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Abstract 

Current environmental policies aim to reduce the levels of toxic substances in aquatic 

ecosystems and to promote the water reuse after appropriate treatment of wastewater. 

Chromium is a hazard element present in effluents of various industries that should be 

reduced to achieve the objectives of those policies. Most of the results reported in the 

literature concern the use of nanomaterials for chromium sorption dissolved either in 

synthetic or mono-elemental spiked solutions. The present work reviews the results of 

research undertaken in the last decade on the application of various nanomaterials to 

decrease chromium concentrations in contaminated waters. Major factors influencing the 

removal efficiency were examined. Because most of the published studies are based on 

simple experiments with deionised water and mono contamination further studies are 

suggested focused on effects of natural and artificial chelators, interferences of other trace 

elements competing with chromium sorption, reduction the sorbent mass per water 

volume.  

 

Keywords: Nanomaterials, Sorption, Chromium, Water Treatment.  

 

1. Introduction  

Present life style requires the exploitation of Earth's resources beyond their sustainability 

causing the reduction or depletion of limited resources [1]. Environmental issues started 

with the Industrial Revolution, the discharge of industrial effluents, either inadequately 

treated or untreated, into aquatic systems lead to the increase of hazardous inorganic and 

organic contaminants in rivers, lakes, estuaries and coastal areas [2]. Because of the non-

degradation character of many contaminants, they are transfer to the food chains with 

impact on the ecosystem services and reducing the marine food safety [3,4]. Volume of 
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dumped debris in water systems increased often surpassing the self-cleaning capacity and 

purification of aquatic systems. It is foreseen these discharges will increase in the future as 

population tends to migrate and concentrate in urban areas, as response to modern life and 

adversities related to climate changes. 

Chromium is among the most toxic trace elements released to surface waters and ground 

waters due to its widespread use in industrial applications, such as leather tanning, 

metallurgy, electroplating and refractory [3]. The increasing number of articles published 

about chromium toxicity over the last 10 years [3] indicates the efforts to illustrate and 

remediate the chromium-bearing contamination. Trace elements can be removed from 

wastewaters by conventional methods, such as chemical precipitation, ion exchange, 

membrane filtration, coagulation/flocculation and electrochemical treatment [5]. However, 

these methods have low efficiency and produce large volumes of wastes. Alternatives for 

the treatment of water contaminated by metals are sorption methods [6]. Sorption 

corresponds to the transfer of the sorbate from the liquid phase to the surface of the 

sorbent. Sorption efficiency is influenced by various factors, such as pH, temperature, 

nature and amount of sorbent, initial metal concentration, ionic strength, and the presence 

of other contaminants [7–9]. Depending on the attractive forces between the sorbent and 

the sorbate, this becomes bound by physical (physiosorption) and/or chemical 

(chemisorption) interactions [6]. While in the physiosorption the sorbate bonds to the 

sorbent surface by weak forces, such as Van der Waals interactions, which is a reversible 

process, the chemisorption is frequently irreversible due to the presence of strong chemical 

bonds between the sorbent and the sorbate.  

A large variety of sorbents are available to remove trace elements from waters [5], 

including nanomaterials with various types of coatings and chemical functionalizations 

[4,10]. Nanomaterials, i.e., materials and structures with at least one dimension of 1-100 
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nm [11], exhibit unique mechanical, optical, magnetic and chemical properties highly 

depended on shape, size, surface characteristics and inner structure that differ from the 

characteristics of particles and macroscopic surfaces of similar composition [12–14]. 

Sorption mechanisms by a nanomaterial sorbent are also a function of the sorbent 

characteristics and physical-chemical conditions of the solution where the sorbent is 

removed. Nanomaterials should satisfy some criteria to be used as sorbents for toxic 

elements removal from wastewater [15]: nontoxic; high sorption capacities; selectivity to 

the low concentration of contaminants; easy removal of the sorbed contaminant from the 

surface of the nanomaterial; recycled. Until present, a variety of nanomaterials such as 

carbon nanotubes, carbon based material composites, graphene, nano metal or metal 

oxides, and polymeric sorbents fulfil those criteria and have been studied in the removal of 

toxic trace elements from aqueous solutions [15].  

The coupling of sorption ability and magnetic properties in certain nanomaterials have also 

been explored envisaging a new class of nanosorbents [16,17]. Magnetic nanosorbents 

offer the great advantage of allowing fast recovery by employing magnetic separation 

technologies. A number of nanosorbents comprising magnetite nanoparticles have been 

reported by our laboratories, which include core/shell nanoparticles for the removal of 

heavy metal ions [18] and magnetic bionanocomposites for the removal of organic 

pollutants [19]. The successful implementation of magnetic nanosorbents depends, among 

other factors, on their efficiency for the selective uptake of pollutants, which requires 

further developments concerning the type of surface chemistry involved. The intensive use 

of nanomaterials may have some environmental risks and impacts on human health [13]. It 

is hence crucial to evaluation the nanoparticles toxicity, which depends on their 

aggregation, agglomeration, dispensability, size, solubility, surface area, surface charge 

and surface chemistry [20].  
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The objective of this review is to serve as a one-stop-reference by bringing together results 

of the most recent research on the application of synthetic nanomaterials in the treatment of 

chromium-contaminated waters. 

2. Chromium  

 

2.1. Chemistry  

Chromium (atomic number 24) is a steely-grey, lustrous, hard and brittle metal occurring 

in the earth’s crust crystalline solid [21] with atomic weight 51.996 u, melting point 1907 

ºC and boiling point 2672 ºC. Among the various oxidation states, the most common in the 

aquatic environment are the trivalent(III) and hexavalent(VI) states, which differ in 

physicochemical properties and toxicity. Whereas Cr(III) is an essential nutrient in trace 

amounts, Cr(VI) is toxic and carcinogenic. Solubility of the compounds varies: Cr(III) 

compounds, such as Cr(OH)3 which precipitate at neutral pH (Figure 1), are generally 

insoluble in water; Cr(VI) is highly soluble in the full pH range [3]. The ratio between 

chromium hexavalent, Cr(VI), and trivalent, Cr(III), strongly depends on the solution pH, 

oxidative properties (redox potential) and kinetics. Depending on these conditions, 

chromium in water can hence change from one oxidation state to another [21]. As 

presented in Figure 1, there are two predominant forms of Cr(VI) depending on the 

solution pH: HCrO4
- is predominant at pH between 2.0 and 6.5, while CrO4

2- is 

predominant at pH>6.5. Cr(III) in aqueous solution exists in four main forms, in which 

soluble Cr3+ complexes predominate at pH <4.0, and Cr(III) precipitates as Cr(OH)3 at pH 

between 5.5 and 12.5. 

Chromium speciation in aquatic systems may be modified by external factors such as solar 

radiation, complexation in water, redox gradient between bottom water and the upper 
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sediment layer, and interact with other redox sensitive elements such as iron and 

manganese [22]. Figure 2 illustrates the transformations and pathway of chromium species 

in the water column, including the interfaces water-atmosphere and water-sediment [23]. 

Direct assessment of Cr speciation in natural waters is difficult because determination of 

the Cr forms present in solution implies the preservation of species integrity during the 

sample storage, pre-treatment, extraction and the determination procedure. Reliability of 

the results requires the use of adequate analytical methodologies and speciation analysis. 

 

2.2. Toxicity  

Chromium speciation influences uptake by the organisms and toxicity [24]. Chromium 

residues tend to be amplified along the food chain [25,26]. Although Cr(VI) is considered 

one hundred times more toxic than Cr(III) [27], overall chromium and its compounds have 

been classified to be human carcinogens by the Institute for the Regulation of Water and 

Solid Waste (IARC). Chromium causes irritation and ulcers in the stomach and small 

intestine, damage on kidney and liver, sperm, and male reproductive system [21]. Also, it 

can cause respiratory problems, including irritation of the lining of the nose, runny nose, 

and breathing problems such as asthma, cough, shortness of breath and wheezing. 

Chromium can lead to cancer in lung, stomach and intestinal tract. Table 1 gives the 

concentration limits of chromium for different uses of water, according to criteria of 

international organizations such as the Agency for Toxic Substances & Disease Registry 

(ATSDR) and World Health Organization (WHO).  Regarding Cr threshold for drinking 

water, although most EU countries apply a legal limit of 50 µg/L of chromium, limits are 

going to be reduced soon to 25 µg/L, according to a recent recast of the Directive 

2001/83/EC, which occurred in 2018. A few years ago, in some Italian cities, chromium 

levels were already at the limits of the Directive 2001/83/EC on the quality of water 
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intended for human consumption. This has led Italy to notify the European Commission of 

the need to change the parameters of hexavalent chromium in drinking water, as well as to 

introduce a limit of 10 µg/L for Cr(VI) in drinking water in the current Legislative Decree. 

Also, Italy announces that detection of chromium concentrations above the legal limit will 

imply investigations on water source (spring, groundwater, …). Besides Italy, there are 

other EU countries, such as Greece, concerned about high levels of hexavalent chromium 

in waters, which frequently exceed the permissible limit for human consumption [28]. 

2.3. Natural sources and industrial emissions of chromium 

Both, natural processes and anthropogenic emissions contribute to the presence of 

chromium in aquatic systems. , Weathering of rocks and soil erosion and leaching by 

rainwater are major natural processes favouring the input of chromium to rivers, lakes, 

estuaries, and ocean [29]. Discharges of industries such as electroplating, leather tanning, 

stainless steel welding, and ferrochrome and chrome pigment production contribute to 

chromium concentrations in aquatic environment above the regional baseline values 

[21,30]. Chromium (hexavalent chromium) has a key role in metal finishing industry 

modifying the surface of a product to enhance its appearance and reflectivity, such as 

colour or brightness, wear resistance, corrosion resistance, electrical resistance, chemical 

resistance, hardness, or to produce surface characteristics essential for subsequent 

operations [31]. These processes are applied in telecommunications, aviation, construction, 

jewellery, transport, among other sectors. More than 650 galvanizing plants were installed 

in European countries affiliated to the European General Galvanizers Association 

(Woolley, 2008) being distributed mainly by Germany (160), Italy (90), Spain (72), United 

Kingdom (62) and France (60). The release of trivalent chromium worldwide responsible 

for approximately 20% of chromium emissions is the leather tanning industry where 
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putrescible hide or skin is converted into leather. The permanent stabilization of the skin 

matrix against biodegradation is possible using basic chromium sulphate [32]. Although 

this industry is not critical in Europe, it has a high impact in Asia, Africa, and South 

America (Public Partnership for Better Innovation Policies and Instruments in Support of 

Eco-Innovation: ECOPOL, 2013). For example, leather tannery industry in China is 

responsible for 20% of chromium discharges into water, the average total amount between 

1990 and 2009 reaching more than 0.5 thousand tons per year [34]. 

The European Pollutant Release and Transfer Register (E-PRTR) estimates the quantities 

of 91 contaminants released to air, water and land. Considering the period 2007-2015 this 

document reports the annual release of 550 tons of Cr to the European waters. Figure 3 

compares the contribution of various industrial activities on the emission of chromium in 

2014 and 2015. The sector “Production and processing of metals” accounts for more than 

60% of the chromium emission into the water.  

3. Material and Methodology  

Numerous studies have been published on chromium sorption in aqueous phase using 

various materials and in particular synthetic nanomaterials [9,35–39]. To select the articles 

published in the literature with respect to chromium sorption by synthetic nanomaterials 

search was done in the principal collection of Web of Science. The following keywords 

were used: (i) chromium; (ii) nanomaterial or nanoparticle or nanosorbent; (iii) uptake or 

sorption; (iv) removal or remediation or water. The search was confined to the period 

2007-2017. Approximately 200 articles were identified, although a few of them were 

focused on the development of quantification methodologies, being less relevant on 

chromium sorption by synthetic nanomaterials.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

For each selected article, it was extracted the information related to the parameters 

considered relevant in sorption [7–9]: name and nature of the sorbent, mass of the sorbent 

with respect to the water volume, type of water used in the experiment, type of experiment 

(single or other contaminants besides chromium), pH, temperature, contact time between 

the sorbent and the solution, initial concentration of chromium, chromium species initially 

present in solution, and removal efficiency. 

4. Results and Discussion 

Table 2 lists the synthetic nanomaterials and the experimental conditions employed in the 

studies of the selected articles from the literature. In order to encompass the collected 

information in a single Table, intervals of values are presented for the uptake capacity or 

removal efficiency of each nanomaterial or group of nanomaterials, as well as for the 

relevant parameters aforementioned.  

 

Type of materials. Among the various materials used for chromium removal, nanoparticles 

have been the most common, either using just the core nanoparticles [9,40–46], 

nanoparticles with functionalization [35,47–49], or modified nanoparticles  incorporated 

on substrates [36,50]. Other type of materials have been used, such as nanocomposites 

[37,51,52], nanofibers [38] and carbon nanotubes [39]. In present review, nanomaterials 

like zero-valent iorn nanoparticels (nZVI) were not found. In the first step towards the use 

of this material the toxic Cr(VI) is reduced to the less hazardous Cr(III), which is then 

removed by sorption to the nZVI surface and precipitation by iron-hydroxides [53,54]. 

 

Interactions with other elements. Most of the studies mentioned in Table 2 describe the 

chromium sorption experiments using mono-elemental systems, Cr being the only 
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contaminant to be treated. Only a few studies tested both mono-elemental and multi-

elemental systems. Distilled or milli-Q water have been considered. Absence of 

competitive ions or other contaminants are simplistic approaches to the complex conditions 

existing in aquatic systems or contaminated waters. The lack of chromium sorption 

experiments using multi-elemental systems, where Cr was not the only contaminant to be 

treated, is a weakness in this kind of research. 

 

Type of solutions. Only a few studies addressed the treatment of contaminated waters as 

real samples, such as groundwater, effluents or wastewater [41,46,48,55,56]. Chen et al. 

[57] have simulated natural waters by testing solutions of different complexity, deionized 

distilled water, tap water, mountain stream water and river water. Although the absence of 

competitive ions or other contaminants be the most common approach in this kind of 

research, the study of nanomaterials behaviour in natural waters is crucial before the 

material be implemented in the market. Real waters have varied and complex composition; 

thus, some researchers try to simulate the reality through the dissolution of salts that put in 

the waters the ions found in natural systems.  

 

Temperature. Most of the removal experiments have been tested at temperature between 

20 and 25ºC, presumably to be more practical and reduce associated costs with cooling and 

heating. Other studies were performed approximately at 30ºC [39,48,49,51,58–63], at 35ºC 

[37], and even at 40ºC [64,65] most likely ajusting to the natural conditions existing in 

warmer countries. Apart from the cases described by [8,9,39,66,67], efficiency of 

chromium sorption increases with temperature.  
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Contact time. In general, contact time between the nanomaterial and the contaminant were 

less than 2 days, although data exist for 3 days [55], 7 days [68] and 15 days [56]. Removal 

experiments for industrial application should be performed during a contact period 

between the nanomaterial and the contaminant less than 48 hours to be feasible for the 

industry. This is because very long sorption processes imply the existence of industrial 

tanks that are inactive for a long time. On the other hand, treated effluents must be 

discharged quickly without endangering the life of aquatic organisms that are exposed to 

these effluents. 

 

pH. Removal of Cr(VI) was tested at pH from 2 to 3 [9,39,42–44,66,69], although some 

authors have been studied the removal at more realist pH interval, 5-8 [40,70], which is the 

pH found in actual industrial effluent. Values of optimal pH in the removal of Cr(III) were 

between 5 and 7 [9,38,42,48,51,71].  

 

Amount of sorbent. It is well documented that, for the same Cr concentration, the rate of 

sorption increases with the amount of sorbent. However, the larger amount of material 

used should be avoided because it will generate greater amounts of residues to be treated 

increasing the cost of process. Several works have tested low doses of sorbent per volume 

of solution, such as Bisht et al. [72], Paul et al. [58], Kaprara et al. [40], Debnath et al. 

[45], Tahergorabi et al. [47], Khan et al. [43], Simeonidis et al. [70], Guo et al. [73], Mao 

et al. [60], Moradi and Baniamerian [74], Srivastava et al. [37], Mohamed et al. [67] and 

Babaei et al. [36]. In particular Bisht et al. [72] used 5, 10, 15, 20, 25 and 30 mg/L of 

EDTA-Fe3O4 nanoparticles, Paul et al. [58] used 10 mg/L and 50 mg/L of TiO2 

nanoparticles and Kaprara et al. [40] used 25 mg/L of Sn(II) oxy-hydroxides nanoparticles 

for Cr(VI) removal.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

 

Chromium concentrations. For the removal experiments, a wide range of chromium 

concentrations has been reported in the literature, between 10 µg/L [40] and 11 000 000 

µg/L [75]. The maximum allowed concentration of total chromium in residual waters is 2 

000 µg/L, meaning the studies that used higher concentrations are unrealistic. In this way, 

some studies [9,40,78,43,50,52,68–70,76,77] run their experiments with lower 

concentrations, taking into consideration the allowed limits of chromium in water. Among 

these, Chowdhury and Yanful [76], Simeonidis et al. [70] and Gifford et al. [68] were the 

only ones that studied concentration equal or <2000 µg/L and Kaprara et al. [40] studied 

the removal of 10 µg/L of chromium using Sn(II) oxy-hydroxides nanoparticles. 

 

Chromium speciation. Cr(VI) have been the most investigated species, although some 

researchers have run experiments with Cr(III) forms [38,47,48,51,71]. Others studies used 

with both Cr(III) and Cr(VI) [9,42,69,77,78]. Only a few studies mention the analytical 

methodologies to discriminate the quantification of Cr(III) and Cr(VI) during the removal 

process. Most of the methodologies referred in the works of Table 2 are only able to 

measure total Cr and so most of the values reported for uptake capacity or removal 

efficiency are based on the initial and final concentrations regardless the starting chromium 

species. Using the materials mentioned in Table 2 both Cr species are removed through 

sorption mechanisms. However, the mechanisms of removal crucially depend on Cr 

speciation. According to Debnath et al. [45], Cr(VI) ions sorb to CaFe2O4 NPs through 

electrostatic interactions. Rajabathar et al. [79] suggest that the sorption mechanism of 

Cr(VI) is purely an electrostatic interaction. Luther et al. [69], Cantu et al. [77], Bisht et al. 

[72], Srivastava et al. [37], Valle et al. [9] and Mahmoud et al. [42] propose that 

mechanisms for the binding of chromium(VI) is mainly physisorption. Despite those 
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studies suggesting physical interaction between Cr(VI) and sorbents, not all authors agree 

on the nature of the interaction during the sorption process. The presence of chemical 

bonds is suggested as a secondary mechanism [69], although Babaei et al. [36] suggest that 

sorption is governed by chemical forces rather than physical electrostatic interactions. 

Even so, the removal of Cr(VI) is undoubtedly a sorption process. Regarding the reaction 

of Cr(III) with the different materials, the binding is through an ion or molecular exchange 

mechanism combined with some kind of physisorption [69,77]. Egodawatte et al [38] 

proposed that the binding mechanism between the nanofibers and Cr(III) involves the 

sorption of a positive complex on the surface of the materials. Arthy et al. [51] suggested a 

chemisorption mechanism. When no sorption mechanism is proposed in the articles, the 

interaction between Cr(III) and the materials is described as sorption process [48,71].  

 

Best material performance. Lastly, magnetic iron oxide nanoparticles/sugarcane bagasse 

composite [51] and Cr(VI)-imprinted poly(HEMAH) nanoparticles [75] were the materials 

reported in the literature in the last years as being the ones with the most affinity for Cr(III) 

and Cr(VI) uptake, achieving a capacity of approximately 518 mg/g and 3 830 mg/g, 

respectively. However, maximum uptake capacity is a tricky parameter for the evaluation 

of a material efficiency. This parameter depends on the experimental conditions used, 

namely initial metal concentration and amount of nanomaterial used. Thus, the sorption 

performance of a material can not be assessed by considering only the sorption capacity 

value achieved. 

 

Application of synthetic nanomaterials in real industrial effluents. The use of 

nanomaterials at technological level is still a big question to be solved. The materials 
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presented in Table 2 are far from being implemented in the market, with a maximum 

Technology Readiness Level (TRL) for industrial and socioeconomical aspect of 3.  

Then, the published works are just a probe of concept, showing that there was a poor 

attempt to apply the nanomaterials to real samples and describing mainly its application in 

synthetic or mono-elemental spiked solutions. In this context, further laboratory removal 

essays are still required, never forgetting that these conditions must be realistic and adapted 

to the application. And after all laboratory tests are optimized using realistic experimental 

conditions, it is necessary to test the material in real effluents because the behaviour of a 

material may be very good in a synthetic contaminated water, but the same could not occur 

in the real system. For example, different industrial effluents have different composition 

and it is not possible to mimic all the real scenarios. 

There are no reported successful case of applications to real effluents since the few studies 

that evaluated the potential of nanomaterials in real industrial effluents, either adding 

chromium to the samples of water or using a high amount of sorbent (economically 

unviable) and even performing the sorption experiments in very low volumes of water. 

However, some important considerations to apply a nanomaterial in real industrial 

effluents are the following: 

• The treatment systems usually used are in batch. 

• The effluents can need some kind of pre-treatment. 

• Nanomaterials can be on-single use or a mixture of nanomaterials can be used. In 

the last case, it is necessary to address in which way the recovery process will be 

carried out; the ideal situation is the recovery of chromium in a way it can be 

further reused without any treatment – circular economy. 
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• The application of nanomaterials in industrial streams with large contents of 

particulate matter or high chemical oxygen demand (COD) content may not be 

successful. 

 

Toxicity of remediated water. Along with the development of new removal processes to 

remediate water, dedicated research regarding environmental risks is still lacking. Up to 

now several studies have described technical properties and applications of nanomaterials 

for Cr removal from water (Table 2), but scarce information is available concerning their 

impacts towards aquatic organisms, in particular, no information is available on the 

potential toxicity of the Cr remediated water. It is important to test the ecotoxicity of 

treated water since recent works (not yet published) have shown that remediated waters 

can remain toxic for the aquatic organisms. It is also needed to access the environmental 

risk of the nanomaterials itself because of non-stability of some nanomaterials such as 

silver and gold nanoparticles, which can have impact on aquatic ecosystems due to toxicity 

of remaining material. 

 

5. Conclusions and Perspectives  

This review summarizes the information published in the literature between 2007 and 2017 

on the influence of various factors on sorption of chromium by nanomaterials. Although 

some studies dealt with Cr (VI) or Cr(III), changes of oxidation status were not tested 

during the sorption process since the analytical methodology used is for determination of 

total chromium. Articles evidence the high adsorption capacity of nanomaterials for 

chromium species, though most studies have been focused on mono-Cr spiked solution of 

Milli-Q water. Despite the effectiveness in decreasing chromium concentrations at simple 
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laboratory experiments, the viability and success of nanomaterials as sorbents depends on 

crucial factors that need further evaluation. The effect of natural and artificial chelators, 

commonly present in contaminated waters is a key step to approach realistic conditions. 

The effect of interferences of other trace elements competing with chromium sorption 

should be studied. In order to minimize wastes that ultimately might result in the discharge 

of nanoparticles to the environment, a reduction of the mass of sorbent per water volume is 

envisaged. Furthermore, it is important to consider in future studies the potential toxic 

impacts derived from Cr remediated water. As additional concluding remarks, in order to 

identify the best conditions to test the efficacy of nanosorbents it is crucial to carried out a 

first set of experiments varying the amount of sorbent used, the solution pH, the chromium 

concentration and to monitor the concentration of chromium in solution with time. With 

these experiments it would be possible to evaluate the influence of the different 

experimental parameters on the sorption process. Moreover, to optimize the performance 

of a specific nanomaterial in a determined matrix and expedite the study of the sorption 

process, a statistical tool designated by response surface methodology (RSM) can be 

applied. This tool has already been used in previous studies to remove contaminants, 

including chromium [80], using nanomaterials. Also, RSM allows not only to study the 

impact of the experimental parameters on the desired response (in this case, removal of 

chromium), but also to determine the best conditions to obtain the best performance of the 

material. This review allowed identifying the main limitations of chromium sorption 

process using synthetic nanomaterials, based on the works published until the date.  

 

Acknowledgments 

This work was supported by the National Funding for Science and Technology (FCT) 

through doctoral and postdoctoral grants to D.S. Tavares [SFRH/BD//103828/2014]; and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

the University of Aveiro, FCT/MEC for the financial support to CESAM, CICECO and 

CIIMAR [UID/AMB/50017/2013; UID/CTM/50011/2013; UID/Multi/04423/2013], 

through national funds and, where applicable, co-financed by the FEDER, within the 

PT2020 Partnership Agreement. The work is connected objectives of the project 

Ecoservices (NORTE-01-0145-FEDER-00035). 

 

References 

 

[1] J. Kitzes, M. Wackernagel, J. Loh, A. Peller, S. Goldfinger, D. Cheng, K. Tea, 
Shrink and share: humanity’s present and future Ecological Footprint., Philos. 
Trans. R. Soc. Lond. B. Biol. Sci. 363 (2008) 467–475. 

[2] P.F.M. Verdonschot, B.M. Spears, C.K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, 
M. Elliott, M. Kernan, R.K. Johnson, A comparative review of recovery processes 
in rivers, lakes, estuarine and coastal waters, Hydrobiologia. 704 (2013) 453–474. 

[3] W. Jin, H. Du, S. Zheng, Y. Zhang, Electrochemical processes for the environmental 
remediation of toxic Cr(VI): A review, Electrochim. Acta. 191 (2016) 1044–1055. 

[4] V.N. Thekkudan, V.K. Vaidyanathan, S.K. Ponnusamy, C. Charles, S. Sundar, D. 
Vishnu, S. Anbalagan, V.K. Vaithyanathan, S. Subramanian, Review on 
nanoadsorbents: a solution for heavy metal removal from wastewater, IET 
Nanobiotechnology. 11 (2016) 213–224. 

[5] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. 
Environ. Manage. 92 (2011) 407–418. 

[6] T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico-chemical treatment 
techniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006) 83–
98. 

[7] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from 
contaminated water: a review., J. Hazard. Mater. 97 (2003) 219–43. 

[8] S. Dubey, S.N. Upadhyay, Y.C. Sharma, Optimization of removal of Cr by γ-
alumina nano-adsorbent using response surface methodology, Ecol. Eng. 97 (2016) 
272–283. 

[9] J.P. Valle, B. Gonzalez, J. Schulz, D. Salinas, U. Romero, D.F. Gonzalez, C. 
Valdes, J.M. Cantu, T.M. Eubanks, J.G. Parsons, Sorption of Cr(III) and Cr(VI) to 
K2Mn4O9 nanomaterial a study of the effect of pH, time, temperature and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

interferences, Microchem. J. 133 (2017) 614–621. 

[10] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from 
water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater. 211–212 
(2012) 317–331. 

[11] E. Francisquini, J. Schoenmaker, J.A. Souza, Nanopartículas Magnéticas e suas 
Aplicações, in: Química Supramol. e Nanotecnologia, 1st ed., 2014: pp. 269–288. 

[12] M.A. Martins, T. Trindade, Os nanomateriais e a descoberta de novos mundos na 
bancada do químico, Quim. Nova. 35 (2012) 1434–1446. 

[13] F.H. Quina, Nanotecnologia e o Meio Ambiente: Perspectivas e Riscos, Quim. Nov. 
27 (2004) 1028–1029. 

[14] T. Trindade, P.J. Thomas, Defining and using very small crystals, in: J. Reedijk, K. 
Poeppelmeier (Eds.), Compr. Inorg. Chem. II, Vol.4, Oxford: Elsevier, 2013: pp. 
343–369. 

[15] X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as Sorbents 
to Remove Heavy Metal Ions in Wastewater Treatment, J. Environ. Anal. Toxicol. 2 
(2012) 154–158. 

[16] H. Zhang, R.G. Mcdowell, L.R. Martin, Y. Qiang, Selective extraction of heavy and 
light lanthanides from aqueous solution by advanced magnetic nanosorbents, ACS 
Appl. Mater. Interfaces. 8 (2016) 9523–9531. 

[17] Z. Mokadem, S. Saïdi-Besbes, G. Agusti, A. Elaissari, A. Derdour, Magnetic 
nanoadsorbents for metal remediation, J. Colloid Sci. Biotechnol. 5 (2016) 11–133. 

[18] D.S. Tavares, A.L. Daniel-Da-Silva, C.B. Lopes, N.J.O. Silva, V.S. Amaral, J. 
Rocha, E. Pereira, T. Trindade, Efficient sorbents based on magnetite coated with 
siliceous hybrid shells for removal of mercury ions, J. Mater. Chem. A. 1 (2013) 
8134–8143. 

[19] T. Fernandes, S. Soares, T. Trindade, A. Daniel-da-Silva, Magnetic Hybrid 
Nanosorbents for the Uptake of Paraquat from Water, Nanomaterials. 7 (2017) 68. 

[20] H.A. Khan, R. Shanker, Toxicity of Nanomaterials, Biomed Res. Int. 2015 (2015) 2. 

[21] ATSDR, Toxicological Profile for Chromium, Agency Toxic Subst. Dis. Regist. 
(2012). 

[22] J. Gorny, G. Billon, C. Noiriel, D. Dumoulin, L. Lesven, B. Madé, Chromium 
behavior in aquatic environments: A review, Environ. Rev. 24 (2016) 503–516. 

[23] B. Markiewicz, I. Komorowicz, A. Sajnóg, M. Belter, D. Barałkiewicz, Chromium 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

and its speciation in water samples by HPLC/ICP-MS - technique establishing 
metrological traceability: A review since 2000, Talanta. 132 (2015) 814–828. 

[24] J. Ščančar, R. Milačič, A critical overview of Cr speciation analysis based on high 
performance liquid chromatography and spectrometric techniques, J. Anal. At. 
Spectrom. 29 (2014) 427–443. 

[25] C.T. Driscoll, R.P. Mason, H.M. Chan, D.J. Jacob, N. Pirrone, Mercury as a global 
pollutant: Sources, pathways, and effects, Environ. Sci. Technol. 47 (2013) 4967–
4983. 

[26] A. Renzoni, F. Zino, E. Franchi, Mercury Levels along the Food Chain and Risk for 
Exposed Populations, Environ. Res. 77 (1998) 68–72. 

[27] W. Zhou, B.-C. Yin, B.-C. Ye, Highly sensitive surface-enhanced Raman scattering 
detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag 
nanoparticle substrate, Biosens. Bioelectron. 87 (2017) 187–194. 

[28] E. Tziritis, E. Kelepertzis, G. Korres, D. Perivolaris, S. Repani, Hexavalent 
chromium contamination in groundwaters of Thiva Basin, Central Greece, Bull. 
Environ. Contam. Toxicol. 89 (2012) 1073–1077. 

[29] P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals 
and arsenic: a review, RSC Adv. 5 (2015) 29885–29907. 

[30] Y. Gong, J. Tang, D. Zhao, Application of iron sulfide particles for groundwater and 
soil remediation: A review, Water Res. 89 (2016) 309–320. 

[31] G.M. Naja, B. Volesky, Toxicity and Sources of Pb, Cd, Hg, Cr, As, and 
Radionuclides in the Environment, in: Heavy Met. Environ., 1st ed., 2009: pp. 13–
62. 

[32] A.A. Belay, Impacts of Chromium from Tannery Effluent and Evaluation of 
Alternative Treatment Options, J. Environ. Prot. (Irvine,. Calif). 1 (2010) 53–58. 

[33] Public Partnership for Better Inovation Policies and Instruments in Support of Eco-
Innovation: ECOPOL, Leather - Tanning with Chromium, (2013). 
https://ecopolproject.blogspot.de/2013/10/leather-tanning-with-chromium.html 
(accessed February 1, 2018). 

[34] H. Cheng, T. Zhou, Q. Li, L. Lu, C. Lin, Anthropogenic chromium emissions in 
China from 1990 to 2009, PLoS One. 9 (2014) 87753–87761. 

[35] B. Huang, C. Qi, Z. Yang, Q. Guo, W. Chen, G. Zeng, Pd/Fe3O4 nanocatalysts for 
highly effective and simultaneous removal of humic acids and Cr(VI) by electro-
Fenton with H2O2 in situ electro-generated on the catalyst surface, J. Catal. 352 
(2017) 337–350. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

[36] A.A. Babaei, M. Ahmadi, G. Goudarzi, N. Jaafarzadeh, Z. Baboli, Adsorption of 
chromium(VI) from saline wastewater using spent tea-supported magnetite 
nanoparticle, Desalin. Water Treat. 57 (2015) 12244–12256. 

[37] S. Srivastava, S.B. Agrawal, M.K. Mondal, Synthesis, characterization and 
application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) 
adsorption from aqueous solution, J. Environ. Sci. 55 (2017) 283–293. 

[38] S. Egodawatte, K.E. Greenstein, I. Vance, E. Rivera, N. V Myung, G.F. Parkin, M. 
Cwiertny, S.C. Larsen, Electrospun hematite nanofiber/mesoporous silica core/shell 
nanomaterials as an efficient adsorbent for heavy metals, RSC Adv. 6 (2016) 
90516–90525. 

[39] C. Lee, S. Kim, Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticle-Multi-
Walled Carbon Nanotube Adsorbents, Water Environ. Res. 88 (2016) 2111–2120. 

[40] E. Kaprara, N. Tziarou, K. Kalaitzidou, K. Simeonidis, L. Balcells, The use of 
Sn(II) oxy-hydroxides for the effective removal of Cr(VI) from water: Optimization 
of synthesis parameters, Sci. Total Environ. 605–606 (2017) 190–198. 

[41] V. Srivastava, T. Kohout, M. Sillanpää, Potential of cobalt ferrite nanoparticles 
(CoFe2O4) for remediation of hexavalent chromium from synthetic and printing 
press wastewater, J. Environ. Chem. Eng. 4 (2016) 2922–2932. 

[42] M.E. Mahmoud, A.E.H. Abdou, M.E. Sobhy, Engineered nano-zirconium oxide-
crosslinked-nanolayer of carboxymethyl cellulose for speciation and adsorptive 
removal of Cr(III) and Cr(VI), Powder Technol. 321 (2017) 444–453. 

[43] S.U. Khan, R. Zaidi, S.Z.. Hassan, I.. H.. Farooqi, A. Azam, Application of Fe-Cu 
binary oxide nanoparticles for the removal of hexavalent chromium from aqueous 
solution, Water Sci. Technol. 74 (2016) 165–175. 

[44] S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle 
synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from 
water, J. Colloid Interface Sci. 468 (2016) 334–346. 

[45] A. Debnath, M. Majumder, M. Pal, N.S. Das, K.K. Chattopadhyay, B. Saha, A. 
Debnath, M. Majumder, M. Pal, Enhanced Adsorption of Hexavalent Chromium 
onto Magnetic Calcium Ferrite Nanoparticles: Kinetic, Isotherm, and Neural 
Network Modeling, J. Dispers. Sci. Technol. 37 (2016) 1806–1818. 

[46] N. Sezgin, A. Yalçın, Y. Köseoğlu, MnFe2O4 nano spinels as potential sorbent for 
adsorption of chromium from industrial wastewater, Desalin. Water Treat. 57 (2016) 
16495–16506. 

[47] M. Tahergorabi, A. Esrafili, M. Kermani, M. Shirzad-Siboni, Application of thiol-
functionalized mesoporous silica-coated magnetite nanoparticles for the adsorption 
of heavy metals, Desalin. Water Treat. 57 (2016) 19834–19845. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 
 

[48] X. Guan, J. Chang, H. Fan, A magnetically-separable Fe3O4 surface grafted with 
polyacrylic acid for chromium(III) removal from tannery effluents, RSC Adv. 5 
(2015) 50126–50136. 

[49] G. Lan, X. Hong, Q. Fan, B. Luo, P. Shi, X. Chen, Removal of Hexavalent 
Chromium in Wastewater by Polyacrylamide Modified Iron Oxide Nanoparticle, J. 
Appl. Polym. Sci. 131 (2014) 40945–40955. 

[50] M. Biswal, K. Bhardwaj, P.K. Singh, P. Singh, P. Yadav, A. Prabhune, C. Rode, S. 
Ogale, Nanoparticle-loaded multifunctional natural seed gel-bits for efficient water 
purification, RSC Adv. 3 (2013) 2288–2295. 

[51] M. Arthy, B.R. Phanikumar, Efficacy of Iron-Based Nanoparticles and 
Nanobiocomposites in Removal of Cr3+, J. Hazardous, Toxic, Radioact. Waste. 20 
(2016) 28. 

[52] W. Chooaksorn, R. Nitisoravut, C. Polprasert, S. Babel, K. Laohhasurayotin, W. 
Kangwansupamonkon, Enhancement of Cr(VI) Ion Removal Using Nanochitosan 
Coated on Bituminous Activated Carbon, Water Environ. Res. 88 (2016) 2150–
2158. 

[53] J. Němeček, O. Lhotský, T. Cajthaml, Nanoscale zero-valent iron application for in 
situ reduction of hexavalent chromium and its effects on indigenous microorganism 
populations, Sci. Total Environ. 485–486 (2014) 739–747. 

[54] M. Taghizadeh, D.Y. Kebria, G. Darvishi, F.G. Kootenaei, The Use of Nano Zero 
Valent Iron in Remediation of Contaminated Soil and Groundwater, Int. J. Sci. Res. 
Environ. Sci. 1 (2013) 152–157. 

[55] M. Kumari, C.U.P. Jr., D. Mohan, Heavy metals [chromium (VI) and lead (II)] 
removal from water using mesoporous magnetite (Fe3O4) nanospheres, J. Colloid 
Interface Sci. 442 (2015) 120–132. 

[56] M.P. Watts, V.S. Coker, S.A. Parry, R.A.D. Pattrick, R.A.P. Thomas, R. Kalin, J.R. 
Lloyd, Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline 
Cr(VI) leachate and chromite ore processing residue, Appl. Geochemistry. 54 
(2015) 27–42. 

[57] X. Chen, K.F. Lam, K.L. Yeung, Selective removal of chromium from different 
aqueous systems using magnetic MCM-41 nanosorbents, Chem. Eng. J. 172 (2011) 
728–734. 

[58] M.L. Paul, J. Samuel, R. Roy, N. Chandrasekaran, Studies on Cr(VI) removal from 
aqueous solutions by nanotitania under visible light and dark conditions, Bull. 
Mater. Sci. 38 (2015) 393–400. 

[59] M.A. Behnajady, S. Bimeghdar, Synthesis of mesoporous NiO nanoparticles and 
their application in the adsorption of Cr(VI), Chem. Eng. J. 239 (2014) 105–113. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 
 

[60] N. Mao, L. Yang, G. Zhao, X. Li, Y. Li, Adsorption performance and mechanism of 
Cr(VI) using magnetic PS-EDTA resin from micro-polluted waters, Chem. Eng. J. 
200–202 (2012) 480–490. 

[61] E. Akoz, S. Erdemir, M. Yilmaz, Immobilization of novel the semicarbazone 
derivatives of calix[40]arene onto magnetite nanoparticles for removal of Cr(VI) 
ion, J. Incl. Phenom. Macrocycl. Chem. 73 (2012) 449–458. 

[62] J. Saikia, B. Saha, G. Das, Efficient removal of chromate and arsenate from 
individual and mixed system by malachite nanoparticles, J. Hazard. Mater. 186 
(2011) 575–582. 

[63] S. Debnath, K. Biswas, U.C. Ghosh, Removal of Ni(II) and Cr(VI) with 
Titanium(IV) Oxide Nanoparticle Agglomerates in Fixed-Bed Columns, Ind. Eng. 
Chem. Res. 49 (2010) 2031–2039. 

[64] M. Ataabadi, M. Hoodaji, A. Tahmourespour, M. Kalbasi, M. Abdouss, 
Optimization of factors affecting hexavalent chromium removal from simulated 
electroplating wastewater by synthesized magnetite nanoparticles, Environ. Monit. 
Assess. 187 (2015) 4165–4175. 

[65] S. Mohan, Y. Singh, D.K. Verma, S.H. Hasan, Synthesis of CuO nanoparticles 
through green route using Citrus limon juice and its application as nanosorbent for 
Cr(VI) remediation : Process optimization with RSM and ANN-GA based model, 
Process Saf. Environ. Prot. 96 (2015) 156–166. 

[66] Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Preparation and application of 
stability enhanced magnetic nanoparticles for rapid removal of Cr(VI), Chem. Eng. 
J. 175 (2011) 222–227. 

[67] A. Mohamed, W.S. Nasser, T.A. Osman, M.S. Toprak, M. Muhammed, A. Uheida, 
Removal of chromium (VI) from aqueous solutions using surface modified 
composite nanofibers, J. Colloid Interface Sci. 505 (2017) 682–691. 

[68] M. Gifford, M. Chester, K. Hristovski, P. Westerhoff, Reducing environmental 
impacts ofmetal (hydr)oxide nanoparticle embedded anion exchange resins using 
anticipatory life cycle assessment, Environ. Sci. Nano. 3 (2016) 1351–1360. 

[69] S. Luther, N. Brogfeld, J. Kim, J.G. Parsons, Study of the thermodynamics of 
chromium(III) and chromium(VI) binding to iron (II/III) oxide or magnetite or 
ferrite and magnanese(II) iron (III) oxide or jacobsite or manganese ferrite 
nanoparticles, J. Colloid Interface Sci. 400 (2013) 97–103. 

[70] K. Simeonidis, E. Kaprara, T. Samaras, M. Angelakeris, N. Pliatsikas, G. Vourlias, 
Optimizing magnetic nanoparticles for drinking water technology : The case of 
Cr(VI), Sci. Total Environ. 535 (2015) 61–68. 

[71] T. Shahriari, G.N. Bidhendi, N. Mehrdadi, A. Torabian, Effective parameters for the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 
 

adsorption of chromium(III) onto iron oxide magnetic nanoparticle, Int. J. Environ. 
Sci. Technol. 11 (2014) 349–356. 

[72] G. Bisht, S. Neupane, R. Makaju, Supercritical CO2 Assisted Synthesis of EDTA-
Fe3O4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium, 
J. Nanomater. 2016 (2016) 10. 

[73] J. Guo, X. Cai, Y. Li, R. Zhai, S. Zhou, P. Na, The preparation and characterization 
of a three-dimensional titanium dioxide nanostructure with high surface hydroxyl 
group density and high performance in water treatment, Chem. Eng. J. 221 (2013) 
342–352. 

[74] S.E. Moradi, M.J. Baniamerian, Metal-oxide-modified nanostructured carbon 
application as novel adsorbents for chromate ion removal from water, Int. J. Mater. 
Res. 103 (2012) 743–748. 

[75] M. Uygun, E. Feyzioğlu, E. Özçalışkan, M. Caka, A. Ergen, S. Akgöl, A. Denizli, 
New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater, 
J. Nanoparticle Res. 15 (2013) 1833–1843. 

[76] S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite 
e maghemite nanoparticles and the effect of phosphate on removal, J. Environ. 
Manage. 91 (2010) 2238–2247. 

[77] Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos, S. Trevino, C. 
Tamez, A. Martinez, T. Eubanks, J.G. Parsons, Thermodynamics, kinetics, and 
activation energy studies of the sorption of chromium(III) and chromium(VI) to a 
Mn3O4 nanomaterial, Chem. Eng. J. 254 (2014) 374–383. 

[78] J.G. Parsons, J. Hernandez, C.M. Gonzalez, J.L. Gardea-torresdey, Sorption of 
Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite (Fe3O4) 
particles, Chem. Eng. J. 254 (2014) 171–180. 

[79] J.R. Rajabathar, A.K. Shukla, A. Ali, H.A. Al-Lohedan, Silver nanoparticle/r-
graphene oxide deposited mesoporous-manganese oxide nanocomposite for 
pollutant removal and supercapacitor applications, Int. J. Hydrogen Energy. 42 
(2017) 15679–15688. 

[80] S. Sadeghi, F.A. Rad, A.Z. Moghaddam, A highly selective sorbent for removal of 
Cr(VI) from aqueous solutions based on Fe3O4/poly(methyl methacrylate) grafted 
Tragacanth gum nanocomposite: Optimization by experimental design, Mater. Sci. 
Eng. C. 45 (2014) 136–145. 

[81] ATSDR, Priority List of Hazardous Substances, (2017). 
http://www.atsdr.cdc.gov/spl/ (accessed December 2, 2017). 

[82] WHO, Guidelines for Drinking-water Quality, World Heal. Organ. (2011). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

[83] WHO, Chromium in Drinking-water, World Heal. Organ. (2003). 
http://www.nap.edu/catalog/9038.html. 

[84] W. Lu, J. Li, Y. Sheng, X. Zhang, J. You, L. Chen, One-pot synthesis of magnetic 
iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced 
removal of Cr(VI) from aqueous solution, J. Colloid Interface Sci. 505 (2017) 1134–
1146. 

[85] V.K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of hexavalent chromium 
ions using CuO nanoparticles for water purification applications, J. Colloid Interface 
Sci. 478 (2016) 54–62. 

[86] R. Nithya, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil, S. Kim, Removal of 
Cr(VI) from aqueous solution using chitosan-g-poly(butyl acrylate)/silica gel 
nanocomposite, Int. J. Biol. Macromol. 87 (2016) 545–554. 

[87] V. Sureshkumar, S.C.G.K. Daniel, K. Ruckmani, M. Sivakumar, Fabrication of 
chitosan – magnetite nanocomposite strip for chromium removal, Appl. Nanosci. 6 
(2016) 277–285. 

[88] L.J. Martínez, A. Muñoz-Bonilla, E. Mazario, F.J. Recio, F.J. Palomares, P. 
Herrasti, Adsorption of chromium(VI) onto electrochemically obtained magnetite 
nanoparticles, Int. J. Environ. Sci. Technol. 12 (2015) 4017–4024. 

[89] M. Bagheri, H. Younesi, S. Hajati, S. Mehdi, Application of chitosan-citric acid 
nanoparticles for removal of chromium(VI), Int. J. Biol. Macromol. 80 (2015) 431–
444. 

[90] A.E. Chávez-Guajardo, J.C. Medina-Llamas, L. Maqueira, C.A.S. Andrade, K.G.B. 
Alves, C.P. de Melo, Efficient removal of Cr (VI) and Cu (II) ions from aqueous 
media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic 
nanocomposites, Chem. Eng. J. 281 (2015) 826–836. 

[91] R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad, Preparation and 
characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance 
the efficient removal of Cr(VI), Environ. Sci. Pollut. Res. 20 (2013) 7175–7185. 

[92] H. Shen, S. Pan, Y. Zhang, X. Huang, H. Gong, A new insight on the adsorption 
mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), 
Cr(VI) co-existing water system, Chem. Eng. J. 183 (2012) 180–191. 

[93] Y.-G. Zhao, H.-Y. Shen, S.-D. Pan, M.-Q. Hu, Q.-H. Xia, Preparation and 
characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents 
for removal of chromium(VI) ions, J. Mater. Sci. 45 (2010) 5291–5301. 

[94] I.G.B. Kaya, D. Duranoglu, U. Beker, B.F. Senkal, Development of Polymeric and 
Polymer-Based Hybrid Adsorbents for Chromium Removal from Aqueous Solution, 
Clean - Soil, Air, Water. 39 (2011) 980–988. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

[95] J. Li, A. Kalam, A.S. Al-shihri, Q. Su, G. Zhong, G. Du, Monodisperse ceria 
nanospheres: Synthesis, characterization, optical properties, and applications in 
wastewater treatment, Mater. Chem. Phys. 130 (2011) 1066–1071. 

[96] H. Zhu, S. Jia, T. Wan, Y. Jia, H. Yang, J. Li, L. Yan, C. Zhong, Biosynthesis of 
spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal 
ions, Carbohydr. Polym. 86 (2011) 1558–1564. 

[97] S. Sayin, M. Yilmaz, Synthesis of a new calixarene derivative and its 
immobilization onto magnetic nanoparticle surfaces for excellent extractants toward 
Cr(VI), As(V), and U(VI), J. Chem. Eng. Data. 56 (2011) 2020–2029. 

[98] T.Y. Liu, L. Zhao, X. Tan, S.J. Liu, J.J. Li, Y. Qi, G.Z. Mao, Effects of 
physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and a-
Fe2O3 nanoparticles, Water Sci. Technol. 61 (2010) 2759–2768. 

[99] S.J. Wu, T.H. Liou, F.L. Mi, Synthesis of zero-valent copper-chitosan 
nanocomposites and their application for treatment of hexavalent chromium, 
Bioresour. Technol. 100 (2009) 4348–4353. 

[100] J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic nanoparticles for 
Cr(VI) removal, Sep. Purif. Technol. 56 (2007) 249–256. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 
 

Figure captions 

 

Figure 1. Eh-pH diagram of Cr-O-H system, in aqueous media, at 25ºC and 1 bar [3]. 

 

Figure 2. Pathways of chromium species in the water, including the interfaces with the 

atmosphere and sediment [23]. 

 

Figure 3. Proportion of chromium released to European water in 2015 by industrial 

sectors (E-PRTR). 
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Figure 3 
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Table legends  

 

Table 1 - Legislated values regarding water contamination with chromium 

 

Table 2 – Nanomaterials for Cr removal with respect to the conditions used as reported in 
the literature in the last 10 years (since 2007).  
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Table 1 

 

Chromium species 
Rank 

2017i 

Maximum allowed concentration 

(µg/L) 

Concentration 

in surface water 

(µg/L) Residual waters Drinking Water 

Chromium total 78  50ii 10 iii  

Chromium, trivalent 351 3000iv   

Chromium, hexavalent 17    

i –ATSDR [81]; ii –WHO [82]; iii –WHO [83]; iv –France Guidelines for Metal Finishing Liquid Effluents 

[31]. 
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Table 2 

 

Reference Nanomaterial Type of water pH Temperature 
(ºC) 

Amount of 
sorbent  

(x10-3 mg/L)  

Contact 
time (h) 

Initial element 
concentration  
(x10-3 µg/L) 

Cr 
starting 
specie 

Uptake capacity (mg/g) or 
removal efficiency (%) 

Type of 
system 

[40] Sn(II) oxy-hydroxides 
NPs (pH synthesis) 

 
Sn6O4(OH)4 (pH 2) 
Sn6O4(OH)4 (pH 4) 

SnO2 (pH 6) 
SnO2 (pH 9) 

Sn3OSO4(OH)2 (pH 2) 
Sn6O4(OH)4 /SnO (pH 4) 
Sn6O4(OH)4 /SnO (pH 6) 
Sn6O4(OH)4 /SnO (pH 9) 

Distilled water 
 
 
 

6-8 
 
 
 

10-30 
 
 
 

0.025-0.75 
 
 

0.016-48 
 
 
 

0.010-5.0 
 
 

Cr(VI) ~31 (30 ºC, Sn6O4(OH)4 pH 2) 
 
 

Mono 
elemental 

 
 

Sn(II) oxy-hydroxides 
NPs (pH synthesis) 

Natural-like 
water 

7.0-7.8 
 

20 
 

  0.10 
 

Cr(VI) 19 (pH 7, Sn6O4(OH)4 pH 2) 
 

Multi 
elemental 

[42] Nano-ZrO2 
Nano zirconium oxide 

 
Nano-ZrO2-glu-CMC  

Crosslinking of 
nanolayer 

carboxymethyl cellulose 
(CMC) onto the surface 
of nano zirconium oxide 

(Nano-ZrO2) using 
glutaraldehyde  

Distilled water 
 
 
 

1.0-7.0 
 
 
 
 
 
 

r.t. f 

 
 
 
 
 
 

2.5 
 
 
 
 
 
 

0.017-1.0 
 
 
 
  

1040-10 400 
 
 
 
 

Cr(III) 
 

Cr(VI) 
 
 
 

187 (500 mg/L, Nano-ZrO2-
glu-CMC) 

73 (500 mg/L, Nano-ZrO2-
glu-CMC) 

 

Mono 
elemental 

 
 
 
 
 
 

7 
 
2 

r.t. 2.5 0.50 5200 
 
 
 

Cr(III) 
 

Cr(VI) 

11-26 Nano-ZrO2 
29-44 Nano-ZrO2-glu-CMC 

4-8 Nano-ZrO2 
14-27 Nano-ZrO2-glu-CMC 
(depending on the type of 

interfering ion) 

Multi 
elemental 

[35] Pd/Fe3O4 NPs 
Magnetite nanoparticles 

functionalized with 
palladium 

 
 

3 Information 
not mentioned   

5.0 8.0 20 Cr(VI) 
Total Cr 

~60%  
~60% 

 

Multi 
elemental 
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[9] K 2Mn4O9 
Rancieite type material  

 2-6 
 

4-45 
 
 

2.5 
 
 

0.083-2.0 
 
 

0.30-30  
 
 

Cr(III) 
Cr(VI) 

 

33% (pH 6)/ 41.8 (45ºC) 
23% (pH 2) / 4.22 (4ºC) 

 

Mono 
elemental 

 

5 
2 

 2.5 1.0 0.30 
 

Cr(III) 
Cr(VI) 

 

~4-37% 
~0-67% 

(depending on the type and 
concentration of interfering ion)  

Multi 
elemental 

[37] 
 

MNPLB 
Lagerstroemia speciosa 
bark (LB) embedded 

magnetic nanoparticles 

Double 
distilled water 

1.09-7.02 
 
 

15-40 
 
 

0.1-0.7 
 
 

0.17-2.0 
 
 

50-500 
 
 

Cr(VI) 739.7 (500 x103 µg/L) 
 
 

Mono 
elemental 

 

[84] MNP/MWCNTs 
Magnetic iron oxide 

nanoparticle-multiwalled 
carbon nanotube 

composites 

Ultrapure 
water 

1.0-9.0 
 
 

25-45 
 
 

0.4-2.0 
 
 

0-24 
 
 

5.0-50 
 
 

Cr(VI) ~98% (1000-2000 mg/L) 
42.02 (45ºC) 

 

Mono 
elemental 

 
 

2.0  1.0  10 Cr(VI) ~92-95% (depending on the 
type of interfering ion) 

Multi 
elemental 

[67] PAN-CNT/TiO 2-NH2 
Polyacrylonitrile (PAN) 

and carbon nanotube 
(CNTs)/titanium dioxide 

nanoparticles (TiO2) 
functionalized with 
amine groups (TiO2-

NH2) composite 
nanofibers 

 2-9 
 
 
 

r.t. (20) 
 
 
 

0.1-0.8 
 
 

0-7 
 
 

10-300 
 
 

Cr(VI) 99.7% (6000 mg/L) 
861.11 a  

 

Mono 
elemental 

 

[79] Meso-MnO2 
Mesoporous manganese 

oxide 
AgNPs@meso-MnO2 

silver nanoparticles 
doped mesoporous 
manganese oxide  

Ag/Graphene-meso-
MnO2 

silver nanoparticle 
graphene deposited 

mesoporous manganese 
oxide nanocomposite 

Milli-Q water 6 r.t. 6.7 24 50 Cr(VI) ~35% 
 
 

Mono 
elemental 
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[41] CoFe2O4 NPs 
Cobalt ferrite 
nanoparticles 

Distilled water 
 
 

2-12  
 
 

25-55 
 
 

2-12 
 
 

0-4.0 
 
 

75-150  
 
 

Cr(VI) 98.45 % (55ºC, 75 x103 µg/L) 
16.73 (55ºC) 

 

Mono 
elemental 

 

Printing press 
wastewater 

1-12 
 

25-55 
 

10  
  

0-24 
 

1637.5 
 

Cr(VI) ~69% 
 

Multi 
elemental 

[39] MIO-MWCNTs 
MWCNTs 

Multi-walled 
carbon nanotubes 

MIO NPs 
Magnetic iron oxide 

nanoparticles 

 2.6-7.3 
 
 
 
 
 

5-60 
 
 
 
 
 

1.0 
 
 
 
 
 

0.25-4.0 
 
 
 
 
 

5-100 
 
 
 
 
  

Cr(VI) 12.61 (100 x103 µg/L,  
MIO-MWCNTs) 

80.8% (5 x103 µg/L,  
MIO-MWCNTs) 

 
 

Mono 
elemental 

[52] CN-coated AC 
Bituminous activated 

carbon (AC) coated with 
chitosan nanoparticles 

(CN) 
CN-AC/DC 

CN coated on AC by the 
dip coating method  

CN-AC/WI 
CN coated on AC by the 
wet impregnation method 

Deionized 
water 

5.0 
 
 
 
 

Information 
not mentioned 

1.0 
 
 
 
 

0-24 
 
 
 
 

0.10-100 
 
 
 
 

Cr(VI) 77.52 (CN-AC/DC) 
61.7% (0.1 x103 µg/L,  

CN-AC/DC) 
 

Mono 
elemental 

[8] n-Al 2O3 
γ-alumina nanoparticles 

modified with cetyl 
trimethyl ammonium 

bromide (CTAB) 

Distilled water 2.0-10.0 
 
 
 

30-60 
 
 
 

4-24 
 
 
 

0-1.5 
 
 
 

5-25 
 
 
 

Cr(VI) 94% (5 x103 µg/L, pH 2.03, 
18 340 mg NPs/L) 

18.716 b (25 x103 µg/L) 
 

Mono 
elemental 

 

[85] CuO NPs 
Copper(II) oxide 

nanoparticles 

Double 
distilled water 

2-10 
 
 

25-45 
 
 

0.4-5 
 
 

0-3.0 
 
 

10-150 
 
 

Cr(VI) 96.3% (10 x103 µg/L) 
86.25 (400 mg/L) 

 

Mono 
elemental 

 
[72] IONPs 

Magnetic iron oxide 
nanoparticles 

MIONPs 
EDTA-modified 

magnetic iron oxide 
nanoparticles 

 2 
 
 
 
 
 

r.t. 
 
 
 

0.0050-0.030 
 
 
 
 

0-18 
 
 
 

200-1000 
 
 

Cr(VI) 99.90% / 499.5 (30 mg/L, 
MIONPs) 

34.06% / 170.33 (30 mg/L, 
IONPs) 

  

Mono 
elemental 

 
 
 

[68] Ti-AX  Synthetic 8 Information 0.60 168 0.10 Cr(VI) 88% Multi 
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Titanium dioxide 
nanoparticles 

precipitated in anion 
exchange resins 

groundwater not mentioned elemental 
 

[86] Cs-g-PBA/SG 
Chitosan-g-

poly(butylacrylate)/ 
silica gel nanocomposite 

 3-9 
 
 

r.t. 
 
 

10-60 
 
 

1.0-6.0 
 
 

62.5-1000 
 
 

Cr(VI) 98% (62.5-125 x103 µg/L) 
55.71 

 

Mono 
elemental 

[87] Chitosan–Fe3O4 
nanocomposite strip 
Chitosan–magnetite 
nanocomposite strip 

Deionised 
water 

Information 
not 

mentioned 

Information 
not mentioned 

1 cm x 1 cm 
0.010 L 

0.17, 0.30, 
0.83, 1.2, 

1.5, 1.8, 2.2 

260 Cr(VI) ~15-92.33% Mono 
elemental 

[47] TF-SCMNPs 
Thiol-functionalized 

mesoporous silica-coated 
magnetite nanoparticles 

(Fe3O4 NPs) 

Distilled water 3-10 
 
 

r.t. (25) 
 
 

0.080-0.40 
 
 

0.083-24 
 
 

8  
 
 
 

Cr(III) 42% (pH 10, 400 mg/L) 
1.119 

  

Mono 
elemental 

[43] Fe-Cu binary oxide 
NPS 

Milli-Q water 1-9 
 
 

r.t. (25) 
 
 

0.10-2.5 
 
 

1.0 
 
 

1-25  
 
 

Cr(VI) ~100% (100 mg/L,  
1 x103 µg/L)  

71.43  

Mono 
elemental 

[51] MIN Magnetic iron 
oxide nanoparticles 

MIN-TW Magnetic iron 
oxide nanoparticles/tea 

waste composite 
MIN-SB Magnetic iron 

oxide 
nanoparticles/sugarcane 

bagasse composite 

Deionized 
water 

 
 
 
 
 
 

2-7  
 
 
 
 
 
 

30 
 
 
 
 
 

0.50-1.25 
 
 
 
 
 
 
 
 

0.083-2.0 
 
 
 
 
 

50-300  
 
 
 
 
 

Cr(III) 
 

98.27% (MIN-SB, 1h,  
1125 mg/L)   

518.134 d (MIN-SB, 0.75 h) 
 
 
 

Mono 
elemental 

 
 
 

MIN 
MIN-TW 
MIN-SB 

Deionized 
water 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 Cr(III) ~229-243  
~228-240  
~243-247  

(depending on the type of 
interfering ion) 

Multi 
elemental 

 
 

[36] ST/Mag NPs  
Spent tea-supported 

magnetite nanoparticles 

Double-
distilled water 

 

2-8 
 
 

r.t. (20) 
 
 

0.10-11.0 
 
 

0.033-4.0 
 
 

5-300 
 
 

Cr(VI) 
 

~100% (5 x103 µg/L) 
30.03 

 

Mono 
elemental 

 
Synthetic 

saline 
wastewater 

2 20 3.0 1.0 10 Cr(VI) 
 

78.3-99.9% 
1.09-1.39 

(depending on the 
concentration of interfering 

ions) 

Multi 
elemental 
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[44] Fe3O4 NPs 
Magnetic magnetite 

nanoparticles 

Double 
distilled water 

2-10  
 
 

25-45 
 
 

1.0-4.0 
 
 

0-24 
 
 

2-100  
 
 

Cr(VI) 
 

~75% (4000 mg/L) 
34.9 (45ºC) 

  

Mono 
elemental 

[38] ESH Electrospun 
hematite nanofiber 

ESH@MS-60 
Electrospun hematite 
nanofiber/mesoporous 

silica core/shell  
ESH@MS-60-NH2 
Electrospun hematite 
nanofiber/mesoporous 

sílica functionalized with 
amine group  

 3-6 
 
 

 

25 
 
 

 

0.25 2.0 
 
 

 

5.2-104  Cr(III) 343 (pH 5.4, ESH@MS-60-
NH2) 

 

 

Mono 
elemental 

[45] CaFe2O4 NPs 
Calcium ferrite 
nanoparticles 

Ultrapure 
deionized 

water 

2-6 
 
 

r.t. 0.0625-1.0  
 
 

0.033-1.7 
 
 

30-250  
 
  

Cr(IV) 340 (62.5 mg/L) 
99% (pH 2 / 30 x103 µg/L) 

  

Mono 
elemental 

[46] MnFe2O4 NPs  
Manganese ferrite 

nanoparticles 

Real 
wastewater 

from 
galvanotechnic 

industry 

2 
 
 
 

r.t. 
 
 

0.5-6.0 
 
 

0.17-24 
 
 

50-250  
 
 
 

Total Cr 334.80 (500 mg/L) 
 71.37% (1500 mg/L) 

 

Multi 
elemental 

[70] Fe3O4 NPs 
Magnetite nanoparticles 

Distilled water 
 

7 
 

20 
 

0.10-1.0 
 

0.083-24 
 

0.25 
 

Cr(VI) ~2.4 (24 h) 
 

Mono 
elemental 

Natural-like 
water 

5-8 
 
 

20 0.10-1.0 
 
 

0.083-24 
 

0.050-1.0 
 
  

Cr(VI) ~100% (pH 6.5, 3 h / 
 pH 7.0, 4 h)  

4 (pH 5) 

Multi 
elemental 

[88] Fe3O4 NPs 
Magnetite nanoparticles 

 1.5-4.5 
 

10-75 
 

0.50-2.0 
 

0-2.0 
 

0-160  
  

Cr(VI) ~26 (2000 mg/L) 
 

Mono 
elemental 

[89] CS–CA NPs 
Chitosan–citric acid 

nanoparticles 
CS NPs 

Chitosan nanoparticles 

De-ionized 
water 

2-6 
 
 

25-45 
 
 

0.50-5.0 
 
 

0-2.0 
 
 

10-110  
 
  

Cr(VI) 94.46% (70 x103 µg/L) 
38.51 (500 mg/L) 

 

Mono 
elemental 

[65] CuO NPs 
Cupric oxide 
nanoparticles 

De-ionized 
double 

distilled water 

2.0-10.0 
 
 

20-60 
 
 

0.25-2.5 
 
 

0-5.8 
 
 

5-50  
 
 

Cr(VI) 98.8%  
50.0 (250 mg/L) 

 

Mono 
elemental 

[58] TiO2 NPs 
Titania nanoparticles 

Deionized 
(MilliQ) water 

2.0-12.0 
 

28 
 

0.010-0.50  
 

0.083-0.75 
 

5-100  
  

Cr(VI) 85.85 (20 x103 µg/L) 
 

Mono 
elemental 
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[56] BnM 
Biogenic nano-magnetite 

Ultrapure 
water 

 

12 
 
 

20 
 
 

0.75 Anoxic 
 
 

0-350  
 
 

Model solution 
 
 

Cr(VI) 32  
 
 

Mono 
elemental 

 
Contaminated 
groundwater 

11.9 20 0.66 Anoxic 
0.66 Oxic 

0-200 16.69  Cr(VI) 24 
7   

Multi 
elemental 

[48] PAA@VTES@Fe3O4 
NPs 

Magnetite nanoparticles 
coated with silane 

coupling agent (VTES) 
grafted with polyacrylic 

acid (PAA) 

Ultrapure 
water 

 
 

2-6 
 
 
 

20-40 
 
 
 

1.0-6.5 
 
 
 

0-24 
 
 
 

170  
 
 
 

Cr(III) 92.5% (pH 6, 5000-6500 
mg/L) 

80.6 (40ºC) 
 

Mono 
elemental 

 
 

Tannery 
effluent 

6  5.0 4.0 
 

170  Total Cr 94.0% 
 

Multi 
elemental 

[64] Fe3O4 NPs 
Magnetite nanoparticles 

Deaerated 
deionized 

water 

2-10 
 
 

25-45 
 
 

1.0-5.0 
 
 

0-3.0 
 
 

0-120  
 
 

Cr(VI) 100% (pH 2, 4000 mg/L,  
20 x103 µg/L, 40ºC) 

 

Mono 
elemental 

 

    20  Cr(VI) 80-100%  
(depending on the type and 
concentration of interfering 

anion) 

Multi 
elemental 

[55] Fe3O4 nanospheres 
Mesoporous magnetite 

nanospheres 

Double 
distilled water 

 

2-7 
 
 

25-45 
 
 

1.0-3.0 
 
 

1.0-72 
 
 

5–100  
 
 

Cr(VI) 44% (1h, 2000 mg/L) 
8.90 (45ºC) 

 

Mono 
elemental 

 
Groundwater 4 25 2.0  48 10  Cr(VI) 65% Multi 

elemental 

[90] PPY/γ-Fe2O3 
Polypyrrole/maghemite 

PANI/γ-Fe2O3 
Polyaniline/maghemite 

Deionized 
water 

2.0-10.0 
 
 
 

r.t. 0.2 0.083-2 
 
 
 

2.5-100 
 
 
 

Cr(VI) ~100% (pH 2, 2.5 mg/L) 
208.8 (PPY/γ-Fe2O3, pH 2, 

100 mg/L) 
 

Mono 
elemental 

 

[80] P(MMA)-g-TG-MNPs 
Poly(methyl 

methacrylate) grafted 
Tragacanth gum 

modified Fe3O4 magnetic 
nanoparticles 

Deionized 
water 

2.0-7.0 
 

25 
 

3.0 
 

0-4.2 
 

1-30 
 

Cr(VI) ~ 50-100% (pH 2) 
7.84 (30 mg/L) 

Mono 
elemental 

    20 Cr(VI) 91.7-98.4% (without interfering 
ions) 

Multi 
elemental 

 
 
 

Electroplating 
wastewater 

5.5    10-10.020 Cr(VI) 89.0-96.2% (10 mg/L) 

Underground 
water 

5.5    0.100-0.150 Cr(VI) 59.8-97.8% (0.100 mg/L) 
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[78] Fe3O4 NPs 
Magnetite nanoparticles 

 2-6 
 
 
 

 
 
 
 

2.5 
 
 
 

0.083-1.0 
 
 
 

0.10-10  
 
 
 

Cr(III) 
Cr(VI) 

 
 

100% (pH 4, 0.25 h) / 0.555 
100% (pH 4, 0.33 h) / 1.705  

(depending on the material type) 
 

Mono 
elemental 

 
 

  2.5 1.0 0.10 
 

Cr(III) 
Cr(VI) 

~60-100% 
~25-100 %  

(depending on the material type 
and on the type and concentration 

of interenfence anion) 

Multi 
elemental 

[77] Mn3O4  
Manganese oxide 

nanomaterial 

 2-6 
 
 

4-45 
 
 

2.5 
 
 

0.17-4.0 
 
 

0.30-1000  
 
  

Cr(III) 
Cr(VI) 

 

90% (pH 2)/ 54.4 (45ºC) 
85% (pH 2) / 5.8 (45ºC) 

  

Mono 
elemental 

[49] PMMNs 
Polyacrylamide modified 
iron oxide nanoparticles 

 1-8 
 

30 
 

20  
 

0-2.0 
 

50-1000  
 

Cr(VI) ~99% (pH 3, 100 x103 µg/L) 
35.186  

 

Mono 
elemental 

 
3 30  0.67 100  Cr(VI) ~94-98% (depending on the 

type and concentration of salt) 
Multi 

elemental 
[71] Fe3O4 NPs 

Iron oxide magnetic 
nanoparticles 

Artificial 
wastewater 

3-9 
 
 

25 
 
 

250-1500 mg 
(volume not 
mentioned)  

0.25-1.5 
 
 

250-1000  
 
 

Cr(III) 99.9% (pH 9) 
 
 

Mono 
elemental 

[59] NiO NPs 
Mesoporous nickel oxide 

nanoparticles 

Distilled water 4.7-9 
 
 

30 
 
 

1.0-7.0 
 
 

0-0.83 10-50  
 
  

Cr(VI) ~100% (10 x103 µg/L, 7000 
mg/L) / ~5 (50 x103 µg/L) 

  

Mono 
elemental 

[75] Cr(VI)-imprinted 
poly(HEMAH) NPs 

Chromium(VI)-imprinted 
hydroxyethylmethacrylate 

(HEMA) polymeric 
nanoparticles 

Milli-Q 
ultrapure 

water 

2-6 
 
 
 

25 
 
 
 

Information not 
mentioned   

0-2 
 
 
 
 

1000 -11 000  
 
 
  

Cr(VI) 3830.58  
 
 
  

Mono 
elemental 

[73] TiO2 NPs 
Titania nanoparticles 

 4.0 
 

25 
 

0.10 
 

0-2.5 
 

0-80  
 

Cr(VI) 21.92 
  

Mono 
elemental 

[50] Fe3O4-loaded seeds  
Magnetite nanoparticles 

loaded natural seeds 
sabja 

 2 Information 
not mentioned 

1000 mg (volume 
not mentioned) 

0, 0.25, 
0.50, 0.75, 
1.0, 1.5, 2.0 

1 
5 
20 
30 
50 

Cr(VI) ~100% 
97% 
~85% 
~80% 
~75% 

Mono 
elemental 

 
 
 

    50 Cr(VI) 80% Multi 
elemental 

[91] Fe3O4/CNT NPs 
Carbon nanotubes loaded 

with magnetite 
nanoparticles 

 2-12 
 

 

20-80 
 

 

1.0 
 
 

0.083-120 
 

100-1000  
 

 

Cr(VI) 95% (pH 2) / 60 (pH 2) 
 

 

Mono 
elemental 
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[69] Fe3O4 NPs 
Iron(II/III) oxide or 
magnetite or ferrite 

nanoparticles 
MnFe2O4 NPs 

Magnanese(II) iron (III) 
oxide or jacobsite or 
manganese ferrite 

nanoparticles 

 2-10 
 
 
 
 

4-50 
 
 
 
 

2.5 
 
 
 
 

1.0 
 
 
 
 

0.30-100  
 
 
 
 

Cr(III) 
 

Cr(VI) 
 
 

100% (Fe3O4, pH 6/7)   
10.638 

100% (MnFe2O4, pH 2/3)  
3.455 

 

Mono 
elemental 

[60] Magnetic PS-EDTA 
resin 

Magnetic chelating resin 
with EDTA functionality 

 2-12 
 
 
 

30 
 
 
 

0.20-2.0 
 
 
 

0.083-10 
 
 
 

5-1000  
 
 
  

Cr(VI) 100 % (pH 4, 10 h, 1000 
mg/L, 5-40 x103 µg/L) 

250.00 
  

Mono 
elemental 

[61] Semicarbazone 
derivatives of 

calix[4]arene immobilized 
onto magnetic 

nanoparticles (Fe3O4): 
MN-C1, MN-C2, MN-C3 

Deionized 
water 

1.5-4.5 
 
 

30 
 
 

2.5 
 
  

1.0 
 
 
 

5.2-20.8 
 
 

Cr(VI) 90% (MN-C2, pH 1.5) 
 
 

Mono 
elemental 

[74] NC Nanoporous carbon 
Ni-NC Nickel oxide 

onto nanoporous carbon  
Fe-NC Iron oxide onto 

nanoporous carbon  

Ultrapure 
water 

2-10 
 
 

20, 30, 40 
 
 

0.20 
 
 

0-6.0 
 

10-100  
 
 

Cr(VI) 60.8 (Fe-NC, r.t.) 
 

Mono 
elemental 

[92,93] NH2-NMPs 
Amino-functionalized 
nano-Fe3O4 magnetic 
polymer adsorbents 

EDA-NMPs 
DETA-NMPs 
TETA-NMPs 
TEPA-NMPs 

 
EDA-NMPs 

 
DETA-NMPs 

 
TETA-NMPs 

 
TEPA-NMPs 

Ultrapure 
water 

2.0-9.0 
 
 
 

25-65 
 
 
 

1.25 
 
 
 

0-90 
 
 
 

50-1000 
 
 
 

Cr(VI) 99.9% (TEPA-NMPs, pH 2.0, 
50 mg/L) 

370.37 (TEPA-NMPs, pH 2.0, 
35ºC) 

Mono 
elemental 

2.0-4.0 35 1.25 12 200, 400, 1000 Cr(VI) 34.19-76.70% (pH 3.5, 200 mg/L) 
98.79-200.18 (pH 2.0, 1000 mg/L) 
24.96-57.85% (pH 3.5, 200 mg/L) 
82.67-139.87 (pH 4.0, 1000 mg/L) 
45.24-81.90% (pH 3.5, 200 mg/L) 

120.63-201.74 (pH 2.5, 1000 mg/L) 
48.75-92.04% (pH 2.0, 1000 mg/L) 
125.83-368.13 (pH 2.0, 1000 mg/L) 

Multi 
elemental 
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[66] PEI-γ-Fe2O3@Fe3O4 
NPs 

Polyethylenimine-
modified magnetic 

nanoparticles  

 
 

2-9 
 
 

15-35 
 
 

4.0 
 
 

0-2.0 
 
 

50-500  
 
 

Cr(VI) 98.2% (100 x103 µg/L) 
83.33 (15ºC) 

 

Mono 
elemental 

 
2.2 25 4.0 

 
0.50 

 
100  

 
Cr(VI) ~98-100% 

 
Multi 

elemental 
Wastewater   2.67 0.50 37.98 Cr(VI) 99.0% 

[94] GMDFe 
Nanosized ferric oxide 

loaded glycidyl 
methacrylatebased 

polymer  

 2-10 
 
 

r.t. (25) 
 
 

4.0 
 
 

Equilibrium 
time 

 

30  
 
  

Cr(VI) 98% (24 h) 
163.47 (pH 2) 

 

Mono 
elemental 

[95] CeO2 NPs 
Monodisperse ceria 

nanospheres 

Simulated 
wastewater 

Information 
not 

mentioned   

r.t. 1.0 0-2.0 4.8 
8  

Cr(VI) 94.5% / ~4.5  
94.1% / 7.52  

Mono 
elemental 

[96] Fe3O4/BC 
nanocomposites 

Magnetite/bacterial 
cellulose 

nanocomposites 

Deionized 
water 

Information 
not 

mentioned 

25 2.5 2 0, 20, 40, 60, 80, 
100, 150, 200 

Cr(III) ~25-70% (20 mg/L) 
~0-20 (200 mg/L) 

Mono 
elemental 

[57] magMCM-41 
Magnetic MCM-41 

nanosorbents 

Deionized, 
distilled water  

 

2-7 
 
 

r.t. (25) 1.0 Information 
not 

mentioned  

106-156  
 
 

Cr(VI) 98.8 (pH 2), 83.2 (pH 5) 
 
 

Mono 
elemental 

 
Deionized, 

distilled water  
 
 

2-5 
 

5.0 
 

    
 

156  
 

Cr(VI) 67.6  
 

67.6 
 

Multi 
elemental 

Tap water 
 

5.2 
 

   114  
 

Cr(VI) 46.8 
 

Mountain 
stream water 

 
 

5.4 
2, 5, 8 

 
 

   122  
 
 
 

Cr(VI) 31.2 
97% (pH 2), 97% (pH 5), 86% 

(pH 8) 
 

River water 5.5     106  Cr(VI) 41.6 

[97] BHCB-MN 
5,11,17,23-tetra-tert-

butyl-25,27-
di(benzhydrazidylmetho
xy)-26,28-dihydroxy-

calix[4]arene 
immobilized silica-based 
magnetic nanoparticles  

Deionized 
water 

1.5 
2.5 
3.5 
4.5 

25 2.5 1 5.2 Cr(VI) 66% 
~64% 
11% 
~0% 

Mono 
elemental 
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[62] Cu2CO3(OH)2 NPs 
Malachite nanoparticles 

Milli-Q water 4-9 
 

10-40 
 

5.0-20  
 

1-16 
 

20-500  
 

Cr(VI) 
 

82.2   
75% (pH 5, 50 x103 µg/L) 

Mono 
elemental 

 
5    50  Cr(VI) 70% Multi 

elemental 
[63] NHTO 

Nanoparticles of hydrous 
titanium(IV) oxide 

Distilled water 
 
 

2.0 
 
 

30 
 
 

1000-3000 mg 
(packed column) 

 

0.013-0.026 
 
 

8.0-32.0 
 
 

Cr(VI) 12.94 e (32.0 x103 µg/L) 
 
 

Mono 
elemental 

 

Industrial 
effluent 

wastewater 

2.06 30 4000 0.026 15.67 Cr(VI) ~100% Multi 
elemental 

[98] α-Fe2O3 NPs 
Hematite nanoparticles 

Dilute 
simulated 
landfill 
leachate 

3-8 
 
 

20-35 
 
 

0.50-3.0 
 
 

0-24 
 
 

20-200  
 
 

Cr(VI) 
 
 

~90% (pH 3) 
 
 

Mono 
elemental 

 

6.7    20  Cr(VI) ~50%  Multi 
elemental 

[76] Fe3O4-γ-Fe2O3 NPs 
Magnetite-maghemite 

nanoparticles 

De-ionized 
water 

2-14 
 

r.t. 
 

0.40 
 

0.17-4 
 

1-2 
 

Cr(VI) 
 

96% (pH 2, 1 x103 µg/L) 
 4.45 (pH 2, 2 x103 µg/L) 

Mono 
elemental 

4  0.40   Cr(VI) 
 

35-90% Multi 
elemental 

[99] Ch-(Cu0) 
Zero-valent copper-

chitosan nanocomposites 

Deionized 
water 

2.85 
4.85 

25 2 24 50 Cr(VI) 95.58% 
94.2% 

 

Mono 
elemental 

[100] Magnetic NPs: 
MnFe2O4 
MgFe2O4  
ZnFe2O4 
CuFe2O4 
NiFe2O4 
CoFe2O4 

Milli-Q water 2.0-9.3 
 
 

22.5 
 
 

5.0 
 
 

0-1.0 
 
 

20-100  
 
 
  

Cr(VI) 
 

100% (MnFe2O4, 0.083 h) 
 
 

Mono 
elemental 

aNonlinear Pseudo-second-order model. bPseudo-second-order model. cLangmuir type 4 capacity. dLangmuir type 1 capacity. eThomas model column capacity. fRoom temperature. 
 

Note that,  
the conditions that are shaded correspond to the best uptake capacity or removal efficiency obtained; 
in general, when the type of water is not referred, the authors may have used distilled or milli-Q water; 
in the column correspondent to “Cr starting specie”, total chromium concentration was quantified in the works that refer it; in the other works no mention is made regarding the 
specie or if it is total concentration; 
in the column correspondent to “Uptake capacity (mg/g) or removal efficiency (%)”, when the value does not present units, it is the uptake capacity; otherwise, it is the removal 
efficiency; 
the value presented in parentheses in the column “Uptake capacity (mg/g) or removal efficiency (%)” corresponds to the condition that gave rise to the value of uptake capacity or 
removal efficiency presented; 
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the uptake capacity values which do not presented a subscript were obtained either experimentally or by Langmuir model; 
sometimes, the authors refer to experimental conditions of experiments whose results they do not present; 
from column “Type of water” until “Cr starting specie”, the conditions mentioned are the same for the below lines 
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Supplementary Information  

 

Table 2 – Nanomaterials for Cr removal with respect to the conditions used as reported in the literature in the last 10 years (since 2007). 

 

Reference Nanomaterial Type of water pH Temperature 
(ºC) 

Amount of 
sorbent  

(x10-3 mg/L)  

Contact 
time (h) 

Initial element 
concentration  
(x10-3 µg/L) 

Cr 
starting 
specie 

Uptake capacity (mg/g) or 
removal efficiency (%) 

Type of 
system 

[40] S n(II) oxy-hydroxides 
NPs (pH synthesis) 

 
Sn6O4(OH)4 (pH 2) 

 
Sn6O4(OH)4 /SnO (pH 4) 

 
 
 

Sn6O4(OH)4 (pH 2) 
Sn6O4(OH)4 (pH 4) 

SnO2 (pH 6) 
SnO2 (pH 9) 

Sn3OSO4(OH)2 (pH 2) 
Sn6O4(OH)4 /SnO (pH 4) 
Sn6O4(OH)4 /SnO (pH 6) 
Sn6O4(OH)4 /SnO (pH 9) 

 
Sn6O4(OH)4 (pH 2) 

 
 

Distilled water 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6-8 
 
 

6, 7, 8 
6, 7, 8 

 
 
 
 
7 
 
 
 
 
 
 
 
 
7 
 
 

10-30 
 
 

20 
 
 
 
 
 

20 
 
 
 
 
 
 
 
 

10, 20, 30 
 
 

0.025-0.75 
 
 

0.025-0.75 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

0.20 

0.016-48 
 
 

24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.016-48 

0.010-5.0 
 
 

0.25-5.0 
 
 
 
 
 

0.010 
 
 
 
 
 
 
 
 

5.0 
 
 

Cr(VI) ~31 (30 ºC, Sn6O4(OH)4 pH 2) 
 
 

29.359 (pH 6), 23.440 (pH 7), 
21.359 (pH 8) 

10.354 (pH 6), 8.112 (pH 7), 
6.990 (pH 8) 

 
 

19 
10 

<0.5 
<0.5 
6.1 
5.2 

5.2-6.1 
5.2-6.1 

 
~19 (10ºC), 27 (20ºC), 31 

(30ºC) 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sn(II) oxy-hydroxides 
NPs (pH synthesis) 

 
Sn6O4(OH)4 (pH 2) 

 
Sn6O4(OH)4 (pH 4) 

Sn6O4(OH)4 /SnO (pH 4) 
Sn6O4(OH)4 /SnO (pH 9) 

Natural-like 
water 

7.0-7.8 
 
 

7.0 
7.8 
7.0 
7.0 
7.0 

20 
 
 

20 

  0.10 
 
 

0.010 
 
 

Cr(VI) 19 (pH 7, Sn6O4(OH)4 pH 2) 
 
 

19 
18.5 
7.0 
4.0 
4.8 

Multi 
elemental 
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[42] Nano-ZrO2 
Nano zirconium oxide 

 
Nano-ZrO2-glu-CMC  

Crosslinking of 
nanolayer 

carboxymethyl cellulose 
(CMC) onto the surface 
of nano zirconium oxide 

(Nano-ZrO2) using 
glutaraldehyde  

 
 

Distilled water 
 
 
 

1.0-7.0 
 
 
 
 

1.0-7.0 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7 
 
 
 
2 
 
 
 
 
 

r.t. f 

 
 
 
 

r.t. 
 
 
 
 
 
 

r.t. 
 
 
 
 
 
 

r.t. 
 
 
 
 
 

r.t. 
 
 
 
 
 
 
 
 
 

2.5 
 
 
 
 

2.5 
 
 
 
 
 
 

2.5 
 
 
 
 
 
 

0.50, 1.0, 1.5, 2.0, 
2.5, 3.0, 4.0, 5.0, 

7.5, 10 
 
 
 

2.5 
 
 
 
 
 
 
 
 
 

0.017-1.0 
 
 
 
 

0.50 
 
 
 
 
 
 

0.017, 
0.083, 0.17, 
0.25, 0.33, 
0.42, 0.50, 
0.67, 0.83, 

1.0 
 

0.50 
 
 
 
 
 

0.50 
 
 
 
 
 
 
 
 

1040-10 400 
 
 
 
 

5200  
 
 
 
 
 
 

5200 
 
 
 
 
 
 

5200  
 
 
  
 
 
 

1040, 2080, 3120, 
4160, 5200, 6240, 
7279, 8319, 9349,  

10 400  
 
 
 
 
 

Cr(III) 
 

Cr(VI) 
 
 

Cr(III) 
 
 

Cr(VI) 
 
 
 

Cr(III) 
 

Cr(VI) 
 
 
 
 

Cr(III) 
 
 

Cr(VI) 
 
 
 

Cr(III) 
 
 
 

Cr(VI) 
 
 
 
 

187 (500 mg/L, Nano-ZrO2-
glu-CMC) 

73 (500 mg/L, Nano-ZrO2-
glu-CMC) 

 
3-26 Nano-ZrO2 (pH 7) 

44-58 Nano-ZrO2-glu-CMC 
(pH 7) 

2-6 Nano-ZrO2 (pH 1-2) 
19-35 Nano-ZrO2-glu-CMC 

(pH 1-2) 
 

26 Nano-ZrO2 (1 h) 
62 Nano-ZrO2-glu-CMC (1 h) 

6 Nano-ZrO2 (1 h) 
37 Nano-ZrO2-glu-CMC (1 h) 

 
 
 

94 Nano-ZrO2 (500 mg/L) 
187 Nano-ZrO2-glu-CMC 

(500 mg/L) 
10 Nano-ZrO2 (500 mg/L) 
73 Nano-ZrO2-glu-CMC  

(500 mg/L) 
 

62 Nano-ZrO2  
(10 400 x103 µg/L) 

89 Nano-ZrO2-glu-CMC 
(10 400 x103 µg/L) 

18 Nano-ZrO2  
(10 400 x103 µg/L) 

54 Nano-ZrO2-glu-CMC  
(10 400 x103 µg/L) 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 
 
2 

r.t. 2.5 0.50 5200 
 
 
 

Cr(III) 
 

Cr(VI) 

11-26 Nano-ZrO2 
29-44 Nano-ZrO2-glu-CMC 

4-8 Nano-ZrO2 
14-27 Nano-ZrO2-glu-CMC 
(depending on the type of 

interfering ion) 

Multi 
elemental 
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[35] Pd/Fe3O4 NPs 
Magnetite nanoparticles 

functionalized with 
palladium 

 
 

3 Information 
not mentioned   

5.0 8.0 20 Cr(VI) 
Total Cr 

~60%  
~60% 

 

Multi 
elemental 

[9] K 2Mn4O9 
Rancieite type material  

 

2-6 
 
 

2, 3, 4, 5, 6 
 
 
 
5 
 
2 
 
 

4-45 
 
 

r. t. 
 
 
 

4, 25, 45 

2.5 
 
 

2.5 
 
 
 

2.5 
 
 
 
 

0.083-2.0 
 
 

1.0 
 
 
 

0.083, 0.17, 
0.25, 0.50, 
1.0, 1.5, 2.0 

 
 

0.30-30  
 
 

0.30 
 
 
 

30  
 
 
 
 

Cr(III) 
Cr(VI) 

 
Cr(III) 
Cr(VI) 

 
 

Cr(III) 
 

Cr(VI) 
 

33% (pH 6)/ 41.8 (45ºC) 
23% (pH 2) / 4.22 (4ºC) 

 
~5-33% (pH 6) 
~3-23% (pH 2) 

 
 

21.7 (4ºC), 36.5 (25ºC), 41.8 
(45ºC) 

4.22 (4ºC), 4.08 (25ºC), 3.25 
(45ºC) 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 

5 
2 

 2.5 1.0 0.30 
 

Cr(III) 
Cr(VI) 

 

~4-37% 
~0-67% 

(depending on the type and 
concentration of interfering ion)  

Multi 
elemental 

[37] 
 

MNPLB 
Lagerstroemia speciosa 
bark (LB) embedded 

magnetic nanoparticles 

Double 
distilled water 

1.09-7.02 
 

2.05 
 
 
 
 

2.05 
 
 
 
 
 

2.05 
 
 
 
 
 

1.09, 2.05, 
3.0, 4.02, 
5.04, 6.07, 

7.02 

15-40 
 

35 
 
 
 
 

35 
 
 
 
 
 

35 
 
 
 
 
 

35 
 
 
 

0.1-0.7 
 

0.4 
 
 
 
 

0.4 
 
 
 
 
 

0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7 

 
 
 
 

0.4 
 
 
 

0.17-2.0 
 

0.17, 0.50, 
0.83, 1.2, 
1.5, 1.83, 

2.0 
 

1.5 
 
 
 
 
 

1.5 
 
 
 
 
 

1.5 
 
 
 

50-500 
 

100 
 
 
 
 

50, 100, 200, 250, 
300, 500 

 
 
 
 

100 
 
 
 
 
 

100 
 
 
 

Cr(VI) 739.7 (500 x103 µg/L) 
 

234.3 (0.17h), 237.2 (0.50h), 
239.7 (0.83h), 243.1 (1.2h), 
249.7 (1.5h), 249.7 (1.83h), 

249.8 (2.0h) 
 

124.9 (50 x103 µg/L), 249.7 
(100 x103 µg/L), 350.4 (200 
x103 µg/L), 384.5 (250 x103 
µg/L), 444.0 (300 x103 µg/L), 

739.7 (500 x103 µg/L) 
 

675.2 (100 mg/L), 394.7 (200 
mg/L), 315.2 (300 mg/L), 249.7 
(400 mg/L), 199.9 (500 mg/L), 
166.6 (600 mg/L), 142.8 (700 

mg/L) 
 

249.7 (pH 1.09), 249.7 (pH 
2.05), 242.3 (pH 3.0), 235.5 (pH 

4.02), 234.6 (pH 5.04), 231.6 
(pH 6.07), 225.5 (pH 7.02) 

Mono 
elemental 
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2.05 15, 20, 25, 30, 
35, 40 

0.4 1.5 100 197.4 (15ºC), 208.0 (20ºC), 
239.9 (25ºC), 246.3 (30ºC), 
249.7 (35ºC), 249.7 (40ºC) 

[84] MNP/MWCNTs 
Magnetic iron oxide 

nanoparticle-multiwalled 
carbon nanotube 

composites 

Ultrapure 
water 

1.0-9.0 
 
 

1, 2, 3, 4, 
5, 6, 7, 8, 9 

 
2.0 

 
 

2.0 
 
 
 

2.0 
 
 
 
 

25-45 
 
 

25 
 
 

25 
 
 

25, 35, 45 
 
 
 

25 
 
 
 
 

0.4-2.0 
 
 

1.0 
 
 

0.4, 0.6, 0.8, 1.0, 
1.2, 1.6, 2.0 

 
1.0 

 
 
 

1.0 
 
 
 
 

0-24 
 
 

4.0 
 
 

4.0 
 
 

24 
 
 
 

0.083-6.0 
 
 
 
 

5.0-50 
 
 

5.0 
 
 

5.0 
 
 

5.0, 10, 20, 30, 40, 
50 
 
 

5.0, 10, 15 
 
 
 
 

Cr(VI) ~98% (1000-2000 mg/L) 
42.02 (45ºC) 

 
~15-95% (pH 2) 

 
 

~61-98% (1000-2000 mg/L) 
 
 

22.22 (25ºC), 39.68 (35ºC), 
42.02 (45ºC) (depending on 

the material type) 
 

4.964 (5 x103 µg/L), 9.457 
(10 x103 µg/L), 13.43 (15 x103 
µg/L) (depending on the 

material type) 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.0  1.0  10 Cr(VI) ~92-95% (depending on the 
type of interfering ion) 

Multi 
elemental 

[67] PAN-CNT/TiO 2-NH2 
Polyacrylonitrile (PAN) 

and carbon nanotube 
(CNTs)/titanium dioxide 

nanoparticles (TiO2) 
functionalized with 
amine groups (TiO2-

NH2) composite 
nanofibers 

 2-9 
 
 

2, 3, 4, 5, 
7, 9 

 
2 
 
 
2 
 
 
 
 
 
 
 
 
2 

r.t. (20) 
 
 

20 
 
 

20, 40, 60 
 
 

20 
 
 
 
 
 
 
 
 
 

0.1-0.8 
 
 

0.5 
 
 

0.5 
 
 
 
 
 
 
 
 
 
 
 

0.1, 0.2, 0.4, 0.6, 
0.8 

0-7 
 
 
 
 
 
 
 
 

0-7 
 
 
 
 
 
 
 
 

0.67 

10-300 
 
 

10 
 
 

10-300  
 
 

10 
20 
30 
50 
80 
100 
200 
300 

 
100 

Cr(VI) 99.7% (6000 mg/L) 
861.11 a  

 
~65-99% (pH 2) 

 
 

732 (20ºC), 704.7 (40ºC), 
584.8 (60ºC) 

 
26.67 a 

53.88 a 
78.95 a 
137.30 a 
217.47 a 
276.47 a 
550.87 a 
861.11 a  

 
55.2-99.7% (6000 mg/L) 

Mono 
elemental 
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[79] Meso-MnO2 
Mesoporous manganese 

oxide 
AgNPs@meso-MnO2 

silver nanoparticles 
doped mesoporous 
manganese oxide  

Ag/Graphene-meso-
MnO2 

silver nanoparticle 
graphene deposited 

mesoporous manganese 
oxide nanocomposite 

Milli-Q water 6 r.t. 6.7 24 50 Cr(VI) ~35% 
 
 

98% / 460 
 
 
 

68% / 140 

Mono 
elemental 

 

[41] CoFe2O4 NPs 
Cobalt ferrite 
nanoparticles 

Distilled water 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2-12  
 
 
 
 
 
 
 

2, 4, 6, 8, 
10, 12 

 
 
 
 
 
 
6 
 
 
 

25-55 
 
 

25 
 
 
 
 

25 
 
 

25, 40, 55 
 
 
 
 

25, 40, 55 
 
 
 

2-12 
 
 

10  
 

2, 4, 6, 8,  
10, 12  

 
10  
 
 

10  
 
 
 
 

10  
 
 
 

0-4.0 
 
 

0-4.0 
 
 
 
 
 
 
 

2.0 
 
 
 
 

2.0 
 
 
 

75-150  
 
 

75, 100, 125, 150  
 
 
 
 

75  
 
 

75 
100 
125 
150  

 
 
 
 
 

Cr(VI) 98.45 % (55ºC, 75 x103 µg/L) 
16.73 (55ºC) 

 
65.50-91.76% (75 x103 µg/L) 

 
~62-93% (12 x103 mg/L) 

 
 

50.0-94.14% (pH 2) 
 
 

91.76-98.45% (55ºC) 
84.57-93.45% (55ºC) 
75.20-85.94% (55ºC) 
65.50-74.91% (55ºC) 

 
10.53 (25ºC), 10.98 (40ºC), 

16.73 (55ºC) 
 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Printing press 
wastewater 

 
 

1-12 
 

0.98 
 
 

1, 2, 4, 5, 
10, 12 

 
2 

25-55 
 

25 
 
 

25 
 
 

25, 40, 55 

10  
 

10  
 
 

10  
 
 

10  

0-24 
 

0-24 
 
 
 
 
 

2.0 

1637.5  
 

1637.5 
 
 

1637.5 
 
 

1637.5 

Cr(VI) ~69% 
 

~69 % 
 
 

~36-89% (pH 10/12) 
 
 

46.44-64.56% (55 ºC) 

Multi 
elemental 
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[39] MIO-MWCNTs 
MWCNTs 

Multi-walled 
carbon nanotubes 

MIO NPs 
Magnetic iron oxide 

nanoparticles 
 

MIO-MWCNTs 
MWCNTs 
MIO NPs 

 
MIO-MWCNTs 

 
 

MIO-MWCNTs 
 
 
 

MIO-MWCNTs 
 

 2.6-7.3 
 
 
 
 
 
 
 
3 
 
 
 
3 
 
 
3 
 
 
 

2.6-7.3 

5-60 
 
 
 
 
 
 
 

30 
 
 
 

30 
 
 

5, 15, 30, 45, 
60 
 
 

30 

1.0 
 
 
 
 
 
 
 

1.0  
 
 
 

1.0  
 
 

1.0  
 
 
 

1.0  
 

1.0 

0.25-4.0 
 
 
 
 
 
 
 

0.25, 0.50, 
0.75, 1.0, 

2.0, 3.0, 4.0 
 

4.0 
 
 

0.25, 0.50, 
0.75, 1.0, 

2.0, 3.0, 4.0 
 

5-100 
 
 
 
 
 
 
 

10  
 
 
 

5-100  
 
 

10  
 
 
 

10  
 

5-100  

Cr(VI) 12.61 (100 x103 µg/L,  
MIO-MWCNTs) 

80.8% (5 x103 µg/L,  
MIO-MWCNTs) 

 
 
 
 

4.54 – 5.93 (4 h) 
4.80 (4 h)  
5.27 (4 h) 

 
12.6-80.8% (5 x103 µg/L) 

4.04-12.61 (100 x103 µg/L) 
 

5.47-6.64 (5ºC)  
 
 
 

2.13-5.70 (pH 3)  
 

11.256 

Mono 
elemental 

[52] CN-coated AC 
Bituminous activated 

carbon (AC) coated with 
chitosan nanoparticles 

(CN) 
CN-AC/DC 

CN coated on AC by the 
dip coating method  

CN-AC/WI 
CN coated on AC by the 
wet impregnation method 

Deionized 
water 

5.0 
 
 
 

5.0 
 
 
 
 
 

5.0 

Information 
not mentioned 

1.0 
 
 
 

1.0 
 
 
 
 
 

1.0 
 

0-24 
 
 
 

0-24 
 
 
 
 
 

0-24 

0.10-100 
 
 
 

0.10-100 
 
 
 
 
 

10 

Cr(VI) 77.52 (CN-AC/DC) 
61.7% (0.1 x103 µg/L,  

CN-AC/DC) 
 

61.35 CN NPs 
57.47 CN-AC/WI 
77.52 CN-AC/DC 

38.5-61.7% CN-AC/DC  
(0.1 x103 µg/L)  

 
4.66 CN-AC/WI 
4.84 CN-AC/DC 

Mono 
elemental 

[8] n-Al 2O3 
γ-alumina nanoparticles 

modified with cetyl 
trimethyl ammonium 

bromide (CTAB) 

Distilled water 2.0-10.0 
 
 
 

2, 4, 6, 8, 
10 

 
2 
 
 

30-60 
 
 
 
 
 
 
 
 
 

4-24 
 
 
 
 
 
 
 
 
 

0-1.5 
 
 
 
 
 
 

0-1.5 
 
 

5-25 
 
 
 
 
 
 
5 
10 
15 

Cr(VI) 94% (5 x103 µg/L, pH 2.03, 
18 340 mg NPs/L) 

18.716 b (25 x103 µg/L) 
 

~46-94% (pH 2) 
 
 

4.707  
8.415  

12.155 b 

Mono 
elemental 
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2 
 
 
2 
 
 
 
 
 
 
 
 

2.03 

 
 
 
 
 
 
 

20 
 

30 
 

40 
 

60 
 
 
 

 
 
 
 

4, 8, 12, 16, 20, 
24 
 
 
 
 
 
 
 
 
 
 

18.34 

 
 
 
 
 
 
 
 
 
 
 
 

20 
25 
 
 
 
 
 

5, 10, 15, 20, 25 
 
 
 
 
 
 
 
 
5 

15.933 b 
18.716 b 

~40-94% (5 x103 µg/L, 1h) 
 

~52-94% (20 000-24 000 
mg/L) 

 
~64-94% (5 x103 µg/L) / 

0.8952 
~54-87% (5 x103 µg/L) / 

0.8204 
~50-70% (5 x103 µg/L) / 

1.0149 
~40-63% (5 x103 µg/L) / 

0.7469 
 

94% 
[85] CuO NPs 

Copper(II) oxide 
nanoparticles 

Double 
distilled water 

2-10 
 
 

2, 3 4, 5, 6, 
7, 8, 9, 10 

 
3 
 
 
 
3 
 
3 
 
 
3 

25-45 
 
 

r.t. 
 
 

r.t. 
 
 
 

r.t. 
 

r.t. 
 
 

25 
35 
45 

0.4-5 
 
 

1.0 
 
 

0.40, 0.80; 1.2, 
1.6, 2.0, 3.0, 4.0, 

5.0 
 

1.6 
 

1.6 
 
 

1.6 

0-3.0 
 
 

3.0 
 
 
 
 
 
 

0-3.0 
 

3.0 
 
 

3.0 

10-150 
 
 

20 
 
 

20 
 
 
 

20 
 

10, 20, 30, 50, 70, 
100, 150 

 
20 

Cr(VI) 96.3% (10 x103 µg/L) 
86.25 (400 mg/L) 

 
33.05-65.5% (pH 3) 

13.1 (pH 3) 
 

34.5-92.8% (5000 mg/L) 
18.56-86.25 (400 mg/L) 

 
 

~82% (1h) 
 

16.33-96.3% (10 x103 µg/L) 
 
 

83% / 15.625 
17.636 

94% / 18.518 

Mono 
elemental 

 

[72] IONPs 
Magnetic iron oxide 

nanoparticles 
MIONPs 

EDTA-modified 
magnetic iron oxide 

nanoparticles 

 2 
 
 
 
 
2 
 
 
 

r.t. 
 
 
 
 

r.t. 
 
 
 

0.0050-0.030 
 
 
 
 

0.0050, 0.010, 
0.015, 0.020, 
0.025, 0.030 

 

0-18 
 
 
 
 

3.0 
 
 
 

200-1000 
 
 
 
 
 
 
 
 

Cr(VI) 99.90% / 499.5 (30 mg/L, 
MIONPs) 

34.06% / 170.33 (30 mg/L, 
IONPs) 

 
320.17-499.5 (30 mg/L) 

MIONPs  
86.88-170.33 (30 mg/L) 

IONPs 

Mono 
elemental 
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2 
 
 
 
 
 
2 

 
 
 
 
 
 
 
 
 
 
 

25 
 
 
 
 
 

25 

 
 
 
 
 
 
 
 
 
 
 

0.010 
 
 
 
 
 
 

18 
 
 
 
 
 
 
 
 
 
 

0.33, 0.66, 
1.0, 1.3, 
1.7, 2.0, 
2.3, 2.7, 
3.0, 18 

 
3.0 

 
 
 
 
 
 
 
 
 
 
 

1000 
 
 
 
 
 

200, 400, 600, 800, 
1000 

64.03% (5 mg/L), 77.67% (10 
mg/L), 89.16% (15 mg/L), 
93.77% (20 mg/L), 96.65% 

(25 mg/L), 99.90% (30 mg/L) 
MIONPs  

17.37% (5 mg/L),19.15% (10 
mg/L), 22.41% (15 mg/L), 

25% (20 mg/L), 29.05% (25 
mg/L), 34.06% (30 mg/L) 

IONPs 
 

163.97 (3h), 452.26 (18h) 
MIONPs  

147.95 (3h), 170.33 (18h) 
IONPs 

 
 

82.80-367.67 MIONPs  
(1000 x103 µg/L) 

37.55-106.33 IONPs 
(1000 x103 µg/L)  

[68] Ti-AX  
Titanium dioxide 

nanoparticles 
precipitated in anion 

exchange resins 

Synthetic 
groundwater 

8 Information 
not mentioned 

0.60 168 0.10 Cr(VI) 88% Multi 
elemental 

 

[86] Cs-g-PBA/SG 
Chitosan-g-

poly(butylacrylate)/ 
silica gel nanocomposite 

 3-9 
 
 

3, 4, 5, 6, 7, 
8, 9 

 
 
 
 
7 
 
 
7 

r.t. 
 
 
 
 
 
 
 
 

25 
 
 

r.t. 

10-60 
 
 

10 
 
 

10, 20, 30, 40, 50, 
60 

 
10 
 
 

10 

1.0-6.0 
 
 

1.0 
 
 
 
 
 

1.0-6.0 
 
 

1.0 

62.5-1000 
 
 

100 
 
 
 
 
 

100 
 
 

62.5, 125, 250, 500, 
750, 1000 

Cr(VI) 98% (62.5-125 x103 µg/L) 
55.71 

 
~94.1-97.4% (pH 7) 

 
 

~97.4-97.73% (60 000 mg/L) 
 
 

~96.7-98 (5-6h) 
 
 

54-98% (62.5-125 x103 µg/L) 
55.71 

Mono 
elemental 

[87] Chitosan–Fe3O4 
nanocomposite strip 
Chitosan–magnetite 
nanocomposite strip 

Deionised 
water 

Information 
not 

mentioned 

Information 
not mentioned 

1 cm x 1 cm 
0.010 L 

0.17, 0.30, 
0.83, 1.2, 

1.5, 1.8, 2.2 

260 Cr(VI) ~15-92.33% Mono 
elemental 
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[47] TF-SCMNPs 
Thiol-functionalized 

mesoporous silica-coated 
magnetite nanoparticles 

(Fe3O4 NPs) 

Distilled water 3-10 
 
 

3, 5, 7, 10 
 
 

10 
 
 

10 
 
 

10 

r.t. (25) 
 
 

r.t. 

0.080-0.40 
 
 

0.40 
 
 

0.080, 0.16, 0.24, 
0.32, 0.40 

 
0.40 TF-SCMNP 

0.40 Fe3O4  
 

0.080-0.40 

0.083-24 
 
 

0.083, 0.17, 
0.25, 0.33 

 
0.33 

 
 

0.33 
 
 

24 

8  
 
 
8  
 
 
8 
 
 
8 
 
 
8 

Cr(III) 42% (pH 10, 400 mg/L) 
1.119 

 
2.5-42% (pH 10, 0.33 h) 

 
 

1.375-42% (400 mg/L) 
 
 

42% 
13.875% 

 
1.119  

Mono 
elemental 

[43] Fe-Cu binary oxide 
NPS 

Milli-Q water 1-9 
 
 
 
3 
 
 
 
 
 
 
 
3 
 
 
 

1, 3, 5, 7, 9 
 
 
 
3 
 
3 

r.t. (25) 
 
 
 

25 
 
 
 
 
 
 
 

25 
 
 
 

25 
 
 
 

25 
 

25 

0.10-2.5 
 
 
 

0.10 
0.50 

 
 
 

1.0 
2.5 

 
0.10, 0.50, 1.0, 

2.5 
 
 

0.50 
 
 
 

0.10 
 

1.0 

1.0 
 
 
 

1.0 
 
 
 
 
 
 
 

1.0 
 
 
 

1.0 
 
 
 

0-10 

1-25  
 
 
 

1, 5, 10, 25  
 
 
 
 
 
 
 
5 
 
 
 
5 
 
 
 

1.15 
 
 

Cr(VI) ~100% (100 mg/L,  
1 x103 µg/L)  

71.43  
 

~10-50% (1 x103 µg/L) 
81.3% (1 x103 µg/L) 
76.54% (5 x103 µg/L) 
71.43% (10 x103 µg/L) 
73.76% (25 x103 µg/L) 
~92-98% (1 x103 µg/L) 
~99-100% (1 x103 µg/L) 

 
27.9% (100 mg/L), 76.54% 
(500 mg/L), 97.48% (1000 

mg/L), 99.86% (2000 mg/L) 
 

41.25% (pH 1), 76.54%  
(pH 3), 71.5% (pH 5), 53.28% 

(pH 7), 26.82% (pH 9) 
 

~40% (4 h) 
 

71.43 

Mono 
elemental 
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[51] MIN Magnetic iron 
oxide nanoparticles 

MIN-TW Magnetic iron 
oxide nanoparticles/tea 

waste composite 
MIN-SB Magnetic iron 

oxide 
nanoparticles/sugarcane 

bagasse composite 
MIN 

MIN-TW 
MIN-SB 

 

MIN 
 

MIN-TW 
 

MIN-SB 
 
 

MIN 
MIN-TW 
MIN-SB 

 

MIN 
 

MIN-TW 
 

MIN-SB 
 
 

MIN 
MIN-TW 
MIN-SB 

 

MIN 
MIN-TW 
MIN-SB 

 
 
 

Deionized 
water 

 
 
 
 
 
 

2-7  
 
 
 
 
 
 
 
 

2, 3, 4, 5, 6 
 
 
 

6 
 
 
 
 
 
 

6 
 
 
 

6 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

30 
 
 
 
 
 
 
 
 

30 
 
 
 

30 
 
 
 
 
 
 

30 
 
 
 

30 
 
 
 
 
 
 

 
 
 
 

30, 35, 45 
 
 
 
 
 

0.50-1.25 
 
 
 
 
 
 
 
 

1.0 
 
 
 

1.0 
 
 
 
 
 
 

1.0 
 
 
 

0.50, 0.75, 1.0, 
1.125 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

0.083-2.0 
 
 
 
 
 
 
 
 

0.75 
 
 
 

0.75 
 
 
 
 
 
 

0.083-2.0 
 
 
 

0.92 
 

1.0 
 

1.0 
 
 

0.82 
0.84 
0.75 

 

 
 
 
 
 
 

50-300  
 
 
 
 
 
 
 
 

50  
 
 
 

50, 100, 200, 250  
 
 
 
 
 
 

250  
 
 
 

250  
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Cr(III) 
 

98.27% (MIN-SB, 1h,  
1125 mg/L)   

518.134 d (MIN-SB, 0.75 h) 
 
 
 
 
 
 

83.86% / 45.93 (pH 6)  
78.46% / 39.23 (pH 6) 
94.23% / 47.11 (pH 6) 

 

90.90% / 227.25  
(250 x103 µg/L) 

89.82% / 224.558 
(250 x103 µg/L) 
96.74% / 241.87  
(250 x103 µg/L) 

 

93.03% / 232.59 (0.92 h) 
92.83% / 232.08 (1 h) 
98.27% / 245.68 (1 h) 

 

93.03 % (1125 mg/L)  
232.59 (500 mg/L) 

92.83% (1125 mg/L)  
232.08 (500 mg/L)    

98.27% (1125 mg/L)  
245.68 (500 mg/L)    

 

502.779 c  
466.773 c  
518.134 d  

 

323.59 (30ºC), 242.92 (35ºC), 
246.89 (45ºC) 

232.08 (30ºC), 241.99 (35ºC), 
245.52 (45ºC) 

245.06 (30ºC), 247.16 (35ºC), 
248.99 (45ºC) 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

MIN 
MIN-TW 
MIN-SB 

Deionized 
water 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 Cr(III) ~229-243  
~228-240  
~243-247  

(depending on the type of 
interfering ion) 

Multi 
elemental 
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[36] ST/Mag NPs  
Spent tea-supported 

magnetite nanoparticles 

Double-
distilled water 

 
 
 
 
 
 
 
 
 
 
 
 

2-8 
 
 

2, 3, 4, 5, 6, 
7, 8 

 
2 
 
2 
 
 
2 
 
 

r.t. (20) 
 
 

20 
 
 

20 
 

20 
 
 

20 
 
 

0.10-11.0 
 
 

5.0 
 
 

0.10-11.0 
 

6.0 
 
 

6.0 
 
 

0.033-4.0 
 
 

2.0 
 
 

2.0 
 

0.033-4.0 
 
 

2.0 
 
 

5-300 
 
 

10 
 
 

10 
 

10 
100 

 
5-300 

 
 

Cr(VI) 
 

~100% (5 x103 µg/L) 
30.03 

 
~65-92.8% (pH 2) 

 
 

10.1-99.7% (6000 mg/L) 
 

1.44 / 99.7% (1h) 
13.92 / 81.8% (1h) 

 
30.03 

~55-100% (5 x103 µg/L) 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 

Synthetic 
saline 

wastewater 

2 20 3.0 1.0 10 Cr(VI) 
 

78.3-99.9% 
1.09-1.39 

(depending on the 
concentration of interfering 

ions) 

Multi 
elemental 

[44] Fe3O4 NPs 
Magnetic magnetite 

nanoparticles 

Double 
distilled water 

2-10  
 
 

2, 4, 6, 8, 
10 
 
2 
 
 
 
2 
 
 
 
2 

25-45 
 
 

25 
 
 

25 
 
 
 

25 
 
 
 

25, 35, 45 

1.0-4.0 
 
 

1.0 
 
 

1.0 
2.0 
4.0 

 
2.0 

 
 
 

2.0 
 

0-24 
 
 
 
 
 

0-24 
 
 
 

0-24 
 
 
 

0-24 
 

2-100  
 
 

20  
 
 

50  
 
 
 

25 
50 
100  

 
2-100  

 

Cr(VI) 
 

~75% (4000 mg/L) 
34.9 (45ºC) 

 
10-58.4% (pH 2) 

 
 

30% / 14.01 
57% / 16.13 b 

~75% / 8.70 b 

 
9.90 b 

8.85 b 

17.24 b 

 
20.2 (25ºC), 26.8 (35ºC), 34.9 

(45ºC)  

Mono 
elemental 

[38]  
 
 

ESH Electrospun 
hematite nanofiber 

ESH@MS-60 
Electrospun hematite 
nanofiber/mesoporous 

silica core/shell  

 3-6 
 
 

5.4 
 

5.4 
 
 
 

25 
 
 

25 
 

25 
 
 
 

0.25 2.0 
 
 

2.0 
 

2.0 
 
 
 

5.2-104  Cr(III) 343 (pH 5.4, ESH@MS-60-
NH2) 

 

208  
 

178  
 
 
 

Mono 
elemental 
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ESH@MS-60-NH2 
Electrospun hematite 
nanofiber/mesoporous 

sílica functionalized with 
amine group  

5.4 25 2.0 343  
 

[45] CaFe2O4 NPs 
Calcium ferrite 
nanoparticles 

Ultrapure 
deionized 

water 

2-6 
 
 

2, 3, 4, 5, 6 
 
 
 
 
 
2 
 
2 
 
 
 
2 

r.t. 0.0625-1.0  
 
 

1.0 
 
 

1.0 
 
 

1.0 
 

0.0625, 0.125, 
0.25, 0.50, 0.75, 

1.0  
 

1.0 

0.033-1.7 
 
 

0.67 
 
 
 
 
 

0.033-1.67 
 

0.67 
 
 
 

0.67 

30-250  
 
 

50  
 
 

30-250  
 
 

30, 50, 70, 100, 125  
 

50  
 
 
 

30-250  

Cr(III) 340 (62.5 mg/L) 
99% (pH 2 / 30 x103 µg/L) 

 
5.80-49.50 (pH 2) 
11.5-99% (pH 2) 

 
29-122 (250 x103 µg/L) 
~49-99% (30 x103 µg/L) 

 
~30-115 (125 x103 µg/L) 

 
~340 (62.5 mg/L) 

> 95% (1000 mg/L) 
 
 

124.11  

Mono 
elemental 

[46] MnFe2O4 NPs  
Manganese ferrite 

nanoparticles 

Real 
wastewater 

from 
galvanotechnic 

industry 

2 
 
 
2 
 
 
2 
 
2 
 
 
 

r.t. 
 
 
 
 
 
 
 
 

0.5-6.0 
 
 

0.50, 1.0, 1.5, 2.0, 
3.0, 6.0  

 
1.5 

 
1.5 

 
 

1.5 

0.17-24 
 
 

24 
 
 

0.17-24 
 

24 
 
 

2.0 

50-250  
 
 
 
 
 
 
 

50, 100, 150, 250  
 

Total Cr 334.80 (500 mg/L) 
 71.37% (1500 mg/L) 

 
34.68-334.80 (500 mg/L) 
~50-71.37% (1500 mg/L) 

 
~80 / ~60% (2 h) 

 
~10-40 (250 x103 µg/L) 
~25-30% (50 x103 µg/L) 

 
89.18 / 59.35% 

Multi 
elemental 

[70] Fe3O4 NPs 
Magnetite nanoparticles 

Distilled water 
 
 

7 
 
 

20 
 
 

0.10-1.0 
 
 

0.083-24 
 
 

0.25 
 
 

Cr(VI) ~2.4 (24 h) 
 
 

Mono 
elemental 
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Natural-like 
water 

5-8 
 
 
 
7 
 

5-8 
 

6.5 
7.0 
7.5 

20 0.10-1.0 
 
 
 
 
 

0.10 
 

1.0 

0.083-24 
 
 
 

0.083-24 
 

24 
 

0.50-5.8 

0.050-1.0 
 
 
 

0.25 
 

0.050-1.0  
 

0.10  

Cr(VI) ~100% (pH 6.5, 3 h / 
 pH 7.0, 4 h)  

4 (pH 5) 
 

~1.1 (24 h) 
 

1-4 (pH 5) 
 

~100% (3 h) 
~100% (4 h) 
~95% (5 h) 

Multi 
elemental 

[88] Fe3O4 NPs 
Magnetite nanoparticles 

 1.5-4.5 
 

3.5 
 

1.5, 2.5, 
3.5, 4.5 

 
3.5 

 
 

3.5 
 
 

3.5 

10-75 
 

20 
 

20 
 
 

10, 20, 45, 75 
 
 

20 
 
 

20 

0.50-2.0 
 

2.0 
 

2.0 
 
 

2.0 
 
 

2.0 
 
 

0.50, 1.0, 2.0  

0-2.0 
 

0-2.0 
 

0.50 
 
 

0.50 
 
 

0.50 
 
 

0.50 

0-160  
 

80  
 

80  
 
 

80  
 
 

0, 5, 10, 20, 40, 80, 
160  

 
80  

Cr(VI) ~26 (2000 mg/L) 
 

~12 (2 h) 
 

~5.5-13.5 (pH 1.5) 
 
 

~9-25 (75ºC) 
 
 

~3-12 (160 x103 µg/L) 
 
 

~10.5-12 (500 mg/L) 
~7.5-26 (2000 mg/L) 

Mono 
elemental 

[89] CS–CA NPs 
Chitosan–citric acid 

nanoparticles 
CS NPs 

Chitosan nanoparticles 
 
 
 

CS–CA NPs 

De-ionized 
water 

2-6 
 
 
4 
 
 
 
 

2, 3, 4, 5, 6 
 
 
4 
 
 
 
3 
 

25-45 
 
 

25 
 
 
 
 

25 
 
 

25 
 
 
 

25 

0.50-5.0 
 
 

2.0 
 
 
 
 

3.0 
 
 

0.50, 1.0, 1.5, 2.0, 
2.5, 3.0, 3.5 

 
 

3.0 

0-2.0 
 
 

0, 0.17, 
0.33, 0.66, 
1.0, 1.83, 

2.0 
 

1.0 
 
 

1.0 
 
 
 

1.0 

10-110  
 
 

25  
 
 
 
 

50  
 
 

50  
 
 
 

10, 30, 50,70, 90, 
110  

Cr(VI) 94.46% (70 x103 µg/L) 
38.51 (500 mg/L) 

 
61.75% CS-CA (1-2 h) 

83.54% CS (1-2 h) 
 
 
 

52.89-86.83% (pH 3) 
~9-14 (pH 3) 

 
38.51-83.33%  

(3000-3500 mg/L) 
3.88-38.51 (500 mg/L) 

 
53.42-94.46% (70 x103 µg/L) 

22.4 (70 x103 µg/L) 

Mono 
elemental 
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[65] CuO NPs 
Cupric oxide 
nanoparticles 

De-ionized 
double 

distilled water 

2.0-10.0 
 
 

7.0 
 
 

7.0 
 
 
 

2, 3, 4, 5, 6, 
6, 7, 8, 9, 

10 
 
 

4.0 
 
 
 
 

4.0 
 
 
 

3.81 

20-60 
 
 

25 
 
 

25 
 
 
 

25 
 
 
 
 

25 
 
 
 
 

20, 25, 30, 35, 
40, 45, 50, 55, 

60 
 

37.1 

0.25-2.5 
 
 

1.0 
 
 

1.0 
 
 
 

1.0 
 
 
 
 

0.25, 0.50, 0.75, 
1.0, 1.25, 1.5, 
1.75, 2.0, 2.25, 

2.5 
 

1.25 
 
 
 

1.28 

0-5.8 
 
 

0-5.8 
 
 

2.5 
 
 
 

2.5 
 
 
 
 

2.5 
 
 
 
 

2.5 

5-50  
 
 

30  
 
 

5, 10, 15, 20, 25,  
30, 35, 40, 45,  

50  
 

25  
 
 
 
 

25  
 
 
 
 

25  
 
 
 

22.5 

Cr(VI) 98.8%  
50.0 (250 mg/L) 

 
~35% (2.5-5.8 h) 

~8 (2.5-5.8 h) 
 

21.9-91.0% (5 x103 µg/L) 
3.5-8.55 (25 x103 µg/L) 

 
 

20-73.2% (pH 4) 
4-14.07 (pH 4) 

 
 
 

50-80% (1250 mg/L) 
7.93-50.0 (250 mg/L) 

 
 
 

13.3-86.5% (40ºC) 
2.5-16.63 (40ºC) 

 
 

98.8% 

Mono 
elemental 

[58] TiO2 NPs 
Titania nanoparticles 

Deionized 
(MilliQ) water 

2.0-12.0 
 

2, 5, 7, 9, 
12 
 
 
 
 
 
 
 
 

7.0 

28 
 
 
 
 
 
 

0.010-0.50  
 
 
 
 
 
 
 
 

0.010, 0.050, 
0.10, 0.20, 0.50 

 
0.10 

0.083-0.75 
 
 
 
 

0.083, 0.17, 
0.25, 0.33, 
0.50, 0.75 

 
 
 
 

0.50 

5-100  
 
 
 
 
 
 
 
 
 
 
 

5, 10, 20, 50, 100  

Cr(VI) 85.85 (20 x103 µg/L) 
 

75.47 (pH 7) 
 
 

79.24 (0.5 h) 
 
 
 

83.01 (100 mg/L) 
 
 

85.85 (20 x103 µg/L) 

Mono 
elemental 

[56] BnM 
Biogenic nano-magnetite 

Ultrapure 
water 

 

12 
 
 

20 
 
 

0.75 Anoxic 
 
 

0-350  
 
 

Model solution 
 
 

Cr(VI) 32  
 
 

Mono 
elemental 

 
Contaminated 
groundwater 

11.9 20 0.66 Anoxic 
0.66 Oxic 

0-200 16.69  Cr(VI) 24 
7   

Multi 
elemental 
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[48] PAA@VTES@Fe3O4 
NPs 

Magnetite nanoparticles 
coated with silane 

coupling agent (VTES) 
grafted with polyacrylic 

acid (PAA) 

Ultrapure 
water 

 
 
 
 
 
 
 
 
 
 
 
 
 

2-6 
 
 
 

2, 2.5, 3, 
3.5, 4, 4.5, 
5, 5.5, 6 

 
6 
 
 
 
6 
 
 

20-40 
 
 
 

30 
 
 
 

30 
 
 
 

20, 30, 40 
 

30 

1.0-6.5 
 
 
 

5.0 
 
 
 

1.0, 2.0, 3.5, 4.0, 
5.0, 5.5, 6.0, 6.25, 

6.5 
 

5.0 
 
 

0-24 
 
 
 

4.0 
 
 
 

4.0 
 
 
 

0-24 
 
 

170  
 
 
 

170  
 
 
 

170  
 
 
 

170  
 
 

Cr(III) 92.5% (pH 6, 5000-6500 
mg/L) 

80.6 (40ºC) 
 

56.2-92.5% (pH 6) 
 
 
 

66.5-92.5% (5000-6500 mg/L) 
 
 
 

54.1 (20ºC), 61.4 (30ºC), 80.6 
(40ºC) 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 

Tannery 
effluent 

6  5.0 4.0 
 

170  Total Cr 94.0% 
 

Multi 
elemental 

[64] Fe3O4 NPs 
Magnetite nanoparticles 

Deaerated 
deionized 

water 

2-10 
 
 

2, 3, 4, 6, 8, 
10 
 
 
 
 
 
 
 
 
2 

25-45 
 
 
 
 
 
 
 
 
 
 

25, 30, 35, 40 
 

40 

1.0-5.0 
 
 
 
 
 

1.0, 2.0, 3.0, 4.0, 
5.0 

 
 
 
 
 

4.0 

0-3.0 
 
 

0-3.0 
 
 

0-3.0 
 
 

0-3.0 
 

0-2.0 
 

2.0 

0-120  
 
 
 
 
 
 
 
 

20, 50, 70, 100  
 
 
 

20  
 

Cr(VI) 100% (pH 2, 4000 mg/L,  
20 x103 µg/L, 40ºC) 

 
35.7-100% (pH 2) 

 
 

29.1-100% (4000 mg/L) 
 
 

30-100% (20 x103 µg/L) 
 

73.8-100% (40 ºC) 
 

100% 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 

    20  Cr(VI) 80-100%  
(depending on the type and 
concentration of interfering 

anion) 

Multi 
elemental 
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[55] Fe3O4 nanospheres 
Mesoporous magnetite 

nanospheres 

Double 
distilled water 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2-7 
 
 

2, 3, 4, 5, 6, 
7 
 
4 
 
4 
 
 
 
4 
 
 
4 
 
 

25-45 
 
 

25 
 
 

25 
 

25 
 
 
 

25, 35, 45 
 
 

25, 35, 45 
 
 

1.0-3.0 
 
 

1.0 
 
 

1.0, 2.0, 3.0 
 

2.0 
 
 
 

2.0 
 
 

2.0 
 
 

1.0-72 
 
 
 
 
 

1.0, 48, 72 
 
 
 
 
 
 
 
 
 
 
 

5–100  
 
 

10  
 
 

10  
 
5 
10 
20  
 

10  
 
 
 
 
 

Cr(VI) 44% (1h, 2000 mg/L) 
8.90 (45ºC) 

 
~ 27-42% (pH 2) 

 
 

44% (1h, 2000 mg/L) 
 

1.99 
4.35 
 6.55 

 
4.35 (25ºC), 4.50 (35ºC), 4.72 

(45ºC) 
 

6.64 (25ºC), 7.31 (35ºC), 8.90 
(45ºC) 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Groundwater 4 25 2.0  48 10  Cr(VI) 65% Multi 
elemental 

[90] PPY/γ-Fe2O3 
Polypyrrole/maghemite 

PANI/γ-Fe2O3 
Polyaniline/maghemite 

 
PPY/γ-Fe2O3 
PANI/γ-Fe2O3 

 
PPY/γ-Fe2O3 
PANI/γ-Fe2O3 

 
PPY/γ-Fe2O3 

 
PANI/γ-Fe2O3 

Deionized 
water 

2.0-10.0 
 
 
 
 

2.0-10.0 
 
 

2.0 
 
 

2.0 
 

r.t. 0.2 0.083-2 
 
 
 
 
2 
 
 

0.083-1.5 
 
 
1 
 

2.5-100 
 
 
 
 

100 
 
 

100 
 
 

2.5, 5, 15, 25, 50, 75, 
100 

Cr(VI) ~100% (pH 2, 2.5 mg/L) 
208.8 (PPY/γ-Fe2O3, pH 2, 

100 mg/L) 
 
 

~ 48-52% (pH 2) 
~ 33-48% (pH 2) 

 
~52% 
~49% 

 
~ 52-100% (2.5 mg/L) 

208.8 (100 mg/L) 
~ 50-100% (2.5 mg/L) 

195.7 (100 mg/L) 
 

Mono 
elemental 
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[80] P(MMA)-g-TG-MNPs 
Poly(methyl 

methacrylate) grafted 
Tragacanth gum 

modified Fe3O4 magnetic 
nanoparticles 

Deionized 
water 

2.0-7.0 
 
 

2.0-7.0 
 

5.5 
 
 

25 
 
 
 
 

25 
 
 

3.0 
 
 
 
 

3.0 
 
 

0-4.2 
 
 
 
 

3.4 
 

0-4.2 

1-30 
 
 
 
 

<20 
 

10 
20 
30 

Cr(VI) ~ 50-100% (pH 2) 
7.84 (30 mg/L) 

 
~ 50-100% (pH 2) 

 
7.64 

 
3.23 
6.31 
7.84 

Mono 
elemental 

 
 
 
 

    20 Cr(VI) 91.7-98.4% (without interfering 
ions) 

Multi 
elemental 

 
 
 

Electroplating 
wastewater 

5.5    10-10.020 Cr(VI) 89.0-96.2% (10 mg/L) 

Underground 
water 

5.5    0.100-0.150 Cr(VI) 59.8-97.8% (0.100 mg/L) 

[78] Fe3O4 NPs 
Magnetite nanoparticles 

 2-6 
 
 
 

2, 3, 4, 5, 6 
 
 
 
 
 
 
 
 
 
4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

r.t. (21) 
 
 
 

2.5 
 
 
 

2.5 
 
 
 
 

2.5 
 
 
 
 

2.5 
 
 
 

0.083-1.0 
 
 
 

1.0 
 
 
 
 

0.083, 0.17, 
0.25, 0.33, 

0.5, 1.0 
 
 

1.0 
 
 
 

0.10-10  
 
 
 

0.10 
 
 
 
 

0.10 
 
 
 
 

0.25, 0.50, 1, 5, 10  
 
 
 

Cr(III) 
Cr(VI) 

 
 

Cr(III) 
 

Cr(VI) 
 
 

Cr(III) 
 

Cr(VI) 
 
 

Cr(III) 
Cr(VI) 

 
 

100% (pH 4, 0.25 h) / 0.555 
100% (pH 4, 0.33 h) / 1.705  

(depending on the material type) 
 

0-100% (pH 4, depending on the 
material type) 

50-100% (pH 4, depending on 
the material type) 

 
~10-100% (0.25 h, depending on 

the material type) 
~70-100% (0.33 h, depending on 

the material type) 
 

0.555 
1.208/1.705 (depending on the 

material type) 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  2.5 1.0 0.10 
 

Cr(III) 
Cr(VI) 

~60-100% 
~25-100 %  

(depending on the material type 
and on the type and concentration 

of interenfence anion) 

Multi 
elemental 
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[77] Mn3O4  
Manganese oxide 

nanomaterial 

 2-6 
 
 

2, 3, 4, 5, 6 
 
 
4 
 
 
4 
 

4-45 
 
 

25 
 
 

4, 26, 45 
 
 

4, 21, 45 

2.5 
 
 

2.5 
 
 

2.5 
 
 

2.5 
 

0.17-4.0 
 
 

1.0  
 
 

1.0  
 
 

1.0 
 

0.30-1000  
 
 

0.30 
 
 

0.30, 3, 30, 300, 
1000  

 
0.30-1000  

Cr(III) 
Cr(VI) 

 
Cr(III) 
Cr(VI) 

 
Cr(III) 
Cr(VI) 

 
Cr(III) 

 
Cr(VI) 

90% (pH 2)/ 54.4 (45ºC) 
85% (pH 2) / 5.8 (45ºC) 

 
~60-90% (pH 2) 
~20-85% (pH 2) 

 
~7-10  

~3 
 

18.7 (4ºC), 41.7 (21ºC), 54.4 
(45ºC) 

2.5 (4ºC), 4.3 (21ºC), 5.8 
(45ºC)  

Mono 
elemental 

[49] PMMNs 
Polyacrylamide modified 
iron oxide nanoparticles 

 1-8 
 
 

1, 2, 3, 4, 5, 
6, 7, 8 

 
3 
 
3 
 
 

30 
 
 

30 
 
 

30 
 

30 
 
 

20  
 
 

20  
 
 

20  
 
 
 
 

0-2.0 
 
 

0.67 
 
 

0-2.0 
 
 
 
 

50-1000  
 
 

100  
 
 

100  
 

50-1000  
 
 

Cr(VI) ~99% (pH 3, 100 x103 µg/L) 
35.186  

 
~65-97% (pH 3) 

 
 

~99% 
 

64.20-98.30% (50 x103 µg/L) 
35.186  

 

Mono 
elemental 

 
 
 
 

3 30  0.67 100  Cr(VI) ~94-98% (depending on the 
type and concentration of salt) 

Multi 
elemental 

[71] Fe3O4 NPs 
Iron oxide magnetic 

nanoparticles 

Artificial 
wastewater 

3-9 
 
 
 

3, 5.5, 7.5, 
9 
 

5.5 
 
 

5.5 
 
 
 

5.5 
 
 
6 

25 
 
 
 

25 
 
 
 
 
 

25 
 
 
 

15, 20, 25, 30 
 
 

25 

250-1500 mg 
(volume not 
mentioned)  

 
1000 mg 

 
 

250, 500, 750, 
1000, 1500 mg  

 
750 mg 

 
 
 

750 mg 
 
 

1000 mg 

0.25-1.5 
 
 
 

1.0 
 
 
 
 
 

0.25, 0.42, 
0.50, 0.75, 

1.0, 1.5 
 

0.75 
 
 

0.75 

250-1000  
 
 
 

500  
 
 

500  
 
 

500  
 
 
 

500  
 
 

250, 500, 750, 1000  

Cr(III) 99.9% (pH 9) 
 
 
 

32.7-99.9% (pH 9) 
 
 

56.9-98.5% (1500 mg) 
 
 

71.2-88.7% (1.5 h) 
 
 
 

70.7-92.9% (30 ºC) 
 
 

96.96-99.1% (250 x103 µg/L) 

Mono 
elemental 
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[59] NiO NPs 
Mesoporous nickel oxide 

nanoparticles 

Distilled water 4.7-9 
 
 

4.7 
 
 

4.7 
 
 

4.7, 7, 9 
 

4.7 

30 
 
 

30 
 
 

30 
 
 

30 
 

30 

1.0-7.0 
 
 

6.0 
 
 

1.0, 2.0, 3.0, 4.0, 
5.0, 6.0, 7.0 

 
6.0 

 
6.0 

0-0.83 10-50  
 
 

10, 20, 30, 40, 50, 60  
 
 

20  
 
 

20  
 

20  

Cr(VI) ~100% (10 x103 µg/L, 7000 
mg/L) / ~5 (50 x103 µg/L) 

 
~40-100% (10 x103 µg/L) 

~0-5 (50 x103 µg/L) 
 

~20-100% (7000 mg/L) 
~3-4.5 (2000 mg/L) 

 
~94-98% (4.7) 

 
4.73  

Mono 
elemental 

[75] Cr(VI)-imprinted 
poly(HEMAH) NPs 

Chromium(VI)-imprinted 
hydroxyethylmethacrylate 

(HEMA) polymeric 
nanoparticles 

Milli-Q 
ultrapure 

water 

2-6 
 
 

2, 3, 4, 5, 6 
 
4  
 
 
 
4 
 
 
 
4 

25 
 
 

25 
 

25 
 
 
 

25 
 
 
 

25 

Information not 
mentioned   

0-2 
 
 
 
 

0, 0.33, 
0.66, 1.0, 

2.0 

1000 -11 000  
 
 

7000  
 

7000  
 
 
 

1000, 2000, 3000, 
4000, 5000, 6000, 
7000, 9000, 11 000  

 
7000  

Cr(VI) 3830.58  
 
 

~1700-3830.58 (pH 4) 
 

3830.58 (1-2 h) 
 
 
 

0-3830.58 (7000 x103 µg/L) 
 
 
 

3830.58  

Mono 
elemental 

[73] TiO2 NPs 
Titania nanoparticles 

 4.0 
 

4.0 
 

4.0 

25 
 

25 
 

25 

0.10 
 

0.10 
 
 

0-2.5 
 

2.0 
 

0.67 

0-80  
 

0-80  

Cr(VI) 21.92 
 

~13.5-21.76 (16.83 x103 µg/L) 
 

21.92  

Mono 
elemental 

[50] Fe3O4-loaded seeds  
Magnetite nanoparticles 

loaded natural seeds 
sabja 

 2 Information 
not mentioned 

1000 mg (volume 
not mentioned) 

0, 0.25, 
0.50, 0.75, 
1.0, 1.5, 2.0 

1 
5 
20 
30 
50 

Cr(VI) ~100% 
97% 
~85% 
~80% 
~75% 

Mono 
elemental 

 
 
 

    50 Cr(VI) 80% Multi 
elemental 

[91] Fe3O4/CNT NPs 
Carbon nanotubes loaded 

with magnetite 
nanoparticles 

 2-12 
 

2, 4, 6, 8, 
10, 12 

 

6 

20-80 
 

 
 
 

20, 40, 60, 80 

1.0 
 

1.0 
 
 

0.083-120 
 

100-1000  
 

100  
 
 

100-800  

Cr(VI) 95% (pH 2) / 60 (pH 2) 
 

~75-95% (pH 2) 
50-60 (pH 2) 

 

47.98-83.54 (80 ºC) 

Mono 
elemental 
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[69] Fe3O4 NPs 
Iron(II/III) oxide or 
magnetite or ferrite 

nanoparticles 
MnFe2O4 NPs 

Magnanese(II) iron (III) 
oxide or jacobsite or 
manganese ferrite 

nanoparticles 

 2-10 
 
 
 
 

2, 3, 4, 5, 6, 
7, 8, 9, 10 

 
 
 
6 
 
3 
 

4-50 
 
 
 
 
 
 
 
 
 

23 
 
 

2.5 
 
 
 
 

2.5 
 
 
 
 

2.5 
 
 

1.0 
 
 
 
 

1.0 
 
 
 
 

1.0 
 
 

0.30-100  
 
 
 
 

0.30 
 
 
 
 

0.30, 1, 5, 10, 25,  
50, 100  

 

Cr(III) 
 

Cr(VI) 
 
 

Cr(III) 
 

Cr(VI) 
 
 

Cr(III) 
 

Cr(VI) 
 

100% (Fe3O4, pH 6/7)   
10.638 

100% (MnFe2O4, pH 2/3)  
3.455 

 
~0-100% Fe3O4 (pH 6/7) 
~0-80% MnFe2O4 (pH 6) 
~0-60% Fe3O4 (pH 3/4) 

~0-100% MnFe2O4 (pH 2/3) 
 

10.638 Fe3O4 
7.189 MnFe2O4 

3.455 Fe3O4 
3.211 MnFe2O4 

Mono 
elemental 

[60] Magnetic PS-EDTA 
resin 

Magnetic chelating resin 
with EDTA functionality 

 2-12 
 
 
 

2, 4, 6, 8, 
10, 12 

 
4 
 
4 
 
 
4 
 
 
4 

30 
 
 
 

30 
 
 

30 
 

30 
 
 

30 

0.20-2.0 
 
 
 

1.0 
 
 

1.0 
 

1.0 
 
 

0.20, 0.60, 1.0, 
1.4, 1.8, 2.0 

 
 

0.083-10 
 
 
 

6.0 
 
 

0.083-10  
 

10 
 
 

10 

5-1000  
 
 
 

30  
 
 

30  
 

5-1000  
 
 

30  

Cr(VI) 100 % (pH 4, 10 h, 1000 
mg/L, 5-40 x103 µg/L) 

250.00 
 

30-100% (pH 4) 
 
 

~100% (10 h) 
 

0-240.23 (1000 x103 µg/L) 
~25-100% (5-40 x103 µg/L) 

 
~91-100% (1000 mg/L) 

 
 

250.00  

Mono 
elemental 

[61] Semicarbazone 
derivatives of 

calix[4]arene immobilized 
onto magnetic 

nanoparticles (Fe3O4): 
MN-C1, MN-C2, MN-C3 

Deionized 
water 

1.5-4.5 
 

1.5, 2.5, 
3.5, 4.5 

 
 

2.5 

30 
 
 
 
 
 

30 

2.5 
 
 
 
 
 

2.5  

1.0 
 
 
 
 
 

1.0 

5.2-20.8 
 
 
 
 
 

5.2, 10.4, 15.6, 20.8 

Cr(VI) 90% (MN-C2, pH 1.5) 
 

~30-70% MN-C1 (pH 1.5) 
~70-90% MN-C2 (pH 1.5) 
~60-80% MN-C3 (pH 1.5) 

 
~48-82% MN-C2 (5.2 x103 

µg/L) 

Mono 
elemental 
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[74] NC Nanoporous carbon 
Ni-NC Nickel oxide 

onto nanoporous carbon  
Fe-NC Iron oxide onto 

nanoporous carbon  

Ultrapure 
water 

2-10 
 

2, 3, 4, 5, 6, 
7, 8, 9, 10 

20, 30, 40 
 

30 
 
 
 

r.t. 

0.20 
 

0.20 
 
 
 

0.20 
 

0-6.0 
 
 
 
 
 

6.0 

10-100  
 

100  

Cr(VI) 60.8 (Fe-NC, r.t.) 
 

~20.8 NC (pH 5) 
~46.8 Ni-NC (pH 4) 
~52.0 Fe-NC (pH 4) 

 
~15.6 NC 

44.7 Ni-NC 
60.8 Fe-NC 

Mono 
elemental 

[92,93] NH2-NMPs 
Amino-functionalized 
nano-Fe3O4 magnetic 
polymer adsorbents 

 
TEPA-NMPs 

 
 
 

EDA-NMPs 
DETA-NMPs 
TETA-NMPs 
TEPA-NMPs 

 
EDA-NMPs 

DETA-NMPs 
TETA-NMPs 
TEPA-NMPs 

 
EDA-NMPs 

DETA-NMPs 
TETA-NMPs 
TEPA-NMPs 

 
EDA-NMPs 

 
DETA-NMPs 

 
TETA-NMPs 

 
TEPA-NMPs 

 

Ultrapure 
water 

2.0-9.0 
 
 
 
 

2.0-9.0 
 
 
 

2.0-9.0 
 
 
 
 

2.5 
2.5 
2.5 
2.0 

 
2.5 
2.5 
2.5 
2.0 

 

25-65 
 
 
 
 
 
 
 
 
 
 
 
 
 

35 
 
 
 
 

25-65 
 
 
 
 

1.25 
 
 
 
 

1.25 
 
 
 

1.25 
 
 
 
 

1.25 
 
 
 
 

1.25 
 
 
 
 

0-90 
 
 
 
 

24 
 
 
 

24 
 
 
 
 

0-90 
 
 
 
 
 
 
 
 
 

50-1000 
 
 
 
 

50 
500 
1000 

 
50 
 
 
 
 

50 
 
 
 
 

50-1000 
 
 
 
 

Cr(VI) 99.9% (TEPA-NMPs, pH 2.0, 
50 mg/L) 

370.37 (TEPA-NMPs, pH 2.0, 
35ºC) 

 
16.5-99.9% (pH 2.0) 
11.5-73.9% (pH 2.0) 
9.4-47.2% (pH 2.0) 

 
>99.9% (pH 2.5) 
>99.9% (pH 2.5) 
>99.9% (pH 2.5) 
>99.9% (pH 2.0) 

 
37.49 
37.79 
38.47 
39.96 

 
136.98 (35ºC) 
149.25 (35ºC) 
204.08 (35ºC) 
370.37 (35ºC) 

 

Mono 
elemental 

2.0-4.0 35 1.25 12 200, 400, 1000 Cr(VI) 34.19-76.70% (pH 3.5, 200 mg/L) 
98.79-200.18 (pH 2.0, 1000 mg/L) 
24.96-57.85% (pH 3.5, 200 mg/L) 
82.67-139.87 (pH 4.0, 1000 mg/L) 
45.24-81.90% (pH 3.5, 200 mg/L) 

120.63-201.74 (pH 2.5, 1000 mg/L) 
48.75-92.04% (pH 2.0, 1000 mg/L) 
125.83-368.13 (pH 2.0, 1000 mg/L) 

Multi 
elemental 
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[66] PEI-γ-Fe2O3@Fe3O4 
NPs 

Polyethylenimine-
modified magnetic 

nanoparticles  

 
 
 
 
 
 
 
 
 
 
 

2-9 
 
 

2, 3, 4, 5, 6, 
7, 8, 9 

 
2.2 

 
 
 
 
 
 

15-35 
 
 

25 
 
 

25 
 
 
 
 

15, 25, 35 
 

4.0 
 
 

4.0 
 
 

4.0 
 
 
 
 
 
 

0-2.0 
 
 

0.50 
 
 

0-2.0 
 
 
 
 
 
 

50-500  
 
 

100  
 
 

100 
200 
400 
500  

 
50-500  

 

Cr(VI) 98.2% (100 x103 µg/L) 
83.33 (15ºC) 

 
~98-55 % (pH 2) 

 
 

98.2% 
92.6% 
72.5% 
64.6% 

 
83.33 (15ºC), 78.13 (25ºC), 

74.07 (35ºC) 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 

2.2 25 4.0 
 

0.50 
 

100  
 

Cr(VI) ~98-100% 
 

Multi 
elemental 

Wastewater   2.67 0.50 37.98 Cr(VI) 99.0% 
[94] GMDFe 

Nanosized ferric oxide 
loaded glycidyl 

methacrylatebased 
polymer  

 2-10 
 
 

2, 4, 6, 8, 
10 
 
 
4 
 
4 

r.t. (25) 
 
 

25 
 
 
 

25 
 

25 

4.0 
 
 

4.0 
 
 
 

4.0 
 

1000 mg (volume 
not mentioned) 

Equilibrium 
time 

 
 
 
 
 

0-24 

30  
 
 

30 
 
 
 

30  
 

30  

Cr(VI) 98% (24 h) 
163.47 (pH 2) 

 
163.47 (pH 2), 157.52 (pH 4), 
94.38 (pH 6), 77.94 (pH 8), 

27.37 (pH 10) 
 

0-98% (24 h) 
 

138.84 

Mono 
elemental 

[95] CeO2 NPs 
Monodisperse ceria 

nanospheres 

Simulated 
wastewater 

Information 
not 

mentioned   

r.t. 1.0 0-2.0 4.8 
8  

Cr(VI) 94.5% / ~4.5  
94.1% / 7.52  

Mono 
elemental 

[96] Fe3O4/BC 
nanocomposites 

Magnetite/bacterial 
cellulose 

nanocomposites 

Deionized 
water 

Information 
not 

mentioned 

25 2.5 2 0, 20, 40, 60, 80, 
100, 150, 200 

Cr(III) ~25-70% (20 mg/L) 
~0-20 (200 mg/L) 

Mono 
elemental 
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[57] magMCM-41 
Magnetic MCM-41 

nanosorbents 

Deionized, 
distilled water  

 

2-7 
 
 

r.t. (25) 1.0 Information 
not 

mentioned  

106-156  
 
 

Cr(VI) 98.8 (pH 2), 83.2 (pH 5) 
 
 

Mono 
elemental 

 
Deionized, 

distilled water  
 
 

2-5 
 

5.0 
 

    
 

156  
 

Cr(VI) 67.6  
 

67.6 
 

Multi 
elemental 

Tap water 
 

5.2 
 

   114  
 

Cr(VI) 46.8 
 

Mountain 
stream water 

 
 

5.4 
2, 5, 8 

 
 

   122  
 
 
 

Cr(VI) 31.2 
97% (pH 2), 97% (pH 5), 86% 

(pH 8) 
 

River water 5.5     106  Cr(VI) 41.6 

[97] BHCB-MN 
5,11,17,23-tetra-tert-

butyl-25,27-
di(benzhydrazidylmetho
xy)-26,28-dihydroxy-

calix[4]arene 
immobilized silica-based 
magnetic nanoparticles  

Deionized 
water 

1.5 
2.5 
3.5 
4.5 

25 2.5 1 5.2 Cr(VI) 66% 
~64% 
11% 
~0% 

Mono 
elemental 

[62] Cu2CO3(OH)2 NPs 
Malachite nanoparticles 

Milli-Q water 4-9 
 
 

4, 5, 6, 7, 8, 
9 
 
5 
 
5 
 
 
 
5 
 

10-40 
 
 
 
 
 

30 
 

30 
 

10-40 
 
 
 

5.0-20  
 
 

5.0 
 
 

5.0, 10, 15, 20  
 

5.0 
 
 
 
 
 

1-16 
 
 
 
 
 
 
 

1-16 
 
 
 
 
 

20-500  
 
 

100  
 
 

100  
 

20, 100, 200, 500  
 

100  
 

50  
 

Cr(VI) 
 
 
 
 
 
 
 
 
 
 
 
 
 

82.2   
75% (pH 5, 50 x103 µg/L) 

 
~2-15 (pH 4) 

 
 

~4-15 (20 000 mg/L) 
 

82.2 
 

11.4-15.6 (40ºC) 
 

75% 
 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 

5    50  Cr(VI) 70% Multi 
elemental 
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[63] NHTO 
Nanoparticles of hydrous 

titanium(IV) oxide 

Distilled water 
 
 
 
 
 
 
 
 
 
 

2.0 
 
 

2.0 
 
 
 

2.0 
 
 
 

30 
 
 

30 
 
 
 

30 
 
 
 

1000-3000 mg 
(packed column) 

 
1000 
2000 
3000 

 
2000 

 
 
 

0.013-0.026 
 
 

0.013 
0.026 
0.039 

 
0.026 

 
 
 

8.0-32.0 
 
 

16.0 
 
 
 

8.0 
16.0 
32.0 

 

Cr(VI) 12.94 e (32.0 x103 µg/L) 
 
 

10.13 e 
11.75 e 
12.53 e 

 
7.31 e 
11.75 e 
12.94 e 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 

Industrial 
effluent 

wastewater 

2.06 30 4000 0.026 15.67 Cr(VI) ~100% Multi 
elemental 

[98] α-Fe2O3 NPs 
Hematite nanoparticles 

Dilute 
simulated 
landfill 
leachate 

3-8 
 
 
 
 
 
 

3.0, 4.0, 
5.0, 6.0, 
7.0, 8.0 

 
6.7 

 
 
 

20-35 
 
 
 
 
 
 
 
 
 
 

20 
 
 
 

0.50-3.0 
 

1.0 
 
 
 
 
 
 
 
 

0.50, 1.0, 2.0, 3.0 
 
 
 

0-24 
 

0-24 
 

5.0 
 
 
 
 
 
 

0-24 
 
 
 

20-200  
 

20 
50 
100 
200  

 
 
 
 
 

20  
 
 
 

Cr(VI) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

~90% (pH 3) 
 

86.5% 
77.0% 
69.3% 
57.0%  

 
~20-90% (pH 3) 

 
 
 

57.2% (500 mg/L), 63.5% 
(1000 mg/L), 82.5% (2000 
mg/L), 88.0% (3000 mg/L) 

 

Mono 
elemental 

 
 
 
 
 
 
 
 
 
 
 
 
 

6.7    20  Cr(VI) ~50%  Multi 
elemental 

[76] Fe3O4-γ-Fe2O3 NPs 
Magnetite-maghemite 

nanoparticles 

De-ionized 
water 

2-14 
 
 

2-14 
 
 
3 
 
 

r.t. 
 
 

r.t. 
 
 
 
 
 

0.40 
 
 

0.40 
 
 

0.40 
 
 

0.17-4 
 
 

24 
 
 

0.17-4 
 
 

1-2 
 
 
1 
2 
 
1 
2 
 

Cr(VI) 
 
 
 
 
 
 
 
 

96% (pH 2, 1 x103 µg/L) 
 4.45 (pH 2, 2 x103 µg/L) 

 
0-96% (pH 2) / 0-2.4 (pH 2) 
0-85% (pH 2) / 0-4.45 (pH 2) 

 
70-92% (2 h) 
60-85% (2 h) 

 

Mono 
elemental 

 
 
 
 
 
 
 

4  0.40   Cr(VI) 
 

35-90% Multi 
elemental 
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[99] Ch-(Cu0) 
Zero-valent copper-

chitosan nanocomposites 

Deionized 
water 

2.85 
4.85 

25 2 24 50 Cr(VI) 95.58% 
94.2% 

 

Mono 
elemental 

[100] Magnetic NPs: 
 

MnFe2O4 
MgFe2O4  
ZnFe2O4 
CuFe2O4 
NiFe2O4 
CoFe2O4 

 
MnFe2O4 
MgFe2O4  
ZnFe2O4 
CuFe2O4 
NiFe2O4 
CoFe2O4 

Milli-Q water 2.0-9.3 
 

2.0 
 
 
 
 
 
 

2-9.3 
 

22.5 
 

22.5 
 
 
 
 
 
 
 
 

5.0 
 

5.0 
 
 
 
 
 
 

5.0 
 

0-1.0 
 

0-1.0 

20-100  
 

100  
 
 
 
 
 
 
 
  

Cr(VI) 
 

100% (MnFe2O4, 0.083 h) 
 

~100% (0.083 h) 
~85% (0.75 h) 
~60% (0.5 h) 
~50% (0.33 h) 
~30% (0.25 h) 

~20% (1 h) 
 

99.5% (pH 2) 
~10-85% (pH 2) 
~5-60% (pH 2) 
~5-50% (pH 2) 
~0-30% (pH 2) 
~0-20% (pH 2) 

Mono 
elemental 

aNonlinear Pseudo-second-order model. bPseudo-second-order model. cLangmuir type 4 capacity. dLangmuir type 1 capacity. eThomas model column capacity. fRoom temperature. 
 

Note that,  
the conditions that are shaded correspond to the best uptake capacity or removal efficiency obtained; 
in general, when the type of water is not referred, the authors may have used distilled or milli-Q water; 
in the column correspondent to “Cr starting specie”, total chromium concentration was quantified in the works that refer it; in the other works no mention is made regarding the 
specie or if it is total concentration; 
in the column correspondent to “Uptake capacity (mg/g) or removal efficiency (%)”, when the value does not present units, it is the uptake capacity; otherwise, it is the removal 
efficiency; 
the value presented in parentheses in the column “Uptake capacity (mg/g) or removal efficiency (%)” corresponds to the condition that gave rise to the value of uptake capacity or 
removal efficiency presented; 
the uptake capacity values which do not presented a subscript were obtained either experimentally or by Langmuir model; 
sometimes, the authors refer to experimental conditions of experiments whose results they do not present; 
from column “Type of water” until “Cr starting specie”, the conditions mentioned are the same for the below lines 
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HIGHLIGHTS 

Nanomaterials are a promise for effective water contaminants treatment; 

Knowledge gaps on the evaluation of works published on chromium removal from 

waters; 

Present work presents major experimental conditions influencing removal efficiency; 

Research undertaken so far and the conditions used on this topic is here compiled. 

 


