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A B S T R A C T

Environmental hypercapnia in shallow coastal marine ecosystems can be exacerbated by increasing levels of
atmospheric CO2. In these ecosystems organisms are expected to become increasingly subjected to pCO2 levels
several times higher than those inhabiting ocean waters (e.g.: 10,000 µatm), but still our current understanding
on different species capacity to respond to such levels of hypercapnia is limited. Oysters are among the most
important foundation species inhabiting these coastal ecosystems, although natural oyster banks are increasingly
threatened worldwide. In the present study we studied the effects of hypercapnia on two important oyster
species, the pacific oyster C. gigas and the mangrove oyster C. brasiliana, to bring new insights on different
species response mechanisms towards three hypercapnic levels (ca. 1,000; 4,000; 10,000 µatm), by study of a set
of biomarkers related to metabolic potential (electron transport system - ETS), antioxidant capacity (SOD, CAT,
GSH), cellular damage (LPO) and energetic fitness (GLY), in two life stages (juvenile and adult) after 28 days of
exposure.

Results showed marked differences between each species tolerance capacity to hypercapnia, with contrasting
metabolic readjustment strategies (ETS), different antioxidant response capacities (SOD, CAT, GSH), which
generally allowed to prevent increased cellular damage (LPO) and energetic impairment (GLY) in both species.
Juveniles were more responsive to hypercapnia stress in both congeners, and are likely to be most sensitive to
extreme hypercapnia in the environment. Juvenile C. gigas presented more pronounced biochemical alterations
at intermediate hypercapnia (4,000 µatm) than C. brasiliana. Adult C. gigas showed biochemical alterations
mostly in response to high hypercapnia (10,000 µatm), while adult C. brasiliana were less responsive to this
environmental stressor, despite presenting decreased metabolic potential.

Our data bring new insights on the biochemical performance of two important oyster species, and suggest that
the duration of extreme hypercapnia events in the ecosystem may pose increased challenges for these organisms
as their tolerance capacity may be time limited.

1. Introduction

Shallow coastal marine ecosystems are major contributors in global
carbon dioxide (CO2) cycling, functioning as both sinks and sources of
atmospheric CO2 (Frankignoulle et al., 1998). The CO2 flux between air
and water in these ecosystems has received increasing attention under
the eminence of global climate change (Cai, 2011; Feely et al., 2010). In
brackish and marine waters pCO2 levels can be naturally high (up to
10,000 µatm), in comparison to that of open ocean seawater
(400 µatm). This fact raises the question of how the increase of atmo-
spheric CO2 levels expected for the upcoming decades (IPCC, 2013)
may further exacerbate high pCO2 levels in seawater of these ecosys-
tems, and how this may affect resident biota (Tomanek et al., 2011;
Melzner et al., 2013).

Organisms inhabiting shallow marine water bodies are known to
possess compensation mechanisms to withstand elevated pCO2 in sea-
water (hypercapnia), to prevent deleterious effects of acidification of
tissues and body fluids that affect physiological fitness (Burnett, 1997).
However, such mechanisms are time limited and may lead to negative
energetic trade-offs (Sokolova et al., 2012), alterations in acid-base
balance (Lindinger et al., 1984), as well as alterations of oxidative
status (Tomanek, 2015; Matoo et al., 2013). Among these faunal in-
habitants, bivalves are generally less tolerant to elevated levels of hy-
percapnia than vertebrates (Melzner et al., 2009), despite possessing
adaptive mechanisms to thrive in constantly fluctuating environmental
parameters (Ringwood and Keppler, 2002). They can partially com-
pensate for hypercapnia-induced acidosis (Burnett, 1997), through
mechanisms such as shell dissolution to increase internal bicarbonate
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levels (Shirayama and Thornton, 2005; Lannig et al., 2010) and meta-
bolic adjustment (e.g. metabolic arrest, shifts in metabolic pathways)
(Michaelidis et al., 2005; Lannig et al., 2010).

Extensive research on the impacts of seawater acidification on
marine bivalves have been published (for reviews see Parker et al.,
2013; Gazeau et al., 2014), however most studies focus on the effects of
projected CO2 levels for open ocean waters (up to 1,000 µatm by year
2100) (IPCC, 2013), while the effects of seawater acidification on or-
ganisms inhabiting shallow coastal ecosystems has been comparatively
overlooked, even though in these systems pCO2 can reach significantly
higher levels (between 400 and 10,000 µatm) (Frankignoulle et al.,
1998; Cai, 2011; Noriega and Araujo, 2014; Evans et al., 2013). Con-
sidering predictions for increased hypercapnia in shallow coastal sys-
tems (Melzner et al., 2013), competitive advantages between species
may be altered (Byers, 2002), and zoogeographical shifts in species
distribution may occur (Somero, 2010). Therefore, it is important to
understand different species ability to cope with such stressors in a
changing environment (Parker et al., 2013).

Oysters are important ecosystem engineers in estuarine systems
worldwide, providing a variety of ecosystem services and holding a
high socio-economic value (Grabowski et al., 2012). However, natural
oyster reefs have become severely impacted at a global level due to
human pressure and need to be protected (Beck et al., 2011). Crassos-
trea brasiliana is the most important native oyster species occurring in
Brazilian estuaries, and is mainly harvested from natural populations,
presenting a high socio-economic value, and is especially important for
local extractivist communities (Mendonça and Machado, 2010; Neto
et al., 2013). Crassostrea gigas, a non-native species to Brazil and vir-
tually distributed all over the world, is currently cultured in the
southern state of Santa Catarina, and accounts for over 90% of the
national oyster aquaculture production (Melo et al., 2010). Since the
natural occurrence of C. gigas in Brazil has already been registered
(Melo et al., 2009), special concerns must be risen in order to under-
stand how the increased frequency of climate change related events
(e.g. hypercapnia) may influence different species, and shift competi-
tive advantages towards each other.

Hence, the present study aimed to assess how two important oyster
species currently harvested in Brazil, the mangrove oyster Crassostrea
brasiliana, and the pacific oyster Crassostrea gigas, respond to hy-
percapnic conditions by assessment of a suit of biochemical markers,
bringing new insights on how native and non-native oysters species
may perform in an acidified estuary.

2. Methods

2.1. Species collection and experimental setup

Crassostrea brasiliana specimens were collected from submerged
oyster racks in the Cananéia estuary (25°00′29.50″S 48°01′29.35″W) in
the Extractive Reserve of the Mandira (SE Brazil). Crassostrea gigas in-
dividuals were obtained from the Laboratory of Marine Molluscs of the
University of Santa Catarina (SE Brazil). Juvenile and adult specimens
of both species were selected for laboratory exposures. Average shell

height of C. brasiliana and C. gigas juveniles was 4.0± 0.8 cm and
4.2±0.2 cm respectively. Average shell height of adults was
7.2±0.4 cm for C. brasiliana, and 7.8±0.3 cm for C. gigas.

Experiments took place during April and May 2015 and were per-
formed in separate for each species. Acclimation to laboratory condi-
tions followed one week prior to the beginning of exposures. During
this period, juvenile and adult specimens were maintained in separate
tanks, in recirculated artificial seawater (Ocean Fish – Prodac®) (pH 7.8;
temperature 24 °C, salinity 25) and daily fed with AlgaMac Protein
Plus® (109 cells L−1 initial cell density). After acclimation, oysters were
randomly distributed into testing systems, consisting of 50 L aquaria
with individual filters and circulation pumps (total seawater flow of
500 L−1). Each condition was replicated in three separate aquaria, and
aquaria were stocked with 4 adults and 8 juveniles each (12 adults and
24 juveniles per condition). Three different hypercapnia levels were
tested 1,000 (pH 7.8), 4,000 (pH 7.4) and 10,000 (pH 7.0) µatm pCO2.
Hypercapnia levels were selected based on maximum pH recorded
during summer (i.e.: pH 7.85) in submerged oyster beds in the Cananéia
estuary (Miraldo and Valenti, unpublished data), high hypercapnia pH
7.0 (10,000 µatm pCO2) based on reported pCO2 in estuarine systems
worldwide (Cai, 2011), and an intermediate hypercapnia level pH 7.4
(4,000 pCO2) to assess transient changes between low and extreme
hypercapnia, and values reported for hypoxic estuaries (Melzner et al.,
2013).

To achieve targeted hypercapnia levels, food grade CO2 was dif-
fused into each aquarium (conditions pH 7.4 and pH 7.0) through
bubble-counter CO2 diffusers, at gas releasing rates that were pre-es-
tablished for each condition, and regulated through six-needle valves
(ISTA Products®) allowing for constant and stable gas flow (Duarte
et al., 2015). During the entire experimental procedures, pH of each
tank was measured and checked three times per day (Hanna Instru-
ments®). After acclimation to laboratory conditions, oysters that were
exposed to intermediate and high hypercapnia (pH 7.4 and pH 7.0 re-
spectively) were progressively acclimated to hypercapnia by −0.2 pH
units per day until targeted pH values were achieved. This procedure
added 4 extra days of acclimation time to each testing group.

After pH equilibration in testing aquaria, exposures carried on for
28 days. During this period water parameters (temperature, dissolved
oxygen, salinity) were daily monitored (YSI Pro plus®). Faecal debris
were removed prior to feeding (AlgaMac Protein Plus®) 5 days a week,
giving partial water renewals of 5%. Oysters were checked for mortality
on a daily basis. Water samples were collected every week, prior to total
water renewals to determine total alkalinity (TA) for each aquarium by
potentiometric titration (Gran, 1952) with an automatic titrator
(Mettler Toledo®). Determined TA for each aquarium was plotted
against pH, temperature and salinity average values measured during
each week on CO2SYS software, to determine carbonate system vari-
ables (Robbins et al., 2010), using dissociation constants K1 and K2
from Mehrbach et al. (1973) refit by Dickson and Millero (1987) and
KSO4 from Dickson (1990) (Table 1).

At the end of the experiment (28 days), oysters were frozen at
−80 °C until further analysis.

Table 1
Carbonate system physicochemical parameters for pH experiments (mean± SD; n = 4). Measured pH, and determined total alkalinity (At) from weekly water sampling (Temperature
24.5 °C±0.3, salinity 25.5, and 77% dissolved oxygen). Partial CO2 pressure (pCO2), bicarbonate (HCO3

-) and carbonate ion concentrations (CO3
2-), and saturation states of calcite

(ΩCal) and aragonite (ΩAg), calculated with CO2SYS software (Robbins et al., 2010).

Condition pH At (μmol. Kg−1) ƿCO2 (μatm) HCO3
-(μmol.kg−1) CO3

2−(μmol.kg−1) ΩCal ΩAra

C. gigas pH 7.8 7.78± 0.03 2,087± 88 1,182± 76 1937±99 69.0±6.3 1.8±0.2 1.1± 0.1
pH 7.4 7.38± 0.02 2,679± 115 3,927± 305 2591±113 37.5±2.1 1.0±0.1 0.6± 0.04
pH 7.0 7.01± 0.04 2,881± 107 10,101±862 2840±105 17.7±1.9 0.5±0.05 0.3± 0.03

C. brasiliana pH 7.8 7.78± 0.02 1,919± 109 1,068± 66 1764±101 63.6±5.2 1.7±0.14 1.1± 0.09
pH 7.4 7.38± 0.04 2,508± 175 3,751± 423 2428±170 34.4±4.1 0.9±0.1 0.6± 0.07
pH 7.0 7.00± 0.04 2,789± 105 9,992± 1010 2751±104 16.7±1.5 0.4±0.04 0.3± 0.03
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2.2. Biochemical analysis

For biochemical analysis, each juvenile and adult oyster from each
species was individually and manually homogenized with a mortar and
a pestle under liquid nitrogen. Homogenates from each specimen were
further separated in aliquots (0.1 g for juveniles, 0.5 g for adults) to
perform individual extractions for each parameter analyzed. For the
electron transport system (ETS) activity assay, supernatants were ex-
tracted in 0.1 M Tris–HCl buffer (15% (w/v) polyvinylpyrrolidone
(PVP); 153 mM magnesium sulfate (MgSO4); 0.2% (v/v) Triton X-100)
(pH 8.5). For superoxide dismutase (SOD), catalase (CAT) and glycogen
(GLY) assays, supernatants were extracted in phosphate buffer 50 mM
sodium dihydrogen phosphate monohydrate; 50 mM disodium hy-
drogen phosphate dehydrate; 1 mM ethylenediamine tetraacetic acid
disodium salt dihydrate (EDTA); 1% (v/v) Triton X-100; 1% (v/v)
(PVP); 1 mM dithiothreitol (DTT) (pH 7.0). For reduced (GSH) and
oxidized (GSSG) glutathione quantification assays, extraction buffer
consisted of 0.6% sulfosalicylic acid in potassium phosphate buffer
(0.1 M dipotassium phosphate, 0.1 M potassium dihydrogen phosphate,
5 mM EDTA, 0.1% Triton X-100, pH 7.5). For LPO assay supernatants
were extracted in 20% (v/v) trichloroacetic acid (TCA).

Specific buffers were added to aliquots in a 2:1 vol: weight ratio,
and homogenates sonicated for 15 s (55 W cm−2 at 4 °C), and cen-
trifuged for 15 min at 3,000g (for ETS activity) or 10,000g (for the re-
maining biomarkers) at 4 °C.

Supernatants were stored (−80 °C) or directly used to measure: ETS
activity; ii) SOD and CAT activities; iv) GSH and GSSG concentrations;
v) LPO; vi) GLY content; vii) protein content.

Biomarkers were assessed at room temperature (22 °C) using ana-
lytical grade reagents for all analyses. Enzymatic activities (ETS, SOD,
CAT) and glutathione (GSH and GSSG) content were standardized by
protein concentration of each sample. Protein was quantified by the
Biuret method (Robinson et al., 1940), using bovine serum albumin
(BSA) as standard. Results on LPO and GLY were standardized by
samples fresh weight (FW).

2.2.1. Electron transport system
The ETS activity was measured according to King and Packard

(1975) and modifications introduced by Coen and Janssen (1997).
Reaction mixture consisted of 0.13 M Tris-HCL buffer (pH 8.5, 0.3% (v/
v) Triton X-100), 0.25 mM NADH, 36.5 µM NADPH, and 2.3 mM INT
(2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium Chloride).
Formazan production rate was determined spectrophotometrically at
490 nm during 10 min (25 s intervals), and determined using ε =
15,900 M−1 cm−1. Results were expressed in nmol min−1 mg−1 pro-
tein.

2.2.2. Antioxidant scavengers
SOD activity was quantified following Beauchamp and Fridovich

(1971) using SOD standard 0.25–60 U mL−1. Reaction mixture con-
sisted of phosphate buffer 50 mM (pH 8.0), 68.4 µM NBT (nitroblue
tetrazolium chloride), 0.1 mM DTPA (diethylenetriamineppent-acetic
acid), 0.1 mM hypoxanthine. Enzyme activity was determined at
560 nm in a microplate reader after adding xanthine oxidase (5 mU),
diluted in phosphate buffer 50 mM (pH 8.0). Absorbance was measured
after 20 min incubation at 22 °C, and the rate of NBT reduction de-
termined. SOD activity was expressed in U mg−1 protein (U =
µmol min−1).

CAT activity was determined according to Johansson and Håkan
Borg (1988), using formaldehyde as standard (0–150 μM). Reaction was
made in phosphate buffer (pH 7.0), 5.6 M methanol, and the presence
of 35.28 mM H2O2. Reaction was stopped by adding 10 M KOH and
34.2 mM purpald. Absorbance was measured at 540 nm in a microplate
reader. CAT activity was expressed in U mg−1 protein (U =
nmol min−1).

GSH and GSSG were determined spectrophotometrically at 412 nm

following Rahman et al. (2007), using analytical grade (GSH and GSSG)
standards (0–60 µmol L−1). GSH and GSSG concentrations (nmol mg -
prot−1) were further expressed as a ratio (GSH/GSSG) and as total
glutathione (tGSH), considering the number of thiol equivalents (GSH/
GSSG = [GSH] / 2x [GSSG]), and (tGSH = [GSH] + 2x [GSSG])
(Rahman et al., 2007).

2.2.3. Cellular damage
LPO levels were quantified following an adaptation of the thio-

barbituric acid (TBA) assay from Buege and Aust (1978). Reaction
mixture consisted of TBA at 5% (v/v) in TCA at 20% (v/v). Samples
were incubated at 96 °C for 30 min and then cooled on ice. Absorbance
was measured at 535 nm (ε = 156 mM−1 cm−1). LPO levels were ex-
pressed in nmol MDA g−1 FW.

2.2.4. Energy reserves
GLY content was determined following Yoshikawa (1959), using

glucose as standard (0–5 mg/mL). Samples were incubated at room
temperature for 30 min after reacting with phenol (5%) and sulphuric
acid (98%). Absorbance was measured at 492 nm, and GLY content
expressed in mg g−1 FW.

2.3. Biochemical data analysis

Biochemical parameters (ETS, GLY, SOD, CAT, GSH/GSSG; tGSH
LPO) were submitted to hypothesis testing using permutational analysis
of variance, employing the PERMANOVA+ add-on in PRIMER v6
(Anderson et al., 2008).

Parameters were analyzed following a one-way hierarchical design,
with hypercapnia level for juvenile or adult oyster, of each species as
the main fixed factor. Concerning each descriptor, null hypothesis
tested were: H0’) for each species and each life stage (juvenile or adult),
no significant differences exist among hypercapnic levels; H0’’) for each
hypercapnic level, and for each species no significant differences exist
between life stages; H0’’’) at each condition and life stage no significant
differences exist between species.

Data for each biomarker are presented as mean + standard devia-
tion. Significant differences (p≤ 0.05) among groups representing each
condition were identified in figures with different letters (minuscule for
juvenile, and majuscule for adult specimens). At each hypercapnic
level, significant differences between juvenile and adults of each species
were represented with an asterisk. Comparative analyses between
species are given in Supplementary table I, as Monte-Carlo p-values for
each biomarker.

3. Results

3.1. Electron transport system activity

Results obtained concerning the ETS activity for both species are
depicted in Fig. 1. Juvenile and adult C. gigas presented an increase of
ETS activity with the increase of hypercapnia, with significant differ-
ences towards control (pH 7.8) at the intermediate hypercapnic level
(7.4) in juveniles, and at the highest hypercapnic level (pH 7.0) in
adults. Comparisons between adult and juvenile metabolic potential
showed significantly higher ETS activity in juvenile oysters at the in-
termediate hypercapnic level (pH 7.4) (Fig. 1A).

The ETS activity in C. brasiliana showed a decreasing trend in both
juveniles and adults with the increase of hypercapnia (Fig. 1 B), with
significant differences at both hypercapnic levels (pH 7.4 and pH 7.0)
comparing to control (pH 7.8). No significant differences were observed
concerning ETS activity between adult and juvenile C. brasiliana at each
condition (Fig. 1).
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3.2. Antioxidant enzymes

Results obtained on antioxidant enzymes SOD and CAT activity for
both species are presented in Fig. 2. In juvenile C. gigas, SOD activity
was significantly lower at both hypercapnic levels (pH 7.4 and pH 7.0)
comparing to control (pH 7.8) (Fig. 2A). Adult C. gigas showed a sig-
nificant decrease of SOD activity at the intermediate hypercapnic
condition (pH 7.4) comparing to control. At the highest hypercapnia
condition (7.0) SOD activity in adult C. gigas was similar to that ob-
served at control (pH 7.8). Comparisons between adult and juvenile
SOD activity at each testing condition, showed significantly higher SOD
activity in adults at the highest hypercapnic level (pH 7.0) (Fig. 2A).

In juvenile C. brasiliana SOD activity was similar among tested
conditions (Fig. 2B). In adult C. brasiliana a significant increase of SOD
activity was observed at the intermediate hypercapnic condition (pH
7.4) comparing to control. At the highest hypercapnic level (pH 7.0),
SOD activity in adult C. brasiliana was not significantly different from
neither of the remaining conditions (pH 7.0). No significant differences
were observed between adult and juvenile SOD activity at each con-
dition (Fig. 2B).

Results obtained on CAT for C. gigas are presented in Fig. 2C. In
juveniles, a decrease of CAT activity was observed with the increase of
hypercapnia, with significant differences among all testing conditions

(Fig. 2C). Adult oysters presented highest CAT activity at the highest
hypercapnic level (pH 7.0), with significant differences towards the
intermediate hypercapnia level (pH 7.4), but no significant differences
to control (pH 7.8) (Fig. 2C). Significantly higher CAT activity was
observed in adults at highest hypercapnia level (pH 7.0) comparing to
juveniles (Fig. 2C).

Results obtained concerning CAT activity in C brasiliana (Fig. 2D)
showed no significant differences among conditions, concerning juve-
niles and adult oysters. Comparisons between adult and juvenile CAT
activity at each hypercapnia condition showed no significant differ-
ences throughout (Fig. 2D).

3.3. Glutathione redox balance

Results obtained concerning GSH/GSSG and tGSH for both oyster
species are depicted in Fig. 3. Juvenile C. gigas presented significantly
higher GSH/GSSG at the highest hypercapnic condition (pH 7.0), with
significant differences towards both the intermediate hypercapnia level
(pH 7.4) and to control (pH 7.8) (Fig. 3A). Adult C. gigas presented no
significant differences in GSH/GSSG among conditions. Comparisons
between adult and juvenile C. gigas at each condition, showed sig-
nificantly higher GSH/GSSG in juvenile oysters at the highest hy-
percapnia level (pH 7.0) (Fig. 3A).

Fig. 1. Electron transport system (ETS) activity in C. gigas (A) and C. brasiliana (B) exposed to different hypercapnia conditions (pH 7.8, 7.4 and 7.0). Significant differences (p ≤ 0.05)
among hypercapnia conditions are represented with different letters (lowercase for juvenile, and uppercase for adult specimens). For each hypercapnia level, significant differences (p ≤
0.05) between juvenile and adult oysters are represented with an asterisk (mean+SD).

Fig. 2. Antioxidant enzymes of C. gigas and C. brasiliana exposed to different hypercapnia conditions (pH 7.8, 7.4 and 7.0). SOD activity in C. gigas (A) and C. brasiliana (B); CAT activity
in C. gigas (C) and C. brasiliana (D). Significant differences (p≤ 0.05) among hypercapnia conditions are represented with different letters (lowercase for juvenile, and uppercase for adult
specimens). For each hypercapnia level, significant differences (p ≤ 0.05) between juvenile and adult oysters are represented with an asterisk (mean+SD).
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Regarding C. brasiliana no significant changes were observed in
GSH/GSSG among different conditions for either juveniles nor adults.
Moreover, no significant differences were observed between adults and
juveniles GSH/GSSG within each condition (Fig. 3B).

Total glutathione content (tGSH) in juvenile C. gigas was sig-
nificantly lower at the highest hypercapnic level (pH 7.0) comparing to
the remaining conditions (Fig. 3C). In contrast, adult oysters presented
significantly higher tGSH at the highest hypercapnic level (pH 7.0),
compared to the remaining conditions (Fig. 3C). Comparisons between
adult and juvenile tGSH at each testing condition, showed significantly
higher tGSH in juvenile oysters at low (pH 7.8) and intermediate (pH
7.4) hypercapnia, and lower tGSH at the highest hypercapnic level (pH
7.9) than adults (Fig. 3C).

Concerning C. brasiliana, results obtained showed no significant
changes in tGSH content among conditions in either juveniles nor
adults exposed to different hypercapnic levels (Fig. 3D). No differences
were observed between juvenile and adults tGSH at each testing con-
dition (Fig. 3D).

3.4. Cellular damage

Results obtained concerning LPO levels for each species are pre-
sented in Fig. 4. In juvenile C. gigas LPO was significantly higher at the
intermediate hypercapnic level (pH 7.4) compared to that observed in

juveniles maintained at low (pH 7.8) and high hypercapnic level (pH
7.0) (Fig. 4A). In adult C. gigas no significant differences were observed
among testing conditions (Fig. 4A). Comparisons between adult and
juvenile LPO levels at each testing condition, showed overall higher
LPO in juveniles than in adults, and differences were significant for
both hypercapnic conditions (pH 7.4 and pH 7.0) (Fig. 4A).

Regarding C. brasiliana, juvenile oysters presented a significant de-
crease of LPO levels at the highest hypercapnia level (pH 7.0) in com-
parison to control and intermediate hypercapnia conditions (pH 7.8 and
pH 7.4) (Fig. 4B). In adult C. brasiliana no significant differences in LPO
levels were observed among testing conditions. Comparisons between
adult and juvenile oysters at each condition showed significantly higher
LPO in juveniles in all hypercapnic levels (Fig. 4B).

3.5. Energetic fitness

Results obtained concerning GLY content for both oyster species are
presented in Fig. 5. In juvenile C. gigas no significant differences in GLY
content were observed among different hypercapnia conditions
(Fig. 5A). In adult specimens however, significantly lower GLY content
was observed at the highest hypercapnia level (pH 7.0) in comparison
to the remaining conditions (Fig. 5A). Comparisons between adult and
juvenile GLY at each condition showed no significant differences among
testing conditions (Fig. 5A).

Fig. 3. Glutathione redox balance in C. gigas and C. brasiliana exposed to different hypercapnia conditions (pH 7.8, 7.4 and 7.0). GSH/GSSG in C. gigas (A) and C. brasiliana (B); tGSH in C.
gigas (C) and C. brasiliana (D). Significant differences (p ≤ 0.05) among hypercapnia conditions are represented with different letters (lowercase for juvenile, and uppercase for adult
specimens). For each hypercapnia level, significant differences (p ≤ 0.05) between juvenile and adult oysters are represented with an asterisk (mean+SD).

Fig. 4. Lipid peroxidation (LPO) in C. gigas (A) and C. brasiliana (B) exposed to different hypercapnia conditions (pH 7.8, 7.4 and 7.0). Significant differences (p ≤ 0.05) among
hypercapnia conditions are represented with different letters (lowercase for juvenile, and uppercase for adult specimens). For each hypercapnia level, significant differences (p ≤ 0.05)
between juvenile and adult oysters are represented with an asterisk (mean+SD).
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Concerning C. brasiliana, juveniles presented significantly lower
GLY content at the intermediate hypercapnia level (pH 7.4), in com-
parison to the remaining conditions (Fig. 5B). In adult C. brasiliana no
significant differences were observed in GLY content among conditions,
despite an apparent decreasing trend of GLY with the increase of pCO2
(Fig. 5B). Differences in GLY content between adult and juveniles at
each condition were significant at the highest hypercapnic level, with
higher GLY content in juveniles compared to adults (Fig. 5B).

4. Discussion

The effects of hypercapnia on marine organisms have been focus of
research, despite recent advances indicate that the current under-
standing of the mechanisms involved is still poor (Tomanek, 2015). The
present study assessed the effects of hypercapnia on two oyster species,
through a suit of biochemical markers related to previously reported
effects of hypercapnia (e.g. metabolic shift, oxidative stress response,
energetic fitness), to elucidate different species tolerance capacities to
this environmental stressor.

4.1. Electron transport system

Ectothermic metazoans exposed to hypercapnia experience tissue
and body fluids acidosis, due to diffusive entry of CO2 into the organ-
isms (see Lindinger et al., 1984; Burnett, 1997; Pörtner et al., 1998;
Pörtner et al., 2004). So far, studies show that these organisms increase
bicarbonate levels in body fluid compartments as a compensatory me-
chanism to withstand respiratory acidosis (Pörtner et al., 1998; Strobel
et al., 2013). In bivalves this is achieved by dissolution of the internal
shell (Michaelidis et al., 2005; Harms et al., 2014). However, the in-
crease of bicarbonate levels can competitively inhibit citrate synthase
and, therefore, constrain the tricarboxylic acid cycle (TCA) (Simpson,
1967). This has recently been pointed as one of the drivers for meta-
bolic adjustment in aquatic organisms as a response to hypercapnia,
given that the inhibition of the first step of oxidative phosphorylation
(citrate synthase) elicits the need for alternative anaplerotic pathways
(Strobel et al., 2013; Langenbuch and Pörtner, 2003). Marine bivalves
may shift to decarboxylation of amino-acids instead of pyruvate for
respiration (Müller et al., 2012), thus altering the electron transport
chain functioning, by changing preferential subtracts for energetic
turnover (Müller et al., 2012; Tomanek, 2015).

Results obtained in the present study showed alterations of meta-
bolic performance of oysters under hypercapnic conditions, measured
by the activity of the electron transport system (ETS). This biomarker
gives a proxy of maximum potential metabolic activity (Schmidlin
et al., 2015), and has been employed to study the influence of several
abiotic factors on oyster metabolism (e.g.: Le Moullac et al., 2007;
Garcıá-Esquivel et al., 2002; Moreira et al., 2017).

The increase of ETS activity observed in C. gigas (adults and juve-
niles) with the increase of pCO2, indicate the development of increased

metabolic potential in response to hypercapnia in this species. These
results are in line with recent studies on other ectothermic marine
metazoans exposed to hypercapnia. Strobel et al. (2013) observed in-
creased aerobic capacity (higher activities of citrate synthase and cy-
tochrome oxidase enzymes) in red muscle of Notothenia rossii fish ex-
posed to hypercapnia, and suggested that this could either be a
mechanism to sustain elevated costs of acid-base balance regulation, or
as a compensation mechanism for alterations in mitochondria meta-
bolism. Similarly, Harms et al. (2014) observed upregulation of ETS
related genes in Hyas araneus crab exposed to> 900 µatm pCO2, and
their results were justified as a mechanism to compensate for increased
energetic costs of acid-base maintenance in hypercapnia exposed ani-
mals. The ETS activity in C. gigas oysters has been shown to increase in
conditions of hypoxia (Le Moullac et al., 2007; Samain and McCombie,
2008), and could likely be a common response mechanism triggered by
these stressors, since hypoxia and hypercapnia often occur simulta-
neously in the environment (Willson and Burnett, 2000).

In contrast, C. brasiliana presented a decrease of metabolic potential
with the increase of hypercapnia, with lower ETS activity in both in-
termediate and high hypercapnia conditions (pH 7.4 and 7.0) towards
low hypercapnia (pH 7.8) in both juvenile and adult specimens, in-
dicating a down regulation of metabolic capacity. Some studies have
described metabolic depression in marine invertebrates exposed to high
CO2 concentrations (e.g.: Michaelidis et al., 2005; Pörtner et al., 1998;
Reipschläger and Pörtner, 1996), which can be indicative of organisms
incurring stress (Guppy and Withers, 1999; Lannig et al., 2010; Parker
et al., 2013). Metabolic depression in response to hypercapnia can
imply shifts in preferential metabolic pathways (Pörtner et al., 2005), as
observed for C. gigas through shotgun sequencing (Timmins-Schiffman
et al., 2014). In the present study, C. brasiliana appears to have achieved
a new state in metabolic respiration, with lower potential aerobic ca-
pacity after four weeks of exposure to hypercapnic conditions, possibly
to reconfigure energetic balance. In a previous study, a decrease in ETS
activity was observed in juvenile C. brasiliana oysters in response to
high temperature and results were explained as trade-offmechanisms to
prevent energetic reserves depletion (Moreira et al., 2017). The ETS
activity has also been shown to decrease in Scrobicularia plana clams
(pCO2>5000 µatm), and authors suggested these results could relate
to metabolic depression to maintain energetic fitness (Freitas et al.,
2016).

4.2. Antioxidant scavengers and cellular damage

Alterations in mitochondria respiration capacity and electron
transport flow through the electron transport chain modulate reactive
oxygen species (ROS) production (Harms et al., 2014; Gibbin et al.,
2017). Changes in the electron transport chain functioning might also
be employed as a defence mechanism to prevent deleterious effects of
ROS (see Abele et al., 2007). Hence, the results concerning the ETS
activity can influence the overall antioxidant response (SOD and CAT

Fig. 5. Glycogen content (GLY) in C. gigas (A) and C. brasiliana (B) exposed to different hypercapnia conditions (pH 7.8, 7.4 and 7.0). Significant differences (p ≤ 0.05) tested among
hypercapnia conditions are represented with different letters (lowercase for juvenile, and uppercase for adult specimens). For each hypercapnia level, significant differences (p ≤ 0.05)
between juvenile and adult oysters are represented with an asterisk (mean+SD).
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activities), glutathione redox status (GSH/GSSG) and ultimately cellular
damage (LPO). In C. gigas the increase of ETS activity observed in both
hypercapnic conditions, could have induced an increase of ROS pro-
duction, since complexes I and III of the electron transport chain are
major sources of superoxide anion, hydrogen peroxide and hydroxyl
radicals (Guzy and Schumacker, 2006; Murphy, 2009). ROS can nega-
tively interact with DNA, proteins, carbohydrates and lipids (see
Almeida et al., 2007), however the negative effects of ROS at the cel-
lular level can be mitigated by antioxidant enzymes (SOD and CAT) as
well as non-enzymatic antioxidant scavengers (GSH). C. gigas adults
showed increased SOD and CAT activities at the highest hypercapnic
level (pH 7.0), which coincided with increased metabolic potential
(ETS). SOD and CAT increased activities could have been triggered to
mitigate the negative effects of higher ROS production occurring from
the mitochondria electron transport chain. Similar relationships be-
tween increased ETS and higher antioxidant capacities (SOD and CAT)
have been proposed for Crassostrea angulata adult oysters (Moreira
et al., 2016) exposed to low salinity. However, at the intermediate
hypercapnic level both juvenile and adult C. gigas did not present in-
creased antioxidant enzymes activities, despite the increase of the ETS
activity (significant only for juveniles), rather lower SOD and CAT ac-
tivities were observed comparing to low hypercapnia condition (pH
7.8). It is possible that other antioxidants could have been in play,
namely glutathione (GSH), an important non-enzymatic antioxidant
scavenger that is a key participant in processes of ROS neutralization
(Rahman et al., 2007). Our data suggest that both juvenile and adult C.
gigas shifted towards the preferential use of GSH as primary detox-
ification mechanism, despite presenting differentiated capacities. The
significant decrease of both reduced (GSH) and oxidized (GSSG) glu-
tathione content observed in juvenile C. gigas with the increase of hy-
percapnia (data not presented), that resulted in lower tGSH levels and
higher GSH/GSSG at the highest hypercapnic level, indicate that glu-
tathione was being involved in detoxification mechanisms in response
to hypercapnia, as reported for other bivalve species under hypercapnic
or hypoxic conditions (Nardi et al., 2017; Khan and Ringwood, 2016).
These findings could explain results showing lower SOD and CAT ac-
tivities in juvenile C. gigas at both hypercapnic levels (pH 7.4; pH 7.0),
that together indicate a metabolic shift towards glutathione mediated
ROS-quenching pathways, as observed in Mytilid species exposed to
heat stress (Tomanek, 2014). The increase of GSH/GSSG observed in
juveniles at the highest hypercapnia level (pH 7.0) further indicate
oysters were actively transporting glutathione in its oxidized form
(GSSG) out of the organism, also reflecting in a lower tGSH content.
Under oxidative conditions, excessive GSSG can react with thiol groups
of proteins, a process known as glutathionylation, leading to alterations
of protein functioning (Hawkins et al., 2010; Hurd et al., 2005). The
loss of cellular GSH/GSSG redox control makes glutathionylation a
deleterious event (Ghezzi and Di Simplicio, 2009), and therefore GSSG
is generally exported from the cell to the extracellular matrix (Garcia
et al., 2010; Han et al., 2006). Given this, our findings suggest that
juvenile C. gigas antioxidant capacity at the highest hypercapnia level
(pH 7.0) was exceeded, with excess glutathione oxidation, and GSSG
excretion resulting in lower total glutathione content, as seen in other
bivalve species experiencing oxidative stress (Hannam et al., 2010;
Peña-Llopis et al., 2002 Regoli et al., 1998). Although juveniles ap-
peared to present a preferential use of GSH as major antioxidant de-
fence in detriment of antioxidant enzymes (SOD and CAT), possibly
because it is energetically less costly (Pannunzio and Storey, 1988), the
capacity to replenish tGSH levels showed to be insufficient at the
highest hypercapnic level (pH 7.0). In contrast, adult C. gigas main-
tained redox balance (GSH/GSSG) among all hypercapnia conditions,
likely due to increased synthesis of glutathione observed (significantly
higher GSH at pH 7.0, data not presented). Similarly, Philipp et al.
(2008) observed a more pronounced decrease of glutathione in young
Aequipecten opercularis scallops than adults after swimming bursts, and
postulated that younger animals were less effective on homeostatic

regulation.
Overall, results obtained concerning the antioxidant capacity of C.

brasiliana showed a lower degree of oxidative stress response than C.
gigas. In C. brasiliana, significant changes in antioxidant enzymes among
different conditions were only observed for SOD activity, in adults at
the intermediate hypercapnic level. The relatively low antioxidant re-
sponse observed, as well as the decrease of metabolic potential (ETS)
with the increase of hypercapnia observed in C. brasiliana (both adults
and juveniles), indicate rearrangement of metabolic pathways towards
lower ROS production, as suggested by Tomanek (2015). Under ex-
treme environmental conditions, facultative anaerobes such as oysters,
may switch to anaerobic metabolism to extend energetic resources until
favourable environmental conditions return (Sokolova et al., 2012).
This mechanism also allows for a decrease of ROS production (Abele
et al., 2007; Anestis et al., 2007; Pörtner, 2010), and has been shown in
Mytilus edulis under hypoxia (Rivera-Ingraham et al., 2013). Con-
sidering this, our data suggest that C. brasiliana developed a depressed
metabolic status, preventing excessive ROS production through altera-
tions on the electron transport chain functioning, as well as maintaining
energetic balance.

4.3. Cellular damage

The antioxidant capacity of each species likely reflects the oxidative
status of the entire organism, and could ultimately impact lipid per-
oxidation (LPO) levels (Almeida et al., 2007). Increased oxidative stress
could be expected to occur with the increase of hypercapnia, con-
sidering that CO2 can directly induce ROS production (Harms et al.,
2014) or indirectly through metabolic rearrangement (Timmins-
Schiffman et al., 2014; Tomanek, 2015). LPO in adult C. gigas was si-
milar among all tested conditions, indicating that cellular or physiolo-
gical mechanisms could have been employed to prevent membrane
oxidative damage. Indeed, we observed increased SOD and CAT activ-
ities at the highest hypercapnia tested, as well as an increase of the
glutathione pool (tGSH), which all together may have helped prevent
LPO increased formation. By the contrary juvenile C. gigas were more
susceptible to membrane damage, with an observed increase of LPO
levels in oysters exposed to the intermediate hypercapnic level (pH
7.4), which could have resulted from significantly lower SOD and CAT
activities previously discussed. At the highest hypercapnia level (pH
7.0), LPO in juvenile C. gigas was similar to that observed at low hy-
percapnia (pH 7.8), possibly as a result of glutathione mediated ROS
quenching capacity (see above). However, tGSH depletion associated to
excessive GSSG may be a precursor of increased LPO (Ringwood et al.,
1999). Therefore, this mechanism is likely to become time limited for
juvenile C. gigas.

Concerning C. brasiliana, no change in LPO levels were observed
among tested conditions. In juveniles however, lower LPO at the
highest hypercapnic level (pH 7.0), corroborates the hypothesis that
oysters were depressing metabolism, also in accordance with results
obtained for ETS activity and antioxidants (SOD, CAT and GSH) pre-
viously described. This hypothesis is further supported by Rivera-
Ingraham et al. (2013) studies on M. edulis, that showed decreased ROS
production in mussels exposed to anoxia, accompanied by no change in
oxidative damage parameters (MDA and protein carbonyl).

4.4. Energetic fitness

The energetic status of bivalves can reflect the level of environ-
mental stress (Storey, 1998). Results obtained for C. gigas indicate
higher energetic expenditure in adult oysters exposed to the highest
level of hypercapnia (pH 7.0) (lower GLY content), consistent with
results obtained with high metabolic costs of increased ETS and anti-
oxidant enzymes activities observed at the same condition (SOD and
CAT). In contrast, Timmins-Shiffman and co-authors (2014) found no
change in GLY content of C. gigas exposed to hypercapnia, although
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testing lower pCO2 levels (2,800 µatm) than in the present study.
Hence, our results suggest that higher levels of hypercapnia
(10,000 µatm) may further challenge adult C. gigas energetic fitness. In
contrast, juvenile oysters presented no change in GLY content among
hypercapnic conditions, which could be explained by GSH mediated
stress response observed, which can be energetically less costly
(Pannunzio and Storey, 1998).

Together, results obtained concerning GLY, ETS and antioxidant
capacity in C. gigas (adults and juveniles) indicate hypercapnia induced
a transition to a moderate stress status, according to the concept of
energy-limited stress tolerance (Sokolova et al., 2012), when an in-
crease of metabolic capacity and energetic turnover occurs as a com-
pensation mechanism for homeostatic maintenance and damage repair
in response to a given stressor.

C. brasiliana adult oysters showed no change in GLY content among
hypercapnic levels. However, at the intermediate hypercapnia level (pH
7.4) juvenile C. brasiliana presented significantly lower GLY content,
indicative of oysters enduring energetic burden in response to stress
(Sokolova and Lannig, 2008). Energetic reserves expenditure has also
been demonstrated in juvenile oysters, namely C. brasiliana under
thermal stress (Moreira et al., 2017), and Crassostrea virginica under
hypercapnia (ca. 800 µatm pCO2) (Dickinson et al., 2012). At the
highest hypercapnic level (pH 7.0) however, high GLY content in ju-
venile C. brasiliana (similar to values at low hypercapnia (pH 7.8)),
indicate these oysters were under an arrested metabolic state at the
highest hypercapnic level (pH 7.0), a mechanism employed to conserve
energy also reported in other mollusc species (Michaelidis et al., 2005;
Gazeau et al., 2014). The rate of carbohydrate catabolism in facultative
anaerobes such as oysters is reduced during transition to the pessimum
range of tolerance to environmental stressors (Sokolova et al., 2012),
which could explain similar GLY content observed between low (pH
7.8) and high hypercapnia (pH 7.0). Similarly, Mytilus galloprovincialis
mussels presented low energetic expenditure (high GLY content) when
exposed to hypercapnia (Freitas et al., 2017). Metabolic depression is
only a time limited mechanism to endure extreme stress, and therefore
the impacts of extended exposure to hypercapnia likely pose greater
challenges to this species.

5. Concluding remarks

The present study brings new insights on two important oyster
species biochemical responses to hypercapnia. Our data show marked
differences in each species response pattern to this environmental
stressor, in accordance with other studies assessing comparative per-
formances between other closely related bivalve species enduring
abiotic stress, namely Mytilid (Tomanek, 2014) and Venerid (Velez
et al., 2016) congeners. An opposite trend was demonstrated regarding
metabolic potential between both species, assessed by the electron
transport system activity, with C. gigas presenting increased metabolic
capacity (ETS) with the increase of hypercapnia. Higher antioxidant
capacity observed in C. gigas, demonstrated by the increase of anti-
oxidant enzymes SOD and CAT, as well as changes in non-enzymatic
ROS scavenger GSH oxidation form and concentration, indicate that
these conditions induced a prooxidant status. Our data further show
that C. gigas employed GSH as preferential antioxidant to cope with
hypercapnia induced oxidative stress, with observed effects on the
glutathione pool (tGSH) and GSH/GSSG, most evident for juvenile
specimens at the highest hypercapnia level. The antioxidant capacity of
C. gigas resulted in no increase of cellular damage (LPO), except for
juveniles held at the intermediate hypercapnic level. Nonetheless, data
on GSH mediated antioxidant response suggest that this mechanism is
time limited.

In contrast, C. brasiliana presented a decrease of metabolic potential,
noted by lower ETS activity with the increase of hypercapnia. These
results suggest metabolic depression to withstand hypercapnia by this
species, and were further supported by low antioxidant capacity, no

change or even decrease (juveniles at pH 7.0) of LPO, indicating re-
duced aerobic scope to sustain energetic fitness under hypercapnia.

These results highlight different strategies to cope with increased
pCO2 by different oyster species, bringing new insights on species tol-
erance capacity and differentiated response mechanisms. The time
duration of environmental hypercapnia in estuarine systems may be of
upmost importance, since oyster response mechanisms to high en-
vironmental pCO2 suggest to be time limited. According to the energy-
limited tolerance concept (Sokolova et al., 2012) our study indicates
that the mangrove oyster (C. brasiliana) transitioned into the pessimum
tolerance range under hypercapnia as a conservation mechanism to
endure extreme stress, while the pacific oyster (C. gigas) response pat-
terns reflected a moderate stress status, which can generally imply a
wider range of tolerance towards hypercapnia than C. brasiliana, as well
as a longer and more sustainable energetic balance. The differentiated
response pattern observed can have further implications at the popu-
lation level, and therefore may influence species competitive ad-
vantages towards one another in a hypercapnic environment. In a
scenario of coexistence of the two species in the same areas, it appears
that C. gigasmay be more resilient than the native species (C. brasiliana)
to environmental hypercapnia, with ecological repercussions that are
dificult to predict. Therefore, efforts should be made to prevent the
spread of the non-native species into pristine environments where C.
brasiliana still thrives.
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