
Scientific Annals of Computer Science vol. 29 (2), 2019, pp. 141–184

doi: 10.7561/SACS.2019.2.141

Generalising KAT to Verify

Weighted Computations

Leandro Gomes1, Alexandre Madeira2, Luis S. Barbosa3

Abstract

Kleene algebra with tests (KAT) was introduced as an algebraic
structure to model and reason about classic imperative programs, i.e.
sequences of discrete transitions guarded by Boolean tests. This paper
introduces two generalisations of this structure able to express programs
as weighted transitions and tests with outcomes in non necessarily
bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a
variant where tests are also idempotent (I-GKAT). In this context, and
in analogy to Kozen’s encoding of Propositional Hoare Logic (PHL) in
KAT we discuss the encoding of a graded PHL in I-GKAT and of its
while-free fragment in GKAT. Moreover, to establish semantics for these
structures four new algebras are defined: FSET (T), FREL(K,T)
and FLANG(K,T) over complete residuated lattices K and T , and
M(n,A) over a GKAT or I-GKAT A. As a final exercise, the paper
discusses some program equivalence proofs in a graded context.

Keywords: Kleene algebra, Hoare logic, graded tests, fuzzy relations

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License

1HASLab INESC TEC, Universidade do Minho, R. da Universidade, 4710-057 Braga,
Portugal, Email: leandro.r.gomes@inesctec.pt

2CIDMA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro,
Portugal, Email: madeira@ua.pt

3Universidade do Minho, R. da Universidade, 4710-057 Braga, Portugal & Quantum
Software Engineering Group, INL, Email: lsb@di.uminho.pt

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

142 L. Gomes, A. Madeira, L.S. Barbosa

1 Introduction

1.1 Roadmap

Kleene algebra is pervasive in Computer Science, applications ranging from
semantics and logics of programs, to automata and formal language theory, as
well as to the design and analysis of algorithms. Some recent examples deal
with hybrid systems analysis [17], separation logic [5] and non-termination
analysis [9]. As a program calculus, the axiomatisation of Kleene algebra
forms a deductive system to manipulate programs [21]. Its applications
typically deal with conventional, imperative programming constructs, namely
conditionals and loops. Reasoning equationally about them entails the need
for a notion of a test, which leads to the development of Kleene algebra
with tests (KAT) [22] combining the expressiveness of Kleene algebra with
a Boolean subalgebra to formalise tests. An alternative approach extends
a Kleene algebra with both a domain and a codomain operation mapping
transitions to propositions [8]. Contrary to KAT, the resulting structure is a
one-sorted algebra. D. Kozen [21] proved that plain Kleene algebra is closed
under the formation of square matrices, later extending this result to Kleene
algebra with tests by considering a test a Boolean diagonal matrix.

Hoare logic (HL) was the first formal system proposed for verification
of programs. Introduced in 1969, its wide influence made it a cornerstone
in program correctness. HL encompasses a syntax to reason about partial
correctness assertions of the form {b}p{c}, called a Hoare triple, and a
deductive system to reason about them [16], [12]. In a Hoare triple, b and c
stand for predicates, representing the pre and post conditions, respectively,
and p is a program statement. Propositional Hoare logic (PHL) is a fragment
of HL, in which Hoare triples are reduced to static assertions about the
underlying domain of computation [23], and therefore encoded in a Kleene
algebra with tests. The translation maps Hoare triples to equations and the
rules of inference into equational implications.

As originally presented, KAT is suitable to reason about classic impera-
tive programs. In fact, such programs are particularly “well tractable”: they
represent a sequence of discrete steps, each of one can be modelled as an
atomic transition in a standard automaton. Typically, these assertions have
an outcome in a bivalent truth space. However, current complex, dynamic
systems require new computing domains, namely probabilistic [30] or contin-
uous [27], which entail the need for computing paradigms able to deal with
some sort of weighted program executions. Actually, assertions about these

Generalising KAT to Verify Weighted Computations 143

programs have often a graded outcome.

In this context, the development of algebraic structures to model
weighted computations becomes a must. Such computations, often as-
sociated with notions of uncertainty, can be mathematically conceptualised
in terms of the well established fuzzy set theory. Although a fuzzy set was
initially defined as a mapping from a set X to the unit interval [0, 1] [37], it
later evolved into a more generic concept, by replacing such an interval by
an arbitrary complete distributive lattice L [13]. The later work constitutes
a cornerstone in the study of algebraic formalisations of fuzzy concepts. M.
Winter [34, 35, 36] follows this route through a categorical perspective. The
work of J. Desharnais et al. [8] continued along distinct paths: one [11]
proposes a new axiomatisation for domain and codomain operators, leading
to algebras of domain elements of which Boolean and Heyting algebras
are special cases; another [7] investigates notions of domain and codomain
operators to provide applications in fuzzy relations and matrices, by using
an idempotent left semiring as the base algebraic structure.

This paper builds on such motivations to introduce two generalisations
of KAT able to express programs as weighted computations and tests as
predicates evaluated in a graded truth space - the graded Kleene algebra with
tests (GKAT) and the idempotent graded Kleene algebra with tests (I-GKAT).
GKAT has several interesting instances, from the continuous Lukasiewicz
lattice to the discrete finite hoops. I-GKAT, on the other hand, is able to
encode, with the exception of the assignment rule, the deductive system of
PHL. In analogy to KAT [23], we discuss how to encode PHL into GKAT,
therefore extending the classical scope of program correctness. However, this
can only be entirely achieved for the fragment of while-free programs. To
obtain a complete encoding of Hoare logic, there was a need to refine the
basic structure. Thus, I-GKAT emerged as a subclass of GKAT, with, of
course a smaller set of instances. This includes, in particular, lattice 3 to
deal with partial programs and uncertainty on tests, and Gödel algebra, a
well-known structure used in logics whose truth values are closed subsets of
the interval [0, 1].

Extending KAT to the domain of weighted computation is the main
motivation of this work. The paper extends some preliminary results docu-
mented in our previous work [14] in distinct directions. First, we propose
three algebraic constructions that represent models for both GKAT and
I-GKAT: the set of all fuzzy sets, the set of all fuzzy relations and the set
of all fuzzy languages, provided with the appropriate operators over the

144 L. Gomes, A. Madeira, L.S. Barbosa

elements for each case. Note that in modelling uncertainty fuzzy logic plays
a very important role. It is known that the standard algebraic model for
classic, bivalent logic, is a Boolean algebra, with a clear connection to the
classic set theory. Similarly, as stated in [26], reasoning with uncertainty, as
captured by fuzzy logic, is tied to fuzzy set theory.

At a latter stage, we prove that both GKAT and I-GKAT enjoy a
matricial construction similar to D. Kozen’s classical result [21]. This is
indeed relevant as many problems modelled as labelled transition systems
can be formulated as matrices over a Klenee algebra or a similar structure.
Constructions are parametric on the concrete underlying lattice, as defined
by R. Guillherme [15] for the case of fuzzy sets, relations and languages.
Finally, we revisit in the weighted context some examples of equational
proofs from the KAT seminal paper [22]. In particular, we show how to
handle, in such a scenario, the result of denesting two nested while loops.

The remainder of the paper is organised as follows: Subsection 1.2
recapitulates some fundamental concepts. Section 2 introduces graded Kleene
algebra with tests as a generalisation of KAT, detailing its axiomatisation,
a few examples and proofs of basic properties. It also presents a partial
encoding of classical PHL in GKAT. Section 3 introduces idempotent graded
Kleene algebra with tests as another generalisation of the standard KAT
and a refinement of GKAT, offering a complete encoding of PHL. Section 4
presents fuzzy sets, fuzzy relations, fuzzy languages and n×n matrices, with
the appropriate operations, as models of GKAT and I-GKAT. Section 5
discusses some equational proofs for program equivalence in a graded scenario.
Finally, Section 6 sums up related research, concludes, and enumerates some
topics for future work.

1.2 Preliminaries

Definition 1 A Kleene algebra with tests (KAT) is a tuple

(K,T,+, ; ,∗ ,̄ , 0, 1)

where T ⊆ K, 0 and 1 are constants in T , + and ; are binary operators in
both K and T , ∗ is a unary operator in K, and ¯ is a unary operator defined
only on T such that:

• (K,+, ; ,∗ , 0, 1) is a Kleene algebra;

• (T,+, ; ,̄ , 0, 1) is a Boolean algebra;

Generalising KAT to Verify Weighted Computations 145

• (T,+, ; , 0, 1) is a subalgebra of (K,+, ; , 0, 1).

The elements of K, denoted by lower case letters p, q, r, s, x, y, z, stand for
programs and the elements of T , denoted by a, b, c, d are called tests. Note
also that operators + and ; correspond to the Boolean algebra operations of
disjunction and conjunction, respectively. Kleene algebra with tests induces
an abstract programming language, where conditionals and while loops
programming constructs are encoded as follows:

if b then p
def
= b; p+ b̄

if b then p else q
def
= b; p+ b̄; q

while b do p
def
= (b; p)∗; b̄

The encoding of Propositional Hoare Logic (PHL) in KAT leads to an
equational calculus to reason about Hoare triples. Recall that one such triple
{b}p{c} is valid if whenever precondition b is met, the postcondition c is
guaranteed to hold, upon the successful termination of program p. Classically,
validity in PHL is established through the set of rules in Figure 1.

• Composition rule:

{b}p{c} {c}q{d}
{b}p; q{d}

• Conditional rule:

{b ∧ c}p{d}, {¬b ∧ c}q{d}
{c} if b then p else q {d}

• While rule:

{b ∧ c}p{c}
{c} while b do p{¬b ∧ c}

• Weakening and Strengthening rule:

b′ → b, {b}p{c}, c→ c′

{b′} p{c′}

Figure 1: Hoare Logic Rules.

146 L. Gomes, A. Madeira, L.S. Barbosa

A Hoare triple {b}p{c} is encoded in KAT as b; p; c̄ = 0, which is
equivalent to b; p = b; p; c. The first equation means, intuitively, that
the execution of p with precondition b and postcondition c̄ does not halt.
Equation b; p = b; p; c, on the other hand, states that the verification of the
post condition c after the execution of b; p is redundant. PHL inference rules
are encoded in KAT, as follows:

• Composition:

b; p = b; p; c ∧ c; q = c; q; d⇒ b; p; q = b; p; q; d

• Conditional :

b; c; p = b; c; p; d ∧ b̄; c; q = b̄; c; q; d⇒ c; (b; p+ b̄; q) = c; (b; p+ b̄; q); d

• While:

b; c; p = b; c; p; c⇒ c; (b; p)∗; b̄ = c; (b; p)∗; b̄; b̄; c

• Weakening and Strengthening :

b′ ≤ b ∧ b; p = b; p; c ∧ c ≤ c′ ⇒ b′; p = b′; p; c′

where ≤ refers to the partial order on K defined as p ≤ q iff p+ q = q.

2 Graded Kleene Algebra with Tests

2.1 The Basic Structure

The approach proposed in this paper, to reason about program executions in
a weighted, i.e. many-valued context, is based on redefining the interpretation
of the assertions about programs. Since such assertions take the form of
tests, we start by modifying the part of the axiomatisation of KAT that
deals with properties of tests, i.e. the Boolean algebra (T,+, ·,̄ , 0, 1).

Instead of having a Boolean outcome, as in KAT, tests are graded,
taking values from a truth space with more than two possible outcomes.
As a consequence, the expression b; p represents a weighted execution of
program p, guarded by the value of test b. This leads to the following
generalisation of KAT:

Generalising KAT to Verify Weighted Computations 147

Definition 2 A graded Kleene algebra with tests (GKAT) is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants in T , + and ;
are binary operations in both K and T , ∗ is a unary operator in K, and → is
an operator only defined in T , satisfying the axioms in Figure 2. Relation ≤
is induced by + in the usual way: p ≤ q iff p+ q = q.

Again, programs are elements of K denoted by lower case letters p,
q, r, s, x, y, z and tests are elements of T denoted by a, b, c, d. Observe
that a Kleene algebra is recovered by restricting the definition of GKAT
to (K,T,+, ; ,∗ , 0, 1), axiomatised by (1)-(10). Note also that (T,+, ; , 0, 1)
is a subalgebra of (K,+, ; , 0, 1). Differently from what happens in KAT,
negation ā, for a ∈ T , is not explicitly denoted, although it can be derived
as a→ 0.

p+ (q + r) = (p+ q) + r (1)

p+ q = q + p (2)

p; (q; r) = (p; q); r (3)

p; 1 = 1; p = p (4)

p; (q + r) = (p; q) + (p; r) (5)

(p+ q); r = (p; r) + (q; r) (6)

p; 0 = 0; p = 0 (7)

1 + p; p∗ = p∗ (8)

q + p; r ≤ r ⇒ p∗; q ≤ r (9)

q + r; p ≤ r ⇒ q; p∗ ≤ r (10)

a; b ≤ c ⇔ b ≤ a→ c (11)

a ≤ 1 (12)

a; b = b; a (13)

Figure 2: Axiomatisation of graded Kleene algebra with tests.

Note that a Kleene algebra is usually characterised by three more equations:

p+ p = p (14)

p+ 0 = p (15)

1 + p∗; p = p∗ (16)

We resort to these equations to prove some results of this paper. However,
as can be easily verified, they can be derived from the axiomatisation of
Figure 2.

Operators “+” and “;” in GKAT play a different role when acting
on programs or tests. The former stands for non-deterministic choice over

148 L. Gomes, A. Madeira, L.S. Barbosa

programs, and a form of logical disjunction on tests. The latter is taken
as sequential composition of actions when applied to elements of K, and
as a ”multiplication” of tests when applied to elements of T . Finally, in
the domain of programs, the constants 0 and 1 interpret the halt and skip
commands, while when applied to tests, stand for logical constants false and
true, respectively. Some operations are specific to only tests or programs.
For instance, operation ∗ stands for iterative execution of programs and
operation → plays the role of logical implication over tests.

A main particularity of the GKAT axiomatization concerns rules (12)
and (13), which form a weakened version of the axiomatization of a Boolean
algebra. It is also relevant to note that axiom 11, which allows to reason
about operator →, is particular to GKAT. GKAT generalises KAT in the
following sense:

Lemma 1 Any KAT is a GKAT.

Proof: For a fixed KAT

A = (K,T,+, ; ,∗ ,̄ , 0, 1)

define
M = (K,T,+, ; ,∗ ,→, 0, 1)

inheriting the operators +, ;, ∗ and constants 0 and 1 from A. Let a→ b :=
ā+ b, for a, b ∈ T .

The crucial part of the proof verifies that axiom (11) holds for M , for
all a, b, c ∈ T . To see that, assume a; b ≤ c. Then,

a; b ≤ c
⇔ { ; is the conjunction of tests}

a ∧ b ≤ c
⇔ { commutativity of ∧}

b ∧ a ≤ c
⇔ { test shunting}

b ≤ ā+ c

⇔ { definition of →}
b ≤ a→ c

We have just shown that axiom (11) holds for any a, b, c ∈ T in M .
Since axioms (1)-(10), (12), (13) are axioms of A, M is indeed a GKAT. 2

Generalising KAT to Verify Weighted Computations 149

Example 1 (2 - the Boolean lattice). Our first example is the well-known
binary structure

2 = ({>,⊥}, {>,⊥},∨,∧,∗ ,→,⊥,>)

with the standard interpretation of Boolean connectives. Operator ∗ maps
each element of {>,⊥} to > and → corresponds to logical implication.

Example 2 A second example is provided by the three-element linear lattice,
which introduces an explicit denotation u for “unknown” (or “undefined”).

3 = ({>, u,⊥}, {>, u,⊥},∨,∧,∗ ,→,⊥,>)

where

∨ ⊥ u >
⊥ ⊥ u >
u u u >
> > > >

∧ ⊥ u >
⊥ ⊥ ⊥ ⊥
u ⊥ u u
> ⊥ u >

→ ⊥ u >
⊥ > > >
u ⊥ > >
> ⊥ u >

∗

⊥ >
u >
> >

Example 3 For a fixed, finite set A, another instance of GKAT is

2A = (P (A), P (A),∪,∩,∗ ,→, ∅, A)

where P (A) denotes the powerset of A, ∪ and ∩ are set union and intersection,
respectively, ∗ maps each set X ∈ P (A) into A, and X → Y = XC ∪ Y ,
where XC = {x ∈ A | x /∈ X}.

Example 4 Another example is based on the well-known Lukasiewicz arith-
metic lattice.

 L = ([0, 1], [0, 1],max,�,∗ ,→, 0, 1)

where x → y = min{1, 1− x+ y}, x� y = max{0, x+ y − 1} and ∗ maps
each point of the interval [0, 1] to 1.

Example 5 As another example, consider the standard Π-algebra

Π = ([0, 1], [0, 1],max, .,∗ ,→, 0, 1)

150 L. Gomes, A. Madeira, L.S. Barbosa

where . is the usual multiplication of real numbers,

x→ y =

{
1, if x ≤ y
y/x, if y < x

/ is real division and ∗ maps each point of the interval [0, 1] to 1.

Example 6 A Gödel algebra is also an instance of GKAT. Actually,

G = ([0, 1], [0, 1],max,min,∗ ,→, 0, 1)

where

x→ y =

{
1, if x ≤ y
y, if y < x

and ∗ maps each point of the interval [0, 1] to 1.

Example 7 Let us consider now a GKAT endowing the finite Wajsberg hoop
with a star operator [3]. For a fixed natural k and a generator a, one gets

Wk = (Wk,Wk,+, ; ,
∗ ,→, 0, 1)

where Wk = {a0, a1, ..., ak−1}, 1 = a0 and 0 = ak−1. Moreover, for any
m,n ≤ k − 1, am + an = amin{m,n}, am; an = amin{m+n,k−1}, (am)∗ = a0 and
am → an = amax{n−m,0}.

Example 8 The (min,+) Kleene algebra [19], known as the tropical semir-
ing, can be extended to a GKAT by adding residuation →. First, let R+

denote the set {x ∈ R | x ≥ 0} and adjoin ∞ as a new constant. Thus, define

R = (R+ ∪ {∞}, R+ ∪ {∞},min,+,∗ ,→,∞, 0)

where, for any x, y ∈ R+ ∪ {∞}, x∗ = 0 and x→ y = max{y − x, 0}.

Example 1 represents the algebraic semantics of classical two-valued
logic, while Example 3 operates over sets. To reason in discrete multi-
valued logics, examples 2 and 7 are pertinent. For the purpose of this work,
i.e. for reasoning about graded computations and assertions in a multi-
valued truth space, Examples 4, 5 and 6 are particularly relevant, since they
correspond to well-known models for fuzzy and multi-valued logics. Note

Generalising KAT to Verify Weighted Computations 151

that in all examples considered, T = K, that is, the set of tests and the set
of programs coincide.

As stated above, while tests in KAT have a binary outcome, such is
not necessarily the case in GKAT in which tests are graded. This entails
the need to weaken the Boolean subalgebra (T,+, ; ,∗ ,̄ , 0, 1,) of KAT. In
any GKAT, for any test a ∈ T , a; (a → 0) = 0 which follows immediately
from definition of ≤ and axiom (11). However, it is not necessarily true that
a+ (a→ 0) = 1. Let us illustrate this in the following example.

Example 9 Consider the GKAT

({0, n,m, 1}, {0,m, 1},+, ; ,∗ ,→ 0, 1)

in which the operation ∗ maps all points to the top element 1, and the
remaining operations are defined as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 0 0 m
1 0 n m 1

→ 0 n m 1
0 1 0 1 1
n 0 0 0 0
m m 0 1 1
1 0 0 m 1

Clearly, a = m entails m+ (m→ 0) = m+m = m 6= 1. It is therefore safe
to state that GKAT has embedded a weakened Boolean subalgebra and,
consequently, tests can assume a wider range of values, representing the
truth degree of the statement “b holds”. Consequently, the expression b; p
means that the execution of a program p is guarded by that particular truth
(graded) value.

2.2 Graded Propositional Hoare Logic

Kleene algebra with tests provides a framework to reason about imperative
programs in a (quasi) equational way. Actually, its classical presentation [23]
aimed at the reduction of PHL to ordinary equations and quasi-equations,
as mentioned in the introduction. In particular, the inference rules of Hoare
logic are derived as theorems in KAT.

152 L. Gomes, A. Madeira, L.S. Barbosa

Similarly, let us explore a possible encoding of propositional Hoare
logic into GKAT. Since this new structure deals with graded tests, both the
meaning of Hoare triples and the inference rules need to be adjusted. This
reinterpretation leads to a generalised version we shall refer to as graded
propositional Hoare logic (GPHL).

In the presence of graded tests, the interpretation of a triple {b}p{c},
and hence, the correctness of a program, relies on the idea that whenever
b; p executes with truth degree b, if and when it halts, it is guaranteed
that (b; p); c holds with at least the same degree of truth. By other words,
correctness of a program can only grow with execution. Therefore, the
encoding in GKAT is captured by the following inequality:

b; p ≤ b; p; c

Moreover, the equivalence

b; p ≤ b; p; c⇔ b; p = b; p; c, (17)

also holds in GKAT, following directly from (5), (12) and (4). Note, however,
that the equivalence

b; p = b; p; c⇔ b; p ≤ p; c
does not hold in GKAT.

The inference rules of Hoare logic are encoded in GKAT, as follows.

Theorem 1 The following implications are theorems in GKAT.

1. Composition rule:

b; p ≤ b; p; c ∧ c; q ≤ c; q; d ⇒ b; p; q = b; p; q; d

2. Conditional rule:

b; c; p ≤ b; c; p; d ∧ (b→ 0); c; q ≤ (b→ 0); c; q; d ⇒
c; (b; p+ (b→ 0); q) ≤ c; (b; p+ (b→ 0); q); d

3. Weakening and Strengthening rule:

b′ ≤ b ∧ b; p ≤ b; p; c ∧ c ≤ c′ ⇒ b′; p ≤ b′; p; c′

Generalising KAT to Verify Weighted Computations 153

Proof:

1. Composition rule: Let us assume that b; p ≤ b; p; c and c; q ≤ c; q; d.
By (17), these inequalities are equivalent to b; p = b; p; c and c; q =
c; q; d, respectively. So, we have

b; p; q

= { b; p = b; p; c}
b; p; c; q

= { c; q = c; q; d}
b; p; c; q; d

= { b; p = b; p; c}
b; p; q; d

2. Conditional rule: Assume b; c; p ≤ b; c; p; d and (b → 0); c; q ≤ (b →
0); c; q; d. First of all, observe that, for any p, q, r, s ∈ K

p ≤ q ∧ r ≤ s⇒ p+ r ≤ q + s (18)

To prove this, assume that p ≤ q and r ≤ s, i.e. p+q = q and r+s = s.
Then, by (1) and (2), (p+ r) + (q + s) = (p+ q) + (r + s) = q + s. So,
by (18),

b; c; p+ (b→ 0); c; q ≤ b; c; p; d+ (b→ 0); c; q; d.

⇔ { (13), (5) and (6)}
c; (b; p+ (b→ 0); q) ≤ c; (b; p+ (b→ 0); q); d

3. Weakening and Strengthening rule: Finally, observe that, for all
b, c ∈ T and p ∈ K,

b; p ≤ b; p; c⇒ b; p; (c→ 0) ≤ 0 (19)

Using (17) to rewrite (19) as

b; p = b; p; c⇒ b; p; (c→ 0) = 0 (20)

and, assuming b; p = b; p; c, we have

b; p; (c→ 0)

= { b; p = b; p; c assumption}
b; p; c; (c→ 0)

= { a; (a→ 0) = 0) and (7)}
0

154 L. Gomes, A. Madeira, L.S. Barbosa

Using (20), the Weakening and Strengthening rule can be rewritten as

a ≤ b ∧ b; p; (c→ 0) = 0 ∧ (d→ 0) ≤ (c→ 0)⇒ a; p; (d→ 0) = 0

which follows from the monotonicity of “;”. 2

The attentive reader certainly noticed the absence of an encoding of the
While rule in the graded setting. In analogy with what was done before,
such a rule would take the form:

b; c; p ≤ b; c; p; c⇒ c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); (b→ 0); c (21)

However, this is not necessarily true for all p ∈ K and b, c ∈ T . To see this,
consider the GKAT structure of Example 9. If b = 0, c = m, p = 0, by (7)
and (15), the instantiation of b; c; p ≤ b; c; p; c boils down to

0;m; 0 + 0;m; 0;m = 0;m; 0;m⇔ 0 = 0

and that of c; (b; p)∗; (b → 0) ≤ c; (b; p)∗; (b → 0); (b → 0); c becomes,
by (7), (4) and (15),

m; (0)∗; 1 +m; (0)∗; 1; 1;m = m; (0)∗; 1; 1;m⇔ m = 0

Using these two equations, the equational implication which could represent
the While rule (21), boils down to 0 = 0 ⇒ m = 0, which is obviously
false. The next section addresses this problem, by proposing an alternative
algebraic structure able to accommodate a complete encoding of Hoare logic.

3 Idempotent Graded Kleene Algebra with Tests

3.1 The Basic Structure

By carefully observing the encoding of the PHL while rule in KAT, it
becomes apparent that one cause of failure of an analogous encoding in
GKAT, mentioned in the previous section, is the impossibility of duplicating
graded tests. Actually, in GKAT, b; b = b does not hold, but only b; b ≤ b
instead. The solution proposed here is to refine the GKAT structure with
some additional properties such that, i) it allows for a complete encoding of
Hoare logic and, at the same time, ii) captures non-classical examples, with
some degrees of uncertainty in program execution and evaluation of tests.
The idea is to resort to a stronger algebra to model the tests, instead of the
Boolean algebra implicitly used in KAT.

Generalising KAT to Verify Weighted Computations 155

Definition 3 An idempotent graded Kleene algebra with tests (I-GKAT)
is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants in T , + and ;
are binary operations in both K and T , ∗ is a unary operator in K, and →
is an operator only defined in T , satisfying the axioms in Figure 2 plus the
axiom below:

a; a = a (22)

Note that, as in GKAT, negation is not explicitly denoted, but can be
derived as a→ 0.

The following result establishes I-GKAT as a strict subclass of GKAT,
as well as another generalisation of KAT. Examples 1, 2, 3 and 6 are instances
of I-GKAT. Figure 3 sums up our results.

GKAT
<latexit sha1_base64="/hV+cltN3mfaHdsZcSeoFezzpXE=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsz4QJcVFwpuKvQF7VAyaaYNTTJjkimUod/hxoUibv0Yd/6NaTsLbT0QOJxzL/fkBDFn2rjut5NbWV1b38hvFra2d3b3ivsHDR0litA6iXikWgHWlDNJ64YZTluxolgEnDaD4e3Ub46o0iySNTOOqS9wX7KQEWys5HcENgMl0ruHm9qkWyy5ZXcGtEy8jJQgQ7Vb/Or0IpIIKg3hWOu258bGT7EyjHA6KXQSTWNMhrhP25ZKLKj201noCTqxSg+FkbJPGjRTf2+kWGg9FoGdnIbUi95U/M9rJya89lMm48RQSeaHwoQjE6FpA6jHFCWGjy3BRDGbFZEBVpgY21PBluAtfnmZNM7K3nn58vGiVHGzOvJwBMdwCh5cQQXuoQp1IPAEz/AKb87IeXHenY/5aM7Jdg7hD5zPH6IBkfU=</latexit>

⇧
<latexit sha1_base64="1v5P7xGNW7M1ELDdBw5ZDuSZuJk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoseCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00GvwfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buoXt1fVuq1PI4inMApnIMH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAckY2k</latexit>

R
<latexit sha1_base64="qlP3JbTUv9089zEAbfhIN1RvNiA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsz4QJdFNy6r2Ae2pWTSO21oJjMkGaEM/Qs3LhRx69+482/MtLPQ6oHA4Zx7ybnHjwXXxnW/nMLS8srqWnG9tLG5tb1T3t1r6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98nfmtR1SaR/LeTGLshXQoecAZNVZ66IbUjPwgvZv2yxW36s5A/hIvJxXIUe+XP7uDiCUhSsME1brjubHppVQZzgROS91EY0zZmA6xY6mkIepeOks8JUdWGZAgUvZJQ2bqz42UhlpPQt9OZgn1opeJ/3mdxASXvZTLODEo2fyjIBHERCQ7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7iyX9J86TqnVbPb88qtau8jiIcwCEcgwcXUIMbqEMDGEh4ghd4dbTz7Lw57/PRgpPv7MMvOB/fxb+Q/Q==</latexit>

Wk, k 6= 2
<latexit sha1_base64="FC0jiynaKGT6QCFv3T24tEwCxQA=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgQkpSFV0W3LisYB/QhDKZ3rRDJ5M4MxFKKPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOUHCmdKO820tLa+srq2XNsqbW9s7u/befkvFqaTQpDGPZScgCjgT0NRMc+gkEkgUcGgHo5vcbz+CVCwW93qcgB+RgWAho0QbqWcfehHRwyDM2pPe6AyPPAEPuNazK07VmQIvErcgFVSg0bO/vH5M0wiEppwo1XWdRPsZkZpRDpOylypICB2RAXQNFSQC5WfT+BN8YpQ+DmNpntB4qv7eyEik1DgKzGQeVs17ufif1011eO1nTCSpBkFnh8KUYx3jvAvcZxKo5mNDCJXMZMV0SCSh2jRWNiW4819eJK1a1T2vXt5dVOpOUUcJHaFjdIpcdIXq6BY1UBNRlKFn9IrerCfrxXq3PmajS1axc4D+wPr8AVFQlQI=</latexit>

 L
<latexit sha1_base64="nPZyUfN9XHn/gr+ENXiO5TELovA=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx48RDEPSJYwO5lNhszOLjO9QljyB148KOLVP/Lm3zhJ9qDRgoaiqpvuriCRwqDrfjmFpeWV1bXiemljc2t7p7y71zRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjK6nfuuRayNi9YDjhPsRHSgRCkbRSvfd21654lbdGchf4uWkAjnqvfJntx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9ml07IkVX6JIy1LYVkpv6cyGhkzDgKbGdEcWgWvan4n9dJMbz0M6GSFLli80VhKgnGZPo26QvNGcqxJZRpYW8lbEg1ZWjDKdkQvMWX/5LmSdU7rZ7fnVVqV3kcRTiAQzgGDy6gBjdQhwYwCOEJXuDVGTnPzpvzPm8tOPnMPvyC8/ENVoyNPQ==</latexit>

I � GKAT
<latexit sha1_base64="O6/eAQLnBR4it9oClErrg8JdNZE=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIbiwzPtBlxYWKmwp9QTuUTJq2oZnMkGSEOvRL3LhQxK2f4s6/MdPOQlsPBA7n3Ms9OX7EmdKO823llpZXVtfy64WNza3tor2z21BhLAmtk5CHsuVjRTkTtK6Z5rQVSYoDn9OmP7pO/eYjlYqFoqbHEfUCPBCszwjWRuraxU6A9VAGyd3xzf1VbdK1S07ZmQItEjcjJchQ7dpfnV5I4oAKTThWqu06kfYSLDUjnE4KnVjRCJMRHtC2oQIHVHnJNPgEHRqlh/qhNE9oNFV/byQ4UGoc+GYyjanmvVT8z2vHun/pJUxEsaaCzA71Y450iNIWUI9JSjQfG4KJZCYrIkMsMdGmq4IpwZ3/8iJpnJTd0/L5w1mp4mR15GEfDuAIXLiACtxCFepAIIZneIU368l6sd6tj9lozsp29uAPrM8fH/2SsA==</latexit>

G
<latexit sha1_base64="yAfyxjIZkSN48AbntpmR2NzlLRs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsz4QJdFF7qsYB/YlpJJM21oJjMkd4Qy9C/cuFDErX/jzr8x085CqwcCh3PuJeceP5bCoOt+OYWl5ZXVteJ6aWNza3unvLvXNFGiGW+wSEa67VPDpVC8gQIlb8ea09CXvOWPrzO/9ci1EZG6x0nMeyEdKhEIRtFKD92Q4sgP0ptpv1xxq+4M5C/xclKBHPV++bM7iFgScoVMUmM6nhtjL6UaBZN8WuomhseUjemQdyxVNOSml84ST8mRVQYkiLR9CslM/bmR0tCYSejbySyhWfQy8T+vk2Bw2UuFihPkis0/ChJJMCLZ+WQgNGcoJ5ZQpoXNStiIasrQllSyJXiLJ/8lzZOqd1o9vzur1K7yOopwAIdwDB5cQA1uoQ4NYKDgCV7g1THOs/PmvM9HC06+sw+/4Hx8A7UIkPI=</latexit>

2
<latexit sha1_base64="ziHmtLnshNG0UOdG2et8JMk+Cio=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZmq6LLoxmUF+8C2lEx6pw3NZIYkI5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWEyrNI/lgJjH2QjqUPOCMGis9dkNqRn6QVqf9UtmtuDOQZeLlpAw56v3SV3cQsSREaZigWnc8Nza9lCrDmcBpsZtojCkb0yF2LJU0RN1LZ4mn5NQqAxJEyj5pyEz9vZHSUOtJ6NvJLKFe9DLxP6+TmOC6l3IZJwYlm38UJIKYiGTnkwFXyIyYWEKZ4jYrYSOqKDO2pKItwVs8eZk0qxXvvHJ5f1Gu3eR1FOAYTuAMPLiCGtxBHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDlR+Q3Q==</latexit>

W2
<latexit sha1_base64="x5salp6LO5laL+WSlV0FNCZMFJ4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0WXRjcsK9gFNKJPppB06mYR5CCX0N9y4UMStP+POv3HSZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+HkLve7T1QqlohHPU1pEOORYBEjWFvJ92Osx2GUdWeDxqBac+vuHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBdk88wydWWWIokTaJzSaq783MhwrNY1DO5lnVMteLv7n9Y2OboKMidRoKsjiUGQ40gnKC0BDJinRfGoJJpLZrIiMscRE25oqtgRv+curpNOoexf1q4fLWvO2qKMMJ3AK5+DBNTThHlrQBgIpPMMrvDnGeXHenY/FaMkpdo7hD5zPH/uykac=</latexit>

P(A)
<latexit sha1_base64="2azsZEL46Nr0yZllX+76vAZCtbM=">AAAB9XicbVC7TsMwFL0pr1JeAUYWiwqpLFXCQzAWWBiLRB9SGyrHdVqrjhPZDqiK+h8sDCDEyr+w8Tc4bQZoOZKlo3Pu1T0+fsyZ0o7zbRWWlldW14rrpY3Nre0de3evqaJEEtogEY9k28eKciZoQzPNaTuWFIc+py1/dJP5rUcqFYvEvR7H1AvxQLCAEayN9NANsR4SzNP6pHJ13LPLTtWZAi0SNydlyFHv2V/dfkSSkApNOFaq4zqx9lIsNSOcTkrdRNEYkxEe0I6hAodUeek09QQdGaWPgkiaJzSaqr83UhwqNQ59M5mlVPNeJv7ndRIdXHopE3GiqSCzQ0HCkY5QVgHqM0mJ5mNDMJHMZEVkiCUm2hRVMiW4819eJM2TqntaPb87K9eu8zqKcACHUAEXLqAGt1CHBhCQ8Ayv8GY9WS/Wu/UxGy1Y+c4+/IH1+QPjrZId</latexit>

KAT
<latexit sha1_base64="1l5JrRPOfoQB6NhbPU2H5tzDcqE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsz4QJdVN4KbCn1BZyiZNG1Dk8yQZIQy9DfcuFDErT/jzr8x085CWw8EDufcyz05YcyZNq777RRWVtfWN4qbpa3tnd298v5BS0eJIrRJIh6pTog15UzSpmGG006sKBYhp+1wfJf57SeqNItkw0xiGgg8lGzACDZW8n2BzUiJ9OGmMe2VK27VnQEtEy8nFchR75W//H5EEkGlIRxr3fXc2AQpVoYRTqclP9E0xmSMh7RrqcSC6iCdZZ6iE6v00SBS9kmDZurvjRQLrScitJNZRr3oZeJ/Xjcxg+sgZTJODJVkfmiQcGQilBWA+kxRYvjEEkwUs1kRGWGFibE1lWwJ3uKXl0nrrOqdVy8fLyq127yOIhzBMZyCB1dQg3uoQxMIxPAMr/DmJM6L8+58zEcLTr5zCH/gfP4AElmRtg==</latexit>

Figure 3: Examples of KAT, GKAT and I-GKAT.

Lemma 2 Any KAT is a I-GKAT, which in turn is also a GKAT.

Proof: It suffices to show that axiom (11) holds for all a, b, c ∈ T . The
proof is similar to that of Lemma 1. 2

156 L. Gomes, A. Madeira, L.S. Barbosa

I-GKAT provides a setting to discuss the behaviour of programs guarded
by tests in an uncertain execution. For instance, in Example 2, if b = u,
expression u; p means that one cannot be sure whether program p can be
executed or not.

3.2 Propositional Hoare Logic in I-GKAT

Let us now discuss how to encode propositional Hoare logic in I-GKAT.
Differently from what happens in GKAT, the three encodings proposed
by D. Kozen for Hoare logic are equivalent in I-GKAT:

b; p = b; p; c⇔ b; p ≤ b; p; c⇔ b; p ≤ p; c

Hence, the inference rules of Hoare logic can be encoded in I-GKAT as they
are in classical propositional Hoare logic.

Theorem 2 The following implication is a theorem in I-GKAT.

b; c; p ≤ b; c; p; c ⇒ c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); (b→ 0); c

Proof: Assume, by (13),

b; c; p ≤ b; c; p; c⇔ c; b; p ≤ c; b; p; c (23)

Let us start by proving

c+ c; (b; p)∗; c; b; p

≤ { by (23)}
c+ c; (b; p)∗; c; b; p; c

≤ { by (22) and (4)}
c; 1; c+ c; (b; p)∗; c; b; p; c

≤ { by distributivity}
c; (1 + (b; p)∗; c; b; p); c

≤ { by monotonicity}
c; (1 + (b; p)∗; b; p); c

≤ { by (16)}
c; (b; p)∗; c

Generalising KAT to Verify Weighted Computations 157

But

c+ c; (b; p)∗; c; b; p ≤ c; (b; p)∗; c

⇒ { (10)}
c; (b; p)∗ ≤ c; (b; p)∗; c

⇒ { monotonicity of ;}
c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; c; (b→ 0)

⇔ { (13)}
c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); c

⇔ { (22)}
c; (b; p)∗; (b→ 0) ≤ c; (b; p)∗; (b→ 0); (b→ 0); c

2

4 Illustration: Fuzzy Sets, Fuzzy Relations, Fuzzy
Languages and Matrices as GKAT/I-GKAT

4.1 Preliminaries

This section illustrates both GKAT and I-GKAT constructions by discussing
how they can be developed over fuzzy sets, fuzzy relations, fuzzy languages
and matrices.

Definition 4 Given a set X and a complete residuated lattice W over
carrier W , a fuzzy subset of X is a function ϕ : X →W ; ϕ(x) defines the
membership degree of x in ϕ.

Definition 5 Let X1, X2, . . . , Xn be sets. A fuzzy relation µ between X1,
X2,. . .,Xn is a fuzzy subset of the Cartesian product X1 ×X2 × · · · ×Xn.

For each x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn, µ(x1, x2, . . . , xn) can be
interpreted as the truth value of how elements x1, x2, . . . , xn are related
by µ. Therefore, as fuzzy sets model collections of objects, fuzzy relations
model relationships between objects up to some membership degree. For
the purpose of this work, we consider only binary fuzzy relations. So, every
time we mention the term fuzzy relation, we are referring to fuzzy subsets of
the Cartesian product X1 ×X2.

158 L. Gomes, A. Madeira, L.S. Barbosa

Definition 6 Let Σ be an alphabet, W the carrier of a complete residuated
lattice W, and consider Σ∗ the set of words over Σ. A fuzzy language over Σ
is a fuzzy subset of Σ∗, that is, a function λ : Σ∗ →W .

Note that all the above concepts are defined over a complete residuated
lattice. One one hand, a complete lattice is needed to guarantee the existence
of suprema for all subsets of W . On the other hand, the residuum → is
used in the context of this work to define a generalised negation for the
values of W .

4.2 Building GKAT and I-GKAT Structures

Consider two complete residuated lattices K and T over, respectively, car-
riers K and T . Fuzzy sets, fuzzy relations and fuzzy languages may be
presented as functions from their domain to, respectively, K and T . We
denote by + the supremum of K, and operators ; and → satisfying the
axioms (1)-(7) and (11) of Figure 2. We use the same notation for operators
of T satisfying (1)-(7) plus (11)-(13). Since + and ; are associative, we
can generalise them to n-ary operators and use the notation

∑
and

∏
to

represent their iterated versions, respectively. For the specific constructions
presented in this section (as given in Definitions 7, 8 and 9), we assume
both K and T to be complete residuated lattices, ensuring that the following
properties hold:

a; (
∑
i∈I

bi) =
∑
i∈I

(a; bi) (24)

(
∑
i∈I

bi); a =
∑
i∈I

(bi; a) (25)

where I is a (possibly infinite) index set. To formalise these structures as
I-GKAT, we consider ; to be also idempotent, i.e. satisfying (22).

Definition 7 Let X be a set and T a complete residuated lattice over
carrier T . The algebra of fuzzy sets over T is the structure

FSET(T) = (TX , TX ,∪,⊗,∗ ,→,∅, χ)

where TX is the set of all fuzzy sets over X and, for all ϕ,ψ ∈ TX and
x ∈ X, operators are defined pointwise by

Generalising KAT to Verify Weighted Computations 159

(ϕ ∪ ψ)(x) = ϕ(x) + ψ(x)

(ϕ⊗ ψ)(x) = ϕ(x);ψ(x)

(ϕ∗)(x) =
∑
k≥0

ϕk(x)

(ϕ→ ψ)(x) = ϕ(x)→ ψ(x)

∅(x) = 0

χ(x) = 1

with ϕ0(x) = χ(x) and ϕk+1(x) = (ϕk ⊗ ϕ)(x). The values of fuzzy sets,
ϕ(x) and ψ(x), are elements of T , and 0, 1 are, respectively, the least and
greatest elements of T . The partial order ⊆ for fuzzy sets is given by

ϕ ⊆ ψ ⇔ ∀x ∈ X.ϕ(x) ≤ ψ(x), ϕ, ψ ∈ TX

where ≤ is the order of Definition 2.

Note that, in this definition, the two sets of the signature of FSET(T)
coincide, both defined as functions with codomain T .

Relevant research which supports our next contributions can be found
in reference [1]. In the paper, the authors prove that the family of L-fuzzy
sets over a set X is a complete lattice, with relation to the same order of
Definition 7. Our next result extends such a contribution with the proofs of
operations ∗ and →.

Theorem 3 For any complete residuated lattice T satisfying (13), FSET(T)
forms a GKAT. If T satisfies (22), FSET(T) forms a I-GKAT.

Proof: Considering the way that the elements of TX and the operators ∪,⊗
and → are defined, it is straightforward to verify that axioms (1) to (7)
and (11) to (13), plus (22) for I-GKAT, are satisfied. We prove that axioms
dealing with operator ∗

(
(8), (9)

)
hold as well. Axiom (10) can be proved

analogously to (9).

160 L. Gomes, A. Madeira, L.S. Barbosa

Axiom (8):

(χ ∪ (ϕ⊗ ϕ∗))(x)

= { definition of TX}
χ(x) + ϕ(x);ϕ∗(x)

= { definition of ϕ∗(x)}
χ(x) + ϕ(x); (

∑
k≥0 ϕ

k(x))

= { definition of
∑}

χ(x) + ϕ(x); (ϕ0(x) + ϕ1(x) + · · ·)
= { (24)}

χ(x) + ϕ(x);ϕ0(x)

+ϕ(x);ϕ1(x) + · · ·
= { definition of ϕk+1(x)}

χ(x) + ϕ(x) + ϕ2(x) + · · ·
= { definition of

∑}
ϕ∗(x)

Axiom (9)
Let us assume (ϕ ⊗ ψ)(x) ≤ ψ(x), i.e. ϕ(x);ψ(x) ≤ ψ(x), by definition of
the operators on fuzzy sets. Moreover,

(ϕ∗ ⊗ ψ)(x)

= { definitions of ∗ and ⊗}
(
∑

k≥0 ϕ
k(x));ψ(x)

= { definition of
∑}

(ϕ0(x) + ϕ1(x) + · · ·);ψ(x)

= { (25) and (4)}
ψ(x) + ϕ(x);ψ(x) + · · ·

By hypothesis and given that ϕ(x);ϕ(x) ≤ ϕ(x), for all ϕ(x) ∈ T , we
conclude that

ψ(x) + ϕ(x);ψ(x) + · · · ≤ ψ(x) 2

A similar approach can be followed in the case of fuzzy relations. We start
by defining an algebra of such relations over complete residuated lattices K
and T.

Definition 8 Let X be a set, K and T complete residuated lattices (T
satisfies (13)) over, respectively, carriers K and T . The algebra of fuzzy
relations over K and T is defined as

FREL(K,T) = (KX×X , TX×X ,∪, ◦,∗ ,→,∅,∆)

where KX×X is the set of all fuzzy relations over X ×X, the elements of
TX×X are diagonal fuzzy relations, i.e. fuzzy relations σ such that σ(x, y) = 0

Generalising KAT to Verify Weighted Computations 161

whenever x 6= y. Moreover, for all µ, ν ∈ KX×X , σ, η ∈ TX×X , x, y, z ∈ X,
the operators are defined by

(µ ∪ ν)(x, y) = µ(x, y) + ν(x, y)

(µ ◦ ν)(x, y) =
∑
z∈X

µ(x, z); ν(z, y)

(µ∗)(x, y) =
∑
k≥0

µk(x, y)

(σ → η)(x, y) =

{
σ(x, y)→ η(x, y), if x = y

0, otherwise

∅(x, y) = 0

∆(x, y) =

{
1, if x = y

0, otherwise

with µ0(x, y) = ∆(x, y), µk+1(x, y) = (µk ◦ µ)(x, y). The values of fuzzy
relations, µ(x, y) and ν(x, y), are elements of K, the values of σ(x, y) and
η(x, y) are elements of T , and, finally, constants 0, 1 are the least and the
greatest elements of T . Similarly to the previous one, the partial order ⊆ for
fuzzy relations is given by

µ ⊆ ν ⇔ ∀(x, y) ∈ X ×X.µ(x, y) ≤ ν(x, y), µ, ν ∈ KX×X

where ≤ is the order referred in Definition 2.

Theorem 4 Given complete residuated lattices K and T (T satisfies (13)),
FREL(K,T) is a GKAT. If T satisfies (22), then FREL(K,T) is also a
I-GKAT.

Proof: The validity of (1) and (2) follows immediately from the defini-
tions of operators on fuzzy relations. Let µ, ν, ξ ∈ KX×X and x, y, z, w ∈ X.

Axiom (3):

((µ ◦ ν) ◦ ξ)(x, y)

= { definition of ◦}∑
z∈X

(
∑
w∈X

(µ(x,w); ν(w, z)); ξ(z, y)

162 L. Gomes, A. Madeira, L.S. Barbosa

= { definition of
∑

and zi, wi ∈ X, 1 ≤ i ≤ n}
(µ(x,w1); ν(w1, z1) + · · ·+ µ(x,wn); ν(wn, z1)); ξ(z1, y) + · · ·

+(µ(x,w1); ν(w1, zn) + · · ·+ µ(x,wn); ν(wn, zn)); ξ(zn, y)

= { (25) and (3)}
µ(x,w1); (ν(w1, z1); ξ(z1, y)) + · · ·+ µ(x,wn); (ν(wn, z1); ξ(z1, y)) +· · ·

+µ(x,w1); (ν(w1, zn); ξ(zn, y)) + · · ·+ µ(x,wn); (ν(wn, zn); ξ(zn, y))

= { (2) and (24)}
µ(x,w1); (ν(w1, z1); ξ(z1, y) + · · ·+ ν(w1, zn); ξ(zn, y)) + · · ·

+µ(x,wn); (ν(wn, z1); ξ(z1, y) + · · ·+ ν(wn, zn); ξ(zn, y))

= { definition of
∑}∑

w∈X
(µ(x,w); (

∑
z∈X

(ν(w, z); ξ(z, y))))

= { definition of ◦}
(µ ◦ (ν ◦ ξ))(x, y)

Axiom (4):

(µ ◦∆)(x, y)

= { definition of ◦}∑
z∈X µ(x, z); ∆(z, y)

= { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}
µ(x, z1); ∆(z1, y) + · · ·+ µ(x, zn); ∆(zn, y)

= { definition of ∆}
µ(x, z1); 1 + · · ·+ µ(x, zn); 1,

for all ∆(zi, y) = 1, 1 ≤ i ≤ n
= { (4)}

µ(x, z1) + · · ·+ µ(x, zn)

= { definition of µ}
µ(x, y)

Axiom (5):

(µ ◦ (ν ∪ ξ))(x, y)

Generalising KAT to Verify Weighted Computations 163

= { definitions of ◦ and ∪}∑
z∈X

µ(x, z); (ν(z, y) + ξ(z, y))

= { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}
µ(x, z1); (ν(z1, y) + ξ(z1, y)) + · · ·+ µ(x, zn); (ν(zn, y) + ξ(zn, y))

= { (5)}
µ(x, z1); ν(z1, y) + µ(x, z1); ξ(z1, y) + . . .

+µ(x, zn); ν(zn, y) + µ(x, zn); ξ(zn, y)

= { (2)}
µ(x, z1); ν(z1, y) + · · ·+ µ(x, zn); ν(zn, y)

+µ(x, z1); ξ(z1, y) + · · ·+ µ(x, zn); ξ(zn, y)

= { definition of
∑}∑

z∈X
µ(x, z); ν(z, y) +

∑
z∈X

µ(x, z); ν(z, y)

= { definitions of ◦ and ∪ on fuzzy relations}
((µ ◦ ν) ∪ (µ ◦ ξ))(x, y)

Axioms (6) to (10): The proof of Axiom (6) is analogous. Axiom (7) follows
straightforwardly, since ∅(x, y) = 0 is the absorbent element of ; over K.
Axioms (8)-(10) are proved as in Theorem 3, but, of course, taking the
definition of composition of fuzzy relations, i.e.

(µ ◦ ν)(x, y) =
∑
z∈X

µ(x, z); ν(z, y)

for all µ, ν ∈ KX×X . As in Theorem 3, we only verify axioms (8) and (9).
The validity of (10) is left for the reader, since the arguments used are
essentially the same of (9).

Axiom (8):

(∆ ∪ (µ ◦ µ∗))(x, y)

= { definition of ∪, ◦ and ∗}

164 L. Gomes, A. Madeira, L.S. Barbosa

∆(x, y) +
∑
z∈X

(µ(x, z); (
∑
k≥0

µk(z, y)))

= { definition of µ}

∆(x, y) +
∑
z∈X

(µ(x, z);µ0(z, y) + µ(x, z);µ(z, y) + · · ·)

= { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}

∆(x, y) + µ(x, z1);µ0(z1, y) + µ(x, z1);µ(z1, y) + · · ·
+µ(x, zn);µ0(zn, y) + µ(x, zn);µ(zn, y) + · · ·

= { definition of µk}
∆(x, y) + µ(x, y) + µ(x, y) + · · ·+ µ(x, y) + µ(x, y) + · · ·

= { (2) and (14)}
∆(x, y) + µ(x, y) + µ(x, y) + · · ·

= { definition of µk}
µ∗(x, y)

Axiom (9): We assume the left side of the implication of (9) for elements
of K, i.e.

(µ ◦ ν)(x, y) ≤ ν(x, y)⇔
∑
z∈X

µ(x, z); ν(z, y) ≤ ν(x, y)

by definition of ◦ on fuzzy relations.

(µ∗ ◦ ν)(x, y)

= { definitions of ◦ and ∗} (26)∑
z∈X

((∑
k≥0

µk(x, z)
)
; ν(z, y)

)
= { definition of

∑
, (25) and zi ∈ X, 1 ≤ i ≤ n} (27)

µ0(x, z1); ν(z1, y) + µ(x, z1); ν(z1, y) + · · ·
+µ0(x, zn); ν(zn, y) + µ(x, zn); ν(zn, y) + · · ·

(28)

Resorting to (2) and the hypothesis, the terms of (28) are re-organised as
follows. For k = 0

Generalising KAT to Verify Weighted Computations 165

µ0(x, z1); ν(z1, y) + · · ·+ µ0(x, zn); ν(zn, y) ≤ ν(x, y)

and for k = 1

µ(x, z1); ν(z1, y) + · · ·+ µ(x, zn); ν(zn, y) ≤ ν(x, y).

Each term µk(x, zi); ν(zi, y), for k ≥ 2, for each zi, 1 ≤ i ≤ n, becomes

(µ◦· · ·◦µ)(x, zi); ν(zi, y) =
∑

w1∈X

(
· · ·
∑

wk∈X

(
µ(x,wk);µ(wk, wk−1)

)
; · · · ;µ(w1, zi)

)
; ν(zi, y)

Using (25), (3) and the hypothesis, we can simplify the expression and
prove (9). As an example, the term for k = 2, for each zi, 1 ≤ i ≤ k is com-
puted as follows; generalisation to other values for k being straightforward.

µ2(x, zi); ν(zi, y)

= { definition of µi of Definition 8}
(µ ◦ µ)(x, z1); ν(zi, y)

= { definition of ◦}(∑
w∈X

(
µ(x,w);µ(w, zi)

))
; ν(zi, y)

= { definition of
∑

and wi ∈ X, 1 ≤ i ≤ n}(
µ(x,w1);µ(w1, zi) + · · ·+ µ(x,wn);µ(wn, zi)

)
; ν(zi, y)

= { (25) and (3)}
µ(x,w1);

(
µ(w1, zi); ν(zi, y)

)
+ · · ·+ µ(x,wn);

(
µ(wn, zi); ν(zi, y)

)
≤ { µ(x, z); ν(z, y) ≤ ν(z, y) for all x, y, z ∈ X and monotonicity of ; and +}

µ(x,w1); ν(w1, y) + · · ·+ µ(x,wn); ν(wn, y)

= { hypothesis}∑
w∈X µ(x,w); ν(w, y) ≤ ν(x, y)

So, we prove that (28) becomes ν(x, y) + · · ·+ ν(x, y), reduced by (14) to
ν(x, y).

Axiom (11) (“⇒”): Let σ, η, θ ∈ TX×X and assume

(σ ◦ η)(x, y) ≤ θ(x, y)

⇔ { definition of ◦}∑
z∈X σ(x, z); η(z, y) ≤ θ(x, y)

⇔ { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}
σ(x, z1); η(z1, y) + · · ·+ σ(x, zn); η(zn, y) ≤ θ(x, y)

166 L. Gomes, A. Madeira, L.S. Barbosa

Since σ(x, zi), η(zi, y) ∈ TX×X , there is, at most, one 1 ≤ i ≤ n such
that x = zi and zi = y.

So, σ(x, z1); η(z1, y)+· · ·+σ(x, zn); η(zn, y) = σ(x, zi); η(zi, y) ≤ θ(x, y),
for the only 1 ≤ i ≤ n such that x = zi and zi = y. Since σ(x, zi),
η(zi, y) and θ(x, y) ∈ T , by (11) on T , σ(x, zi); η(zi, y) ≤ θ(x, y) implies
η(x, y) ≤ σ(x, y)→ θ(x, y). The proof of (“⇐”) is analogous.

Axiom (12): The proof of (12) is trivial, since σ(x, y) ≤ 1 = ∆(x, y), for all

σ(x, y) ∈ TX×X .

Axiom (13): First observe that

(σ ◦ η)(x, y)

= { definition of ◦}∑
z∈X σ(x, z); η(z, y)

= { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}
σ(x, z1); η(z1, y) + · · ·+ σ(x, zn); η(zn, y),

for all σ(x, zi), η(zi, y) 6= 0, with 1 ≤ i ≤ n
Clearly x = zi = y, using the definition of σ(x, y), for all σ ∈ TX×X . Thus,
the proof follows directly from (13) for elements of T , as shown below.

η(x, z1);σ(z1, y) + · · ·+ η(x, zn);σ(zn, y)

= { definition of
∑}∑

z∈X η(x, z);σ(z, y)

= { definition of ◦}
(η ◦ σ)(x, y)

To prove that FREL(T) is also a I-GKAT, for any complete residuated
lattice T, we need to prove axiom (22).

Axiom (22):

(σ ◦ σ)(x, y)

= { definition of ◦}∑
z∈X σ(x, y);σ(z, y)

= { definition of
∑

and zi ∈ X, 1 ≤ i ≤ n}
σ(x, z1);σ(z1, y) + · · ·+ σ(x, zn);σ(zn, y)

Generalising KAT to Verify Weighted Computations 167

Again, σ(x, y) + σ(x, z1); η(z1, y) + · · · + σ(x, zn); η(zn, y) reduces to
σ(x, zi);σ(zi, y), for the only 1 ≤ i ≤ n such that x = zi = y. But
σ(x, zi);σ(zi, y) = σ(x, y), by (22), since σ(x, zi), σ(zi, y) ∈ T . 2

Definition 9 Let Σ be an alphabet, Σ∗ the set of all words over Σ and K, T
complete residuated lattices (T satisfies (22)). The algebra of fuzzy languages
over K, T is defined as

FLANG(K,T) = (KΣ∗ , TΣ∗ ,∪, ·,∗ ,→,∅, ε)
where KΣ∗ stands for the set of all fuzzy languages over Σ, the elements
of TΣ∗ are languages defined by

ι(a1 . . . an) =

{
a, if a1 . . . an = ε, with ε being the empty word

0, otherwise

where a ∈ T and, for all λ1, λ2 ∈ KΣ∗ and all ι1, ι2 ∈ TΣ∗, given a word
a1 . . . an ∈ Σ∗, the operators ∪, ·, ∗, →, ∅ and ε are defined as:

(λ1 ∪ λ2)(a1 . . . an) = λ1(a1 . . . an) + λ2(a1 . . . an)

(λ1 · λ2)(a1 . . . an) =

n−1∑
i=1

λ1(a1 . . . ai);λ2(ai+1 . . . an)

(λ∗)(a1 . . . an) =
∑
k≥0

λk(a1 . . . an)

(ι1 → ι2)(ai . . . an) =

∏
a1...ai−1

(
ι1(a1 . . . ai−1)→ ι2(a1 . . . an)

)
, i ≤ n,

if a1 . . . ai−1 = ε

0, otherwise

∅(a1 . . . an) = 0

ε(a1 . . . an) =

{
1 if a1 . . . an = ε, with ε being the empty word

0 otherwise

with λ0(a1 . . . an) = ε(a1 . . . an) and λk+1(a1 . . . an) = (λk · λ)(a1 . . . an).
The values of fuzzy sets, λ1(a1 . . . an) and λ2(a1 . . . an), are elements of K,
and 0, 1 are the least and greatest elements of T .The partial order ⊆ for
fuzzy languages is given by

λ1 ⊆ λ2 ⇔ ∀a1 . . . an ∈ Σ∗.λ1(a1 . . . an) ≤ λ2(a1 . . . an), λ1, λ2 ∈ KΣ∗

where ≤ is the order of Definition 2.

168 L. Gomes, A. Madeira, L.S. Barbosa

Theorem 5 Given complete residuated lattices K and T (T satisfies (13)
and (22)), FLANG(K,T) is a I-GKAT.

Proof: Since a fuzzy language λ is a fuzzy subset of a set of elements (in
this case, the alphabet Σ∗) and the operators ∪ and ∗ are defined as ∪ and ∗

in FSET(T), respectively, and · as ◦ in FREL(K,T), the proof is identical
to that of Theorem 3 for operators ∪ and ∗, and to that of Theorem 4 for
the · operator.

It remains to prove axiom (11): Take ι1, ι2, ι3 ∈ TΣ∗ and v ∈ Σ∗.
Consider first the case v 6= ε.

Assuming (ι1 ·ι2)(v) ≤ ι3(v)⇔∑
v1,v2

ι1(v1); ι2(v2) ≤ ι3(v)⇔ ι3(v) = 0
we want to prove that ι2(v) ≤ (ι1 → ι3)(v). But, by definition of ι and →,
ι2(v) ≤ (ι1 → ι3)(v)⇔ 0 ≤ 0.

Consider now v = ε. We want to prove that

(ι1 · ι2)(ε) ≤ ι3(ε)⇔ ι2(ε) ≤ (ι1 → ι3)(ε)

ι2(ε) ≤ (ι1 → ι3)(ε)

⇔ { definition of →}
ι2(ε) ≤∏u(ι1(u)→ ι3(uε))

⇔ { definition of
∏}

ι2(ε) ≤ (ι1(u1)→ ι3(u1ε)); . . . ; (ι1(un−1)→ ι3(un−1ε)); (ι1(ε)→ ι3(εε)),
u1, . . . , un−1 6= ε

⇔ { definition of ι}
ι2(ε) ≤ (0→ 0); . . . ; (0→ 0); (ι1(ε)→ ι3(ε))

⇔ { 0→ 0 = 1 for all integral lattices ([24]) and (4)}
ι2(ε) ≤ ι1(ε)→ ι3(ε)

⇔ { (11)}
ι1(ε); ι2(ε) ≤ ι3(ε)

⇔ { definition of ·}
(ι1 · ι2)(ε) ≤ ι3(ε)

2

Now we present the construction of matrices over a GKAT and I-GKAT.

Generalising KAT to Verify Weighted Computations 169

Definition 10 Let A = (K,T,+, ; ,∗ ,→, 0, 1) be a GKAT (or a I-GKAT).
The algebra consisting of the family M(n,K) of n × n matrices over A is
defined as

M(n,A) = (M(n,K),∆(n, T),+, ; ,∗ ,→, 0n, In)

where + and ; stand for the usual matrix addition and multiplication, respec-
tively; 0n is the n× n matrix of zeros and In the n× n identity matrix. The
subalgebra is the set ∆(n, T) of n× n diagonal matrices, with operators +
and ; and matrices 0n and In defined in the same way. The entries of the
diagonal matrices are elements of the subalgebra (T,+, ; , 0, 1) of GKAT (or
I-GKAT) A. Finally, operation → is defined as:

A→ B =

{
Aij → Bij if i = j

0 otherwise

Theorem 6 M(n,A) is a GKAT and a I-GKAT.

Proof: It was already proved by Kozen [21] that the structure

(M(n,K),+, ; ,∗ , 0n, In)

forms a Kleene algebra. Then, it remains to prove that

(∆(n, T),+, ;→, 0n, In)

is the subalgebra of Definition 2, i. e. satisfies the axioms (11)-(13).

Let A=

a11 0 · · · 0
0 a22 · · · 0
.
0 0 · · · ann

 , B=

b11 0 · · · 0
0 b22 · · · 0
.
0 0 · · · bnn

and C=

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

be elements of ∆(n, T).

For (11) we prove that A;B + C = C ⇒ B +A→ C = A→ C. Using
the definitions of the operators, we obtain

170 L. Gomes, A. Madeira, L.S. Barbosa

a11 0 · · · 0
0 a22 · · · 0
.
0 0 · · · ann

 ;

b11 0 · · · 0
0 b22 · · · 0
.
0 0 · · · bnn

+

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

=

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

which is equivalent to
a11; b11 + c11 0 · · · 0

0 a22; b22 + c22 · · · 0
. .

0 0 · · · ann; b22 + cnn

 =

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

In order for two matrices to be equal, their elements must be equal in the
corresponding positions. So, the assumption is

a11; b11 + c11 = c11

a22; b22 + c22 = c22

· · ·
ann; bnn + cnn = cnn

We have to prove that
b11 0 · · · 0
0 b22 · · · 0
.
0 0 · · · bnn

+

a11 0 · · · 0
0 a22 · · · 0
.
0 0 · · · ann

→

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

=

a11 0 · · · 0
0 a22 · · · 0
.
0 0 · · · ann

→

c11 0 · · · 0
0 c22 · · · 0
.
0 0 · · · cnn

⇔

b11 + a11 → c11 0 · · · 0

0 b22 + a22 → c22 · · · 0
. .

0 0 · · · b22 + a22 → c22

Generalising KAT to Verify Weighted Computations 171

=

a11 → c11 0 · · · 0

0 a22 → c22 · · · 0
. .

0 0 · · · ann → cnn

i. e.

b11 + a11 → c11 = a11 → c11

b22 + a22 → c22 = a22 → c22

· · ·
bnn + ann → cnn = ann → cnn

But, since aij , bij , cij ∈ T for all 1 ≤ i, j ≤ n it is verified by axiom (11) of
GKAT that

a11; b11 + c11 = c11 ⇒ b11 + a11 → c11 = a11 → c11

a22; b22 + c22 = c22 ⇒ b22 + a22 → c22 = a22 → c22

· · ·
ann; bnn + cnn = cnn ⇒ bnn + ann → cnn = ann → cnn

The proof for ⇐ is similar. The proofs of axioms (12) and (13) are
analogous, using the definitions of the operators over elemtents of ∆(n, T).
Note, in particular, the proof of axiom (13). It is well known that the
multiplication of matrices is not commutative. However, since axiom (13)
is only applied to elements of ∆(n, T), that is, diagonal matrices, and the
multiplication of diagonal matrices is commutative, this axiom is valid for
all GKAT.

To prove that this also forms a I-GKAT, it suffices to show the validity
of (22). The proof is similar to the one presented for GKAT, for all A,B,C ∈
∆(n, T), using the definitions of the operators over elements of ∆(n, T). 2

5 A Folk Theorem Adapted to a Graded Scenario

This section illustrates our constructions revisiting a result on denesting two
nested while loops [22], in a scenario where both assertions and computations
are expressed in a weighted context. Most proofs in D. Kozen’s paper [22]
rely on the use of a commutativity condition (b; p = p; b) which asserts that
the execution of program p does not modify the value of test b. In KAT,
it is possible to argue, as well, that if p does not affect b, neither should it
affect b̄, which is formally stated through the following lemma:

172 L. Gomes, A. Madeira, L.S. Barbosa

Lemma 3 In any Kleene algebra with tests the following are equivalent:

(1) b; p = p; b

(2) b̄; p = p; b̄

(3) b; p; b̄+ b̄; p; b = 0

In GKAT, however, negation is relaxed and expressed as a→ 0, for all a ∈ T .
So, the conditions above must be written as

(1) b; p = p; b

(2) (b→ 0); p = p; (b→ 0)

(3) b; p; (b→ 0) + (b→ 0); p; b = 0

However, it is important to note that not all implications hold in GKAT.

Lemma 4 (1)⇔ (2) does not hold in GKAT.

Proof: This can be shown by the following counter example: a GKAT over
the set {0, n,m, 1}, with {0,m, 1} ⊆ T and n ∈ K, in which the operator ∗

maps all points to the top element 1 and the remaining operators are defined
as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 n m m
1 0 n m 1

→ 0 n m 1
0 1 0 1 1
n 0 0 0 0
m 0 0 1 1
1 0 0 m 1

If b = n, p = m, the instantiation of b; p = p; b ⇔ (b → 0); p = p; (b → 0)
becomes

n;m = m;n⇔ (n→ 0);m = m; (n→ 0)

Thus, the expression turns into 0 = n⇔ 0 = 0, which is clearly false. 2

Generalising KAT to Verify Weighted Computations 173

Lemma 5 Implications (1)⇒ (3) and (2)⇒ (3) hold in GKAT.

Proof: Both implications arise by commutativity and the fact that
a; (a→ 0) = 0, for all a ∈ T . 2

Lemma 6 Implication (3)⇒ (1) does not hold in GKAT.

Proof: This can be shown by the following counter example: a GKAT over
the set {0, n,m, 1}, with {0, n, 1} ⊆ T and m ∈ K, in which the operator ∗

maps all points to the top element 1 and the remaining operators are defined
as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 n n
m 0 0 m m
1 0 n m 1

→ 0 n m 1
0 1 1 0 1
n n 1 0 1
m 0 0 0 0
1 0 n 0 1

If b = n, p = m, the instantiation of b; p; (b→ 0) + (b→ 0); p; b = 0⇒ b; p =
p; b becomes 0 = 0⇒ n = 0 which is obviously false. 2

Lemma 7 Implication (3)⇒ (2) does not hold in GKAT.

Proof: Consequence of Lemma 4 and Lemma 5. 2

The intuitive interpretation of these implications is that if p preserves b
(or b → 0), the execution of p between testing b and its complement, no
matter which test is performed first, always halt. A similar result holds for
I-GKAT and is proved along similar lines.

We can therefore argue that this dependency on commutativity con-
ditions becomes a hindrance for proving most of the results on program
equivalence that we intend: it is impossible to handle such proofs in a
(quasi) equational way without considering them. However, the result that
is, perhaps, the most interesting one, of denesting two nested while loops,
does not resort to the commutativity conditions. Let us detail this example.

174 L. Gomes, A. Madeira, L.S. Barbosa

5.1 Nested Loops

The original proof in the above mentioned paper [22] relies on one of De Mor-
gan laws to prove the intended result. More precisely, the proof uses the rule

¬(a ∨ b) ≡ ¬a ∧ ¬b

that can be formalised in our setting as

(a+ b)→ 0 = (a→ 0); (b→ 0) (29)

Since, in general, this rule does not hold in I-GKAT, we have to impose it
in the following characterisation. Note that the rule holds in all instances of
I-GKAT enumerated in the paper, namely 1, 2, 3 and 6.

We are now in conditions to show that a pair of while loops can be
transformed into a single while loop inside a conditional test, as formalised
in the following theorem:

Theorem 7 The program

while b do begin

p;

while c do q (30)

end

is equivalent to

if b then begin

p;

while b+ c do (31)

if c then q else p

end

in I-GKAT extended with (29).

Proof: The proof uses an analogous reasoning of the one presented in [22].
To prove the equivalence, we need the following identities:

p; (q; p)∗ = (p; q)∗; p (32)

p∗; (q; p∗)∗ = (p+ q)∗ (33)

Generalising KAT to Verify Weighted Computations 175

which are derivable from the axioms of Kleene algebra and were proved
in [21].

In order to prove the equivalence (30)⇔(31), let us start by translating
both programs to the language of Kleene algebra. Program (30) becomes

(b; p; (c; q)∗; (c→ 0))∗; (b→ 0), (34)

and (31) becomes4

b; p; ((b+ c); (c; q + (c→ 0); p))∗; ((b+ c)→ 0) + (b→ 0) (35)

Simplifying (34),

(b; p; (c; q)∗; (c→ 0))∗; (b→ 0)

= { (8)}
(1 + b; p; (c; q)∗; (c→ 0); (b; p; (c; q)∗; (c→ 0))∗); (b→ 0)

= { (6)}
(b→ 0) + b; p; (c; q)∗; (c→ 0); (b; p; (c; q)∗; (c→ 0))∗; (b→ 0)

= { (32)}
(b→ 0) + b; p; (c; q)∗; (c→ 0); (b; p; (c; q)∗)∗; (c→ 0); (b→ 0)

For (35), the sub expression (b+ c); (c; q + (c→ 0); p) becomes

(b+ c); (c; q + (c→ 0); p)

= { (5)}
b; c; q + b; (c→ 0); p+ c; c; q + c; (c→ 0); p

= { (22), a; (a→ 0) = 0, (7) and (15)}
b; c; q + b; (c→ 0); p+ c; q

= { (14) and (13)}
b; c; q + c; q + (c→ 0); b; p

= { (6)}
(b+ 1); c; q + (c→ 0); b; p

Moreover, (b + c) → 0 = (b → 0); (c → 0), by (29). Applying these
transformations on (35), we obtain

4As in Kozen’s paper [22], we interpret the program if b then p as an abbreviation for
a conditional test with the dummy else clause i.e., as the program b; p+ b̄ (b; p+ b→ 0 in
our setting).

176 L. Gomes, A. Madeira, L.S. Barbosa

b; p; (c; q + (c→ 0); b; p)∗; (b→ 0); (c→ 0) + (b→ 0)

Now, we need to prove that

(b→ 0) + b; p; (c; q)∗; (c→ 0); (b; p; (c; q)∗)∗; (c→ 0); (b→ 0) =

= b; p; (c; q + (c→ 0); b; p)∗; (b→ 0); (c→ 0) + (b→ 0)

But, by monotonicity of operators + and ;, this expression is equivalent to

(c; q)∗; (c→ 0); (b; p; (c; q)∗)∗ = (c; q + (c→ 0); b; p)∗

which is just an instance of the denesting rule (33). 2

6 Conclusion and Further Work

This paper aimed at generalising Kleene algebra with tests, to reason equa-
tionally about graded computations and assertions about them evaluated in
a multi-valued truth space. The propositional fragment of classic Hoare logic
was revisited in this context. We also presented four algebraic constructions
as models of both generalizations of Kleene algebras introduced in the paper
(GKAT and I-GKAT): the set of all fuzzy sets, the set of all fuzzy relations,
the set of all fuzzy languages and the family of square matrices. Finally,
we discussed (quasi) equational proofs of some classical results on program
equivalence in a weighted context.

A similar roadmap is followed by R. Qiao et al. [30] leading to the
introduction of a complete theory of probabilistic KAT to deal with regular
programs with probabilities. However, instead of focusing on broadening the
possible range of values for tests, or on adding an uncertainty concretisation
to them as an immediate consequence on program execution, the authors
opted to add a new operator +α to the algebraic structure, where α is a
probability. Thus, in their work, a probabilistic Kleene algebra with Tests is
defined as

(K,T,+,+α, ·,∗ , 0, 1,̄)

where expression p+α q represents the probabilistic choice between executing
a program p with probability α or a program q with probability 1 − α.
Other references [6, 25] follow a similar approach introducing probabilities
at the syntactic level, namely through a new choice operator. Our approach,
on the other hand, opted by redefining the notions of test and program

Generalising KAT to Verify Weighted Computations 177

execution. Such approach, which describes the behaviour of the probabilistic
phenomena, always enforces the production of an outcome (as expressed by
the requirement that the outgoing probabilities always sum 1). Such is not
the case in the framework adopted in this paper.

The idempotent variant presented in our work is related with the one
based on Heyting domain semirings [10], obtained by relaxing the test algebra
of Kleene algebras with domain. One difference between this structure and
our approach lies on the construction of the structure itself: while ours is
purely propositional and based on KAT, the one of [10] makes use of a unary
operator, the domain operator, to axiomatise the test algebra, resulting in
a one sorted structure. The relaxation of the test algebra is accomplished
by adding an operator on domain elements satisfying (11), with a negation
defined as p→ 0. It would be pertinent to do a more detailed analysis about
the set of properties that can be derived for each structure. Moreover, the
authors in [10] point for future work a more in depth exploration of possible
applications and directions that the flexibility of the adopted method can
bring. The formalisation and the proof of the soundness of the Hoare logic
deductive system using the structure based on Heyting domain semirings,
by comparing with the our approach, seems also an appropriate discussion
to be made in future work. Additionally, a more recent work [7] investigates
a generalisation of these domain algebras to support fuzzy relations, taken
as functions from pairs of elements to the interval [0, 1]. Different from our
approach, the authors study an axiomatisation of domain and codomain
operators in the setting of idempotent left semirings, which do not require
left distributivity of multiplication over addition and right annihilation
of 0. Note that we started this work by adopting a presentation similar
to KAT when relaxing its Boolean subalgebra to obtain GKAT and I-
GKAT. In order present a clearer comparison between these structures,
either axiomatically and in terms of obtained results, we follow the same
propositional presentation, based on KAT.

The approach taken in this paper, adding a residual as a logical implica-
tion to capture a multi-valued setting, is based on previous work [24], where
an action lattice is adopted as the basic algebraic structure to generate many-
valued dynamic logics. Originally derived from action algebras [20], an action
lattice entails both a generic space of computations, with choice, composition
and iteration, and, supported by residuation, a proper truth space for a
non bivalent interpretation of assertions (as a residuated lattice). V. Pratt
thought about residuation as a pure technicality to obtain a finitely-based

178 L. Gomes, A. Madeira, L.S. Barbosa

equational variety [28]. Subsequently, the work of D. Kozen [20] extended
this notion by adding and axiomatizing a meet operation, in order to recover
the closure under matricial formation typical of Kleene algebra [4].

The attentive reader may wonder why concrete illustrations of the
proposed formalism seem to be lacking. Note, however, that programs are
interpreted here as weighted relations and tests as truth degrees. Hence, as
it happens in propositional Hoare logic derived from standard KAT, there is
no first-order structure to interpret program variables. Consequently, there
is no assignment rule neither for GPHL nor for HPHL, as presented here.
Extending the formalism in this direction, in order to deal with imperative
fuzzy programs is, naturally, in our agenda.

Fuzzy Arden Syntax (FAS) [33] is a fuzzy programming language de-
signed for the medical domain, which extends Arden Syntax (AS) to cater
for vague or uncertain information often arising in clinical situations. Due to
the intuitiveness of its syntax, very close to natural language, AS and FAS
are commonly used as syntax for knowledge base components in medical
decision support systems [32, 2, 31].

Built on the theory of fuzzy sets [37], data types in FAS have been
generalised to represent truth values between the extremes false and true.
Moreover, the operations on these types were generalised accordingly. A
particular consequence that emerges from the nature of these generalisations
concerns the behaviour of conditional statements: while conditions evaluated
in a bivalent truth space entails the execution of only one branch, in FAS
an if − then− else statement may split. In such cases the variables are
duplicated and both branches are executed in parallel, each with an associated
truth degree. The notion of parallelism inherent to these statements leads
us to rethink the behaviour of PHL variants introduced in this work: the
conditional statements encoded in sections 2 and 3 illustrate non deterministic
choice, despite the possible weighted nature of both computations and
conditions. Indeed, the + operator of Kleene algebra, used to encode
the if − then− else statements in both GKAT and I-GKAT could be
interpreted as (fuzzy) set union in all the examples listed.

Conditionals in FAS are an interesting case-study for the development
of an algebraic formalism to specify the behaviour of conditional statements
in fuzzy programming languages. For that an extension of the algebras
presented in this work, with an appropriate operator to formalize parallelism,
is currently being developed by the authors. In this setting, the works on
Concurrent Kleene algebra [18] and Synchronous Kleene algebra [29] are

Generalising KAT to Verify Weighted Computations 179

worth revisiting.

The results reported in Section 5 lead us to discuss further why some
properties fail in GKAT. In particular, why the preservation of the value
of b along a computation p entails the corresponding preservation of b̄ does
not hold in either GKAT or I-GKAT, as it does in KAT. We observed, in
Section 2, that the negation operator must be relaxed in order to support a
non bivalent truth space for assertions. Actually, this has influence on the
validity of the properties in which it is involved. With this modification,
some classical properties are lost. In particular, the law of excluded middle,
necessary to prove the discussed implications, is no longer valid.

In all variants of dynamic logic discussed in the literature, even when
some forms of structured computations are taken into consideration, the
validity of assertions (for example, of Hoare triples annotating a program) is
always stated in classical terms. This means that, even when the object of
reasoning is e.g. a fuzzy program or a quantum system, the validity of an
assertion over it is discussed in classical, two-valued logic.

In this work we assumed, as in classical PHL, that a Hoare triple is valid
if b; p = b; p; c. In GKAT, this expression states that, after the execution
of p guarded by the truth degree of condition b, a state is reached where
the truth degree of the post condition does not modify the value of the
execution. In I-GKAT, for the case considered in example 2, the variation
from the classical case comes when b = u. Thus, the expression b; p can
be interpreted as “not sure if program p can be executed”. Due to the
nature of the expression (an equality relation), this is clearly tied to the
classical, two-valued logic: despite the graded nature of the computations,
their correctness is evaluated in a bivalent truth space.

This limitation motivates an alternative approach currently under inves-
tigation. The intention is to go a step further, resorting to the same algebraic
structure used to specify the computational paradigm, to give semantics to
the logic used to reason about it. This will allow to discuss the validity of an
assertion over a fuzzy or a quantum program in terms of a logic capturing
itself fuzzy or quantum reasoning, respectively.

Acknowledgements

This work is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and International-
isation - COMPETE 2020 Programme and by National Funds through the

180 L. Gomes, A. Madeira, L.S. Barbosa

Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia,
within project POCI-01-0145-FEDER-030947. This paper is also a result
of the project SmartEGOV, NORTE-01-0145-FEDER-000037. The second
author is supported in the scope of the framework contract foreseen in
the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of
August 29, changed by Portuguese Law 57/2017, of July 19, at CIDMA
(Centro de Investigação e Desenvolvimento em Matemática e Aplicações)
UID/MAT/04106/2019.

References

[1] A. Alexandru, G. Ciobanu. Fixed Point Results for Finitely Supported
Algebraic Structures. Fuzzy Sets and Systems, 2019. doi:10.1016/j.
fss.2019.09.014.

[2] V. Anand, A. E. Carroll, P. G. Biondich, T. M. Dugan, S. M. Downs.
Pediatric Decision Support Using Adapted Arden Syntax. Artificial
Intelligence in Medicine 92, 15–23, 2018. doi:10.1016/j.artmed.2015.
09.006.

[3] W. J. Blok, I. Ferreirim. On the Structure of Hoops. Algebra Universalis
43(2–3), 233–257, 2000. doi:10.1007/s000120050156.

[4] J. H. Conway. Regular Algebra and Finite Machines. Dover Publications,
New York, 1971.

[5] H.-H. Dang, P. Höfner, B. Möller. Algebraic Separation Logic. The
Journal of Logic and Algebraic Programming 80(6), 221–247, 2011.
doi:10.1016/j.jlap.2011.04.003.

[6] J. den Hartog, E. P. de Vink. Verifying Probabilistic Programs Using a
Hoare Like Logic. International Journal of Foundations of Computer
Science 13(3), 315–340, 2002. doi:10.1142/S012905410200114X.

[7] J. Desharnais, B. Möller. Fuzzifying Modal Algebra. In P. Höfner,
P. Jipsen, W. Kahl, M. E. Müller (Eds.)Proceedings 14th International
Conference on Relational and Algebraic Methods in Computer Science
(RAMiCS 2014), Lecture Notes in Computer Science 8428, 395–411.
2014. doi:10.1007/978-3-319-06251-8_24.

http://dx.doi.org/10.1016/j.fss.2019.09.014
http://dx.doi.org/10.1016/j.fss.2019.09.014
http://dx.doi.org/10.1016/j.artmed.2015.09.006
http://dx.doi.org/10.1016/j.artmed.2015.09.006
http://dx.doi.org/10.1007/s000120050156
http://dx.doi.org/10.1016/j.jlap.2011.04.003
http://dx.doi.org/10.1142/S012905410200114X
http://dx.doi.org/10.1007/978-3-319-06251-8_24

Generalising KAT to Verify Weighted Computations 181

[8] J. Desharnais, B. Möller, G. Struth. Kleene Algebra with Domain.
ACM Transactions on Computational Logic 7(4), 798–833, 2006. doi:
10.1145/1183278.1183285.

[9] J. Desharnais, B. Möller, G. Struth. Algebraic Notions of Termination.
Logical Methods in Computer Science 7(1:1), 1–29, 2011. doi:10.2168/
LMCS-7(1:1)2011.

[10] J. Desharnais, G. Struth. Modal Semirings Revisited. In P. Aude-
baud, C. Paulin-Mohring (Eds.) Proceedings 9th International Con-
ference on Mathematics of Program Construction (MPC 2008), Lec-
ture Notes in Computer Science 5133, 360–387, 2008. doi:10.1007/

978-3-540-70594-9_19.

[11] J. Desharnais, G. Struth. Internal Axioms for Domain Semirings.
Science of Computer Programming 76(3), 181–203, 2011. doi:10.1016/
j.scico.2010.05.007.

[12] R. W. Floyd. Assigning Meanings to Programs. In T. R. Colburn, J. H.
Fetzer, T. L. Rankin (Eds.) Program Verification. Studies in Cognitive
Systems 14, 65–81, 1993. doi:10.1007/978-94-011-1793-7_4.

[13] J. A. Goguen. L-fuzzy Sets. Journal of Mathematical Analysis and Ap-
plications 18(1), 145–174, 1967. doi:10.1016/0022-247X(67)90189-8.

[14] L. Gomes, A. Madeira, L. S. Barbosa. On Kleene Algebras for
Weighted Computation. In S. Cavalheiro, J. Fiadeiro (Eds.) Proceed-
ings 20th Brazilian Symposium on Formal Methods (SBMF 2017), Lec-
ture Notes in Computer Science 10623, 271–286. 2017. doi:10.1007/

978-3-319-70848-5_17.

[15] R. Guilherme. A Coalgebraic Approach to Fuzzy Automata. Master’s
thesis, Faculdade de Ciências e Tecnologia - Universidade Nova de
Lisboa, Lisboa, 2016.

[16] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10), 576–580, 1969. doi:10.1145/

363235.363259.

[17] P. Höfner, B. Möller. An Algebra of Hybrid Systems. The Journal of
Logic and Algebraic Programming 78(2), 74–97, 2009. doi:10.1016/j.
jlap.2008.08.005.

http://dx.doi.org/10.1145/1183278.1183285
http://dx.doi.org/10.1145/1183278.1183285
http://dx.doi.org/10.2168/LMCS-7(1:1)2011
http://dx.doi.org/10.2168/LMCS-7(1:1)2011
http://dx.doi.org/10.1007/978-3-540-70594-9_19
http://dx.doi.org/10.1007/978-3-540-70594-9_19
http://dx.doi.org/10.1016/j.scico.2010.05.007
http://dx.doi.org/10.1016/j.scico.2010.05.007
http://dx.doi.org/10.1007/978-94-011-1793-7_4
http://doi.org/10.1016/0022-247X(67)90189-8
http://dx.doi.org/10.1007/978-3-319-70848-5_17
http://dx.doi.org/10.1007/978-3-319-70848-5_17
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1016/j.jlap.2008.08.005
http://dx.doi.org/10.1016/j.jlap.2008.08.005

182 L. Gomes, A. Madeira, L.S. Barbosa

[18] P. Jipsen, M. A. Moshier. Concurrent Kleene Algebra with Tests and
Branching Automata. Journal of Logical and Algebraic Methods in
Programming 85(4), 637–652, 2016. doi:10.1016/j.jlamp.2015.12.

005.

[19] D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag
New York, 1992. doi:10.1007/978-1-4612-4400-4.

[20] D. Kozen. On Action Algebras. DAIMI Report Series 21(381), 1992.
doi:10.7146/dpb.v21i381.6613.

[21] D. Kozen. A Completeness Theorem for Kleene Algebras and the
Algebra of Regular Events. Information and Computation 110(2), 366–
390, 1994. doi:10.1006/inco.1994.1037.

[22] D. Kozen. Kleene Algebra with Tests. ACM Transactions on Pro-
gramming Languages and Systems 19(3), 427–443, 1997. doi:10.1145/
256167.256195.

[23] D. Kozen. On Hoare Logic and Kleene Algebra with Tests. ACM
Transactions on Computational Logic (TOCL) 1(1), 60–76, 2000. doi:
10.1145/343369.343378.

[24] A. Madeira, R. Neves, M. A. Martins. An Exercise on the Generation of
Many-Valued Dynamic Logics. Journal of Logical and Algebraic Methods
in Programming 85(5), 1011–1037, 2016. doi:10.1016/j.jlamp.2016.
03.004.

[25] A. K. McIver, E. Cohen, C. C. Morgan. Using Probabilistic Kleene
Algebra for Protocol Verification. In R. A. Schmidt (Ed.) Proceedings 9th
International Conference on Relational Methods in Computer Science
and 4th International Workshop on Applications of Kleene Algebra
(RelMiCS/AKA 2006), Lecture Notes in Computer Science 4136, 296–
310. 2006. doi:10.1007/11828563_20.

[26] V. Novák, I. Perfiljeva, J. Mockor. Mathematical Principles of Fuzzy
Logic. Springer, Boston, MA, 1999. doi:10.1007/978-1-4615-5217-8.

[27] A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for
Complex Dynamics. Springer, Berlin, Heidelberg, 2010. doi:10.1007/
978-3-642-14509-4.

http://dx.doi.org/10.1016/j.jlamp.2015.12.005
http://dx.doi.org/10.1016/j.jlamp.2015.12.005
http://dx.doi.org/10.1007/978-1-4612-4400-4
http://dx.doi.org/10.7146/dpb.v21i381.6613
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1016/j.jlamp.2016.03.004
http://dx.doi.org/10.1016/j.jlamp.2016.03.004
http://dx.doi.org/10.1007/11828563_20
http://dx.doi.org/10.1007/978-1-4615-5217-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4

Generalising KAT to Verify Weighted Computations 183

[28] V. R. Pratt. Action Logic and Pure Induction. In J. van Eijck (Ed.)
Proceedings European Workshop on Logics in Artificial Intelligence
(JELIA 1990), Lecture Notes in Computer Science 478, 97–120. 1990.
doi:10.1007/BFb0018436.

[29] C. Prisacariu. Synchronous Kleene Algebra. The Journal of Logic and
Algebraic Programming 79(7), 608–635, 2010. doi:10.1016/j.jlap.

2010.07.009.

[30] R. Qiao, Y. Wang, X. Gao, J. Wu. Operational semantics of Prob-
abilistic Kleene Algebra with Tests. In Proceedings IEEE Sympo-
sium on Computers and Communications (ISCC 2008), 706–713, 2008.
doi:10.1109/ISCC.2008.4625616.

[31] M. Samwald, K. Fehre, J. de Bruin, K. Adlassnig. The Arden Syntax
Standard for Clinical Decision Support: Experiences and Directions.
Journal of Biomedical Informatics 45(4), 711–718, 2012. doi:10.1016/
j.jbi.2012.02.001.

[32] J. B. Starren, G. Hripcsak, D. Jordan, B. Allen, C. Weissman, P. D.
Clayton. Encoding a Post-Operative Coronary Artery Bypass Surgery
Care Plan in the Arden Syntax. Computers in Biology and Medicine
24(5), 411 – 417, 1994. doi:10.1016/0010-4825(94)90010-8.

[33] T. Vetterlein, H. Mandl, K. Adlassnig. Fuzzy Arden Syntax: A Fuzzy
Programming Language for Medicine. Artificial Intelligence in Medicine
49(1), 1–10, 2010. doi:10.1016/j.artmed.2010.01.003.

[34] M. Winter. An Algebraic Formalisation of L-Fuzzy Relations. In
J. Desharnais (Ed.) Participants Copies of Fifth International Seminar
on Relational Methods in Computer Science (RelMiCS 2000), 233–242,
2000.

[35] M. Winter. A New Algebraic Approach to L-Fuzzy Relations Convenient
to Study Crispness. Information Sciences 139(3-4), 233–252, 2001.
doi:10.1016/S0020-0255(01)00167-0.

[36] M. Winter. Relation Algebraic Approaches to Fuzzy Relations - (Invited
Tutorial). In H. C. M. de Swart (Ed.) Proceedings 12th International
Conference on Relational and Algebraic Methods in Computer Science
(RAMICS 2011), Lecture Notes in Computer Science 6663, 70–73. 2011.
doi:10.1007/978-3-642-21070-9_7.

http://dx.doi.org/10.1007/BFb0018436
http://dx.doi.org/10.1016/j.jlap.2010.07.009
http://dx.doi.org/10.1016/j.jlap.2010.07.009
http://dx.doi.org/10.1109/ISCC.2008.4625616
http://doi.org/10.1016/j.jbi.2012.02.001
http://doi.org/10.1016/j.jbi.2012.02.001
http://doi.org/10.1016/0010-4825(94)90010-8
http://doi.org/10.1016/j.artmed.2010.01.003
http://dx.doi.org/10.1016/S0020-0255(01)00167-0
http://dx.doi.org/10.1007/978-3-642-21070-9_7

184 L. Gomes, A. Madeira, L.S. Barbosa

[37] L.A. Zadeh. Fuzzy Sets. Information and Control 8(3), 338 – 353, 1965.
doi:10.1016/S0019-9958(65)90241-X.

© Scientific Annals of Computer Science 2019

http://dx.doi.org/10.1016/S0019-9958(65)90241-X

	Introduction
	Roadmap
	Preliminaries

	Graded Kleene Algebra with Tests
	The Basic Structure
	Graded Propositional Hoare Logic

	Idempotent Graded Kleene Algebra with Tests
	The Basic Structure
	Propositional Hoare Logic in I-GKAT

	Illustration: Fuzzy Sets, Fuzzy Relations, Fuzzy Languages and Matrices as GKAT/I-GKAT
	Preliminaries
	Building GKAT and I-GKAT Structures

	A Folk Theorem Adapted to a Graded Scenario
	Nested Loops

	Conclusion and Further Work

