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Abstract: The development of full-field measurement methods has enabled a new trend of heterogeneous
mechanical tests. The inhomogeneous strain fields retrieved from these tests are being widely used
in the calibration of constitutive models for sheet metals. However, today, there is no mechanical test
able to characterize the material in a large range of strain states. The aim of this work is to present
a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich
heterogeneous strain paths and thus providing extensive information on material behavior. The proposed
specimen is found using a shape optimization process where an index that evaluates the richness of strain
information is used. In this work, the methodology and results are extended to non-specimen geometry
dependence and to the non-dependence of the geometry parametrization through the use of the Ritz
method for boundary value problems. Different curve models, such as splines, B-splines, and NURBS,
are used, and C1 continuity throughout the specimen is guaranteed. Moreover, several deterministic and
stochastic optimization methods are used in order to find the method or the combination of methods
able to minimize the cost function effectively. Results demonstrated that the solution is dependent on the
geometry definition, as well as on the optimization methodology. Nevertheless, the obtained solutions
provided a wider spectrum of strain states than standard tests.

Keywords: mechanical test; specimen design; optimization; strain heterogeneity; full-field measurements;
sheet metal

1. Introduction

Industry is increasingly demanding and becoming more competitive. Due to efficiency and cost
reduction requirements, numerical simulation has been applied to sheet metal-forming processes since
the 1960s [1]. Currently, numerical simulations can accurately replicate the forming process due to the
ability to process complex iterative calculus using material properties, surface properties, and process
conditions [2]. However, to this end, the finite element models must have accurate constitutive models
and well-defined material parameters. Due to the rolling process, sheet metals exhibit orthotropic
behavior. This anisotropy influences the sheet metal-forming operations’ results, implying the use of
complex constitutive mathematical models capable of describing the material behavior [3,4].

Constitutive models consist of functions that accurately describe the material behavior.
The complexity of these models determines the number of material parameters to identify. Usually,
Finite Element Modeling Update (FEMU) or equilibrium techniques are used to determine the models’
input data. FEMU consists of an iterative inverse technique that begins with a known solution and
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identifies the constitutive parameters minimizing the difference between known and predicted forces
and/or displacement fields [5]. However, methods based on equilibrium satisfaction, such as the
Virtual Field Method (VFM) or the Equilibrium Gap Method (EGM), search for the parameters that
satisfy equilibrium equations (in the local or weak form) using a known (experimental) kinematic field
(displacement or strain).

Regardless of the method, the parameter identification depends on the amount and quality
of experimental data. There are two approaches related to experimental data: homogeneous and
non-homogeneous tests [4]. The first approach uses classical tests, i.e., tensile test, shear test, etc.
Each test usually produces homogeneous strain fields that allow identifying a limited number of
parameters, requiring a large number of tests to identify the constitutive parameters properly [6].
The second approach is related to Full-Field Measurement (FFM) strategies. Due to the development
of FFM methods and Digital Image Correlation (DIC), it is possible to obtain the strain or displacement
field data on the surface of the specimen. Theoretically, with this extensive amount of information,
it should be possible to identify a large set of parameters using only one test. This leads to a reduction
of the experimental test set used to build the experimental database [7,8]. As a result of these innovative
techniques, this field of research has been growing. Some proposals for non-standard uniaxial
tests [9] and also for non-standard biaxial tensile specimens [10] have already been published. In the
published works, the specimens used can have different cross-sections and geometries (holes, cuts,
etc.), promoting heterogeneous displacement fields through the specimen. Moreover, some original
tests introduced new designs, such as the geometry presented by Pottier [11]. A review of the
mechanical tests commonly used for parameter identification can be seen in [12,13]. However, none of
the presented tests can promote a very wide spectrum of strain states with a large magnitude of
plastic strain.

The main goal of this work is to design a tool-specimen capable of maximizing the number of
heterogeneous strain states, as well as plastic strain range. To this end, a numerical iterative process
that optimizes the test geometry is used. In each iteration, an indicator capable of quantifying and
rating the mechanical information provided by the test is used. Although this approach is completely
numerical, recent works [14] experimentally validated this design by an optimization methodology.
The approach used is similar to the ones used in recent works [4,7,15]. However, previous works
have only considered a constant number of design variables without analyzing the influence of the
number of variables in the solution. Additionally, it is known [15,16] that the curve model that
defines the geometry, such as splines, B-splines, or NURBS, influences the shape optimization process.
Moreover, design processes are initial solution dependent when using gradient-based or the direct
search optimization algorithm, such as the ones used in the mentioned previous works.

This work focuses on analyzing and solving some of the mentioned limitations of the previous
works. Therefore, in this work, a Ritz-type design methodology is used to minimize the dependence of
the geometry definition model, as well as the number of design control points. Additionally, several
optimization algorithms are used, including a global search and a metaheuristic algorithm, to avoid
initial solution dependence and analyze the performance of the design-by-optimization process.

2. Methodology

2.1. Constitutive Model

An appropriate constitutive model is a prerequisite for accurate simulations and design. In this
work, a phenomenological model composed by the non-quadratic Yld2004-18p yield criterion
combined with a mixed isotropic-kinematic hardening law is used. Additionally, the rupture behavior
of DC04 is characterized by the calibration of the macroscopic Cockcroft and Latham (CL) rupture
criterion [15]. Table 1 sums up the constitutive equations that describe the material behavior. A detailed
description of the model and a parameter identification procedure for a DC04 mild steel can be found
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in previous works [4,17]. The values of isotropic and kinematic hardening coefficients used in this
work, as well as the Yld2004-18p yield anisotropy coefficients are listed in Table 2.

Table 1. Constitutive equations that describe the mechanical behavior of the material. Data from [4].

Isotropic hardening:
σY(ε̄

P) = σ0 + (σ∞ − σ0)[1− exp(−δε̄P)] + βε̄P

Kinematic hardening:
α̇ = ∑3

i=1 α̇ = ∑3
i=1

(
Ci
η̄ η− γi.αi

)
˙̄εp

Yld2004-18p yield criterion:

η̄(η)a = ∑3
i=1, j=1

∣∣∣S̃1
i − S̃2

j

∣∣∣a = 4σa
Y

S̃(k)
= L̃(k) : S, k = 1, 2

L̃(k)
=



0 −c(k)12 −c(k)13 0 0 0
−c(k)21 0 −c(k)23 0 0 0
−c(k)31 −c(k)32 0 0 0 0

0 0 0 −c(k)44 0 0
0 0 0 0 −c(k)55 0
0 0 0 0 0 −c(k)66


Rupture criterion:

W =
∫ ε̄f

P
0

σI
η̄ dε̄P ≤Wf

CL

Table 2. Constitutive model parameters used in this work. Data from [17].

Parameter Value Units Parameter Value Units

c(1)12 1.264 - c(1)13 0.974 -
c(1)21 1.242 - c(1)23 1.049 -
c(1)31 0.578 - c(1)32 0.708 -

c(1)44 = c(1)55 1.000 - c(1)66 1.365 -
c(2)12 0.793 - c(2)13 0.672 -
c(2)21 0.838 - c(2)23 0.929 -
c(2)31 0.996 - c(2)32 0.768 -

c(1)44 = c(1)55 1.000 - c(2)66 0.678 -

σ0 100.030 MPa σ∞ 210.268 MPa
δ 5.917 β 102.729 MPa

C1 1018.425 MPa γ1 22.85 -
C2 27,439.960 MPa γ2 258.38 -
C3 145.246 MPa γ3 0.0258 -

2.2. Indicator and Cost Function

To design a heterogeneous test, it is necessary to find a way to quantify the richness of information
obtained by the test. In this work, an indicator IT [12] capable of quantifying the strain state range
and deformation heterogeneity is used. This indicator also quantifies the strain level achieved in the
test from the entire specimen surface, using a continuous evaluation of the strain field up to rupture.
The indicator is defined by the terms listed in Table 3 and can be described as,

IT = Wr1
Mean[Std(ε2/ε1)]

Wa1
+ Wr2

(ε2/ε1)R
Wa2

+ Wr3
Mean[Std(ε̄P)]

Wa3
+ Wr4

ε̄P
Max

Wa4
+ Wr5

Avε̄P

Wa5
, (1)

where Wri and Wai are the relative and absolute weighting factors whose values are exposed in Table 4.
These values equally balance the impact of each term in the indicator IT [12]. ε2/ε1 is the ratio between
the minor and major principal strains. ε̄P represents the equivalent plastic strain of the specimen.
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Table 3. Terms that define the indicator IT. Data from [12].

Strain state range and heterogeneity:

Diversity of the mechanical information,

Std
(

ε2
ε1

)
=

√
∑n

i [(ε2/ε1)i − µε2/ε1
]2

n− 1
Strain state range covered by the mechanical test,(

ε2
ε1

)
R
=

(
ε2
ε1

)
max
−
(

ε2
ε1

)
min

Deformation heterogeneity of the specimen,

Std(ε̄P) =

√
∑n

i (ε
P
i − µεP )2

n− 1

Strain Level:

Maximum strain achieved,

ε̄P
Max =

ε̄P
test + ε̄P

tens + ε̄P
shear + ε̄P

biaxial + ε̄P
comp + ε̄P

plane

6
Average deformation over the specimen,

Avε̄P =
∑n

i ε̄P
i υi

υT

Table 4. Absolute and relative weights of the design indicator.

Wa1 Wa2 Wa3 Wa4 Wa5 Wr1 Wr2 Wr3 Wr4 Wr5

1 4 0.25 0.8 0.4 0.13 0.02 0.25 0.35 0.25

The value of the indicator depends on the strain state range. Therefore, and due to the anisotropic
behavior of the materials, the different strain states considered were calibrated for the DC04 using
classical tests [4]. Table 5 depicts the values used to define each strain state. These value ranges
are used to calculate the maximum strain achieved in each state. Due to the anisotropy of the
material, the uniaxial tension and uniaxial compression states are obtained for ε2/ε1 = −0.627 and
ε2/ε1 = −1.595, respectively. However, the ratio of principal strains in the simple shear state is always
equal to −1, as verified experimentally and analytically in [18]. It should be highlighted that the aim
of this work is to design a specimen that maximizes the value of IT.

Table 5. ε2/ε1 range characterizing the different strain states.

Strain State ε2/ε1 Range

Uniaxial tension −0.627± 0.03
Simple shear −1± 0.03

Plain strain tension 0± 0.03
Equibiaxial tension 1 (0.94–1)

Uniaxial compression −1.595± 0.03

3. Optimization Features and Geometry Definition

3.1. Geometry Definition Using a Curve Model

Different curve models are used to describe, parameterize, and control the specimen geometry
during the iterative process:

1. Cubic splines: Define a curve as a set of connected piecewise simple polynomial functions.
The control points are interpolated, and no local control is considered in the geometry, only global.
Therefore, abrupt variations can be observed on consecutive control points’ positions during the
optimization, leading to unrealistic specimen shapes and to premature strain localization and
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rupture [4]. In order to avoid this drawback, a penalty function Res to constrain these variations
was created. This penalty function is defined by:

Res =
6

∑
i=1

α([max(gU,i(r), 0)]2 + [max(gL,i(r), 0)]2), (2)

with:
gU,i(r) = Xi+1 − (1 + av)Xi (3)

and:
gL,i(r) = (1− av)Xi − Xi+1, (4)

where α = 1/(Ubound − Lbound)
2, the parameter av defines the admissible variation, and Xi

represents the control point.
2. B-splines can be set as a single piecewise curve defined as a linear combination of control points

Xi and a B-spline basis function Ni,k(t). The B-spline can be described as:

P(t)B-spline =
n

∑
i=0

Xi Ni,k(t), n ≤ k− 1, t ∈ [tk−1, tk+1]. (5)

For the ith normalized B-spline basis function of order k, the basis function Ni,k(t) is defined by:

Ni,1(t) =

{
1, if vi ≤ t ≤ vi+1

0, otherwise
(6)

and:

Ni,k(t) =
(t− vi)Ni,k−1(t)

vi+k − vi
+

(vi+k+1 − t)Ni+1,k−1(t)
vi+k+1 − vi+1

, (7)

where vi are elements of a knot vector. In this work, B-splines of fourth order are used. Notice
that, when using fourth order B-splines, the penalty function (2) is unnecessary because the curve
becomes smoother. The knot vector assumes the following form: V = (0, 0, 0, 0, tk, . . . , ti, 1, 1, 1, 1),
where n + 1 is the number of control points;

3. NURBS are functions that have the same properties as B-splines and are capable of representing a
wider class of geometries. A NURBS curve is represented as a combination of control points and
rotational basis functions Ri,k(t) and can be defined by:

P(t)nurbs =
n

∑
i=1

XiRi,k(t) (8)

with:

XiRi,k(t) =
Wi Ni,k(t)

∑n
i=1 Wi Ni,k(t)

, (9)

where Wi > 0 is a weighting factor for the control points. If the weights of the control points are
equal to one, the resulting curve is a B-spline. For more details concerning curve models, see [19].

3.2. Numerical Method and Test Design

The design of the heterogeneous test resorts to a shape optimization problem. In order to balance
the loads in the transversal directions, the design methodology uses a symmetric model (Figure 1a).
In this model, the design variables are the n control points’ positions Xi = [X1, . . . , Xn] that define
the specimen’s initial shape (before deformation) and weights Wi = [W1, . . . , Wn] and the rigid tool
length Ltool. The tool length defines only the size of the tool. The shape of the tool is defined by the
boundary of the specimen. As shown in Figure 1a, each control point is spaced radially by 90◦/(n− 1).
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It was defined that the control points only change their radial position. In each design iteration,
the specimen geometry and loading path are allowed to change freely, limited uniquely by the design
variables’ boundaries. The search universe of the design variables is given by Xi ∈ [10, 60] mm and
Wi ∈ [0.5, 20].

The optimization of the loading path depends on the design of the rigid tool. To avoid symmetry
conflicts, the tool needs to be coincident with the specimen shape and the beginning point Ptool to be
at 90◦, which means that the orientation of the tool displacement θ will be 90◦ due to the symmetry.
The loading path is applied up to rupture, established by Wf

CL. During the process, the optimization
algorithm automatically modifies the specimen shape until reaching a stopping criterion. In each FEA
evaluation, the mesh is automatically adapted to the specimen. However, whatever the specimen size,
the number of elements remains constant.

1 2
3

4

5

6

7

X1 X2
X3

X4

X5

X6

X7

W1 W2
W3

W4

W5

W6

W7

Symmetry

P tool

L
to

ol

(a)

Optimum mechanical test

Stopping criterion 
reached? 

Shape definition 
using a curve model 

FEA simulation of the new test
until reaching the rupture criterion

Indicator calculation
Cost function evaluation

Update variables
(optimization algorithm)

YES

NO

0

Initial design variables
(r )

(b)

Figure 1. (a) Definition of the design variables (here, for n = 7 and θ = 90◦, data from [4]) and (b) the
general optimization procedure.

This iterative process was launched using a MATLAB-Python-Abaqus environment. In MATLAB,
the initial coordinates R0 = {X0, W0, Ptool} of the design variables, the optimization algorithm, and the
curve model definition are specified. A script developed in Python is able to read the defined geometry
and to update it. The numerical simulation was carried out up to rupture by Abaqus [20]. The output
result was also post-processed using a Python script, enabling calculation of the indicator IT and cost
function. Based on the final result, the process may end if a stopping criterion is reached or continues
to update the design variables’ coordinates iteratively. This iterative design optimization problem can
be formulated as:

min
R={Xi ,Wi ,Ptool}

f (R) = 2− IT + Res (10)

subject to: 10 ≤ Xi ≤ 60 mm (11)

10◦ ≤ Ptool ≤ 90◦

0.5 ≤Wi ≤ 20 (for NURBS)

Wi = 1 (for B-Splines)

Wi = @ (for splines).
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Following the established numerical procedure (Figure 1b), the outcome revealed to be
dependent on:

• The geometry definition and discretization: This feature is related to the numerical simulation,
the number of elements, the number of control points used, the curve model, the parametrization
used, etc.

• The optimization method: This defines the robustness of the process and can influence the
final result.

• The cost function parameters: A modification of these parameters can lead to different results.
A very robust cost function can provide better results. However, this is not the object of study in
this work.

3.3. Number of Control Points and Sensitivity Analysis

The geometry of the specimen is defined by the control points’ positions, which means that
the number of control points used has an influence on the design process. To obtain a non-linear
design process independent of the number of control points, the optimum control parametrization
Ritz method was used [21]. In this method, the number of control points is progressively increased
until convergence to an optimum value. In this work, the iterative process was executed for each curve
model starting with three control points, using the SDBOX [22] optimization technique.

Due to the black-box nature of this problem, the derivatives are not available. The sensitivity
analysis of the cost function allows analyzing the contribution of a variable to the cost function,
showing how it behaves when the variables’ values change. The derivative information can be
obtained using approximation methods, such as finite differences, when the cost function behaves as
a smooth continuous function. This would widen the range of applicable optimization algorithms.
However, the output of the objective function value is dependent on a FEA. As the mesh generation is
random, even when applying fine meshes, the output result will always have small discrete variations,
which can lead to noisy data. In this work, the One-At-a-Time (OAT/OFAT) method was used to
perform a sensitivity analysis of the cost function [1,23], where the contributions were determined by
varying a parameter, while keeping all the others constant. The initial configuration shown in Figure 1
and Control Point 4 were selected for the sensitivity analysis.

3.4. Optimization Strategy

One of the goals of this work is to find an optimization algorithm capable of robustly minimizing
the objective function. The performance of the optimization algorithm is evaluated by the time and the
number of function evaluations required to converge. According to the sensitivity analysis results (see
Section 4.1), the cost function is non-smooth and (possibly) multi-modal. Therefore, the solution lies in
finding suitable Derivative-Free Optimization (DFO) methods to solve the optimization problem [22,24].
The recently-developed DFO methods are either deterministic or stochastic. Figure 2 classifies the
optimization methods according to their categories.

Direct search methods are deterministic and can be described as a continuous examination
of the outcome results generated by the optimization strategy. The local direct search algorithms
are dependent on the initial parameters and conditions and are susceptible to local minima [25].
However, these methods have a fast convergence. Global search optimization methods, such as
Lipschitzian-based partitioning methods, provide theoretical guarantees of finding the global minimum
of an optimization problem within a certain tolerance. In stochastic optimization, randomness is part
of the search procedure for the global optimum. Most of the methods are based on population/swarm
intelligence and mimic the behavior of natural systems. Such algorithms are less prone to getting
trapped in local minima. However, the convergence is commonly much slower [26,27]. In this work,
seven optimization strategies were used; however, only four were able to converge to a solution: the
Nelder–Mead, pattern search, SDBOX, and CMA-ES.
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Deterministic

Differential Evolution
CMA-ES

Simulated Annealing

Trust RegionDirect Search

Stochastic

Derivative Free Optimization 

Local Global

Nelder Mead
Pattern Search

SDBOX
DIRECT

Figure 2. Categories of the optimization algorithms.

3.4.1. CMA-ES

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is an evolutionary algorithm
proposed by Nikolaus Hansen and Andreas Ostermeier [28]. CMA-ES is a second order approach and
creates a Gaussian probabilistic model of possible solutions. The new candidate solutions are sampled
according to a multivariate normal distribution, and the mutation acts as a perturbation with zero
mean. In this particular algorithm, pairwise dependencies between the variables in the distribution
are represented by a covariance matrix that is updated progressively. This process will then influence
the next generation [24,28].

3.4.2. SDBOX

To guarantee both global convergence and robustness, this optimization strategy has roots in
gradient-based methods. This algorithm is able to detect the coordinate direction that minimizes the
cost function by investigating the local behavior. To create a new point, the algorithm performs a
line-search along the found coordinate direction. The iterations’ information can be used to build an
approximation of the cost function [22].

3.4.3. Nelder–Mead

Nelder–Mead is a direct search algorithm based on a spacial approximation. It consists of the definition
of a non-degenerate simplex [24]. For an objective function containing r variables, this algorithm retrieves
the convex hull of r + 1 vertices. In each iteration, it removes the vertex with the worst objective function
value. Then, it updates it to a better value by reflecting, expanding, or contracting the simplex along the
joint line with the centroids of the remaining vertices. This algorithm usually requires a low number of
function evaluations before finding the minimum. However, if the function is multi-modal, it becomes
dependent on the initial shape of the specimen, as it gets trapped in the local minima.

3.4.4. Pattern Search

Pattern search is a direct search method proposed by Hooke and Jeeves. It involves two types
of moves: (i) exploratory search, which is a local search step that looks for an improving direction,
and (ii) pattern move, where, after a chosen direction, it tries larger moves in the improving direction.
The implemented pattern search uses Mesh Adaptive Direct Search (MADS), which removes the
restrictions of general pattern search to finitely-selected directions, allowing local analysis in a dense
set of directions in the space of design variables [29].
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4. Results and Discussion

4.1. Ritz Method and Sensitivity Analysis

Figure 3 shows the outcomes of the Ritz method. Unlike what was expected, a full convergence
with the increase of control points was not observed. The use of a higher number of control points
allows the representation of a wider class of geometries. However, the number of local minima of the
cost function can also increase and, consequently prevent the full convergence of the optimization
method. Furthermore, the number of design variables was higher, which may have led to unrealistic
geometries, resulting in simulations that did not converge to a solution. Even without full convergence,
Figure 3 shows the number of control points that should be used for each curve model definition:
seven control points for B-splines and NURBS and six for splines.

3 4 5 6 7 8 9
      Number of control points

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
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t 

F
un

ct
io

n

Splines
B-splines
NURBS

Figure 3. The final value of cost function using different numbers of control points.

Figure 4 shows the behavior of the cost function in response to small perturbations of the position
and weight values. The function exhibits a non-smooth and non-continuous behavior, demonstrating
that gradient-based methods cannot be used.
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Figure 4. cont.
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Figure 4. Sensitivity analysis of the Cost Function (CF) value to: (a) the position of the control point X4;
(b) the weight of the control point W4; and (c) both sensitivities. Sensitivity analysis using a B-spline
model with seven control points.

4.2. Optimization Algorithms Performance Evaluation

The results were obtained by combining the optimization algorithms with the curve models.
The aim was to find a combination capable of robustly minimizing the cost function and, consequently,
provide a specimen design. The optimization algorithms’ performance was based on two criteria:
the best CF value and the convergence rate. Figure 5 shows the convergence rate of the cost function
and the evolution of two design variables, allowing us to observe the differences between their
behaviors. The direct search algorithms were faster to converge to a solution. The Nelder–Mead had a
smoother convergence curve because it promotes small modifications in the design variables between
iterations. Pattern search performed more abrupt modifications, which led to an irregular cost function
minimization. SDBOX revealed a good compromise between efficiency and convergence properties.
As expected for stochastic algorithms, CMA-ES presented large oscillations; however, it reached the
lowest cost function value.

Concerning the design variables, in the first evaluations, large oscillations were observed.
The design variables reached the search universe boundaries, and with the reduction and convergence
of the cost function, their convergence was attained, even if it converged to a local minimum.

CMA-ES was, along with SDBOX, the algorithm that reached the best results; however, a much
higher number of iterations was required. Notice that after 1000 function evaluations, the design
variables were still converging.
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Figure 5. cont.
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Figure 5. Evolution of the cost function and two design parameters during the design optimization
process using (a) CMA-ES, (b) SDBOX, (c) Nelder–Mead, and (d) pattern search algorithms and a
spline curve model.

4.3. Test Design: Optimization Results

Table 6 shows the results for the sets curve-models/optimization-algorithms. The direct search
local algorithms presented similar values for the different models, showing a fast convergence to a
local minimum. Regarding the global optimization algorithms, a good ability to decrease the cost
function value was observed, and the solutions revealed to be inferior (better) to the ones obtained by
local search. However, this was not observed with the use of splines. For this curve model, the values
of the cost function were very similar for all optimization algorithms, evidencing proximity between
the global and the local minima of the function. Both NURBS and B-splines presented clear differences
when using global or local optimization algorithms. It is also important to highlight that more than
one global minimum can exist. The final values of each term of the cost function obtained using the
evolutionary algorithm CMA-ES and the direct search algorithm SDBOX were different, yet the cost
function values were very close.

When analyzing the results, particularly the final cost functions for each test, four candidate
solutions were identified: (a) CMA-ES with B-splines, (b) SDBOX and B-splines, (c) CMA-ES with
NURBS, and (d) SDBOX with NURBS. Figure 6 shows the deformed state and the strain distributions
over the deformed specimen. Regarding the strain state range, the solution provided by SDBOX with
NURBS revealed to be limited due to the inability to reach some of the relevant strain states. However,
it presented the best value concerning the overall plastic deformation, represented by Avε̄P . The mean
deformation heterogeneity Mean[std(ε2/ε1)] and the maximum strain achieved ε̄P

Max in these tests
were identical. Nonetheless, none of the tests were capable of producing the biaxial strain state.

Considering that the solutions identified by global optimization algorithms can be exploratory
values and not minima, a local search algorithm was used in each candidate solution. However,
no improvements were noticed, demonstrating that the results attained by the global optimization
algorithm were minima.
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(d)

Figure 6. Distribution of εp, ε2/ε1 (corresponding to SDV1 and LE-RAPMINMAJ, respectively), and
the major ε1 and minor strains ε2 over the specimens surfaces. (a) CMA-ES and (b) SDBOX with
B-splines; (c) CMA-ES and (d) SDBOX with NURBS.

Figure 7 presents the strain state range offered by each solution represented in Figure 6. Although
all solutions widened the strain states provided by classical homogeneous tests, most strain states fit
in the neighborhood of uniaxial tension. This was expected due to the tensile load conditions of the
tests and constitutes a limitation of the presented methodology. Other load conditions would present
different strain states, but could also require a more complex apparatus than a standard uniaxial load
test machine. The solutions (b) and (c) presented shear and uniaxial compression states, but only for
small values of strains. Taking into account these analyzes and the CF value, the solution provided in
(c) CMA-ES with NURBS revealed to be the most promising.
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Table 6. Results for the mechanical test design using different optimization strategies and boundary curve models.

B-Splines CMA-ES Nelder Pattern SDBOXMead Search

Wr1
Mean[Std(ε2/ε1)]

Wa1
0.0273 0.0438 0.0249 0.0327

Wr2
(ε2/ε1)r

Wa2
0.0100 0.0115 0.0092 0.0109

Wr3
Mean[Std(ε̄P)]

Wa3
0.1277 0.0908 0.0747 0.1345

Wr4
ε̄P

Max
Wa4

0.1070 0.0897 0.0864 0.1021

Wr5
Avε̄P

Wa5
0.2273 0.1178 0.1455 0.2352

CF Minimum 1.5007 1.6464 1.6592 1.4846

ε̄P
tensile 0.5346 0.3231 0.3674 0.4108

ε̄P
biaxial 0 0 0 0

ε̄P
shear 0.0102 0.0038 0.0012 0.0145

ε̄P
plane 0.0012 0.0149 0.0302 0.0042

ε̄P
comp 0.0154 0.0141 0.0094 0.0274

ε̄P
test 0.9058 0.8741 0.7761 0.9439

NURBS CMA-ES Nelder Pattern SDBOXMead Search

Wr1
Mean[Std(ε2/ε1)]

Wa1
0.0313 0.0448 0.0357 0.0163

Wr2
(ε2/ε1)r

Wa2
0.0138 0.0098 0.0082 0.0041

Wr3
Mean[Std(ε̄P)]

Wa3
0.1465 0.0699 0.0970 0.1098

Wr4
ε̄P

Max
Wa4

0.1069 0.0807 0.0972 0.1047

Wr5
Avε̄P

Wa5
0.2634 0.0991 0.1391 0.3050

CF Minimum 1.4380 1.6956 1.6228 1.4601

ε̄P
tensile 0.4517 0.2323 0.4469 0.4628

ε̄P
biaxial 0 0 0 0

ε̄P
shear 0.0112 0.0055 0.0024 0

ε̄P
plane 0.0282 0.0359 0.0184 0.0501

ε̄P
comp 0.0244 0.0055 0.0208 0

ε̄P
test 0.9502 0.8281 0.8446 0.9226

Splines CMA-ES Nelder Pattern SDBOXMead Search

Wr1
Mean[Std(ε2/ε1)]

Wa1
0.0293 0.0347 0.0364 0.0319

Wr2
(ε2/ε1)r

Wa2
0.0120 0.0094 0.0082 0.0105

Wr3
Mean[Std(ε̄P)]

Wa3
0.0970 0.0853 0.0884 0.0889

Wr4
ε̄P

Max
Wa4

0.0931 0.0865 0.0849 0.0927

Wr5
Avε̄P

Wa5
0.1943 0.1546 0.1349 0.1649

CF Minimum 1.5741 1.6294 1.6472 1.6110

ε̄P
tensile 0.3543 0.3460 0.2944 0.3421

ε̄P
biaxial 0 0 0 0

ε̄P
shear 0.0047 0.00134 0.0080 0.0073

ε̄P
plane 0.0271 0.0812 0.0055 0.0573

ε̄P
comp 0.0204 0.00851 0.0191 0.0147

ε̄P
test 0.8500 0.83976 0.8370 0.8501
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Figure 7. Range of ε2/ε1 values on the specimen surface corresponding to the last stage of the test.
(a) CMA-ES and (b) SDBOX with B-splines; (c) CMA-ES and (d) SDBOX with NURBS.

5. Conclusions

In this work, a shape optimization process was applied to design a heterogeneous test for
the mechanical characterization of sheet metals under multiple strain paths and strain amplitudes.
To describe the shape of the specimen, the test was subjected to optimization using both splines,
B-splines, and NURBS. With the purpose of improving the efficiency of the design process, a Ritz-type
method was applied to optimize the number of control points used in each curve model. The specimen
capable of providing more mechanical information was reached by using NURBS with CMA-ES.
Quantitatively, this kind of curve model appeared to be the most effective one in finding a
heterogeneous test that promotes a better mechanical characterization of sheet metals. However,
the CMA-ES optimization model can be considered as good as the SDBOX, as the results obtained with
the latter were similar and presented a 10-times faster convergence.

All the specimen shapes obtained by the design optimization process were quite similar,
presenting variations in both the length and width of the specimen, which promote the heterogeneities
of the strain field. Such specimens revealed profiles similar to butterflies. Although butterfly-type
specimens have been used in the past for a range of stress states from simple shear to plane-strain
tension [30,31] using multiple tests, the specimens presented here displayed a wider range of stress
states for a single test.

The design methodology presented in this paper achieved novel geometries that offer wider
ranges of stress/strain states than the classical or the actual heterogeneous tests. Therefore, it constitutes
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a state-of-the-art improvement. However, it has not reached yet a unique test presenting both the
overall range of stress/strain states and large levels of plastic strains. This fact can be due to the
limitation in the loading conditions and in the shape definition, opening challenges for future works.
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Abbreviations

The following abbreviations are used in this manuscript:

B-splines Basis spline
CF Cost Function
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DIC Digital Image Correlation
EGM Equation Gap Method
FEA Finite Element Analysis
FEMU Finite Element Model Updating
FFM Full Filed Method
LE Principal strain
LE-RAPMINMAJ Ratio between the minor and major principal strains
NM Nelder–Mead

SDBOX
Globally-convergent derivative-free algorithm for the minimization of a continuously
differentiable function

SDV1 State Variable, which stands for the equivalent plastic strain
NURBS Non-Uniform Rational Basis Spline
VFM Virtual Field Method
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