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Abstract

Several measurement tasks present multivariate nature. In the cases with quality characteristics 

highly correlated within groups, but with a relatively small correlation between groups, the available 

multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The 

present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is 

a multivariate statistical method which focuses on the explanation of the covariance structure of the 

data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings 

easy to relate the variables to the factors. The proposed multivariate GR&R method through factor 

analysis is described and applied in the quality evaluation of holes obtained through helical milling 

process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one 

factor related to the roughness outcomes and other related to the roundness ones, simplifying the 

gage capability evaluation.
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1 INTRODUCTION

Planning, designing, running and controlling modern industrial processes have been a tough 

task. A lot of data and information have been generated, and turning them into knowledge requires 

advanced methods [1–3]. In statistical quality control (SQC), current researches have been conducted 

applying data mining tools, Markov chains, multivariate control charts, advanced process capability 
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analyses, and so on [1,3]. Before any of these statistical data analyses be conducted, the analyst must 

assure that the dataset is reliable [4,5]. Measurement system analysis (MSA) is another essential 

SQC technique, which was conceived to evaluate measurement errors. Such errors may come from 

random and/or systematic sources of variation. Dealing with random errors, Gage Repeatability, and 

Reproducibility (GR&R) is the most used technique [2,5,6]. AIAG [7] states that repeatability is the 

variation "within the system" when measurement conditions are fixed - part, operator, instrument, 

time, standard, method, environmental conditions, etc. Reproducibility can be stated as the variation 

"between systems" or between measurement conditions - instruments, laboratories, environmental 

conditions and, mainly, operators.

As mentioned above, in modern manufacturing processes, to attain reliable measurements is 

an even more important issue. For such complex measurement systems, current researches have been 

conducted by using multivariate methods such as principal component analysis (PCA) [5,6,8–10] and 

multivariate analysis of variance (MANOVA) [2,4–6,8]. Several measurement tasks present 

multivariate nature since some products can only be completely characterized by the measurement of 

distinct quality characteristics. The main goal in the application of multivariate analysis in 

measurement results is to threat the linear dependence or correlation among the variables, besides 

reducing the redundancy among them. When the analyst neglects the correlation structure conducting 

individual univariate analysis for each variable, he/she incurs in making a wrong decision since part 

of data variability is related to the common variance between each pair of variables. In the case of 

GR&R assignments, a wrong decision may entail in the application of an unable measurement 

system to quality control.

Some recent works proposed GR&R multivariate approaches. Majeske [4] proposed a 

multivariate GR&R study based on MANOVA. In an automotive gage study, this multivariate 

approach not only provided a better model for measurement errors but also determined a more 

reliable assessment for the measurement system. Another significant method based on MANOVA 

was proposed by Peruchi et al. [2]. Estimating the multivariate evaluation index, the authors showed 

that weighted approaches were more successful in evaluating multivariate measurement systems.

Applying PCA method, Wang and Yang [11] and Wang and Chien [10] showed the 

effectiveness of multivariate approaches when correlated quality characteristics are assessed in 

GR&R studies. The authors have proved their results by comparing univariate and multivariate 

methods. Some interesting findings were provided by Peruchi et al. [12] and Peruchi et al. [6]. The 

authors demonstrated that, among the multivariate methods, weighted approaches determined better 

estimates for multivariate measurement system indexes. 



The aforementioned multivariate methods are adequate to model the variance-covariance 

structure among several quality characteristics. However, complex systems usually demand several 

measuring devices for process control. In such conditions, the covariance relationship might be more 

important than the variance for measurement system analysis. Dealing with variables highly 

correlated within a group, but with a relatively small correlation between other groups is a more 

suitable task to factor analysis (FA) [13,14]. Thus, this research aims to propose a new multivariate 

GR&R study to explain the covariance structure among several quality characteristics. FA and 

GR&R methods are used to assess complex systems with multiple measuring devices. An application 

of helical milling process of AISI H13 hardened steel workpieces is performed. A measurement 

system considering microgeometrical (Ra, Rq, and Rz roughness parameters) and geometrical (Ronp 

and Ront roundness parameters and Cylt total cylindricity) quality characteristics are assessed. The 

results have shown that the proposed method is very successful in assessing the multivariate 

measurement system with multiple quality characteristics, which were measured by multiple 

measuring devices. 

The remaining sections of this paper are structured as follows. Sections 2 and 3 present a 

literature review on GR&R and FA methods. Section 4 details the proposed GR&R-FA method. 

Section 5 introduces the experimental application of the multivariate measurement system. Section 6 

shows how to apply the proposed method into manufacturing systems with multiple measuring 

devices. Finally, the main findings of this research are summarized in section 7.  

2 CROSSED GR&R STUDY

A crossed GR&R study is a factorial design intended to study the sources of variability which 

affects a measurement system. Crossed GR&R studies are considered factorial experiments, since 

each operator measures each part r times, i.e., each level of one factor is performed in each level of 

the other factor r times [15]. It is also usual to perform a GR&R study considering other variability 

sources apart from operators and parts, such as the measurement instrument, also referred to 

expanded GR&R studies. Logically, all the combinations of the levels may be performed to 

guarantee a crossed GR&R study. In the cases where the measurements for each operator cannot be 

done in the same parts, such as in the destructive measurements, a nested structure may be 

considered [16]. 

In a crossed GR&R study the factors are generally considered random. When limited levels of 

factors are chosen randomly aiming to achieve conclusions for all the population of levels, the 

factors are said to be random [17]. 



The ANOVA model of a crossed GR&R study with p parts, o operators and r replicates can be 

written as follows: 

(1)𝑦𝑖𝑗𝑘 = 𝜇 + 𝑃𝑖 + 𝑂𝑗 + (𝑃𝑂)𝑖𝑗 + 𝜀𝑖𝑗𝑘{𝑖 = 1,…, 𝑝
𝑗 = 1,…,𝑜
𝑘 = 1,…,𝑟}

where μ is the mean of the measured values, Pi, Oj, (PO)ij, and εijk are jointly independent normal 

random variables with means zero and variances , , , and , for part-to-part variation, 𝜎2
𝑃 𝜎2

𝑂 𝜎2
𝑃𝑂 𝜎2

𝜀

operator, part*operator interaction and the error term, respectively [15]. The components of variance 

in Eq. (1) can be estimated according to the equations in Table 1. If the interaction term (PO) is 

insignificant, this component is removed from the model and the denominator of F0(P) and F0(O) 

statistics would replace  by .𝜎2
𝑃𝑂 𝜎2

𝜀

Table 1. ANOVA table for a crossed GR&R study with two random factors

Sources Degrees of freedom Mean square F0

Parts (P) p − 1
𝜎2

𝑃 =
𝑜𝑟∑

𝑖(𝑦𝑖.. ― 𝑦...)2

𝑝 ― 1
𝐹0(𝑃) =

𝜎2
𝑃

𝜎2
𝑃𝑂

Operators (O) o – 1
𝜎2

𝑂 =
𝑝𝑟∑

𝑗(𝑦.𝑗. ― 𝑦...)2

𝑜 ― 1
𝐹0(𝑂) =

𝜎2
𝑂

𝜎2
𝑃𝑂

P×O (p − 1)( o – 1)
𝜎2

𝑃𝑂 =
𝑟∑

𝑖
∑

𝑗(𝑦𝑖𝑗. ― 𝑦𝑖.. ― 𝑦.𝑗. + 𝑦...)2

(𝑝 ―  1) (𝑜 – 1)
𝐹0(𝑃𝑂) =

𝜎2
𝑃𝑂

𝜎2
𝜀

Repeatability (ε) po(r – 1)
𝜎2

𝜀 =
∑

𝑖
∑

𝑗
∑

𝑘(𝑦𝑖𝑗𝑘 ― 𝑦𝑖𝑗.)2

𝑝𝑜(𝑟 ― 1)

where  is the grand mean of the measurements;  is the average of the ith part;  is the average of the jth operator;  𝑦... 𝑦𝑖.. 𝑦.𝑗. 𝑦𝑖𝑗.
is the average of the ith part measured by the jth operator and  is the kth measurement of the ith part by the jth operator𝑦𝑖𝑗𝑘

 

One of the main objectives of the crossed GR&R study is to identify the sources of variation 

of the measurement system. The experimental total variance is expressed by Eq. 2 [15,17].

(2)𝜎2
𝑇 = 𝜎2

𝑃 + 𝜎2
𝑅&𝑅

where  is the process variance estimated by Eq. 3 and  is the measurement system variance, 𝜎2
𝑃 𝜎2

𝑅&𝑅

calculated by Eq. 4.



(3)𝜎2
𝑃 =

𝜎2
𝑃 ― 𝜎2

𝑃𝑂

𝑜𝑟

(4)𝜎2
𝑅&𝑅 = 𝜎2

𝜀 + 𝜎2
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦

where  is the variance due to repeatability and the variance due to reproducibility is 𝜎2
𝜀 = 𝑆2

𝜀

. Reproducibility is composed by operator and part*operator interaction 𝜎2
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎2

𝑂 + 𝜎2
𝑃𝑂

components, which are calculated by Eqs. 5 and 6, respectively.

(5)𝜎2
𝑂 =

𝜎2
𝑂 ― 𝜎2

𝑃𝑂

𝑝𝑟

(6)𝜎2
𝑃𝑂 =

𝜎2
𝑃𝑂 ― 𝜎2

𝜀

𝑟

According to AIAG [7] criteria, the main classification index for assessing measurement 

system adequacy is the %R&R (percentage of repeatability and reproducibility). Basically, this index 

is about comparing measurement system variation to the total variation, as such the Eq. 7:

(7)%𝑅&𝑅 =
𝜎𝑅&𝑅

𝜎𝑇

As shown in Fig. 1, the measurement system is acceptable if . In some %𝑅&𝑅 < 0.10

applications a marginal measurement system, with  can be tolerable. 0.10 < %𝑅&𝑅 < 0.30

%R&R>0.30 determines that the measurement system is unacceptable and must be improved.  

Unacceptable

Marginal

Acceptable

%R&R > 30%

10% < %R&R < 30%

%R&R < 10%

Fig. 1. GR&R criteria for measurement system acceptability [7,18]

According to [19], some additional indices for assessing measurement system adequacy can 

be estimated. Comparing the measurement system variation to the process tolerance (T), the 

precision-to-tolerance ratio (PTR) index is calculated as follows:



(8)𝑃𝑇𝑅 =
6𝜎𝑅&𝑅

𝑇

The criteria for measurement system acceptance, based on PTR index, are the same as those 

on Fig. 1. Relating signal (process variation) to noise (measurement error), the signal-to-noise ratio 

(SNR) (or ndc, number of distinct categories) can also be utilized for measurement system 

assessment. This index is calculated as follows:

(9)𝑆𝑁𝑅 =
2𝜎𝑃

𝜎𝑅&𝑅

SNR greater than four is usually required for measurement system acceptance. SNR lower 

than two would classify the measurement system as unacceptable. An alternative to SNR is the 

discriminant ratio (DR) ratio, which is expressed as: 

(10)𝐷𝑅 =
2𝜎2

𝑃

𝜎2
𝑅&𝑅

+ 1

If DR ≥ 4, the measurement system is deemed acceptable. On the other hand, if DR < 2, the 

measurement system is unacceptable. Finally, if 2 < DR ≤ 4, the measurement system is marginal 

[19,20]. 

3 FACTOR ANALYSIS

Factor analysis is a branch of multivariate statistics originally developed by psychologists to 

deal with hypothesis on the mental abilities considering the correlation structure of cognitive tests 

variates [21]. Spearman [22] introduced the factor analysis to relate six intellectual test variables to 

only one latent variable. Thurstone [23] generalized the Spearman model taking into consideration 

multiple latent variables, for the first time named factors. The early association with intelligence 

scores explains why the factor analysis was initially proposed and developed by researchers in 

psychometrics. The advent of the computers allowed the development of factor analysis as a 

multivariate statistical analysis method, with most of the controversies solved [14,24]. Factor 

analysis is yet widely applied as multivariate analysis method in the psychology field, but the recent 

advances helped to disseminate the method to other fields such as biology, social sciences, 

economics [21] and lately in engineering [25–29]. In factor analysis, each variable is described as a 

linear function in terms of common factors and specific factors. The common factors explain the 



variances and covariances, while the specific factors explain only the variances of the original 

variables [24]. 

The purpose of the factor analysis is to describe the covariance structure among y1, y2, …, yp 

variables in terms of few implicit and unobservable quantities called factors f1, f2, ,,,. fm, m < p. The 

factors are latent variables which generate the variables y1, y2, …, yp. If these variables are 

moderately correlated, the dimension of the system is considerably lower than p. Therefore, it is 

desired to deal with the redundancy among the variances using only few factors, i.e., m << p. The 

factor analysis presents the of approximate the covariance matrix Σ, focusing more in the 

covariances than in the variances explanation, being helpful in dealing with groups of highly 

correlated variables [14].

In factor analysis, only m < p factors are necessary to explain the covariance structure. 

However, the total explanation of the variance provided by m factors is in general not perfect. 

Another specificity is that in factor analysis the problem of parameter identification of the factor 

model should be overcome since the solution is not unique. However, the non-singularity may be 

used positively, since when rotating the factors in distinct ways, it may be achieved a better 

interpretation of them [24].

Assuming that the pattern of the correlation matrix is such that there are subsets of variables 

with high correlation between them, but with low correlation with variables of other subsets. Is this 

case it may have a factor which could be responsible by the correlations in each highly correlated 

subset [13,14].

This intrinsic partitioning of the factor analysis is of great interest in manufacturing process 

control, modeling, and optimization. Several processes may present different subsets of quality 

characteristics highly correlated between them which could be described by factors. Consequently, 

the redundancy among the variables may be reduced, facilitating the analysis.

Consider a random vector Y with p variables, a random sample Y1, Y2, ..., YN with mean 

vector μ and covariance matrix Σ, as follows:

; ;𝒀 = [𝑌1
𝑌2
⋮

𝑌𝑝
] 𝝁 = [𝐸(𝑌1)

𝐸(𝑌2)
⋮

𝐸(𝑌𝑝)] = [𝜇1
𝜇2
⋮

𝜇𝑝
] 𝚺 = [𝜎11 𝜎12

𝜎21 𝜎22

… 𝜎1𝑝
… 𝜎2𝑝

⋮ ⋮
𝜎𝑝1 𝜎𝑝2

⋱ ⋮
… 𝜎𝑝𝑝

]
For an arbitrary observation Y1, Y2, ..., Yp, the factor model may be described as follows 

[13,14,24]:



       (7)

𝑌1 ― 𝜇1 = 𝑙11𝐹1 + 𝑙12𝐹2 + … + 𝑙1𝑗𝐹𝑗 + … + 𝑙1𝑚𝐹𝑚 + 𝜀1
𝑌2 ― 𝜇2 = 𝑙21𝐹1 + 𝑙22𝐹2 + … + 𝑙2𝑗𝐹𝑗 + … + 𝑙2𝑚𝐹𝑚 + 𝜀2

⋮
𝑌𝑖 ― 𝜇𝑖 = 𝑙𝑖1𝐹1 + 𝑙𝑖2𝐹2 + … + 𝑙𝑖𝑗𝐹𝑗 + … + 𝑙𝑖𝑚𝐹𝑚 + 𝜀𝑖

⋮
𝑌𝑝 ― 𝜇𝑝 = 𝑙𝑝1𝐹1 + 𝑙𝑝2𝐹2 + … + 𝑙𝑝𝑗𝐹𝑗 + … + 𝑙𝑝𝑚𝐹𝑚 + 𝜀𝑝

The p deviations Yi − μi, i = 1, …, p are expressed in terms of p + m random variables F1, F2, 

..., Fm, ε1, ε2, ..., εp which are non-observable, with i = 1, …, p and j = 1, …, m. The coefficient lij is 

the factor loading of the i-th variable in the j-th factor and represents the degree of relationship 

between Yi and Fj. Therefore, in factor analysis, the original variables are described through linear 

combinations of the factors [24]. In matrix notation, the model in Eq. 7 can be expressed as follows:

       (8)𝒀 ― 𝝁 = 𝑳𝑭 + 𝜺

In the Eq. 8 of the orthogonal factor model, L is a matrix of factor loadings of order p × m, m 

< p, F is a matrix of order m × 1 of the common factors, which are non-observable latent variables, 

and ε is a vector of random error of order p × 1 [24], as follows:

; ; ;        (9)𝒀 ― 𝝁 = [𝑌1 ― 𝜇1
𝑌2 ― 𝜇2

⋮
𝑌𝑝 ― 𝜇𝑝

] 𝑳 =  [𝑙11 𝑙12
𝑙21 𝑙22

… 𝑙1𝑚
… 𝑙2𝑚

⋮ ⋮
𝑙𝑝1 𝑙𝑝2

⋱ ⋮
… 𝑙𝑝𝑚

] 𝑭 = [𝐹1
𝐹2
⋮

𝐹𝑝
] 𝜺 = [𝜀1

𝜀2
⋮

𝜀𝑝
]

Since F is non-observable, the model of the Eq. 8 is different from a multivariate regression 

model, in which the independent variables may be observable. Some assumptions should be satisfied 

for the orthogonal factor model: E(Y) = μ, E(F) = E(ε) = 0, Cov(F) = I(m×m), Cov(Y) = Σ(p×p), Cov(ε) 

= Ψ(p×p) e Cov(F, ε) = 0(m×p) [13,14,24], where:

     (10)𝚿 = [𝜓1 0
0 𝜓2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝜓𝑝

]
with ψi > 0, i = 1, 2, ..., p. These assumptions imply that the errors are not correlated among them 

and that, not necessarily, present equal variances. The model in Eq. 8 supported by these 



assumptions is the factor model, with m orthogonal factors among themselves, i.e., not correlated, 

which implies a covariance structure for Y. From the model in Eq. 8 [14,24]:

(𝒀 ― 𝝁)(𝒀 ― 𝝁)𝑇 = (𝑳𝑭 + 𝜺)(𝑳𝑭 + 𝜺)𝑇

     (11)(𝒀 ― 𝝁)(𝒀 ― 𝝁)𝑇 = (𝑳𝑭)(𝑳𝑭)𝑇 + (𝑳𝑭)𝜺𝑇 + 𝜺(𝑳𝑭)𝑇 + 𝜺(𝜺)𝑇

Therefore, the covariance structure of the orthogonal model in Eq. 8 can be described as 

[14,24]:

𝐶𝑜𝑣(𝒀) = 𝚺 = 𝐸(𝒀 ― 𝝁)(𝒀 ― 𝝁)𝑇 = 𝐸(𝑳𝑭 + 𝜺)(𝑳𝑭 + 𝜺)𝑇

𝐶𝑜𝑣(𝒀) = 𝐸[(𝑳𝑭)(𝑳𝑭)𝑇] + 𝐸[(𝑳𝑭)𝜺𝑇] + 𝐸[𝜺(𝑳𝑭)𝑇] + 𝐸[𝜺𝜺𝑇]
𝐶𝑜𝑣(𝒀) = 𝑳𝐸(𝑭𝑭𝑇)𝑳𝑻 + 𝑳𝐸(𝑭𝜺𝑇) + 𝐸(𝜺𝑭)𝑇𝑳𝑻 + 𝚿

𝐶𝑜𝑣(𝒀) = 𝑳𝑰𝑳𝑻 + 𝑳𝟎 + 𝟎𝑳𝑻 + 𝚿

     (12)𝐶𝑜𝑣(𝒀) = 𝚺 = 𝑳𝑳𝑻 + 𝚿

or explicitly

     (13)𝑉𝑎𝑟(𝑌𝑖) = 𝜎𝑖𝑖 = 𝑙2
𝑖1 + 𝑙2

𝑖2 + ⋯ + 𝑙2
𝑖𝑚 + 𝜓𝑖

𝐶𝑜𝑣(𝑌𝑖,𝑌𝑘) = 𝜎𝑖𝑘 = 𝑙𝑖1𝑙𝑘1 + 𝑙𝑖2𝑙𝑘2 + ⋯ + 𝑙𝑖𝑚𝑙𝑘𝑚

The variance portion of the i-th variable in the j-th common factor is called commonality or 

common variance. These elements are located in the diagonal of LLT and are defined as the sum of 

squares of the loadings of the i-th variable in the m common factors, according to Eq. 14 [14,24].

     (14)ℎ2
𝑖 = ∑𝑚

𝑗 = 1𝑙2
𝑖𝑗 = 𝑙2

𝑖1 + 𝑙2
𝑖2 + ⋯ + 𝑙2

𝑖𝑚

The variance portion  is called uniqueness or specific variance,  i = 1, 2, ..., p. Therefore, 𝜓𝑖

the variance of Yi is  . Consequently, the covariance is explained through the common 𝜎𝑖𝑖 = ℎ2
𝑖 + 𝜓𝑖

variances lij, while the variance is explained by the common variances and the uniqueness [14,24].

It can be demonstrated that the covariance between the vector of original variables Y and the 

matrix of factors is equivalent to the factor loadings [24]:

𝐶𝑜𝑣(𝒀,𝑭) = 𝐸[(𝒀 ― 𝝁)𝑭𝑇]
𝐶𝑜𝑣(𝒀,𝑭) = 𝐸[(𝑳𝑭 + 𝜺)𝑭𝑇]
𝐶𝑜𝑣(𝒀,𝑭) = 𝑳𝐸(𝑭𝑭𝑇) + 𝐸(𝜺𝑭𝑇)



𝐶𝑜𝑣(𝒀,𝑭) = 𝑳𝑰 + 𝟎

     (15)𝐶𝑜𝑣(𝒀,𝑭) = 𝑳

This covariance may also be evaluated considering the i-th variable Yi and the j-th factor Fj, 

as in Eq. 16 [13]. As the factor loadings lij represent the covariance between the variable Yi and the 

factor Fj, it can be inferred that the factor represents the variables with the highest loadings. Factor 

analysis aims to estimate the matrices L, Ψ, and F. As it is desired the covariance or correlation 

structure among the original variables, the common factors are indispensable since the specific 

factors do not contribute to the covariance explanation [24].

𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝐸[(𝑌1 ― 𝜇1)(𝐹𝑗 ― 𝜇𝐹𝑗
)]

𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝐸[(𝑙𝑖1𝐹1 + 𝑙𝑖2𝐹2 + ⋯ + 𝑙𝑖𝑗𝐹𝑗 + ⋯ + 𝑙𝑖𝑚𝐹𝑚 + 𝜀𝑖)𝐹𝑗]
𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝐸(𝑙𝑖1𝐹1𝐹𝑗 + 𝑙𝑖2𝐹2𝐹𝑗 + ⋯ + 𝑙𝑖𝑗𝐹𝑗𝐹𝑗 + ⋯ + 𝑙𝑖𝑚𝐹𝑚𝐹𝑗 + 𝜀𝑖𝐹𝑗)

𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝑙𝑖1𝑐𝑜𝑣(𝐹1,𝐹𝑗) + 𝑙𝑖2𝐶𝑜𝑣(𝐹2,𝐹𝑗) + ⋯ + 𝑙𝑖𝑗𝑉𝑎𝑟(𝐹𝑗) + ⋯ + 𝑙𝑖𝑚𝐶𝑜𝑣(𝐹𝑚,𝐹𝑗) +𝐶𝑜𝑣(𝜀𝑖,𝐹𝑗)

 𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝑙𝑖1 × 0 + 𝑙𝑖2 × 0 + ⋯ + 𝑙𝑖𝑗 × 1 + ⋯ + 𝑙𝑖𝑚 × 0 + 0

      (16)𝐶𝑜𝑣(𝑌𝑖,𝐹𝑗) = 𝑙𝑖𝑗

In the case of consideration of standardized variables with the associated correlation matrix ρ, 

the factor model may be expressed according to the Eq. 17 in matrix notation or explicitly through 

Eq. 18. In this case, the standardized variances are unitary, i.e.,  [24].ℎ2
𝑖 + 𝜓𝑖 = 1

     (17)𝝆 = 𝑳𝑳𝑻 + 𝚿

or

     (18)𝑉𝑎𝑟(𝑌𝑖) = 1 = 𝑙2
𝑖1 + 𝑙2

𝑖2 + ⋯ + 𝑙2
𝑖𝑚 + 𝜓𝑖

𝐶𝑜𝑣(𝑌𝑖,𝑌𝑘) = 𝜌𝑖𝑘 = 𝑙𝑖1𝑙𝑘1 + 𝑙𝑖2𝑙𝑘2 + ⋯ + 𝑙𝑖𝑚𝑙𝑘𝑚

It is possible to get distinct solutions for the same covariance (or correlation) matrix. The 

non-singularity of the estimated parameters through factor analysis may be used to get a better 

interpretation of the factors applying distinct rotating methods. Let the orthogonal matrix T, so that 

TTT = I. The model in Eq. 8 may be rewritten according to Eq. 19, with L* = LT and F* = TTF. The 

new parameters L* and F* reproduce the covariance (or correlation) matrix Σ (or ρ) the same way 

that L and F, for a chosen T rotation matrix aiming to facilitate the interpretation of the factors. It is 

important to emphasize that the rotation is performed in factors’ space [13,14,24].



There are several methods to estimate the parameters of the factor model. Some of the most 

applied methods are the maximum likelihood, the principal components method and the principal 

axis (or factor) method. The maximum likelihood method assumes multivariate normality of the 

data. The principal component method is the simplest method for factor extraction, however, in this 

method, the covariance matrix Σ is not accurately estimated. The variances, 𝜎𝑖𝑖 = ∑𝑚
𝑗 = 1𝑙2

𝑖𝑗 + 𝜓𝑖 = ℎ2
𝑖

, are integrally estimated, but the covariances, , are approximated. The principal + 𝜓𝑖 𝜎𝑖𝑘 = ∑𝑚
𝑗 = 1𝑙𝑖𝑗𝑙𝑘𝑗

component is used to achieve an initial factor solution and may be applied when the covariance 

matrix is singular. The principal axis method considers an initial estimate of Ψ which is disregarded 

in the principal component method. The estimation may be performed even if when the covariance 

(or correlation) matrix is not of full rank [13,14,24].

 For these reasons the principal axis method is considered an interesting choice for factor 

extraction and is elucidated in Appendix A. To achieve a simple structure, with easy to interpret 

factor-variable relationship, the quartimax, and varimax rotation may be applied. These methods are 

detailed in Appendix B.

3.1 Data adequacy for factor analysis

The sphericity test of Bartlett [30] tests if the correlation matrix is different from an identity 

matrix. If the null hypothesis H0: Σ = Iσ2 is not rejected the variables are not related and unsuitable 

to be described in terms of few implicit and unobservable quantities called factors. The test is called 

sphericity test since under H0 the ellipsoid (y − μ)TΣ-1(y − μ) = c2 is reduced to a sphere (y − μ)T(y − 

μ) = σ2c2 [13]. The test statistics considering the sample correlation matrix R is presented in Eq. 19, 

with p(p − 1)/2 degrees of freedom, where  is the determinant of R [30]. |𝑹|

     (19)𝜒2
0 = ― [𝑛 ― (2𝑝 + 5) 6] × 𝑙𝑛|𝑹|

Before performing the factor analysis, it is important to determinate the suitable number of 

factors. The parallel analysis, Horn [31], plots the ordered eigenvalues as a function of the extracted 

factors. This analysis compares the eigenvalues of the sample covariance matrix of the variables 

under study with the eigenvalues of a simulated data matrix. The number of factors to be extracted 

according to this procedure must be defined as the abscissa point where the two curves intersect. If 

this point is not an integer it should be considered the closest smaller integer. The scree test [32] is 

one of the most popular tests. As the parallel analysis, the scree test is a graphical procedure which 



also plots the eigenvalues as a function of the extracted factors successively. In this procedure, the 

number of factors is chosen in the curved part of the plot, considering the factors which contribute 

most to the explanation of the variability of the data, discarding the factors in the linear part of the 

plot, which is called scree. Revelle [33] states, the scree test may be appealing, but leave questions as 

to the breaking point. Parallel analysis, since it contains a simulated curve for comparison, would 

leave no doubt in the decision.

4 PROPOSED METHOD: MULTIVARIATE GR&R-FA

The proposed multivariate GR&G method through factor analysis is denominated GR&R-FA. 

The GR&R-FA is proposed to deal with measurement results of distinct variables of interest, which 

can be separated in few groups with highly correlated variables inside the groups and moderate or no 

significant correlation between variables of different groups. This data pattern when analyzed with 

other multivariate GR&R methods such as GR&R-PCA [11], and GR&R-WPC [12], may present 

inconsistent results, due to the difficulty on the interpretation of the association among the original 

variables and the transformed variables. As PCA focuses on the interpretation of variances, while 

factor analysis is designated to account the covariances or correlations, the latter may be more 

suitable in these cases. Therefore, the GR&R-FA allows the dimensionality reduction with simple to 

interpret association between original and latent variables, as advocated by Thurstone [34].

The steps to perform the multivariate GR&R-FA method may be followed in the flow chart in 

Fig. 2 and are depicted as follows:

Step 1: Define the measurement systems, measurement procedure, GR&R design and variables to be 

measured. 

Step 2: Perform the measurements following the GR&R design and store the results. 

Step 3: Calculate the sample Pearson correlation between the variables. Define the correlation matrix 

and test the significance of each correlation. 

Step 4: Evaluate if there are significant correlations. If the correlations are not significant univariate 

GR&R may be performed to each variable separately. If there are significant correlations, a 

multivariate strategy should be performed to guarantee redundancy decrease and to account the 

correlation between variables. In this case, proceed to step 5.



Fig. 2. Flowchart for the GR&R-FA method

Step 5: Test factor analysis assumptions. In this step, the sphericity test is performed to guarantee 

adequacy for factor analysis.

Step 6: Evaluate the results of the assumptions tests. If the assumptions are not checked, the factor 

analysis will not generate good results and another multivariate GR&R method may be employed, 

such as PCA or MANOVA. In the case of assumptions fulfillment, the GR&R-FA flow may be 

carried on.

Step 7: Define the number of factors to be extracted through the parallel analysis.

Step 8: Perform the factor analysis with the principal axis extraction method with the number of 

factors defined in step 7. Test the varimax and quartimax rotation methods and compare the results in 

terms of loadings with the simplest interpretation and highest variance proportion explained by the 

extracted factors. The extraction and rotation methods are detailed in Appendix A and B, 

respectively.

Step 9: Estimate the factor scores through regression, as proposed by Thurstone.

Step 10: Perform the GR&R ANOVA to each factor score vector and estimate the capability of the 

measurement system. The %R&R, SNR and DR indexes are evaluated to judge the gage capability. 



The PTR index is not calculated since it is also related to process capability, being out of the scope of 

the present work. It is essential to highlight that Eqs. 1-10, in section 2, are now applied to scores of 

factor instead of the original variables (y).

5 EXPERIMENTAL APPLICATION

The GR&R-FA study was performed in holes of AISI H13 hardened steel workpieces. The 

holes were obtained through helical milling process in a CNC machining center ROMI® Discovery 

560 with numerical control Siemens® Sinumerik 810D. The end mill used in helical milling tests 

were ISO/ANSI R215.H4 10050DAC03H 1610 with Dt = 10 mm diameter, z = 4 teeth and ap(máx) = 

0.3 mm, Sandvik grade GC 1610, ISO grade H, with (Ti,Al)N2 PVD coating from Sandvik 

Coromant. Compressed air was applied to put out the chips. Eleven workpieces with distinct hole 

quality levels were selected, to study the repeatability and reproducibility of the measurement system 

accounting the entire range of process quality variation. The present MSA study was conducted 

previously to the modeling and optimization of helical milling of AISI H13 hardened steel study, to 

guarantee the capability of the measurement system. However, the latter results were published 

before, see Pereira, et al. [35].

Workpieces of AISI H13 hardened steel were provided by Proaços®. This material is 

recommended for applications in aluminum extrusion dies, and molds for thermoplastics. The 

cylindrical workpieces were with 24 mm of diameter and 20 mm of height. Holes were obtained in 

AISI H13 hardened steel workpieces through the helical milling process. All through-holes were 

obtained with a diameter of 18 mm. Fig. 3 shows the experimental setup. 

holder

workpiece tool
fixture

cooling

Fig. 3.  Experimental setup for the helical milling tests



Microgeometrical and geometrical quality characteristics were measured in the GR&R study. 

Microgeometrical deviations are commonly called surface roughness. The surface roughness may 

affect lubrication, friction and corrosion resistance of the surface [36]. Therefore, it is an important 

quality parameter to indicate the condition of a finished metal surface, especially in the case of holes. 

The geometrical deviation may affect the coupling of components and the behavior of the 

mechanical assembly.

Figure 4 presents the roughness profile terminology, with the sampled roughness profile in 

green. This roughness profile is obtained after filtering the sampled profile. The roughness profile is 

defined considering the measured profile, called primary profile, by eliminating the long-wave 

components defined by the cut-off length λc, in blue arrow. The cut-off presents the same length of 

the sampling length, which is the length used to identify the irregularities of the profile under 

evaluation. The average line, in red, is the line corresponding to the long-wave profile component 

suppressed by the profile filter λc. Finally, the evaluation length (ln), in orange arrow, is the length 

used to establish the profile under evaluation.
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Fig. 4.  Roughness measurement terminology

There are several roughness parameters to quantify the sampled surface texture. The main 

roughness parameter, which is used to define surface texture in mechanical projects, is the average 

surface roughness, Ra [μm]. Ra is defined as the average of the absolute values of the sampled heights 

in the evaluation length. Another important roughness parameter is Rq, which is defined as the root 

mean square average of the profile sampled heights over the evaluation length. These two parameters 



may be used as central tendency parameters of the profile. To quantify the dispersion of the profile, 

the parameter Rz is the average of the amplitude distances Rzi which are measured in each sampling 

length, as illustrated in Fig. 4.

Figure 5 shows the roundness and cylindricity terminology, used to quantify the geometrical 

error in holes and shafts. In the case of a specific transversal section of interest, the roundness 

measurement may be performed, Fig. 5(a). The roundness sampled profile is represented through a 

polar plot. In this plot, part of the radial scale is suppressed and the profile is scaled to make the 

roundness deviations observable. The least-squares circle is calculated considering the deviations of 

the profile. The sampled profile presents peak and valley deviations, which are respectively the 

deviations outward and inward concerning the least-squares circle. The radial distance between the 

least-squares circle and the external circle is called peak roundness (Ronp). The radial distance 

between the least-squares circle and the internal circle is called valley roundness (Ronv). The radial 

distance between external and internal circles is called total roundness (Ront). Consequently, Ront = 

Ronp + Ronv.

Roundness profile sampled
Inscribed circle
Circumscribed circle

Least square center point
Least squares circle

(a) (b)

Roundness profiles sampled
Inscribed cylinder
Circumscribed Cylinder
Lesat squares center line
Center of roundness profiles

Eccentricity of the superior profile

Cylt

Distance between sampled
roundness profiles

Fig. 5.  (a) Roundness measurement; and (b) cylindricity measurement terminology

When the geometrical error is important in all axial height of the cylindrical surface, the 

cylindricity may be considered. The method of cylindricity measurement used in this work and 

illustrated in Fig. 5(b) consists in sampling equidistant roundness profiles and in calculating a related 

cylindricity profile. The center of each roundness profile is calculated through least squares. Taking 

the center of each roundness profile, a least-squares center line is estimated. Then, an internal and an 

external cylinder are defined. The radial distance between these cylinders is the total cylindricity, 

Cylt. When measuring the cylindricity through this method, the eccentricity among the profiles is 



considered. Consequently, Cylt result will be higher than the average Ront of the profiles and will 

account not only the form error but also the position deviation.

(a) (b)

Fig. 6. Setup for (a) roundness; and (b) roughness measurements

The roughness measurements were performed using the roughness and profile measurer Form 

Talysurf Intra from Taylor Hobson®. It was considered a cut-off of λc = 0.25 mm. The roundness 

and cylindricity measurements were obtained through the roundness measurement system Talyround 

131 from Taylor Hobson®, with a ruby probe with 2 mm diameter. The applied filter range was 1-50 

upr. Fig. 6 illustrates the experimental setup for roundness and roughness measurement. These 

equipment are both aided by computer and software ultra from Taylor Hobson®.

The roughness parameters considered in the GR&R study were Ra, Rq, and Rz, while the 

geometrical error parameters were Ronp, Ront and Cylt. The parameter Ronv was not considered since 

it can be derived considering Ront and Ronp results. Figure 7 illustrates the positions of the 

measurements. For roughness, it was considered three positions radially equidistant from 120º, as 

illustrated in the reference view. The roundness measurement positions were considered in five 

positions at the end of the hole equidistant of 1.2 mm, as illustrated in section A-A. Generally, the 

end of the holes obtained through helical milling presents lower quality due to the tool contact and 

radial force levels, which leads to tool deflection and, consequently, geometrical and 

microgeometrical deviations. Besides, at the end of the hole, the surface roughness is worst, since the 

tool peripheral cutting edges pass more times at the beginning of the hole, improving the roughness. 

It must be stressed that the complete product characterization is necessary for process modeling [35], 

however, for metrological capability aims, the worst conditions were tested.



0°

120°

240°

Fig.7. Roundness and roughness measurement positions

The GR&R study was performed considering 3 operators, 11 workpieces and 2 measurements 

for each operator in each workpiece. Since a GR&R design is a factorial design with random factors, 

in the present study it was performed 31×111×21 = 66 measurements in random order. To perform the 

analysis, it was used the software R [37], aided by the following packages: psych [38], GPArotation 

[39], corrplot [40], Hmisc [41], ggplot2 [42], SixSigma [43], lme4 [44] and GGally [45].

6 RESULTS AND DISCUSSION

Table 2 presents the 66 measurement results performed in completely random order for the 

three operators, in the eleven parts, with two replications, for the GR&R study of three 

microgeometrical and three geometrical error quality characteristics of holes in AISI H13 hardened 

steel workpieces. Through these results, the surface and the geometrical form of the boreholes may 

be characterized to ensure the quality control of the holes.

Figure 8 presents the roundness measurement results for part 1, operator 2, and replica 1, with 

average results Ront = 7.11 μm and Ronp =2.68 μm. The polar plots with a scale division of 5μm 

show the geometrical profile error. For all 66 measurements presented in Table 2, the lowest and 

highest results for Ronp were 2.68 μm and 9.32 μm, while for Ront were 6.92 μm and 18.94 μm. 

Considering the five positions of the roundness measurements a cylindricity measurement is 

calculated by the software. For instance, Fig. 9 presents the cylindricity result for part 2, operator 3, 

and replica 1, with Cylt = 11.93 μm. For all 66 measurements, the lowest and highest Cylt results 

were 8.34 μm and 22.96 μm, respectively. These geometrical error results assure promising hole 

quality. However, it should be evaluated the quality of these measurements guaranteeing low R&R 

error before using these results for quality control. 

Figure 10 presents the roughness measurement results for the part 3, operator 1 and replica 1, 

with average results of the three radial positions Ra = 0.23 μm, Rq = 0.29 μm, and Rz = 1.41 μm. 



Taking all roughness measurements, the lowest and highest results were 0.19 and 0.50 μm for Ra, 

1.22 and 2.73 μm for Rz, and 0.24 and 0.61 μm for Rq, respectively. 

Table 2. Measurements for GR&R study, all results in [μm]
  Replica 1 Replica 2
Parts Operator Ronp Ront Cylt Ra Rz Rq Ronp Ront Cylt Ra Rz Rq

1 1 3.55 8.33 9.96 0.30 1.76 0.38 3.18 7.80 11.00 0.26 1.59 0.33
1 2 2.68 7.11 10.34 0.29 1.72 0.36 2.72 7.38 9.31 0.30 1.78 0.37
1 3 3.16 7.65 9.76 0.30 1.76 0.38 3.02 7.49 10.57 0.28 1.66 0.35
2 1 5.97 11.25 12.43 0.28 1.66 0.35 6.13 11.50 13.64 0.28 1.66 0.35
2 2 6.43 12.09 14.01 0.27 1.62 0.34 5.51 10.40 11.88 0.27 1.66 0.35
2 3 5.67 10.54 11.93 0.26 1.63 0.34 5.65 10.47 11.85 0.25 1.69 0.35
3 1 6.38 14.53 21.12 0.23 1.41 0.29 6.47 14.80 21.05 0.25 1.49 0.32
3 2 6.86 15.62 21.69 0.24 1.52 0.32 6.71 15.22 20.68 0.25 1.53 0.32
3 3 6.77 15.39 21.22 0.24 1.36 0.29 6.57 15.16 20.28 0.22 1.43 0.30
4 1 3.52 6.94 8.34 0.22 1.32 0.27 3.65 7.44 9.15 0.25 1.46 0.31
4 2 3.52 7.04 8.68 0.24 1.45 0.30 3.55 7.00 8.63 0.21 1.31 0.27
4 3 3.38 6.92 8.71 0.23 1.37 0.29 3.35 6.84 9.02 0.25 1.46 0.31
5 1 5.30 10.02 11.48 0.24 1.42 0.30 5.45 10.02 11.17 0.24 1.42 0.30
5 2 5.18 9.61 11.99 0.25 1.45 0.31 4.98 9.11 10.84 0.24 1.47 0.31
5 3 5.30 9.86 10.94 0.26 1.50 0.32 5.41 10.04 11.09 0.23 1.39 0.29
6 1 3.78 8.16 12.51 0.28 1.76 0.41 3.76 8.16 11.47 0.34 1.87 0.43
6 2 3.73 8.11 12.43 0.32 1.76 0.42 3.83 8.27 13.01 0.33 1.85 0.43
6 3 3.80 8.15 12.57 0.34 1.93 0.46 3.85 8.31 11.18 0.35 1.93 0.46
7 1 6.37 10.86 15.07 0.20 1.28 0.25 6.47 11.19 14.19 0.19 1.23 0.24
7 2 5.71 10.29 12.34 0.20 1.27 0.25 6.37 10.89 13.07 0.20 1.22 0.25
7 3 6.32 10.83 14.55 0.20 1.26 0.25 6.69 11.49 14.57 0.20 1.29 0.25
8 1 5.28 11.36 13.04 0.47 2.68 0.59 4.71 10.49 12.37 0.48 2.72 0.60
8 2 5.10 11.25 13.42 0.47 2.60 0.58 5.11 11.29 12.99 0.49 2.71 0.60
8 3 4.50 9.56 11.27 0.49 2.73 0.61 4.67 10.24 11.77 0.50 2.69 0.61
9 1 3.01 7.14 9.91 0.22 1.37 0.28 3.12 7.30 9.19 0.24 1.42 0.30
9 2 3.26 7.43 8.45 0.23 1.41 0.29 3.33 7.68 9.07 0.24 1.42 0.31
9 3 3.56 7.98 10.21 0.24 1.43 0.30 3.10 7.24 8.79 0.23 1.36 0.29
10 1 4.03 10.14 16.73 0.30 1.82 0.42 4.19 10.44 16.43 0.34 1.85 0.44
10 2 4.56 10.94 18.21 0.30 1.68 0.38 4.22 10.26 16.47 0.36 1.86 0.44
10 3 4.17 10.33 16.86 0.33 1.82 0.41 4.19 9.96 16.95 0.30 1.72 0.38
11 1 9.00 18.26 22.75 0.22 1.33 0.28 8.61 17.52 21.87 0.22 1.30 0.27
11 2 8.80 18.10 22.60 0.23 1.33 0.29 8.65 17.61 21.82 0.23 1.38 0.29
11 3 9.32 18.94 22.96 0.23 1.36 0.29 8.80 17.94 22.96 0.22 1.32 0.28
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Fig. 8. Roundness measurements, part 1, operator 2, and replica 1. Ront = 7.11 μm, Ronp =2.68 μm
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Fig. 9. Cylindricity measurement, part 2, operator 3, and replica 1. Cylt = 11.93 μm
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Fig. 10. Roughness measurements, part 3, operator 1, and replica 1. Ra = 0.23 μm, Rq = 0.29 μm, Rz = 

1.41 μm; 

Before to perform the GR&R study it is necessary to estimate the correlation among the 

quality variables, considering the covariance among the variables, besides evaluating the possibility 

of dimensionality reduction. Figure 11 presents the correlation plot for the variables considered in 

the GR&R study. In the lower matrix of the correlation plot, it is presented the Pearson correlation 

coefficient, and in the upper matrix, the circles represent the magnitude of the correlation. For both 

circles and Pearson correlation values, the blue color consists of positive correlation, while the red 

represents the negative correlations. The variables are hierarchically ordered in the plot according to 

its correlation values. The values and circles with a cross symbol are not statistically significant. The 

correlation matrix is also presented in Table 3 with person correlation and p-values.



Fig. 11. Correlation plot for the variables of the GR&R study

Table 3. Correlation matrix

 Ronp Ront Cylt Ra Rz
Ront 0.944 a

0.000 b

Cylt 0.813 0.932
0.000 0.000

Ra -0.256 -0.142 -0.127
0.038 0.254 0.309

Rz -0.257 -0.152 -0.152 0.990
0.037 0.224 0.224 0.000

Rq -0.274 -0.154 -0.122 0.992 0.990
 0.026 0.216 0.330 0.000 0.000
aPearson correlation coefficient; bP-value

The microgeometrical error variables, Ra, Rq, and Rz are highly correlated among themselves, 

with 0.99 of correlation in all pairs, forming a group of roughness outcomes. The geometrical error 

variables are highly correlated among themselves, with the pair Ronp and Cylt with the lowest 

correlation equal to 0.81 in this group of geometrical quality outcomes. The correlation among the 

roughness and the geometrical error variables are moderate and negative, with statistical significance 

only in Ronp with each one of the roughness variables. This negative moderate correlation can be 

explained due to the helical milling process parameters. When the feed in the axial direction is lower 

in contrast with high feed in the peripheral cut, the roughness is improved with quality loss in 



roundness, since these parameters are measured in axial and radial directions of the hole, 

respectively.  

As an effort to achieve dimensionality reduction together with simple structure and easy 

interpretation of the transformed variables, the factor analysis may be performed. Firstly, it is 

performed Bartlett's sphericity test to assure that the correlation matrix is not an identity matrix. For 

the correlation matrix presented in Fig. 11 and Table 3, the Bartlett test results in χ2 = 850.82, with 

an associated null p-value and 15 degrees of freedom. Therefore, the null hypothesis H0: Σ = Iσ2 is 

rejected, assuring significant association among the variables.

Subsequently, the parallel analysis is performed to determine the number of factors to extract. 

Figure 12 shows the parallel analysis considering the principal axis extraction method. As the curves 

intersect before three factors in the abscissa, it is suggested two factors to be extracted. 

Fig. 12. Parallel analysis for principal axis extraction factor analysis

Table 4 summarizes the factor analysis for the variables Ronp, Ront, Cylt, Ra, Rz, Rq 

considering the correlation matrix, two factors, with the principal axis extraction method and the 

quartimax rotation. With this extraction and rotation methods, it was achieved a simple structure. In 

the appendix, it presented the varimax rotation results which presented a bit lower cumulative 

proportion of the variance explained by the factors when compared to the quartimax rotation. 

Through quartimax rotation, the first axis (PA1) is highly correlated with the variables Ra, Rz, and Rq, 



with all loadings equal to 0.99. The second axis is highly correlated with the variables Ronp, Ront and 

Cylt, with loadings 0.93, 0.99 and 0.94, respectively. The quartimax rotation provides this pattern by 

maximizing the variance among the factors. Therefore, PA1 is a roughness axis and PA2 is a 

roundness axis, as demonstrated in the factor analysis diagram in Fig. 13. It is important to note that 

the factor PA1, which is related to roughness, presented a loading of -0.19 with the variable Ronp, due 

to the moderate negative correlation between this variable and the roughness outcomes. However, 

the extracted factors are independent, as quartimax is an orthogonal rotation method.

Table 4. Factor analysis results, with principal axis extraction method and quartimax rotation

 PA1 PA2 hi
2 ψi Var(Yi)

Ronp -0.19 0.93 0.89 0.11 1.0
Ront -0.07 0.99 0.99 0.01 1.0
Cylt -0.05 0.94 0.88 0.12 1.0
Ra 0.99 -0.08 0.99 0.01 1.0
Rz 0.99 -0.09 0.99 0.01 1.0
Rq 0.99 -0.09 0.99 0.01 1.0

Var(PAj) 2.99 2.74    
Proportion Var 0.5 0.46
Cumulative Var 0.5 0.96    

The common variance hi
2 describes the variance retained by the factors in each variable, 

describing the correlation and part of the variance of the i-th variable, while the uniqueness ψi retains 

the remaining part of the variance of the i-th variable. Since the analysis considered the correlation 

matrix, the variance Var(Yi) is unitary for all variables. The proportion of the variance explained by 

the factor PA1 is 0.5, while the proportion explained by the factor PA2 is 0.46, totalizing 0.96 of the 

proportion of data variability explained by the extracted factors.



Fig. 13. Factor analysis diagram
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Fig. 14. Biplot for principal axis factor analysis with quartimax rotation



The interpretation of the factors is clear since in each factor the loadings are high only for a 

group of highly correlated variables, making it easy to relate each factor to the related group of 

variables. Figure 14 illustrates the biplot for the factor analysis through principal axis extraction and 

quartimax rotation. As can be observed the variables Ra, Rq, and Rz present loadings with expressive 

coordinates in the direction of the factor PA1, while the variables Ronp, Ront and Cylt presents 

expressive coordinates in the direction of the factor PA2. 

To perform further analysis with the transformed variables the scores of the two factors are 

obtained. Table 5 presents the scores for the factors PA1 and PA2 estimated by regression with R2 of 

99.82% and 99.60%, respectively.

Table 5. Scores of the factors PA1 and PA2

  Replica 1 Replica 2   Replica 1 Replica 2
Parts Operator PA1 PA2 PA1 PA2 Parts Operator PA1 PA2 PA1 PA2

1 1 0.205 -0.700 -0.285 -0.904 7 1 -1.009 -0.012 -1.135 0.080
1 2 0.078 -1.063 0.177 -1.016 7 2 -1.035 -0.183 -1.093 0.012
1 3 0.189 -0.913 -0.061 -0.975 7 3 -1.036 -0.016 -0.996 0.176
2 1 0.001 0.174 0.053 0.266 8 1 2.607 0.347 2.672 0.076
2 2 -0.031 0.443 -0.039 -0.096 8 2 2.450 0.316 2.735 0.340
2 3 -0.144 -0.048 -0.076 -0.058 8 3 2.725 -0.186 2.765 0.057
3 1 -0.496 1.170 -0.258 1.283 9 1 -0.826 -1.111 -0.637 -1.048
3 2 -0.219 1.536 -0.215 1.397 9 2 -0.715 -1.034 -0.584 -0.908
3 3 -0.502 1.457 -0.455 1.386 9 3 -0.624 -0.851 -0.775 -1.068
4 1 -0.949 -1.197 -0.505 -0.992 10 1 0.507 -0.023 0.793 0.107
4 2 -0.613 -1.144 -0.972 -1.169 10 2 0.278 0.186 0.852 0.036
4 3 -0.783 -1.177 -0.525 -1.180 10 3 0.589 0.012 0.287 -0.138
5 1 -0.559 -0.211 -0.580 -0.214 11 1 -0.561 2.319 -0.649 2.088
5 2 -0.468 -0.325 -0.506 -0.504 11 2 -0.514 2.290 -0.460 2.119
5 3 -0.347 -0.238 -0.684 -0.231 11 3 -0.425 2.554 -0.585 2.227
6 1 0.316 -0.602 0.713 -0.628
6 2 0.461 -0.626 0.657 -0.580
6 3 0.876 -0.566 0.942 -0.520       

After dealing with the correlation structure, describing the variables in two non-observable 

and orthogonal factors through principal axis factor analysis with quartimax rotation, the GR&R 

analysis is performed. Table 6 summarizes the GR&R analysis for the roughness factor PA1 and the 

roundness factor PA2. The interactions are removed, considering the significance value α = 0.05, for 

both factors PA1 and PA2. The ANOVA indicates statistical significance only for the Parts, with 

evidence of rejection of the null hypothesis of equality of the Parts. The Operators present 

homogeneity in the measurements concerning roughness results, PA1, and about roundness, PA2. 



Table 6. GR&R ANOVA

GR&R ANOVA for PA1
 Df Sum Sq Mean Sq F-value p-value

Parts 10 63.67 6.367 257.847 <2e-16
Operators 2 0.02 0.012 0.475 0.625
Repeatability 53 1.31 0.025
Total 65 65.00    

GR&R ANOVA for PA2
 Df Sum Sq Mean Sq F-value p-value

Parts 10 63.94 6.394 321.498 <2e-16
Operators 2 0.01 0.004 0.181 0.835
Repeatability 53 1.05 0.020
Total 65 65.00    

Figure 15 presents the interaction plots for the roughness and roundness factors, PA1 and PA2, 

respectively. A confidence interval bar with γ = 0.95 considering the repeatability of the 

measurements is represented in each mean point. As can be observed, the parts are chosen with 

different levels of roughness and roundness results. By observing only PA2 results, it can be inferred 

that there are some parts with redundant results, for example, P7 and P8 with similar geometrical 

error levels. However, concerning roughness, P7 presents low roughness, while P8 presents high 

roughness. Some parts with low roughness may present high roundness [35]. The plots confirm the 

homogeneity among operators, for both factors PA1 and PA2, since for each part all means are close 

and the confidence intervals intersect.

Table 7 summarizes the variance components of the GR&R study for PA1 and PA2. For the 

factor PA1 the repeatability is the main responsible for the R&R variation which totals 15.11%. For 

the factor PA2 the repeatability is also responsible for all R&R variation with 13.56%. For roughness 

and roundness results the measurement systems are marginal, considering the AIAG criteria 

illustrated in Fig. 1. As the reproducibility was negligible, the main problem for both measurement 

systems are related not to the operators, but the instruments. This natural variation or the random 

error when a single operator measures the same item successively in a short time is called 

repeatability. Taking PA1 and PA2, which are related to roughness and roundness, respectively, and 

therefore were measured through different measurement systems, both may be classified as marginal 

according to the AIAG criteria illustrated in Fig. 1. The obtained capability levels were considered 

satisfactory for the helical milling hole quality characterization.



(a) (b)

Fig. 15. Interaction plot for (a) PA1; and (b) PA2

Table 7. Variance components contribution

Contribution for PA1
 StdDev StudyVar %StudyVar
Total R%R 0.157 0.943 15.11
Repeatability 0.157 0.943 15.11
Reproducibility 0.000 0.000 0.00
Operators 0.000 0.000 0.00
Part-To-Part 1.028 6.169 98.85
Total 1.040 6.240 100.00

Contribution for PA2
 StdDev StudyVar %StudyVar
Total R%R 0.141 0.846 13.56
Repeatability 0.141 0.846 13.56
Reproducibility 0.000 0.000 0.00
Operators 0.000 0.000 0.00
Part-To-Part 1.031 6.184 99.08
Total 1.040 6.242 100.00

The SNR and DR indexes are also important to quantify the gage capability. Table 8 

summarizes these measures for PA1 and PA2. For both factors the results of SNR and DR are greater 

than four, assuring the gage capability for measuring roughness and roundness.

Table 8. Gage capability indexes

Index PA1 PA2
SNR(ndc) 9 10
DR 9.31 10.38

To give a final outlook, Fig. 16 presents a correlation plot for the two factors, with density 

plots and box plots to see the distributions of the measurements for the distinct operators. The 



correlation for PA1 and PA2 within each operator is nearby zero, confirming the orthogonality of the 

factors obtained by factor analysis with principal axis extraction and quartimax rotation. Through 

density plots and boxplots, it can be visualized the homogeneity among operators. The density plots 

also show the distribution of the part variability, showing asymmetry of the hole quality variability 

due to the random selection of the parts for the R&R study. The proposed GR&R-FA method is a 

distribution-free approach for multivariate GR&R since FA through principal axis extraction do not 

require a specific probability distribution.

Fig. 16. Final outlook for the GR&R-FA method applied to the helical milling hole quality 

characterization

7 CONCLUSIONS

This paper presents a multivariate GR&R method through factor analysis. The methodology 

was applied in the quality evaluation of holes obtained through helical milling in AISI H13 hardened 

steel. The proposed GR&R-FA method can also be applied in other multivariate GR&R tasks.

Holes obtained through helical milling process in AISI H13 hardened steel parts were 

evaluated considering roughness, roundness and cylindricity parameters. The roughness parameters 



were Ra, Rq, and Rz, the roundness parameters were Rt and Rp, and the cylindricity parameter was 

Cylt. These variables measure distinct microgeometrical and geometrical characteristics and should 

be considered for a suitable evaluation of the hole quality. 

The correlation structure of the variables pointed out high correlations between the roughness 

variables and high correlations between the roundness variables, with moderate correlation between 

the variables of these two groups. 

The sphericity test was performed assuring adequacy of the correlation matrix for factor 

analysis. The parallel analysis suggested the extraction of two factors. Factor analysis through 

principal extraction method and quartimax rotation was applied and the variables were separated into 

two factors, PA1 with high loadings related to roughness variables and PA2 with high loadings related 

to roundness variables. 

GR&R ANOVA was performed in the factor scores of PA1 and PA2 obtained through 

regression. For the factor PA1, related to roughness, the repeatability was the main responsible for the 

R&R variation which totals 15.11%. For the factor PA2, related to roundness, the repeatability was 

also responsible for all R&R variation with 13.56%. For roughness and roundness results the 

measurement systems were marginal, considering the AIAG criteria.

The results assure that for some multivariate cases with variables separated into distinct 

groups with high correlation between variables of the same group and moderate correlation between 

variables of distinct groups the GR&R-FA is a suitable multivariate GR&R approach.

Some procedures were beyond the scope of the present study. Therefore, limitations may be 

pointed out. Factor extraction is possible through different methods and rotations. This study focused 

on the factor analysis performed only through the principal axis extraction method and the varimax 

and quartimax rotation methods.  Thus, in future studies, the GR&R-FA method may be addressed 

considering distinct rotation and extraction methods and their comparisons. Furthermore, only three 

roughness parameters and three geometrical error parameters were considered in this work. In future 

studies, other parameters for roughness and geometrical error may be explored, as well as other 

characteristics of the parts, such as hole diameter. Lastly, the results of this work were obtained 

through a crossed GR&R. Therefore, later the factor analysis may be applied to destructive studies 

(nested GR&R) or studies involving additional sources of variability, such as distinct measurement 

systems (expanded GR&R).
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APPENDIX A.  THE PRINCIPAL AXIS EXTRACTION METHOD 

In the principal axis an initial estimate Ψ0 of Ψ is considered and the spectral theorem is 

applied to estimate S – Ψ or R – Ψ, were S is the sample covariance matrix and R is the sample 

correlation matrix [13]. The method is based in the minimization of the sum of squares of S – Σ. Let 

Q be the sum of squares of the elements of S – Σ exposed in Eq. A.1 [24]. 

     (A.1)𝑄 = 𝑡𝑟[(𝑺 ― 𝚺)2]

Replacing the Eq. 12 in Eq. A.1:

     (A.2)𝑄 = 𝑡𝑟[(𝑺 ― 𝑳𝑳𝑻 ― 𝚿)2]
(A.3)𝑄 = 𝑡𝑟(𝑺2) +𝑡𝑟(𝑳𝑳𝑻𝑳𝑳𝑻) +𝑡𝑟(𝚿2) ―2 × 𝑡𝑟(𝑳𝑳𝑻𝑺) ―2 × 𝑡𝑟(𝑺𝚿) +2 × 𝑡𝑟(𝑳𝑳𝑻𝚿)



The first derivative of Q with regard to L equated to zero results in the Eq. A.4, while the first 

derivative of Q with regard to Ψ equated to zero results in the Eq. A.5 [24].

∂𝑄
∂𝑳 = 4𝑳𝑳𝑻𝑳 ― 4𝑺𝑳 + 4𝚿𝑳 = 𝟎

     (A.4)(𝑺 ― 𝑳𝑳𝑻 ― 𝚿)𝑳 = 𝟎

∂𝑄
∂𝚿 = 2𝚿 ― 𝟐 × 𝑑𝑖𝑎𝑔(𝑺) + 2 × 𝑑𝑖𝑎𝑔(𝑳𝑳𝑻) = 𝟎

          (A.5)𝚿 = 𝑑𝑖𝑎𝑔(𝑺 ― 𝑳𝑳𝑻)

Taking the initial estimate Ψ0 of Ψ in Eq. A.4, it is obtained the Eq. A.6. By doing 𝑺𝑟 = 𝑺 ―

, considering LTL diagonal, L may be estimated by the spectral decomposition theorem of Sr, i.e., 𝚿0

, according to the Eq. A.7 [24].𝑺𝑟 = 𝑷𝚲𝑷𝑇

(𝑺 ― 𝚿0)𝑳 ― 𝑳(𝑳𝑻𝑳) = 𝟎

     (A.6)(𝑺 ― 𝚿0)𝑳 = 𝑳(𝑳𝑻𝑳)

     (A.7)𝑳 = 𝑷𝚲
1 2 = [ 𝜆1𝒆1  𝜆2𝒆2  ⋯  𝜆𝑚𝒆𝑚 ]

Therefore, . If the estimated matrix for Ψ is suitable, Sr will present rank 𝑺𝑟 = 𝑺 ― 𝚿0 = 𝑳𝑳𝑻

m, i.e., will have all m lines linearly independent and the p – m ignored eigenvalues will be null. 

However, in practice, the rank of Sr is higher than m, so that the reproduction of Sr is not perfect 

[24].

The i-th diagonal element of Sr is equal to sii − ψi which consists of the i-th common variance 

. In the case of factorization of the correlation matrix, , the diagonal ℎ2
𝑖 = 𝑠𝑖𝑖 ― 𝜓𝑖 𝑹𝑟 = 𝑹 ― 𝚿0

element is . Therefore, the matrices Sr and Rr are respectively as follows [13]:ℎ2
𝑖 = 1 ― 𝜓𝑖

     (A.8)𝑺𝑟 = [ ℎ2
1 𝑠12

𝑠21 ℎ2
2

… 𝑠1𝑝
… 𝑠2𝑝

⋮ ⋮
𝑠𝑝1 𝑠𝑝2

⋱ ⋮
… ℎ2

𝑝
]



     (A.9)𝑹𝑟 = [ ℎ2
1 𝑟12

𝑟21 ℎ2
2

… 𝑟1𝑝
… 𝑟2𝑝

⋮ ⋮
𝑟𝑝1 𝑟𝑝2

⋱ ⋮
… ℎ2

𝑝
]

Popular estimates for the common variances in Sr and Rr are based in the coefficient of 

multiple correlation Ri
2 among Yi and the other p – 1 variables, according to Eqs. A.10 and A.11, 

respectively, were sii is the i-th diagonal term of S-1 and rii is the i-th diagonal term of R-1 [13]. 

Therefore, the estimate for the i-th common variance in these equations is  and , 𝜓0𝑖 = 1 𝑠𝑖𝑖 𝜓0𝑖 = 1 𝑟𝑖𝑖

respectively, so that   and . After to estimate the factor 𝚿0 = [𝑑𝑖𝑎𝑔(𝑺 ―1)] ―1 𝚿0 = [𝑑𝑖𝑎𝑔(𝑹 ―1)] ―1

loadings matrix L one must estimate the diagonal matrix of common variances through Eq. A.5 [24].

               (A.10)ℎ2
𝑖 = 𝑠𝑖𝑖 ―

1
𝑠𝑖𝑖 = 𝑠𝑖𝑖𝑅2

𝑖

                      (A.11)ℎ2
𝑖 = 1 ―

1
𝑟𝑖𝑖 = 𝑅2

𝑖

According to Rencher [13] the explanation of the j-th factor is obtained through Eq. A.12, 

were λj is the j-th eigenvalue of Sr and Rr. As these matrices will not necessarily be positive semi-

defined, some modest eigenvalues may be negative. 

               (A.12){𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ― 𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑𝑝

𝑖 = 1𝑙2
𝑖𝑗

𝑡𝑟(𝑺𝑟) =
𝜆𝑗

∑𝑝
𝑖 = 1𝑠𝑖𝑖 ― 𝜓𝑖

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ― 𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑𝑝

𝑖 = 1𝑙2
𝑖𝑗

𝑡𝑟(𝑹𝑟) =
𝜆𝑗

∑𝑝
𝑖 = 11 ― 𝜓𝑖

Ferreira [24] contend that Eq. A.12 overestimate the proportion of the explained variance, 

once the specific variances are not considered, since  and . Another 𝑺𝑟 = 𝑺 ― 𝚿0 𝑹𝑟 = 𝑹 ― 𝚿0

problem is regarded to Eq. A.7 due to the impossibility on the calculation of square root of negative 

eigenvalues. Consequently, Ferreira [24] proposed to use Eq. A.13 to estimate the proportion of the 

variance explained by the j-th factor of S or R.



               (A.13){𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ― 𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑𝑝

𝑖 = 1𝑙2
𝑖𝑗

𝑡𝑟(𝑺) =
𝜆𝑗

∑𝑝
𝑖 = 1𝑠𝑖𝑖

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ― 𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑𝑝

𝑖 = 1𝑙2
𝑖𝑗

𝑡𝑟(𝑹) =
𝜆𝑗

𝑝

APPENDIX B. QUARTIMAX AND VARIMAX ROTATION

As previously explained in section 3, the covariance matrix may be decomposed by rotated 

factors through an orthogonal matrix T, so that L* = LT e F* = TTF. This orthogonal transformation 

is a rigid rotation of coordinated axes. Geometrically the loadings of the i-th line of L are the 

coordinates of a point in the factors space corresponding to Yi. The rotation results in the coordinates, 

i.e., in the loadings with regard to the new axes, however, keep the basic geometrical properties 

unchanged. If it is possible to find a rotation in which each point is near to an axis, the loadings of 

that variable, represented by the projection of the point the axis, will be high and low for the 

remaining factors. The purpose is to find a loading matrix L of trivial interpretation, once this matrix 

holds the factorial loadings which are the covariances between the factors and the original variables 

[13,14,24]. 

F1

F2

F1
*

F2
*

F1

F2

F1
*

F2
*

α ≠ 90⁰

(a) (b)

θ θ

Fig. B.1. (a) orthogonal; and (b) oblique factor rotation

Figure B.1 illustrates the factor rotation in the factors space of unitary radius for the 

orthogonal case, Fig. B.1 (a) and in the oblique case Fig. B.1 (b). The rotated factor F1
* explains the 

variables represented by circles, while the factor F2
* explains the variables represented by stars. In 

the orthogonal case, there is no correlation between the rotated factors, while in the oblique case 

there is correlation between the rotated factors.

Several criteria have been proposed aiming to describe the correlations of the original 

variables through the factors in the simplest way. Taking a fixed origin, when rotating the axes from 



F to F* = TTF, such that L* = LT, with rotated loadings lij
*, despite the changes in the loadings, the 

commonalities remain constant, according to the Eq. B.1 [24,46].

     (B.1)ℎ2
𝑖 = ∑𝑚

𝑗 = 1𝑙2
𝑖𝑗 = ∑𝑚

𝑗 = 1𝑙 ∗ 2
𝑖𝑗 = ℎ ∗ 2

𝑖

The orthogonal matrix T, TTT = I, must be found. Let the orthogonal rotation of two factors 

with the matrix T of order 2 × 2, considering the rotation angle θ measured in counterclockwise. It 

can be shown that the rotating matrix is in the form of the Eq. B.2. The orthogonal rotation is 

expressed through Eq. B.3 with the rotated loadings in Eq. B.4.

     (B.2)𝑻 = [𝑐𝑜𝑠 𝜃 ―𝑠𝑒𝑛 𝜃
𝑠𝑒𝑛 𝜃 𝑐𝑜𝑠 𝜃 ]

     (B.3)𝑳𝑻 = [𝑙11
𝑙21
⋮

𝑙𝑖1
⋮

𝑙𝑝1

𝑙12
𝑙22
⋮

𝑙𝑖2
⋮

𝑙𝑝2

][𝑐𝑜𝑠 𝜃 ―𝑠𝑒𝑛 𝜃
𝑠𝑒𝑛 𝜃 𝑐𝑜𝑠 𝜃 ] = [𝑙 ∗

11
𝑙 ∗
21
⋮

𝑙 ∗
𝑖1
⋮

𝑙 ∗
𝑝1

𝑙 ∗
12

𝑙 ∗
22
⋮

𝑙 ∗
𝑖2
⋮

𝑙 ∗
𝑝2

] = 𝑳 ∗

     (B.4){ 𝑙 ∗
𝑖1 = 𝑙𝑖1 × cos 𝜃 + 𝑙𝑖2 × cos 𝜃

𝑙 ∗
𝑖2 = ―𝑙𝑖1 × sen 𝜃 + 𝑙𝑖2 × cos 𝜃

Neuhaus and Wrigley [46] argued that the rotation aims to reduce the complexity of the 

description of the factors concentrating the variance of the variable in the lowest number of factors. 

The ideal rotation consisting of a one-factor pattern by variable in which its variance is represented 

by a single loading. They proposed to maximize the variance of the contribution of the factors. This 

criterion was called quartimax, since it maximizes the sum of the fourth-order powers of the 

elements of the rotated matrix. Considering L* as the matrix of the loadings with the highest 

variances of the quadratic elements, the variance of L may be written according to the Eq. B.5.

     (B.5)𝑞𝑚𝑎𝑥 =
∑𝑝

𝑖 = 1
∑𝑚

𝑗 = 1𝑙4
𝑖𝑗

𝑝𝑚 ―
∑𝑝

𝑖 = 1(∑𝑚
𝑗 = 1𝑙2

𝑖𝑗)
𝑝2𝑚2



Kaiser [47] proposed a variance criterion in which the variances for each factor, j = 1, …, m, 

are summed constituting the varimax criteria, trying to maximize the interpretability or the simplicity 

of the factor, according to the Eq. B.6. He argued that the easy to interpret loadings are that nearby 

the extremes ±1 and that nearly 0, while the loadings nearby ±0.5 are difficult to interpret. The 

varimax criteria may also be rewritten considering the standardization due to the differences in the 

common variances, according to Eq. B.7.

      (B.6)𝑣𝑚𝑎𝑥 ∗ =
1
𝑝2∑

𝑚
𝑗 = 1[𝑝∑𝑝

𝑖 = 1𝑙4
𝑖𝑗 ― (∑𝑝

𝑖 = 1𝑙2
𝑖𝑗)2]

      (B.7)𝑣𝑚𝑎𝑥 =
1
𝑝2∑

𝑚
𝑗 = 1[𝑝∑𝑝

𝑖 = 1(𝑙2
𝑖𝑗 ℎ2

𝑖𝑗)2
― (∑𝑝

𝑖 = 1
𝑙2
𝑖𝑗 ℎ2

𝑖𝑗)2]

While the quartimax rotation maximizes the variance of the quadratic loadings among the 

factors, the varimax criterion maximizes the sum of the variance inside the factors.

APPENDIX C. RESULTS OF ASSUMPTIONS FOR GR&R ANOVA

To perform GR&R random effects ANOVA in the scores of the obtained factors the 

normality assumption of the residuals was checked for PA1 and PA2. The p-values for Shapiro-Wilk 

normality test were 0.6777 and 0.7382 for PA1 and PA2 respectively. Figure C.1 presents the 

residuals plots assuring normality distribution of the residuals for PA1 and PA2. 



Fig. C.1. Residuals plots

APPENDIX D. VARIMAX ROTATION RESULTS

The rotation through varimax method was also implemented, however the quartimax results 

presented highest cumulative variance explanation. The factor analysis through principal axis 

extraction method with variamax rotation is summarized in Table D.1.



Table D.1. Factor analysis results, with principal axis extraction method and varimax rotation

 PA1 PA2 hi
2 ψi Var(Yi)

Ronp -0.17 0.93 0.89 0.11 1.1
Ront -0.05 0.99 0.99 0.01 1.0
Cylt -0.03 0.94 0.88 0.12 1.0
Ra 0.99 -0.1 0.99 0.01 1.0
Rz 0.99 -0.11 0.99 0.01 1.0
Rq 0.99 -0.11 0.99 0.01 1.0

SS loadings 2.97 2.76    
Proportion Var 0.49 0.46
Cumulative Var 0.49 0.95    

Unacceptable

Marginal

Acceptable

%R&R > 30%

10% < %R&R < 30%

%R&R < 10%

Fig. 1. GR&R criteria for measurement system acceptability [7,18]

Fig. 2. Flowchart for the GR&R-FA method
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Fig. 3.  Experimental setup for the helical milling tests
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Fig. 4.  Roughness measurement terminology
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Fig. 5.  (a) Roundness measurement; and (b) cylindricity measurement terminology
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Fig. 6. Setup for (a) roundness; and (b) roughness measurements
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Fig.7. Roundness and roughness measurement positions
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Fig. 8. Roundness measurements, part 1, operator 2, and replica 1. Ront = 7.11 μm, Ronp =2.68 μm
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Fig. 9. Cylindricity measurement, part 2, operator 3, and replica 1. Cylt = 11.93 μm



0.0 1.0 2.0 3.0             4.0

[μ
m

]

[mm]

[μ
m

]

[μ
m

]

0.0 1.0 2.0 3.0             4.0

0.0 1.0 2.0 3.0             4.0

[mm]

[mm]

Position: 0° Position: 120°

Position: 240°
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Fig. 10. Roughness measurements, part 3, operator 1, and replica 1. Ra = 0.23 μm, Rq = 0.29 μm, Rz = 

1.41 μm; 



Fig. 11. Correlation plot for the variables of the GR&R study

Fig. 12. Parallel analysis for principal axis extraction factor analysis



Fig. 13. Factor analysis diagram
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Fig. 14. Biplot for principal axis factor analysis with quartimax rotation
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Fig. 15. Interaction plot for (a) PA1; and (b) PA2

Fig. 16. Final outlook for the GR&R-FA method applied to the helical milling hole quality 

characterization
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Fig. B.1. (a) orthogonal; and (b) oblique factor rotation



Fig. C.1. Residuals plots

Table 1. ANOVA table for a crossed GR&R study with two random factors

Sources Degrees of freedom Mean square F0

Parts (P) p − 1
𝜎2

𝑃 =
𝑜𝑟∑

𝑖(𝑦𝑖.. ― 𝑦...)2

𝑝 ― 1
𝐹0(𝑃) =

𝜎2
𝑃

𝜎2
𝑃𝑂

Operators (O) o – 1
𝜎2

𝑂 =
𝑝𝑟∑

𝑗(𝑦.𝑗. ― 𝑦...)2

𝑜 ― 1
𝐹0(𝑂) =

𝜎2
𝑂

𝜎2
𝑃𝑂



P×O (p − 1)( o – 1)
𝜎2

𝑃𝑂 =
𝑟∑

𝑖
∑

𝑗(𝑦𝑖𝑗. ― 𝑦𝑖.. ― 𝑦.𝑗. + 𝑦...)2

(𝑝 ―  1) (𝑜 – 1)
𝐹0(𝑃𝑂) =

𝜎2
𝑃𝑂

𝜎2
𝜀

Repeatability (ε) po(r – 1)
𝜎2

𝜀 =
∑

𝑖
∑

𝑗
∑

𝑘(𝑦𝑖𝑗𝑘 ― 𝑦𝑖𝑗.)2

𝑝𝑜(𝑟 ― 1)

where  is the grand mean of the measurements;  is the average of the ith part;  is the average of the jth operator;  𝑦... 𝑦𝑖.. 𝑦.𝑗. 𝑦𝑖𝑗.
is the average of the ith part measured by the jth operator and  is the kth measurement of the ith part by the jth operator𝑦𝑖𝑗𝑘

 

Table 2. Measurements for GR&R study, all results in [μm]
  Replica 1 Replica 2
Parts Operator Ronp Ront Cylt Ra Rz Rq Ronp Ront Cylt Ra Rz Rq

1 1 3.55 8.33 9.96 0.30 1.76 0.38 3.18 7.80 11.00 0.26 1.59 0.33
1 2 2.68 7.11 10.34 0.29 1.72 0.36 2.72 7.38 9.31 0.30 1.78 0.37
1 3 3.16 7.65 9.76 0.30 1.76 0.38 3.02 7.49 10.57 0.28 1.66 0.35
2 1 5.97 11.25 12.43 0.28 1.66 0.35 6.13 11.50 13.64 0.28 1.66 0.35
2 2 6.43 12.09 14.01 0.27 1.62 0.34 5.51 10.40 11.88 0.27 1.66 0.35
2 3 5.67 10.54 11.93 0.26 1.63 0.34 5.65 10.47 11.85 0.25 1.69 0.35
3 1 6.38 14.53 21.12 0.23 1.41 0.29 6.47 14.80 21.05 0.25 1.49 0.32
3 2 6.86 15.62 21.69 0.24 1.52 0.32 6.71 15.22 20.68 0.25 1.53 0.32
3 3 6.77 15.39 21.22 0.24 1.36 0.29 6.57 15.16 20.28 0.22 1.43 0.30
4 1 3.52 6.94 8.34 0.22 1.32 0.27 3.65 7.44 9.15 0.25 1.46 0.31
4 2 3.52 7.04 8.68 0.24 1.45 0.30 3.55 7.00 8.63 0.21 1.31 0.27
4 3 3.38 6.92 8.71 0.23 1.37 0.29 3.35 6.84 9.02 0.25 1.46 0.31
5 1 5.30 10.02 11.48 0.24 1.42 0.30 5.45 10.02 11.17 0.24 1.42 0.30
5 2 5.18 9.61 11.99 0.25 1.45 0.31 4.98 9.11 10.84 0.24 1.47 0.31
5 3 5.30 9.86 10.94 0.26 1.50 0.32 5.41 10.04 11.09 0.23 1.39 0.29
6 1 3.78 8.16 12.51 0.28 1.76 0.41 3.76 8.16 11.47 0.34 1.87 0.43
6 2 3.73 8.11 12.43 0.32 1.76 0.42 3.83 8.27 13.01 0.33 1.85 0.43
6 3 3.80 8.15 12.57 0.34 1.93 0.46 3.85 8.31 11.18 0.35 1.93 0.46
7 1 6.37 10.86 15.07 0.20 1.28 0.25 6.47 11.19 14.19 0.19 1.23 0.24
7 2 5.71 10.29 12.34 0.20 1.27 0.25 6.37 10.89 13.07 0.20 1.22 0.25
7 3 6.32 10.83 14.55 0.20 1.26 0.25 6.69 11.49 14.57 0.20 1.29 0.25
8 1 5.28 11.36 13.04 0.47 2.68 0.59 4.71 10.49 12.37 0.48 2.72 0.60
8 2 5.10 11.25 13.42 0.47 2.60 0.58 5.11 11.29 12.99 0.49 2.71 0.60
8 3 4.50 9.56 11.27 0.49 2.73 0.61 4.67 10.24 11.77 0.50 2.69 0.61
9 1 3.01 7.14 9.91 0.22 1.37 0.28 3.12 7.30 9.19 0.24 1.42 0.30
9 2 3.26 7.43 8.45 0.23 1.41 0.29 3.33 7.68 9.07 0.24 1.42 0.31
9 3 3.56 7.98 10.21 0.24 1.43 0.30 3.10 7.24 8.79 0.23 1.36 0.29
10 1 4.03 10.14 16.73 0.30 1.82 0.42 4.19 10.44 16.43 0.34 1.85 0.44
10 2 4.56 10.94 18.21 0.30 1.68 0.38 4.22 10.26 16.47 0.36 1.86 0.44
10 3 4.17 10.33 16.86 0.33 1.82 0.41 4.19 9.96 16.95 0.30 1.72 0.38
11 1 9.00 18.26 22.75 0.22 1.33 0.28 8.61 17.52 21.87 0.22 1.30 0.27
11 2 8.80 18.10 22.60 0.23 1.33 0.29 8.65 17.61 21.82 0.23 1.38 0.29
11 3 9.32 18.94 22.96 0.23 1.36 0.29 8.80 17.94 22.96 0.22 1.32 0.28

Table 3. Correlation matrix

 Ronp Ront Cylt Ra Rz
Ront 0.944 a

0.000 b

Cylt 0.813 0.932
0.000 0.000

Ra -0.256 -0.142 -0.127



0.038 0.254 0.309
Rz -0.257 -0.152 -0.152 0.990

0.037 0.224 0.224 0.000
Rq -0.274 -0.154 -0.122 0.992 0.990
 0.026 0.216 0.330 0.000 0.000
aPearson correlation coefficient; bP-value

Table 4. Factor analysis results, with principal axis extraction method and quartimax rotation

 PA1 PA2 hi
2 ψi Var(Yi)

Ronp -0.19 0.93 0.89 0.11 1.0
Ront -0.07 0.99 0.99 0.01 1.0
Cylt -0.05 0.94 0.88 0.12 1.0
Ra 0.99 -0.08 0.99 0.01 1.0
Rz 0.99 -0.09 0.99 0.01 1.0
Rq 0.99 -0.09 0.99 0.01 1.0

Var(PAj) 2.99 2.74    
Proportion Var 0.5 0.46
Cumulative Var 0.5 0.96    

Table 5. Scores of the factors PA1 and PA2

  Replica 1 Replica 2   Replica 1 Replica 2
Parts Operator PA1 PA2 PA1 PA2 Parts Operator PA1 PA2 PA1 PA2

1 1 0.205 -0.700 -0.285 -0.904 7 1 -1.009 -0.012 -1.135 0.080
1 2 0.078 -1.063 0.177 -1.016 7 2 -1.035 -0.183 -1.093 0.012
1 3 0.189 -0.913 -0.061 -0.975 7 3 -1.036 -0.016 -0.996 0.176
2 1 0.001 0.174 0.053 0.266 8 1 2.607 0.347 2.672 0.076
2 2 -0.031 0.443 -0.039 -0.096 8 2 2.450 0.316 2.735 0.340
2 3 -0.144 -0.048 -0.076 -0.058 8 3 2.725 -0.186 2.765 0.057
3 1 -0.496 1.170 -0.258 1.283 9 1 -0.826 -1.111 -0.637 -1.048
3 2 -0.219 1.536 -0.215 1.397 9 2 -0.715 -1.034 -0.584 -0.908
3 3 -0.502 1.457 -0.455 1.386 9 3 -0.624 -0.851 -0.775 -1.068
4 1 -0.949 -1.197 -0.505 -0.992 10 1 0.507 -0.023 0.793 0.107
4 2 -0.613 -1.144 -0.972 -1.169 10 2 0.278 0.186 0.852 0.036
4 3 -0.783 -1.177 -0.525 -1.180 10 3 0.589 0.012 0.287 -0.138
5 1 -0.559 -0.211 -0.580 -0.214 11 1 -0.561 2.319 -0.649 2.088
5 2 -0.468 -0.325 -0.506 -0.504 11 2 -0.514 2.290 -0.460 2.119
5 3 -0.347 -0.238 -0.684 -0.231 11 3 -0.425 2.554 -0.585 2.227
6 1 0.316 -0.602 0.713 -0.628
6 2 0.461 -0.626 0.657 -0.580
6 3 0.876 -0.566 0.942 -0.520       

Table 6. GR&R ANOVA

GR&R ANOVA for PA1
 Df Sum Sq Mean Sq F-value p-value

Parts 10 63.67 6.367 257.847 <2e-16
Operators 2 0.02 0.012 0.475 0.625
Repeatability 53 1.31 0.025
Total 65 65.00    



GR&R ANOVA for PA2
 Df Sum Sq Mean Sq F-value p-value

Parts 10 63.94 6.394 321.498 <2e-16
Operators 2 0.01 0.004 0.181 0.835
Repeatability 53 1.05 0.020
Total 65 65.00    

Table 7. Variance components contribution

Contribution for PA1
 StdDev StudyVar %StudyVar
Total R%R 0.157 0.943 15.11
Repeatability 0.157 0.943 15.11
Reproducibility 0.000 0.000 0.00
Operators 0.000 0.000 0.00
Part-To-Part 1.028 6.169 98.85
Total 1.040 6.240 100.00

Contribution for PA2
 StdDev StudyVar %StudyVar
Total R%R 0.141 0.846 13.56
Repeatability 0.141 0.846 13.56
Reproducibility 0.000 0.000 0.00
Operators 0.000 0.000 0.00
Part-To-Part 1.031 6.184 99.08
Total 1.040 6.242 100.00

Table 8. Gage capability indexes

Index PA1 PA2
SNR(ndc) 9 10
DR 9.31 10.38

Table D.1. Factor analysis results, with principal axis extraction method and varimax rotation

 PA1 PA2 hi
2 ψi Var(Yi)

Ronp -0.17 0.93 0.89 0.11 1.1
Ront -0.05 0.99 0.99 0.01 1.0
Cylt -0.03 0.94 0.88 0.12 1.0
Ra 0.99 -0.1 0.99 0.01 1.0
Rz 0.99 -0.11 0.99 0.01 1.0
Rq 0.99 -0.11 0.99 0.01 1.0

SS loadings 2.97 2.76    
Proportion Var 0.49 0.46
Cumulative Var 0.49 0.95    

Highlights

1. A multivariate GR&R method through factor analysis is proposed.



2. GR&R-FA method presented a simple interpretation of the highly correlated groups.

3. Quality measurements of holes attained by helical milling validated the method.

4. Roughness and roundness parameters were measured in the investigation.


