://github.com/alagoa/application-identification

3

CHAPTER 2
State of the Art

2.1 Overview of encryption protocols

This section provides a brief description of some of the most common encryption protocols
that are currently used. Since our goal is to identify network services no matter the context,
it is important to establish the behavior of these protocols, both in the initialization of
the connection and during the exchange of encrypted data. We describe each protocol’s
properties, dynamics and packet structure. The chosen protocols are Internet Protocol
Security (IPSec), TLS, SSH andOpenVPN, since they are among the most used protocols
for increasing the security of communications. Although OpenVPN is not a protocol itself,
it is becoming the most widely used open-source implementation of VPN techniques, using a
custom protocol based on TLS.

2.1.1 IPSec

IPSec protocol suite is a set of protocols defined by the Internet Engineering Task Force
(IETF)[5]. It provides encryption, authentication and data integrity in the network layer, as
well as anti-replay. As a result of being a Layer 3 protocol, it protects both the payload of the
packet and its network layer information.

The purpose of IPSec is to provide a secure network connection, independently of the
application on each node. It is usually used for inter-site connections in corporate networks.
The fact that is not required to change any application used in a particular connection for
IPSec to work is its main advantage. Yet, this creates difficulties in ensuring the protection of
specific applications. Furthermore, some of the algorithms used in the IPSec cryptographic
suite are outdated. Plus, the fact that it has to encrypt an extremely high amount of data,
adding overhead to the network, is a major drawback of the protocol.

The most critical part of IPSec is the ESP protocol, which provides the security features
previously described. It adds a header and a trailer to the packet, according to the mode of

5

operation. In transport mode, only the payload of the original packet is encrypted, which
means that the original IP header is used. In tunnel mode, both the payload and the original
IP header are encrypted. A new IP header is created with the endpoints of the established
tunnel.

2.1.2 TLS/SSL

TLS is a protocol based on Secure Sockets Layer version 3 (SSLv3) that provides secure
communications when using the Transmission Control Protocol (TCP) protocol. As previously
referred, it has become one of the most widely used encryption protocols, with an increase of
40% of services using HTTPS since March 2015.

TLS contains two levels of protocols, as described in Figure 2.1. The first level, called the
handshake layer, contains the initialization sub-protocols that deal with the initial handshake,
while the second level, called record layer contains the Record protocol, which serves as an
envelope for application data. The Record protocol handles the encryption, authentication
and splitting of the transmitted data. The structure of a TLS packet can be seen in Figure 2.1.

SSH Protocol

Transport Layer

Application Layer HTTP BitTorrentFTP

TCP

Packet
Length

Padding
Length Payload Padding MAC

Encrypted field

Figure 2.1: TLS/SSL packet structure.

A crucial part of the TLS protocol is the handshake. It is in this section that both
parties define critical aspects such as authentication using an X.509 certificate chain, cipher
suite negotiation and session key establishment. The messages exchanged in this process are
unencrypted, up until a Change Cipher Spec message is sent, which causes a change in the
encryption algorithm used in the messages.

6

2.1.3 SSH

The SSH protocol acts on the application layer and provides a secure channel in client-server
communications. While it is best known for remote login in computer systems, it can also be
used to securely transfer files, to tunneling applications and set up a VPN, usually using the
OpenSSH suite. It provides encryption, client/server authentication and data integrity and is
essential in most corporate environments. The SSH protocol packet format, seen in Figure 2.2
consists of an encrypted payload that contains the packet and padding length, the application
data and the padding. The Message Authentication Code (MAC) at the end of the packet is
not encrypted, as SSH uses an encrypt-and-mac approach.

SSH Layer

Transport Layer

Application Layer HTTP BitTorrentFTP

TCP

Packet
Length

Padding
Length Payload Padding MAC

Encrypted field

Figure 2.2: SSH packet structure.

An SSH connection begins with the establishment of a TCP connection. After the preferred
encryption algorithms are exchanged, the client/servers keys are verified, and a shared key is
created. After assuring its legitimacy, both parties start to send secure messages.

Since SSH allows the tunneling of any application running over TCP, network administrators
that allow the use of this protocol would not be able to restrict what application the users’
access, potentially exposing the network to insecure traffic. It is important to note that, in
the case of an HTTP over SSH connection using port forwarding, only the IP addresses of the
tunneled connection are visible in the IP headers, making separate application flows virtually
impossible to differentiate.

7

2.1.4 OpenVPN

OpenVPN is an open-source software that provides VPN solutions. It can run either on
TCP or User Datagram Protocol (UDP). Its security features are based on TLS and it uses
the OpenSSL[6] cryptographic library. Since it is one of the most used open-source VPN
implementations, it will be one of the contexts we will apply the developed framework.

2.2 Network monitoring

Since this dissertation will deal with network data, the way that data is acquired is a vital
part of the process. Several methods of capturing data exist and they all have their own perks,
but there are many guidelines to be followed that guarantee that the data is captured more
faithfully and efficiently. In this section, these methods will be presented.

There are two types of monitoring:
• Active monitoring: Which requires the injection of dummy traffic and follow its flow

in the network.
• Passive monitoring: It involves monitoring traffic that is present in the network. As

such, it encompasses the need for a device in the network that can capture the traffic,
such as a probe.

Active monitoring is regularly used when testing the performance of a given network,
giving insight into the QoS and see how the network reacts to specific scenarios. Passive
monitoring is viewed as the best method to analyze a network over a period of time, providing
a holistic view of the network and useful when taking into account large amounts of data.
This dissertation will focus more strongly on passive monitoring, exposing its specific methods
along with their advantages and drawbacks.

The first type of passive monitoring is hardware-based monitoring, which is traditionally
performed by hardware devices such as a Test Access Point (TAP) or using a mirror-port on
a switch.

A TAP is a device which can capture traffic between two nodes on a network. They are often
utilized in security contexts, as they cannot be detected in the network. Since they mostly
work in full-duplex, the sniffed data arrives at all devices in real time[7]. In Figure 2.3 it can
be observed how a TAP is typically located in a simple network.

8

RouterFirewall Switch

Network Analysis Device

TAP

Figure 2.3: Network TAP diagram.

A TAP is often advantageous in situations where network performance is the goal, as it
provides an overview of the state of a connection. It has also the perk of having a negligible
packet loss rate. On the other hand, it cannot monitor intra-device traffic and it comes with
the additional cost of the purchase of the device.

Another method of hardware-based monitoring is to use port mirroring, or Switch Port
Analyzer (SPAN). This approach consists of forwarding replicates of the incoming/outgoing
traffic of a given device interface to another that is connected to the machine that will analyze
the traffic. Figure 2.4 shows an example of the network setup that uses this technique for
monitoring the traffic.

RouterFirewall

Network Analysis Device

Switch

Mirror port

Figure 2.4: Port mirroring example diagram.

Port mirroring has numerous perks such as being capable of being configured remotely, does
not require additional hardware, it can capture intra-device information and several device
interfaces, in case the switch has that capability. However, it is usually a computationally
expensive task for the switch’s Central Processing Unit (CPU), which makes the packet loss
rate considerably higher when compared to TAPs. Plus, since the CPU is so overloaded, some
timestamps attributed to packets can be inaccurate, putting the reliability of the system at

9

risk.

Finally, there are specific software solutions, which can be used in terminals, that are much
more versatile than the methods described above. One popular example is Wireshark1,
a powerful packet sniffing tool that can be used for monitoring both wired and wireless
connections. One of the factors that are pushing software-based monitoring is the emergence
of virtualized network environments, which makes hardware-based approaches not applicable
in most cases.

These type of packet captures are usually conducted using devices such as network cards from
computer machines such as desktops and laptops. Although this can be useful to monitor
traffic more straightforwardly, usually these devices have a high packet loss rate, since they
are not optimized for that task. However, this is usually not a problem in contexts where the
loss of a small percentage of the packets is inconsequential, like building network application
profiles. In situations such as testing the network performance, packet loss usually cannot be
afforded.

2.3 Network traffic classification approaches

Network traffic classification has a significant role both in the research community and the
industry. This section describes how the classification techniques evolved over the years,
dividing them into their respective categories, stating their application and limitations. Even
though many of the following examples apply to application protocols and not to specific
application services such as a web service, it is essential to understand how these methods
evolved throughout the years.

2.3.1 Port-based classification

The port-based approach is one of the first traffic classification methods to be used. It
consists of the analysis of what ports a given connection is using, by analyzing the TCP (or
UDP) header. An application protocol is usually associated with a well-known port number,
which makes port-based classification a popular method to use in Access Control List (ACL)
and firewalls. Table 2.1 shows the correspondence of network applications to their protocol
numbers, assigned by the Internet Assigned Number Authority (IANA)[8].

Protocol Port
File Transfer Protocol (FTP) 21
DNS 52
HyperText Transfer Protocol (HTTP) 80
HTTPS 443

Table 2.1: Official port numbers of some well-known protocols.

1https://www.wireshark.org/

10

Albeit fast and privacy-minded, these techniques quickly became obsolete, as applications
could merely use unregistered port numbers or use a dynamic port. For example, the Session
Initiation Protocol (SIP) parameter negotiation for an internet telephone call uses Real-time
Transport Protocol (RTP) on random port numbers. The usage of dynamic ports is also
common in Peer to Peer (P2P) applications[9], [10]. Some applications also may use well-
known port numbers (such as port 80) to circumvent detection mechanisms. Thus, with
the low accuracy of port-based methods, new approaches were needed to overcome these
shortcomings.

2.3.2 Deep packet inspection

The first alternative to the port-based classification was DPI, also commonly called payload-
based inspection, which scans through the application packet payload in order to match specific
patterns with the signature of a network application. This means that the signature of
applications/web services must be stored in a database, must be kept updated and maintained
in order to keep up with the evolution of the service’s fingerprint. DPI techniques can be
applied to individual packets, but they are more effective when performed on a packet flow,
in order to identify intricate patterns. DPI methods quickly became the standard for many
traffic classification and intrusion detection tools.

OpenDPI was an open source solution for applying DPI techniques. The application/protocol
signatures that are used to classify traffic are embedded in the pattern detection mechanism
code, which means that if a pattern needs to be added or updated, the source code needs to
be recompiled. Although no longer maintained (it has been forked under the name of nDPI),
many studies were made on OpenDPI. Particularly, a study by Finsterbusch et al.[11] found
that both OpenDPI and nDPI managed to classify TLS traffic with an accuracy of 100%.

L7-filter is an open-source package for Linux that classifies IP packets based on their application
data. It is not a pure DPI classifier, as it takes into account non-payload data such as the
used ports and the number of transferred bytes in a flow. The payload data inspection is done
by using regular expressions to predict the network protocol. Although not as accurate as
OpenDPI, it is more suitable for in industrial practice, as the signatures are independent of
the software[12].

Libprotoident[13] is a C library which inspects only the first 4 bytes of a packet payload, greatly
reducing the time that it takes to make a decision. Because of this, Libprotoident is generally
perceived to be not as accurate than other DPI tools, which is not always the case. In a
survey conducted by Finsterbusch et al.[11] that compared several DPI tools, Libprotoident
showed the highest accuracy for the whole dataset, with the downside of demanding more
processing power.

Several studies were conducted in order to identify application protocols using DPI. Bernaille
et al.[14] managed to detect TLS traffic only by detecting the occurrence of ServerHello
packets. Bujlow et al.[15] conducted an experiment which compared the most popular DPI

11

tools for traffic classification, comparing open source software such as the libraries presented
above, as well as commercial solutions, like PACE [16]. The researchers concluded that PACE
was the most reliable solution for the tested protocols and applications.

In general, the differences between these approaches differed in the amount of data needed to
make a decision, whether they used information about incoming/outgoing traffic.

Because of the high accuracy of DPI methods, they are often used as the ideal method to build
the ground truth, being the standard validation method when comparing to other approaches.

Even though DPI methods at the time showed near perfect accuracy, some drawbacks needed
to be addressed. Firstly, as previously stated, most of the software was slow and required a
significant amount of processing power. Secondly, the application signatures these tools relied
on were volatile and it was not practical to update them. Thirdly, some of the libraries will
not produce accurate results when encryption is used. Lastly, in places such as a corporate
network, tools that examine the packet content may come across sensitive worker data when
used for monitoring the network. This raises ethical issues related to data privacy, which will
be discussed more thoroughly in Section 2.4.

Although most DPI libraries relied on pattern matching and regular expressions, some
modifications were made to the existing tools in order to increase the accuracy and area of
applications. Methods that combine techniques from different areas are called hybrid methods,
which will be covered in Section 2.3.4.4. For instance, Hjelmvik[17] developed Statistical
Protocol IDentification (SPID), an application protocol identification scheme which combined
statistical data from the network flow with application layer data. This, study along with
other studies in this area, hinted that the traffic classification approaches were shifting to
engines that relied more on statistical properties of a connection rather than a thorough
inspection of the actual data that was being transmitted.

2.3.3 Statistical based classification

Statistical based methods rely on the principle that there are distinctive properties and
patterns in the traffic generated by specific applications. Among the first studies that
established this, a particular study conducted by Paxson indicated that features such as
flow duration and the number of transmitted bytes were deeply related to the type of
application[18]. These studies were the basis for the creation of classifiers based on statistics.
This type of classifier does not count on payload analysis, making its predictions only using
low-level traffic features. These characteristics are usually unique to each application and
even when the application is updated these features tend to remain invariable. Contrary to
DPI tools, this is true even when encryption is introduced[19], [20].

For example, Wang et al.[21] managed to differentiate protocols such as FTP, HTTPS,
Internet Message Access Protocol (IMAP), SSH, among others. This approach relied on
packet size distributions and achieved an overall accuracy of around 87%. Crotti et al. [22]
also attained over 90% of accuracy in their work using probability density functions based on

12

packets inter-arrival time.

However, these basic techniques proved to be inefficient when used in more complex scenarios,
such as identifying applications with intricate dynamics such as web services and P2P
applications. So more complex rules, called heuristics, were introduced. A notable example is
the work conducted by Karagiannis et al.[23], in which the researchers managed to detect
P2P applications through the use of a heuristic that defined that a port using both TCP and
UDP hints at the usage of a P2P application.

Statistical based techniques were first applied to identify protocols such as HTTP, FTP
and Post Office Protocol (POP3). In order to identify a protocol, the incoming traffic was
compared to the fingerprint(also called profile) that the developed algorithms built for each
protocol. This is a case of an application profile, which is constructed using statistical
properties of flows generated by a particular application. For instance, Wang et al.[24]
managed to achieve perfect accuracy and over 90% of recall when attempting to differentiate
P2P applications. Their approach employed the longest common sub-sequence to detect the
determining packets of a flow, which tries to identify the longest streak of common data that
is the same in two packets from different flows.

In [25], the authors propose a method that uses stochastic fingerprints for applications
running over TLS, using first-order Markov chains on the packet’s time distribution. These
applications included Twitter, PayPal, Dropbox and Skype. The researchers concluded that
many protocols implementations do not follow the respective Request for Comments (RFC)
and behave differently from the standard TLS stacks. This indicates that methods that rely
on the analysis of the protocol’s initiation phases and specific fields of data to identify an
application could be useless in some cases.

Another type of profile is based on the host. These host profiles are created when taking into
account attributes such as the number of flows a host is generating[26] and other host behavior.
The most remarkable application of these techniques was BLINd Classification (BLINC)[27],
a methodology that divided host behavior into three different levels: social, network and
application. The social level focused on establishing the popularity of the host, by taking
into account the diversity of its connections. The network level, also called functional level,
captures the behavior of the host regarding its role on a network. For example, the host
may be a service provider or a consumer. Finally, at the application level, the focus shifts
to identifying what kind of services is the host interacting with. They achieved this by
having empirically derived patterns represented by graphs. This multi-level approach leads
to an accuracy of around 90% when classifying types of traffic. However, the approach is
not as accurate when identifying specific application subtypes. In addition, one of the most
debilitating limitations is that this method entirely relies on the assumption that the packet
headers are not encrypted, which means this approach would not function in a protected
channel environment.

Despite DPI being more accurate than the methods presented above, some drawbacks

13

inherent to them, such as the low speed and the computational overhead, are not present in
statistical based techniques. This makes techniques that rely on flow characteristics to be
much more suitable for real-time systems, where the quickness of a prediction is a crucial
factor. Nonetheless, most of the purely statistical based methods also have their limitations.
For instance, BLINC[27] was not able to detect many different applications, which implicates
that some services may display identical profiles, making it difficult to distinguish them
from each other. Plus, it has been proven that these approaches do not scale well when
these methods are faced with unexpected objects. Although this can be solved by manual
adjustments of the developed tools (by adding or modifying rules), it is not practical and
usually is a tedious and lengthy process. In order to automate this and make developed tools
more reliable for a broader range of applications, a subset of Artificial Intelligence, called ML
was introduced to IP traffic classification.

2.3.4 Machine learning techniques

As stated at the end of section 2.3.3, ML is a subset of Artificial Intelligence (AI). The
two terms are often confused with each other, but while AI is the concept of a machine or
a program being able to act in a way that makes its goals achievable, ML is the group of
methodologies that allow computers to take data and transform it into that intelligence.

One of the first application of ML was the spam filter, back in the 1990s[28], which is a
program that tags an email as spam when given examples of spam emails and regular emails.

Although ML applied to traffic classification only became mainstream at the end of the
2000s, back in 1990 a network traffic controller that aimed at maximizing call completion was
developed[29]. After this study, several others followed, particularly in the area of intrusion
and anomaly detection[30]–[32]. These studies paved the way for much of the ML work that
would be done in the following century.

2.3.4.1 Basic ML concepts

In this section, basic ML concepts will be introduced. These concepts exist across all fields of
ML, and not only in the traffic classification area.

As established at the beginning of this section, ML transforms data into intelligence. The
input data that an ML program uses to build its model is called the training set. Taking
the spam filter as an example, the set of emails from which the program will learn from is
called the training set, which is composed of training examples, called samples, or instances.
Each instance is characterized by its features, attributes which values, as a whole, represent a
sample. Features can be binary values, numeric values, text values or nominal values. For
instance, usually in the networking field, subsequent packets form an instance, with its features
being the number of bytes in the packets, the inter-arrival times, the standard deviation of
packet lengths, among others.

14

Usually, the performance of these methods uses accuracy as a measure. In the case of the
spam filter, the accuracy is the ratio of correctly classified emails, while in traffic classification
is the ratio of correctly classified traffic. We go into a bit more detail about performance
measurement in Section 2.3.4.2.

2.3.4.2 Performance measurement

To assess the performance of a ML model, it is necessary to have a testing set, which are
sets of labeled data. The model built with the training set is applied to the testing set and,
with the results, a confusion matrix is created. A confusion matrix[33] is a visualization of all
possible outcomes of a prediction.

In Table 2.2 represents a confusion matrix of a binary classifier. As can be observed, there
are four possible results:

• True Positive (TP) - A true positive occurs when the predicted class of the sample was
true is the actual class is also true.

• True Negative (TN) - A true negative occurs when the predicted class of the sample
was false is the actual class is also false.

• False Positive (FP) - A false positive occurs when the predicted class of the sample was
true is the actual class is also false.

• False Negative (FN) - A false negative occurs when the predicted class of the sample
was false is the actual class is also true.

Predicted
Spam Not spam

Actual Spam 90 15
Not spam 10 80

Table 2.2: Example of a binary confusion matrix.

Table 2.2 shows a confusion matrix for a spam filter. By observing the table, we can see
that there were 90 TP, 80 TN, 10 FP and 15 FN.

The values of the confusion matrix can be combined to create more representative metrics such
as precision, recall, f-measure (which combines precision and recall) and accuracy. Accuracy
is usually the chosen metric to compare different approaches.

Precision = TP

TP + FP
Recall = TP

TP + FN

F1 = 2 · precision · recall
precision+ recall

Accuracy = TP + TN

TP + TN + FP + FN

15

2.3.4.3 Types of learning

A survey from 2008 on ML techniques in traffic classification categorized learning types as
supervised learning, unsupervised learning (or clustering) and semi-supervised learning[34].

2.3.4.3.1 Supervised learning

In supervised learning, the training data the system uses includes an attribute which is the
solution, called label. This is illustrated in Figure 2.5.

?

Training set

New sample

Figure 2.5: A labeled training set for supervised learning (e.g., spam classification)[35].

This example describes a spam filter training set. Some samples are marked as spam and
others are marked as not spam. This way, a model is created, being able to classify new
instances. But supervised learning is not used only in classification problems.

There are two types of supervised learning tasks: classification and regression. In classification,
the model is trained with examples in which the label is their class. The model then classifies
a given sample based on its features (e.g., Figure 2.5).For example, network application
identification is a classification task in which the label of a given sample is the application
identifier. In regression, the task is to predict a target numeric value, such as the value of a
household.

Supervised learning is one of the most common methods of traffic classification and includes
many algorithms like k-Nearest Neighbor (kNN), Neural Networks (NN), Support Vector
Machines (SVM), Decision Trees:

k-Nearest Neighbor kNN is an approach that, by using feature similarity, determines the
distance between samples, where instances from the same class should be near each other. In
order to calculate those distances, it must be given a proximity function, such as the Euclidean
distance[36] or the Mahalanobis distance[37]. One of the main advantages of kNN is that
the algorithm does not require training time since the instances fed to the model are stored.
Nevertheless, it requires higher computation in the testing phase, since it has to calculate the
distance of the test point to all training samples in order to classify it.

In [38], Roughan et al. presented a study in which kNN was applied to distinguish application
categorized as interactive (applications that require multiple interactions from a user), bulk

16

data transfer (such as FTP or P2P applications), streaming and transactional. The developed
model managed to have an overall accuracy of around 95%. However, when a new application
of a certain category is introduced the accuracy was not as high.

Wright et al. [39] used packet sizes, their direction and timing attributes to identify application
protocols, achieving 100% accuracy for HTTP, HTTPS and FTP, although there was a
considerable quantity of false positives.

However, kNN is usually sensitive to outliers and the use of irrelevant features. Its accuracy
also can change drastically if the k value or the proximity function is changed[37].

Neural Networks NN are mathematical models for creating complex relationships between
the data input and data output. It is based on how the biological nervous systems, like
the brain, process information. Despite being introduced long ago in 1943 [40], only in the
last two decades promising practical systems using Artificial Neural Networks (ANN) have
been developed, because of factors such as the appearance of more massive datasets and the
higher computational power. Other causes include more efficient algorithms and studies that
indicated that some of the theoretical limitations would not be relevant in practice.

Auld et al.[41] developed a Bayesian trained neural network to classify traffic in categories
like P2P, games, multimedia and attack (such as worms and virus). Their approach achieved
95% of accuracy on a dataset extracted eight months later to the construction of the model.

A recent technical report [42], using the same dataset as [41] found an optimal configuration
for a Bayesian neural network that obtained over 99% of accuracy, although in very specific
contexts.

A promising study conducted by Wang et al.[43] aimed at classifying tunneled traffic using
one-dimensional convolution neural networks. Their approach achieved >90% of accuracy
when classifying encrypted traffic. However, the traffic was split into vast categories (like
email, streaming, VoIP and file transfer). Nevertheless, when compared to state of the art
methods such as C4.5, the accuracy improved over 10% for VPN traffic.

Despite seeming promising, most NN approaches have some disadvantages. For instance, they
are not suitable for small datasets where each instance has a large number of features. They
also require high computational power and the training time be usually long.

Support Vector Machine An SVM is an algorithm whose objective is to find one (or
more) hyperplane(s) that divide data in two or more classes. One of the main advantages of
SVM is that it usually produces excellent results with minimal datasets, as can be evidenced
by [44], where the researchers proposed a protocol classifier with an accuracy of over 90% in
most cases.

Another notable study, Yang et al.[45], aimed at building a model for P2P traffic identification
and application level classification. They achieved an accuracy of 97.3% for their binary
classifier. Plus, this approach aimed to be successful in a real-time system environment, so it

17

only considered the first few seconds of a connection. Thus, SVM was proved to be a good
solution for identifying traffic in large networks.

Despite indicating to be a promising alternative for traffic classification, SVM has two huge
limitations. Firstly, SVM models are prone to overfitting, because of their complex algorithms
and likelihood of misestimating the importance of features. Although this can be solved by
parameter tuning and feeding more data to the algorithm, it regularly leads to the second
problem - SVM algorithms often have long training times[46]. By giving a larger dataset to
the model, the training phase can become impractical.

Decision Trees Decision Trees are algorithms that classify samples by arranging them
based on the values of its features so that the best feature is at the root of the tree. There are
various metrics to define the importance of each feature, such as the gini impurity, entropy
and variance reduction. Their main advantage is being able to handle large datasets[47], [48].

In [49], Jun et al. compared two Decision Trees algorithms, J48 and REPTree, and achieved
around 95% accuracy identifying known and unknown P2P traffic, using features such as flow
duration, packets inter-arrival time and total of transmitted bytes.

A study conducted by McCarthy et al. used C4.5 decision trees along with AdaBoost to
identify Secure Sockets Layer (SSL) applications, achieving around 98% of accuracy.

A recent study [50] proposes a multi-level framework to identify application services in HTTPS
using the C4.5 algorithm, achieving around 88% accuracy. This method divides the network
packets in separate flows and analyzes each flow individually.

Despite these promising results, these algorithms usually don’t generalize well, which commonly
leads to an overfitted model. Moreover, it is hard for these algorithms to update an already
built model. Therefore, they may not be ideal for a system with constant retraining. That
being said, at the beginning of the decade, faster variations of decision trees were developed,
called Very Fast Decision Tree (VFDT), which can be more suitable for real-time systems.
For instance, in [51], the developed model attained an accuracy above 98%, while consuming
three times less memory than C4.5. Plus, its update time was remarkably faster than other
static decision trees.

2.3.4.3.2 Unsupervised learning

In unsupervised learning, the training data is unlabeled. Concerning classifications, this means
that the system should divide the dataset into classes (or clusters) without help. Figure 2.6
illustrates a classification example using unsupervised learning.

18

Original Data Clustered Data

Figure 2.6: Unsupervised learning example.

The most notable of the unsupervised learning algorithms is k-Means, but researchers
developed other valid unsupervised solutions specifically for traffic classification.

Autoclass was a method first applied to application identification by Zander et al.[52], in
which the researchers attained 86.5% accuracy overall.

Maolini et al.[53] analyzed SSH traffic and managed to determine which underlying application
protocol was running, using a k-Means algorithm. The analyzed protocols included Secure
copy (SCP), Secure File Transfer Protocol (SFTP), HTTP). The achieved accuracy was
around 99.88% for the underlying protocols running over SSH.

Erman et al.[54] identified P2P applications with an accuracy of 95% using k-Means, using
only data from server-to-client flows. Some of the researchers from that study also compared
the algorithm to AutoClass, verifying that k-Means performed better and is faster[55]. In the
same study, another clustering algorithm called Density-based spatial clustering of applications
with noise (DBSCAN) proved to be the most reliable of the three.

In 2013, Zhang et al.[56] proposed an enhanced version of the k-Means algorithm, they were
able to improve the accuracy of the algorithm for classifying encrypted traffic.

Despite not having impressive accuracy when compared to some supervised learning algorithms,
clustering methods can be hugely effective when combined with other techniques such as
Markov models, heuristics, or supervised learning algorithms, as shown in Section 2.3.4.3.3
and Section 2.3.4.4.

2.3.4.3.3 Semi-supervised learning

Semi-supervised learning algorithms are trained on labeled and unlabeled data. Since in
many situations it is hard for all the data to be labeled, either by financial costs or human
incapability, these methods proved to be useful in these situations. Plus, in some cases, labeled
data could inflict human biases to the created model, making semi-supervised methods more
accurate.This is depicted in Figure 2.7. In most semi-supervised learning algorithms, the

19

samples are exposed to an unsupervised training algorithm in the first phase. In the second
phase. Then, after all of the data is separated by clusters, it is only necessary to label one
instance per cluster.2

unlabeled data
labeled data

Figure 2.7: Semi-supervised learning example.

Semi-supervised learning algorithms have been commonly used in network related classifica-
tion problems. For instance, Bar-Yanai et al.[57] constructed a protocol classifier by combining
the k-Means and kNN algorithms, making a fast model that is resistant to encryption and
packet ordering.

Bernaille and Teixeira[58] developed a model that recognized applications in SSL, with an
accuracy of 85%, using a three-step method. Firstly, they identified an SSL connection by
applying a clustering algorithm based on the Gaussian Mixture Model[59] on the first three
packets of a TCP flows. Secondly, they detect the first data packet by inspected the contents
of the packet. Finally, the underlying application is recognized by applying another clustering
algorithm to the sizes of the application packets and an euristic involving utilized ports.

In [60], Erman et al. fed a combination of labeled and unlabeled flows to a clustering algorithm.
Afterward, they mapped each cluster with labeled flows to an application category, using a
simple probabilistic assignment. With this approach, they managed to build a model with
94% accuracy.

As can be concluded by the studies presented above, for the most part, semi-supervised
methods are more complex that other methods, as they combine several approaches. When
comparing the accuracy to supervised methods, they tend to be not as accurate. However,
usually, semi-supervised methods are adopted for achieving high efficiency and are preferred
when the training data is limited.

2Except when a desired class is slipt in several clusters, or when a single cluster has more than one desired
class.

20

2.3.4.3.4 Ensemble methods

Ensemble methods use multiple algorithms to make the accuracy of the prediction higher.
One prevalent example are Random Forests[61], which consist in having several Decision Trees
in the training process. The predtiction of a Random Forest is the mode of the Decision Trees
decision that compose it.

The most common usage of ensemble learning is boosting, particularly AdaBoost[62](short
for Adaptive Boosting). For instance, in [63], the authors developed a method to detect
applications using AdaBoost and achieved over 90% of accuracy. However, the authors admit
that this method is not suitable for real-time systems.

Although not prevalent in traffic classification, some surveys [64][65] reveal that methods that
use multiple classifiers are starting to achieve better accuracy than simplified ML approaches.

2.3.4.4 Hybrid methods

To minimize the disadvantages of some ML algorithms, a standard approach is to combine a
number of classification techniques that can complement each other, achieving better results.
This is called hybrid classification.

Wright et.al[39] managed to achieve over 90% accuracy when identifying application protocols
in encrypted tunnels. They used a combination of kNN and Hidden Markov Models to classify
the applications. Plus, they also show that it is possible to identify the number of flows in
an encrypted tunnel, with an accuracy better than 20%. It is important to note that, unlike
most studies in this area, this method did not perform a flow analysis, as it is unviable to
pinpoint different flows in an encrypted tunnel, making this a stream analysis.

As stated at the end of Section 2.3.2, Hjelmvik[17] developed SPID, an application protocol
identification technique that combined DPI with statistics. It measured byte frequency in a
data flow and made assumptions based on that statistical data.

2.4 Privacy rights and ethical aspects of network monitoring

In nowadays society, privacy issues have been one of the most prominent topics of debate.
The global surveillance disclosures[66] by Edward Snowden, in 2013, raised the public’s
awareness of the subject and put government’s trustworthiness at stake. It was also proven
that particular social networking services were also involved in the monitoring systems. More
recently, with the Facebook-Cambridge Analytica data breach[67] which contained over data
of 87 million users, the public’s distrust is continuing to extend to companies. The notion
that corporations instead of individuals now own knowledge and data creates a conflict of
knowledge ownership.[68].

21

2.4.1 Information privacy laws

In light of the above, governments have been adopting data protection laws in order to
minimize the exposure of sensitive citizen data. Notably, the General Data Protection
Regulation (GDPR) has received plenty of attention.

GDPR is a regulation on data protection that affects all European Union citizens. Its main
goal is to give control of data back to the individuals. It requires companies to handle
European Union (EU) citizens’ personal information responsibly. This includes actions such as
asking the individuals consent when using personal data, clearly stating its purpose and usage,
while giving them the right to ask for the correction of that data, as well as its destruction.
Note that this applies to all companies that handle personal data from an EU citizen, even if
the company itself is not based in the EU geographical area[69]. Corporations that do not
comply with this standard when audits are carried out may face extremely harsh penalties,
up to 4% of the company’s annual revenue[70]. Therefore, companies are re-writing their
procedures and adapting in order to avoid eventual fines.

Even though when one talks about GDPR’s requirements it usually concerns user privacy,
the regulation clearly states that it applies to citizen privacy. This, by default, covers worker
privacy as well, since companies keep worker data.

2.4.2 Network and device surveillance in the workplace

So how does traffic monitoring comes into play regarding privacy? Well, employees may
consider that network surveillance in the workplace a breach of their privacy. While the purpose
of monitoring systems is to collect work-related information, they may come across sensitive
data. Most of the time, since the employer owns the network and the computer terminals,
monitoring is allowed. However, regarding personal devices, there is a gray area where no
concrete regulations are established. In these situations, it is up to each corporation to have
its own policies and inform their employees about how they will be enforced. Furthermore,
with all the controversies of the recent years and the rise of the public’s awareness, more and
more regulations are coming into practice, universalizing workplace policies on monitoring.

For instance, the IETF has released the RFC 7258[71] on pervasive monitoring. This RFC
states that practices such as subverting the cryptographic keys in secure communications,
collecting application content and even protocol metadata can be considered an attack on
the privacy of users. Yet, the authors admit that some of these procedures are necessary for
performance and security reasons. They conclude by saying that there is the risk of these
monitoring mechanisms to be abused, so a trade-off between worker privacy and having a
healthy, manageable network is necessary.

To sum up, network monitoring is a sensitive subject, where one has to consider both the
network management and the privacy of the individuals who use it. The framework developed
in this dissertation presents a reasonable compromise between these two mindsets, as the
utilized data complies with the standards presented in this section.

22

CHAPTER 3
A Framework for Network Service

Identification

As stated throughout this document, the objective of this dissertation is to develop a framework
for application services identification on a given network. The first step is to create a ML
model. This is done by collecting data when using those services, labeling the data, extracting
relevant features from it and build a classifier from the acquired dataset. The second step is
to set up a system where that ML model can be used to identify traffic in real-time.

The designed system has two levels of classification. The first level tries to classify traffic
into two groups - video and non-video. If an observation is classified as video by the first
classifier, it is sent to the second level of classification, which will try to identify what specific
video application the observation belongs to. Figure 3.1 illustrates this two-level framework.

Observation

First predictor
(identify if it is a video

application)

Second predictor
(identify the specific video

application)

yes

noIs it video?result

End

result

First Level

Second Level

Figure 3.1: Diagram of the two-level prediction system.

In this chapter, we will give an overview of the developed framework and we will go into
detail about each component that forms the system. It also describes how new ML models

23

can be built and integrated with the real-time system. This process includes the acquisition
of data and the steps one has to take to transform it into a useful predictive tool for a live
traffic analysis.

3.1 System overview

As described above, the system has two main components, the building of the ML model and
the live analysis system. A simple overview of the framework can be observed in Figure 3.2.

Live Traffic Analysis
ML

Models
provides

ML Model Creation
uses

Other
objects

Figure 3.2: Framework overview.

The purpose of the ML model creation process is to create classifiers to use in the live
traffic analysis. This process will also create other objects (explained in detail in Section 3.3.1.2)
that will need to be given to the live traffic analysis.

The Live Traffic Analysis is a fully fledged system for application identification that uses
the classifiers created in the ML Model Creation process. Section 3.3 goes into detail about
its requirements, composition and decisions made when choosing the technologies used in the
development phase.

3.2 Building the ML model

The process of building an ML model that is reliable and, above all else, accurate, can be
extremely complex. To simplify the procedure, it can be divided in simpler parts, as it can be
seen in Figure 3.3.

Data RetrievalGoal Identification Data Preprocessing

Feature EngineeringModel TrainingModel Evaluation

Figure 3.3: Building an ML model process.

24

3.2.1 Goal identification

The first phase consists in identifying the problem to be solved. In the case of this dissertation,
the problem is that it does not exist an accurate, non-intrusive and real-time method to
identify what network application service is being used by a machine without relying on
expensive computational power. Thus, the goal is to build an ML model to classify traffic
with those characteristics in mind. This leads to the definition of the classes that will be
created for the ML model (labels), which in these case are the names of the application
services that will be identified.

The next step is to define what is the input data that will be used to achieve the goal. This
input data does not necessarily need to be exactly what is given to the ML model for training
- additional processing is usually required before feeding the ML model the data. Since
this system will be analyzing network traffic in real time, the input should be network data
captures.

Now that the goal is defined, the next step is to fetch the data.

3.2.2 Data retrieval

In this stage, the input data should be collected to be processed to the desired format in the
next phase.

As referred in the section above, the data used to train the ML model is network data that
was captured when using the application services we want to identify.

In order to build reliable ML models for each service, the collected data must be as comprehen-
sive as possible. To achieve this, four crucial requirements must be met. Firstly, the captured
data should be captured in a wide variety of settings, whether geographically or regarding
the network environment itself. Secondly, the times at which the captures are conducted.
Thirdly, since most traffic is influenced by human behavior, it is optimal to capture data of
several different individuals, to decrease the skewness of the dataset. Finally, the volume of
the captured data and how it should be well distributed across all the analyzed services.

There are several open datasets of network captures that are widely used in this type of re-
search. Notable examples include the Center for Applied Internet Data Analysis (CAIDA)[72]
and the datasets from Stanford Network Analysis Platform (SNAP)[73].

Even though building a private dataset is time-consuming, it can be the best option to obtain
data that complies with the requirements above, since it can be hard to determine if the open
datasets meet those requirements. Plus, in a private dataset one can include reliable data
from tunneled traffic, which is hard to find available online.

The labeling of the data could be done manually - which is more time consuming but leaves no
room for error - or with the use of techniques such as DPI, as presented in Section 2.3.2, which
is a popular method of determining the ground truth. The use of software agents (or bots)
that are programmed to access certain applications (which become automatically labeled) is

25

also an option, although it may be difficult to emulate the human behaviour, possibly making
the samples unreliable. Other methods also include the use of controlled environments where
the users/machines are restricted to use the targeted applications.

3.2.3 Data preprocessing

When the data is acquired, it is usually not ready to be given to an ML algorithm. The raw
data should first be translated into features that are easier for the ML models to take as an
training input. This process is called data preprocessing.

For instance, in this specific case, one could argue that the raw packets data fields (such as
the timestamps, used ports, packet size) could be used as inputs for the algorithm. However,
this would make the training process awfully slow, since a high number of packet data is
required to build a reliable ML model. Plus, the probability of some applications having
packets with similar properties is exceptionally high. Along these lines and taking into account
other researches conducted in the area, that were presented in Chapter 2, it was decided that
statistics from the raw packet data over a fixed period of time would be used as features
for the ML model. Figure 3.4 represents the developed method of taking capture files and
extracting the relevant data from them, ultimately creating a single file with the samples
ready to be fed to the ML algorithm. This process has two parts, extracting the relevant data
fields from the raw packets and calculating statistical data to create samples.

Capture files Attribute extraction Packet Attributes

Feature extractionSamples

Figure 3.4: Data preprocessing pipeline.

The first developed tool’s purpose is to extract relevant data fields from the packets. The
objective is to count the number of packets and number of bytes, and divide them into fixed
length time segments (or time buckets), based on the packets’ timestamp. The only data
fields taken from each packet were:

• Source and Destination IP address - in order to determine if the traffic was outgoing or
incoming.

• The packet’s timestamp - in order to divide the packets into time buckets.
• The packet’s length.

26

• The SYN flag value, in the case of a TCP packet.
These fields are processed and divided into time buckets. The attributes of each time bucket
can be found in Table 3.1.

Attribute Description
up_packets Number of uploaded packets
up_bytes Number of uploaded bytes
up_syn Number of outgoing SYN flags
down_packets Number of downloaded packets
down_bytes Number of downloaded bytes
down_syn Number of incomming SYN flags

Table 3.1: Time bucket attributes.

As referred above, these fields are processed and divided in time segments and saved to a
text file with the .dat extension. The structure of a .dat file can be observed in Table 3.2.
Each line represents the amount of data in a time bucket. For instance, if we assume the time
bucket is 1 second, we can observe that in the specific file represented in Table 3.2, there were
1540 outgoing packets and 980 incoming packets in the first second of the capture.

Outgoing Incoming
packets # bytes # SYN flags # packets # bytes # SYN flags

1 1540 875588 70 980 1218 6
2 1468 893158 56 1112 1230544 22

...
N 970 376598 58 938 1236668 6

Table 3.2: Structure of a packet attribute file.

The next step is to use the feature extraction tool, which takes the created .dat files,
applying statistical calculations on them in order to extract features. The result is a single
file with samples to use as input for ML models.

However, before that transformation takes place, the data needs to be standardized.

3.2.3.1 Standardization

Standardization, also known as feature scaling, is a method of making all categories of data
have a standard range[35]. It is commonly used because some ML algorithms do not perform
well with features in different scales. Figure 3.5 shows an example of standardization.

27

y

x

original
scaled

Figure 3.5: An example of standardization in a sine wave.

The standardization method used in this dissertation is StandardScaler[74] from the Scikit
Learn library[75]. This implements a scaler in which the transformed data distribution has
mean value 0 and standard deviation of value 1. After calculating the mean and the standard
deviation for an attribute, the feature is scaled by using the following calculation:

Xi − x̄

σ

Usually, standardization is used in the data feature engineering step (Section 3.2.4),
applying the standardization to the features. However, in this dissertation, it was also used
directly on the data from the packets. Since different applications have substantially different
upload/download rate (see Section 4.2.1), there will be a significant difference in values such
as byte count. Plus, most video streaming applications can detect if a connection has low
bandwidth and adjust the quality of the video to the connection, making some characteristics
of the flow (such as the packet size) differ from a flow of a standard, high-quality connection.
For example, the byte volume attributes of a network packet capture of a 1080p video are
widely different than the capture of a 480p video, even if it is the same application. The
process of standardization of this data is done to dampen the effect of this type of situation.

3.2.3.2 Sample size definition and silence values

As previously stated, each time bucket was formed by dividing the packets into time segments.
The next step is to choose a sample size for the dataset. As it can be seen in Figure 3.6, each
sample is formed by several time buckets.

28

0 5

up_packets
up_bytes

down_packets
down_bytes

bucket

sample 1 sample Nsample 2

...

ID ... up_packet_silences

1 ... 0

2 ... 2

...

N ... 1

ID up_packet_mean down_bytes_median

1 0.3 0.4

2 0.21 0.42

...

N 0.86 0.47

Figure 3.6: Samples structure.

For instance, in Figure 3.6, assuming each bucket in corresponds to 1 second and that
a sample has five buckets, the sample size is 5 seconds. Each sample is created by doing
calculations on each group of buckets in order to extract relevant statistics, which will then
be used as features for the ML model.

Another particularity in this work is that the number of time buckets without activity (when
the upload or download attributes are 0) has to be accounted for in order to extract time-
related features, as described in Section 3.2.3.3. However, since these values are scaled upon
the statistics extraction phase, their value will not be 0. Figure 3.7 illustrates this problem.

29

up_packets up_bytes down_packets down_bytes

4 44 0 0

23 234 33 453

0 0 67 678

StandardScaler

-0.498 -0.479 -1.218 -1.337

1.395 1.391 -0.012 0.269

-0.897 0.912 1.230 1.067

Figure 3.7: Normalization example.

As it can be seen in Figure 3.7, the 0 values are transformed into the scaled data, which
makes it impossible to identify in which time bucket there was no activity.

A simple method of solving this issue is described in Figure 3.8.

30

up_packets up_bytes down_packets down_bytes

4 44 0 0

23 234 33 453

0 0 67 678

StandardScaler

-0.498 -0.479 -1.218 -1.337

1.395 1.391 -0.012 0.269

-0.897 0.912 1.230 1.067

0 0 0 0

-0.897 0.912 -1.218 -1.337

Inject row of zeros

Values correspond to zeros

Figure 3.8: Normalization example with inactive time buckets identification.

By injecting a row of zeros at the start of the data, that row will also be scaled. Knowing
that the values of that scaled row correspond to periods of inactivity, we can use it to identify
those periods when calculating the statistical features in the step of creating samples.

It is important to note that these attributes are not features of the ML model, but the attributes
of each processed time bucket. The normalization of features is described in Section 3.2.4.

3.2.3.3 Features

As previously presented in Section 3.2.3, the relevant packet attributes are divided into time
buckets which will then be processed to create features. There are 134 features used in this
work and they are all numerical. They can be divided into 3 large groups:

• Basic statistics - These features are calculated by directly applying functions to the
input data (Table 3.1). They should be the most important features, as they provide
insight into the actual data that is being transferred. For instance, a video streaming
service should have a more distinct pattern than a newspaper website, since the latter
is much more prone to be influenced by user behavior.

• Silence periods - These features are used to identify time-related patterns. Some
applications may have consistent silence periods, some may have no silence periods at
all. The goal of these features is to create a timing fingerprint for each class, making
them more differentiable.

• Pseudo-periodic components - Wavelet transforms are used in this dissertation to
bring out events of different periodicity[76]. For instance, events caused by human

31

behavior, such as clicks, are usually associated with low-frequency components, while
protocol specific procedures, such as handshakes and control channels, are medium
frequency components. High-frequency events include the traffic flow or packet bursts.
In this work, we use the Continuous Wavelet Transform (CWT), since it provides insights
into the time and frequency aspects of a given packet flow. CWTs are also commonly
used in data compression and edge detection[77]. The remainder of this section describes
how the pseudo-periodic components is extracted and what data is used as features for
the classifier.

After obtaining the CWT for each attribute(up_packets, up_bytes, down_packets,
down_bytes), the scalogram of the CWT is computed. The scalogram is the normal-
ized modulus squared of the CWT, averaged over time. The result can be seen in Figure 3.9

0 50 100 150 200 250
Scales

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

No
rm

al
ize

d
en

er
gy

Figure 3.9: Scalogram of the down_bytes attribute of a video sample.

After the scalogram is obtained, both the highest maximum and lowest minimum peaks
are extracted, up to 5 each. Figure 3.10 shows the points that are extracted. It is common
practice to extract the points in fixed intervals (every 10 units, for example), but this method
will theoretically extract more relevant points.

32

0 50 100 150 200 250
Scales

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

No
rm

al
ize

d
en

er
gy

Figure 3.10: Detection of spikes in a scalogram.

It can easily be observed that not all spikes were extracted. For instance, there is a local
maximum and a local minimum between the [150, 200] values of the x axis, but since they are
much flatter than the marked spikes, they are not as relevant. The same applies for the first
local maximum and the first local minimum in the example, but for a different reason - there
are spikes with a higher (or lower, in the case of the minimums) value that are relatively close
to these points. Consequently, these first two points will not be considered as spikes. This
is done because if the five maximums and minimums were extracted by merely taking into
account the y value, some relevant points would be ignored, e.g., the fourth maximum in the
example in Figure 3.10. The algorithm for detecting the spikes is presented in Chapter 5.

The spikes coordinates are returned sorted by the y value. This way, the scalogram features
will be ordered by the amplitude of the data, and not by order of occurrence in the scalogram.

The pseudo-periodic components features are the x and the y coordinates corresponding to
the detected spikes, so there are 2 features per spike. As mentioned earlier, this is done for
every time bucket attribute, in total, there will be 80 pseudo-periodic component features.

33

3.2.3.4 Feature dimensionality and reduction

A classifier that has 200 features is not necessarily better than a classifier that has 20 features,
for example. This is because the features must be representative of a given label. Although
there is not an optimal number of features, a large number of features usually require a large
number of samples. Otherwise, the ML model could have problems such as overfitting. Usually,
when one increases the number of features without increasing the number of observations, the
results tend to be worse[78].

However, in many ML problems, there is not a simple method of determining if a given feature
will be important for a given ML model without training the model with and without the
sample and performing a results evaluation. Since this is not practical for problems that have
a high number of features, other solutions are usually chosen.

A standard method of increasing the accuracy of ML models is through feature reduction and
combination, the most used method being PCA[79]. PCA is a dimension-reduction technique
that is used to reduce the number of features of a dataset, combining them in a smaller group
that still contains the information of the original dataset. The resulting features of the PCA
process are called the principal components. A comparison of spaces before and after PCA
reduction can be found in Figure 3.11

Figure 3.11: Comparison of dimensional spaces before and after applying PCA reduction [80].

3.2.4 Feature engineering

In the stage of data preprocessing, data is subjected to transformations in order to make the
ML model have better results. It is also used to make data comply with the requirements of
certain ML algorithms. For instance, Random Forest’s input features can never have a null
value. This specific case could be treated with data imputation or by merely disregarding the
sample, for example. In Scikit Learn, this is achieved by using the Imputer class[81].

One common technique used in data preprocessing is feature scaling, which consists of stan-

34

dardizing the limits of the values of features. It is the same process described in Section 3.2.3.1,
only applied to features instead of the packet data. This is done because most ML algorithms
do not perform well when numerical attributes have different scales. For instance, two possible
features for this project are up_packet_median and up_bytes_median which represents the
median of outgoing packets and the median of outgoing bytes, respectively. In this case, the
up_bytes_median feature has a much broader range than the up_packet_median, so it is
generally a good idea to scale the features in a dataset.

PCA is also used as an optional step in this phase, since reducing the number of features can
prevent the algorithms from overfitting and the resulting principal components can have as
much information as the original dataset, but with less noise from non-relevant features.

3.2.5 ML Model training and evaluation

After going through the feature engineering step, the samples are split into two groups: the
training set and the test set.

After the dataset splitting, the data is ready to be used for training ML models. As exposed
in Section 2.3.4, many algorithms have been used successfully in traffic classification, such as
SVM, Neural Networks and Decision Trees, although no solution is better than another for
all cases. For instance, a comparative study conducted by Shafiq et al.[82] concluded that
Decision Trees and SVM performed the better than Naive Bayes Bayes Network on both
encrypted and unencrypted traffic.

Since all our data is labeled, the chosen algorithms to be tested were all supervised learning
algorithms. As stated at the beginning of Chapter 3, two ML models will be developed.
Since the first level of classification will be binary (identifying if a given sample is from a
video capture or not) and the second level of classification will have multiple classes, it was
decided that several algorithms should be tested to compare how they perform in different
situations. The chosen algorithms were Decision Tree, SVM, Neural Networks and Random
Forest. Additionally, the AdaBoost algorithm was used along with both Decision Tree and
Random Forest to try to achieve better results.

As for the evaluation, in addition to the traditional measures presented in Section 2.3.4.2,
we also use CV and ROC[83] to analyze the performance of the resulting classifiers. CV is a
widely used technique that estimates how the classifier will behave when classifying unseen
samples. It usually works by splitting up the training set in K parts, called folds, training
the ML model with K times, using a different part for testing every time, training with the
remainder K-1 parts. Figure 3.12 illustrates this process.

35

Training

Training

Training

Test

Training

Training

Training

Test

Training

Training

Test

Training

Training

Training

Training

Training

Training

Training

Training

Test

Training

Test

Training

Training

Training

Training Set

Result Result Result Result Result

Average
accuracy

Figure 3.12: Example of a 5-fold CV.

ROC is used to plot TP rate against the FP rate, serving as another method, along with
the confusion matrix, of visualizing the accuracy and reliability of an ML model.

3.3 Live Traffic Analysis

As stated at the beginning of this chapter, the point of developing ML models is to use them
to perform real-time traffic classification. Since the system is aimed to be used in settings
such as a corporate environment or as an Internet Service Provider (ISP) monitoring tool,
one should consider some requirements when designing the system.

The most important aspect is that the system should be able to identify traffic in pseudo-real
time. As stated in Chapter 4, the sample size that achieved the best results was 60 seconds,
even if other sample sizes achieved good results (with an accuracy of over 90%). When taking
into account the processing time of the samples, a prediction should be available not much
time after the traffic is captured.

Another requirement is that the system should be easily scalable, which means it should be
simple to add components to the system without having to change its architecture, especially
when adding machines that will be monitored. Consequently, it should also be easy to manage
and the interface should not be complex. Plus, since the system is composed by several
parts that presumably will be deployed in different devices, each component should be easily
deployable.

Finally, since it is likely that there will be several terminals to monitor, the processing of the
acquired packets should preferably be done asynchronously to avoid delays in the predictions.

36

This section outlines the architecture and describes the components, how they interact and
the technologies that were used to develop the system.

3.3.1 System architecture

As it can be seen in Figure 3.13, the system is composed by 4 parts:
• Capture module - The purpose of this component is to capture traffic in the device

and redirect it to the respective processing unit. Since the used capture method is
software based (for reasons explained in Section 4.1.1), it is simpler than the component
that captures the traffic is located in the device itself.

• Processing module - the processing module is in charge of taking the network packets
from the capture module and process them to form a sample that will be tested with
the developed ML models (see Section 3.2). After the Worker makes a prediction, the
result is sent to the server side through an HTTP POST request.

• Server side - the server side is composed by the Representational State Transfer (REST)
server and the HTTP server that acts as the bridge from the REST server to the external
clients and serves the web pages requested by them.

• Client side - the client side is simply composed by an application that makes HTTP
requests, such as a web browser, in order to visualize the status of all the monitored
devices.

T1

Tn

...

W1

W1

REST

POST

POST

GET Web
Server Monitoring Device

HTTP

Capture Module Processing Module Server Side Client Side

Database

Classification Unit

Figure 3.13: Live system architecture.

In order to meet the requirements exposed in the beginning of this chapter, the process
of choosing what technologies and frameworks to use to develop the system is crucial. The
scalability of the system has to be considered, as well as its speed and performance. It is also
essential that each component not have a big tools ecosystem, such as libraries and other
requirements. This makes the whole system much lighter and easy to deploy.

All the components of the real-time system were put in its own software packages using
Docker[84], a program that performs operating-system-level virtualization, making the

37

deploying process much easier.

Figure 3.14 shows what frameworks were used in the development of each component of the
system. Since the ML models were developed using Scikit-Learn[85], Python was the chosen
language for the development of the live system.

T1

Tn

...

W1

W1

REST

POST

POST

GET Web
Server Monitoring Device

HTTP

Capture Module Processing Module Server Side Client Side

Database

Classification Unit
Libpcapy

Figure 3.14: Technologies used in each component of the system.

The remainder of this chapter presents each part in detail, describing the purpose of each
component, explaining why each framework was chosen to develop the component and how
they interact with one another.

3.3.1.1 Capture module

The first step is to decide how the packet data will be captured. As discussed throughout
the document (see Section 4.1.1), a software-based approach was taken to acquire the data.
In the case of live capture, it is not efficient to save the captured data in files, as it makes
the data processing slow and unpractical. Because of this, one has to deal with packets as
an object stream. The ideal solution should be code based (to be easily connected to other
components of the system), fast and should minimize packet loss, since it could potentially
alter the prediction result.

Several Python libraries provide processing of live captures of network traffic, such as
Pyshark[86], Impacket[87] and Scapy[88]. However, none of those met all the requirements
above. For instance, Scapy is useful for creating and injecting packets into a network, but
its sniffing capabilities are limited and not well documented. Pyshark is extremely easy to
use, but achieving complex tasks is difficult, as its documentation is scarce. Plus, since it is
written in Python, it is slower than libraries writer in C such as Impacket. Impacket is the
fastest capture library for Python, but it is hard to use, as there are few examples and the
documentation is limited.

For these reasons, it was decided to create our own library that met the requirements exposed

38

above. This library is called Libpcapy[89]. It is a Python library that serves as a wrapper
for Libpcap[90], an interface written in C for user-level packet captures developed by The
Tcpdump Group[90]. It achieves this by using ctypes [89], a Python library that allows
calling functions of shared libraries, providing compatibility with C data types. With this
solution, the performance issues are solved, as the functions from the Libpcap library are
called directly, which means that the program executes C code, which is much faster than
pure Python code.

To use ctypes to interact with C shared libraries, it is necessary to map the data structures
and constants to Python. This is done by creating Python classes to mirror those structures.
For instance, Listing 3.1 is the code for the packet header data structure, developed by The
Tcpdump Group.

s t r u c t pcap_pkthdr {
s t r u c t t imeva l t s ; /∗ t ime stamp ∗/
bpf_u_int32 caplen ; /∗ l e n g t h o f por t i on pre sen t ∗/
bpf_u_int32 l en ; /∗ l e n g t h t h i s packe t (o f f wire) ∗/

} ;

Listing 3.1: C data structure for packet headers.

Listing 3.2 shows the developed code to map the pcap_pkthdr class to Python.

c l a s s pcap_pkthdr (ctypes . S t ruc ture) :
f ie lds = [(' t s ' , t imeva l) ,

(' caplen ' , c types . c_uint) ,
(' l en ' , c types . c_uint)]

Listing 3.2: Python class for mirroring pcap_pkthdr.

In order to use data structures from libpcap, they had to be mapped to Python similarly to
the above representation. Because of time constraints, not all structures and constants were
mapped. Consequently, as of now, Libpcapy does not support all libpcap features, such as file
capture processing. Since the focus was primarily on live capture settings, all the necessary
structures and functions were mapped to make that feature available.

Additionally to data structures, functions also had to be mapped to Python. One issue that
occurred during development was during the pcap_loop function. This function processes
packets from a live capture until an ending condition occurs, typically until cnt packages are
processed. However, if the cnt value is set to -1, the capture can run infinitely. A stopping
condition is, for example, a keyboard interrupt. However, since the C loop is running, the
interrupt will not have any effect, since the C code does not provide SIGINT handling, which
causes the program to run forever. This is because the Global Interpreter Lock (GIL) is
released during cytpes calls. For this reason, the solution was to run the loop on a background
thread, allowing the main thread (the Python thread) to handle interrupts.

Libpcapy also has features such as packet filtering and device scanning.

After establishing what the developed library can do, the question is what is done to the

39

captured packets. Firstly, it is important to note that the monitored terminals will most likely
be quite active, with several programs and background tasks being executed simultaneously.
Since packet loss can affect the final result (the prediction), it is crucial that the machines are
not overloaded with processing tasks. For this reason, it was decided to minimize the amount
of tasks to be done by the capture unit. As a result, the capture module is simply in charge
of capturing the packets, retrieving the relevant information, and send it to the processing
module, which should ideally be located in another machine.

The relevant information to be extracted from the packets is the timestamp of the packet,
which is in the packet header, the source and destination Internet Protocol (IP) ad-
dresses, and the length of the packet, which are contained in the IP header. These are
the only attributes that are needed from the packets to create a sample. The timestamp is
needed to divide the packets into their respective time buckets, the IP addresses are needed
for determining if it is an outgoing or an incoming packet, and the length is necessary to
calculate the statistics that will be used to create a sample.

With these attributes, a Pkt Info object is created (corresponding to a unique packet) and
will be sent to the processing module. Since all the information that will be traded between
the capture and processing modules is the Pkt Info object, which can be serialized, the
model that fit the best with the problem of sending information from a component to another
is the producer and consumer model.

Section 3.3.1.2 presents with more detail what message broker was chosen to serve this purpose
and describes the rest of the processing module.

3.3.1.2 Processing module

As mentioned in Section 3.3.1, the processing module is in charge of taking the packet info
from the message queue that is shared with the capture module, make a prediction of the
created sample and send the result to the server. This process is complex and involves several
parts, so each one will be described in detail.

Firstly, the message broker that was chosen was RabbitMQ[91]. RabbitMQ is a lightweight
and highly-scalable message broker that uses the Advanced Message Queueing Protocol
(AMQP)[92]. AMQP is a network protocol, so all the producers and consumers can be
executed in different machines.

So, since there are messages (in this case, Pkt Info objects) in the queue, a consumer is needed
to process them. However, there are some requirements to take into consideration before
explaining how the consumer(or worker) is implemented.

For instance, there may be some cases, mainly when the sample size is low and the number of
packets to process is large, where the rate of packets being produced is larger than the rate
of the packets being consumed. For example, assuming that each sample is 10 seconds of
traffic, the worker should take less than 10 seconds to process the packets, create a sample,
and make a prediction. If it takes longer than that, the producer will be flooding the queue

40

with more messages while the worker still has not processed all messages from the previous
sample, potentially propagating the overall lag of the system, which can become significant
on successive delays.

For this reason, it was decided that each sample should have a dedicated process assigned to
it. This way, if one process encounters a delay, the subsequent samples will not get delayed,
as there is a unique process that will handle them. Figure 3.15 illustrates the behaviour of
the processes when a delay occurs, in the case when a sample is 60 seconds long.

0 30 60 90 120 150 180

Worker
id=1

Worker
id=1

Worker
id=2

prediction
[0,60]

prediction
[60,120]

prediction
[120,180]

Figure 3.15: Time diagram describing the processing of the messages when a delay occurs.

In Figure 3.15, a delay occurs when Worker 1 is processing messages during the [60, 120]
segment. If Worker 1 managed to finish the processing before the 120 mark, there would not
be two simultaneously active workers. Since this happened, Worker 2 is executed to process
the incoming messages. This solves the delay problem presented previously.

However, the delays are unpredictable, so there is no way of knowing how many processes
should be executed to deal with these cases. Plus, most of the processes would only be useful
during the processing of the packet info. The remainder of their execution time they would be
blocked. Although this generally does not consume CPU resources, it may add some overhead
to the kernel process management system. This particular case, allied to the fact that there
is no method of knowing how much processes will be enough to cover delays, are the main
reasons why the processing of the packets is so complex.

There is, however, an elegant way of dealing with these problems - a task scheduler. The
most famous example is the cron daemon[93] on Linux, which adds crontab tasks to a system
that will execute them automatically. It is often used for tasks such as sending emails, make
data backups or system maintenance. Figure 3.16 shows how this solution would apply to the
current problem.

41

T1

W1

Capture Module Processing Module

Pkt Info

ts: 1535108932
src: 175.45.177.6
dst: 192.168.0.2

len: 1560

Every X seconds

Figure 3.16: Interaction of the Capture and Processing modules in detail, with scheduled process-
ing.

In this dissertation, the chosen scheduler was celery beat[94]. Celery[95] is an asyn-
chronous task queue based on distributed message passing. It uses RabbitMQ and Redis[96]
as a message broker and database, respectively. However, Celery was chosen because of a
particular feature called celery beat.

Celery beat is a scheduler that allows processes to start at regular intervals to undertake
certain tasks that are processed asynchronously. There are several reasons why we decided to
use celery beat and not a simple crontabtab job.

• Integration - the tasks for celery beat are written in Python, which facilitates the
process of integrating it with the whole system.

• Portability - celery beat can be executed in any system that supports a Python
environment.

• Privilege - celery beat does not need root access to be executed in a machine, unlike
most crontab tasks.

• Adaptability - since Celery is written to be used along with RabbitMQ, it is the
solution that fit the best with the system.

Having decided what scheduler to use, the next step was to create the tasks for the workers.
Since the objective is to get Pkt Info objects from the message queue that correspond to
a certain period of time (the sample size), celery beat was configured to launch a worker
every sample size seconds. For instance, in the case where the developed ML models had
better accuracy, the sample size was 60 seconds (see Chapter 4). In this case, a task would be
scheduled to run every 60 seconds. This task is retrieving all the messages in the RabbitMQ
queue, create a sample from the data, make a prediction on the sample and send the result to
the Server side. Figure 3.17 shows the developed algorithm used in the worker tasks.

42

Start

Are there
messages in the

queue?
END

NO

Get X messages
from the queue

Get number of
messages in the

queue
YES

messages= X

Create sample Predict Send prediction
to Server

Figure 3.17: Worker task algorithm.

It is important to note that to process a sample and make a prediction, certain objects
are necessary. These objects are created during the creation of the ML model and then saved
to be used by the live framework, as illustrated in Figure 3.18.

Live Traffic Analysis ML
Models

provides
ML Model Creation

uses
StdScaler

Imputer

Zero
values

Figure 3.18: Framework overview with shared objects.

Firstly, the most important one is the ML model itself. Secondly, other objects such as the
StandardScaler, which was used to scale the training data, as well as the Imputer object used
to fill any null values that may occur (see Section 3.2.4). Finally, the values corresponding to
silence, as described in Section 3.2.3.1.

After making a prediction, the worker needs to send it to the server. This is done through an
HTTP POST request to a REST Application Programming Interface (API), which will be
described in more detail in Section 3.3.1.3.

43

3.3.1.3 Server Side

The server side consists of three parts: the REST server, the web server and the database.
The REST server serves as the gateway to the database. Predictions made by the workers, as
well as other metrics such as the number of uploaded bytes per minute are sent to it through
POST requests and saved in the database. These values are then accessed by the web server,
which makes requests to fulfill the requests from the client side.

For instance, the last prediction of a given terminal can be accessed by making an HTTP
GET request to the following endpoint:

http://server_address.com/api/predictions/<terminal_id>

The chosen technology to develop the server side was Flask, a web application framework
that can be used easily to create a REST API and that also has the ability to serve static
content such as HyperText Markup Language (HTML) pages.

Because of time constraints, the database was not developed, although we suggest how to
approach the development in Chapter 5.

3.3.1.4 Client Side

The client side consists of a simple page to visualize the network status and each machine’s
application usage report. It uses Typescript along with jQuery as a client-side language.
Typescript is a superset of the Javascript language and was chosen because it adds static
typing to Javascript, making its code more readable, easy to maintain and support, and less
prone to errors since it is a compiled language.

44

CHAPTER 4
Experimental setup, results and

analysis

This chapter describes the conducted experiment to test the methods proposed throughout
this document. It starts by describing the built dataset and how it was acquired, as well as
the method for labeling the samples that compose the dataset. It concludes with the result
presentation, the evaluation of the classifiers and their analysis, giving possible explanations
for the obtained results.

4.1 Network traffic acquisition

As stated in Section 3.2.2, the collected data should be as broader as possible, i.e., it should
consider different network environments and conditions, as well as different users. For instance,
even in services such as video streaming, where most of the time the user is not actively
interacting with the service, human behavior can influence the upload/download of packets.
Actions such as pausing, skipping to another point of the video or opening several browser
tabs at once can have a significant influence on how packets flow in the network.

The data was captured in several different settings, such as home networks and the campus
network. These connections also had different bandwidth capacity, in order to have the widest
variety of captured data. The data was also acquired across six months, at different periods of
the day (morning, afternoon and late night), at different days of the week and using different
capture devices. Finally, we asked several people to capture network traffic when using the
tested applications in order to encompass multiple human behaviors.

4.1.1 Capture devices and configuration

As stated in Section 2.2, it is usually more advisable to capture data using specialized
equipment, such as a TAP or the port mirroring capabilities some switches have. This is

45

especially true in scenarios where the loss of a packet or inconsistencies between the packets’
arrival times can have a significant impact on the end result.

That being said, in this work we decided to use a software-based approach since it makes
the post-sniffing process simpler. Additionally, the amount of data collected when building a
profile for each application is not usually enough to cause significant packet loss. However,
this method may not be optimal in a context where the quickness of results is a priority, as
discussed in Section 3.3.

All of the data was always captured on the endpoint device that was sending/receiving the
data. The machines ran Wireshark in promiscuous mode, while the application services ran in
the background using browsers like Mozilla Firefox and Google Chrome1. Both cabled and
wireless connections were tested, so the interface in which to capture was chosen accordingly.
No filters were applied when capturing.

Table 4.1 describes the machines used for network data acquisition. The reason most of the
stations used virtual machine (VM) for capturing the data was to sanitize the capturing
environment, so that there was a smaller chance of programs running in the background
interfering with the captures and ultimately change the fingerprint of the application that was
being captured at the time. Using a VM may introduce some delays in the packet flow[97],
but they should be negligible.

Machine ID Description Type of connection
(wired or wireless)

Browsers
(Chrome or Firefox)

Setting (home
network or campus)

Lab1 Laptop running
Fedora 27 VM Both Both Both

Lab2 Laptop running
Windows 10 Wireless Chrome Home Network

Lab3
Desktop running
Ubuntu 18.04
VM(low bandwidth)

Wired Both Home network

Table 4.1: Used machines for capturing network data.

The station Lab3 has the particularity of having very low bandwidth available (5 Mbps of
download and 1Mbps of upload). This was done by configuring the virtualization software
to allocate limited bandwidth for the VM. The objective is to cover situations in which a
terminal with poor quality internet access tries to access the tested application services. For
example, as mentioned in Section 3.2.3.1, most popular video streaming applications can
detect if a connection has low bandwidth and adjust the quality of the video to the connection,
which may change some characteristics of the packet flow.

Figure 4.1 shows the number of packets each machine captured over the course of this project.
The total amount of captured packets was 15,700,377 packets. These packets include video
applications, non-video applications and network noise from background applications as well.
The protocol distribution is presented in Figure 4.4.

1Except in the case of a particular application which uses its own desktop interface

46

Figure 4.1: Captured packets by each machine.

4.1.2 Tunneled traffic

Since the objective of this work is to identify applications over protected channels, there was
a need to setup network environments to acquire traffic to test these particular cases. The
chosen protocols to test were SSH and OpenVPN, since they are relatively easy to set up and,
because of that, are two of the most popular tunneling protocols.

4.1.2.1 SSH tunnel with dynamic port forwarding

A simple method of redirecting traffic, particularly HTTP traffic, to a protected channel is to
use a SOCKS proxy. SOCKS is an internet protocol which redirects packets between a client
and a server through a proxy server.

Figure 4.2 depicts a setup of an HTTP over SSH tunnel using SOCKS.

SSH tunnel

SSH Server
Client machine

SSH Client

TCP port

Client Application

Encrypted
Unencrypted

HTTP Server

Figure 4.2: Diagram of an SSH tunnel using a SOCKS proxy.

47

The user application (e.g. browser) forwards its traffic a port opened by the SOCKS,
where the tunnel is. The traffic is then forwarded to the SSH tunnel and, on the server, it
is forwarded to the internet. A SOCKS proxy has to be configured on each application on
the client, unlike a VPN, where all traffic is forwarded to the tunnel. As stated previously,
the used applications were Google Chrome and Mozilla Firefox. The SSH server runs on a
Raspberry Pi 3B[98].

4.1.2.2 OpenVPN tunnel

Another common method of encrypting traffic is to use OpenVPN. OpenVPN is a popular
choice, as it is easy to set up and, unlike an SSH tunnel, there is not a need to configure each
application to forward the traffic to a specific port.

Figure 4.3 shows, in a simplified way, how an OpenVPN tunnel works.

OpenVPN
Tunnel

OpenVPN Server

OpenVPN Client

Encrypted
Unencrypted

HTTP Server

Figure 4.3: Diagram of a OpenVPN tunnel.

All network requests are forwarded to the OpenVPN Client, which can be located on the
client terminal itself or outside, acting as a gateway. The OpenVPN client then sends the
requests to the OpenVPN Server, through an encrypted VPN tunnel. The OpenVPN server
decrypts the traffic and sends the request to the destination server, which responds to the
OpenVPN Server.

The OpenVPN server was set up in a Raspberry Pi 3B. The server was setup using PiVPN[99],
and the chosen parameters for the tunnel were the default values, such as using UDP as a
transport protocol and having a 2048-bit Rivest-Shamir-Adleman (RSA) key.

4.1.3 Labeling

As stated in Section 2.3.2, DPI is one of the most common methods of obtaining the ground
truth for network captures. However, this method is computationally expensive and does not
guarantee 100% accuracy. For this reason, allied to the fact that all captures were conducted

48

by ourselves, all of our data was labeled manually, according to the application that was being
used between certain timestamps.

4.2 Dataset composition

Overall, a total of 15,700,377 packets were captured and the dataset comprises of about
26,89GB of data, both upload and download. The total time of capture was 64,252 seconds.

Figure 4.4 provides a view of the composition of the dataset separated by the protocol.

Figure 4.4: Distribution of the protocols contained in the dataset.

4.2.1 Considered classes

As stated previously in Chapter 3, two ML models were developed - one for determining if
a service was a video application or a non-video application, and the other for identifying
from which specific video application a sample is. Together, these two ML models form a
two-level identification model.

The first level consists of identifying traffic by classifying it into two large groups: video and
non-video. The non-video applications included news websites, forums, social networks,
file sharing and online games. Some of these services contain video traffic, but it is not the
main focus of the service. The applications chosen to be part of the video category will be
presented in detail later in this section.

The second level consists of identifying what specific video application was being accessed
when the capture was made. A group of four popular video streaming applications was chosen
to be a part of this experiment. Those applications are Acestream, Youtube, Netflix and
Twitch.

49

4.2.1.1 Acestream

Acestream[100], formerly known as TorrentStream, is a P2P multimedia streaming protocol.
It is particularly used for broadcasting sports live streams and it is based on the BitTorrent
protocol[101].

Figure 4.5: Uploaded and downloaded bytes of Acestream across all network settings

As it can be observed in Figure 4.5, the number of downloaded bytes is only slightly larger
than the number of uploaded bytes. This behavior is expected, since this is a P2P application,
in which every user, in addition to being a client, acts as a server for other peers.

It was not possible to capture traffic using the setup described in Section 4.1.2.1, as the
application did not offer an option to redirect the traffic to a specific port.

4.2.1.2 Netflix

Netflix is one of most popular subscription-based TV series and movie streaming services.
Unlike Acestream and Twitch, they do not provide a live stream service.

50

Figure 4.6: Uploaded and downloaded bytes of Netflix across all network settings.

Unlike Acestream, Netflix is not a P2P application. Consequently, the volume of down-
loaded data is massive when compared to the volume of uploaded data.

4.2.1.3 Youtube

Youtube is the second most visited website in the world[102]. It is a video-sharing website
with millions of daily users. Although it also provides live video streams, this dissertation did
not focus on that service, since generally Youtube is used for watching non-live videos.

Figure 4.7: Uploaded and downloaded bytes of Youtube across all network settings

Youtube’s download/upload byte ratio is similar to Netflix ’s, which makes sense since they
are both very similar video streaming services.

51

4.2.1.4 Twitch

Twitch is a live streaming video platform that primarily focuses on video game live streaming.
It is the most popular website for streaming video games. It also has features such as chat
and subscriptions.

Figure 4.8: Uploaded and downloaded bytes of Twitch across all network settings.

Although Twitch is primarily a live streaming service, its ratio is very similar to the one
of both Netflix and Youtube.

4.2.1.5 Overview of all classes

Normal SSH OpenVPN Total
Packets Bytes Packets Bytes Packets Bytes Packets Bytes

Acestream 0.74 1.25 - - 1.15 2.67 0.78 1.33
Netflix 1.29 118.71 1.18 73.34 1.91 22.62 1.58 50.22
Youtube 1.24 141.42 1.16 106.12 6.21 57.39 3.18 86.83
Twitch 1.27 103.01 1.31 112.02 3.22 37.37 1.88 75.96
Non-video 1.58 19.91 - - 1.36 9.65 1.57 18.99

Table 4.2: Download/Upload ratio for each class.

By analyzing Table 4.2 we can extract some characteristics that may be useful when choosing
the features to use for the ML models. For instance, we can observe that the packet information
does not vary that much across the applications (except for Acestream, which is below 1
most of the time). On the other hand, byte ratio can vary substantially. For example, the
values are much higher in the video applications than in the non-video applications (except for
Acestream, for reasons explained in Section 4.2.1.1). This means that outgoing traffic features
may have a great influence in categorizing Acestream, as it is incredibly different from other

52

applications, which may lead to a very accurate identification of this class.

Another useful metric for extracting knowledge from packet data is to compare the packet
size across all services and network settings. Figure 4.9 shows the average packet size for each
application.

Figure 4.9: Average packet size for each service (bytes)

It is interesting to note that for the tunneled traffic, the average packet size is similar
across all applications, which indicates that the network environment has a great influence in
the traffic flow. We can observe that non-tunneled traffic has, the largest packet size, followed
by SSH traffic and finally OpenVPN.

4.2.2 Processed dataset characteristics

After the acquired data was processed using the methods described in Section 3.2, the result
was a single .csv in which each row is a sample and each column is a feature. As described in
Section 3.2.3, the sample size is the number of time buckets in a single sample. The fact that
this number is arbitrary can change characteristics of the data after the data preprocessing
phase (Section 3.2.3). For this reason, from this point on, the dataset descriptions will be of
the processed data with a time bucket of 1 second and a sample size of 60 seconds, since those
were the values that achieved the best results overall, as can be seen in Section 4.3.

As stated in Section 3.2.3.3, features can be divided in 3 groups - basic stats, silence
periods and pseudo-periodic components. However, after preliminary tests, it was noted
that the pseudo-periodic components did not contribute to a better result. In fact, in
most cases, having the scalogram data slightly decreases the accuracy of the ML models.

For this reason, pseudo-periodic components were discarded from the feature list, except
in one specific situation described in Section 4.3.2. That being said, the number of features
used in most of the tests is 52. Table 4.3 shows five random samples from the dataset.

53

up_bytes_mean up_bytes_median up_bytes_std ... label
432 -0.176328 -0.176933 0.001749 ... youtube
466 -0.17206 -0.174558 0.005345 ... netflix
745 -0.170881 -0.175935 0.011627 ... browsing
749 -0.162876 -0.170104 0.018725 ... browsing
846 -0.173766 -0.174598 0.002649 ... twitch

Table 4.3: Random samples from the dataset.

Since the dataset is mostly composed of statistical features, a useful method to estimate the
impact of each feature and to understand how they are related is through data visualization.
For example , Figure 4.10 depicts the scatter matrix of some important silence period features,
taking the whole dataset into account.

0

10

20

30

40

50

do
wn

_b
yt

es
_s

ile
nc

es

0

10

20

30

40

50

up
_b

yt
es

_s
ile

nc
es

0 20 40

down_bytes_silences

2

4

6

8

10

12

14

up
_b

yt
es

_s
ile

nc
e_

m
ea

n

0 20 40

up_bytes_silences

5 10

up_bytes_silence_mean

Figure 4.10: Scatter matrix of some silence period related features.

From this matrix, particularly the relation of the number of silences in outgoing and
incoming traffic, we can conclude that they are both closely related, showing a strong positive
linear relation between each other, as one would expect. From that, we can conclude that for
the captured applications, the number of silent periods (upload or download) is similar for
the same sample.

54

While Figure 4.10 indicates a positive relation between features, it does not help us conclude
if different applications have different time-related characteristics, a fact that would certainly
increase the accuracy of the classification process. Figure 4.11 shows a histogram of the
number of download and upload silences for video traffic, while Figure 4.12 shows the same
statistic for non-video applications.

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

0.10
down_bytes_silences

0 10 20 30 40 50

up_bytes_silences
v

Figure 4.11: Histogram of silence periods for video applications.

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
down_bytes_silences

0 10 20 30 40 50

up_bytes_silences
n

Figure 4.12: Histogram of silence periods for non-video applications.

Upon analysis and comparison of the two histograms, two facts can be concluded. Firstly,
as expected, video traffic has more periods of activity than non-video traffic. This is probably
due to the fact that for non-video traffic such as news websites or internet forums, a user
may spend lots of time reading articles or comments without interacting with the application,
which translates itself into more silence periods for non-video applications. Secondly, the
silence periods for non-video applications are more diverse than for video applications, which
has a slight peak around 35-40 seconds. This may be because user behavior is more volatile
than the behavior of video streaming. For instance, when a user is browsing an internet forum,
he is more likely to influence the way the traffic flows (by clicking on images and hyperlinks)
than he is when watching a video stream. This is because each video application has its own
method of transferring the video. For example, with Youtube, most videos have an initial
burst of incoming traffic, and the rest of the video is downloaded in segments that occur
almost periodically. The fact that there is this difference between the two histograms may be
as a result of the dynamic explained above.

We have established that time period characteristics can help differentiate between categories
of traffic. As for basic statistics such as mean, median, variance, etc (see Section 3.2.3.3), they
can also be determinative when classifying traffic. Figure 4.13 shows two parallel coordinates

55

plot for outgoing packets features and outgoing bytes features, respectively.
up

_b
yt

es
_m

ea
n

up
_b

yt
es

_m
ed

ia
n

up
_b

yt
es

_s
td

up
_b

yt
es

_v
ar

up
_b

yt
es

_s
ke

w

up
_b

yt
es

_k
ur

t

up
_b

yt
es

_p
er

c2
5

up
_b

yt
es

_p
er

c5
0

up
_b

yt
es

_p
er

c7
5

up
_b

yt
es

_p
er

c9
0

0

10

20

30

40

50
netflix
youtube
acestream
twitch

up
_p

ac
ke

t_
m

ea
n

up
_p

ac
ke

t_
m

ed
ia

n

up
_p

ac
ke

t_
st

d

up
_p

ac
ke

t_
va

r

up
_p

ac
ke

t_
sk

ew

up
_p

ac
ke

t_
ku

rt

up
_p

ac
ke

t_
pe

rc
25

up
_p

ac
ke

t_
pe

rc
50

up
_p

ac
ke

t_
pe

rc
75

up
_p

ac
ke

t_
pe

rc
90

0

10

20

30

40

50
netflix
youtube
acestream
twitch

Figure 4.13: Parallel coordinates plot for outgoing packet features and outgoing bytes features.

By analyzing Figure 4.13, the statements in Section 4.2.1.5 regarding the importance
of upload features in identifying Acestream are strengthened, since its distribution is very
different from the other video classes.

Analysing the difference between the two charts more closely, it can be observed that there is
a spike in the kurtosis of both upload packet and bytes. However, Twitch, for instance, has
much higher values in the bytes features than the packets features, which may indicate that
the length of the packets varies highly, although infrequently, while maintaining rougly the
same number of packets.

Figure 4.14 shows the same chart for outgoing bytes features.

do
wn

_b
yt

es
_m

ea
n

do
wn

_b
yt

es
_m

ed
ia

n

do
wn

_b
yt

es
_s

td

do
wn

_b
yt

es
_v

ar

do
wn

_b
yt

es
_s

ke
w

do
wn

_b
yt

es
_k

ur
t

do
wn

_b
yt

es
_p

er
c2

5

do
wn

_b
yt

es
_p

er
c5

0

do
wn

_b
yt

es
_p

er
c7

5

do
wn

_b
yt

es
_p

er
c9

0

0

10

20

30

40

50

netflix
youtube
acestream
twitch

Figure 4.14: Parallel coordinates plot for incoming bytes features.

The incoming bytes features do not highlight differences in the Acestream traffic as well as
the incoming bytes, but it can still be analyzed to reach useful hints. For instance, if a stream
of incoming traffic features a high variance, there is a good chance it is Netflix traffic, as well

56

as if the stream had low kurtosis values.

4.3 Classification and results evaluation

As stated throughout the document, the two-level classification model is composed by the
first level - identifying if a given sample is from a video application or not - and the second
level - identifying which video application the sample belongs, in case it is a video application.

In addition, since the developed framework is designed to be used at a corporate level, it
should also consider situations where tunneled traffic is hard to capture, as it requires setting
up the specific network environment and other requirements exposed in Section 3.2.2. Thus,
this research also contemplated the situations in which there is no such traffic available for
training the ML model. Therefore, there are two more situations to test: training with
tunneled traffic (which should achieve better results) and training without tunneled traffic.
Figure 4.15 depicts the process of spliting the dataset for the latter case.

Normal traffic Tunneled traffic

Training set Test set

Figure 4.15: Training set and test set for the training without tunnel traffic scenario.

As stated in Section 3.2.3.2, both the time bucket size and sample size can be chosen when
building the dataset. Since the optimal sizes that result in a better classifier were unknown, it
was decided to build different datasets from the same packet data with different time bucket
sizes and sample sizes. The chosen values were 1 second and 0.1 seconds for the time bucket
size and 10, 30 and 60 units for the sample size.

As stated in Section 3.2.5, the selected ML algorithms to use were Decision Tree, SVM,
Neural Networks, Random Forest, Decision Tree + AdaBoost and Random Forest
+ AdaBoost.

The One vs. One (OvO) and One vs. Rest (OvR) strategies were also applied to the
Random Forest algorithm for the multiclass classifier. The purpose of these strategies is to
transform a multiclass classification in multiple binary classifications. When using OvO, a
binary classifier is trained for each pair of labels, which means that for N labels there would
be N(N−1)

2 classifiers. The result is the mode of the result of each binary classifier. The OvR
strategy consists of training one binary classifier per label, in which it considers the label in

57

question as positive and the others as negative.

Since some of the chosen algorithms do not usually perform well with unscaled features,
particularly SVM and Neural Networks, we did tests with both unscaled and scaled datasets.
Plus, we applied PCA reduction (see Section 3.2.3.4) with different values for the number of
principal components.

The separation of the dataset in training set and test set was done with done with the
train_test_split() function from the sklearn.model_selection library. The size of the test set is
20% of the whole dataset. For evaluating the results, in addition to the test set accuracy, we
did a 10-fold CV on the training set.
All of the results are presented in chapter 5.

4.3.1 Training with tunneled traffic

In this section, we present the classification results achieved when training the ML model
with all types of traffic (tunneled and non-tunneled).

4.3.1.1 Identifying video category

In this case, the classifier aims to identify whether a given observation corresponds to video
or not. Although we can observe that almost every combination of parameters obtained good
results (over 90% for the most cases), after analyzing the results, we concluded that the best
algorithm for almost every case, was Random Forest with boosting.

Time bucket (s) Sample time (s) Scaled CV score Accuracy test set
0.1 1 No 0.93176±0.00395 0.94429±0.00519
0.1 1 Yes 0.94484±0.00438 0.95093±0.00520
1 10 No 0.94150±0.00340 0.93531±0.00611
1 10 Yes 0.94091±0.00343 0.93531±0.00610
0.1 3 No 0.92561±0.00392 0.93171±0.00588
0.1 3 Yes 0.92602±0.00393 0.92984±0.00586
1 30 No 0.94611±0.00438 0.96028±0.00612
1 30 Yes 0.94374±0.00398 0.94761±0.00554
0.1 6 No 0.94374±0.00438 0.94761±0.00612
0.1 6 Yes 0.94222±0.00338 0.94715±0.00483
1 60 No 0.94960±0.00429 0.95327±0.00612
1 60 Yes 0.95080±0.00554 0.94393±0.00612

Table 4.4: Random Forest Classifier with AdaBoost results for identifying video traffic.

All of the results in Table 4.4 have around 94% accuracy, with the best tested case being
96% accuracy in the test set. As expected, the longer the sample, the better is the performance
of the classifier, since traffic behaviour characteristics are not as evident in short periods of
time. Even though the longest samples achieved better results, they are only slightly better
when compared to shorter samples. This may be because since the classes are so broad, only
a small amount of traffic is necessary to make an accurate classification. Consequently, in

58

practice, it may be better to have the ML model predict 60 samples of 1 second than to have
it predict one 60 second sample.

It can also be observed that the Random Forest classifier does not significantly change its
accuracy when using scaled features. This behaviour is expected, as Random Forests do not
usually need normalized data because of their partitioning nature. Consequently, applying
any monotonic function to the input data should not affect the performance of the ML model.

Figure 4.16 presents the ROC curve for the case that achieved the best results (1 second
bucket size and 60 second sample). For the rest of this section, the presented results will also
be for that case.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Video
Non-video

Figure 4.16: ROC curve for the best CV score of Random Forest classifier video traffic identification
(best case).

The ROC area under curve score is 98.65% for both classes. By analyzing the ROC curve,
we can see that both classes have roughly the same TP and FP rate, meaning that the classifier
does not favour one class over another.

Since the two classes are so comprehensive, it was expected that the performance of the
ML model would be as high as the results show. Even though the ML model has a good
performance, there are instances where it failed to accurately predict the class of an observation
This means that the misclassified observations have traits the classifier interpreted as belonging
to the incorrect class, which can happen for multiple reasons. For instance, some online
games have similar timing characteristics to video streaming services, since they can also have
periodic network events. Similarly, a user that performs many actions such as pausing a video

59

or skipping to another point in the video affects the periodic nature of the video traffic, which
can explain why some of the observations were misclassified.

To determine the importance of the group of features that were used, we also conducted tests
where the ML model was trained only with a specific subset of features. The results can be
observed in table 4.8.

Feature group CV score Accuracy test set
Basic Stats 0.94611±0.00520 0.94392±0.00520
Silence periods 0.77632±0.00960 0.77160±0.00832
Basic Stats + silence periods 0.95080±0.00554 0.94393±0.00612

Table 4.5: Random Forest Classifier with AdaBoost results using different feature groups for video
identification (best case).

From Table 4.8, we can conclude that the basic statistics are the most important features
for this binary classifier. This may be because there are only 12 silence period features,
which may be a too small number to train the classifier. On the other hand, there are 44
basic stats, which is enough for the classifier to have a good performance. When adding the
silence period features to the basic stats, the performance of the model does not have a
significant increase. Although silence period features do not have a great influence when
differentiating video traffic from non-video traffic, they could be useful to distinguish between
video applications, since the similarities between classes will be higher.

The algorithms also were trained after applying PCA with a different number of principal
components to see how the performance would be affected.

principal components Random Forest + AdaBoost SVM Neural Network
No PCA 0.95080±0.00521 0.92493±0.00615 0.93206±0.00010
5 0.90040±0.00614 0.92036±0.00609 0.89912±0.00571
10 0.91566±0.00570 0.91556±0.00520 0.92499±0.00521
20 0.91440±0.00577 0.92142±0.00007 0.93203±0.00519
40 0.92385±0.00568 0.92611±0.00520 0.92965±0.00615

Table 4.6: CV accuracy after applying standardization and PCA to the feature set.

As it can be seen from Table 4.6, the performance of the classifier is affected when applying
PCA. In the case of Random Forest with boosting, applying PCA hurts the performance.
One possible cause is that Random Forests need enough features to find good splits (like the
branches of a tree) more easily[103]. By decreasing the number of features, the process of
finding a split becomes harder.

On the other hand, applying PCA increases the accuracy when using algorithms such as
SVM and Neural Networks. This does not happen when using only 5 principal components,
probably because much information from the original features has been lost. However, when
using 10 or more principal components, the performance of the classifiers increases.

60

4.3.1.2 Identifying specific video application

In this case, the classifier’s objective is to predict what video class a given observation belongs
to. The considered applications are presented in Section 4.2.1.

The first thing that can be concluded from the results is that most of the classifiers CV score
is, to a small degree, higher than the test score, which indicates overfitting. A probable
reason for this is the small size of the dataset - there may not be enough samples of each class.
A common cause of overfitting is also a large number of labels, but that does not seem to be
the case here since the higher CV score also happens after applying feature reduction to the
dataset.

It can also be observed that Random Forests were the algorithms that performed better,
with the OvR strategy obtaining slightly better results, as some studies in the area would
indicate[104].

Nevertheless, the obtained results are good across all parameters combinations. That being
said, there is a small increase of accuracy when the sample time is 60 seconds, which is
expected since there is more information. Table 4.7 presents the most relevant results when
applying feature standardization and PCA.

principal components Random Forest OvR SVM Neural Network
No PCA 0.94839±0.00808 0.91613±0.00020 0.93548±0.00637
5 0.88387±0.00877 0.91613±0.00733 0.91613±0.00733
10 0.90968±0.00903 0.92258±0.00819 0.90968±0.00559
20 0.92903±0.00879 0.92903±0.00822 0.92258±0.00877
40 0.92258±0.00880 0.90968±0.00734 0.94193±0.00720

Table 4.7: Test accuracy after applying standardization and PCA to the feature set.

These results tie well with the results presented in Table 4.6, as the PCA application
decreases the performance of Random Forest, while making SVM and Neural Networks perform
better, as long as there are enough features. Unlike the previous case, the improvement of
using PCA for those two algorithms is negligible.

Another important detail to take from the results is that the performance did not improve
when applying boosting techniques to the Random Forest classifiers, unlike in the first classifier
(Section 4.3.2.1). A probable cause for this is that since the first base classifier is already
overfitted, applying a boosting technique hurts its performance.

As it can be seen from Table 4.7, the best case achieved 94.8% accuracy in the test set.
Figure 4.17 shows the normalized confusion matrix for this case.

61

Yo
utu

be
Netf

lix
Tw

itc
h

Aces
tre

am

Predicted label

Youtube

Netflix

Twitch

Acestream

Tr
ue

 la
be

l

0.885246 0.114754 0.000000 0.000000

0.032787 0.950820 0.000000 0.016393

0.000000 0.095238 0.904762 0.000000

0.000000 0.000000 0.000000 1.000000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.17: Normalized confusion matrix for video application classification (best case).

From Figure 4.17 we can observe that the classifier did not make any mistake when
classifying Acestream samples. This confirms the presumption exposed in Section 4.2.1.5
where we stated that the P2P nature of this application would make it very distinct from the
others. However, for the other classes, the ML model did not perform perfectly.

Figure 4.18 shows the error rates, providing a clearer analysis of the situations where the
classifier makes prediction mistakes.

62

Yo
utu

be
Netf

lix
Tw

itc
h

Aces
tre

am

Predicted label

Youtube

Netflix

Twitch

Acestream

Tr
ue

 la
be

l

0.000000 0.114754 0.000000 0.000000

0.032787 0.000000 0.000000 0.016393

0.000000 0.095238 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.00

0.02

0.04

0.06

0.08

0.10

Figure 4.18: Normalized errors of confusion matrix for video application classification (best case).

From the normalized errors matrix, it can be concluded that the classifier struggles to
differentiate between Youtube and Netflix, with over 10% of Youtube samples being misclassified
as Netflix. This also occurs with Twitch, although the error rate is not as high. The only
circumstance of the classifier misclassifying an application across multiple classes is with
Netflix, but the amount of mistakes is low when compared to the other classes.

A probable reason for the confusion between Youtube and Netflix is that those two applications
are very similar in concept, since they are both non-live streaming video services.

To estimate the importance of the used features, the same test where the ML model was
trained only with a specific subset of features was also applied in this context.

Feature group CV score Accuracy test set
Basic Stats 0.99889±0.00438 0.91832±0.00693
Silence periods 0.89390±0.00735 0.82133±0.00854
Basic Stats + silence periods 0.94483±0.00472 0.94839±0.00808

Table 4.8: Random Forest Classifier with AdaBoost results using different feature groups for video
application identification (best case).

By comparing the performance of the classifier using different feature groups, we can
conclude that, just like in Section 4.3.1.1, using the basic statistics leads to a more accurate

63

prediction. Although the silence period features by themselves do not have a great perfor-
mance, when used together with the basic statistics the classifier’s performance noticeably
increases. This increase did not happen in the context exposed in Section 4.3.1.1, which
indicates that for distinguishing between classes that have more similarities (such as video
applications), silence periods have an important part.

It is important to note that the CV score when using only basic statistics as features was
close to 100%, while having a test accuracy of about 92%, which strengthens the notion that
the classifier is overfitted because of the feature-sample ratio.

4.3.2 Training without tunneled traffic

In this section, we present the classification results achieved when training the classifiers
without tunneled traffi, while testing the ML models only with tunneled traffic. Consequently,
the training set comprises of all non-tunneled traffic that was captured, while the test set has
all SSH and OpenVPN Traffic.

4.3.2.1 Identifying video category

As expected, the overall results were not as good as before (Section 4.3.1.1). Although we
have already established that the longer the sample, the better the classifier will behave, this
is more evident in this case, as the results vary dramatically with the sample time (Table 4.9).

Time bucket (s) Sample time (s) Accuracy test set
0.1 1 77,9%
0.1 3 73,6%
0.1 6 74,4%
1 10 77,9%
1 30 81,1%
1 60 94,6%

Table 4.9: Random Forest Classifier results for idetifying video traffic (training without tunneled
traffic).

As it can be observed in Table 4.9, the classifier that performed the best had 94,6%
accuracy on the test set, which is in line with the overall results from the same experiment
with tunneled traffic (Section 4.3.1.1). The fact that the best classifier has roughly the same
accuracy in both cases is an indicator that the two categories are broad enough to the point
that the underlying protocols that control the packet flow do not affect each group’s fingerprint.
Although this happens when the classes are very comprehensive, it does not happen when
they are more specific, as it will be discussed in Section 4.3.2.2.

In this case, CV tests were not conducted, since the training test did not contain tunneled
traffic.

64

4.3.2.2 Identifying specific video application

In the case of identifying a video service without training the classifier with tunneled traffic,
the overall accuracy of the ML models was considerably lower when compared to training
with tunneled traffic. The best classifier achieved 75,5% accuracy and the used algorithm
was Random Forest with boosting.

This decrease in accuracy was expected, since the patterns generated by a normal traffic
flow and a tunneled traffic flow have differences. Although the video applications have
characteristics that help classifiers differentiate them from one another, the way that SSH and
OpenVPN affects the packet flow still has a significant impact in the classification process.

Furthermore, this was the only case where the pseudo-periodic components features helped
improve the accuracy of the ML model, even if the accuracy increase was not significant.

Feature group Best accuracy test set
Basic Stats + silence periods 75,5%
Basic Stats + silence periods + pseudo-periodic components 77,9%

Table 4.10: Comparison of the accuracy of the classifier when adding pseudo-periodic components
features.

Although there is no apparent reason for this small performance increase, one possible
explanation is that the pseudo-periodic components encompass more information about the
application itself and are not significantly affected by encountering an observation where the
traffic was shaped differentely because of the tunnel. This way, even when it is tested with
an observation of a network setup it is not familiar with, the classifier can still identify the
application with more success.

4.4 Summary

In this chapter, we presented a proof of concept for the developed framework by conducting an
experiment tackling the real-time identification of video applications. The results indicate that
it is possible to identify specific video applications with an accuracy of over 94% even when
using protected channels. If the ML models are presented with traffic captured in network
setups that are unknown for them (Section 4.3.2), the results are not as good, which shows
that the influence of the use of VPNs is still substantial.

65

CHAPTER 5
Conclusions and future work

Many studies and reports show that the increasing use of encryption and the urge to apply
encryption methods to ensure secure communications. The leading cause of this phenomenon
is the continuous awareness of individual privacy and all the laws and regulations that are
established to protect it. Every company with benevolent practices wants to respect the privacy
of its workers, but for it is also fundamental that the network of a corporate environment
is monitored to ensure its health, which generates a conflict of interests. Although some
companies apply policies to what can and cannot be accessed by the workers, knowledgeable
users may be capable of circumventing such restrictions with the usage of protected channels
(Section 4.1.2).

The work developed in this dissertation aimed to develop a method to classify traffic of
different applications in real time, regardless of the network setup. The presented solution
achieved great results when compared to state of the art methods, all this in the relatively
unexplored field of traffic classification in protected channels. Plus, it showed to be a sensible
compromise between user privacy and network management, as it provides a non-intrusive
insight into the usage of the network’s resources.

Besides the research and development of ML models to classify traffic (Section 3.2), a real-time
system for traffic analysis that uses the produced classifiers was also developed. As described
in Section 3.3, the architecture of this system was designed to make it scalable and easily
deployable in corporate environments. Although the system is designed to be applicable to
a company, the concept and implementation could also be adapted and used by ISPs, since
a non-intrusive inference of what service clients are using could be useful for traffic shaping
purposes.

This work dove further into traffic classification problems, while raising questions and opening
perspectives into other approaches and contexts to be used in network application identification,
showing promising results. Although many contexts and classification methods were tested in
this dissertaion, some improvements can be made in future studies, particularly in the context
of protected channels.

67

Firstly, regarding the actual work conducted in this dissertation, it is necessary to have a
larger dataset to train and test the classifiers. Although one could apply a sliding window
technique (see Figure 5.1) when creating samples from traffic to get much more observations
to work with, they would be less comprehensive than observations created by new traffic.

0 5

sample 1 sample Nsample 2

...

0

sample 1

sample 3

sample 2

...

5

Current method

Sliding window method

Figure 5.1: Comparison of the sliding window method and the current method for extracting samples
from packet captures.

Besides increasing the number of samples, the proposed framework should be tested for
more applications. Other services such as online gaming, music streaming and tasks like
database access could also be in their own class in order to achieve a more fine-grained analysis
of the traffic.

It is also essential to identify the importance of each feature, mainly the reason why pseudo-
periodic components did not help the classifier achieve a better performance in most cases.
It would also be interesting to find other features that could have valuable information (e.g.
variance of the silence periods). It could also be useful to try to identify the number of TCP
flows in a connection[39], since it is a valid identifier for web applications.

One aspect of the study that was only superficially addressed was hyperparameter tuning[105].
Although it was used in the cases that achieved the best accuracy using Scikit Learn imple-
mentation[106], its application should be studied further in order to achieve classifiers with
better performance.

Although many contexts were covered, both concerning the considered protected channels
and the incapability of training the ML model with tunneled traffic, there are other situations
worth looking further into. For instance, the usage of traffic morphing methods, such as the
Tor network[107], which may affect the applications’ fingerprint. One possible solution for

68

this is to identify the occurrence of traffic morphing and compensating by using features that
are more robust against those changes. In order to do that, a more thorough study of the
features is necessary to determine their importance in specific contexts. Another situation
worth studying is when there is more than one application being accessed at a given time. A
simple way of dealing with this problem is to have a binary classifier for each class instead of
a multiclass model with the services combinations.

Regarding the real-time system itself, the database was not implemented due to time con-
straints. InfluxDB[108] is a time series database that indexes its entries by using timestamps,
which could be a good fit to the problem at hand.

In conclusion, the work developed in this dissertation set the ground for many enhancements
and has a lot to offer regarding the contexts it could be applied in. It is proof that a concession
between network management and privacy is possible without sacrificing performance.

69

References

[1] European Parliament & Council, “Regulation (EU) 2016/679 of the European Parliament and of the
Council”, Official Journal of the European Union, 2016. [Online]. Available: http://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL%7B%5C&%7Dfrom=EN.

[2] Google Transparency Report. [Online]. Available: https://transparencyreport.google.com/https/
overview (visited on 03/21/2018).

[3] American Management Association / ePolicy Institute, “Electronic Monitoring & Surveillance Survey”,
American Management Association, pp. 1–11, 2007. [Online]. Available: http://www.plattgroupllc.
com/jun08/2007ElectronicMonitoringSurveillanceSurvey.pdf.

[4] Americans Are Watching Netflix at Work and in the Bathroom - The New York Times. [Online].
Available: https://www.nytimes.com/2017/11/17/business/media/watch-netflix-at-work.html
(visited on 09/11/2018).

[5] IETF | Internet Engineering Task Force. [Online]. Available: https://www.ietf.org/ (visited on
09/11/2018).

[6] OpenSSL: The Open Source toolkit for SSL/TLS | BibSonomy. [Online]. Available: https://www.
bibsonomy.org/bibtex/28796dfa7899f1eeab5e921051d6c3eed/ragibhasan (visited on 09/11/2018).

[7] Observer Network TAPs. [Online]. Available: https://www.viavisolutions.com/pt-br/node/58398
(visited on 07/04/2018).

[8] IANA Port Numbers. [Online]. Available: https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml (visited on 04/03/2018).

[9] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos, “Is P2P dying or just hiding?”,
in IEEE Global Telecommunications Conference, 2004. GLOBECOM ’04., vol. 3, IEEE, pp. 1532–1538,
isbn: 0-7803-8794-5. doi: 10.1109/GLOCOM.2004.1378239. [Online]. Available: http://ieeexplore.
ieee.org/document/1378239/.

[10] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer identification of P2P traffic”,
in Proceedings of the 4th ACM SIGCOMM conference on Internet measurement - IMC ’04, New York,
New York, USA: ACM Press, 2004, p. 121, isbn: 1581138210. doi: 10.1145/1028788.1028804. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1028788.1028804.

[11] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen, “A Survey of Payload-
Based Traffic Classification Approaches”, IEEE Communications Surveys & Tutorials, vol. 16, no. 2,
pp. 1135–1156, 2014, issn: 1553-877X. doi: 10.1109/SURV.2013.100613.00161. [Online]. Available:
http://ieeexplore.ieee.org/document/6644335/.

[12] C. Shen and L. Huang, “On Detection Accuracy of L7-filter and OpenDPI”, in 2012 Third International
Conference on Networking and Distributed Computing, IEEE, Oct. 2012, pp. 119–123, isbn: 978-1-4673-
2858-6. doi: 10.1109/ICNDC.2012.36. [Online]. Available: http://ieeexplore.ieee.org/document/
6386665/.

[13] S. Alcock and R. Nelson, “Libprotoident: Traffic Classification Using Lightweight Packet Inspection”,
[Online]. Available: https://wand.net.nz/sites/default/files/lpi.pdf.

[14] L. Bernaille and R. Teixeira, “Early Recognition of Encrypted Applications”, [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%
7B%5C&%7Dtype=pdf.

71

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL%7B%5C&%7Dfrom=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL%7B%5C&%7Dfrom=EN
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
http://www.plattgroupllc.com/jun08/2007ElectronicMonitoringSurveillanceSurvey.pdf
http://www.plattgroupllc.com/jun08/2007ElectronicMonitoringSurveillanceSurvey.pdf
https://www.nytimes.com/2017/11/17/business/media/watch-netflix-at-work.html
https://www.ietf.org/
https://www.bibsonomy.org/bibtex/28796dfa7899f1eeab5e921051d6c3eed/ragibhasan
https://www.bibsonomy.org/bibtex/28796dfa7899f1eeab5e921051d6c3eed/ragibhasan
https://www.viavisolutions.com/pt-br/node/58398
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://doi.org/10.1109/GLOCOM.2004.1378239
http://ieeexplore.ieee.org/document/1378239/
http://ieeexplore.ieee.org/document/1378239/
https://doi.org/10.1145/1028788.1028804
http://portal.acm.org/citation.cfm?doid=1028788.1028804
https://doi.org/10.1109/SURV.2013.100613.00161
http://ieeexplore.ieee.org/document/6644335/
https://doi.org/10.1109/ICNDC.2012.36
http://ieeexplore.ieee.org/document/6386665/
http://ieeexplore.ieee.org/document/6386665/
https://wand.net.nz/sites/default/files/lpi.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf

[15] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of popular DPI tools
for traffic classification”, Computer Networks, vol. 76, pp. 75–89, Jan. 2015, issn: 1389-1286. doi:
10.1016/J.COMNET.2014.11.001. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1389128614003909.

[16] R&S Cybersecurity ipoque, R&S®PACE 2 | Deep Packet Inspection. [Online]. Available: https :
//www.ipoque.com/products/dpi-engine-rsrpace-2 (visited on 04/05/2018).

[17] E. Hjelmvik, “The SPID Algorithm Statistical Protocol IDentification”, 2008. [Online]. Available:
https://www.iis.se/docs/The%7B%5C_%7DSPID%7B%5C_%7DAlgorithm%7B%5C_%7D- %7B%5C_
%7DStatistical%7B%5C_%7DProtocol%7B%5C_%7DIDentification.pdf.

[18] V. Paxson, “Empirically derived analytic models of wide-area TCP connections”, IEEE/ACM Trans-
actions on Networking, vol. 2, no. 4, pp. 316–336, 1994, issn: 10636692. doi: 10.1109/90.330413.
[Online]. Available: http://ieeexplore.ieee.org/document/330413/.

[19] C. McCarthy and A. N. Zincir-Heywood, “An investigation on identifying SSL traffic”, in 2011 IEEE
Symposium on Computational Intelligence for Security and Defense Applications (CISDA), IEEE, Apr.
2011, pp. 115–122, isbn: 978-1-4244-9939-7. doi: 10.1109/CISDA.2011.5945943. [Online]. Available:
http://ieeexplore.ieee.org/document/5945943/.

[20] T. Yildirim and P. Radcliffe, “A Framework for Tunneled Traffic Analysis”, [Online]. Available:
http://www.icact.org/upload/2010/0169/20100169%7B%5C_%7Dfinalpaper.pdf.

[21] X. Wang and D. J. Parish, “Optimised Multi-stage TCP Traffic Classifier Based on Packet Size
Distributions”, in 2010 Third International Conference on Communication Theory, Reliability, and
Quality of Service, IEEE, 2010, pp. 98–103, isbn: 978-1-4244-7273-4. doi: 10.1109/CTRQ.2010.24.
[Online]. Available: http://ieeexplore.ieee.org/document/5532778/.

[22] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification through simple statistical
fingerprinting”, ACM SIGCOMM Computer Communication Review, vol. 37, no. 1, p. 5, Jan. 2007, issn:
01464833. doi: 10.1145/1198255.1198257. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1198255.1198257.

[23] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer identification of P2P traffic”,
in Proceedings of the 4th ACM SIGCOMM conference on Internet measurement - IMC ’04, New York,
New York, USA: ACM Press, 2004, p. 121, isbn: 1581138210. doi: 10.1145/1028788.1028804. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1028788.1028804.

[24] P. Wang, X. Guan, and T. Qin, “P2P Traffic Identification Based on the Signatures of Key Packets”, in
2009 IEEE 14th International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks, IEEE, Jun. 2009, pp. 1–5, isbn: 978-1-4244-3532-6. doi: 10.1109/CAMAD.2009.
5161471. [Online]. Available: http://ieeexplore.ieee.org/document/5161471/.

[25] M. Korczynski and A. Duda, “Markov chain fingerprinting to classify encrypted traffic”, in IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications, IEEE, Apr. 2014, pp. 781–
789, isbn: 978-1-4799-3360-0. doi: 10 . 1109 / INFOCOM . 2014 . 6848005. [Online]. Available: http :
//ieeexplore.ieee.org/document/6848005/.

[26] D. Lee and N. Brownlee, “A Methodology for Finding Significant Network Hosts”, in 32nd IEEE
Conference on Local Computer Networks (LCN 2007), IEEE, Oct. 2007, pp. 981–988, isbn: 0-7695-3000-1.
doi: 10.1109/LCN.2007.21. [Online]. Available: http://ieeexplore.ieee.org/document/4367941/.

[27] T. Karagiannis, K. Papagiannaki, M. Faloutsos, T. Karagiannis, K. Papagiannaki, and M. Faloutsos,
“BLINC”, in Proceedings of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications - SIGCOMM ’05, vol. 35, New York, New York, USA: ACM
Press, 2005, p. 229, isbn: 1595930094. doi: 10.1145/1080091.1080119. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1080091.1080119.

[28] M. Sahami, S. Dumais, D. Heckerman, E. Horvitz, and G. Building, “A Bayesian Approach to
Filtering Junk E-Mail”, [Online]. Available: http://robotics.stanford.edu/users/sahami/papers-
dir/spam.pdf.

[29] B. Silver and Bernard, “Netman: a learning network traffic controller”, in Proceedings of the third
international conference on Industrial and engineering applications of artificial intelligence and expert

72

https://doi.org/10.1016/J.COMNET.2014.11.001
https://www.sciencedirect.com/science/article/pii/S1389128614003909
https://www.sciencedirect.com/science/article/pii/S1389128614003909
https://www.ipoque.com/products/dpi-engine-rsrpace-2
https://www.ipoque.com/products/dpi-engine-rsrpace-2
https://www.iis.se/docs/The%7B%5C_%7DSPID%7B%5C_%7DAlgorithm%7B%5C_%7D-%7B%5C_%7DStatistical%7B%5C_%7DProtocol%7B%5C_%7DIDentification.pdf
https://www.iis.se/docs/The%7B%5C_%7DSPID%7B%5C_%7DAlgorithm%7B%5C_%7D-%7B%5C_%7DStatistical%7B%5C_%7DProtocol%7B%5C_%7DIDentification.pdf
https://doi.org/10.1109/90.330413
http://ieeexplore.ieee.org/document/330413/
https://doi.org/10.1109/CISDA.2011.5945943
http://ieeexplore.ieee.org/document/5945943/
http://www.icact.org/upload/2010/0169/20100169%7B%5C_%7Dfinalpaper.pdf
https://doi.org/10.1109/CTRQ.2010.24
http://ieeexplore.ieee.org/document/5532778/
https://doi.org/10.1145/1198255.1198257
http://portal.acm.org/citation.cfm?doid=1198255.1198257
http://portal.acm.org/citation.cfm?doid=1198255.1198257
https://doi.org/10.1145/1028788.1028804
http://portal.acm.org/citation.cfm?doid=1028788.1028804
https://doi.org/10.1109/CAMAD.2009.5161471
https://doi.org/10.1109/CAMAD.2009.5161471
http://ieeexplore.ieee.org/document/5161471/
https://doi.org/10.1109/INFOCOM.2014.6848005
http://ieeexplore.ieee.org/document/6848005/
http://ieeexplore.ieee.org/document/6848005/
https://doi.org/10.1109/LCN.2007.21
http://ieeexplore.ieee.org/document/4367941/
https://doi.org/10.1145/1080091.1080119
http://portal.acm.org/citation.cfm?doid=1080091.1080119
http://portal.acm.org/citation.cfm?doid=1080091.1080119
http://robotics.stanford.edu/users/sahami/papers-dir/spam.pdf
http://robotics.stanford.edu/users/sahami/papers-dir/spam.pdf

systems - IEA/AIE ’90, vol. 2, New York, New York, USA: ACM Press, 1990, pp. 923–931, isbn:
0897913728. doi: 10.1145/98894.99101. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=98894.99101.

[30] J. F. Rank, “Artificial Intelligence and Intrusion Detection: Current and Future Directions”, 1994.
[Online]. Available: http://home.eng.iastate.edu/%7B~%7Dguan/course/backup/CprE-592-YG-
Fall-2002/paper/intrusion/ai-id.pdf.

[31] A. K. Ghosh, A. Schwartzbard, M. Schatz, and M. I. C. H. Schatz, “Learning Program Behavior
Profiles for Intrusion Detection”, [Online]. Available: http://www.usenix.org%20www.rstcorp.com.

[32] T. Lane and C. E. Brodley, “Detecting the Abnormal: Machine Learning in Computer Security”, 1997.
[Online]. Available: http://docs.lib.purdue.edu/ecetr%20http://docs.lib.purdue.edu/ecetr/
74.

[33] T. Fawcett, “An introduction to ROC analysis”, 2005. doi: 10.1016/j.patrec.2005.10.010. [Online].
Available: http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf.

[34] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine
learning”, IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008, issn: 1553-877X.
doi: 10.1109/SURV.2008.080406. [Online]. Available: http://ieeexplore.ieee.org/document/
4738466/.

[35] Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools ...
2017. [Online]. Available: https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=
khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+
learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-
AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%
20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f.

[36] Li Jun, Z. Shunyi, Lu Yanqing, and Z. Zailong, “Internet Traffic Classification Using Machine Learning”,
in 2007 Second International Conference on Communications and Networking in China, IEEE, Aug.
2007, pp. 239–243, isbn: 978-1-4244-1008-8. doi: 10.1109/CHINACOM.2007.4469372. [Online]. Available:
http://ieeexplore.ieee.org/document/4469372/.

[37] Shijun Huang, Kai Chen, Chao Liu, A. Liang, and Haibing Guan, “A statistical-feature-based approach
to internet traffic classification using Machine Learning”, in 2009 International Conference on Ultra
Modern Telecommunications & Workshops, IEEE, Oct. 2009, pp. 1–6, isbn: 978-1-4244-3942-3. doi: 10.
1109/ICUMT.2009.5345539. [Online]. Available: http://ieeexplore.ieee.org/document/5345539/.

[38] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping for QoS”, in Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement - IMC ’04, New York, New York,
USA: ACM Press, 2004, p. 135, isbn: 1581138210. doi: 10.1145/1028788.1028805. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1028788.1028805.

[39] C. V. Wright, F. Monrose, G. M. Masson, and M. Edu, “On Inferring Application Protocol Behaviors
in Encrypted Network Traffic”, Journal of Machine Learning Research, vol. 7, pp. 2745–2769, 2006.
[Online]. Available: http://www.jmlr.org/papers/volume7/wright06a/wright06a.pdf.

[40] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, The
Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, Dec. 1943, issn: 0007-4985. doi:
10.1007/BF02478259. [Online]. Available: http://link.springer.com/10.1007/BF02478259.

[41] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic Classification”,
IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 223–239, Jan. 2007, issn: 1045-9227. doi:
10.1109/TNN.2006.883010. [Online]. Available: http://ieeexplore.ieee.org/document/4049810/.

[42] A. K. J. Michael, E. Valla, N. S. Neggatu, and A. W. Moore, Network traffic classification via neural
networks, 2017. [Online]. Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.html.

[43] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted traffic classification with
one-dimensional convolution neural networks”, in 2017 IEEE International Conference on Intelligence
and Security Informatics (ISI), IEEE, Jul. 2017, pp. 43–48, isbn: 978-1-5090-6727-5. doi: 10.1109/
ISI.2017.8004872. [Online]. Available: http://ieeexplore.ieee.org/document/8004872/.

73

https://doi.org/10.1145/98894.99101
http://portal.acm.org/citation.cfm?doid=98894.99101
http://portal.acm.org/citation.cfm?doid=98894.99101
http://home.eng.iastate.edu/%7B~%7Dguan/course/backup/CprE-592-YG-Fall-2002/paper/intrusion/ai-id.pdf
http://home.eng.iastate.edu/%7B~%7Dguan/course/backup/CprE-592-YG-Fall-2002/paper/intrusion/ai-id.pdf
http://www.usenix.org%20www.rstcorp.com
http://docs.lib.purdue.edu/ecetr%20http://docs.lib.purdue.edu/ecetr/74
http://docs.lib.purdue.edu/ecetr%20http://docs.lib.purdue.edu/ecetr/74
https://doi.org/10.1016/j.patrec.2005.10.010
http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf
https://doi.org/10.1109/SURV.2008.080406
http://ieeexplore.ieee.org/document/4738466/
http://ieeexplore.ieee.org/document/4738466/
https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f
https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f
https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f
https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f
https://books.google.pt/books?hl=pt-PT%7B%5C&%7Dlr=%7B%5C&%7Did=khpYDgAAQBAJ%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP1%7B%5C&%7Ddq=hands+on+ml+with+scikit+learn+and+tensorflow+%7B%5C&%7Dots=kLCyOOAri2%7B%5C&%7Dsig=nivfwA%7B%5C_%7DHnbvbpS-AoaKXCVLVz5M%7B%5C&%7Dredir%7B%5C_%7Desc=y%7B%5C#%7Dv=onepage%7B%5C&%7Dq=hands%20on%20ml%20with%20scikit%20learn%20and%20tensorflow%7B%5C&%7Df=f
https://doi.org/10.1109/CHINACOM.2007.4469372
http://ieeexplore.ieee.org/document/4469372/
https://doi.org/10.1109/ICUMT.2009.5345539
https://doi.org/10.1109/ICUMT.2009.5345539
http://ieeexplore.ieee.org/document/5345539/
https://doi.org/10.1145/1028788.1028805
http://portal.acm.org/citation.cfm?doid=1028788.1028805
http://www.jmlr.org/papers/volume7/wright06a/wright06a.pdf
https://doi.org/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
https://doi.org/10.1109/TNN.2006.883010
http://ieeexplore.ieee.org/document/4049810/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-912.html
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ISI.2017.8004872
http://ieeexplore.ieee.org/document/8004872/

[44] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP traffic classification”,
Computer Networks, vol. 53, no. 14, pp. 2476–2490, Sep. 2009, issn: 1389-1286. doi: 10.1016/J.
COMNET.2009.05.003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128609001649.

[45] Y.-x. Yang, R. Wang, Y. Liu, S.-z. Li, and X.-y. Zhou, “Solving P2P Traffic Identification Problems
Via Optimized Support Vector Machines”, in 2007 IEEE/ACS International Conference on Computer
Systems and Applications, IEEE, May 2007, pp. 165–171, isbn: 1-4244-1030-4. doi: 10.1109/AICCSA.
2007.370879. [Online]. Available: http://ieeexplore.ieee.org/document/4230954/.

[46] G. C. Cawley and N. L. C. Talbot, “On Over-fitting in Model Selection and Subsequent Selection
Bias in Performance Evaluation”, Journal of Machine Learning Research, vol. 11, pp. 2079–2107, 2010.
[Online]. Available: http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf.

[47] L. 0. Hall, N. Chawla, and K. W. Bowyer, “Decision Tree Learning on Very Large Data Sets”, [Online].
Available: https://www3.nd.edu/%7B~%7Ddial/publications/hall1998decision.pdf.

[48] K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: A Decision Tree Classifier for Large Datasets”, [Online].
Available: https://pdfs.semanticscholar.org/e0e7/31805c073c4589375c8b8f65769834201114.
pdf.

[49] L. Jun, Z. Shunyi, L. Shidong, and X. Ye, “P2P Traffic Identification Technique”, in 2007 International
Conference on Computational Intelligence and Security (CIS 2007), IEEE, Dec. 2007, pp. 37–41,
isbn: 0-7695-3072-9. doi: 10.1109/CIS.2007.81. [Online]. Available: http://ieeexplore.ieee.org/
document/4415297/.

[50] W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment, “A multi-level framework to identify HTTPS
services”, in NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, IEEE,
Apr. 2016, pp. 240–248, isbn: 978-1-5090-0223-8. doi: 10.1109/NOMS.2016.7502818. [Online]. Available:
http://ieeexplore.ieee.org/document/7502818/.

[51] X. Tian, Q. Sun, X. Huang, and Y. Ma, “Dynamic Online Traffic Classification Using Data Stream
Mining”, in 2008 International Conference on MultiMedia and Information Technology, IEEE, Dec.
2008, pp. 104–107, isbn: 978-0-7695-3556-2. doi: 10 . 1109 / MMIT . 2008 . 185. [Online]. Available:
http://ieeexplore.ieee.org/document/5089070/.

[52] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification and application identification
using machine learning”, in The IEEE Conference on Local Computer Networks 30th Anniversary
(LCN’05)l, IEEE, 2005, pp. 250–257, isbn: 0-7695-2421-4. doi: 10.1109/LCN.2005.35. [Online].
Available: http://ieeexplore.ieee.org/document/1550864/.

[53] G. Maiolini, A. Baiocchi, A. Iacovazzi, and A. Rizzi, “Real Time Identification of SSH Encrypted
Application Flows by Using Cluster Analysis Techniques”, in, Springer, Berlin, Heidelberg, 2009,
pp. 182–194. doi: 10.1007/978-3-642-01399-7_15. [Online]. Available: http://link.springer.com/
10.1007/978-3-642-01399-7%7B%5C_%7D15.

[54] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and discriminating between web and
peer-to-peer traffic in the network core”, in Proceedings of the 16th international conference on World
Wide Web - WWW ’07, New York, New York, USA: ACM Press, 2007, p. 883, isbn: 9781595936547.
doi: 10.1145/1242572.1242692. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1242572.1242692.

[55] J. Erman, M. Arlitt, and A. Mahanti, “Traffic Classification Using Clustering Algorithms”, [Online].
Available: https://pages.cpsc.ucalgary.ca/%7B~%7Dmahanti/papers/clustering.pdf.

[56] M. Zhang, H. Zhang, B. Zhang, and G. Lu, “Encrypted Traffic Classification Based on an Improved
Clustering Algorithm”, in, Springer, Berlin, Heidelberg, 2013, pp. 124–131. doi: 10.1007/978-3-
642-35795-4_16. [Online]. Available: http://link.springer.com/10.1007/978-3-642-35795-
4%7B%5C_%7D16.

[57] R. Bar - Yanai, M. Langberg, D. Peleg, and L. Roditty, “Realtime Classification for Encrypted Traffic”,
in, Springer, Berlin, Heidelberg, 2010, pp. 373–385. doi: 10.1007/978-3-642-13193-6_32. [Online].
Available: http://link.springer.com/10.1007/978-3-642-13193-6%7B%5C_%7D32.

74

https://doi.org/10.1016/J.COMNET.2009.05.003
https://doi.org/10.1016/J.COMNET.2009.05.003
https://www.sciencedirect.com/science/article/pii/S1389128609001649
https://www.sciencedirect.com/science/article/pii/S1389128609001649
https://doi.org/10.1109/AICCSA.2007.370879
https://doi.org/10.1109/AICCSA.2007.370879
http://ieeexplore.ieee.org/document/4230954/
http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf
https://www3.nd.edu/%7B~%7Ddial/publications/hall1998decision.pdf
https://pdfs.semanticscholar.org/e0e7/31805c073c4589375c8b8f65769834201114.pdf
https://pdfs.semanticscholar.org/e0e7/31805c073c4589375c8b8f65769834201114.pdf
https://doi.org/10.1109/CIS.2007.81
http://ieeexplore.ieee.org/document/4415297/
http://ieeexplore.ieee.org/document/4415297/
https://doi.org/10.1109/NOMS.2016.7502818
http://ieeexplore.ieee.org/document/7502818/
https://doi.org/10.1109/MMIT.2008.185
http://ieeexplore.ieee.org/document/5089070/
https://doi.org/10.1109/LCN.2005.35
http://ieeexplore.ieee.org/document/1550864/
https://doi.org/10.1007/978-3-642-01399-7_15
http://link.springer.com/10.1007/978-3-642-01399-7%7B%5C_%7D15
http://link.springer.com/10.1007/978-3-642-01399-7%7B%5C_%7D15
https://doi.org/10.1145/1242572.1242692
http://portal.acm.org/citation.cfm?doid=1242572.1242692
http://portal.acm.org/citation.cfm?doid=1242572.1242692
https://pages.cpsc.ucalgary.ca/%7B~%7Dmahanti/papers/clustering.pdf
https://doi.org/10.1007/978-3-642-35795-4_16
https://doi.org/10.1007/978-3-642-35795-4_16
http://link.springer.com/10.1007/978-3-642-35795-4%7B%5C_%7D16
http://link.springer.com/10.1007/978-3-642-35795-4%7B%5C_%7D16
https://doi.org/10.1007/978-3-642-13193-6_32
http://link.springer.com/10.1007/978-3-642-13193-6%7B%5C_%7D32

[58] L. Bernaille and R. Teixeira, “Early Recognition of Encrypted Applications”, [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%
7B%5C&%7Dtype=pdf.

[59] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification”, in Proceedings of the
2006 ACM CoNEXT conference on - CoNEXT ’06, New York, New York, USA: ACM Press, 2006,
p. 1, isbn: 1595934561. doi: 10.1145/1368436.1368445. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1368436.1368445.

[60] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Semi-Supervised Network Traffic
Classification”, [Online]. Available: https://pages.cpsc.ucalgary.ca/%7B~%7Dmahanti/papers/
metrics152-erman.pdf.

[61] International Association for Pattern Recognition. Technical Committee 11. and T. Kam, Proceedings
of the third International Conference on Document Analysis and Recognition : August 14-16, 1995,
Montréal, Canada. IEEE Computer Society Press, 1995, p. 278, isbn: 0818671289. [Online]. Available:
https://dl.acm.org/citation.cfm?id=844379.844681.

[62] Y. Freund, Y. Freund, and R. E. Schapire, “A Decision-Theoretic Generalization of on-Line Learning
and an Application to Boosting”, 1995. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.56.9855.

[63] E. N. de Souza, S. Matwin, and S. Fernandes, “Network traffic classification using AdaBoost Dynamic”,
in 2013 IEEE International Conference on Communications Workshops (ICC), IEEE, Jun. 2013,
pp. 1319–1324, isbn: 978-1-4673-5753-1. doi: 10 . 1109 / ICCW . 2013 . 6649441. [Online]. Available:
http://ieeexplore.ieee.org/document/6649441/.

[64] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. L. Woniak, “Ensemble learning for data
stream analysis: a survey”, 2017. [Online]. Available: http://www.cs.le.ac.uk/people/llm11/
publications/KRAWXZYKINFFUS2017.pdf.

[65] E. N. de Souza, S. Matwin, and S. Fernandes, “Traffic classification with on-line ensemble method”,
in 2014 Global Information Infrastructure and Networking Symposium (GIIS), IEEE, Sep. 2014,
pp. 1–4, isbn: 978-1-4799-5490-2. doi: 10 . 1109 / GIIS . 2014 . 6934280. [Online]. Available: http :
//ieeexplore.ieee.org/document/6934280/.

[66] B. Gellman, Edward Snowden, after months of NSA revelations, says his mission’s accomplished - The
Washington Post. [Online]. Available: https://www.washingtonpost.com/world/national-security/
edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/
12/23/49fc36de- 6c1c- 11e3- a523- fe73f0ff6b8d%7B%5C_%7Dstory.html?utm%7B%5C_%7Dterm=
.966aa9811276 (visited on 04/18/2018).

[67] A. Hern, Far more than 87m Facebook users had data compromised, MPs told | UK news | The Guardian.
[Online]. Available: https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-
compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%
7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+
H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=
EMCNEWEML6619I2 (visited on 04/18/2018).

[68] I. Rechberg and J. Syed, “Ethical issues in knowledge management: conflict of knowledge ownership”,
Journal of Knowledge Management, vol. 17, no. 6, pp. 828–847, Oct. 2013, issn: 1367-3270. doi:
10.1108/JKM-06-2013-0232. [Online]. Available: http://www.emeraldinsight.com/doi/10.1108/
JKM-06-2013-0232.

[69] Art. 3 GDPR – Territorial scope | General Data Protection Regulation (GDPR). [Online]. Available:
https://gdpr-info.eu/art-3-gdpr/ (visited on 04/18/2018).

[70] Fines and Penalties – GDPR EU.org. [Online]. Available: https://www.gdpreu.org/compliance/
fines-and-penalties/ (visited on 04/18/2018).

[71] S. Farrell and H. Tschofenig, RFC 7258 - Pervasive Monitoring Is an Attack. Kenchiku Setsubi Iji
Hozen Suishin Kyōkai, 2004. [Online]. Available: https://tools.ietf.org/html/rfc7258.

[72] Center for Applied Internet Data Analysis. [Online]. Available: http://www.caida.org/data/ (visited
on 07/02/2018).

75

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5232%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.1145/1368436.1368445
http://portal.acm.org/citation.cfm?doid=1368436.1368445
http://portal.acm.org/citation.cfm?doid=1368436.1368445
https://pages.cpsc.ucalgary.ca/%7B~%7Dmahanti/papers/metrics152-erman.pdf
https://pages.cpsc.ucalgary.ca/%7B~%7Dmahanti/papers/metrics152-erman.pdf
https://dl.acm.org/citation.cfm?id=844379.844681
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.9855
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.9855
https://doi.org/10.1109/ICCW.2013.6649441
http://ieeexplore.ieee.org/document/6649441/
http://www.cs.le.ac.uk/people/llm11/publications/KRAWXZYKINFFUS2017.pdf
http://www.cs.le.ac.uk/people/llm11/publications/KRAWXZYKINFFUS2017.pdf
https://doi.org/10.1109/GIIS.2014.6934280
http://ieeexplore.ieee.org/document/6934280/
http://ieeexplore.ieee.org/document/6934280/
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d%7B%5C_%7Dstory.html?utm%7B%5C_%7Dterm=.966aa9811276
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d%7B%5C_%7Dstory.html?utm%7B%5C_%7Dterm=.966aa9811276
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d%7B%5C_%7Dstory.html?utm%7B%5C_%7Dterm=.966aa9811276
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d%7B%5C_%7Dstory.html?utm%7B%5C_%7Dterm=.966aa9811276
https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=EMCNEWEML6619I2
https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=EMCNEWEML6619I2
https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=EMCNEWEML6619I2
https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=EMCNEWEML6619I2
https://www.theguardian.com/uk-news/2018/apr/17/facebook-users-data-compromised-far-more-than-87m-mps-told-cambridge-analytica?utm%7B%5C_%7Dsource=esp%7B%5C&%7Dutm%7B%5C_%7Dmedium=Email%7B%5C&%7Dutm%7B%5C_%7Dcampaign=GU+Today+main+NEW+H+categories%7B%5C&%7Dutm%7B%5C_%7Dterm=271764%7B%5C&%7Dsubid=18350085%7B%5C&%7DCMP=EMCNEWEML6619I2
https://doi.org/10.1108/JKM-06-2013-0232
http://www.emeraldinsight.com/doi/10.1108/JKM-06-2013-0232
http://www.emeraldinsight.com/doi/10.1108/JKM-06-2013-0232
https://gdpr-info.eu/art-3-gdpr/
https://www.gdpreu.org/compliance/fines-and-penalties/
https://www.gdpreu.org/compliance/fines-and-penalties/
https://tools.ietf.org/html/rfc7258
http://www.caida.org/data/

[73] SNAP: Stanford Network Analysis Project. [Online]. Available: https://snap.stanford.edu/index.
html (visited on 07/02/2018).

[74] sklearn.preprocessing.StandardScaler. [Online]. Available: http : / / scikit - learn . org / stable /
modules/generated/sklearn.preprocessing.StandardScaler.html (visited on 08/03/2018).

[75] scikit-learn: machine learning in Python — scikit-learn 0.19.2 documentation. [Online]. Available:
http://scikit-learn.org/stable/ (visited on 08/03/2018).

[76] J. A. Gubner and W.-B. Chang, “Wavelet transforms for discrete-time periodic signals”, Signal
Processing, vol. 42, no. 2, pp. 167–180, Mar. 1995, issn: 0165-1684. doi: 10.1016/0165-1684(94)00125-
J. [Online]. Available: https://www.sciencedirect.com/science/article/pii/016516849400125J.

[77] “CS448: Topics in Computer Graphics Mathematical Models for Computer Graphics Introduction to
Wavelets”, Tech. Rep., 1997. [Online]. Available: http://cva.stanford.edu/classes/ee482a/docs/
lect01%7B%5C_%7Dsample.pdf.

[78] G. V. Trunk, “A Problem of Dimensionality: A Simple Example”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-1, no. 3, pp. 306–307, Jul. 1979, issn: 0162-8828. doi: 10.
1109/TPAMI.1979.4766926. [Online]. Available: http://ieeexplore.ieee.org/document/4766926/.

[79] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments”,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 374, no. 2065, p. 20 150 202, Apr. 2016, issn: 1364-503X. doi: 10.1098/rsta.2015.0202. [Online].
Available: http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2015.0202.

[80] Decomposing signals in components (matrix factorization problems) — scikits.learn 0.8 documentation.
[Online]. Available: http://scikit-learn.sourceforge.net/0.8/modules/decomposition.html
(visited on 09/11/2018).

[81] sklearn.preprocessing.Imputer — scikit-learn 0.19.2 documentation. [Online]. Available: http : / /
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html (visited on
09/11/2018).

[82] M. Shafiq, Xiangzhan Yu, A. A. Laghari, Lu Yao, N. K. Karn, and F. Abdessamia, “Network Traffic
Classification techniques and comparative analysis using Machine Learning algorithms”, in 2016
2nd IEEE International Conference on Computer and Communications (ICCC), IEEE, Oct. 2016,
pp. 2451–2455, isbn: 978-1-4673-9026-2. doi: 10.1109/CompComm.2016.7925139. [Online]. Available:
http://ieeexplore.ieee.org/document/7925139/.

[83] A. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms”,
issn: 0031-3203. doi: 10.1016/S0031-3203(96)00142-2. [Online]. Available: www.sciencedirect.
com/science/article/pii/S0031320396001422.

[84] D. Merkel, Docker: lightweight Linux containers for consistent development and deployment, 2014.
[Online]. Available: https://dl.acm.org/citation.cfm?id=2600241.

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É.
Duchesnay, “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research, vol. 12,
no. Oct, pp. 2825–2830, 2011, issn: ISSN 1533-7928. [Online]. Available: http://jmlr.csail.mit.
edu/papers/v12/pedregosa11a.html.

[86] PyShark - Python packet parser using wireshark’s tshark. [Online]. Available: https://kiminewt.
github.io/pyshark/ (visited on 09/11/2018).

[87] Impacket | Core Security. [Online]. Available: https://www.coresecurity.com/corelabs-research/
open-source-tools/impacket (visited on 09/11/2018).

[88] Scapy. [Online]. Available: https://scapy.net/ (visited on 09/11/2018).

[89] ctypes — A foreign function library for Python — Python 2.7.15 documentation. [Online]. Available:
https://docs.python.org/2/library/ctypes.html (visited on 09/11/2018).

[90] Tcpdump, “Tcpdump/Libpcap public repository”, [Online]. Available: http://www.tcpdump.org/.

76

https://snap.stanford.edu/index.html
https://snap.stanford.edu/index.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/
https://doi.org/10.1016/0165-1684(94)00125-J
https://doi.org/10.1016/0165-1684(94)00125-J
https://www.sciencedirect.com/science/article/pii/016516849400125J
http://cva.stanford.edu/classes/ee482a/docs/lect01%7B%5C_%7Dsample.pdf
http://cva.stanford.edu/classes/ee482a/docs/lect01%7B%5C_%7Dsample.pdf
https://doi.org/10.1109/TPAMI.1979.4766926
https://doi.org/10.1109/TPAMI.1979.4766926
http://ieeexplore.ieee.org/document/4766926/
https://doi.org/10.1098/rsta.2015.0202
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2015.0202
http://scikit-learn.sourceforge.net/0.8/modules/decomposition.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
https://doi.org/10.1109/CompComm.2016.7925139
http://ieeexplore.ieee.org/document/7925139/
https://doi.org/10.1016/S0031-3203(96)00142-2
www.sciencedirect.com/science/article/pii/S0031320396001422
www.sciencedirect.com/science/article/pii/S0031320396001422
https://dl.acm.org/citation.cfm?id=2600241
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://kiminewt.github.io/pyshark/
https://kiminewt.github.io/pyshark/
https://www.coresecurity.com/corelabs-research/open-source-tools/impacket
https://www.coresecurity.com/corelabs-research/open-source-tools/impacket
https://scapy.net/
https://docs.python.org/2/library/ctypes.html
http://www.tcpdump.org/

[91] RabbitMQ - Messaging that just works. [Online]. Available: https://www.rabbitmq.com/ (visited on
09/11/2018).

[92] S. Vinoski and Steve, “Advanced Message Queuing Protocol”, IEEE Internet Computing, vol. 10,
no. 6, pp. 87–89, Nov. 2006, issn: 1089-7801. doi: 10.1109/MIC.2006.116. [Online]. Available:
http://ieeexplore.ieee.org/document/4012603/.

[93] Keller and M. S., Linux journal. 65es. Robert F. Young, 1994, vol. 1999, p. 15. [Online]. Available:
https://dl.acm.org/citation.cfm?id=327981.

[94] Periodic Tasks — Celery 4.2.0 documentation. [Online]. Available: http://docs.celeryproject.org/
en/latest/userguide/periodic-tasks.html (visited on 09/11/2018).

[95] Homepage | Celery: Distributed Task Queue. [Online]. Available: http://www.celeryproject.org/
(visited on 09/11/2018).

[96] Redis. [Online]. Available: https://redis.io/documentation (visited on 09/11/2018).

[97] G. Lettieri, V. Maffione, and L. Rizzo, “A Study of I/O Performance of Virtual Machines”, The
Computer Journal, vol. 61, no. 6, pp. 808–831, Jun. 2018, issn: 0010-4620. doi: 10.1093/comjnl/bxx092.
[Online]. Available: https://academic.oup.com/comjnl/article/61/6/808/4259797.

[98] Raspberry Pi Documentation. [Online]. Available: https://www.raspberrypi.org/documentation/
(visited on 08/01/2018).

[99] PiVPN: Simplest setup of OpenVPN. [Online]. Available: http://www.pivpn.io/%7B%5C#%7Dtech
(visited on 08/01/2018).

[100] Ace Stream. [Online]. Available: http://info.acestream.org/%7B%5C#%7D/about/acestream (visited
on 08/02/2018).

[101] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P File-Sharing System: Mea-
surements and Analysis”, in Proceedings of the 4th international conference on Peer-to-Peer Systems,
Springer-Verlag, 2005, pp. 205–216, isbn: 3-540-29068-0, 978-3-540-29068-1. doi: 10.1007/11558989_19.
[Online]. Available: http://link.springer.com/10.1007/11558989%7B%5C_%7D19.

[102] Youtube.com Traffic, Demographics and Competitors - Alexa. [Online]. Available: https://www.alexa.
com/siteinfo/youtube.com (visited on 08/02/2018).

[103] H. Ishwaran, “The effect of splitting on random forests”, Machine Learning, vol. 99, no. 1, pp. 75–
118, Apr. 2015, issn: 0885-6125. doi: 10.1007/s10994- 014- 5451- 2. [Online]. Available: http:
//link.springer.com/10.1007/s10994-014-5451-2.

[104] M. Verleysen, Université Catholique de Louvain, Katholieke Universiteit Leuven, C. I. European
Symposium on Artificial Neural Networks, M. L. 2. 2.-2. Bruges, and ESANN 23 2015.04.23-25 Bruges,
Proceedings / 23rd European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, ESANN 2015, Bruges, Belgium, April 22-23-24, 2015. Ciaco, 2015, isbn:
9782875870148. [Online]. Available: https://www.researchgate.net/publication/301295119/%7B%
5C_%7DOne-Vs-All%7B%5C_%7DBinarization%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7DContext%7B%
5C_%7Dof%7B%5C_%7DRandom%7B%5C_%7DForest.

[105] M. Claesen and B. D. Moor, “Hyperparameter Search in Machine Learning”, undefined, 2015. [Online].
Available: https : / / www . semanticscholar . org / paper / Hyperparameter - Search - in - Machine -
Learning-Claesen-Moor/0173ca962e4ab3d084c89568345e06f67d3d7efc.

[106] sklearn.model_selection.GridSearchCV — scikit-learn 0.19.2 documentation. [Online]. Available: http:
/ / scikit - learn . org / stable / modules / generated / sklearn . model % 7B % 5C _ %7Dselection .
GridSearchCV.html (visited on 09/11/2018).

[107] R. Dingledine, N. Mathewson, and P. Syverson, Tor: the second-generation onion router, 2004. [Online].
Available: https://dl.acm.org/citation.cfm?id=1251396.

[108] InfluxDB | The Time Series Database in the TICK Stack | InfluxData. [Online]. Available: https:
//www.influxdata.com/time-series-platform/influxdb/ (visited on 09/11/2018).

77

https://www.rabbitmq.com/
https://doi.org/10.1109/MIC.2006.116
http://ieeexplore.ieee.org/document/4012603/
https://dl.acm.org/citation.cfm?id=327981
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html
http://www.celeryproject.org/
https://redis.io/documentation
https://doi.org/10.1093/comjnl/bxx092
https://academic.oup.com/comjnl/article/61/6/808/4259797
https://www.raspberrypi.org/documentation/
http://www.pivpn.io/%7B%5C#%7Dtech
http://info.acestream.org/%7B%5C#%7D/about/acestream
https://doi.org/10.1007/11558989_19
http://link.springer.com/10.1007/11558989%7B%5C_%7D19
https://www.alexa.com/siteinfo/youtube.com
https://www.alexa.com/siteinfo/youtube.com
https://doi.org/10.1007/s10994-014-5451-2
http://link.springer.com/10.1007/s10994-014-5451-2
http://link.springer.com/10.1007/s10994-014-5451-2
https://www.researchgate.net/publication/301295119/%7B%5C_%7DOne-Vs-All%7B%5C_%7DBinarization%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7DContext%7B%5C_%7Dof%7B%5C_%7DRandom%7B%5C_%7DForest
https://www.researchgate.net/publication/301295119/%7B%5C_%7DOne-Vs-All%7B%5C_%7DBinarization%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7DContext%7B%5C_%7Dof%7B%5C_%7DRandom%7B%5C_%7DForest
https://www.researchgate.net/publication/301295119/%7B%5C_%7DOne-Vs-All%7B%5C_%7DBinarization%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_%7DContext%7B%5C_%7Dof%7B%5C_%7DRandom%7B%5C_%7DForest
https://www.semanticscholar.org/paper/Hyperparameter-Search-in-Machine-Learning-Claesen-Moor/0173ca962e4ab3d084c89568345e06f67d3d7efc
https://www.semanticscholar.org/paper/Hyperparameter-Search-in-Machine-Learning-Claesen-Moor/0173ca962e4ab3d084c89568345e06f67d3d7efc
http://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.GridSearchCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.GridSearchCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.GridSearchCV.html
https://dl.acm.org/citation.cfm?id=1251396
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/

Appendix A

Video category identification results

Table on the back of the sheet. In the PCA column, "-" means unscaled features.

79

T
im

e
bucket(s)

T
im

e
(s)

P
C

A
R

F
SV

M
N

N
R

F
A

daboost
D

T
C

V
score

T
est

score
C

V
score

T
est

score
C

V
score

T
est

score
C

V
score

T
est

score
C

V
score

T
est

score
1

30
-

0.9344292046
0.9556074766

0.8812213502
0.9018691589

0.9080954952
0.9228971963

0.9461117911
0.9602803738

0.9320796634
0.9439252336

1
30

0
0.9402841577

0.953271028
0.9203559972

0.9392523364
0.9221071031

0.9392523364
0.9437412597

0.9476145931
0.9285946512

0.9439252336
1

30
5

0.8893541252
0.9205607477

0.8911016312
0.9275700935

0.8858349133
0.9182242991

0.9010537916
0.9275700935

0.8694535244
0.8855140187

1
30

10
0.8952124383

0.9252336449
0.9215529876

0.9369158879
0.9185879713

0.9392523364
0.9198088015

0.941588785
0.8794292446

0.8948598131
1

30
20

0.8993130055
0.9299065421

0.9347282697
0.941588785

0.9267821857
0.9392523364

0.9180167759
0.9369158879

0.8736016512
0.8808411215

1
30

40
0.9010263518

0.9322429907
0.9215153479

0.9439252336
0.9349729602

0.9579439252
0.9197712418

0.9509345794
0.8572271022

0.8761682243
0.1

3
-

0.9171928738
0.9270346118

0.8406425794
0.8533676333

0.8643865025
0.8711412535

0.9256134825
0.9317118803

0.9007593036
0.9092609916

0.1
3

0
0.9153797005

0.923292797
0.8692983732

0.8790926099
0.8752048406

0.8823666978
0.9260230787

0.9298409729
0.8984203958

0.9080916745
0.1

3
5

0.8482453296
0.8566417212

0.8549702717
0.8629560337

0.8477783144
0.8571094481

0.9290631524
0.9252336449

-
-

0.1
3

10
0.8599999558

0.8659962582
0.8628066319

0.8695042095
0.8640348391

0.8662301216
0.9234443751

0.9392523364
-

-
0.1

3
20

0.8692391758
0.8795603368

0.8697662436
0.8769878391

0.8746786614
0.881898971

0.9238534949
0.9345794393

-
-

0.1
3

40
0.8764324664

0.8821328344
0.8705263751

0.8786248831
0.8839766341

0.8917212348
0.926261807

0.9347282697
-

-
1

10
-

0.8787374189
0.8794635896

0.8892464129
0.8916601715

0.9075746291
0.9080280592

0.9414974465
0.9353078722

0.922967838
0.9088074825

1
10

0
0.9292056785

0.9290724864
0.8999650413

0.9033515199
0.908542832

0.9142634451
0.940911509

0.9353078722
0.9254970209

0.9033515199
1

10
5

0.8734450997
0.8682774747

0.8849525778
0.8823070928

0.8769508451
0.8846453624

0.9003774998
0.9158878505

-
-

1
10

10
0.879296115

0.8869836321
0.8902191756

0.8939984412
0.897629651

0.900233827
0.8981343235

0.9299065421
-

-
1

10
20

0.8742316695
0.8846453624

0.8931458232
0.8939984412

0.8987992461
0.8994544037

0.8987946863
0.900233827

0.8547216987
0.8542478566

1
10

40
0.8863060858

0.8916601715
0.8939278332

0.9010132502
0.906015169

0.9041309431
0.8987992461

0.9010132502
-

-
0.1

1
-

0.8787374189
0.8794635896

0.8892464129
0.8916601715

0.9075746291
0.9080280592

0.9285946512
0.9345794393

-
-

0.1
1

0
0.8803162637

0.8790737564
0.8910027055

0.8986749805
0.9007455314

0.9064692128
0.9498844844

0.9508963367
0.9155520428

0.9212782541
0.1

1
5

0.8863060858
0.8916601715

0.8980519184
0.9158878505

0.8984592421
0.9016090157

0.91338903
0.9018691589

-
-

0.1
1

10
0.8790737564

0.8823070928
0.8845407566

0.8862298453
0.8980519184

0.9016090157
0.9256314312

0.9158878505
-

-
0.1

1
20

0.8993130055
0.9299065421

0.8863762653
0.8823666978

0.8921132174
0.9256314312

0.9279757362
0.9275700935

-
-

0.1
1

40
0.8980057026

0.9003741815
0.8989751098

0.8925233645
0.9092609916

0.953271028
0.9279757362

0.9270346118
-

-
1

60
-

0.943675982
0.9299065421

0.8242583545
0.8925233645

0.9120744577
0.9205607477

0.9496010032
0.953271028

0.9250713309
0.9299065421

1
60

0
0.9448387727

0.9252336449
0.9249338805

0.9299065421
0.9320624064

0.9299065421
0.9508048336

0.9439252336
0.926261807

0.9299065421
1

60
5

0.8981343235
0.9205607477

0.9109113413
0.9252336449

0.8991173213
0.9112149533

0.9004045339
0.9158878505

0.8851778386
0.8878504673

1
60

10
0.91338903

0.9018691589
0.9155628298

0.9392523364
0.9249895772

0.9112149533
0.9156589147

0.9252336449
0.8827558465

0.8925233645
1

60
20

0.9003224546
0.9158878505

0.9214181487
0.9485981308

0.9320347209
0.9205607477

0.9143997134
0.9252336449

0.8980519184
0.9158878505

1
60

40
0.9003774998

0.9018691589
0.9261103511

0.9345794393
0.9296537685

0.9345794393
0.9238534949

0.9205607477
0.8746580027

0.9065420561
0.1

6
-

0.9331005732
0.9391955098

0.8153247183
0.8391019645

0.8818642429
0.8713751169

0.9437412597
0.9476145931

0.9114569674
0.9092609916

0.1
6

0
0.9320796634

0.9439252336
0.8849525778

0.8823070928
0.8839766341

0.8917212348
0.9421512457

0.9267342167
-

-
0.1

6
5

0.8604650818
0.8709073901

0.8788259017
0.8872778297

0.8790613234
0.8863423761

0.8735661571
0.8779232928

0.8347320077
0.8489242283

0.1
6

10
0.8846760484

0.8826005613
0.8882985012

0.8942937325
0.8916912743

0.8905519177
0.8787374189

0.8916601715
-

-
0.1

6
20

0.889353597
0.8994387278

0.8967213406
0.9022450889

0.902101327
0.911131899

0.8882985012
0.8942937325

-
-

0.1
6

40
0.8980057026

0.9003741815
0.8966039716

0.9036482694
0.9086537778

0.9139382601
0.8863060858

0.8862298453
-

-

T
able

1:
V
ideo

category
identification

results.

80

T
im

e
bu

ck
et
s(
s)

T
im

e
(s
)

PC
A

R
F

SV
M

N
N

R
F
A
da

bo
os
t

D
T

1
30

-
0.
81

06
72

51
46

0.
73

85
71

91
52

0.
79

38
59

64
91

0.
81

65
20

46
78

0.
75

36
54

97
08

1
30

0
0.
83

45
82

97
35

0.
72

99
48

86
78

0.
78

83
71

83
96

0.
82

17
21

98
19

0.
73

95
87

19
34

1
30

5
0.
89

32
74

85
38

0.
68

30
53

32
36

0.
85

89
18

12
87

0.
88

59
64

91
23

0.
78

28
94

73
68

1
30

10
0.
87

86
54

97
08

0.
68

99
19

64
94

0.
82

45
61

40
35

0.
82

96
78

36
26

0.
80

04
38

59
65

1
30

20
0.
86

76
90

05
85

0.
69

78
08

61
94

0.
78

43
56

72
51

0.
84

50
29

23
98

0.
82

16
37

42
69

1
30

40
0.
85

59
94

15
2

0.
79

63
95

51
88

0.
75

14
61

98
83

0.
83

55
26

31
58

0.
79

53
21

63
74

0.
1

3
-

0.
73

60
11

68
74

0.
78

18
49

68
11

0.
65

50
76

69
83

0.
72

83
41

85
54

0.
70

08
03

50
62

0.
1

3
0

0.
78

37
48

17
12

0.
80

10
22

89
33

0.
73

61
96

81
0.
88

93
74

85
81

0.
72

58
12

71
24

0.
1

3
5

0.
77

58
21

76
77

0.
76

74
13

54
12

0.
75

00
36

52
3

0.
77

58
94

81
37

0.
75

85
82

90
72

0.
1

3
10

0.
75

41
27

10
01

0.
75

86
45

88
41

0.
65

74
14

17
09

0.
82

82
16

37
43

0.
78

91
65

44
66

0.
1

3
20

0.
73

13
36

74
21

0.
74

50
07

30
64

0.
66

44
26

58
88

0.
84

91
94

72
91

0.
77

41
41

70
93

0.
1

3
40

0.
75

10
59

16
73

0.
79

63
95

51
88

0.
67

48
72

16
95

0.
86

53
00

14
64

0.
79

75
14

61
99

1
10

-
0.
77

88
60

20
46

0.
74

91
85

91
07

0.
70

04
38

38
29

0.
74

03
79

93
18

0.
74

47
63

76
04

1
10

0
0.
75

01
28

72
11

0.
66

68
77

69
36

0.
70

92
33

24
97

0.
75

73
85

98
23

0.
72

82
87

14
31

1
10

5
0.
85

19
24

01
36

0.
76

76
57

08
72

0.
79

63
95

51
88

0.
86

19
09

40
09

0.
79

83
43

88
7

1
10

10
0.
77

86
16

65
85

0.
75

86
45

88
41

0.
72

21
13

97
95

0.
79

24
98

78
23

0.
73

08
81

63
66

1
10

20
0.
80

51
63

17
58

0.
74

50
07

30
64

0.
70

45
78

66
54

0.
78

42
18

21
72

0.
73

59
96

10
33

1
10

40
0.
79

32
29

42
04

0.
81

99
12

15
23

0.
69

65
41

64
64

0.
74

50
07

30
64

0.
75

36
54

97
08

0.
1

1
-

0.
77

88
60

20
46

0.
86

18
28

68
16

0.
69

80
02

92
26

0.
85

66
41

72
12

0.
74

50
07

30
64

0.
1

1
0

0.
72

83
75

81
89

0.
83

60
17

56
95

0.
69

38
67

13
45

0.
80

18
13

47
91

0.
88

78
50

46
73

0.
1

1
5

0.
71

97
88

64
84

0.
85

65
15

37
34

0.
66

75
35

12
38

0.
72

99
48

86
78

0.
70

08
03

50
62

0.
1

1
10

0.
79

49
34

24
26

0.
85

06
58

85
8

0.
69

70
28

73
84

0.
66

75
35

12
38

0.
71

23
57

10
21

0.
1

1
20

0.
79

81
00

34
1

0.
84

91
94

72
91

0.
73

01
50

99
85

0.
73

13
36

74
21

0.
71

88
87

23
55

0.
1

1
40

0.
79

32
29

42
04

0.
77

23
88

60
48

0.
69

77
59

37
65

0.
75

00
36

52
3

0.
71

23
57

10
21

1
60

-
0.
94

58
27

23
28

0.
75

39
12

74
35

0.
81

25
91

50
81

0.
86

67
64

27
53

0.
74

67
05

71
01

1
60

0
0.
92

48
37

58
27

0.
77

49
63

46
81

0.
80

37
47

19
5

0.
88

72
39

81
35

0.
88

78
50

46
73

1
60

5
0.
89

89
75

10
98

0.
71

07
37

76
48

0.
84

91
94

72
91

0.
91

06
88

14
06

0.
85

94
43

63
1

1
60

10
0.
83

01
61

05
42

0.
72

21
13

97
95

0.
84

62
66

47
14

0.
74

67
05

71
01

0.
84

91
94

72
91

1
60

20
0.
85

65
15

37
34

0.
75

36
54

97
08

0.
85

79
79

50
22

0.
81

69
83

89
46

0.
78

77
01

31
77

1
60

40
0.
81

99
12

15
23

0.
74

61
89

14
16

0.
78

03
80

67
35

0.
78

03
80

67
35

0.
82

13
76

28
11

0.
1

6
-

0.
74

44
85

02
56

0.
73

71
20

10
62

0.
72

08
18

11
54

0.
75

36
88

82
4

0.
75

57
34

11
25

0.
1

6
0

0.
75

84
35

45
13

0.
75

89
81

48
71

0.
73

89
49

16
85

0.
78

47
37

17
57

0.
88

31
77

57
01

0.
1

6
5

0.
73

01
50

99
85

0.
71

09
08

10
92

0.
73

59
96

10
33

0.
75

10
59

16
73

0.
69

70
28

73
84

0.
1

6
10

0.
73

75
45

65
38

0.
72

02
’9
83

91
6

0.
70

21
18

33
46

0.
77

48
39

37
52

0.
71

56
16

68
47

0.
1

6
20

0.
74

03
94

44
85

0.
72

09
18

07
11

0.
74

67
05

71
01

0.
78

96
58

52
33

0.
73

55
98

52
17

0.
1

6
40

0.
78

91
65

44
66

0.
74

30
91

70
69

0.
74

50
07

30
64

0.
77

85
41

66
39

0.
73

65
54

68
45

T
ab

le
2:

V
id
eo

ca
te
go
ry

id
en
tifi

ca
tio

n
re
su
lts

(t
ra
in
in
g
w
ith

ou
t
tu
nn

el
ed

tr
affi

c.
)

81

Video application identification results

Table on the back of the sheet. In the PCA column, "-" means unscaled features.

82

R
F

R
F

O
vO

R
F

O
vR

SV
M

N
N

R
F

A
da

bo
os

t
T

im
e

P
C

A
C

V
sc

or
e

T
es

t
sc

or
e

C
V

sc
or

e
T

es
t

sc
or

e
C

V
sc

or
e

T
es

t
sc

or
e

C
V

sc
or

e
T

es
t

sc
or

e
C

V
sc

or
e

T
es

t
sc

or
e

C
V

sc
or

e
T

es
t

sc
or

e
10

-
0.

94
39

01
47

45
0.

93
09

60
08

63
0.

94
17

51
60

68
0.

93
09

60
08

63
0.

94
71

40
43

3
0.

93
74

32
57

82
0.

90
85

55
12

76
0.

89
53

61
38

08
0.

90
80

08
16

36
0.

89
42

82
63

21
0.

89
35

79
44

04
0.

90
29

12
62

14
10

0
0.

94
11

96
56

26
0.

93
63

53
82

96
0.

94
20

15
37

14
0.

93
20

38
83

5
0.

94
71

32
44

29
0.

94
06

68
82

42
0.

90
88

10
84

73
0.

89
53

61
38

08
0.

92
04

12
33

76
0.

90
50

70
11

87
0.

89
08

20
07

47
0.

90
83

06
36

46
10

5
0.

86
83

65
75

51
0.

83
38

72
70

77
0.

85
99

65
60

36
0.

84
03

45
19

96
0.

87
67

05
77

77
0.

84
14

23
94

82
0.

84
16

71
91

14
0.

82
63

21
46

71
0.

84
51

62
93

14
0.

81
12

18
98

6
0.

88
29

71
98

25
0.

89
12

78
91

83
10

10
0.

87
83

09
95

82
0.

85
22

11
43

47
0.

87
50

85
55

8
0.

86
08

41
42

39
0.

88
45

40
75

66
0.

86
40

77
66

99
0.

86
54

02
91

06
0.

84
57

38
94

28
0.

88
07

85
91

31
0.

85
11

32
68

61
0.

90
28

41
89

35
0.

93
48

72
65

92
10

20
0.

88
07

38
78

74
0.

85
43

68
93

2
0.

87
59

04
37

08
0.

84
57

38
94

28
0.

88
45

27
72

18
0.

86
08

41
42

39
0.

86
64

69
48

04
0.

84
57

38
94

28
0.

88
93

68
64

01
0.

88
45

73
89

43
0.

91
77

47
82

03
0.

92
25

80
64

52
10

40
0.

90
12

73
69

24
0.

88
24

16
39

7
0.

89
07

43
96

96
0.

88
56

52
64

29
0.

89
96

25
97

0.
87

59
43

90
51

0.
86

18
88

59
01

0.
83

60
30

20
5

0.
90

45
01

05
75

0.
89

32
03

88
35

0.
90

38
37

57
79

0.
90

93
85

11
33

30
-

0.
95

87
58

14
32

0.
92

55
66

34
3

0.
96

36
42

74
85

0.
93

52
75

08
09

0.
96

11
84

15
95

0.
92

55
66

34
3

0.
92

95
94

12
54

0.
88

67
31

39
16

0.
94

24
84

86
76

0.
89

96
76

37
54

0.
75

71
51

63
91

0.
74

75
72

81
55

30
0

0.
95

95
71

15
13

0.
92

55
66

34
3

0.
96

28
29

74
04

0.
93

85
11

32
69

0.
96

19
84

15
95

0.
92

88
02

58
9

0.
94

65
89

14
24

0.
89

64
40

12
94

0.
94

74
02

15
05

0.
89

96
76

37
54

0.
70

37
80

95
99

0.
73

13
91

58
58

30
5

0.
91

34
05

45
5

0.
90

93
85

11
33

0.
92

15
03

06
85

0.
89

32
03

88
35

0.
92

31
09

52
01

0.
89

32
03

88
35

0.
92

47
48

54
45

0.
88

67
31

39
16

0.
91

98
50

93
1

0.
89

32
03

88
35

0.
90

53
85

99
53

0.
88

02
58

89
97

30
10

0.
93

68
85

07
74

0.
89

64
40

12
94

0.
94

41
43

66
64

0.
89

64
40

12
94

0.
94

74
02

15
05

0.
89

64
40

12
94

0.
94

74
02

15
05

0.
89

64
40

12
94

0.
94

65
63

12
61

0.
91

26
21

35
92

0.
95

22
28

06
19

0.
89

96
76

37
54

30
20

0.
91

57
98

89
85

0.
85

11
32

68
61

0.
90

19
58

40
55

0.
86

73
13

91
59

0.
91

49
79

54
37

0.
86

73
13

91
59

0.
90

93
33

96
28

0.
85

76
05

17
8

0.
92

31
02

96
35

0.
88

67
31

39
16

0.
91

89
66

32
57

0.
87

37
86

40
78

30
40

0.
92

39
48

54
45

0.
87

70
22

65
37

0.
90

93
20

95
46

0.
86

73
13

91
59

0.
92

79
35

32
65

0.
87

37
86

40
77

0.
89

79
58

30
06

0.
86

08
41

42
39

0.
92

71
41

77
81

0.
88

99
67

63
75

0.
92

62
96

40
7

0.
87

70
22

65
37

60
-

0.
91

52
30

66
66

0.
90

32
25

80
65

0.
94

45
07

73
51

0.
94

19
35

48
39

0.
92

55
42

92
26

0.
92

25
80

64
52

0.
88

94
66

01
7

0.
86

45
16

12
9

0.
91

52
30

66
66

0.
90

32
25

80
65

0.
94

45
07

73
51

0.
94

19
35

48
39

60
0

0.
92

50
92

33
38

0.
93

54
83

87
1

0.
94

80
27

12
09

0.
93

54
83

87
1

0.
92

55
42

92
26

0.
92

25
80

64
52

0.
92

66
79

63
54

0.
91

61
29

03
23

0.
92

50
92

33
38

0.
93

54
83

87
1

0.
94

80
27

12
09

0.
93

54
83

87
1

60
5

0.
91

38
22

49
25

0.
91

61
29

03
23

0.
88

59
51

83
53

0.
87

74
19

35
48

0.
87

15
60

27
3

0.
86

45
16

12
9

0.
91

86
62

88
1

0.
91

61
29

03
23

0.
91

38
22

49
25

0.
91

61
29

03
23

0.
88

59
51

83
53

0.
87

74
19

35
48

60
10

0.
92

51
18

77
48

0.
90

96
77

41
94

0.
91

37
20

12
79

0.
92

25
80

64
52

0.
87

95
48

82
36

0.
90

32
25

80
65

0.
93

31
33

80
84

0.
92

25
80

64
52

0.
92

51
18

77
48

0.
90

96
77

41
94

0.
91

37
20

12
79

0.
92

25
80

64
52

60
20

0.
93

14
15

09
91

0.
92

25
80

64
52

0.
93

94
57

41
31

0.
92

90
32

25
81

0.
84

69
38

42
18

0.
87

09
67

74
19

0.
93

47
22

83
08

0.
92

90
32

25
81

0.
93

14
15

09
91

0.
92

25
80

64
52

0.
93

94
57

41
31

0.
92

90
32

25
81

60
40

0.
92

35
05

91
36

0.
94

19
35

48
39

0.
92

33
23

30
25

0.
92

90
32

25
81

0.
84

42
64

72
93

0.
85

16
12

90
32

0.
93

64
39

81
94

0.
90

96
77

41
94

0.
92

35
05

91
36

0.
94

19
35

48
39

0.
92

33
23

30
25

0.
92

90
32

25
81

T
ab

le
3:

V
id
eo

ap
pl
ic
at
io
n
id
en
tifi

ca
tio

n
re
su
lts

.

83

T
im

e
buckets(s)

T
im

e
(s)

PC
A

R
F

SV
M

N
N

R
F
A
daboost

D
T

1
30

-
0.6722580645

0.7019354839
0.7174193548

0.7161290323
0.7174193548

1
30

0
0.6619719825

0.6998471
0.7083841915

0.7038159196
0.6719193554

1
30

5
0.6012903226

0.6412903226
0.6012903226

0.5277419355
0.6735483871

1
30

10
0.6619354839

0.6387096774
0.6258064516

0.6012903226
0.7187096774

1
30

20
0.6451612903

0.6503225806
0.6374193548

0.6541935484
0.6490322581

1
30

40
0.5638709677

0.5522580645
0.5948387097

0.695483871
0.6180645161

0.1
3

-
0.5392872477

0.4993559468
0.5392872477

0.7093173036
0.6401889223

0.1
3

0
0.5401459854

0.5297157623
0.5038591959

0.7281058919
0.5783919592

0.1
3

5
0.5719192787

0.5285530271
0.5641906398

0.5641906398
0.6139974238

0.1
3

10
0.5787891799

0.5873765565
0.5869471876

0.6019750966
0.5547445255

0.1
3

20
0.5697724345

0.5762129669
0.5654787462

0.6500644053
0.533705453

0.1
3

40
0.5113782739

0.5444396737
0.5191069128

0.6753971662
0.5401459854

1
10

-
0.7183462532

0.6201550388
0.6925064599

0.6330749354
0.4496124031

1
10

0
0.601938194

0.5718310535
0.6013951055

0.6593818506
0.6392951831

1
10

5
0.6511627907

0.6072351421
0.5943152455

0.5426356589
0.677002584

1
10

10
0.5684754522

0.6485788114
0.6072351421

0.5891472868
0.677002584

1
10

20
0.6279069767

0.6149870801
0.5503875969

0.6330749354
0.684754522

1
10

40
0.5943152455

0.5348837209
0.5142118863

0.661498708
0.6175710594

0.1
1

-
0.7788602046

0.8618286816
0.6980029226

0.8566417212
0.7450073064

0.1
1

0
0.7283758189

0.8360175695
0.6938671345

0.8018134791
0.8878504673

0.1
1

5
0.7197886484

0.8565153734
0.6675351238

0.7299488678
0.7008035062

0.1
1

10
0.7949342426

0.850658858
0.6970287384

0.6675351238
0.7123571021

0.1
1

20
0.798100341

0.8491947291
0.7301509985

0.7313367421
0.7188872355

0.1
1

40
0.7932294204

0.7723886048
0.6977593765

0.750036523
0.7123571021

1
60

-
0.9458272328

0.7539127435
0.8125915081

0.8667642753
0.7467057101

1
60

0
0.9248375827

0.7749634681
0.803747195

0.8872398135
0.8878504673

1
60

5
0.8989751098

0.7107377648
0.8491947291

0.9106881406
0.859443631

1
60

10
0.8301610542

0.7221139795
0.8462664714

0.7467057101
0.8491947291

1
60

20
0.8565153734

0.7536549708
0.8579795022

0.8169838946
0.7877013177

1
60

40
0.8199121523

0.7461891416
0.7803806735

0.7803806735
0.8213762811

0.1
6

-
0.7444850256

0.7371201062
0.7208181154

0.753688824
0.7557341125

0.1
6

0
0.7584354513

0.7589814871
0.7389491685

0.7847371757
0.8831775701

0.1
6

5
0.7301509985

0.7109081092
0.7359961033

0.7510591673
0.6970287384

0.1
6

10
0.7375456538

0.7202’983916
0.7021183346

0.7748393752
0.7156166847

0.1
6

20
0.7403944485

0.7209180711
0.7467057101

0.7896585233
0.7355985217

0.1
6

40
0.7891654466

0.7430917069
0.7450073064

0.7785416639
0.7365546845

T
able

4:
V
ideo

application
identification

results
(training

w
ithout

tunneled
traffi

c.)

84

Appendix B

from c o l l e c t i o n s import deque
from sc ipy . s i g n a l import argre l ext rema

RANGE_VALUE = 30
N_SPIKES = 5
DEFAULT_VALUE = −1

de f get_sp ikes (values , comparator , check_range = len (va lue s)/ (RANGE_VALUE)) :
" " " Returns the top N_SPIKES sp i k e s o f a g iven va lue array

Args :
va l u e s : The y va l u e s o f the p l o t
comparator : numpy . g r ea t e r f o r maximums , npnumpy . l e s s f o r minimums
check_range : number o f po in t s to check b e f o r e and a f t e r each maximum

Returns :
The coord ina t e s o f each sp ike , ordered by Y va lue .

" " "

s p i k e s = deque ([(DEFAULT_VALUE,DEFAULT_VALUE)] ∗ N_SPIKES, maxlen=N_SPIKES)
aux = argre l ext rema (sca lo , comparator , order=check_range)
i f aux [0] . s i z e :

f o r e in np . nd i t e r (aux) or [] :
s p i k e s . append ((va lue s [e] , s c a l e s [e]))

ordered = sor t ed (sp ikes , key=lambda x : x [1] , r e v e r s e=True)
va lue s = np . hstack (z ip (∗ ordered))
re turn va lue s

Listing 1: Algorithm for detecting the spikes in the scalograms.

85

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Contributions

	State of the Art
	Overview of encryption protocols
	IPSec
	TLS/SSL
	SSH
	OpenVPN

	Network monitoring
	Network traffic classification approaches
	Port-based classification
	Deep packet inspection
	Statistical based classification
	Machine learning techniques
	Basic ML concepts
	Performance measurement
	Types of learning
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Ensemble methods

	Hybrid methods

	Privacy rights and ethical aspects of network monitoring
	Information privacy laws
	Network and device surveillance in the workplace

	A Framework for Network Service Identification
	System overview
	Building the ML model
	Goal identification
	Data retrieval
	Data preprocessing
	Standardization
	Sample size definition and silence values
	Features
	Feature dimensionality and reduction

	Feature engineering
	ML Model training and evaluation

	Live Traffic Analysis
	System architecture
	Capture module
	Processing module
	Server Side
	Client Side

	Experimental setup, results and analysis
	Network traffic acquisition
	Capture devices and configuration
	Tunneled traffic
	SSH tunnel with dynamic port forwarding
	OpenVPN tunnel

	Labeling

	Dataset composition
	Considered classes
	Acestream
	Netflix
	Youtube
	Twitch
	Overview of all classes

	Processed dataset characteristics

	Classification and results evaluation
	Training with tunneled traffic
	Identifying video category
	Identifying specific video application

	Training without tunneled traffic
	Identifying video category
	Identifying specific video application

	Summary

	Conclusions and future work
	References
	Appendix A
	Video category identification results
	Video application identification results

	Appendix B

