
A computational comparison of compact MILP formulations for the zero

forcing number∗

Agostinho Agra1, Jorge Orestes Cerdeira2, and Cristina Requejo3

1Departamento de Matemática and Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA),

Universidade de Aveiro, 3810-193 Aveiro, Portugal.

aagra@ua.pt
2Departamento de Matemática and Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica - Portugal.

jo.cerdeira@fct.unl.pt
3Departamento de Matemática and Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Universidade

de Aveiro, 3810-193 Aveiro, Portugal.

crequejo@ua.pt

January 2, 2020

Abstract

Consider a graph where some of its vertices are colored. A colored vertex with a single

uncolored neighbor forces that neighbor to become colored. A zero forcing set is a set of

colored vertices that forces all vertices to become colored. The zero forcing number is the

size of a minimum forcing set. Finding the minimum forcing set of a graph is NP-hard. We

give a new compact mixed integer linear programming formulation (MILP) for this problem,

and analyse this formulation and establish relation to an existing compact formulation and to

two variants. In order to solve large size instances we propose a sequential search algorithm

which can also be used as a heuristic to derive upper bounds for the zero forcing number. A

computational study using Xpress (a MILP solver) is conducted to test the performances of

the discussed compact formulations and the sequential search algorithm. We report results

on cubic, Watts-Strogatz and randomly generated graphs with 10, 20 and 30 vertices.

Keywords: Graphs; mixed integer linear programming; compact formulations; valid inequal-

ities; zero forcing.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E, and suppose that initially

(at time-step 0) V contains a subset C of vertices which are colored. The color change rule is

an operation in which a colored vertex u with a single uncolored neighbor v forces v to become

colored. We say that u forces v. Set C is a zero forcing set if by applying the colored change

rule until no more changes are possible all vertices are colored. The zero forcing number Z(G) is

the size of a minimum forcing set. See Figure 1 for an illustration of a sequence of applications

of the color change rule on a graph with 10 vertices.

∗Cite as: A. Agra, J. Orestes Cerdeira, C. Requejo. A computational comparison of compact MILP formulations

for the zero forcing number. Discrete Applied Mathematics 269, 169–183. 2019. [doi: 10.1016/j.dam.2019.03.027]

1

https://www.sciencedirect.com/science/article/pii/S0166218X1930201X?via%3Dihub

8

4

9

7

5

1

3

2

10

6 8

4

9

7

5

1

3

2

10

6 8

4

9

7

5

1

3

2

10

6

(a) S = {4, 7, 8} (b) S = {4, 7, 8, 5, 6} (c) S = {4, 7, 8, 5, 6, 10}

8

4

9

7

5

1

3

2

10

6 8

4

9

7

5

1

3

2

10

6 8

4

9

7

5

1

3

2

10

6

(d) S = {4, 7, 8, 5, 6, 10, 3} (e) S = {4, 7, 8, 5, 6, 10, 3, 9} (f) S = {4, 7, 8, 5, 6, 10, 3, 9, 2}

Figure 1: Example of applications of the color change rule on a graph with vertex set V =

{1, 2, . . . , 10}, starting from a zero forcing set C = {4, 7, 8} in (a). Set S denotes the set of

colored vertices at each time-step. In (b) 4 forces 5 and 7 forces 6, in (c) 6 forces 10, in (d) 10

forces 3, in (e) 8 forces 9, in (f) 3, 5 and 9 force 2. In the last step (not represented) 2 will force

1.

The zero forcing number was introduced in [2]. It has applications on different areas such as

quantum physics and logic circuits (see [6, 9, 10, 12]). Determining the zero forcing number is

NP-hard [1, 12]. The zero forcing number has been addressed in several recent papers [3, 4, 11,

14, 15, 16, 19] mostly focusing the determination of bounds. Integer programming approaches

for the zero forcing number have been considered recently. Brimkov et al. [8] gave several integer

programming formulations, including a compact model, for the minimum zero forcing set, and

report computational experience on cubic graphs and Watts-Strogatz graphs.

In this paper we devise a new compact mixed integer linear program (MILP) model (i.e, a

MILP formulation with a number of variables and constraints that is polynomial with respect to

the size of the instance) based on time-step variables for the minimum zero forcing set. We show

that this new model is stronger than the compact one introduced by Brimkov et al. [8] (i.e., the

linear relaxation of the new model gives better bounds than those from [8]). Valid inequalities

(i.e., inequalities that are satisfied by every feasible solution) and an extended formulation (i.e., a

formulation including additional variables) are introduced to tighten the compact model. As the

tighten compact model still has a weak linear relaxation, the model can only be used to solve to

optimality small size instances. In order to solve larger instances we propose a sequential search

algorithm that sequentially seeks for zero forcing sets of fixed cardinalities and stops when, for

a given cardinality, no such zero forcing set exists. As the last step of proofing the infeasibility

for a given cardinality is the most expensive from the computational point of view, by limiting

the running time to find feasible solutions for large instances, the algorithm can be used as a

2

heuristic. Computational results to compare the formulations and the algorithm are conducted

on cubic, Watts-Strogatz and randomly generated graphs with 10, 20 and 30 vertices.

In Section 2 we present the compact formulation from Brimkov et al. [8] and review related

polyhedral studies. The new compact MILP formulation based on time-step variables is intro-

duced and discussed in Section 3. Valid inequalities and an extended formulation to tighten the

new proposed model are presented in Section 4. In Section 5 an exact sequential search algorithm

is introduced. The computational experiments are reported in Section 6. Final conclusions are

given in Section 7.

2 Related integer programming approaches

Here we review the integer programming approaches for the zero forcing number. In what

follows N(v) denotes the set of neighbors of vertex v, n = |V | is the number of vertices of graph

G, and we let k = n− 1 and T = {1, . . . , k}. Moreover, we will orient every edge {u, v} of graph

G = (V,E) in two opposite directions obtaining arcs (u, v) and (v, u).

We first present the formulation from Brimkov et al. [8]. The model includes integer variables

of three types:

sv indicates if vertex v is in the forcing set (sv = 1) or not (sv = 0);

xv indicates at which time-step vertex v is forced;

yuv indicates if vertex u forces vertex v (yuv = 1) or not (yuv = 0).

Z(G) = min
∑
v∈V

sv (2.1)

s.t. sv +
∑

u∈N(v)

yuv = 1 ∀v ∈ V (2.2)

xu − xv + (k + 1)yuv ≤ k ∀(u, v) ∈ E (2.3)

xw − xv + (k + 1)yuv ≤ k ∀(u, v) ∈ E,w ∈ N(u)\{v} (2.4)

sv ∈ {0, 1} ∀v ∈ V (2.5)

xv ∈ {0, . . . , k} ∀v ∈ V (2.6)

yuv ∈ {0, 1} ∀(u, v) ∈ E (2.7)

The objective function (2.1) searches for a minimum size forcing set. Equations (2.2) state

that either vertex v is in the initial forcing set, or else some neighbor of v will force v. Inequalities

(2.3) and (2.4) ensure that vertices will be iteratively colored in accordance with the color change

rule. Indeed, together they guarantee that if u forces v, then u and all of its neighbors, but v,

should be forced before v (i.e. if u′ ∈ (N(u) \ {v}) ∪ {u}, x′u < xv). The ranges of the variables

are given by (2.5)-(2.7).

Model (2.1)–(2.7) will be denoted by BFH (Brimkov, Fast and Hicks). As mentioned in [8]

this formulation is compact and it not only finds a minimum zero forcing set, but it also gives a

set of forcing chains associated with the forcing set. However, constraints (2.3) and (2.4) are of

big-M form leading to weak linear relaxations.

3

Another approach proposed by Brimkov et al. [8] is based on the concept of forts. A fort is a

nonempty set F ⊂ V such that no vertex outside F is adjacent to exactly one vertex in F. Note

that if F is a fort, then V \ F is not a zero forcing set. They propose the following set-covering

model based on forts.

Z(G) = min
∑
v∈V

sv (2.8)

s.t.
∑
v∈F

sv ≥ 1 ∀F ∈ B (2.9)

sv ∈ {0, 1} ∀v ∈ V (2.10)

where B is the set all forts in the given graph. Constraints (2.9) state that at least one vertex

from every fort must be in every forcing set.

This formulation avoids the big-M constraints but it includes an exponential number of con-

straints. To solve this model they propose a row generation algorithm where violated forts are

identified by solving an auxiliary integer programming problem.

3 A compact time-step formulation

In this section we introduce a new compact model for determining a minimum zero forcing

set of a graph and discuss relations of this model to other compact models. This new model uses

two types of variables 0-1 depending on the time-step:

xtv indicates if vertex v is forced at some time-step less than or equal t (xtv = 1) or not

(xtv = 0);

ytuv indicates if vertex u forces vertex v at time-step t (ytuv = 1) or not (ytuv = 0).

Z(G) = min
∑
v∈V

x0v (3.1)

s.t. x0v +
∑
t∈T

∑
u∈N(v)

ytuv = 1, ∀v ∈ V (3.2)

ytuv ≤ xt−1u ∀(u, v) ∈ E, t ∈ T (3.3)

ytuv ≤ xt−1w ∀(u, v) ∈ E,w ∈ N(u) \ {v}, t ∈ T (3.4)

xtv = xt−1v +
∑

u∈N(v)

ytuv ∀v ∈ V, t ∈ T (3.5)

xtv ∈ {0, 1} ∀v ∈ V, t ∈ T ∪ {0} (3.6)

ytuv ∈ {0, 1} ∀(u, v) ∈ E, t ∈ T (3.7)

The objective function (3.1) seeks that the number of colored vertices at time-step 0 is min-

imum. Equations (3.2) ensure that at time-step k all vertices will be colored. Constraints

(3.3)-(3.5) implement the color change rule. Inequalities (3.3) express that only colored vertices

can force other vertices. Each constraint (3.4) states that, at each time-step, vertex u will not

4

force a neighbor v (i.e. ytuv = 0), whenever some other uncolored neighbor of u exists (i.e. if

xt−1w = 0, v 6= w ∈ N(u)). Each constraint (3.5) establishes, on the one hand, that vertex v will

be uncolored at time-step t (i.e. xtv = 0), if at time-step t−1 v is uncolored (i.e. xt−1v = 0) and at

time-step t none of its neighbors have forced v (i.e. ytuv = 0, u ∈ N(v)), and on the other hand,

that v is a colored vertex at time-step t (i.e. xtv = 1) if either it is a colored vertex at time-step

t − 1 (i.e. xt−1v = 1), or it has been colored at time step t (i.e. ytu,v = 1, for some u ∈ N(v)) .

Finally, (3.6) and (3.7) state that all variables are 0-1.

This compact time-step model will be denoted by TS.

Remark 3.1. Equality (3.5) together with nonnegativity of variable ytuv implies the following

inequality

xtv ≥ xt−1v ∀v ∈ V, t ∈ T, (3.8)

ensuring that once a vertex is colored it will remain colored in every subsequent time-step.

Remark 3.2. Using equation (3.5) we can write variable xtv, for v ∈ V, t ∈ T, as follows

xtv = x0v +
t∑

`=1

∑
u∈N(v)

y`uv ∀v ∈ V, t ∈ T. (3.9)

These equations establish that either vertex v is in the forcing set (i.e. x0v = 1) and it will remain

colored (i.e. xtv = 1) at every time-step t ≥ 1, or else v will be (un)colored at time-step t iff it has

(not) been forced by some neighbor vertex u ∈ N(v) at (any) some time-step less than or equal

to t.

Next we state that the coefficients matrix associated with the variables ytuv is totally unimod-

ular. This allows us to replace constraints (3.7) by the nonnegativity constraints ytuv ≥ 0, (u, v) ∈
E, t ∈ T, since the RHS of each constraint is integer for each binary vector x.

Proposition 3.3. The coefficients matrix associated with the variables ytuv is totally unimodular.

Proof. First notice that the coefficients matrix associated with each set of constraints (3.3) and

(3.4) is an identity matrix. So, we focus only on the coefficients matrix resulting from (3.2), and

(3.5). For each subset M of the matrix rows associated with (3.2), and (3.5) define the partition

of M, {M1,M2}, such that M1 are the rows in M resulting from constraints (3.2) and M2 are the

rows in M resulting from constraints (3.5). Since each variable ytuv occurs at most once in M1,

with coefficient 1, and occurs at most once in M2, with coefficient 1, it follows that the partition

satisfies |
∑

j∈M1
aij −

∑
j∈M2

aij |≤ 1, i = 1, . . . , | M |, where aij represents the coefficient of

column j in line i. Thus the coefficient matrix is totally unimodular (see [17]).

3.1 Relation between models TS and BFH

Model TS can be related with BFH throughout the following set of equations:

sv = x0v, v ∈ V (3.10)

xv =
∑
t∈T

t(xtv − xt−1v), v ∈ V (3.11)

yuv =
∑
t∈T

ytuv, (u, v) ∈ E (3.12)

5

Model TS avoids the big-M constraints included in model BFH. Next we show that model TS

is stronger than model BFH by showing that all the inequalities defining the linear relaxation of

BFH are valid to the linear relaxation of model TS (see [17]).

Proposition 3.4. Model TS is stronger than model BFH.

Proof. In order to relate the two models we add the redundant constraints (3.10)-(3.12) to TS.

The upper bounds on the variables sv ≤ 1 are implied by x0v ≤ 1. Constraints xv ≤ k are

implied by xv =
∑

t∈T t(x
t
v − xt−1v) ≤ k

∑
t∈T (xtv − xt−1v) ≤ k, since from (3.8) xtv − xt−1v ≥ 0

and
∑

t∈T (xtv − xt−1v) = xkv − x0v ≤ xkv = 1. Finally, from (3.5), for all (u, v) ∈ E, and t ∈ T,

xtv = xt−1v +
∑

w∈N(v) y
t
wv ≥ xt−1v + ytuv. Hence

ytuv ≤ xtv − xt−1v . (3.13)

Thus, yuv ≤ 1 is implied by yuv =
∑

t∈T y
t
uv ≤

∑
t∈T (xtv − xt−1v) ≤ 1.

Inequalities (2.2) follow directly from (3.2), (3.10) and (3.12). Next, we show that inequalities

(2.3) are valid for the feasible set of TS. Using (3.13), it follows that∑
t∈T

tytuv ≤
∑
t∈T

t(xtv − xt−1v) = xv. (3.14)

Now, observing that (i) 0 ≤ x0u ≤ 1, 0 ≤ xtu − xt−1u ≤ 1, ∀t ∈ T ; (ii) 0 ≤ ytuv ≤ 1, ∀t ∈ T ; (iii)∑
t∈T (xtu − xt−1u) + x0u = 1; (iv)

∑
t∈T y

t
uv ≤ 1; (v)

∑t
`=1 y

`
uv ≤ xt−1u =

∑t−1
`=1(x

`
u − x`−1u) + x0u,

∀t ∈ T, and using Lemma 7.1 given in the Appendix II, with a0 = x0u, at = xtu − xt−1u , t ∈ T and

bt = ytuv, it follows that ∑
t∈T

t(xtu − xt−1u) +
∑
t∈T

(k + 1− t)ytuv ≤ k (3.15)

Adding (3.14) and (3.15) one obtains∑
t∈T

t(xtu − xt−1u) +
∑
t∈T

(k + 1− t)ytuv +
∑
t∈T

tytuv ≤ xv + k

⇔ xu + (k + 1)yuv ≤ xv + k

We omit the proof of validity of inequalities (2.4) since it is similar to the proof above for

inequalities (2.3).

In order to show that the linear relaxation of model TS can provide better bounds than the

linear relaxation of model BFH, it suffices to consider the example of a path graph with four

vertices. The optimal value of the linear relaxation of model BFH is zero and the corresponding

value for model TS is 1/3.

To finalize the comparison between both models, we indicate below the number of variables

and constraints of each of the two models.

Model # int. var. # binary var. # constraints

BFH O(n) O(n+ |E|) O(n|E|)
TS O(k(n+ |E|)) O(kn|E|)

6

3.2 Relation between model TS and other time-step based models

Here we relate model TS with two other models based on time-steps which we derive as a

consequence of the following two observations.

• Equations (3.9) and (3.11) suggest that variables xtv, for t ∈ T , can be eliminated from the

model TS leading to a new model with less variables.

• The color change rule establishes that at each time-step, a vertex v either maintains its

color from the previous time-step or it is forced by a neighbor u ∈ N(v). Thus, for each

time-step t ≥ 1 and each node v, such rule can be modeled as the union of the following

polyhedron:

Qt
v(v) =

{
xtv = xt−1v

}
if v maintains its color;

Qt
v(u) =

{
xtv = xt−1w , w ∈ (N(u) ∪ {u})\{v}

}
if v is forced by u. Thus, a formulation can

be derived from the technique introduced by Balas [5] to model the convex hull of the union

of polyhedra.

Following the first observation, variables xtv for t ∈ T are eliminated from model TS using

the Fourrier-Motzkin elimination. The resulting projected formulation, denoted by PTS, is given

below, where variables x0v are replaced by sv.

Z(G) = min
∑
v∈V

sv (3.16)

s.t. sv +
∑
t∈T

∑
u∈N(v)

ytuv = 1, ∀v ∈ V (3.17)

yt+1
uv ≤ su +

t∑
`=1

∑
v′∈N(u)\{v}

y`v′u, ∀(u, v) ∈ E, t ∈ T \ {k} (3.18)

yt+1
uv ≤ sw +

t∑
`=1

∑
v′∈N(w)

y`v′w, ∀(u, v) ∈ E,w ∈ N(u) \ {v},

t ∈ T \ {k} (3.19)

sv ∈ {0, 1}, ∀v ∈ V (3.20)

ytuv ∈ {0, 1}, ∀(u, v) ∈ E, t ∈ T (3.21)

Interestingly, model PTS has fewer constraint than the model TS.

Remark 3.5. While for the TS model variables ytuv can be relaxed, in the PTS model the coef-

ficients matrix is no longer totally unimodular, and it can be proved that variables ytuv cannot be

relaxed.

Now, we address the second observation. Following [5], in addition to variables xtv we add the

following two sets of variables:

ztuv is the copy of variable xtu for polyhedron Qt
v(u), where u ∈ N(v) ∪ {v}.

δtuv indicates whether polyhedron Qt
v(u) is selected (δtuv = 1) or not (δtuv = 0).

7

The resulting formulation (the details are given in Appendix I), which we will refer as UP model,

is as follows.

Z(G) = min
∑
v∈V

x0v (3.22)

s.t. x0v +
∑
t∈T

∑
u∈N(v)

ztuv = 1, ∀v ∈ V (3.23)

xtv ≥ xt−1v ∀v ∈ V, t ∈ T (3.24)

ztvv ≤ xt−1v ∀(u, v) ∈ E, t ∈ T (3.25)

ztvv ≤ δtvv ∀(u, v) ∈ E, t ∈ T (3.26)

ztvv + xt−1v ≤ 1 + δt−1vv ∀(u, v) ∈ E, t ∈ T (3.27)

ztuv ≤ xt−1u ∀(u, v) ∈ E, t ∈ T (3.28)

ztuv ≤ xt−1w ∀(u, v) ∈ E,w ∈ N(u) \ {v}, t ∈ T (3.29)

ztuv ≤ δtuv ∀(u, v) ∈ E, t ∈ T (3.30)

ztuv + xt−1w ≤ 1 + δtuv ∀(u, v) ∈ E, t ∈ T (3.31)

xtv =
∑

u∈N(v)∪{v}

ztuv ∀v ∈ V, t ∈ T (3.32)

∑
u∈N(v)∪{v}

δtuv = 1 ∀v ∈ V, t ∈ T (3.33)

xtv ∈ {0, 1} ∀v ∈ V, t ∈ T ∪ {0} (3.34)

ztuv ∈ {0, 1} ∀(u, v) ∈ E, t ∈ T (3.35)

δtuv ∈ {0, 1} ∀(u, v) ∈ E, t ∈ T (3.36)

Notice that variables ztuv are essentially the same as ytuv. In fact, it suffices to add variables ytvv
and constraints ytvv ≤ xt to model TS in order to obtain (3.1)–(3.7) from (3.22)–(3.25), (3.28),

(3.29), (3.32), (3.34), (3.35). In addition, model UP contains (3.26), (3.27), (3.30), (3.31), (3.33)

and the 0-1 variables δtuv, that can actually be relaxed to δtuv ≥ 0 (see [5]). Thus model UP

has more variables and constraints than model TS. Moreover, preliminary computational results,

show that some of the additional constraints, (3.27) and (3.31), are, in general, not tight for the

linear relaxation solution of UP.

4 Strengthening model TS

Here we discuss two approaches to strengthen the model TS. The first approach consists in

replacing inequalities (3.3) and (3.4) by the following stronger inequalities

t∑
`=1

∑
w∈N(u)

y`uw ≤ xt−1u u ∈ V, t ∈ T (4.1)

t∑
`=1

∑
u∈N(v)∩N(w)

y`uv ≤ xt−1w ∀v, w ∈ V, v 6= w, t ∈ T (4.2)

Inequalities (4.1) imply (3.3) and state that if node u forced a neighbor w at a time-step ` between

1 to t, then u must be colored at time-step t − 1 (since it must have been colored at time-step

8

t = 0

1

2

3

4

5

6

7

8

9

10

t = 1

1

2

3

4

5

6

7

8

9

10

t = 2

1

2

3

4

5

6

7

8

9

10

t = 3

1

2

3

4

5

6

7

8

9

10

t = 4

1

2

3

4

5

6

7

8

9

10

t = 5

1

2

3

4

5

6

7

8

9

10

t = 6

1

2

3

4

5

6

7

8

9

10

Figure 2: Example of the forced v−path for every vertex v of the graph of Figure 1 corresponding

to the sequence of applications of the color changed rule illustrated in Figure 1.

`− 1). Inequalities (4.2) imply (3.4) and establish that if node v is forced at a given time-step `

between 1 and t by a neighbor of node w, then node w must be colored at time-step t− 1.

Inequalities (4.1) and (4.2) are obviously valid for the feasible set of model TS.

Notice that by eliminating variables xtv, as we did before to derive model PTS, inequalities

(4.1) and (4.2) can be written in the space of variables sv and ytuv and added to the projected

model (3.16)-(3.21).

Note that for a path graph with n = 4, the strengthened model TS has linear relaxation value

equal to 1.

The second approach to reinforce model TS is obtained adding multi-commodity flow con-

straints. This model will be denoted by TS+MCF.

Let C be a forcing set and consider a sequence of applications of the color change rule

that colored all vertices. The sequence can be described as a set of n (k + 1)-paths Pv =

(v0, v1, . . . , vk = v) that describes the applications of the rule that forced each vertex v. In path

Pv, vt−1 = vt if vt−1 did not forced vt at time-step t; otherwise vt−1 is the vertex that forced vt

at time-step t. Thus, if v ∈ C, the (k + 1)-path Pv = (v, v, . . . , v). Note that, for each sequence,

path Pv is unique. We call Pv the forced v-path. Figure 2 shows, for every vertex v of the graph

of Figure 1, the forced v-path corresponding to the sequence of applications of the color changed

rule that is illustrated in Figure 1.

In this model we use the variables of model TS, and in addition the following (multi-

commodity flow) 0-1 variables:

f tuw(v) indicates if u = vt−1 and w = vt in forced v-path (f tuw(v) = 1) or not (f tuw(v) = 0).

9

The TS+MCF model consists of (3.1)-(3.7), and∑
u∈V

fkuv(v) = 1 ∀v ∈ V (4.3)∑
w∈V

f twu(v) =
∑
w∈V

f t+1
uw (v) ∀u, v ∈ V, t ∈ T \ {k} (4.4)∑

u,w∈V
f1uw(v) = 1 ∀v ∈ V (4.5)

f tuw(v) ≤ ytuw ∀v ∈ V, (u,w) ∈ E, t ∈ T (4.6)

f t+1
uu (v) ≤ xtu ∀u, v ∈ V, t ∈ T \ {k} (4.7)

f tuw(v) ∈ {0, 1} ∀u,w, v ∈ V, t ∈ T (4.8)

Constraints (4.3)-(4.5) define the set of forced v-paths, for every vertex v. More precisely,

equations (4.3) and (4.5) state, for each vertex v, that, at time-step 0, there will be one unit of

flow sent to v and, at time-step k, one unit of flow entering v. The flow conservation constraints

(4.4) guarantee that the flow directed to vertex v that enters each vertex equals the flow leaving

that vertex. Inequalities (4.6) and (4.7) relate forced v-paths with the color change rule, stating

that if u and w are vertices in positions t and t + 1 of the v-path, then (i) if u 6= w, u forced w

at time-step t; and (ii) if u = w, u has been forced at some time-step less than or equal to t.

5 A sequential search algorithm

Preliminary computational tests have shown that the linear relaxation value of the models

presented in Section 3 give very poor lower bounds. To improve lower bounds we consider

searching zero forcing sets of fixed cardinalities, tacking into account the following proposition

that uses the fact that if C is a zero forcing set, then C∪{j} is a zero forcing set, for all j ∈ V \C.

Proposition 5.1. If there is a forcing set with cardinality κ, then there exist forcing sets with

cardinality κ+ 1, · · · , k.

Using Proposition 5.1 we propose the following procedure to find minimum zero forcing sets.

Algorithm 1 Sequential search algorithm:

1: initialize f = n;

2: repeat

3: f ← f − 1;

4: add the constraint
∑

v∈V x
0
v = f (or

∑
v∈V s

0
v = f) to the model;

5: solve the model using a solver until either a feasible solution is found or the problem if

proven to be unfeasible;

6: until an unfeasible model is found.

7: the zero forcing number is Z(G) = f + 1.

Proposition 5.1 ensures that if there is no feasible set with cardinality κ, then there is no

feasible set with cardinality 1, . . . , κ− 1.

A search for the minimum cardinality zero forcing set using bisection on the cardinality of the

zero forcing set would require to solve (O(log2(k)) MILPs instead of the O(k) MILPs in the case

10

of sequential search. However, computational tests (see Section 6) show that the running time

to prove that there is no zero forcing with a given cardinality is greater than the running time

to find a feasible solution for each cardinality such that a zero forcing set exists, that is, most of

the running time of the sequential algorithm is spent on the last iteration. Thus, by following

the sequential Algorithm 1, we ensure that the unfeasible problem is solved only once.

We found that Algorithm 1 did not improve models BFH and TS+MCF. However, for the

largest graphs of our computational tests, model TS improved with Algorithm 1. To explore this

further, we consider a refinement of Algorithm 1 to overcome some difficulties inherent to the

minimum forcing set problem, that we now discuss.

The problem embodies some “symmetry” as can be seen from the example given in Figure 1.

For instance, in Figure 1 (a) vertex 4 can force vertex 5 and vertex 7 can force vertex 6. The

color change can occur simultaneously or in sequence. Additionally, as the zero forcing set has

cardinality 3 (greater than 1), there is a slack in the number of time-steps necessary to color all

the vertices. Hence, for each solution, it is possible to derive another solution by pushing forward

or pushing back in time the color change. In the example, it is possible to derive solutions where

in the first two time-steps there is no color change. In order to circumvent these difficulties we

consider the following objective function that prioritizes solutions where the color change occurs

as soon as possible:

min
∑

(u,v)∈E

∑
t∈T

t ytuv. (5.1)

The size of the time-step formulation TS depends on the number of time-steps required to perform

all the color changes. If the zero forcing set has cardinality κ, then at most k = n−κ time-steps are

required to color all the graph vertices. In the original formulation we set the maximum number of

time-steps to k = n−1, since all zero forcing sets have cardinality of at least one. The knowledge

of the cardinality of the zero forcing set, as it is the case in each step of Algorithm 1, permits to

eliminate many variables and constraints, thus reducing the size of the problem substantially. In

particular, by considering a fixed cardinality of κ vertices, the following variables are eliminated:

ytuv, with (u, v) ∈ E, t ∈ T |t > n− κ (which would be equal to 0) (5.2)

xtu, with u ∈ V, t ∈ T |t > n− κ (which would be equal to 1) (5.3)

f tuw(v), with v ∈ V, (u,w) ∈ E, t ∈ T |t > n− κ

(which would be equal to 0) (5.4)

To take advantage of this we propose to upgrade Algorithm 1 adding the two following steps:

Algorithm 2 Refined sequential search algorithm (Algorithm 1 with these two additional steps):

0: replace the objective function by (5.1);

4’: eliminate variables (5.2)-(5.4).

We call this refined algorithm the RefinedAlgorithm 1.

It is worthy of notice that Algorithm 1 can act as a heuristic if we restrict the running time

in Step 5. In this case the algorithm may be applied to large size instances and returns an upper

bound and the corresponding forcing set.

11

6 Computational results

This section reports the computational experiments performed to compare the performance

of the models BFH, TS and TS+MCF and of the two-level exact algorithm.

All tests were run on a computer with an Intel(R) Core(TM) i7-4750HQ processor, having

a 2.00GHz CPU and 8GB of RAM, using the solver Xpress-Optimizer 28.01.04 with the default

options.

Three sets of instances were used with a number of vertices n taking the values 10, 20, 30: the

set of the “cubic” graphs, the set of the “Watts-Strogatz” graphs and the set of the “generated”

graphs. The two sets “cubic” graphs and “Watts-Strogatz” graphs are borrowed from [8] and were

obtained from https : //github.com/calebfast/zeroforcing. The “cubic” graphs have a number

of edges m equal to 3n/2. The “Watts-Strogatz” graphs are grouped in two subsets: WS-03,

having a number of edges m equal to 2n and WS-05, having a number of edges m equal to

5n. The third set of graphs, the set of the “generated” graphs, were randomly generated having

density of 0.25 (we obtained instances with an average of m = 11 edges for n = 10, average of

m = 44.6 edges for n = 20 and an average of m = 107.6 for n = 30), having density of 0.5 (we

obtained instances with an average of m = 20 edges for n = 10, an average of m = 92.8 edges

for n = 20 and an average of m = 218.4 for n = 30) and having density of 0.75 (we obtained

instances with an average of m = 32.6 edges for n = 10, an average of m = 141.8 edges for n = 20

and an average of m = 328.2 for n = 30).

In this paper several variants of model TS were discussed and two approaches to tighten the

TS model were introduced. A full detailed report of the comparison between all the possible

combinations would be too extensive. So, we opt to report only the comparison between models

BFH, TS and TS+MCF. Preliminary tests have allowed us to draw a few conclusions: (i) solving

the model TS with inequalities (3.3) and (3.4) replaced by (4.1) and (4.2) do not bring apparent

improvement; (ii) adding (4.1) and (4.2) is in general worse than solving the model TS; (iii)

further including valid inequalities such as a generated set of forts did not prove evidence of

improvement, and therefore we do not include forts; (iv) solving model UP is slower than solving

model TS, and the running times become comparable when inequalities (3.27) and (3.31) are

removed from model UP; (v) although two variants of TS have theoretical advantages in relation

to TS, namely, the one where variables ytuv are relaxed, and the TS+MCF model, the tests have

not been conclusive, that is, for some instances solving such variants was faster and for others was

slower. Thus, in the computational tests reported here model TS refers to formulation (3.1)-(3.7).

Tables 1, 2, 3 and 4 display the obtained computational results. The Table 1 shows compu-

tational execution elapsed times for each model. In Table 2 are displayed the computational

results of Algorithm 1 when applied to the models BFH, TS and TS+MCF. The computational

results of the RefinedAlgorithm 1 using model TS are displayed in Tables 3 and 4.

In Tables 1 and 2, the first column named “Set” shows the graph set for which the results are

shown in the corresponding lines. The second column named “n” gives the number of vertices and

column named “m” indicates the number of edges of the graph. Columns named “BFH”, “TS”

and “TS+MCF” in Table 1 indicate the computational times to solve the instance using models

BFH, TS and TS+MCF, respectively. Columns named “BFH”, “TS” and “TS+MCF” in Table 2

indicate the computational times to solve the instance with Algorithm 1 using models BFH, TS

and TS+MCF, respectively. The values in bold In both tables show the best performance for

12

each instance.

A maximum time limit of 3600 seconds is imposed. The symbol “T” indicates that the

maximum time limit is reached without completing the search for a solution.

In Tables 3 and 4 computational execution times of the RefinedAlgorithm 1 using model

TS are discriminated as follows. The column named “time 1” shows the computational time to

obtain zero forcing sets for all cardinalities for which feasible solutions exist. The column named

“time 2” reports the computational time spent in the last problem to prove infeasibility. The

column named “total time” gives the total computational time used by the RefinedAlgorithm 1

it is the sum of the values in columns “time 1” and “time 2”. In Table 1 observe that it is

possible to solve, with each of the three models, the problem for instances with a few number

of edges, that is a optimal solution is found for all the instances with n = 10, and n = 20 and

with a number of edges lower than 50. For the instances with a higher number of edges (in our

instances, when the number of edges is higher than 100) all the models get difficulties to find the

optimal solution.

In Table 2 observe that using the Algorithm 1 some of the instances with a number of edges

greater than 100 are solved, however there are many of these instances for which this algorithm

is unable to obtain a solution within a reasonable amount of time. The computational results

suggest that better computational times are obtained when using model TS. The computational

times for Algorithm 1 with the three models were statistically compared using the non-parametric

ANOVA Friedman test with the post-hoc Nemenyi’s all-pairs comparisons tests, implemented in

the functions friedmanTest and frdAllPairsNemenyiTest, respectively, from package PMCMRplus

(T. Pohlert, 2018) of R Statistical Software (R Core Team, 2018) [18]. The Friedman test

concluded that the methods performed significantly differently (p-value = 1.046e-07). The post-

hoc Nemenyi’s test showed that TS was the method with lower computational times (p-values

=1.4e-05 and 7.9e-07, when TS is compared with BFH and TS+MCF, respectively).

Tables 3 and 4 report the discriminated computational execution times for the RefinedAlgo-

rithm 1 using model TS. Table 3 refers to the same instances of Tables 1 and 2. The Friedman

test applied to the computational times of Tables 1, 2 and 3 clearly indicates that the seven

approaches performed distinctly (p-value < 2.2e-16), and the post-hoc Nemenyi’s test showed

that the RefinedAlgorithm 1 using model TS had the best performance (p-values ≤ 0.0006 when

compared with each of the other six approaches). Table 4 indicates the computational times of

the RefinedAlgorithm 1 using model TS on larger graphs.

Regarding Tables 3 and 4, observe that for the instances with a number of edges lower than

50 when comparing the time values “time 1” and “time 2” the lowest value is “time 2” that

corresponds to the time spent in the last problem that is unfeasible. For the instances with a

number of edges greater than 100 when comparing the time values “time 1” and “time 2” the

lowest value is “time 1” that corresponds to the computational time to solve all the feasible

problems. For these instances the huge amount of computational execution time is due to the

time that the solver uses to prove the infeasibility of the last problem. The major part of the

total computational time reported in the last column is spent proving the infeasibility of the last

problem. Computational execution times reported in column “time 1” correspond to solving an

average of 2n/3 models, each until a feasible solution is found, using an average of 28.2 seconds

and ranging from 0.1 seconds to 631.825 seconds. A value for “time 1” is obtained for all the

13

instances. A value for “time 2” could not be obtained for all the instances within a time limit of

3600 seconds. For the values displayed in column “time 2”, the computational time spent in the

last model uses an average of 150.6 seconds and ranges from 0.003 to 1939.482 seconds. However,

for half of the instances with number of vertices n = 30 the time spent in the last model reaches

the time limit and the symbol “T” is shown in column “time 2”.

Computational results not reported here for instances with n = 100 and m = 150 used a

computational time of 5000 seconds to solve 81 models indicating that this algorithm can be

used as a heuristic to obtain very good upper bounds to the zero forcing number.

Table 1: Computational execution times (in seconds) for the models.

Set n m BFH TS TS+MCF

cubic graphs

10 15

0.116 0.401 1.967

0.163 0.384 3.021

1.010 0.448 2.284

0.200 0.363 4.048

0.232 0.369 2.075

20 30

70.274 344.178 758.987

17.477 266.576 1697.307

944.579 1004.301 T

98.090 594.904 42.816

96.586 364.227 2476.605

Watts-Strogatz graphs

10 20

0.332 0.555 2.990

0.402 0.447 2.181

0.532 0.549 2.665

5.691 0.731 3.691

0.940 0.724 3.168

20 40

2318.259 521.564 65.707

702.867 567.773 87.335

1783.857 488.780 73.368

1557.586 1819.668 2709.792

1269.475 708.378 78.058

20 100

T T T

T T T

T T T

T T T

T T T

generated graphs density=0.25

10

8 0.064 0.032 0.815

11 0.069 0.216 1.499

14 0.084 0.332 1.592

14 0.115 0.238 1.632

8 0.084 0.115 0.782

20

44 810.418 33.549 107.745

43 542.256 561.824 83.026

46 810.076 1961.876 105.096

47 749.080 20.308 97.363

43 159.710 674.272 2591.311

generated graphs density=0.5

10

20 0.635 0.664 2.544

20 0.449 0.504 2.908

20 1.131 0.586 3.026

19 0.121 0.337 2.100

21 1.736 0.517 2.489

20

94 T T T

93 T 84.404 T

94 T 528.662 T

83 T T T

100 T T T

generated graphs density=0.75

10

30 18.914 0.961 5.204

31 8.547 0.602 3.063

31 49.379 1.186 3.662

37 5.893 1.013 3.461

34 4.613 0.958 3.740

20

142 T 2044.048 T

134 T T 3210.809

141 T 1885.940 397.036

143 T 2308.450 668.422

149 T T 2045.434

14

Table 2: Computational execution times (in seconds) for Algorithm 1, using the different models.

Set n m BFH TS TS+MCF

cubic graphs

10 15

0.220 0.648 6.359

0.210 0.430 6.698

0.430 0.503 6.428

0.274 0.793 7.791

0.313 0.237 7.948

20 30

386.692 21.445 343.518

92.450 17.554 459.222

1727.584 37.000 597.148

378.031 27.599 456.772

761.453 28.498 567.149

Watts-Strogatz graphs

10 20

0.635 0.716 3627.761

1.254 0.835 3604.870

1.264 0.671 10.014

1.835 0.750 7.268

1.621 0.566 6.504

20 40

1375.116 86.911 699.838

1953.090 86.949 764.752

2476.575 73.808 666.853

T 106.543 611.255

1398.838 116.693 702.626

20 100

T 2980.339 71.27

T 3231.598 75.163

T 2774.608 220.111

T 1814.136 71.688

T 3310.442 399.616

generated graphs density=0.25

10

8 0.016 0.329 3.669

11 0.084 3600.731 3603.218

14 0.116 0.514 7.025

14 0.153 0.414 4.685

8 0.079 0.411 3.529

20

44 1119.450 98.555 745.827

43 2424.166 132.240 707.126

46 1806.567 119.347 1315.449

47 396.274 109.063 816.265

43 960.793 115.363 916.108

generated graphs density=0.5

10

20 0.385 0.609 3604.679

20 0.361 0.739 9.905

20 0.590 0.679 6.743

19 0.200 0.726 7.424

21 1.039 1.185 8.536

20

94 T 248.068 2137.264

93 T 815.919 2750.737

94 T 378.635 1516.657

83 T 501.256 T

100 T 458.897 T

generated graphs density=0.75

10

30 16.712 1.244 7.586

31 8.009 0.831 5.632

31 44.532 1.110 7.665

37 5.289 1.933 8.909

34 4.338 1.918 11.155

20

142 T 53.237 751.393

134 T 50.742 1811.061

141 T 77.812 1392.712

143 T 86.079 1142.248

149 T 60.608 549.997

15

Table 3: Discrimination of the computational execution times (in seconds) for RefinedAlgorithm 1

using model TS, with the instances of Tables 1 and 2.

Set n m time 1 time 2 total time

cubic graphs

10 15

0.254 0.004 0.258

0.33 0.004 0.334

0.348 0.006 0.354

0.377 0.004 0.381

0.291 0.006 0.297

20 30

3.107 1.466 4.573

3.046 1.011 4.057

3.163 1.464 4.627

3.192 0.301 3.493

3.104 1.322 4.426

Watts-Strogatz graphs

10 20

0.387 0.078 0.465

0.298 0.104 0.402

0.269 0.147 0.416

0.266 0.102 0.368

0.191 0.105 0.296

20 40

4.649 3.713 8.362

4.153 4.048 8.201

4.835 3.626 8.461

4.27 3.307 7.577

4.869 4.183 9.052

20 100

6.334 21.315 27.649

11.717 21.352 33.069

11.145 23.347 34.492

11.37 20.233 31.603

5.939 21.256 27.195

generated graphs density=0.25

10

8 0.1 0.025 0.125

11 0.187 0.003 0.19

14 0.237 0.009 0.246

14 0.203 0.04 0.243

8 0.178 0.049 0.227

20

44 4.968 3.491 8.459

43 4.359 4.292 8.651

46 7.227 6.26 13.487

47 5.005 3.416 8.421

43 4.451 3.714 8.165

generated graphs density=0.5

10

20 0.308 0.005 0.313

20 0.332 0.005 0.337

20 0.231 0.12 0.351

19 0.269 0.043 0.312

21 0.294 0.027 0.321

20

94 9.95 17.399 27.349

93 5.439 27.647 33.086

94 10.956 17.216 28.172

83 6.014 26.194 32.208

100 9.622 16.371 25.993

generated graphs density=0.75

10

30 0.345 0.162 0.507

31 0.425 0.179 0.604

31 0.437 0.232 0.669

37 0.292 0.07 0.362

34 0.392 0.03 0.422

20

142 11.651 35.453 47.104

134 5.555 24.953 30.508

141 6.049 20.027 26.076

143 7.146 15.975 23.121

149 7.273 9.122 16.395

16

Table 4: Discrimination of the computational execution times (in seconds) for RefinedAlgorithm 1

using model TS, for instances with 30 vertices.

Set n m time 1 time 2 total time

cubic graphs 30 45

13.325 83.603 96.928

11.739 94.063 105.802

11.431 150.327 161.758

12.549 103.117 115.666

12.424 115.18 127.604

Watts-Strogatz graphs

30 60

15.731 648.532 664.263

16.853 472.763 489.616

36.588 146.56 183.148

244.787 148.771 393.558

21.669 453.151 474.82

30 150

56.536 T T

55.591 T T

61.029 T T

81.832 T T

43.004 T T

generated graphs density=0.25 30

105 26.593 T T

101 631.823 T T

118 70.867 T T

111 21.929 T T

103 67.483 T T

generated graphs density=0.5 30

214 79.537 T T

223 108.999 T T

230 56.931 T T

200 32.736 T T

225 56.08 T T

generated graphs density=0.75 30

335 72.642 1220.779 1293.421

323 64.78 1936.324 2001.104

333 72.072 1293.738 1365.81

318 67.579 1939.482 2007.061

332 66.84 1367.482 1434.322

7 Conclusions

A new compact model is introduced to find a minimum forcing set of a graph. In relation

to the previous known compact model, this new model has the advantage of avoiding the use

of big-M constraints. An analysis of this model is conducted and its relation to related models

and variants are discussed. The formulation is tightened with valid inequalities and an extended

formulation. Despite the improvements on the model, computational tests revealed that it can

only be used to solve small size instances to optimality. In order to consider large size instances,

a sequential search algorithm is proposed. This algorithm allows to solve to optimality larger size

instances than using a commercial solver based on the compact model. The sequential search

algorithm can be used as a heuristic to provide upper bounds for the zero forcing number.

As future research it would be interesting to compare the upper bounds provided by the search

algorithm used as a heuristic, with the known theoretical upper and lower bounds described in

the literature.

17

Appendix I

For each v ∈ V and t ∈ T the union of Qt
v(u), u ∈ N(v) ∪ {v} can be described by the

following set of constraints.

ztvv = xt−1v δtvv ∀(u, v) ∈ E, t ∈ T (7.1)

ztuv = xt−1w δtuv ∀(u, v) ∈ E,w ∈ N(u) ∪ {u} \ {v}, t ∈ T (7.2)∑
u∈N(v)∪{v}

δtuv = 1 ∀v ∈ V, t ∈ T (7.3)

Constraints (7.1) and (7.2) are nonlinear and can be linearized using additional variables ζtuvw =

xt−1w δtuv. Constrains (7.1) are linearized as follows.

ztvv = ζtvvv ∀(u, v) ∈ E, t ∈ T

ζtvvv ≤ xt−1v ∀(u, v) ∈ E, t ∈ T

ζtvvv ≤ δtvv ∀(u, v) ∈ E, t ∈ T

xt−1v + δtvv ≤ 1 + ζtvvv ∀(u, v) ∈ E, t ∈ T

Similarly, constrains (7.2) are linearized as follows.

ztuv = ζtuvw ∀(u, v) ∈ E,w ∈ N(u) ∪ {u} \ {v}, t ∈ T

ζtuvw ≤ xt−1w ∀(u, v) ∈ E,w ∈ N(u) ∪ {u} \ {v}, t ∈ T

ζtuvw ≤ δtuv ∀(u, v) ∈ E,w ∈ N(u) ∪ {u} \ {v}, t ∈ T

xt−1w + δtuv ≤ 1 + ζtuvw ∀(u, v) ∈ E,w ∈ N(u) ∪ {u} \ {v}, t ∈ T

Projection out variables ζtuvw one obtains the following set of constraints on variables.

ztvv ≤ xt−1v ∀(u, v) ∈ E, t ∈ T

ztvv ≤ δtvv ∀(u, v) ∈ E, t ∈ T

ztvv + xt−1v ≤ 1 + δt−1vv ∀(u, v) ∈ E, t ∈ T

ztuv ≤ xt−1u ∀(u, v) ∈ E, t ∈ T

ztuv ≤ xt−1w ∀(u, v) ∈ E,w ∈ N(u) \ {v}, t ∈ T

ztuv ≤ δtuv ∀(u, v) ∈ E, t ∈ T

ztuv + xt−1w ≤ 1 + δtuv ∀(u, v) ∈ E, t ∈ T

xtv =
∑

u∈N(v)∪{v}

ztuv ∀v ∈ V, t ∈ T

∑
u∈N(v)∪{v}

δtuv = 1 ∀v ∈ V, t ∈ T

ztuv ∈ {0, 1} ∀(u, v) ∈ E, t ∈ T

δtuv ≥ 0 ∀(u, v) ∈ E, t ∈ T

18

Appendix II

Lemma 7.1. Given 0 ≤ ai ≤ 1, i = 0, . . . , k and 0 ≤ bi ≤ 1, i = 1, . . . , k such that
∑i

j=1 bj ≤∑i−1
j=0 aj , i = 1, . . . , k,

∑k
j=0 ai = 1, and

∑k
j=1 bj ≤ 1, then

k∑
i=1

iai +
k∑

i=1

(k + 1− i)bi ≤ k.

Proof. First we show by induction that

k∑
i=1

(i− 1)(ai−1 − bi) ≤ k
k∑

i=1

(ai−1 − bi) (7.4)

The inequality holds trivially for k = 1. Suppose it hold for k − 1, thus

k∑
i=1

(i− 1)(ai−1 − bi) =
k−1∑
i=1

(i− 1)(ai−1 − bi) + (k − 1)(ak−1 − bk)

≤ (k − 1)

k−1∑
i=1

(ai−1 − bi) + (k − 1)(ak−1 − bk) = (k − 1)

k∑
i=1

(ai−1 − bi) ≤ k
k∑

i=1

(ai−1 − bi)

where the first inequality follows from the induction hypothesis. Then,

k∑
i=0

iai +
k∑

i=1

(k + 1− i)bi

=
k∑

i=1

(i− 1)bi +
k∑

i=1

(i− 1)(ai−1 − bi) + kak +
n∑

i=1

(k + 1− i)bi

≤
k∑

i=1

(i− 1)bi + k

k∑
i=1

(ai−1 − bi) + kak +

k∑
i=1

(k + 1− i)bi

≤
k∑

i=1

(i− 1)bi + k(1−
k∑

i=1

bi) +

k∑
i=1

(k + 1− i)bi = k

where the inequality follows from (7.4) and the second inequality follows from the assumption∑n
j=1 ai = 1.

Acknowledgements

We are grateful to Prof. Domingos Cardoso, from University of Aveiro, for discussions, and

to Prof. Maria Joao Martins, from ISA-CEF University of Lisbon, for support on the statistical

analysis of the computational results. This research was partially supported by the Fundação para

a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through projects

UID/MAT/04106/2019 (A. Agra and C. Requejo) and UID/MAT/00297/2019 (J.O. Cerdeira).

19

References

[1] A. Aazami. Hardness Results and Approximation Algorithms for Some Problems on Graphs.

Ph.D. thesis, University of Waterloo, 2008.

[2] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.

M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson,

S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander

Meulen, A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear Algebra

and its Applications, 428: 1628–1648, 2008.

[3] D. Amos, Y. Caro, R. Davila, R. Pepper. Upper bounds on the k-forcing number of a graph.

Discrete Appl. Math. 181, 1–10, 2015.

[4] D. Bal, P. Bennett, S. English, C. MacRury, P. Pra lat. Zero Forcing Number of Random

Regular Graphs. arXiv:1812.06477v1, 16 Dec 2018.

[5] E. Balas. Disjunctive Programming: properties of the convex hull of feasible points. Discrete

Appl. Math., 89, 3–44, 1998.

[6] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche,

H. van der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of a

graph. J. Graph Theory, 72, 146–177, 2013.

[7] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche, H.

van der Holst. Zero forcing parameters and minimum rank problems. Linear Algebra and

its Applications, 433: 401–411, 2010.

[8] B. Brimkov, C. C. Fast, I. V. Hicks. Computational Approaches for Zero Forcing and Related

Problems. European Journal of Operational Research, 273: 889–903, 2019.

[9] D. Burgarth and V. Giovannetti. Full control by locally induced relaxation. Physical Review

Letters, 99, 100501, 2007.

[10] D. Burgarth, V. Giovanetti, L. Hogben, S. Severini, M. Young. Logic circuits from zero

forcing. Natural Computing, 14, 485–490, 2015.

[11] C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange, D.D. Row. Vertex and edge spread of

the zero forcing number, maximum nullity, and minimum rank of a graph. Linear Algebra

Appl. 436, 4352–4372, 2012.

[12] S. Fallat, K. Meagher, and B. Yang. On the complexity of the positive semidefinite zero

forcing number. Linear Algbera Appl., 491, 101–122, 2016.

[13] FICO. Xpress Optimization Suite, July 2015.

[14] M. Gentner, D. Rautenbach. Some bounds on the zero forcing number of a graph. Discrete

Appl. Math. 236, 203–213, 2018.

[15] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young. Propagation time for

zero forcing on a graph. Discrete Appl. Math. 160, 1994–2005, 2012.

20

[16] T. Kalinowski, N. Kamcev, B. Sudakov. Zero forcing number of graphs. SIAM J. of Discrete

Math. 33, 95–115, 2019.

[17] G.L. Nemhauser, and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley &

Sons, 1988.

[18] R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, 2018 https://www.R-project.org.

[19] D.D. Row. A technique for computing the zero forcing number of a graph with a cut-vertex.

Linear Algebra Appl. 436, 4423–4432, 2012.

21

	Introduction
	Related integer programming approaches
	A compact time-step formulation
	Relation between models TS and BFH
	Relation between model TS and other time-step based models

	Strengthening model TS
	A sequential search algorithm
	Computational results
	Conclusions

