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Short-term forecasting of hourly water demands — a Portuguese case-study

Bernardete Coelho'; and Anténio Andrade-Campos?

ABSTRACT

Predicting future water demands is becoming fundamental in the efficient management of Wa-
ter Supply Systems (WSS). To improve the operations of a Portuguese network, short-term water
demand forecasting models are applied to four data sets collected from distinct locations in the
network. Traditional forecasting models, based on exponential smoothing and naive models, and
artificial neural network (ANN) based models are developed and compared. Additionally, the in-
fluence of anthropic and weather variables in the ANN-based models is also analysed. Results
demonstrate that ANN-based models outperform the traditional models when external predictors
such as anthropic and weather variables are included in the models. However, inappropriate choice
of such variables may lead to worse forecasting performances.
Keywords: Water demand forecasting, Artificial Neural Networks, Data analysis, Exponential

Smoothing, Naive methods, Portuguese water network.

INTRODUCTION

Water demand have been predicted for a variety of purposes, such as understanding spatial and
temporal patterns of water use, optimise system operations, plan for future system expansion or
even prepare for future revenue and expenditures. According to the purpose, distinct scales for the
forecasting methods are defined, from short-term to long-term scales. Medium- to long-term fore-
casts (months to decades) are mostly used in strategic planning and to determine future resource

requirements (Hyndman and Athanasopoulos 2013). Sizing system capacity, staging system im-
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provements and assessing future environmental and economic conditions that likely change water
supply and demand are the main purposes of this forecast scale.

There are a number of recent works dealing with monthly water demand forecasting, applying
from ARIMA models (Ghiassi et al. 2008) to ANN models (Ghiassi et al. 2008; Babel and Shinde
2011) and also hybrid ANN models (Tiwari and Adamowski 2013; Tiwari and Adamowski 2014),
where the ANN-based models commonly outperform the traditional ones.

Short-term scales, in turn, are mostly used in scheduling processes (Hyndman and Athana-
sopoulos 2013), including optimisation and management of systems operations. Hourly, daily and
weekly forecasts are commonly included in this scale. Comparatively to the medium/long-term
forecasts, a lot more studies can be found related to (i) hourly forecasts (Salomons et al. 2007;
Martinez et al. 2007; Romano and Kapelan 2014; Santos and Pereira Filho 2014; Odan and Reis
2012; Herrera et al. 2010; Alvisi et al. 2007; Ghiassi et al. 2008; Kang et al. 2015), (ii) daily
forecasts (Alvisi et al. 2007; Ghiassi et al. 2008; Msiza et al. 2008; Adamowski 2008; Tabesh and
Dini 2009; Babel and Shinde 2011; Adamowski et al. 2012; Bakker et al. 2014) and (ii1) weekly
forecasts (Jain et al. 2001; Bougadis et al. 2005; Ghiassi et al. 2008; Adamowski and Karapataki
2010; Tiwari and Adamowski 2013; Adamowski et al. 2014; Tiwari and Adamowski 2014).

A literature review on water demand forecasting published from 200 to 2010 can be found in
the work of Donkor et al. (2014). Their analysis shows that the application of methods and models
differ and are dependent on the forecasting variable, periodicity and horizon. This fact is also

supported by an updated review work, as can be seen concisely in tables 1 to 4.

2 Coelho and Andrade-Campos, 2017



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

The use of bootstrap data re-sampling techniques and wavelet analysis for the series decom-
position applied to ANN models for water demand forecasting was introduced by Tiwari and
Adamowski (2013). The authors tested such techniques for daily and weekly water demand fore-
cast for the city of Montreal (Canada). Four distinct ANN methods were developed and com-
pared to ARIMA models: (i) a simple ANN, (ii) a bootstrap artificial neural network (BANN),
using bootstrap data samples from 100 ANN outputs, (iii) a wavelet ANN (WANN), using, as in-
put, 4 distinct components of the series (water demand, temperature and precipitation) and (iv) a
wavelet bootstrap ANN (WBANN), using 100 data samples of the wavelet series components (100
WANN). Results demonstrated that the WANN outperform the other methods in the daily forecast,
however, the WBANN provided better results in the weekly forecast scale.

Later, Tiwari and Adamowski (2014) and Adamowski et al. (2014) tested the previously men-
tioned bootstrap and wavelet-based ANN models for weekly water demand forecasting in the city
of Calgary (Canada) considering limited data availability (around 2 years and 9 months). Similar
to the previous case-study, the WBANN provided the best results, with the wavelet analysis im-
proving the model performance and the bootstrap technique increasing the reliability of forecasts
by producing ensemble forecasts.

Odan and Reis (2012) applied the same dynamic ANN proposed by Ghiassi et al. (2008) in
Araraqua city (Brazil) for the hourly water demand forecasting and compared their results with the
ones of a ANN (testing distinct numbers of hidden layers), a hybrid ANN and a hybrid dynamic
ANN, consisting in the additional use of Fourier Series as input of the networks. The best results
(both for 1h and 24h time horizon) were obtained with the dynamic ANN model using past demand
observations and Fourier Series as input (not requiring weather information).

Babel and Shinde (2011) evaluated the effect of weather variables as ANN inputs for daily
and monthly water demand forecast in the city of Bangkok (Thailand). In the daily forecasts, no
significant differences were found in the forecast accuracy including weather variables (rainfall,
average temperature and relative humidity) are taken into account. However, in the monthly fore-

casts, other variables, such as population, per capita Gross Provincial Product, education status and
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household connections, have significant influence.

To face the problem of water scarcity in the South Africa’s Gauteng Province, Msiza et al.
(2008) developed a work on the daily water demand forecast using ANN and Support Vector
Machines (SVM). These authors tested distinct training algorithms and distinct activation functions
for Multilayer Perceptron and Radial Basis Function ANNs (ANN-MLP and ANN-RBF) and, in
the case of the SVM, distinct kernel functions. The best results were obtained with an ANN-RBF
using a linear activation function and a scaled conjugate gradient algorithm for training the model.
This ANN-RBF model also outperformed the best SVM model.

Fuzzy and Neural-fuzzy forecasting techniques for daily water demand forecasting were pro-
posed by Tabesh and Dini (2009) and compared with ANN using a case-study in Tehran (Iran). In
order to face an expected water crisis and for the development of a water conservation programme,
a short-term forecast of water demand in this city is necessary. These later authors found that
fuzzy models, in general, do not produce good results for this case-study. However, the Neural-
fuzzy models reveal to be comparable to ANN models, with similar forecast accuracy. In the work
of Tabesh and Dini (2009), the use of random input variables was also tested, demonstrating, in
general, slightly improvements in the neural-fuzzy model’s performance. The best results were
obtained with the models considering only past water demand variables as input.

Candelieri and Archetti (2014) decided to use a support Vector model (SVM) for the hourly
water demand forecast in the city of Milano (Italy), one of the case-studies of the ICeWater project
(ICT Solutions for efficient Water Resources Management). The novelty introduced in this work
is the use of daily time clusters that characterise the water demand patterns and their training as
separate SVM models. For the tested case-study, six typical daily patterns (and thus, six clusters)
were identified. The MAPE obtained for each cluster range from 0.79% to 14.33%, with an average
of 5.29%.

Recently, Santos and Pereira Filho (2014) published a work on the hourly water demand fore-
cast in S3o Paulo Metropolitan area (Brazil). These authors decided to investigate the influence of

distinct input variables (demand, anthropic and weather) with several lag times (up to 24 hours)
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and distinct output lead times (forecast of 1, 6, 12, 18 and 24 hours) in ANN models. The fore-
casting performance is also compared with a MLR model, which demonstrated to be less accurate
than the best ANN. The drawbacks observed in this study are that no ANN model is tested using
only previous water demand (excluding anthropic and/or weather variables) and the definition of
the MLR model variables.

Romano and Kapelan (2014) evaluated hourly ANN forecasting models (1 to 24 hours hori-
zon) using data measured at distinct zones in the Yorkshire WSS (United Kingdom): at 3 distinct
District Metered Areas (DMA), each one supplying different population sizes, and at 1 reservoir
outlet. According to the provided results (see table 1), no significant differences are found in the
forecast accuracy for the distinct model scales tested. The authors tested the use of an Evolutionary
Algorithm to automatically find the best parameters and structure of the ANN (EA-ANN) instead
of using fixed user-defined structures. This approach provided significant improvements in the
model’s performance.

Another approach proposed by Romano and Kapelan (2014) for the 24h forecast horizon is
the use of multiple parallel ANN instead of a single ANN. Results showed slight improvements
using such approach for both the EA-ANN and the fixed-structure ANN, however with increased
computational effort.

For the optimal control and to detect pipe bursts in water distribution networks, Bakker (2014)
(following (Bakker et al. 2013)) proposed the use of 15-min time-steps to better describe the water
demand variations instead of the typical 1-hour time-steps. Since the models to detect pipe bursts
typically use small time-steps, Bakker (2014) decided to use such time scales for water demand
forecasting and pumps control. This approach was used to predict the future 48 hours of water
demand in six different cities in the Netherlands. In order to implement the forecasting model
in real WSS, this author developed a pattern-based model that only uses past water demand and
anthropic variables. To assess the developed forecast model, the authors computed the accuracy
measures considering 15 minutes and 24-hour forecast intervals (obtained from the the 15-min

steps averages). Although the RMSE and the MAPE presented significantly better values for the
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24-hour forecast, the 15-min forecast demonstrated a better fit, providing higher values for the
NSE. The case-studies of larger cities demonstrate to be easier to predict (Bakker et al. 2013;
Bakker 2014), showing again the dependence of the forecasting models on their scales.

The previously mentioned case-studies from the Netherlands were also used to analyse the
performance of the forecasting models using weather variables (particularly the average daily tem-
perature) as input (Bakker et al. 2014; Bakker 2014). Results obtained using the adaptive pattern-
based method were compared with a MLR model and a transfer-/noise method (combination of an
ARIMA model with a linear transfer model). Using the weather variables, the largest forecasting
errors were reduced by 9.4 % and the average by 6.3 % (Bakker et al. 2014; Bakker 2014) in
case-studies with low variability in weather conditions, which means that differences can be larger
for other case-studies presenting higher weather influences. Concerning the distinct applied meth-
ods, although the introduced tranfer-/noise model provided slightly better results than the adaptive
pattern-based model, it was mention that the later may be better accepted for real implementations
since it is easier to understand by the control operators.

In other recent works for the hourly water demand forecast, instead of applying innovative
machine learning techniques that demonstrated good performances in previous works, Wang et al.
(2014) and Kang et al. (2015) have decided to use combinations of classic ARIMA and Exponential
Smoothing methods in order to improve the model’s performance. Wang et al. (2014) proposed a
Double-Seasonal multiplicative Holt-Winters model combined with a Gaussian Process regression
with uncertainty propagation for multiple-step ahead forecasts. This approach was applied to the
WSS of Barcelona.

Kang et al. (2015) combined an ARIMA model with Exponential Smoothing to forecast the
hourly water demand in a WSS in the Gallella region (a rural area in Sri Lanka). While the
ARIMA method failed to predict the lower water demands, the combination with the Exponential
Smoothing method with the smoothing parameter « set to 0.9 allowed to overcome such drawback,
improving the forecast accuracy. Although no comparison was made, it is possible to compare this

case-study (with an average demand of 450 m>/day) with another rural area in Netherlands, the
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city of Hulsber (440 m?/day) presented by Bakker (2014). Comparing the values of the accuracy
measures (see table 1), it is observed that the models used by Bakker (2014) provided more accurate
results.

From the analysis of the previously mentioned works, it is possible to conclude that the data
analysis and pre-processing represents an important role in the forecasting process with influence
in the models accuracy.

Although distinct amounts of data have been used to develop forecasting models, the work of
Herrera et al. (2010) demonstrated that, for hourly forecasts, the use of large historical data for
training the models does not provide significant models improvements. The use of data of the most
recent weeks of available data should be enough to train hourly water demand forecasting models.
The only problem on following this approach is the possible occurrence of data failures due to
measurement and/or communication faults, which can significantly reduce the amount of existent
data for training the model. Thus, the use of a larger amount of data is recommended.

The development of a forecasting model involves several steps that go from the knowledge of
the problem to the implementation of the developed model. The main stages of the process can
be described as (Montgomery et al. 2008) (i) problem definition; (ii) data collection and selection;
(111) data analysis and pre-processing; (iv) model selection, fitting/training and validation and (v)
model forecasting and evaluation. For more details concerning these steps see, for instance, Coelho
(2016).

The aim of this work is to evaluate distinct forecasting models for several delivery points of
the presented case-study considering each particular input data (including historical demands, an-
thropic and weather variables). Hourly time-scales and forecasting horizons of 1 hour and 24 hours

are considered.

CASE STUDY
The aim of the forecasting studies presented in this work is to contribute for the improvement
of the operational control of a Portuguese water network. Fig. 1 provides a simplified scheme of

such network, including the data measurement points. Due to confidentiality reasons, the water
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utility and the details concerning the system analysed are not revealed.

Data, from August 2012 to July 2013, was taken from selected delivery points. V6 to V15 are
gravity points, V1, V3 and V17 are tanks inlet and V2, V4, V5 and V16 are tanks outlet. Data
from tank D is not available since it is managed by a distinct water utility. The collected data were
provided in the format of accumulated volumes of water measured in time intervals of 10 minutes.
The water consumers of this case-study belong to the class of domestic, agriculture and industrial
consumers.

Besides the historical data of delivered water, hourly meteorological data, such as temperature,
relative humidity and rainfall occurrence, was obtained from the nearest meteorological station in
the area (Freemeteo 2015) during the same period (Aug 2012 to Jul 2013).

Taking into account that none information from experts, such as explanations for failures or
unexpected occurrences, is available, all the analyses of water demands are based on interpretations

of the available historical data and meteorological effects.

DATA SELECTION

In this case study, enough historical data for both tanks A and B is available to predict future
supply needs (points V2, V4 and V5).

Considering that data from points V6 to V15 presented large inconsistencies and gaps, in this
work, it was decided to analyse and present the data from V2, V4, V5 and V16. V5 represents the

sum of the delivery points V6 to V15, V16 and the outlet water of tank D.

DATA ANALYSIS AND PRE-PROCESSING

Historical demands

After plotting the time series of the raw data as provided by the water utility it became clear
that several measurement failures occurred over the year, i.e. the measurements of accumulated
water volume were not always increasing over time as expected. Additionally, some data presented
observations set to zero, pointing out extreme outliers. This data may be related to interruptions in

data collection or communication and must be discarded.
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In order to clean the data, the detection and removal of outliers was made using the method
based on the interquartile range of each data set (see, for example, outliers detection in Natrella
(2010)), rejecting values inferior to the lower quartile (lower outlier boundary) and superior to the
upper quartile (upper outlier boundary).

Other types of data failures resulting from the counting re-initialisation of the measurement
device were also identified. Fig. 2 provides a representation of this type of occurrence. All data
sets presenting this type of occurrence were corrected by adding the value of the last measure
(device limit) to the initialised values.

An analysis of the amount of missing data was also performed. For all data sets, it was verified
that in the first two months of data (August and September of 2012), more than 40 % of data were
missing. For this reason, it was only considered the data from 21/09/2012 to 31/07/2013. All the
other missing data identified represented only 0.4, 0.5 and 0.8 % for V2, V4 and V16, and V5 data
sets, respectively.

After correcting the 10-minutes intervals measurement failures, the hourly values were com-
puted using linear interpolation.

In order to obtain the hourly water demands (WD, in m3/h), the differences between each
measured hour were computed, transforming the initial time series (V2, V4, V5 and V16) that
present a linear trend (water volume increasing linearly with time) into stationary series (WD?2,

WD4, WD5 and WD16).

Anthropic variables

After analysing the patterns of the time series, it was verified that different patterns were ob-
served for different months, as well as for different days of the week. Thus, an analysis to the
influence of anthropic variables was performed.

In a first step, the Pearson correlation coefficients between the water demand data sets and the
selected anthropic variables were computed. Results of such coefficients are provided in Table 5.
The Pearson correlation (a quantitative sensitivity parameter) is often used by researchers for the

choice of the variables to include in their forecasting models. However, such measure provides only
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information concerning the linear relationship between variables (Hamby 1994). This means that,
other type of relationship may be undetected with this approach. For this reason, it was decided to
analyse the scatter plots for all variables in order to reveal other possible relationships. According
to Fig. 3, the correlation between the water demands and the anthropic variables are not linear.
The variable Day of week (D) presents the weakest correlation with the water demand. However,
analysing, for instance, the correlation of this variable with WDS5, it is possible to observe that
higher water demands occur during the weekends. Analysing the variable Month (M), it is also
notorious the higher water demands for the summer months. However, it should be noticed that
data from August to mid-September is missing, which may hide additional information concerning
the summer months. By adjusting a polynomial trend line, the correlation coefficients between the
variable Hour and the water demand significantly increases compared to the linear correlation
coefficients. All the correlation coefficients obtained from these scatter plots are presented in Fig.
4 for a faster analysis. The anthropic variables with higher correlations, marked in the figure with

dashed lines, were selected for the forecasting models of this work.

Historical demands in neighbour sites

From the results presented in Table 5, it is also worth to mention the strong correlation between
the water demand series and the water demand in the neighbouring measurement points. WD2
has a strong correlation with both WD4 and WD16 and WD4 present a high correlation with
WD16. The scatter plot matrix provided in Fig. 5 clearly shows these linear relationships. Such
observations mean that the water demand pattern is similar for these demand points. Although this
fact is expected considering that the consumers are similar for these points, the inclusion of these
variables (past water demands observed in neighbouring areas) in the forecasting models can be
beneficial. Although the use of such variables was not found in the literature, in this work, these

variables are included in some forecasting models.

Weather variables
Although no outliers were identified in the weather data (temperature, relative humidity and

rainfall occurrence), a large amount of the available data was missing. In the period considered
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for the water demand data (09/2012 to 07/2013), around 30 % of data were missing. Considering
only the data from 12/2012 to 07/2013 (last 5761 observations) the amount of missing data is
around 10 % for the variables Temperature (T) and Relative Humidity (RH) and around 11 % for
the Rainfall Occurrence (RO) variable. For the T and RH data sets, the 10 % of missing data was
approximated using the Kriging interpolation method. Since the Rainfall Occurrence is a binary
variable, the nearest-neighbour interpolation method was used. Both interpolation methods were
implemented using the XonGrid interpolation Add-in for Excel (SourceForge 2015).

In order to access the influence of the weather variables in the water demand, the Pearson
correlation was analysed (see Fig. 6). Although the strongest correlations are from the temperature
and relative humidity, the strength of all relationships is moderate or weak.

From the trend lines of the scatter plots provided in Fig. 7, a symmetric relationship of both
Temperature and Relative Humidity with the water demands is observed. The highest demands

occur typically for higher temperatures and lower relative humidity.

Lagged demand time series

The analysis to the water demand time series lags allows to verify which demands in previous
hours present higher correlation with the current demands. Results of the correlation coefficients
between the current time data and the time data for lags 1 to 168 (previous one hour to one week)
are provided in Fig. 8, showing the more significant lags.

For all data sets, the hours that demonstrate higher correlation with the current hour are the
previous 1, 24 and 168 hours. However, while the highest correlation for the datasets WD2 and
WD4 was obtained for the 168-hours lag, for the data sets WDS5 and WD16, the 1-hour lag has a

higher correlation. Thus, the three lags were taken into account in the forecasting models.

FORECASTING MODELS

Naive models
Naive models are the simplest models for time series forecasting. In these models, the forecast

is given by the last observation (Naive model) or the last seasonal observation (Seasonal Naive

11 Coelho and Andrade-Campos, 2017



283 model) (Montgomery et al. 2008; Hyndman and Athanasopoulos 2013).

284 Exponential Smoothing models

285 Smoothing models use a function obtained from previous observations to predict future ones
286 (Montgomery et al. 2008). This technique of obtaining a smooth function (exponential smoother)
287 from the data can be attractive to deal with noisy data.

288 The Holt-Winters Seasonal models use three smoother functions that represents three com-
289 ponents of a time series: (i) the level component, L, (ii) the trend component, 7;°, and (iii) the
290 seasonal component, S;. The difference between the two proposed models is related with the na-
291 ture of the seasonal component. While the additive seasonal model is preferred when seasonal
202 variations are roughly constant through the series, the multiplicative seasonal model works bet-
293 ter when the seasonal variations change proportionally to the level of the series (Hyndman and

294 Athanasopoulos 2013).

295 The equation for modelling the series using the Holt-Winters Additive Seasonal model is:
296 w=L+T’+S +¢. (D)
297 The level, trend and seasonal smoothers can be respectively written as:

2 Ly = o (ye =L ) + (1 —0) (L, +T7y), 2
299

0 =0l —L )+(1-0a)T>, and 3)
301

%02 Si=a30n =L ) +(1-03)S; )

303 where m represents the period of seasonality and &, @5 and o5 are smoother parameters with
304 ranges between 0 and 1. The estimation of these parameters can be seen in the work of Hyndman

305 and Athanasopoulos (2013).
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The Holt-Winters Multiplicative Seasonal model is given as

v =(L+T7)S; + &. 5

In this case, the level, trend and seasonal smoothers are respectively written as (Hyndman and

Athanasopoulos 2013):

L=ai( g ) 0- e, 1), ©®)
t—m
TP = o5(L} L} ) +(1-05)T",  and @
S S yt S S
St =03 (LS_) +(1=03)S; ®)
t—1

Artificial Intelligence-based models

Traditional statistical methods can be limited with non-linear relationships and very noisy data.
For this reason, models based on artificial intelligence, capable of identifying complex and non-
linear phenomena/behaviours, have been largely applied.

Applied to time series forecasting, machine learning techniques operate by processing histori-
cal data and/or another type of input data and building a data-driven model capable of solve predic-
tion problems. Such data-driven models are trained on a set of input and target output describing
the phenomena in question (Solomatine and Siek 2006).

Artificial Neural Networks (ANN) are based on mathematical models inspired in the way
the human brain process information. An ANN-based forecasting model consists of two or more
layers: (i) an input layer, (ii) an output layer and, optionally, (iii) one or more intermediary layers
called hidden layers. Each layer consists of multiple nodes (also called neurons or elements) that
represent the variables of the model. In feed-forward neural networks, such as the one represented
in Fig.9, each node of the network receives information from the previous layer as a linear com-
bination of each node output, according to the connection weights u® and w°® (parameters to be

estimated) defined in each connection and then returns an output that is represented by a transfor-
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mation of such combined information through an activation function. This output is used for the
next layers (and the feed-forward process is repeated) or as the model output.
Each node output y; of a 2-layer ANN model (2 layers of connections) with nj, input nodes,

Nhidden hidden nodes and nq, output nodes can be represented as:
A Nhidden A Nin b b
o= Y wafs | Yowiz+ 6} |67, ©)
j=1 i=1

where i = 1,...,nj, j = 1,...,Mpidden and k = 1,...,noy. z; and y; represents, respectively, the it
model input and the k™ model output, 6° is a parameter that represents an intercept in linear
regression (the bias node) and flA and fé\ are activation functions. The activation functions are
usually sigmoidal (S shaped) or linear (Montgomery et al. 2008). Considering, f{A as a log-sigmoid

function, flA(z) = # and ff as a linear function, fZA (z) = z, then equation 9 would take the

following form:

Nhidden c 1 b
Je=), | uix — < | e (10)
j=1 1+exp Zizlwi7jx,~+9j

The use of non-linear activation functions (such as sigmoid or hyperbolic tangent functions) in
the hidden layers is commonly preferable since they tend to reduce the effect of extreme input val-
ues, thus making the network somewhat robust to outliers (Hyndman and Athanasopoulos 2013).
Recently, Radial Basis functions (RBF), where fA (z) = e’zz, have also been used.

In order to estimate the model parameters (weights and bias) that fit the data, a set of inputs and
target outputs are initially provided to the model (supervised learning). Thus, the training/learning
process (parameter estimation) begins typically by minimising the overall residual sum of squares
taking into account all responses (target outputs) and observations (inputs). This is a non-linear
Least Squares problem (Montgomery et al. 2008; Hyndman and Athanasopoulos 2013).

A popular learning method is the Back-Propagation, which looks for the minimum of the er-
ror function in weight space using gradient-based optimisation methods (Rojas 1996; Atiya 1991).

Although the steepest descent algorithm is typically associated with the Back-propagation method,
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other derivative-based optimisation algorithms, such as the Levenberg-Marquardt (LM) or the Con-
jugate Gradient (CG), can also be employed to find the minimum of the error function.

The initial values for the model parameters are commonly defined randomly and then are up-
dated/adjusted through the iterative learning process using the observed data. In ANNSs, each
iteration of weights update is called epoch. It is common to set a maximum number of epochs to
stop the training process in case of non-convergence.

For the choice of the most adequate network architecture (number of layers, number of nodes

and activation functions form), trial and error procedures or optimisation methods can be used.

Models performance evaluation

The performance of a forecasting model can be defined according to (i) how well the model
fits the sample data (in training/fitting process) or (ii) the capability of the forecasting technique to
predict future observations (Montgomery et al. 2008).

The performance measures mostly used for the models evaluation are the Nash-Sutcliffe Model
Efficiency (NSE), the Pearson Product Moment Correlation (PPMC), the Mean Absolute Error
(MAE) , the Root Mean Square Error (RMSE), the Maximum Absolute Error (MAE), the Root
Mean Square Error (RMSE), the MEAN Absolute Percentage Error (MAPE) and the Mean Square
Error (MSE). For more details, see the works of Bennett et al. (2013), Hyndman and Athana-
sopoulos (2013), Donkor et al. (2014) and Coelho (2016), where the performance measures are

discussed.

Developed forecasting models
Models selection
Seasonal Naive models, Additive Seasonal Holt-Winters and the Multiplicative Seasonal Holt-
Winters with a seasonality of one week (168 hours) were developed. Since the data sets demon-
strated high correlations with the 1-hour lagged series, simple Naive models were also developed.
ANN-based models with distinct additional input variables were developed in order to analyse
the influence of each input variable and obtain better forecasting models using the most influential

variables. Table 6 lists the ANN analysed models.
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All ANN-based models were developed using Matlab R2012a and the narnet and narxnet li-
braries (MathWorks 2015) for single and multiple predictors, respectively.

The first developed models (WD_hist) use the historical data as single input. The WD_1lag
models consider as additional input the lagged data that presented the highest correlation coef-
ficient (according to Fig. 8). The WD_3lags models consider the addition of the three lagged
data that presented the highest correlation coefficients (1, 24 and 168 hours for all data sets). The
WD_anthrop models include the selected anthropic variables for each data set (according to Fig.
4).

For all data sets (except WDS5), models considering the water demand series of the neighbour-
ing areas as additional input were also developed and analysed.

The weather variables that presented the higher correlation coefficients with each data set were
included in the WD_meteo models. However, since it was verified that the variable Rainfall Oc-
currence could present some influence in the water demand, a separate model (WD_rain) was also
developed in order to analyse the performance of including such variable.

WD_all and WD_selection are the forecasting models with all variables and the two more
influential input variables, respectively.

Normalised accuracy measures are used as results in order to compare between distinct data

sets.

Data sets division

For the development of the Naive and exponential smoothing forecasting models, each water
demand data set was divided into two subsets. The first 80 % of data (6036 observations) was used
for fitting the model while the 20 % remaining data (1500 observations) was left to validate the
developed model.

Concerning the ANN-based forecasting models, the same amount of data was left for the final
validation of each model. However, only the remaining data with associated weather data was used
to develop the neural network. Here, 70 % for training, 15 % for cross-validation and 15 % for

testing, corresponding to 2867, 613 and 613 data points, respectively, were used.
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Neural networks architecture

The most appropriate architecture for each ANN-based model was found through an automatic

methodology developed and implemented in Matlab. Considering a single hidden layer for all

cases, varying only the number of nodes, the developed methodology performs sequentially (i)

the networks architecture selection, (ii) the networks development and (iii) the forecast. The main

implemented steps of the proposed methodology are:

1.

Computation of the Water Demand series autocorrelation (ACF) and partial autocorrelation
(PACF) functions.

Definition of the number of input delays and feed-back delays: ID = max(ACF) and FD
= max(PACF).

. For 1 to 10 hidden nodes (HN), considering always the same random variables for the

weights initialisation:

(a) Generation of the nonlinear autoregression neural networks using HN hidden nodes,

ID input delays and FD feedback delays;

(b) Network training, cross-validation and testing with WD series feedback (open-loop

network);
(c) Open-loop network performance computation (MSE).

Selection of the number of hidden nodes according to the best open-loop network perfor-
mance obtained.
Close the network loop for forecasts without target feedback (only output feedback).

For 1 to 10 runs, considering distinct random variables initialisation:
(a) Predict missing values using the closed-loop trained network;

(b) Compute the forecast accuracy using the validation data;

7. Save the network with the best performance.

FORECASTING RESULTS

The forecasting accuracy was computed for (i) the first hour predicted, (ii) the first 24 hours
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predicted and (iii) all the validation data set period (last 1500 observations ~ 9 weeks) predicted.
Similarly with the procedure followed for the traditional forecasting methods, the validation accu-
racy measures for each ANN-based model were computed for (i) the first predicted hour, (ii) the
first 24 hours predicted and (ii1) the entire validation set dimension prediction.

Tables 7 to 10 provide the forecasting accuracy results for the traditional methods developed
for each demand data set. Observing table 7, it is possible to see that the Exponential Smoothing
methods better fit the data than both the Naive models for all data series. However, analysing the
validation forecast accuracy for the first 24 hours (table 9), the Exponential Smoothing methods
do not perform better. For the WD2 data set, the Seasonal Naive model revealed to be better than
any of the other traditional methods.

Results demonstrated that, for Exponential Smoothing methods, perfect fitting does not imply
a good forecast accuracy. At the same time, comparing tables 8 and 9, it can be concluded that the
method that best predicts the first hour, may not be the best method to predict the first 24 hours.

The Seasonal Naive model presented good performance when predicting 24-hours or even the
~ 9 weeks ahead.

Given the analysed results, both Seasonal Holt-Winters methods may not be the most appro-
priate to predict the water demands. This is probably because the serial dependence in the obser-
vations may not be appropriately captured by these approaches.

Table 11 provides the best ANN-based models results as well as the correspondent automati-
cally selected architecture for the water demand forecast. Such results are compared with the ones
obtained with the Seasonal Naive in Table 11 and in Fig. 10.

From Table 11, it can be observed that the input variables that provided the best forecast results
for the four tested data sets are distinct, although these data sets correspond to water demand
from regions close to each other. Therefore, the influence of each input variable in the models
performance is notorious.

Starting from the WD2 and WD4 time series, that presented the highest autocorrelation with the

168h-lagged series, both demonstrated better results when including such lagged series as model
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input. However, while the anthropic variables allowed to achieve one of the best results with ANN-
based models for the WD2 series, this does not occur in the case of the WD4 series. In turn, for this
last time series data set, the inclusion of historical water demands of neighbour sites (WD2(t) and
WD16(t)) significantly improved the forecasting models performance. As represented in Fig. 10,
while the model for predicting the WD4 series including the 168-hour lag (WD4_1lag) presented
predicted values quite below to the targets, the model considering the neighbourhood past demands
(WD4_neighb) was able to provide a better fitting.

Observing the best ANN-based models obtained for WD5 and WD16, in both cases the inclu-
sion of the 3 most correlated lagged series allows to improve the forecasting results (see Table 11).
However, the other variables that also improved the series prediction are not coincident. Models
to predict WDS5 perform better when including the variable Rainfall Occurrence, while models to
predict WD16 perform significantly better with the simultaneous use of the three more significant
lagged series (WD16(t-1), WD16(t-168) and WD16(t-1)) and the anthropic variable Hour (i.e. the
WD16_selection model). From Fig. 10 it is observed that the model WD5_1lag is capable of
detecting variations in demand while the model WD5_rain, despite resulting in slightly better ac-
curacies, presents predicted values almost constant during the day (similar to the average of the
observations). Concerning the charts of the WD16 time series results, the WD16_anthrop and the
WD16_selection models are clearly the ones that best fit the targets.

The ANN-based models did not provide significantly better performances than the seasonal
Naive for predicting the WD2 and WD5 series. However, for the WD4 and WD16 series, the
ANN-based models outperformed the traditional Naive.

It is important to mention that the use of all variables that apparently demonstrated to have
influence on the water demands (from the preliminary correlation and scatter plots analysis) as
model input, does not necessarily improve the forecasts performance. In fact, in almost all cases,
the use of all variables as input decreased the forecast model performance when compared with the
simple ANN-model that only uses the historical demands. This occurs possibly due to the increase

of the neural networks complexity.
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CONCLUSIONS

From the extensive literature review performed on the water demand forecasting topic, it is
possible to conclude that the data analysis and pre-processing represents a very important role in
the forecasting process with influence in the models’ accuracy. This part of the process represents
also the most time-consuming since a large amount of data is usually needed. At the same time, the
collected data from the networks often presents a large number of occurrences and missing data
that, if not treated properly, can significantly influence the real data trends, reducing the accuracy
of the models and, consequently, influencing the efficiency of the networks operational control.

The traditional forecasting models (Naive and Exponential Smoothing) demonstrated variable
performances for different data sets when predicting only one hour ahead. However, in the predic-
tion of 24 hours ahead, the seasonal Naive forecasting models were more adequate. Even using a
smaller data set, the models based on artificial neural networks can improve such results if exter-
nal input variables are introduced in the models. However, the influence of each additional input
variable (both anthropic and meteorological) is dissimilar for each data set. Therefore, the wrong
choice of the input variables may lead to a decrease in the forecasting model accuracy. It should
then be concluded that a preliminary analysis to the input variables and their selection is of the

most importance in the development of a forecasting model.
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so  APPENDIX Il. NOTATION

601 The following symbols are used in this paper:
AME = Absolute Maximum Error
fA = Activation function
y = Arithmetic mean of observed variables
ANN = Artificial Neural Networks
ACF = Autocorrelation Function
ARIMA = Autoregressive Integrated Moving Average
ARMA = Autoregressive Moving Average
AR = Autoregressive
6° = Biasnode
BANN = Bootstrap Artificial Neural Network
R? = Coefficient of Determination
602 CGPB = Conjugate Gradient Powell Beale
CG = Conjugate Gradient
u®, w¢ = connection weights
D = Day of week
DMA = District Metered Areas
€ = Error/residual
EA-ANN = Evolutionary Algorithms Artificial Neural Network
FD = Feed-back Delay
y = Forecasted variable
HN = Hidden Neurons - vector of the number of neurons in the hidden layer(s)
H = Hour
ID = Input Delay of the external time series

25 Coelho and Andrade-Campos, 2017



Is
5
LM
MAE
MAPE
MARE
MASE
M
ANN-MLP
MLR
603
MNLR
MARS
NSE
L
Mhidden
Rin
O
0

Nout

PACF
PPMC

Input variable

Lag (h-step ahead)

Level component/smoother

Level component/smoother
Levenberg-Marquardt

Mean Absolute Error

Mean Absolute Percent Error

Mean Absolute Relative Error

Mean Absolute Scaled Error

Month

Multilayer Perceptron Artificial Neural Network
Multiple Linear Regression

Multiple Non-Linear Regression
Multivariate Adaptive Regression Splines
Nash-Sutcliff Efficiency (or Coefficient of Determination)
Non-linear function

Number of hidden nodes

Number of input nodes

Number of observations used for training
Number of observations

Number of output nodes

Observed variable

Partial Autocorrelation Function

Pearson Product Moment Correlation
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m
PPR
ANN-RBF
RO

RH

RMSE

SEE

604

SVM

TS
WD
WSS
WANN
WBANN

Period of seasonality (season)
Projection Pursuit Regression
Radial Basis Function Artificial Neural Network
Rainfall Occurrence

Relative Humidity

Root Mean Square Error
Smoother parameter

Sum of Square Errors

Support Vector Machines
Temperature

Time instant

Trend component/smoother

Water Demand

Water Supply System

Wavelet Artificial Neural Network

Wavelet Bootstrap Artificial Neural Network
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TABLE 4. Comparison of the influence of several variables as input for distinct
short-term water demand forecasting models.

Authors, year Time scale Model scale Tested input variables Best forecasting model / other observations
ANN(THL) / ANN(ZHL): WD(t-1), maxT(t ), RO(t)
Jain et al., I AR: WD(t-2, t-1)
2001 Weekly Indian institute WD(t-2,t-1), maxT(t-1,t), R(t-1, t), RO(t-1,t) MLR: WD(t1), maxT(©), RO(t)
MNLR: WD(t-1), maxT(t-1, t), R(t-1, )
A - T ANN(THL): WD(t-1), maxT(0), R(0)
aBl"“z‘b’Sg;S et Peak weekly  City of Otawa, Canada \R"'(E?’?) “l’{g’(t'f‘ld’g(l’l' 9, WD(t:3 to t), maxT(t-1, ), ARIMA(2,1,0): WD(t-3 to t-1)
” o ’ MLR: WD(t-1), maxT(t-1,0), R(t-1,)
Adamowski, - ; P ) T 7 . ANN(THL) / MLR: WD(t-1), maxT(t-1,0), RO(t-3)
2008 Peak daily City of Otawa, Canada WD(t-3 to t), maxT(t-1, t), R(t-5 to t), RO(t-5 to t) ARIMA(2,1,0): WD(t-3 to t-1)
Msiza et al,  Daily Gauteng province, WD(t-5 to t), annual Pop. ANN: WD(t-3 to 1) and annual Pop.
2008 South Africa
Tabesh & Dini, Daily Tehran, Iran WD(t-7 to 1), previous week and previous year total WD, ANN/Neuro-fuzzy: WD(t-7 to t), previous week and previous year total WD

2009

avgT, RH

Adamowski &
Karapataki,
2010

Peak weekly

Athalassa, Nicosia

Public Garden, Nicosia

WD, maxT, R, RO

MLR: WD(t-1), maxT(t-2 to t)

ANN-LM(IHL, 15HN): WD(t-1), maxT(t-1, t), R(t-1, t), RO(t-1, t)
MLR: WD(t-1), maxT(t-1, t), R(t-1, t), RO(t-1, t)

ANN-LM(IHL, 15HN): WD(t-1), maxT(t-2 to t)

Herrera et al., Hourly Spain WSS WD(t-168+1, t-1, t), R, T, windS, Press -
2010
Babel &  Daily Bangkok, Thailand X?T(‘(‘g’ 00, R(0), Evap(D), RH(1), maxT(), minT(1), WD(0), R(t), aveT(t), RH(0)
Shinde, 2011
ANN(MLP)-BP (8HN): WD(t-168, t-3 to 1), RH(t)
Odan & Reis, WSS subsector, Sao dynamic ANN (15HN): WD(t-168, t-2 to t)
2012 Hourly Paulo, Brazil WD(-168, t-24, -3 to 0), T(), RH(t) and FS hibrid ANN (8HN): WD(t-168, t-3 to t), ES(t-168, t-3 to t), RH(t)
hybrid dynamic ANN (15HN): WD(t-168, t-2 to t), FS(t-168, t-2 to t)
MLR: WD(t-1, t) & maxT(t-1, t)
Adamowski et . City of Montreal, MNLR: WD(t-3 to t) & maxT(t-3 to t)
al,, 2012 Daily Canada maxT, totP & WD (t-3 to t) ANN: WD(t-2 to ) & maxT(t-1, 1)
WANN: WD(t-3 to t) & maxT(t-1, t)
Tiwari & Daily City of Montreal, WD(t-6 to t), maxT(t-6 to t), totP(t-6 to t) + 4 wavelet WANN: all 4 wavelet components of WD(t)
Adamowski, Weekly Canada components of each WBANN: all 4 wavelet components of WD(t), 2 wavelet components of maxT(t-3
2013 to t-1) and of totP(t-3 to t-1)
. Calgary city, WD(t-3 to t), maxT(t-3 to t), totP(t-3 to t) + 4 wavelet WBANN:all 4 wavelet components of WD(t), 2 wavelet components of maxT(t-3
Adamowski et Weekly N N .
al,, 2014 Canada components for each series to t-1) and 1 wavelet component of totP(t-3 to t-1)
Santos & 39 cities in Sdo Paulo, demand(t-1,t-6,t-12, t-18,t-24):WD / anthropic Output: WD(t+12) / Input: anthropic(t+12), weather(t,t-12), WD(t,t-12) [best
Filho, 2014 Hourly Brazil (t,t+6,t+12,t+18,t+24):Hour, Day, Seas, typeDay / model]

weather(t,t-1,t-6,t-12,t-18,t-24): T, RH, R, P, windDir, windS Output: WD(t) / Input: anthropic(t), weather(t, t-1), WD(t-1) [worst than MLR]

‘WD - Water Demand; maxT - maximum Temperature; R - Rainfall amount; RO - Rainfall occurrence (binary); Pop - Population; windS - Wind Speed; Evap - Evaporation;
minT - minimum Temperature; totP - total precipitation (not only rain); P - Pressure; Vc - climatic variables; HL - hidden layers; HN - hidden neurons; FS - Fourier Series;
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TABLE 5. Pearson correlation coefficients between the distinct water demand sets
(WD) and the considered anthropic variables Day of the week (D), Month (M) and

Hour of the day (H).
D M H WD2 WD4 WD5 WDI6
D 1.000
M 0.005 1.000
H 0.000 0.000 1.000
WD2  0.000 0.120 0.605 1.000
WD4  0.047 0.116 0.650 0.915 1.000
WD5  0.094 -0.057 0.130 0.107 0.120 1.000
WDI16 0.075 -0.008 0.650 0.836 0.894 0.069 1.000
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TABLE 6. Input variables for each ANN-based model developed.

Data ANN Input Data ANN Input
set model variables set model variables
WD2_hist WD2(t) WD16_hist WD16(t)
WD2_1lag WD2(t, t-168) WDI16_1lag WDI16(t, t-1)
WD2_3lags WD2(t, t-1, t-24, t-168) WD16_3lags WDI16(t, t-1, t-24, t-168)
WD2 WD2_anthrop  WD2(t), Hour, Month WDI16 WDI16_anthrop  WD16(t), Hour
WD2_neighb WD2(t), WD4(t), WD16(t) WD16_neighb WD16(t), WD2(t), WD4(t)
WD2_meteo WD2(t), T(t), RH(t) WD16_meteo WD16(t), T(t), RH(t)
WD?2_rain WD2(t), RO(t) WD16_rain WD16(t), RO(t)
WD2_selection selected variables WD16_selection selected variables
WD2_all all variables WD16_all all variables
WD4_hist WD4(t) WDS5_hist WD5(t)
WD4_1lag WD4(t, t-168) WD5_llag WD5(t, t-1)
WD4_3lags WDA4(t, t-1, t-24, t-168) WD5_3lags WD5(t, t-1, t-24, t-168)
WD4 WD4_anthrop WD4(t), Hour, Month WD5 WDS5_anthrop WD5(t), Hour, Month
WD4_neighb WD4(t), WD2(t), WD16(t) WD5_meteo WD5(t), T(t)
WD4_meteo WD4(t), T(t), RH(t) WD5_rain WD5(t), RO(t)
WD4_rain WD4(t), RO(t) WD5_selection  selected variables
WD4_selection selected variables WD5_all all variables
WD4_all all variables
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TABLE 7. Forecasting accuracy obtained for each data set with the Naive, Seasonal
Naive, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models. Fitting stage.

Data Forecasting R> NSE MAE RMSE MAPE maxAE
set method -) (-) (m*h) (mh) (%) (m3/h)
WD2  Naive 0.73 0.71 1.90 2.74 1.67E+12  21.61
Seas. Naive 0.79 0.78 1.54 2.38 8.85E+12  20.35
AddH-W 0.0l 1.00 0.01 0.01 1.67E+10 0.01
Mult HHW  0.01 1.00 0.01 0.01 9.43E+09 0.01
WD4  Naive 0.78 0.77 5.54 746 1.19E+12  61.08
Seas. Naive 0.88 0.87 3.57 555 331E+12  42.83
AddH-W 0.0l 1.00 0.00 0.01 2.19E+09 0.03
Mult HHW  0.01 1.00 0.01 0.02 7.49E+09 0.09
WD5  Naive 0.33 0.15 10629 139.87 5.61E+10 934.13
Seas. Naive 0.26 0.03 113.45 149.97 4.07E+12 709.43
AddH-W 0.0l 1.00 0.09 0.09 5.10E+08 0.16
Mult H-W  0.01 1.00 0.09 0.09 4.99E+08 0.19
WD16 Naive 0.71 0.68 0.69 098 6.21E+10  11.50
Seas. Naive 0.74 0.72 0.57 0.93 3.40E+11 12.05
AddH-W  0.00 1.00 0.00 0.00 1.25E+08 0.00
Mult HHW  0.00 1.00 0.00 0.00 4.71E+07 0.00
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TABLE 8. Forecasting accuracy obtained for each data set with the Naive, Seasonal
Naive, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models. First hour validation.

Data Forecasting R?> NSE MAE RMSE MAPE maxAE

set method -) (-) (m?h) (m/h) (%) (m3/h)
WD2  Naive _ _ 4.8 4.18  35.86 4.18
Seas. Naive  _ _ 1.86 1.86 15.95 1.86
Add H-W _ _ 5.09 509 43.64 5.09
Mult H-W _ _ 523 523  44.85 5.23
WD4  Naive _ _ 399 3.99 9.21 3.99
Seas. Naive _ _ 12.07 12.07 27.84 12.07
Add H-W _ _ 086 086 1.98 0.86
Mult H-W _ _ 1.09 1.09 2.51 1.09
WD5  Naive _ _ 9715 9715 4373 9715
Seas. Naive  _ 11192 11192 5038 111.92
Add H-W _ _ 16936 16936 7623  169.36
Mult H-W _ _ 21890 21890 98.53 218.90
WDI16 Naive _ _ 045 045 18.84 0.45
Seas. Naive  _ _ 265 2.65 110.23 2.65
Add H-W _ _ 035 0.35 14.62 0.35
Mult H-W _ 0.35 0.35 14.63 0.35
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TABLE 9. Forecasting accuracy obtained for each data set with the Naive, Seasonal
Naive, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models. First 24 hours validation.

Data Forecasting R? NSE MAE RMSE MAPE maxAE
set method ) () (m*h) (m*h) (%)  (m*/h)
WD2  Naive 0.00 -1.07 5.02 6.66 94.01 12.41
Seas. Naive 0.86 0.81 1.33 2.01 1035 5.12
Add H-W 0.33 0.34 5.15 545 6452 9.57
Mult H-W  0.26 0.31 5.19 5.58  60.22 9.27
WD4  Naive 0.00 -0.07 13.11 16.14 7395 30.36
Seas. Naive 0.80 0.70 6.08 8.62  16.49 27.15
Add H-W 0.00 -0.41 6.46 798 22.10 20.56
Mult HHW  0.01 -0.34 6.50 7.76  24.69 19.75
WD5  Naive 0.01 -0.89 11035 12940 28.80 292.61
Seas. Naive 0.33 -0.32  96.86 108.10 2647 201.05

Add H-W 0.54 -119596 20695 232.19 60.18 361.13
Mult HHW  0.62 -411931 39520 430.80 108.25 643.13

WDI16 Naive 0.00 -0.04 1.40 1.68 418.31 2.75
Seas. Naive 0.79 0.70 0.59 090 37.88 2.65
Add H-W 0.03 0.98 0.82 1.03  48.73 2.38
Mult H-W  0.03 0.98 0.82 1.03  48.49 2.38
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TABLE 10. Forecasting accuracy obtained for each data set with the Naive, Sea-
sonal Naive, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-
Winters models. All data validation.

Data Forecasting R> NSE MAE RMSE MAPE maxAE
set method ®) () (m3h) (m*h) (%)  (m/h)
WD2  Naive 0.09 -0.10 5.03 6.41 69.09 17.85
Seas. Naive 0.73 0.73 2.21 3.16 16.25 17.67
Add H-W 0.00 1.00 3.36 423 3199 18.46
Mult H-W  0.00 1.00 3.40 429  31.83 18.43
WD4  Naive 0.10 0.07 16.75 2024 5441 58.35
Seas. Naive 0.68 0.68 9.33 11.92  21.52 41.54
Add H-W 0.03 1.00 940 12.78 21.18 46.89
Mult H-W  0.00 1.00 8.66 11.87 20.23 44.89
WD5  Naive 0.31 -1.08 224.65 256.55 41.02 630.02
Seas. Naive 026 0.21 124.55 157.84 26.03 517.76
Add H-W 039 0.80 159.38 194.80 38.82 598.67
Mult H-W 048 0.24 324.53 37691 72.09  996.23
WD16 Naive 0.02 0.02 1.66 2.07 361.07 11.56
Seas. Naive 0.55 0.46 0.86 1.53 35.18 13.66
Add H-W 0.04 1.00 1.05 1.51 47.07 12.71
Mult H-W  0.00 1.00 1.04 147 51.30 12.39
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tained in each data.

TABLE 11. Forecasting accuracy measures for the best ANN-based models ob-
Results of the 24 hours forecasting.

Best Network R?> NSE MAE RMSE MAPE maxAE
models architecture -) (-) (m?h) (m3/h) (%) (m3/h)
WD2_1lag narxnet(1:168,1:1,6) 0.77  0.77 1.72 2.16 16.16 4.67
WD2_anthrop narxnet(1:168,1:1,3) 0.74 0.73 1.59 2.33 12.96 6.24
WD?2 Seas. Naive  _ 0.86 0.81 1.33 2.01 10.35 5.12
WD4_llag narxnet(1:168,1:1,8) 0.88  0.87 3.91 549  11.33 12.96
WD4_neighb narxnet(1:168,1:1,2) 0.94 0.93 3.09 3.88 10.81 8.84
WD4 Seas. Naive — _ 0.80 0.70 6.08 8.62 16.49 27.15
WD5_3lags narxnet(1:1,1:1,8) 0.25 001 79.79 9558 2547 209.81
WD5_rain narxnet(1:1,1:1,7) 0.08 0.00 68.78 9596 2336 282.76
WD5 Seas. Naive — _ 0.33 -032 96.86 108.10 26.47 201.05
WDI16_3lags narxnet(1:1,1:1,6) 0.40 0.39 1.00 1.23  275.25 2.70
WD16_anthrop narxnet(1:1,1:1,5) 0.87 0.87 0.45 0.57 38.81 1.11
WD16_selection narxnet(1:1,1:1,10)  0.92 091 0.38 047 24.12 0.87
WD16 Seas. Naive _ 0.79 0.70 0.59 0.90 37.88 2.65
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FIG. 1. Simplified representation of the Portuguese water network showing the
available measurement points.

42 Coelho and Andrade-Campos, 2017



count re-initialisation

p _ ——

Time

Water volume

FIG. 2. Representation of an occurrence in collected data. After reaching the limit
of the measurement device, the counting starts again from zero.
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FIG. 3. Scatter plots showing the relationship between the water demand time se-
ries (in m3/h) and the anthropic variables Hour (H), Day of the week (D) and Month
(M). Adjusted 6!"-order polynomial trend lines and the squared correlation coeffi-
cients are also represented.
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FIG. 4. Correlation coefficients (from a polynomial trend) between the water de-
mand in each data set and the anthropic variables. The variables signed with the
dashed lines were selected for the forecasting models.
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FIG. 5. Scatter plot matrix showing the relationships between the water demand
data sets and their neighbour delivery points.
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FIG. 6. Pearson correlation coefficients between the water demand in each data set
and the weather variables.
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FIG. 7. Scatter plots showing the relationship between the water demand (in m3/h)
and the weather variables. Adjusted 6!"-order polynomial trend lines and the corre-
sponding squared correlation coefficients.

48 Coelho and Andrade-Campos, 2017



N
N

3
V
N

2T E
/ \(0:
:'\@% /
\ 4

1

<

-

0 !
|

L1 RN L | (G 1 1S /L1 L 1| LI | L
= WD2 ACF |
1
D f”@;‘
N v SN
N N [
1 Ld .

~
3
hl. .I”Hh. .|||H|I. .Imhl. .||m||. .I”“h. .IH

O e e e e
= WD4 ACF |
-1
-~ %
/' -\ L\ (\P‘ \b
=2 N N
1 \._‘J
0 ‘llllll”l. I||I||II|”||I|II|III. .||I||||||||||||II|II| , I||IIIIII|||I|||II||| . I|I|II|||||||||I||I|| i |||III||||||||IIIII|I i |I||||.||||||||IIIII| , |I||||n||
| = WD5ACF |
-1
e e @3
N v N
(¥ ,'| ol o
1=

s
-

O 1 e

| ®WDI6 ACF |

FIG. 8. Autocorrelation Functions (ACF) for the distinct water demand time series
considered in this work. The black dashed lines mark the lag that presents the
highest correlation in each case.
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FIG. 9. Scheme representing an example of a 2-layer feed-forward artificial neural
network for time series forecasting. The input layer may contain the lags of the
variable to predict (y;,y;_1,...) as well as other predictors (z,z;_1,...) and the output
can have a single or multiple neurons according to the defined time horizon (1 to &
steps ahead).
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FIG. 10. 24 hours predictions of the water demand models that provided the best
results for each distinct dataset compared with the expected values (target).
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