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Abstract 14 

In this study, spatial sampling was performed from North Portugal to South Morocco to 15 

analyse trematode communities of the widespread bivalve Cerastoderma edule, host of 16 

several trematode species. From the twelve trematode species found in this study, nine 17 

were present in multiple aquatic systems demonstrating high trematode dispersal ability, 18 

driven by the presence of all the hosts. Multivariate analysis related to trematode 19 

communities in cockles clustered: 1) Portuguese aquatic systems influenced by cold waters, 20 

leading to low trematode abundance; 2) coastal systems characterized by dominance of 21 

trematode Parvatrema minutum and muddy sediments; 3) lagoons (or bays) with high 22 

oceanic influence and high trematode diversity. These findings suggested that, besides host 23 

species presence, temperature is an important trigger for parasite infection, with coastal 24 

upwelling operating as a shield against trematode infection in Portugal and masking 25 
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latitudinal gradients. Results highlighted the possible consequences of thermal modification 26 

mediated by oceanographic global circulation change on cockle populations. 27 

 28 
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1. Introduction 32 

Coastal aquatic systems are known for their high diversity and importance to 33 

populations of migratory and resident species (Levin et al., 2001). These aquatic systems 34 

have high economic value providing many natural resources and settlement sites for human 35 

population (Basset et al., 2013). In these ecosystems, a considerable part of the animal 36 

biological diversity are parasitic species, corresponding approximately, to 2/5 of eukaryotic 37 

total species richness (Dobson et al., 2008; Hudson et al., 2006). These parasites are also 38 

ubiquitous in every free-living community. However, they remain neglected in most global 39 

community analyses. In terms of functional diversity, parasites play a key structuring role in 40 

communities, providing information about the ecosystem functioning (Hudson et al., 2006; 41 

Marcogliese, 2004; Dairain et al., 2019). They impose adverse effects on their hosts 42 

phenotype and health (Marcogliese, 2004) which may result into high mortality at population 43 

scale (Curtis, 1995; Fredensborg et al., 2005; O’Connell-Milne et al., 2016). At higher scale, 44 

they induce significant impact on environmental functions (Thomas et al., 1999), 45 

exacerbated in a climate change framework (Mouritsen et al. 2005, Marcogliese 2008). 46 

Thus, parasites are considered ecosystem engineers by interfering with the host local 47 

population and consequently affecting the value and impact of these species in the 48 

ecosystem (Thomas et al., 1999). This role is magnified when the host species itself is also 49 

an ecosystem engineer (Dairain et al., 2019).  50 

In coastal waters, including bays, estuaries and coastal lagoons, trematodes are the 51 

most abundant and common macroparasites (Lauckner, 1983; Roberts et al., 2009). They 52 

have a complex and heteroxenous life cycle, infecting more than one host species to 53 

complete their life cycle (Bartoli and Gibson, 2007) with alternation between asexual 54 

multiplication and sexual reproduction phases (Whitfield, 1993). The typical trematode life 55 

cycle includes a free-living larva (miracidium) that hatches from the egg and infects first 56 

intermediate hosts, most of the time a mollusc. At this stage, the parasite transforms into a 57 

mother sporocyst that will develop, depending on the trematode species, into a mature 58 

sporocyst or into redia. Within the sporocysts or rediae, cercariae free-living stages develop 59 
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by asexual multiplication. Cercariae will emerge from the first host and reach the second 60 

intermediate host, an invertebrate or a vertebrate species depending on the trematode 61 

species. The cercariae penetrate the second intermediate host and metamorphose into 62 

metacercariae. The cycle is complete when the parasitized second intermediate host is 63 

predated by the final host, a vertebrate species. Then, each metacercaria transforms into an 64 

adult form that will reproduce sexually and produce eggs (Bartoli and Gibson, 2007; Esch, 65 

2002; Roberts et al., 2009). 66 

The complex life cycle described here, shows not only how important host diversity is 67 

in the distribution of trematode parasites, but also highlights that environmental parameters 68 

must have a key role in the modulation of parasite population dynamics, especially by their 69 

impact on infective free-living larvae transmission and infection success (Anderson and 70 

Sukhdeo, 2010; de Montaudouin et al., 2016a, 2016b; Koprivnikar and Poulin, 2009; Studer 71 

and Poulin, 2013). Indeed, a greater host diversity is usually reflected in a greater diversity 72 

of parasites, particularly for those with complex life cycles (Sukhdeo and Sukhdeo, 2004) 73 

and in the same sense, a higher abundance of suitable hosts increases the abundance and 74 

prevalence of parasites in the ecosystem (Combes, 1991). As an example, Hechinger and 75 

Lafferty (2005) found a positive correlation between bird communities composition (the final 76 

hosts of several trematode species) and trematode communities composition in a snail host. 77 

Similarly, Thieltges and Reise (2007) demonstrated higher metacercariae abundance (the 78 

trematode parasitic stage occurring in the second intermediate host) positively correlated to 79 

an increase in abundance and diversity of the higher trophic level host communities. On the 80 

other hand, higher host density can also promote a dilution effect and therefore decrease the 81 

parasite burden in a specific host (Buck et al., 2017; Magalhães et al., 2016; Mouritsen et 82 

al., 2003). Concerning the abiotic environmental factors, different conditions of temperature 83 

(Achiorno and Martolrelli, 2016; de Montaudouin et al., 2016a), salinity and pH (Koprivnikar 84 

et al., 2010, 2014; Mouritsen, 2002; Studer and Poulin, 2013), among others, can also have 85 

an influence on trematode dynamics (Wilson et al., 2002). As an example, a higher cercariae 86 

emission from the first intermediate host is related to an increase on the water temperature 87 
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(de Montaudouin et al., 2016a) and consequently a higher trematode infectivity (Thieltges 88 

and Rick, 2006). Favourable salinity conditions have been reported to benefit, as well, 89 

trematode emergence from the first intermediate host (Koprivnikar et al., 2014; Lei and 90 

Poulin, 2011). 91 

Bivalves (along with several other molluscs) are suitable and frequent first and/or 92 

second intermediate hosts for trematode parasites (Lauckner, 1983), especially because 93 

they are easily invaded by trematodes free-living stages through their suspension-feeding 94 

activity. Cerastoderma edule, the edible cockle, is among the most common and widely 95 

distributed bivalve species of the northeast Atlantic coast, from Norway (Dabouineau and 96 

Ponsero, 2011) to Mauritania (Honkoop et al., 2008). Cockles are extensively commercially 97 

exploited presenting therefore high socio-economic value. Besides, cockles display a crucial 98 

ecological role, linking primary producers to higher trophic levels (key species) and acting as 99 

ecosystem engineer (Ciutat et al., 2006; Morgan et al., 2013; Rakotomalala et al., 2015). 100 

This bivalve species acts as first and/ or second intermediate host of several trematode 101 

species (de Montaudouin et al., 2009; Longshaw and Malham, 2013) and, when compared 102 

to other bivalves, parasitic communities of cockles are particularly diverse and abundant. For 103 

these reasons, cockles and their associated trematode fauna are a good model to study 104 

host/parasite interactions (e.g. de Montaudouin et al., 2009; Lauckner, 1983; Thieltges et al., 105 

2006). 106 

The often so called Latitudinal Diversity Gradient, describing that species richness 107 

increases from the poles to the tropics, is a pattern widely recognized and applicable to 108 

many terrestrial and marine species (Hillebrand, 2004). However, the causes that determine 109 

this gradient are not yet fully understood, with hypotheses that go from higher migration 110 

rates to the tropics (Jablonski et al., 2006) and/ or a lower climate variation that allows the 111 

accumulation of species (Guo and Ricklefs, 2000), to the greater opportunity of species to 112 

specialize due to the high productivity and environmental stability, characteristic of tropical 113 

habitats (Harrison and Cornell, 2008; Mittelbach et al., 2007). Nonetheless, when referring to 114 

parasitic species, the knowledge is more limited and the observation of latitudinal patterns, 115 
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especially in the case of parasites with complex life cycles, it is not so evident (Poulin and 116 

Leung, 2011; Stephens et al., 2016). Despite the recent study efforts on latitudinal patterns 117 

of parasites (Poulin and Morand, 2004; Studer et al., 2013; Thieltges et al., 2009, 2011; 118 

Torchin et al., 2015), results are usually conflicting. For instance, Rohde and Heap (1998) 119 

observed an increase in the diversity and abundance of monogenean parasites towards the 120 

tropics, however, in the same study, no latitudinal gradient was observed for digenean 121 

parasites. Studer et al. (2013) have not found evidences of latitudinal patterns when working 122 

with the cockle Austrovenus stutchburyi and trematodes as host-parasite model, while 123 

Poulin and Mouritsen (2003) have demonstrated an increase of trematode diversity in a snail 124 

intermediate host at higher latitudes. An opposite pattern was observed by Thieltges et al. 125 

(2009) for trematode communities infecting a crustacean host. 126 

The present study aimed to provide, for the first time, a large spatial survey of 127 

trematode communities infecting Cerastoderma edule in the southern range of its distribution 128 

area, i.e. from the North of Portugal to the South of Morocco. The tested hypotheses were: 129 

1) trematode communities follow a latitudinal gradient driven by abiotic latitudinal-related 130 

factors and 2) trematode communities abundance and/ or diversity is dependent on the type 131 

of studied system (lagoon vs. estuary vs. bay). 132 

133 
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2. Material and Methods  134 

2.1 Study Area 135 

The present study was conducted in a total of seventeen semi-diurnal tidal marine 136 

systems distributed along Portugal and Morocco coastline (Figure 1). Six aquatic systems 137 

were sampled in Portugal from July to October 2016: the Ria de Aveiro coastal lagoon, 138 

Óbidos coastal lagoon, Albufeira coastal lagoon, Sado estuary, Mira estuary and Ria 139 

Formosa coastal lagoon. In Morocco, eleven aquatic systems were sampled from November 140 

2007 to January 2008: the Tahaddart estuary, Loukkos estuary, Merja Zerga coastal lagoon, 141 

Sebou estuary, Oum Er Rbia estuary, Sidi Moussa coastal lagoon, Oualidia coastal lagoon, 142 

Souss estuary, Chbika estuary, Khnifiss coastal lagoon and Dakhla bay. 143 

Through literature review, information on annual variation of water temperature and 144 

salinity for each sampled aquatic system at each respective sampled year (whenever 145 

possible) was obtained and gathered in Table 1. 146 

Throughout this manuscript, the term ‘coastal lagoon’ is used when referring to 147 

coastal water bodies, connected to the ocean through one or more inlets and separated by a 148 

barrier. The lagoons vary from oligohaline to hypersaline conditions (Gooch et al., 2015). 149 

‘Estuaries’ were considered as semi-enclosed coastal water bodies, that have a connection 150 

with the open sea and within which seawater is measurably diluted with fresh water derived 151 

from land drainage (Pritchard, 1967). When in the presence of large bodies of water that 152 

enters through the coast and are intimately connected to an ocean by a wide entrance, the 153 

term ‘bay’ was used (UN, 1982). 154 

 155 

2.2 Field sampling and parasite identification 156 

At each sampling area, sediment samples were collected to perform grain size 157 

analysis following the method described by Quintino et al. (1989). Silt and clay fraction (fine 158 

particles with diameter below 63 µm) were assessed by wet sieving and the remaining 159 
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fractions (sand and gravel) were determined by sieving through a column of five sieves with 160 

decreasing mesh sizes (2.00, 1.00, 0.50, 0.250 and 0.125 mm). 161 

Cockles were collected in the intertidal zone (with exception of Óbidos lagoon) using 162 

six quadrats (0.25 m2 each) randomly placed along a 100 m parallel to the water transect 163 

and by sieving the sediment through a 1-mm mesh. The number of cockles per square 164 

meter (density) was then estimated. In the Óbidos lagoon, a subtidal area where the quadrat 165 

method was impossible to perform, samples were collected with a hand dredge and cockle 166 

density (d) was calculated following the equation:  167 

�����.���	 =
�

�	 × 	�	 × 	�
 

where “n” corresponds to the total number of cockles collected; “a” to the hand 168 

dredge area (m2); “t” the mean number of trawls (mean number of times the dredge was 169 

dragged in the sediment per launch); and “I” the total number of launches. 170 

Shell length (SL) of each cockle was measured to the lowest mm with a calliper. 171 

From each aquatic system, according to availability, a variable number (between 11 and 65) 172 

of adult cockles (23 – 30 mm) were dissected. In Albufeira lagoon and Mira estuary, due to 173 

low abundance of cockles from this length class, twenty cockles representing the SL of each 174 

area (16 – 31 mm and 8 – 18 mm, respectively) were dissected. Cockle flesh was squeezed 175 

between two glass slides and observed under a stereomicroscope. All trematodes were 176 

identified to the species level following de Montaudouin et al. (2009) identification key.  177 

Parasite abundance (mean number of trematode metacercariae per cockle), 178 

prevalence (percentage of infected cockles by trematode species) and trematode species 179 

richness (number of trematode species present) were calculated according to Bush et al. 180 

(1997). 181 

 182 

2.3 Data analysis 183 

To test the influence of latitude (independent variable) on the variation of trematode 184 

species richness (TSR), trematode total prevalence (TTP) and trematode mean abundance 185 
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(TMA) (dependent variables), individual regression analyses were performed using the 186 

SPSS v.25 software. 187 

The Chbika estuary, due to the lack of abiotic information, was excluded from all the 188 

following multivariate analyses and used only on trematodes descriptive information. 189 

The data matrix with the abundance of trematode per site [abundance per trematode 190 

species metacercariae x sampling site] was square root transformed and the Bray-Curtis 191 

(Legendre and Legendre, 1998) similarity calculated between sites. To identify the biological 192 

affinity groups, the resemblance matrix was then analysed using a hierarchical clustering 193 

analysis tool. The affinity groups were characterized according to environmental and 194 

biological features by calculating the mean value of annual maximum and minimum water 195 

temperature, annual maximum and minimum water salinity, median grain-size, cockle 196 

density at sampling time and by calculating the rarefaction index, i.e. an estimation of the 197 

trematode species diversity through standardization of the number of samples (Gotelli and 198 

Colwell, 2001). Differences in terms of trematode metacercariae abundance were then 199 

tested among affinity groups, type of aquatic system (lagoons vs estuaries) and 200 

geographical position (north vs. south of strait of Gibraltar). Differences were tested using 201 

permutational multivariate analysis of variance (Anderson et al., 2008) following unrestricted 202 

permutation of the raw data (9999 permutations) and the calculation of type III sums of 203 

squares. Similarity Percentages (SIMPER) were used to characterize the type of aquatic 204 

system and the geographical position by the species that most contributed to the 205 

dissimilarity between groups. Affinity groups differences were visualized through Principal 206 

Coordinates Ordination analysis (PCO) after a distance among centroids resemblance 207 

(Clarke and Warwick, 2001). The abiotic variables that were highly correlated (Spearman ρ > 208 

|0.7|) to samples ordination were represented as superimposed vectors in the PCO graph. 209 

To model the relationship and provide quantitative measures of abiotic and biotic 210 

data (annual maximum and minimum water temperature, annual maximum and minimum 211 

water salinity and median grain-size and cockle density) on metacercariae community of 212 

each aquatic system, a Distance-based linear model (DistLM) was performed (Anderson et 213 
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al., 2008). The results were obtained using appropriate permutation (9999 permutations) and 214 

following the step-wise method and Akaike information criterion (AICc). This criterion 215 

balances between data fitness and the most parsimonious model (the model with lower 216 

power loss). Thus, it is considered the best model, among the possible ones, the one 217 

showing the lowest AIC (Symonds and Moussalli, 2011).  Distances among aquatic systems 218 

were visualized through a dbRDA plot. 219 

All multivariate analyses were performed using the PRIMER v.6 software. 220 

 221 

3. Results 222 

3.1 Trematode species richness, prevalence and abundance 223 

During this study, 398 cockles were dissected, 280 were infected by a total of twelve 224 

trematode species. Bucephalus minimus and Monorchis parvus infecting cockles as first 225 

intermediate host, Gymnophalus choledochus using cockles as first and second 226 

intermediate host and nine species of trematodes at metacercariae stage, i.e. infecting 227 

cockles as second intermediate host, Curtuteria arguinae, Diphterostomum brusinae, 228 

Himasthla continua, H. elongata, H. interrupta, H. quissetensis, Parvatrema minutum, 229 

Psilostomum brevicolle and Renicola roscovitus (Table 2). 230 

P. minutum was the most prevalent and abundant trematode species, representing 231 

approximately 90 % of total metacercariae abundance. This species was found in twelve out 232 

of the seventeen sampled systems and therefore throughout the whole sampled latitudinal 233 

gradient. H. elongata was exclusively found in three aquatic systems located north of 38 °N 234 

(northern Portuguese aquatic systems) whereas, H. continua was only present in five 235 

aquatic systems located south of 35 °N. R. roscovitus was the rarest and the least abundant 236 

species, represented by 1 metacercariae identified in the Óbidos lagoon (Figure 2; Table 4). 237 

C. arguinae, H. quissetensis (representing 5 % of total trematode abundance) and P. 238 

brevicolle were common in several aquatic systems south of 37 °N, found in the two aquatic 239 

systems nearest to the north Atlantic Ocean – Mediterranean transition (strait of Gibraltar, 36 240 
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°N) and in several aquatic systems south of this biogeographical barrier (Figure 2). G. 241 

choledochus, D. brusinae and H. interrupta, all the other species infecting cockles as second 242 

intermediate host, showed low abundance, representing each less than 1.5 % of total 243 

abundance (Figure 3). 244 

Overall, trematode species richness (TSR, considering all identified trematode 245 

species) increased linearly from north to south but accounting for only 22% of the total 246 

variation (R2 = 0.22). When excluding Chbika and Sebou, two small estuaries that displayed 247 

the lowest species richness in this study (1 trematode species each), the linear model fitted 248 

better with latitude, explaining 61% of total variation (Table 3).  249 

Trematode total prevalence (TTP, considering all identified trematode species) 250 

decreased with the latitude as demonstrated by the quadratic equation that explained 82% 251 

of the TTP variety (R2 = 0.82; Table 3). The Óbidos lagoon (39 °N, Portugal) showed the 252 

lowest TTP value (6%) whereas, almost every aquatic system south of 36 °N presented 253 

100% of TTP (except Loukkos estuary, 35 °N) (Table 4). 254 

Trematode mean abundance (TMA, considering trematode species infecting cockles 255 

as second intermediate host) did not follow significantly any model. Nonetheless, a higher 256 

TMA was observed in the central zone of the total extent of the sampled area in comparison 257 

to the aquatic systems located at the northern and southern edges of the total area sampled 258 

in this study. The Óbidos lagoon (39 °N, Portugal) presented the lowest TMA (0.03 ± 0.17 259 

metacercariae.cockle-1) whereas, Oum Er Rbia (33 °N, Morocco) presented the highest TMA 260 

(820 ± 595 metacercariae.cockle-1).  261 

  262 

3.2 Multivariate analysis 263 

Cluster analysis, at a similarity distance of 70%, allowed to assemble the different 264 

areas in three affinity groups (Figure 4A): group A, subdivided into A1 composed by 265 

Tahaddart, Loukkos, Sebou and Souss estuaries and A2 composed by Merja Zerga lagoon, 266 

Oum Er Rbia estuary and Khnifiss lagoon; group B, divided in B1 composed by Sidi Moussa 267 
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and Oualidia lagoons and group B2, splitted into B2.1 composed by Dakhla bay and B2.2 268 

composed by all Portuguese systems (Ria de Aveiro lagoon, Óbidos lagoon, Albufeira 269 

lagoon, Sado estuary, Mira estuary and Ria Formosa lagoon). Cockle density showed to be 270 

significantly higher in group B1 and lower in group B2.1. Sediment median grain-size was 271 

significantly higher in group B2.2 and lower in group B2.1 (Table 5). Concerning water 272 

physico-chemical characterization, all descriptors showed no significant differences among 273 

the affinity groups. Nevertheless, group A1 displayed the highest values of maximum and 274 

minimum water temperature while, group B2.2 registered the lowest values for the same 275 

variables. Maximum and minimum water salinity presented the highest values for group B2.1 276 

and the lowest for groups B1 and B2.2, respectively (Table 5). 277 

The obtained affinity groups were represented on the PCO ordination graph (Figure 278 

4B). The axis 1 of the PCO explained 59% of the total variation, separating the group A 279 

which is composed by the majority of the aquatic systems south of 36 °N and classified as 280 

estuaries (positive side of the axis) from the group B2 (negative side of the axis), that 281 

comprises all aquatic systems north of 36 °N, considered as costal lagoons, and the 282 

southernmost sampled aquatic system (Dakhla bay, 23 °N). PERMANOVA results confirmed 283 

a significant difference between sites located North and South from the Gibraltar strait 284 

(PERMANOVA: 240.37, p < 0.001) mostly driven by the presence of P. minutum and H. 285 

quissetensis (Table 6) and a significant difference between estuaries and coastal lagoons 286 

(PERMANOVA: 38.94, p < 0.001) particularly dependent also on P. minutum and H. 287 

quissetensis (Table 6). Minimum water temperature and cockle density presented a positive 288 

correlation to this axis and sediment median grain-size a negative correlation. In turn, axis 2 289 

described 27% of total variation dividing group B2.2 and group A, both in the positive side of 290 

the axis, from group B1 in the negative side of the axis. The geographical position (north vs. 291 

south) in relation to the strait of Gibraltar (36 °N) showed again an important effect on these 292 

groups separation that was also driven by cockle density (negative correlation).  293 
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The best model obtained through the DistLM analysis included the variables 294 

sediment median grain-size and cockle density as predictors of trematode community 295 

composition, explaining 42 % of the total variation (R2 = 0.42). When transposed to the 296 

dbRDA plot, axis 1 (representing 29 % of total variation), led by the differences in terms of 297 

median grain size, separated the aquatic systems north of the strait of Gibraltar (Portuguese 298 

aquatic systems) from the southern (Moroccan) aquatic systems with the exception of Sidi 299 

Moussa coastal lagoon and Merja Zerga estuary. Axis 2 (explaining 13 % of total variation) 300 

was positively correlated to cockle density separating two coastal lagoons of Morocco (Sidi 301 

Moussa and Oualidia coastal lagoons) and Oum Er Rbia estuary from the other aquatic 302 

systems (Figure 5).  303 
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4. Discussion 304 

Trematode parasites can have a significant impact on population dynamics of their 305 

hosts, implying modification on host growth (Wegeberg and Jensen, 2003) or inducing 306 

higher mortalities rates (Desclaux et al., 2004), which highlights the importance to study 307 

host-parasite interactions. This study is among the few reports on large-scale trematode 308 

communities infecting cockles (e.g. de Montaudouin et al., 2009; Magalhães et al., 2015) 309 

and represents the first large-scale assessment of latitudinal gradient (and abiotic related 310 

factors) as a driver of trematode communities composition in Cerastoderma edule as a host 311 

model. In addition, this is the first exhaustive study on trematode species composition in 312 

Moroccan cockles. 313 

There are sixteen trematode species infecting Cerastoderma edule in its 314 

distributional range that use this bivalve as first and/ or second intermediate host (de 315 

Montaudouin et al., 2009). In the present study, a total of 12 species were identified along 316 

the whole sampled latitudinal gradient. Nine (Bucephalus minimus, Curtuteria arguinae, 317 

Diphterostomum brusinae, Gymnophallus choledochus, Himasthla continua, H. interrupta, H. 318 

quissetensis, Psilostomum brevicolle and Parvatrema minutum) showed a great dispersal 319 

ability, since they were present in a wide range, i.e. along the sampled latitudes, possibly 320 

related to migration of birds and fish which are trematode final hosts (Feis et al., 2015). For a 321 

trematode species, to complete its life cycle, the three intermediate/final host species should 322 

be present in the same aquatic system (Bustnes and Galaktionov, 1999). Nonetheless, 323 

biogeographical barriers, such as oceans in the case of continental species, are among the 324 

most important factors contributing to isolation and prevention of species exchange among 325 

regions (Cox and Moore, 1980; Ricklefs and Schluter, 1993). 326 

In the present study, the strait of Gibraltar (36 °N), a known geographical barrier, 327 

showed some influence on trematode communities, dividing the observed trematode species 328 

in three different categories. The first category gathers seven trematode species (Monorchis 329 

parvus, Bucephalus minimus, Psilostomum brevicolle, Gymnophallus choledochus, 330 
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Parvatrema minutum, Curtuteria arguinae and Himasthla interrupta) for which there is no 331 

influence of the biogeographical barrier (i.e. Gibraltar) and which occurrence is mediated by 332 

the predominant presence of the intermediate hosts in the sampled area (Peringia ulvae, 333 

Scrobicularia plana, Gobius spp., among others (cf. Table 2)). In this study H. continua was 334 

only found south of Gibraltar (36 °N), however, its published distribution (de Montaudouin et 335 

al., 2009) places this species in this ubiquitous group of parasites. The life cycle of C. 336 

arguinae, is unknown (Desclaux et al., 2006) preventing any hypothesis concerning the link 337 

with first intermediate and final hosts distribution. M. parvus was only observed at the 338 

Portuguese coast, still this isolated occurrence is more likely related to the fact that 339 

trematodes infecting first intermediate host, usually display very low prevalence (Granovitch 340 

and Johannesson, 2000; Islam et al., 2009; Tigga et al., 2014). Indeed, M. parvus has been 341 

previously recorded along the whole studied latitudinal gradient (de Montaudouin et al., 342 

2009). The second category, contrastingly, gathers two trematode species with a Southern 343 

distribution, Diphterostomum brusinae and H. quissetensis, possibly mediated by the 344 

biogeographical barrier and first intermediate host, Tritia reticulata, an abundant gastropod 345 

in southern areas, from France to Morocco (but its actual northern latitude corresponds to 346 

Baltic Sea (Pizzolla, 2005). Thirdly, H. elongata and Renicola roscovitus displayed a 347 

Northern distribution likewise their first intermediate host Littorina littorea, a marine 348 

gastropod that inhabits the intertidal zone from the White Sea to Gibraltar, on the Atlantic 349 

east coast (Johannesson, 1988). Thus, this study confirms that at this latitudinal scale, the 350 

distribution of the trematode species is mainly driven by the occurrence of the first 351 

intermediate host (de Montaudouin and Lanceleur, 2011; Thieltges, 2007; Thieltges et al., 352 

2009), considering that final hosts have generally a wider distribution area (Magalhães et al., 353 

2015). 354 

Trematode species richness (TSR) and trematode total prevalence (TTP) increased 355 

towards south (from 40 °N to 23 °N). This latitudinal dependent pattern of TSR follows the 356 

same trend described for benthic macrofaunal diversity which show higher values with 357 
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decreasing latitudes (Macpherson, 2002; Martins et al., 2013; Roy et al., 2004). However, 358 

this pattern was not observed in the case of Chbika and Sebou estuaries, located at 28 °N 359 

and 34 °N, respectively, that presented the lowest TSR. 360 

Chbika is not a permanent estuary (‘Oued’), which might induce lower macrofaunal 361 

and parasite diversity. Conversely, the Sebou river is one of the biggest North African rivers, 362 

crossing several riverside populations and then impacted by several anthropogenic 363 

activities, including agricultural activities (Perrin et al., 2014). The constant use of pesticides 364 

and fertilizers by the agricultural activities, plus the connection with untreated sewage from 365 

peripheral cities, result in very pollutant loads that contaminate the river to its estuary (Perrin 366 

et al., 2014). This presumable poor health and ecological status of this ecosystem might be 367 

inducing a low trematode parasites diversity, opposing to the latitudinal trend. Indeed, 368 

trematodes, especially free-living stages, are sensitive to water disturbance, reducing their 369 

survival, preventing transmission between hosts (Pietrock and Marcogliese, 2003; 370 

Koprivnikar et al., 2007) and can be used as indicators of retrograde condition (MacKenzie, 371 

1999). Therefore, our results showed that such as free-living species, parasitic fauna seems 372 

to follow a latitudinal gradient of decreasing species richness from tropical to extra-tropical 373 

areas, one of the oldest recognized ecological patterns (Wright et al., 1993; Willig et al., 374 

2003). This latitudinal pattern is usually not clear for communities of parasites with complex 375 

life cycles (Poulin and Leung, 2011; Studer et al., 2013) due to the complexity of host/ 376 

parasite interactions, but also because these cycles (and in particular infection success 377 

stage) depend on several abiotic factors, including anthropogenic stressors (Rohr et al., 378 

2008; Altman and Byers, 2014). 379 

Among abiotic factors, temperature is one of the strongest drivers of trematode 380 

activity (propagule dispersal, survival, infection (Thieltges and Rick, 2006)) as well as of host 381 

infection levels (higher values observed during the warmer seasons (Goater, 1993; Desclaux 382 

et al., 2004)). As an example, in Arcachon bay, a synchrony was observed between 383 

parasites emergence from the first intermediate host and the infection in the second 384 
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intermediate host when water temperature was above 15 °C (de Montaudouin et al., 2016a). 385 

In the case of the present study, the minimum water temperature of the aquatic systems 386 

south of 36 °N was around 15°C, 3 °C above north of 36 °N. This temperature difference can 387 

explain why Morocco displays higher TTP and TMA than Portugal. In fact, this study showed 388 

that abundance and prevalence of trematode communities presented higher values in 389 

ecosystems characterized by higher maximum water temperature (affinity group A). In 390 

contrast, all the northern sampled areas (Portuguese aquatic systems located north of the 391 

strait of Gibraltar) were all gathered in the same affinity group (group B2.2) characterized by 392 

the lowest trematode abundance and prevalence. The Portuguese coast proximity to an 393 

upwelling front and consequent occurrence of cold vertical currents (Queiroz et al., 2012) 394 

may operate as a shield against trematode infection. 395 

In the present study, the discrimination of the trematode assemblages was also 396 

explained by the cockle density, the sediment median grain-size and the type of aquatic 397 

system, some of these factors being possible confounding. Cockles density was higher in 398 

the studied areas characterized by higher maximum temperature. This can result either from 399 

increased recruitment success (Gam et al., 2010; Magalhães et al., 2016) or from better 400 

conditions in terms of food quality and quantity. Nevertheless, the system presenting the 401 

highest cockle density (Sidi Moussa lagoon) was also the system with one of the lowest 402 

trematode abundance suggesting that when a certain density threshold is passed, cercariae 403 

are diluted among second intermediate host and consequent lower mean metacercariae 404 

infection is observed, as previously highlighted by Magalhães et al. (2016). 405 

The type of aquatic system (estuaries, lagoons or bays) showed also to be 406 

determinant for the trematode community composition. There was a clear separation 407 

between three particular areas South of 36 °N, that presented higher trematode biodiversity: 408 

Oualidia and Sidi Moussa lagoon, and Dakhla bay corresponding to group B1 and B2.1, 409 

respectively. These areas are classified as coastal lagoons (group B1) or bays (group B2.1) 410 

and therefore characterized by higher oceanic influence and hydrodynamics (Kjerfve and 411 
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Magill, 1989) and lower water temperature variations, especially Dakhla bay which is located 412 

in the interaction between the Canary stream and the subtropical ridge currents (Orbi et al., 413 

1999). Leung et al. (2009) and Mouritsen and Poulin (2005) referred that these combinations 414 

of characteristics are usually related to higher trematode diversity and abundance, which 415 

was confirmed by our results (the highest rarefaction indices were found in affinity groups B1 416 

and B2.1). Additionally, coastal lagoons tend to be shallower compared to estuaries (Kjerfve, 417 

1986). This enables light to penetrate up to the bottom, allowing benthic plants to thrive 418 

(higher productivity) (Kennish and Paerl, 2010) which could lead to an increase of benthic 419 

communities (first hosts of trematode species) diversity and abundance. As previously 420 

discussed, higher hosts diversity and abundance is usually correlated to higher trematode 421 

diversity (Hechinger and Lafferty, 2005).  422 

Cockles from Óbidos lagoon, located 40 °N, displayed extreme values of infection, 423 

with the lowest TTP and TMA registered. Most of the hosts of the trematode species found 424 

in this study have been previously reported in this lagoon (e.g. Carvalho et al., 2011; 425 

Lourenço, 2006), however this aquatic system presented the lowest values of water 426 

temperature, showing once again the great importance that water temperature has on 427 

trematode infection. Besides, this system also has the peculiarity that cockles were collected 428 

in a subtidal position. Despite this assumption is based on only one sampling point, these 429 

results could suggest that cockles tidal position can also be a driver of trematode infection. 430 

In fact, similar results were found by Gam et al. (2008) in Merja Zerga coastal lagoon 431 

(Morocco) where cockles living in subtidal zones presented lower trematode infection that 432 

intertidal sympatric specimens. This was interpreted as a differential distance to upstream 433 

intertidal first intermediate host.  434 

The temporal gap and the seasonal differences among some of the samples could of 435 

course bias our spatial analysis. However, at these scales, we assume that spatial effects 436 

(17° in latitude corresponding to approx. 3,000 km) are stronger than temporal effects (8 437 

years), once trematode composition at a given site is often stable at multiannual scale. As 438 

an illustration, de Montaudouin et al. (2012) showed that trematode communities of 439 
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Arcachon bay, France, were the same after 8 years, the same temporal gap as in this study, 440 

due to environmental stability along time. In the same direction, in the Ria de Aveiro coastal 441 

lagoon, one of the sampled systems, diversity of trematode was equivalent after 6 years 442 

(Freitas et al., 2014; Russell-Pinto et al., 2006). On the other hand, concerning seasonal 443 

differences, actually, trematode abundance (infecting cockles as second host) follows a 444 

seasonal pattern, increasing their infections during the warmer seasons, contrary to what is 445 

observed in the colder seasons (Desclaux et al., 2004; Goater, 1993). This could mean a 446 

positive influence of the results (in terms of infection intensity) in the Portuguese aquatic 447 

systems (systems sampled during summer). However, due to the low trematode abundance 448 

on the Portuguese systems, seasonal effects are not so evident (Magalhães et al., 2018). 449 

Moreover, the present study findings demonstrated a higher trematode abundance on 450 

Moroccan aquatic systems (winter samples), which means that seasonal effects were not 451 

exacerbated. Finally, we believe that the present findings are of high impact because of the 452 

interest in trematode communities knowledge improvement in each sampled area and each 453 

country. 454 

 455 

5. CONCLUSION 456 

The present study showed that at the studied scale, trematode abundance and 457 

prevalence in cockles seemed to follow a latitudinal pattern. This latitudinal gradient of 458 

trematode, however, was more related to temperature than to latitude. In fact, the type of 459 

aquatic system, namely coastal lagoons or bays, also demonstrated to have an impact, 460 

correlated with the oceanic influence. Nevertheless, the occurrence of trematode species is 461 

only possible when all the hosts of that species were present in the ecosystem.  462 

Furthermore, the obtained results highlighted the ubiquity of trematode parasites in 463 

the different aquatic systems and alert to a possible change on the trematode fauna 464 

composition and abundance in cockle populations driven by thermal modification mediated 465 

by oceanographic global circulation. Besides global temperature monitoring, it is then 466 

imperative to incorporate trematodes communities assessment in ecological studies, due to 467 
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their highly integrative significance, to better predict potential negative impact on host 468 

populations and communities sustainability. Nonetheless, due to the seasonal and temporal 469 

differences between sampling efforts it is important to perform more studies to fully 470 

comprehend what drives trematode communities in a latitudinal gradient, along with studies 471 

that support temporal consistency in trematode communities. 472 
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Fig. 1 Study area. Geographical location of the 17 aquatic systems distributed along 

the Portuguese and Moroccan coastlines. Sampling sites: 1 - Ria de Aveiro; 2 - Óbidos 

lagoon; 3 - Albufeira lagoon; 4 - Sado estuary; 5 - Mira estuary; 6 - Ria Formosa; 7 - 

Tahaddart estuary; 8 - Loukkos estuary; 9 - Merja Zerga lagoon; 10 - Sebou estuary; 11 - 

Oum Er Rbia estuary; 12 - Sidi Moussa lagoon; 13 - Oualidia lagoon; 14 - Souss estuary; 15 

- Chbika estuary; 16 - Khnifiss lagoon and 17 - Dakhla bay. 

 

Fig. 2 Latitudinal distribution of the 12 trematode species found in Cerastoderma 

edule. Dashed line: Strait of Gibraltar. Grey bar: Presumable distributional range. 

 

Fig. 3 Trematode mean abundance per aquatic system for the two most 

representative species, Parvatrema minutum (black bar) and Himasthla quissetensis (dark 

grey bar), and for the other cercariae (light grey bar). 

 

Fig. 4 Cluster analysis based on trematode parasites communities in seventeen 

aquatic systems from Portugal and Morocco (A) and Principal coordinates ordination (PCO) 

showing the variables that better explained samples distribution (B). MGS: Sediment median 

grain-size; M Temp: Maximum annual water temperature; density: cockle density. Sampling 

sites: 1 - Ria de Aveiro; 2 - Óbidos lagoon; 3 - Albufeira lagoon; 4 - Sado estuary; 5 - Mira 

estuary; 6 - Ria Formosa; 7 - Tahaddart estuary; 8 - Loukkos estuary; 9 - Merja Zerga 

lagoon; 10 - Sebou estuary; 11 - Oum Er Rbia estuary; 12 - Sidi Moussa lagoon; 13 - 

Oualidia lagoon; 14 - Souss estuary; 15 - Chbika estuary; 16 - Khnifiss lagoon and 17 - 

Dakhla bay. 

 

Fig. 5 Distance-based redundancy analysis plot and the correlated variables that 

explained aquatic systems distribution based on trematode abundance. Sampling sites: 1 - 

Ria de Aveiro; 2 - Óbidos lagoon; 3 - Albufeira lagoon; 4 - Sado estuary; 5 - Mira estuary; 6 - 

Ria Formosa; 7 - Tahaddart estuary; 8 - Loukkos estuary; 9 - Merja Zerga lagoon; 10 - 



Sebou estuary; 11 - Oum Er Rbia estuary; 12 - Sidi Moussa lagoon; 13 - Oualidia lagoon; 14 

- Souss estuary; 15 - Chbika estuary; 16 - Khnifiss lagoon and 17 - Dakhla bay. 



Table 1. Characterization of each sampled area in terms of type of aquatic system (1 = lagoon; 2 = estuary; 3 = bay), latitude (LAT), longitude 

(LON), surface area (km2), maximum annual water temperature (M Temp, °C), minimum annual water temperature (m Temp, °C), maximum 

annual water salinity (M Sal), minimum annual water salinity (m Sal) and sediment median grain-size (MGS, mm). ND – no data 

 

System Type LAT (N) LON (W) Surface Area 
(km2) M Temp m Temp M Sal m Sal MGS References 

Ria Aveiro 1 40°38' 8°44' 83.0 22.0 15.0 28.0 12.0 0.277 
Dias et al., 2000 
Lillebø et al., 2015 

Óbidos 1 39°24' 9°12' 7.0 22.0 10.0 37.0 26.0 0.392 
Malhadas et al., 2009 
Oliveira et al., 2006 

Albufeira 1 38°30' 9°10' 1.3 22.5 11.0 36.0 31.0 0.404 Fortunato et al., 2014 

Sado 2 38°28' 8°50' 240.0 21.9 13.8 36.0 10.9 0.304 
Bao et al., 1999 
Martins et al., 2001 

Mira 2 37°43' 8°46' 16.0 22.5 12.0 35.0 27.0 0.353 Silva et al., 2006 

Ria Formosa 1 36°58' 7°52' 170.0 26.0 12.0 36.5 13.0 0.326 Gamito and Erzini, 2005 

Tahaddart 2 35°46' 5°42' 10.0 26.0 13.0 41.0 21.0 0.194 Achab, 2011 

Loukkos 2 35°07' 06°00' 72.0 27.0 15.0 34.0 22.0 0.203 Geawhari et al., 2014 

Merja Zerga 1 34°51' 06°16' 27.0 28.0 11.0 35.0 27.0 0.272 Gam et al., 2010 

Sebou 2 34°16' 06°39' 17.5 30.0 16.0 35.0 12.0 0.219 Haddout et al., 2015 

Oum Er Rbia 2 33°28' 08°34' 1.5 25.0 15.0 35.0 30.0 0.146 Khalki and Moncef, 2007 

Sidi Moussa 1 32°54' 08°49' 4.2 27.0 15.0 33.0 22.0 0.273 Maanan et al., 2004 

Oualidia 1 32°45' 08°30' 3.0 21.0 16.0 36.0 28.0 0.181 Hilmi et al., 2005 

Souss 2 30°21' 09°35' 16.0 25.0 19.0 39.0 35.0 0.202 Anaijar et al., 2008 



Chbika 2 28°14' 11°42' 0.2 ND ND ND ND 0.184  

Khnifiss 1 28°03' 12°15' 65.0 22.0 16.0 38.0 34.0 0.150 Semlali et al., 2012 

Dakhla 3 23°45' 15°50' 400.0 26.0 14.0 39.5 37.0 0.120 Zidane et al., 2018 

 
 



Table 2. Digenean trematode species found in Cerastoderma edule from the Atlantic coasts 

of Portugal and Morocco with indication of the hosts involved in their life cycle. Adapted from 

de Montaudouin et al. (2009). *: Probable final host of Curtuteria arguinae. 

 

Trematode species 1st intermediate host 2nd intermediate host Final host 

Bucephalus minimus Cerastoderma edule Pomatoschistus spp. Dicentrarchus labrax 

Monorchis parvus Cerastoderma edule Cerastoderma edule Diplodus spp. 

Gymnophalus 
choledochus 

Cerastoderma edule Cerastoderma edule Water birds 

Curtuteria arguinae Unidentified species Cerastoderma edule Water birds (*) 

Diphterostomum brusinae Tritia reticulata Cerastoderma edule 
Blennius, Sargus. 
Symphodus, Oblata 

Himasthla continua Peringia spp. Cerastoderma edule Water birds 

Himasthla elongata Littorina littorea Cerastoderma edule Water birds 

Himasthla interrupta Peringia spp. Cerastoderma edule Water birds 

Himasthla quissetensis Tritia reticulata Cerastoderma edule Water birds 

Parvatrema minutum Scrobicularia plana Cerastoderma edule Haemotopus ostralegus 

Psilostomum brevicolle Peringia spp. Cerastoderma edule Water birds 

Renicola roscovitus Littorina littorea Cerastoderma edule Water birds 

 
  



Table 3. Results of the regression analyses performed to test the influence of latitude 

(independent variable) on trematode species richness (TSR) and total trematode prevalence 

(TTP) in Cerastoderma edule. SE: standard error. w/o: without. Sampling sites: Se – Sebou 

estuary; Ch – Chbika estuary. 

 
 Predictors Estimate SE p - value R2 

Trematode 
species richness 
(TSR) 

     

 Constant 11.265 3.272 0.004  

 Latitude -0.225 0.096 0.034  

 Model  1.164 0.034 0.217 

Trematode 
species richness 
(TSR) 

     

(w/o Se & Ch) Constant 14.501 2.344 <0.001  

 Latitude -0.307 0.068 0.001  

 Model  1.164 0.001 0.608 

Total Trematode 
Prevalence (TTP)      

 Constant -4.158 1.454 0.013  

 Latitude 0.371 0.091 0.001  

 Latitude2 -0.007 0.001 <0.001  

 Model  0.136 <0.001 0.821 

  



Table 4. Prevalence of trematode parasites infecting cockle populations in the aquatic 

systems of Portugal and Morocco. Sampling sites: RA - Ria de Aveiro; OB - Óbidos lagoon; 

AL - Albufeira lagoon; SA - Sado estuary; MI - Mira estuary; RF - Ria Formosa; TA - 

Tahaddart estuary; LO - Loukkos estuary; MZ - Merja Zerga lagoon; SE - Sebou estuary; 

OR - Oum Er Rbia estuary; SM - Sidi Moussa lagoon; OA - Oualidia lagoon; SO - Souss 

estuary; CH - Chbika estuary; KH - Khnifiss lagoon and DA - Dakhla bay. N: number of 

dissected cockles. 
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RA 

(n=65) 
_ _ _ _ _ 11 _ _ _ _ 26 _ 35 

OB 

(n=35) 
3 _ _ _ _ _ _ _ _ _ _ 3 6 

AL 

(n=20) 
_ 40 _ 20 _ 10 _ _ _ _ _ _ 55 

SA 

(n=21) 
_ _ _ _ _ 48 5 _ _ _ _ _ 52 

MI 

(n=20) 
_ _ 50 _ _ _ _ _ _ 5 _ _ 55 

RF 

(n=25) 
_ _ _ 4 _ _ _ 36 20 4 8 _ 48 

M
o

ro
cc

o
 

TA 

(n=13) 
8 _ _ 15 54 _ _ _ _ _ 100 _ 100 

LO 

(n=20) 
10 _ _ 10 _ _ _ _ _ _ 90 _ 90 

MZ 

(n=20) 
_ _ _ 30 _ _ _ 70 100 _ 100 _ 100 



SE 

(n=17) 
_ _ _ _ _ _ _ _ _ _ 100 _ 100 

OR 

(n=20) 
_ _ _ _ 80 _ 65 _ _ 45 95 _ 100 

SM 

(n=15) 
7 _ _ 47 _ _ 100 100 100 13 67 _ 100 

OA 

(n=20) 
5 _ _ 30 _ _ 75 100 100 20 _ _ 100 

SO 

(n=20) 
_ _ 5 _ 10 _ 60 _ _ _ 95 _ 100 

CH 

(n=11) 
_ _ _ _ _ _ _ _ _ _ 100 _ 100 

KH 

(n=20) 
10 _ 5 85 100 _ 60 _ _ 45 100 _ 100 

DA 

(n=36) 
_ _ _ 92 47 _ 39 _ 75 25 11 _ 100 

 



Table 5. Characterization of each affinity group in terms of maximum annual water temperature (M Temp, °C), minimum annual water 

temperature (m Temp, °C), maximum annual water salinity (M Sal), minimum annual water salinity (m Sal), sediment median grain size (MGS, 

mm), cockles density (ind.m-2) and Rarefaction index for a standardized number of 10 individuals (ES(10)). Significant differences among 

affinity groups are represented with different letters (p < 0.05). Sampling sites: RA - Ria de Aveiro; OB - Óbidos lagoon; AL - Albufeira lagoon; 

SA - Sado estuary; MI - Mira estuary; RF - Ria Formosa; TA - Tahaddart estuary; LO - Loukkos estuary; MZ - Merja Zerga lagoon; SE - Sebou 

estuary; OR - Oum Er Rbia estuary; SM - Sidi Moussa lagoon; OA - Oualidia lagoon; SO - Souss estuary; CH - Chbika estuary; KH - Khnifiss 

lagoon and DA - Dakhla bay. 

 

Affinity 
groups Sampling areas M Temp m Temp M Sal m Sal MGS Cockle density ES (10) 

A1 TA, LO, SE, SO 27.0 ± 2.2 15.8 ± 2.5 37.3 ± 3.3 22.5 ± 9.5 0.2 ± 0.0a 404 ± 457a 1.0 

A2 MZ, OR, KH 25.0 ± 3.0 14.0 ± 2.6 36.0 ± 1.7 30.3 ± 3.5 0.2 ± 0.1a,b 1643 ± 2267a,b 1.3 

B1 SM, OA 24.0 ± 4.2 15.5 ± 0.7 34.5 ± 2.1 25.0 ± 4.2 0.2 ± 0.1a,b 6092 ± 1114b 2.4 

B2.1 DA 26.0 14.0 39.5 37.0 0.1b 15c 2.4 

B2.2 RA, OB, AL, SA, MI, RF 22.8 ± 1.6 12.3 ± 1.8 34.8 ± 3.4 20.0 ± 9.0 0.3 ± 0.0c 135 ± 304a 1.0 

 

  



Table 6. Results of the Similarity Percentages (SIMPER) used to characterize the type of aquatic systems (coastal lagoons vs. estuaries) and 

the geographical position (northern systems vs. southern systems) by the trematode species (of Cerastoderma edule) that most contributed to 

dissimilarity between groups. 

 

 Species Average abundance group 1 Average abundance group 2 Dissimilarity Contribution (%) 

Coastal lagoons (1) vs 

Estuaries (2) 

Parvatrema minutum 5.42 12.22 69.28 

Himasthla quissetensis 1.70 0.00 8.76 

Himasthla interrupta 0.66 0.29 4.64 

Curtuteria arguinae 0.91 0.00 3.83 

Himathla elongata 0.05 0.13 3.74 

 Species Average abundance group 1 Average abundance group 2 Dissimilarity Contribution (%) 

Northern systems (1) vs 

Southern systems (2) 

Parvatrema minutum 0.84 13.15 58.62 

Himasthla quissetensis 0.06 1.81 10.26 

Dipheterostomum brusinae 0.04 1.04 9.12 

Curtuteria arguinae 0.00 1.30 8.48 

Himasthla interrupta 0.01 0.99 6.02 

 













Highlights 1 

Trematode diversity in the southern distribution area of Cerastoderma edule. 2 

Trematode species occurrence driven by the presence of the first intermediate host. 3 

Trematode prevalence and abundance was positively correlated to temperature. 4 

At large scale, cockle density positively influences trematode abundance. 5 

Systems under buffered environmental variations presented higher trematode 6 

abundance. 7 

Cockle density influences positively trematode abundance within certain values 8 
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