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Einstein’s gravity minimally coupled to free, massive, classical fundamental fields admits particle-like 
solutions. These are asymptotically flat, everywhere non-singular configurations that realise Wheeler’s 
concept of a geon: a localised lump of self-gravitating energy whose existence is anchored on the non-
linearities of general relativity, trivialising in the flat spacetime limit. In [1] the key properties for the 
existence of these solutions (also referred to as stars or self-gravitating solitons) were discussed – which 
include a harmonic time dependence in the matter field –, and a comparative analysis of the stars arising 
in the Einstein-Klein-Gordon, Einstein-Dirac and Einstein-Proca models was performed, for the particular 
case of static, spherically symmetric spacetimes. In the present work we generalise this analysis for 
spinning solutions. In particular, the spinning Einstein-Dirac stars are reported here for the first time. 
Our analysis shows that the high degree of universality observed in the spherical case remains when 
angular momentum is allowed. Thus, as classical field theory solutions, these self-gravitating solitons are 
rather insensitive to the fundamental fermionic or bosonic nature of the corresponding field, displaying 
similar features. We describe some physical properties and, in particular, we observe that the angular 
momentum of the spinning stars satisfies the quantisation condition J = mN , for all models, where N is 
the particle number and m is an integer for the bosonic fields and a half-integer for the Dirac field. The 
way in which this quantisation condition arises, however, is more subtle for the non-zero spin fields.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In vacuum Einstein’s general relativity, the only physically rea-
sonable stationary solution describing a localised lump of energy 
is provided by the Kerr black hole [2,3]. A simple application of 
a Komar integral [4] and the positive energy theorem [5,6] shows 
that there are no everywhere regular localised lumps of energy in 
vacuum, as realised (in a different way) long ago by Lichnerow-
icz [7].

With some caveats (see, e.g. the discussion in [8]), the situation 
is similar if Einstein’s gravity is minimally coupled to a massless, 
free, fundamental field. This includes, in particular, electrovacuum. 
But a rather distinct situation becomes possible if the fundamental 
field is massive and with enough degrees of freedom. Considering 
a massive complex Klein-Gordon, or Dirac or Proca field, mini-
mally coupled to Einstein’s gravity, everywhere regular localised 
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solutions are possible – see [9–12], for the original references.1

We shall refer to these self-gravitating solitonic solutions as, re-
spectively, scalar, Dirac or Proca stars, which provide explicit re-
alisations of Wheeler’s geons [13]. Naturally, they were originally
computed under the assumption of a spherically symmetric, static 
spacetime. Yet, rotation is ubiquitous, for all objects, in all scales. 
Thus, despite the higher technical complexity, it is of interest to 
study rotating scalar, Dirac or Proca stars. For the bosonic fields, 
the corresponding spinning stars were first computed in [12,14,15,
17,18], whereas for the Dirac case they will be described herein 
for the first time. This is one of the main purposes of this work.

It turns out that a spinning Dirac star is somewhat more nat-
ural than the static spinless one. Indeed, since a single fermion 
possesses an intrinsic angular momentum, the matter content re-

1 The inclusion of matter self-interactions opens the possibility of particle-like 
objects with finite energy also in flat spacetime – see [16] for a review – albeit only 
bosonic such solutions have been so far considered. In this work we shall restrict 
ourselves to free matter fields.
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quired to obtain a spinless solution consists of (at least) two 
fermionic fields which allows for an angular momentum cancel-
lation. To study spinning Dirac stars, on the other hand we need 
a single Dirac field. With respect to their bosonic counterparts, 
which can be regarded as ‘macroscopic quantum states’ prevented 
from gravitationally collapsing by Heisenberg’s uncertainty princi-
ple, the interpretation of the Dirac stars is more delicate and has 
been considered in [1]. As classical field theory solutions, how-
ever, Dirac stars are in many ways similar to the bosonic ones, an 
observation already established in [1] for the static case and con-
firmed here for the spinning solutions. For instance, rotating Dirac 
stars have an intrinsic toroidal topology in their energy distribu-
tion, which parallels that of the rotating scalar stars [14]; for all 
cases, moreover, the star’s angular momentum J is quantised as 
J = mQ , where m is an integer and Q the Noether charge, that 
also becomes an integer Q = N upon quantisation. To make this 
comparison more meaningful, following [1], we analyse the three 
types of stars under a unified framework. Thus, the mathemati-
cal description of each of the three models is made in parallel to 
emphasise the similarities. The physical interpretation is only dis-
tinct when quantisation is taken into account, which distinguishes 
fermions and bosons. Then, in particular, whereas the bosonic con-
figurations form a continuous sequence or family of solutions for a 
given field mass, fermionic solutions do not, due to Pauli’s exclu-
sion principle [1]. To be clear, the Dirac stars we are considering, 
upon quantisation, correspond to the gravitational field of a single 
fermion, rather than a quantum fermionic star – see [19] for work 
on the latter.

This paper is organised as follows. In Section 2 we describe the 
basic equations of each of the three different models. In Section 3
we introduce the spacetime and matter fields ansatz. In Section 4
we discuss the global quantities and the angular momentum-
Noether charge relation which is universal for the three models 
but appears in a more contrived way in the cases with non-zero 
spin. In Section 5 we construct the spinning stars by solving nu-
merically the field equations subject to specified boundary condi-
tions. We also clarify the physical interpretation of the sequences 
of fermionic solutions. Concluding remarks and some open ques-
tions are presented in Section 6.

2. The model

Let us first describe the three models. The discussion and con-
ventions follow closely those in [1] where a few more details are 
provided. Einstein’s gravity in 3 + 1 dimensional spacetime is min-
imally coupled with a spin-s field, where s takes one of the values 
s = 0, 12 , 1. The action is (with c = 1 = h̄)

S =
∫

d4x
√−g

[
R

16πG
+L(s)

]
, (2.1)

where the three possible matter Lagrangians are:

L(0) = −gαβ�̄, α�, β − μ2�̄� ,

L(1) = −1

4
FαβF̄αβ − μ2

2
AαĀα , (2.2)

L(1/2) = −i

[
1

2

(
{ /̂D�}� − � /̂D�

)
+ μ��

]
. (2.3)

Here, � is a complex scalar field; � is a Dirac 4-spinor, with 
four complex components; /̂D ≡ γ μ D̂μ , where γ μ are the curved 
spacetime gamma matrices, D̂μ = ∂μ − 	μ is the spinor covariant 
derivative and 	μ are the spinor connection matrices [20]; A is a 
complex 4-potential, with the field strength F = dA. In all cases, 
μ > 0 corresponds to the mass of the field(s). For the scalar and 
Proca fields, the overbar denotes complex conjugation; � denotes 
the Dirac conjugate [20].

Variation of (2.1) with respect to the metric leads to the Ein-
stein field equations

Eαβ = Gαβ − 8πG T (s)
αβ = 0 , (2.4)

where Gαβ denotes, as usual, the Einstein tensor and T (s)
αβ is the 

energy-momentum tensor:

T (0)
αβ = �̄,α�,β + �̄,β�,α

− gαβ

[
1

2
gγ δ(�̄,γ �,δ + �̄,δ�,γ ) + μ2�̄�

]
, (2.5)

T (1/2)
αβ = − i

2

[
�γ(α D̂β)� −

{
D̂(α�

}
γβ)�

]
, (2.6)

T (1)
αβ = 1

2
(Fασ F̄βγ + F̄ασFβγ )gσγ − 1

4
gαβFστ F̄στ

+ μ2

2

[
AαĀβ + ĀαAβ − gαβAσ Āσ

]
. (2.7)

The corresponding matter field equations are:

∇2� − μ2� = 0 , /̂D� − μ� = 0 , ∇αFαβ − μ2Aβ=0 .

(2.8)

In the Proca case, the field eqs. (2.8) imply the Lorentz condition, 
∇αAα = 0.

The matter field action, in all cases, possesses a global U (1)

invariance, under the transformation {�, �, A} → eia{�, �, A}, 
where a is a constant. By Noether’s theorem this implies the exis-
tence of a conserved 4-current:

jα(0) = −i(�̄∂α� − �∂α�̄) , jα(1/2) = �̄γ α� ,

jα(1) = i

2

[
F̄αβAβ −FαβĀβ

]
. (2.9)

Indeed, the field equations imply jα
(s);α = 0. Then, integrating the 

timelike component of this 4-current on a spacelike hypersurface 
 yields a conserved Noether charge:

Q (s) =
∫


nμ jμ(s) , (2.10)

where n is the unit normal to the Cauchy surface. The Noether 
charge become an integer after quantisation, Q = N , where N is 
the particle number.

3. The ansatz

We seek spacetimes with two commuting Killing vector fields, 
ξ and η, with ξ = ∂t , and η = ∂ϕ , in a coordinate system adapted 
to the isometries, where t and ϕ are the time and azimuthal coor-
dinates, respectively. General relativity solutions with these sym-
metries are usually studied within the following metric ansatz: 
ds2 = −e−2U (ρ,z)(dt + �(ρ, z)dϕ)2 + e2U (ρ,z)

(
e2k(ρ,z)(dρ2 + dz2) +

S2(ρ, z)dϕ2
)
, where (ρ, z) correspond, asymptotically, to standard 

cylindrical coordinates. In the electrovacuum case, it is always pos-
sible to set S ≡ ρ , such that only three independent metric func-
tions appear in the equations, and (ρ, z) become the canonical 
Weyl coordinates [21]. For the matter sources in this work, how-
ever, a generic metric ansatz with four independent functions is 
needed. Also, it turns out to be more convenient for numerics 
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to use ‘spheroidal-type’ coordinates (r, θ) defined as ρ = r sin θ , 
z = r cos θ , instead of (ρ, z), with the usual range 0 � r < ∞, 
0 � θ � π . After a suitable redefinition of the metric functions, 
this leads to the following metric ansatz:

ds2 = −e2F0dt2 + e2F1
(

dr2 + r2dθ2
)

+ e2F2 r2 sin2 θ

(
dϕ − W

r
dt

)2

, (3.11)

which has been employed in the study of s = 0 [22] and s = 1 [12,
17] spinning stars. The four metric functions (Fi; W ), i = 0, 1, 2, 
are functions of the variables r and θ only, chosen such that the 
trivial angular and radial dependence of the line element is al-
ready factorised. The symmetry axis of the spacetime is given by 
η2 = 0 and corresponds to θ = 0, π . The Minkowski spacetime 
background is approached for r → ∞, where the asymptotic val-
ues are Fi = 0, W = 0.

For the Dirac stars case (s = 1/2), we shall employ the following 
orthonormal tetrad for the metric (3.11)

e0
μdxμ = eF0dt , e1

μdxμ = eF1dr ,

e2
μdxμ = eF1 rdθ , e3

μdxμ = eF2 r sin θ

(
dϕ − W

r
dt

)
, (3.12)

such that ds2 = ηab(ea
μdxμ)(eb

νdxν), where ηab = diag(−1, +1,

+1, +1).
Let us now consider the ansatz for the three mater fields. In 

the scalar case, the matter field ansatz which is compatible with 
an axially symmetric geometry is written in terms of a single real 
function φ(r, θ), and reads:

� = ei(mϕ−wt)φ(r, θ) . (3.13)

In the Proca case, the ansatz introduces four real potentials [12]:

A = ei(mϕ−wt)
(

iV (r, θ)dt + H1(r, θ)

r
dr + H2(r, θ)dθ

+ iH3(r, θ) sin θdϕ

)
. (3.14)

In the case of a Dirac field, the ansatz also contains four real func-
tions2

� = ei(mϕ−wt)

⎛
⎜⎜⎝

ψ1(r, θ)

ψ2(r, θ)

−iψ∗
1 (r, θ)

−iψ∗
2 (r, θ)

⎞
⎟⎟⎠ ,

with ψ1(r, θ) = P (r, θ) + i Q (r, θ) ,

ψ2(r, θ) = X(r, θ) + iY (r, θ) . (3.15)

For s = 0, 1, the parameter m in an integer, while for the Dirac 
field m is a half-integer; w is the field’s frequency in all three 
cases, which we shall take to be positive.

4. Global charges and the J - Q relation

Given the above ansatz, let us consider the explicit form for two 
relevant physical quantities. The first one is the temporal compo-
nent of the current density:

2 Ansatz (3.15) is compatible with the (circular) metric form (3.11). Also, the 
ansatz considered in [1,11] in the study of spherically symmetric stars is recovered 
for m = ±1/2, with a factorised angular dependence.
jt
(0) = 2e−2F0

(
w − mW

r

)
φ2 , (4.16)

jt
(1/2) = 2e−F0(P 2 + Q 2 + X2 + Y 2) , (4.17)

jt
(1) = e−2(F0+F2)

r2
H3

(
w H3 + mV

sin θ

)

+ e−2(F0+F1)

r3

{
r(H2

1 + H2
2)

(
w − mW

r

)

+ cos θ H2 H3W + rH1(rV ,r + sin θW H3,r)

+ H2(rV ,θ + sin θW H3,θ )

}
. (4.18)

The second one is the angular momentum density:

T t(0)
ϕ = 2e−2F0m

(
w − mW

r

)
φ2 , (4.19)

T t(1/2)
ϕ = e−F0m(P 2 + Q 2 + X2 + Y 2)

+ e−F0−F1+F2 sin θ

{
(P X + Q Y )[1 + r(F2,r − F0,r)]

− 1

2
(P 2 + Q 2 − X2 − Y 2)(cot θ + F2,θ − F0,θ )

+ 2e−F0+F1 r

(
w − mW

r

)
(Q X − P Y )

}
, (4.20)

T t(1)
ϕ = −μ2

r
e−2F0 H3 sin θ(rV + H3 sin θW )

+ e−2(F0+F1)

r

{
H1

r
sin θ(−rw + 2mW )H3,r

+ (mH1 − r sin θ H3,r)V ,r − W [sin2 θ H2
3,r

+ 1

r2
(cos θ H3 + sin θ H3,θ )

2] + mH2 V ,θ

r

+ 1

r2
(cos θ H3 + sin θ H3,θ )[H2(rw − 2mW ) + rV ,θ ]

+ m

r
(H2

1 + H2
2)

(
w − mW

r

)}
. (4.21)

The ADM mass M and the angular momentum J of the solu-
tions are read off from the asymptotic expansion:

gtt = −1 + 2M

r
+ . . . , gϕt = −2 J

r
sin2 θ + . . . . (4.22)

The total angular momentum can also be computed as the integral 
of the corresponding density3

J ≡ J (s) = 2π

∞∫
0

dr

π∫
0

dθ sin θr2eF0+2F1+F2 T t(s)
ϕ . (4.23)

The explicit form of the Noether charge, as computed from (2.10), 
is

Q ≡ Q (s) = 2π

∞∫
0

dr

π∫
0

dθ sin θr2eF0+2F1+F2 jt
(s) . (4.24)

For a scalar field one can easily see that J and Q are proportional,

J = mQ , (4.25)

3 The ADM mass can also be computed as volume integral; however, this is less 
relevant in the context of this work.
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since the corresponding densities (4.16), (4.19), are identical up to 
a factor of m. It turns out that this relation also holds for the Dirac 
and Proca case, but the result is less obvious, since the angular mo-
mentum density and Noether charge density are not proportional. 
Nonetheless, the proportionality still holds at the level of the in-
tegrated quantities. Indeed, in both cases the angular momentum 
density and Noether charge density (multiplied by the azimuthal 
index m) differ by a total divergence,4

T t
ϕ = mjt + ∇α Pα , (4.26)

with

Pα = AϕF̄αt + ĀϕFαt , (4.27)

for the Proca field [17], and

Pα = − i

4
�γϕγ αγ t� , (4.28)

for the Dirac field. The total divergence is non-zero locally; how-
ever, its volume integral vanishes for the solutions subject to the 
boundary conditions described in the next Section. As a result, 
(4.25) still holds for a Proca and Dirac fields. Observe, nonetheless, 
the implicit differences in this relation. The bosonic solutions with 
m = 0 are static; but for the Dirac stars m is a half-integer and 
thus cannot be zero – they are necessarily rotating (recall static 
Proca stars require at least two Dirac fields).

The solutions satisfy also a first law of thermodynamics of the 
type:

dM = wdQ , (4.29)

which provides a test of numerical accuracy.

5. The solutions

In solving the equations of motion we exploit some symmetries 
thereof. Let us briefly comment on these, following [1]. Firstly, the 
factor of 4πG in the Einstein field equations can be set to unity by 
a redefinition of the matter functions

{�,A,�} → 1√
4πG

{�,A,�} . (5.30)

Secondly, the field equations remain invariant under the trans-
formation

(∗) : r → λr , W → λW , Fi → Fi , {w,μ} → 1

λ
{w,μ} ,

⎧⎨
⎩

� → � ,

A → 1√
λ
A ,

� → � .

⎫⎬
⎭ , (5.31)

where λ is a positive constant. In all three cases the ratio w/μ is 
left invariant by the (∗) symmetry. This (∗)-invariance is used to 
work in units set by the field mass,

μ̄ = 1 , i.e. λ = 1

μ
. (5.32)

Then, to recover the physical quantities from those obtained in the 
numerical solution, a set of relations are used, identical to the ones 
described in [1].

4 In deriving (4.26) one uses also the matter field equations.
5.1. The boundary conditions and numerical method

Given the matter ansatz (3.13)-(3.15), all components of the en-
ergy momentum tensor are zero, except for Trr , Trθ , Tϕϕ , Ttt and 
Tϕt , which possess a (r, θ)-dependence only. Then, the Einstein 
field equations with the energy momentum-tensors (2.5)-(2.7), 
plus the matter field equations (2.8), together with the ansatz 
(3.13)-(3.15), lead to a system of five (eight) coupled partial dif-
ferential equations for the scalar (Dirac and Proca) cases. There are 
four equations for the metric functions Fi, W ; these are found by 
taking suitable combinations of the Einstein equations: Er

r + Eθ
θ =

0, Eϕ
ϕ = 0, Et

t = 0 and Et
ϕ = 0; additionally, there is one (four) 

equations for the matter functions. Apart from these, there are 
two more Einstein equations Er

θ = 0, Er
r − Eθ

θ = 0, which are not 
solved in practice. Following an argument originally proposed in 
[23], one can, however, show that the identities ∇ν Eνr = 0 and 
∇ν Eνθ = 0, imply the Cauchy-Riemann relations ∂r̄P2 + ∂θP1 = 0, 
∂r̄P1 − ∂θP2 = 0, with P1 = √−g Er

θ , P2 = √−gr(Er
r − Eθ

θ )/2 and 
dr̄ = dr/r. Therefore the weighted constraints Er

θ and Er
r − Eθ

θ still 
satisfy Laplace equations in (r̄, θ) variables. Then they are fulfilled, 
when one of them is satisfied on the boundary and the other at a 
single point [23]. From the boundary conditions below, it turns out 
that this is the case for all three models, i.e. the numerical scheme 
is self-consistent.

The boundary conditions are found by considering an approx-
imate construction of the solutions on the boundary of the do-
main of integration together with the assumption of regularity and 
asymptotic flatness.5 The metric functions satisfy

∂r Fi
∣∣
r=0 = W

∣∣
r=0 = 0 , Fi

∣∣
r=∞ = W

∣∣
r=∞ = 0 ,

∂θ Fi
∣∣
θ=0,π

= ∂θ W
∣∣
θ=0,π

= 0 . (5.33)

The scalar field amplitude vanishes on the boundary of the domain 
of integration (see e.g. [15])

φ
∣∣
r=0 = φ

∣∣
r=∞ = φ

∣∣
θ=0,π

= 0 . (5.34)

The boundary conditions in the Proca case are [12,17],

Hi|r=0 = V |r=0 = 0 , Hi|r=∞ = V |r=∞ = 0 ,

H1|θ=0,π = ∂θ H2
∣∣
θ=0,π

= ∂θ H3
∣∣
θ=0,π

= V |θ=0,π = 0 , (5.35)

where the last set of conditions applies to the lowest m = 1 states. 
For a Dirac field, one imposes

P
∣∣
r=0 = Q

∣∣
r=0 = X

∣∣
r=0 = Y

∣∣
r=0 = 0 ,

P
∣∣
r=∞ = Q

∣∣
r=∞ = X

∣∣
r=∞ = Y

∣∣
r=∞ = 0 , (5.36)

and, for m = 1/2,

∂θ P
∣∣
θ=0 = ∂θ Q

∣∣
θ=0 = X

∣∣
θ=0 = Y

∣∣
θ=0 = 0 ,

P
∣∣
θ=π

= Q
∣∣
θ=π

= ∂θ X
∣∣
θ=π

= ∂θ Y
∣∣
θ=π

= 0 . (5.37)

In all three cases, the solutions are found by using a fourth 
order finite difference scheme. The system of five/eight equations 
is discretised on a grid with Nr × Nθ points (where typically 
Nr ∼ 200, Nθ ∼ 50). We also introduce a new radial coordinate 
x = r/(r + c), which maps the semi-infinite region [0, ∞) onto 
the unit interval [0, 1] (with c some constant of order one). The 
bosonic stars were constructed by using the professional package 
FIDISOL/CADSOL [24] which uses a Newton-Raphson method. The 

5 In particular, the matter field equations in the far field reveal that the solutions 
satisfy the condition w < μ.
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Fig. 1. The components T t
t (left panels) and T t

ϕ (right panels) of the energy-momentum tensor, and the 4-current component jt (right panels inset) are shown for a 
fundamental branch solution of the scalar (top panels), Dirac (middle panels) and Proca (bottom panels) model, all with the same frequency, w/μ = 0.75.
Einstein-Dirac system is solved with the Intel MKL PARDISO sparse 
direct solver [25], and using the CESDSOL6 library. In all cases, the 
typical errors are of order of 10−4.

The data shown in this work correspond to fundamental states, 
all matter functions being nodeless.7 For the solutions herein, the 
geometry and the matter/current distributions are invariant under 
a reflexion in the equatorial plane (θ = π/2), thus possessing a 
Z2 symmetry. Also, we shall consider solutions with the lowest 
number m (except for the Dirac stars in Fig. 3, right panel).

5.2. Numerical results: basic properties and domain of existence

In Fig. 1 we display the components T t
t and T t

ϕ of the energy-
momentum tensor related to the mass-energy and angular mo-

6 Complex Equations – Simple Domain partial differential equations SOLver is a 
C++ package being developed by one of us (I.P.).

7 For a given w , a discrete set of solutions may exist, indexed by the number of 
nodes, n, of (some of) the matter function(s). Such excited solutions were reported 
for s = 0 (see e.g. [30]) and s = 1 fields (see [12,17]).
mentum density, together with the temporal component jt of the 
current for a typical (fundamental branch) solution of each model, 
all with w/μ = 0.75 and the lowest allowed value of m > 0. One 
can see that, unlike for the scalar case, for Dirac and Proca stars, 
T t
ϕ and jt are not proportional, with the maximum of T t

ϕ located 
on the equatorial plane, while jt posses an almost spherical shape 
(the last feature, however, changes for higher m). A qualitative 
difference is that both scalar and Dirac stars possess an intrinsic 
toroidal shape in what concerns their energy distribution; for the 
Proca case, however, this distribution is almost spherical. Another 
qualitative difference is that for the scalar stars jt = 0 on the sym-
metry axis.

As seen in Fig. 2, in all three cases, when considering a mass 
M/angular momentum J /Noether charge Q , vs. frequency w , di-
agram, the domain of existence of the solutions corresponds to a 
smooth curve. This curve starts from M = 0 ( J = 0) for w = μ, in 
which limit the fields becomes very diluted and the solution triv-
ialises. At some intermediate frequency, a maximal mass (angular 
momentum) is attained. The parameters of these particular solu-
tions are given in the 2nd-4th columns of Table 1. As can be seen 
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Fig. 2. The ADM mass M (left panel) and the angular momentum J (right panel) vs. field frequency w for the scalar (red line), vector (blue line) and spinor (green line) 
models. In each case the dot marks the particular solutions where an ergoregion first occurs, when moving from the maximal frequency w/μ = 1 towards the centre of the 
spiral. The inset provides a zoom on the backbending of the curves, for the Proca case.

Table 1
1st column: the three different models. 2nd, 3rd and 4th columns: mass, angular momentum and frequency of the solution with maximal 
mass and angular momentum; 5th, 6th and 7th columns: frequency, mass and angular momentum of the minimal frequency solution – 
first backbending in the diagrams of Fig. 1; 8th-9th columns: mass/Noether charge and frequency of the solution with equal ADM mass 
and Noether charge (the data for Proca stars is missing in this case). All quantities are presented in units of μ, G .

Mmax J max w(Mmax, J max) wmin M(wmin) J (wmin) M = Q wcrossing

scalar 1.315 1.381 0.775 0.645 1.041 0.975 1.166 0.661
Dirac 1.509 0.789 0.795 0.680 1.198 0.569 1.303 0.692
Proca 1.125 1.259 0.562 0.469 1.086 1.180 – –
there, the behaviour is not monotonic with spin. In each case there 
is also a minimal frequency, below which no solutions are found. 
The minimal frequencies and the corresponding M, J are shown 
in the 5th-7th columns of Table 1. After reaching the minimal fre-
quency, the spiral backbends into a second branch. For the scalar 
and Dirac fields we were able to obtain further backbendings and 
branches. For a Proca field, however, we have not been able to 
construct these secondary branches. For any value of s, we con-
jecture that, similarly to the spherically symmetric case, the M(w)

(and Q (w)) curves describe spirals which approach, at their cen-
tre, a critical singular solution.

As expected, in all three cases, rotating solutions in the strong 
gravity region possess an ergo-region of toroidal shape [42]. The 
position of the critical solutions for which the ergo-region emerges 
is shown with a dot in Fig. 2. All remaining solutions, starting from 
that particular configuration up to the putative solution at the cen-
tre of the spiral, have an S1 × S1 ergo-surface.

Although a detailed stability analysis of this solutions is tech-
nically challenging and beyond the scope of this paper, some sim-
ple observations can be done based on energetic arguments. The 
Noether charge measures the particle number. If this quantity mul-
tiplied by the field mass μ is smaller than the ADM mass M , then 
the solution has excess, rather than binding, energy and it should 
be unstable against fission. In all three cases, close to the maxi-
mal frequency, w = μ the solutions are stable under this criterion: 
there is binding energy, a necessary, albeit not sufficient, condi-
tion for stability. For scalar and spinor fields, we have found that 
at some point, the Noether charge and ADM mass curves cross and 
M becomes larger than Q corresponding to solutions with excess 
energy and hence unstable. The corresponding parameters of these 
particular solutions are given in the 8th-9th columns of Table 1. A 
similar picture should exist for Proca stars as well, but so far we 
have not been able to construct the corresponding solutions.

We emphasise that solutions with binding energy may, nonethe-
less, be perturbatively unstable. This has been clarified so far only 
for spherically symmetric configurations – see Refs. [31,32] for 
s = 0, Refs. [12,33] for s = 1 and Ref. [11] for s = 1/2.

5.3. Bosonic vs. fermionic nature

What if one tries to go beyond the classical field theory analy-
sis and impose the quantum nature of fermions, which demands 
Q = 1 for Dirac stars? This condition can also be imposed for 
scalar and Proca stars, although in those cases it is not a manda-
tory requirement. Then, as discussed in [1], the spiral in Fig. 2 is 
not a sequence of solutions with constant μ and varying Q – re-
call that here J = mQ –; rather, it is a sequence with constant Q
and varying μ. Thus, since μ is a parameter in the action, it rep-
resents a sequence of solutions of different models. Consequently, 
there cannot be a difference of orders of magnitude between M , 
the physical mass of the star, and μ, the mass of the field. They 
should be of the same order of magnitude, unlike the macroscopic 
quantum states that may occur in the bosonic case. This is illus-
trated in Fig. 3 (left panel), where we plot the same data as in 
Fig. 1 but imposing the single particle condition.

Considering the stars as one particle microscopic classical con-
figurations, the mass of the field μ becomes bounded, and, for 
fundamental states, never exceeds, ∼ M Pl . Thus, for these single 
particle configurations, the particle’s size (measured by its Comp-
ton wavelength) cannot be smaller than ∼ Planck length. This 
upper μ bound can be pushed further up by considering config-
urations with higher values of m, making these configurations in-
creasingly trans-Planckian. The corresponding masses for the Dirac 
model with m = 1/2, 3/2 and 5/2 are shown in Fig. 3 (right panel).

6. Further remarks

The main purpose of this work was to provide a comparative 
analysis of three different types of spinning solitonic solutions of 
General Relativity coupled with matter fields of spin 0, 1 and 1/2, 
respectively. In particular, the Einstein-Dirac spinning configura-
tions are reported here for the first time. In all cases there is a 



C. Herdeiro et al. / Physics Letters B 797 (2019) 134845 7
Fig. 3. Consequences of the single particle condition Q = 1. (Left panel) ADM mass vs. scalar field mass, in Planck units, for the three families of stars. (Right panel) Same for 
the first three states of the Dirac field (m = 1/2, 3/2 and m = 5/2).
harmonic time dependence in the fields (with a frequency w), to-
gether with a confining mechanism, as provided by a mass μ of 
the elementary quanta of the field.

Our results confirm that, when considered as classical field the-
ory solutions, the stars share the same universal pattern, insensi-
tive to the fermionic/bosonic nature of the fields. That is, when ig-
noring Pauli’s exclusion principle, the (field frequency-mass/Nother 
charge)-diagram of the solutions looks similar for both bosonic 
and fermionic stars.8 This generalises the results in [1] for spher-
ically symmetric configurations. Introducing spin, another univer-
sal feature is the relation (4.25), i.e. the angular momentum and 
the particle number are always proportional (although the situa-
tion is more subtle for Proca and Dirac fields). We conjecture that 
similar configurations may exist for any spin, given a consistent 
matter model minimally coupled to GR, likely with similar prop-
erties. In particular, this should hold for s = 3/2: Rarita-Schwinger 
stars should exist, which, for a single field, should also satisfy re-
lation (4.25).

On the other hand, if one imposes that the configuration de-
scribes a single particle, which is a consequence of the quantum 
nature of fermions, one finds that for each field mass there is a 
discrete set of states, up to a maximal field mass.

As noticed in [1] for the spherically symmetric case, the ob-
served similarities between bosonic and fermionic solitons remain 
in the absence of gravity as long as appropriate self-interactions of 
the matter fields are allowed. For the matter fields in this work, 
spinning flat space solitons are known for s = 0 only [36,37], but 
should exist for s = 1/2, 1 as well. Moreover, one can show that 
the relation (4.25) is still satisfied. A preliminary numerical anal-
ysis indicates the existence of spinning flat space Dirac solitons, 
which generalise the solutions in [26] for a single spinor with a 
quartic self-interaction.

An important difference between bosonic and fermionic solu-
tions is the following. Scalar or Proca stars can be in equilibrium 
with a black hole horizon at their centre, if both are rotating syn-
chronously, leading to black holes with scalar or Proca hair [17,27]. 
This does not seem to be the case for a Dirac star. Conventional 
wisdom may attempt to relate this putative impossibility to the 
absence of superradiance for a fermionic field on the Kerr back-
ground [34]. However, spinning black holes with scalar hair exist 
even in the absence of the superradiant instability, the hair be-
ing intrinsically non-linear [28,29]. Therefore one cannot rule out, 
based on this association, that Dirac stars could allow for black 
hole generalisations. A more convincing obstacle is provided by the 

8 As discussed in [35], this holds also for the higher dimensional spherical stars.
following argument. When assuming the existence of a power se-
ries expansion of the Einstein-matter field equations in the vicinity 
the event horizon,9 the case of a Dirac field appears to be special. 
On the one hand, for a bosonic field (s = 0, 1), the synchronization 
condition w = m�H (with �H the event horizon velocity) occurs 
naturally, allowing for non-zero values of the matter fields at the 
horizon together with finite values for relevant quantities (e.g. jt ). 
As a result, a consistent local, non-trivial solution exists, in term of 
the values taken at the horizon. On the other hand, this is not the 
case for a Dirac field, where the condition w = m�H (which still 
occurs naturally) is not enough to assure regularity at the horizon. 
It turns out that the spinor components are forced to vanish there 
order by order, yielding only the trivial solution. Despite this sug-
gestive argument, a rigorous proof of the impossibility of endowing 
a Kerr black hole with synchronous Dirac hair is still lacking.

Beyond the matter contents discussed in this work, it is worth 
mentioning the case of SU (2) Yang-Mills fields. While this nonlin-
ear model possesses no flat spacetime solitons [38], the coupling 
to gravity allows for particle-like solutions [39]. Spinning gener-
alisations of these solutions, however, do not exist [40], a rather 
unique situation amongst field theory models. Nonetheless, spin-
ning Einstein-Yang-Mills configurations are found when adding a 
rotating horizon at the centre of a static soliton [41].
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