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ABSTRACT  

Pharmaceuticals and Personal care products (PPCPs) are frequently released into several marine 

matrices, representing significant environmental and ecotoxicological risks. Among the widest 

spread PPCPs in aquatic systems is Salicylic acid (SA), with known negative effects on marine and 

freshwater species. Nevertheless, the toxicity resulting from these emerging pollutants, including 

SA, together with climate change has still received little attention up to date. Among climate change 

related factors salinity is one that most affects aquatic organisms. To better understand the 

combined impacts of SA and salinity, the present study evaluated the biochemical alterations 

induced in Mytilus galloprovincialis mussels exposed to SA and different salinity levels, acting 

individually and in combination. The effects observed clearly highlighted that cellular damages 

were mainly observed at higher salinity (35), with no additive or synergistic effects derived from 

the combined presence of SA. Higher antioxidant capacity of mussels in the presence of SA may 

prevented increased LPO levels in comparison to uncontaminated mussels. Nevertheless, in the 

presence of SA mussels revealed loss of redox balance, regardless of the salinity level. Furthermore, 

mussels exposed to SA at control salinity showed increased metabolic capacity which decreased 

when exposed to salinities 25 and 35. These findings may indicate the protective capacity of 

mussels towards higher stressful conditions, with lower energy reserves expenditure when in the 

presence of SA and salinities out of their optimal range. Although limited cellular damages were 

observed, changes on mussel’s redox balance, antioxidant mechanisms and metabolism derived 

from the combined exposure to SA and salinity changes may compromise mussel’s growth and 

reproduction. Overall, the present study highlights the need to investigate the impacts induced by 

pollutants under present and future climate change scenarios, towards a more realistic 

environmental risk assessment. 

 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

3 
 

Keywords: Climate change; Salicylic Acid; Oxidative Stress; Biomarkers; Metabolic capacity; 

mussels  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

4 
 

1. INTRODUCTION 

Coastal systems are increasingly exposed to a huge diversity of pollutants, resulting from 

population growing around these areas, newly developed technologies and processes that generate 

higher amount of unknown wastes, but also due to generalized and easier access to a diversity of 

materials and substances. Among the widest spread pollutants in aquatic systems are 

pharmaceuticals and personal care products, including Salicylic acid (SA). This organic acid is 

widely used in topical cosmetic and dermatological consumer products, being commonly used to 

treat skin diseases like acne or psoriasis. Furthermore, SA is the principal metabolite of 

acetylsalicylic acid (ASA, aspirin),  a non-steroidal anti-inflammatory drugs (NSAIDs), which is a 

common and widely used analgesic, anti-pyretic and anti-inflammatory drug, with an estimated 

40,000 tonnes (50 to 120 billion pills) consumed each year (Godersky et al., 2018; Jones, 2015; 

Wong, 2019). As a result of the wide use of SA and ASA, concentrations of SA in different aquatic 

systems range from few ng/L in freshwater and marine environments to several µg/L in wastewater 

influents and effluents (among others, Biel-Maeso et al., 2018; Fent et al., 2006; Paíga et al., 2016; 

Sim et al., 2011; Wang et al., 2010). The increasing knowledge on the wide occurrence of SA in 

diverse aquatic environments worldwide distributed has rose concerns on possible toxic impacts 

towards non-target species inhabiting these aquatic systems. In this regard, still scarce information 

is available on the toxic effects of SA towards aquatic organisms, especially marine invertebrates, 

with recent studies showing oxidative stress impacts in freshwater species, namely in Lemna minor 

plants (Alkimin et al., 2019), the crustacean Daphnia magna (Gómez-Oliván et al. 2014) and the 

fish Salmo trutta (Nunes et al. 2015), but also in marine and estuarine species such as fish Mugil 

cephalus (Fazio et al., 2013), mussels (Mytilus galloprovincialis, Freitas et al., 2019) and 

polychaetes (Nereis diversicolor, Nunes, 2019). Studies conducted by Freitas et al. (2019a) further 

demonstrated that the exposure to SA can cause increase of metabolic capacity in M. 

galloprovincialis after exposure to an increasing gradient of SA concentrations.  
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Besides pollutants, environmental alterations associated with climate change related factors 

and extreme weather events have shown to negatively affect aquatic organisms. The acceleration in 

the global rainfall and evaporation cycle can dramatically change salinity patterns, especially in 

coastal and estuarine areas (Coughlan et al., 2009). This situation may be of major concern since 

seawater salinity has been identified as one of the most important factors impacting estuarine and 

coastal areas (Cardoso et al., 2008; IPCC 2013), with known effects on species richness and 

abundance, organisms growth and reproduction, and population spatial distribution (Lapresta-

Fernández et al., 2012; Matozzo and Marin 2011; Verdelhos et al. 2015; Gosling, 2008; Telesh and 

Khlebovich, 2010). Under laboratory conditions different authors also demonstrated the negative 

impacts caused by salinity changes on marine species, namely on bivalves, including alterations on 

their metabolic profiles (Carregosa et al., 2014a), metabolism and oxidative status (Sarà et al., 2008; 

Coughlan et al., 2009; Carregosa et al., 2014b; Gonçalves et al., 2017; Hamer et al., 2008; Moreira 

et al., 2016a; Velez et al., 2016), and also on bivalves’ immune responses (Bussell et al., 2008; 

Matozzo and Marin, 2011; Reid et al., 2003). 

Under environmental conditions the above mentioned stressors often act in combination, with 

the presence of pollutants in aquatic systems being coincident with the occurrence of salinity 

alterations. Nevertheless, information on the impacts resulting from the combination of these 

stressors are still scarce, with limited information concerning changes on pollutants toxicity due to 

salinity alterations as well as regarding changes induced by salinity on organisms’ sensitivity to 

pollutants. It is known that salinity changes may alter pollutants chemical speciation, mobilization 

from sediments, solubility and adsorption, factors that may influence bioaccumulation and toxicity 

(Zwolsman et al., 1997; Kumar et al., 2015; Riba et al., 2004). In what concerns to changes on 

species pollutants sensitivity due to salinity alterations, Zanette et al. (2011) showed that salinity 

enhances the negative effects caused by the diesel oil in the oyster Crassostrea gigas oxidative 

status. Studies assessing the impacts of As under different salinity levels revealed that Ruditapes 

philippinarum clams exposed to the combination of both stressors experienced higher cellular 
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damage and greater antioxidant defences inhibition than each stressor acting alone (Freitas et al., 

2016). On the other hand, the exposure of Mytilus galloprovincialis to Triclosan and Diclofenac 

under different salinity levels revealed higher lipid peroxidation levels when mussels were 

simultaneously exposed to each of the contaminants and stressful salinities (25 and 35) (Freitas et 

al., 2019c).  

Nevertheless, although the advance on the understanding on how pollutants effects may differ 

under different salinity levels, current knowledge on the combined effects of salinity and PPCPs is 

still in its infancy. For this reason, the present study aimed to evaluate the effects of SA in the 

mussels species M. galloprovincialis, exposed to different salinity levels, resembling drought and 

rainy periods, associated with extreme weather that have been increasing both in intensity and 

frequency.  
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2. MATERIALS AND METHODS 

2.1. Experiment set up 

Mytilus galloprovincialis specimens were collected in the Ria de Aveiro (northwest Atlantic 

coast of Portugal), in February 2018. Individuals with similar size (condition index: dry tissue 

weight / dry shell weight = 7.7±0.5) were selected to avoid differences in bioconcentration levels 

and biochemical responses. 

In the laboratory mussels were acclimated to laboratory conditions for fifteen days in artificial 

seawater. Seawater was prepared by the addition of artificial sea salt (Tropic Marin® Sea Salt) to 

reverse osmosis water. During this period, seawater was maintained at 17.0 ± 1.0 °C; pH 8.0 ± 0.1, 

salinity 30 ± 1, 12 light: 12 h dark photoperiod and continuous aeration, while mussels were fed 

with AlgaMac Protein Plus (150 000 cells/animal) every 2-3 days after water renewal.  

After this period, organisms were distributed into different salinities (30, 25 and 35), in the 

absence and presence of Salicylic acid (SA): CTL (salinity 30 and absence of SA); salinity 30 in the 

presence of SA (4.0 mg/L); salinity 25 in the presence and absence of SA; salinity 35 in the 

presence and absence of SA. Mussels were distributed among different conditions, with 3 glass 

aquaria (7 L seawater) per condition and 7 individuals per aquarium. Salicylic acid (2-

Hydroxybenzoic acid sodium salt) used in the experiment was obtained from Sigma-Aldrich, Milan, 

Italy; chemical purity ≥ 99,5%; molecular weight 160.10. For the experimental assay organisms 

were exposed for 28 days. 

The concentration of SA used (4.0 mg/L) was selected based on published literature that 

showed concentrations in the aquatic environment ranging  from 0.004 mg/L to 20.00 mg/L (Ferrer 

et al., 2001; Heberer, 2002; López-Serna et al., 2012; Paíga et al., 2016; Ternes et al., 2001) and 

impacts in aquatic organisms testing concentrations up to 40 mg/L (Claessens et al., 2013; Nunes et 

al., 2015; Nunes, 2019; Zivna et al., 2016).  
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During the exposure period (28 days), aquaria were continuously aerated, temperature (17 ºC) 

and salinity were daily checked and adjusted if necessary. Mortality was daily checked and 

organisms were considered dead when their shells gaped and failed to shut again after external 

stimulus. During the entire experiment, animals were fed with Algamac protein plus (150.000 

cells/animal) three times per week. The exposure medium was renewed weekly, after which SA 

concentration was re-established. Immediately after medium renewal water samples (50 mL) were 

collected every week from each aquarium and used for SA quantification analysis to compare 

nominal and real exposure concentrations.  

To assess SA stability in the water medium during the experimental period, a set of aquaria 

without animals but under the same conditions (SA concentration, salinities 30, 25 and 35; 

temperature 17 ºC) was prepared. For this, 3 aquaria per condition were prepared and, each week, 

water samples were collected to quantify SA concentrations after 7 days of exposure, the period of 

time between medium renewal. 

During the experimental period no mortality was observed and M. galloprovincialis 

specimens per condition (two individuals per aquarium/replicate) were immediately frozen. The 

whole body of three frozen organisms per aquarium/replicate (nine per condition) was pulverized 

individually with liquid nitrogen and divided into aliquots of 0.5 g FW, which were used for SA 

quantification and biochemical parameters determination. One individual from each aquarium was 

lyophilized for lipids content determination. 

 

 

2.2. Salicylic acid quantification in water and mussel’s tissues 

Concentrations of SA were measured in water and soft tissues by using an high performance 

liquid chromatography-ultraviolet (HPLC-UV) detection method. Water samples were analyzed by 

using the method of Baranowska and Kowalski (2012) with modifications. Water samples were 

filtered and extracted with solid phase extraction (Oasis HLB 6cc 150 mg solid-phase extraction 
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cartridges, Waters), followed by HPLC analysis. Soft tissues samples were analyzed by using the 

method of Madikizela et al. (2017) with modifications. Tissue sample (1.5 g) were dehydrated and 

sonicated at 50 ºC for 1 min using 5 mL of acetonitrile (10 mL) as the extraction solvent. The 

supernatant was collected after centrifugation and diluted using Milli-Q grade water and then 

purified with solid phase extraction as reported for water samples (Oasis HLB 6cc 150 mg solid-

phase extraction cartridges, Waters). The chromatographic system consisted of a Series 200 

PerkinElmer gradient pump coupled to a Series 200 PerkinElmer variable UV detector, which was 

set at 230 nm. The mobile phase consisted of acetonitrile, methanol and 25 mM phosphate buffer, at 

a ratio of 5:5:90 (v:v). A 100 L injection was used each time. The reversed-phase column was a 

Haisil, LC column (5 m, 150x4.60 mm, Higgins). The column was kept at room temperature. 

Turbochrome software was used for data processing. The recovery was >70% for water samples 

and >75% for soft tissues. The detection limit (LOD), calculated as a signal-to-noise ratio of 3:1, 

was 0. 5 µg /L for water samples and 5.0 µg/g for soft tissues. For calculations, a value 

corresponding to LOD/2 was assigned to all samples that exhibited values <LOD, accordingly to 

Glass and Gray (2001). 

Bioconcentration factor (BCF) was calculated by dividing the mean concentration of SA 

found in organism’s tissues by the mean concentration of SA measured in the water medium. 

 

 

2.3. Biological responses 

Extraction was performed with specific buffers (see Freitas et al., 2019, Pirone et al., 2019) to 

determine: lipid peroxidation (LPO) levels, reduced (GSH) and oxidized (GSSG) glutathione 

content; the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 

(GPx); electron transport system (ETS) activity and the concentrations of glycogen (GLY), protein 

(PROT) and lipid (LIP). These samples were sonicated for 15 s at 4 °C and centrifuged for 10 min 

at 10 000g (3 000g for electron transport system activity) at 4 °C. Supernatants were stored at −80 
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°C or directly used to measure the above mentioned biomarkers. All the biochemical parameters 

were performed in duplicate.  

 

2.3.1. Indicators of cellular damage and redox balance 

For LPO quantification supernatants were extracted using 20% (v/v) trichloroacetic acid 

(TCA). LPO was measured according to Ohkawa et al. (1979). LPO levels were calculated.by the 

quantification of malondialdehyde (MDA). Absorbance was read at 535 nm using the molar 

extinction coefficient (ɛ) 156 mM
-1

 cm
-1

. LPO was expressed in nmol of MDA formed per g FW. 

Reduced (GSH) and oxidized (GSSG) glutathione content were determined according to 

Rahman et al. (2006), using reduced and oxidized glutathione standards (0-60 µmol/L) to produce a 

calibration curve. Absorbance was measured at 412 nm, for both assays. GSH and GSSG 

concentrations were expressed in nmol per g FW. GSH/GSSG was calculated dividing the GSH 

values by 2x the amount of GSSG. 

 

2.3.2. Antioxidant defences 

The activity of SOD was determined based on the method of Beauchamp and Fridovich 

(1971). A calibration curve was performed with SOD standards (0.25-60 U/mL). SOD activity was 

measured at 560 nm. Results were expressed in U per g FW where U corresponds to a reduction of 

50% of nitroblue tetrazolium (NBT).  

The activity of CAT was quantified according to Johansson and Borg (1988) and the 

modifications were performed following that of Carregosa et al. (2014). Standards of formaldehyde 

(0-150 µM) were prepared to produce a calibration curve. The absorbance was read at 540 nm. 

CAT activity was expressed in U per g FW. One unit (U) is defined as the amount of enzyme that 

caused the formation of 1.0 nmol of formaldehyde per min. 

The activity of GPx was quantified following Paglia and Valentine (1967) protocol. The 

absorbance was measured at 340 nm. The enzymatic activity was determined using the molar 
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extinction coefficient (ɛ) 6.22 mM
−1

cm
−1

. The results were expressed as U per g FW, where U 

represents the number of enzymes that caused the formation of 1.0 μmol NADPH oxidized per min. 

 

2.3.3. Metabolic capacity and energy reserves 

The ETS activity was measured following King and Packard (1975) and modifications 

performed by De Coen and Janssen (1997). The absorbance was measured at 490 nm. The amount 

of formazan formed was calculated using the molar extinction coefficient (ɛ) 15,900 M
− 1

 cm
− 1

. The 

results expressed in nmol per min per g FW. 

The GLY content was quantified according to sulphuric acid method (Dubois et al., 1956), 

using glucose standards (0-5 mg/mL) to produce a calibration curve. Absorbance was measured at 

492 nm. Concentrations of GLY were expressed in mg per g FW.  

Total PROT content was determined according to the Biuret spectrophotometric method 

(Robinson and Hogden, 1940), using bovine serum albumin (BSA) as standards (0–40 mg/mL) to 

produce a calibration curve. Absorbance was measured at 540 nm. Concentrations of PROT were 

expressed in mg per g FW. 

Lipids (LIP) extraction and content determination followed the methods developed by Folch 

et al. (1957) and Cheng et al. (2011), respectively. A standard curve was determined using 

cholesterol standards (0–100%). The absorbance was measured at 520 nm. The results were 

expressed in percentage of lipids per mg dry weight (DW). 

 

2.4. Data analysis 

Results from LPO levels, GSH/GSSG, and SOD, CAT and GPx activities, LIP, PROT and 

GLY concentrations, as well as ETS activity, were submitted to hypothesis testing using 

permutational multivariate analysis of variance with the PERMANOVA+ add-on in PRIMER v6 

(Anderson et al., 2008). The t-statistics in the pairwise comparisons were evaluated in terms of 

significance. Values lower than 0.05 were considered as significantly different. The null hypotheses 
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tested were: i) when in the absence of SA, different salinity levels had no effects on mussels; 

significant effects among salinity levels were represented in figures with lower case letters; ii) when 

in the presence of SA, different salinity levels had no effects on mussels; significant differences 

among salinity levels were represented in figures with upper case letters; iii) for each salinity level, 

SA had no effects on mussels; for each salinity level, significant differences between mussels with 

and without SA were represented with an asterisk. 
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3. RESULTS 

3.1. Salicylic acid concentration in water and mussel’s tissues 

Concentrations of SA measured each week after 7 days of exposure in aquaria without 

mussels demonstrated the stability of this compound with values of SA measured for each test 

salinity presenting no significant differences to the nominal concentration (4 mg/L): salinity 30 – 

4.5±0.6; salinity 25 -  4.6±0.7; salinity 35 - 4.2±0.01 mg/L. These results validate the spiking 

procedure and demonstrates that during 7 days, the period between seawater renewal, SA was in the 

medium. 

The concentrations of SA measured in water samples collected immediately after spiking 

confirmed the nominal concentrations at salinities 30 and 25 (Table 1). However, at salinity 35 

mean values of SA concentrations observed after each spiking were below the nominal 

concentration (Table 1). 

The concentrations of SA in mussels exposed to different tested conditions differed, with 

lower values in mussels exposed to control salinity (30). Nevertheless, no significant differences 

were found between mussels exposed to salinities 25, 30 and 35 (Table 1).  

If we consider mean concentration value obtained at each condition, higher BCF was obtained 

at salinity 35, while the lowest value was found at control salinity (Table 1). 

 

 

3.1. Biological responses 

3.1.1. Indicators of cellular damage and redox balance 

For non-contaminated mussels, LPO levels showed significant differences between salinities 

30 and 35, while in mussels exposed to SA significant differences were observed between the two 

lower salinities (30 and 25) and the highest one (35) (Figure 1A). No significant differences were 

observed between non-contaminated and contaminated mussels, regardless the salinity level. 
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The ratio between reduced (GSH) and oxidized (GSSG) glutathione showed, for non-

contaminated mussels as well as organisms exposed to SA, no significant differences among 

different tested salinities (Figure 1B). Differences between contaminated and non-contaminated 

mussels were noticed for all tested salinities, with significantly higher values in non-contaminated 

organisms (Figure 1B). 

 

3.3.2 Antioxidant defences  

In non-contaminated mussels the activity of superoxide dismutase (SOD) was significantly 

higher at salinities 25 and 35 compared to salinity control (30), with no significant differences 

between mussels exposed to salinities 25 and 35 (Figure 2A). A similar pattern was observed in 

contaminated mussels, with significant differences among salinities and higher SOD activity at 

salinity 35 (Figure 2B). Significantly higher SOD activity was found in contaminated mussels 

compared to non-contaminated ones at salinities 25 and 35 (Figure 2A). 

For non-contaminated and contaminated mussels no significant differences occurred in 

catalase (CAT) activity among tested salinities (Figure 2B). When comparing non-contaminated 

and contaminated mussels, regardless the salinity, significantly higher activity was observed in non-

contaminated organisms (Figure 2B). 

The activity of glutathione peroxidase (GPx) was significantly higher in non-contaminated 

mussels exposed to salinity 35 in comparison to mussels exposed to control (30) and salinity 25 

(Figure 2C). No significant differences were found among salinities in SA exposed mussels (Figure 

2C). No significant differences were observed between contaminated and non-contaminated 

mussels, for all the tested salinities (Figure 2C). 

 

3.3.3. Metabolic capacity and energy reserves 

For non-contaminated mussels, the results on electron transport system activity (ETS) showed 

no significant differences among salinity conditions (Figure 3A). Mussels exposed to SA showed 
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significantly higher ETS activity at salinity 30 compared to salinities 25 and 35 (Figure 1A). 

Differences between contaminated and non-contaminated mussels were observed only at salinity 

30, with higher values in mussels exposed to SA (Figure 3A). 

For non-contaminated mussels, the glycogen (GLY) content was significantly higher at 

salinity 35 compared to mussels exposed to salinities 30 and 25 (Figure 3B). Mussels exposed to 

SA showed no significantly different GLY content among salinity conditions (Figure 3B). For all 

tested salinities, significantly higher GLY content was observed in non-contaminated mussels 

(Figure 3B). 

Non-contaminated mussels as well as organisms exposed to SA showed no significant 

differences in terms of Protein (PROT) content among different tested salinities (Figure 3C). 

Differences between contaminated and non-contaminated mussels were only noticed at salinity 35, 

with significantly higher values in non-contaminated organisms (Figure 3C). 

Non-contaminated mussels showed significantly higher lipids (LIP) content at salinity 35 

compared to salinities 30 and 25 (Figure 3D). No significant differences were observed in the LIP 

content among SA contaminated mussels exposed to different salinities levels (Figure 3D). 

Differences between non-contaminated and contaminated mussels showed significantly higher LIP 

content in non-contaminated mussels at salinity 35 (Figure 3D). 
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4. DISCUSSION 

The toxic effects of salicylates are well-known for mammals, with induction of oxidative 

stress being commonly identified as a biological response (Buntenkötter et al., 2016; Doi et al., 

2002; Doi and Horie, 2010; Needs and Brooks, 1985). Recent studies showed similar impacts in 

non-target organisms including aquatic vertebrates, as fish (Choi et al., 2015; Klessig, 2016; Nunes 

et al., 2015), but still few studies have been conducted on aquatic invertebrates (Freitas et al., 

2019a; Nunes, 2019). A part from this, up to now, no studies investigated the influence salinity 

shifts on organism’s responses to SA exposure which may constitute one of the most probable 

climate scenarios. In fact, considering that coastal and in particular estuarine species are 

increasingly exposed to pollutants and that shifts on salinity levels are increasingly frequent as a 

result of extreme weather events, combined exposure to pollutants and salinity levels corresponds to 

an already occurring realistic scenario. The obtained results are therefore innovative, highlighting 

changes on organism’s sensitivity towards pollutants due to climate change related factors 

Since SA presents logKow value (2.26) it may be considered hydrophilic and moderately 

soluble in water, ensuring the presence of this compound in seawater during the experimental 

period. This is corroborated by the fact that results obtained showed that, in the absence of mussels, 

the concentration of SA in the water was maintained along 7 days exposure periods (corresponding 

to water renewals) regardless tested salinities, revealing no effects of salinity on SA concentration 

in the medium. Furthermore, the presence of SA in seawater allowed the accumulation of this 

compound by mussels. Although a slight increase of SA in mussels tissues was observed at stressful 

salinity conditions (25 and 35), with higher BCF values also at these conditions, the absence of 

significant differences in SA tissues concentrations among different salinities prevents any further 

conclusion on SA accumulation related with salinity levels. Such results may be related with the 

fact that tested salinities did not influence SA solubility and availability and, on the other hand, did 

not significantly influence mussel’s filtration capacity or detoxification ability. Nevertheless, the 
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results obtained indicate that metabolic capacity of contaminated mussels was diminished at 

salinities 25 and 35 compared to control salinity (30), indicating that mussels could be under 

reduced filtration activity which was not sufficient to limit accumulation of SA at such stressful 

conditions.  

Although similar SA concentrations were found in mussels exposed to different salinities, 

impacts on mussels biochemical performance differed among tested conditions, namely in what 

regards to oxidative stress. Oxidative stress is defined as a disturbance in the balance between the 

production and elimination of reactive oxygen species (ROS). The generation of ROS is a natural 

process in all aerobic species, occurring during mitochondrial electron transport of aerobic 

respiration or by oxidoreductase enzymes and metal catalysed oxidation. When subjected to 

environmental changes, such as increases/decreases in salinity and/or the presence of pollutants, 

organisms often increase their ROS formation with consequent changes on their antioxidant 

mechanisms of defence. Previous studies already demonstrated that the presence of pollutants such 

as pharmaceuticals but also changes on salinity levels may induce oxidative stress in marine 

invertebrates, with alteration on antioxidant enzymes activities, occurrence of cellular damage and 

loss of redox balance (among others, Franzellitti et al., 2013; Zuccato et al., 2006; Gonzalez-Rey, et 

al., 2014; Freitas et al., 2019b, 2019c). In the particular case of SA, previous studies already 

described increases of antioxidant enzymes and lipid peroxidation levels, suggesting its potential 

pro-oxidative effect (Doi et al. 2002; Doi and Horie 2010), also in non-target organisms (Nunes et 

al., 2015; Freitas et al., 2019a). Nevertheless, no studies are known on the combined effects of SA 

exposure and salinity stressful conditions. 

In the absence of SA, the obtained results clearly demonstrated that increased salinity levels 

(35) induced cellular damage in mussels, identified by higher lipid peroxidation (LPO) values. 

However, at lower salinity (25) no differences were found compared to organisms under control 

salinity (30). These results highlight that a decrease on salinity may be less stressful to M. 

galloprovincialis individuals than an increase or, on the other hand, at lower salinities mussels may 
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better trigger their defence mechanisms against the excess of ROS. Similar findings were observed 

previously by Freitas et al. (2019b) for the same species exposed to similar salinity changes.  

As for the uncontaminated mussels, when in the presence of SA cellular damage was only 

observed at higher salinity (35), with no significant differences between contaminated and non-

contaminated mussels, regardless the salinity level, showing no synergistic or additive effects 

between both stressors in terms of cellular damage. Such results may thus indicate that 

concentrations tested were not high enough to induce cellular damage in mussels and, moreover, 

salinity levels tested were not stressful enough to increase sensitivity of mussels towards SA 

exposure with no changes on the effects of salinity when in the presence of SA. Previous studies 

conducted by Freitas et al. (2019a) already showed no significant differences in LPO levels among 

a range of SA concentrations (0.005, 0.05, 0.5 and 5.0 mg/L). Also Nunes (2019) showed that in the 

polychaete Hediste diversicolor SA was not able to generate a full state of oxidative stress, since no 

peroxidative damage occurred, verified by the absence of LPO. These authors highlighted that the 

protective adaptive response of the SA exposed individuals were sufficient to minimize the damage 

caused by reactive oxygen species (ROS) generated from the metabolism of SA.  

Nevertheless, although LPO levels were similar between contaminated and non-contaminated 

mussels regardless the salinity level, the ratio GSH/GSSG clearly revealed negative effects in SA 

exposed mussels with significantly lower GSH/GSSG values. In particular, although 

uncontaminated mussels showed no differences in terms of GSH/GSSG values, with no significant 

effects of salinity on mussels redox balance, the presence of SA significantly influenced mussels 

redox balance at all the tested salinities. The increasing amount of GSSG observed in the presence 

of SA is a clear indication of oxidative stress, which was already observed in the same mussel 

species exposed to other drugs, Triclosan and Diclofenac (Freitas et al., 2019c). These authors also 

showed lower GSH/GSSG values in contaminated mussels, regardless the salinity levels tested.  

Regarding antioxidant defences, mussels exposed to salinities outside control tended to 

increase their antioxidant enzymes activities, namely in terms of SOD and GPx, with higher activity 
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values at the highest tested salinity. These results corroborate the hypothesis that salinity 25 may 

induce lower stress to mussels than salinity 35, which presented higher LPO levels despite their 

increased antioxidant capacity. Similarly, hypersalinity was accompanied by upregulation of 

antioxidant enzymes such as SOD in the flatworm Macrostomum lignano (Rivera-Ingraham et al., 

2016). 

In the presence of SA at control salinity (30) mussels showed no changes on SOD and GPx 

activity compared to non-contaminated mussels, while CAT was inhibited in the presence of SA. 

These results may indicate low effect of SA on mussels SOD and GPx activity while greatly 

affecting the activity of CAT. Freitas et al. (2019a) showed lower SOD and CAT activities in 

mussels exposed to SA concentrations higher than 0.005 mg/L. Nevertheless, studies conducted by 

Nunes (2019) demonstrated that GPx increased along the increasing exposure gradient of SA (50.0, 

75.0, 112.5, 168.75, 253.125 μg/L) in the polychaete H. diversicolor, while CAT was only activated 

at the lowest SA activity. Nevertheless, as revealed in the present study, such antioxidant defences 

were able to protect organisms against cellular damage generated by ROS and/or the concentrations 

tested were not enough to induce LPO. Contrasting results obtained from different studies may be 

related with the tested concentrations that above certain limits of organism’s tolerance antioxidant 

enzymes are inhibited or the response to SA is species-dependent. The present study further 

demonstrated that at salinities outside the control, contaminated mussels showed a clear activation 

of SOD, especially at salinity 35, which may be associated with greater oxidative stress experienced 

by mussels at these conditions. Studying the effect of SA in maize plants under saline stress, Fahad 

and Bano (2012) also reported that SA treatment in plants grown in saline field had increased SOD 

activity. Although CAT and GPx presented a similar behaviour in SA exposed mussels regardless 

the salinity tested, the enhance on SOD activity at salinities 25 and 35 may indicate an interactive 

effect of SA and salinity over this enzyme.  

When exposed to different salinity levels mussels metabolic capacity showed no differences 

among tested salinities, revealing no clear impacts of salinity on mussels ETS activity. 
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Nevertheless, in terms of energy reserves higher GLY and LIP concentrations were found at salinity 

35, indicating lower expenditure of energy reserves at this salinity. Sokolova et al. (2017) proposed 

that energy-related biomarkers can be used to predict ecological consequences of environmental 

stressful conditions. Thus, we may postulate that the behaviour observed in the present study may 

indicate a mussels protective behaviour as a response to increased stress levels, with mussels 

reducing the expenditure of energy reserves under an unfavourable situation. However, this 

response may occur up to certain stress levels, after which organisms have the need to use their 

energy reserves. Also studies conducted by Freitas et al. (2019c) demonstrated that M. 

galloprovincialis specimens exposed to different salinities increased their GLY content under 

stressful salinity conditions (25 and 35). Marigómez et al. (2017) also showed that, in comparison 

with healthy mussels, stressed populations showed a high energy storage that partially contributes 

to alleviate thermal stress. 

In the presence of SA, at control salinity ETS activity was increased compared to non-

contaminated organisms, a response that was not followed by enzymes activation under this 

condition and thus it seems that increased metabolism was not used to fuel up defence mechanisms. 

At salinities 25 and 35 mussels decreased their ETS activity compared to control salinity showing 

the limited capacity of SA exposed mussels to increase their metabolism under the combined effects 

of salinity and SA. With the decrease of ETS activity at these conditions (salinities 25 and 35, under 

SA exposure) mussels prevented the use of their energy reserves corroborating once again the 

hypothesis that under a certain stress levels organisms are able to avoid the expenditure of their 

energetic reserves. The decrease of ETS under these conditions may also reduce the generation of 

ROS, which could also contribute to limit the occurrence of cellular damage. 

 

CONCLUSIONS: 

Overall, the present findings highlight the impacts of increased salinity levels in mussels 

oxidative status, with higher injuries under salinity 35 compared to salinity 25 and control (30). The 
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results obtained further demonstrated that, in general, organisms showed no significant differences 

between contaminated and non-contaminated mussels at each salinity level, indicating the absence 

of an additive or synergistic effect induced by the combination of both stressors. However, the 

increase of SOD activity in mussels exposed to SA and salinities 25 and 35 may indicate a join 

effect of both stressors on this enzyme, since at control salinity no differences were observed in 

SOD activity between contaminated and non-contaminated mussels. Also, the decrease on mussel’s 

metabolic capacity in the presence of SA and salinities 25 and 35 compared to mussels exposed to 

control salinity may indicate an inhibitory effect of salinity when mussels are exposed to SA.  

The present study highlights the risks derived from the presence of SA in coastal systems, 

revealing increased impacts especially under salinity shifts, which may easily result from a 

prolonged warming or raining periods. In particular, the realistic tested concentration (4.0 mg/L) 

associated with current increasing frequency and intensity of extreme weather events, including 

heat waves and drought periods, makes this study of major relevance. The present study represents 

a first step towards a more realistic environmental risk assessment, considering more than one 

stressor acting individually, highlighting the possible increased injuries derived from the 

combination of stressors, which my compromise not only mussels biochemical processes but also 

population growth and reproduction as metabolism differed in the presence of two or one stressor. 
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Figure captions 

 

Figure 1. A: Lipid peroxidation (LPO) and B: reduced/oxidised glutathione (GSH/GSSG) ratio, in Mytilus 

galloprovincialis exposed to different salinity levels (30-control, 25 and 35) in the absence and presence of 

salicylic acid (SA). Results are the means ± standard deviation. Significant differences (p<0.05) among 

concentrations are identified with different lower case letters (non-contaminated mussels) or uppercase 

letters (contaminated mussels). For each salinity level, differences between contaminated and non-

contaminated mussels are identified by an asterisk. 

 

Figure 2. A: Superoxide dismutase (SOD); B: Catalase (CAT) and C: Glutathione peroxidase (GPx) and 

Glutathione-S-transferases (GSTs) activities, in Mytilus galloprovincialis exposed to different salinity levels 

(30-control, 25 and 35) in the absence and presence of salicylic acid (SA). Results are the means ± standard 

deviation. Significant differences (p<0.05) among concentrations are identified with different lower case 

letters (non-contaminated mussels) or uppercase letters (contaminated mussels). For each salinity level, 

differences between contaminated and non-contaminated mussels are identified by an asterisk. 

 

Figure 3. A: Electron transport system (ETS) activity, B: Glycogen (GLY), C: Protein (PROT) and D: Lipids 

(LIP) content, in Mytilus galloprovincialis exposed to different salinity levels (30-control, 25 and 35) in the 

absence and presence of salicylic acid (SA). Results are the means ± standard deviation. Significant 

differences (p<0.05) among concentrations are identified with different lower case letters (non-contaminated 

mussels) or uppercase letters (contaminated mussels). For each salinity level, differences between 

contaminated and non-contaminated mussels are identified by an asterisk. 
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Table 1- Salicylic acid (SA) concentrations in water (mg/L), collected immediately after spiking at the 1
st

, 2
nd

, 3
rd

 and 4
th

 weeks of 

exposure, and in mussel’s tissues (µg/g dry weight) at the end of the experimental period (28 days). LOD for water samples 

0.005 mg/L; LOD for tissue samples 5 µg/g. 

 

Conditions Water Tissues 

CTL <LOD <LOD 

30 3.8±0.6ª,b 30. 5±11.4 

25 3.9±0.2a 42.6±20.6 

35 3.3±0.3b 42.8±18.7 
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 Higher cellular damage was observed at salinity 35 

 Loss of redox homeostasis in the presence of SA 

 Increased SOD activity in the presence of SA, especially under salinity 35 

 Inhibition of CAT in the presence of SA 

 Lower metabolic capacity in mussels exposed to the combination of both stressors  
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