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Abstract: We provide easy and readable GNU Octave/MATLAB code for the simulation of
mathematical models described by ordinary differential equations and for the solution of optimal
control problems through Pontryagin’s maximum principle. For that, we consider a normalized
HIV/AIDS transmission dynamics model based on the one proposed in our recent contribution (Silva,
C.J.; Torres, D.F.M. A SICA compartmental model in epidemiology with application to HIV/AIDS in
Cape Verde. Ecol. Complex. 2017, 30, 70–75), given by a system of four ordinary differential equations.
An HIV initial value problem is solved numerically using the ode45 GNU Octave function and three
standard methods implemented by us in Octave/MATLAB: Euler method and second-order and
fourth-order Runge–Kutta methods. Afterwards, a control function is introduced into the normalized
HIV model and an optimal control problem is formulated, where the goal is to find the optimal
HIV prevention strategy that maximizes the fraction of uninfected HIV individuals with the least
HIV new infections and cost associated with the control measures. The optimal control problem is
characterized analytically using the Pontryagin Maximum Principle, and the extremals are computed
numerically by implementing a forward-backward fourth-order Runge–Kutta method. Complete
algorithms, for both uncontrolled initial value and optimal control problems, developed under the
free GNU Octave software and compatible with MATLAB are provided along the article.

Keywords: numerical algorithms; optimal control; HIV/AIDS model; GNU Octave; open source
code for optimal control through Pontryagin Maximum Principle

MSC: 34K28; 49N90; 92D30

1. Introduction

In recent years, mathematical modeling of processes in biology and medicine, in particular in
epidemiology, has led to significant scientific advances both in mathematics and biosciences [1,2].
Applications of mathematics in biology are completely opening new pathways of interactions, and
this is certainly true in the area of optimal control: a branch of applied mathematics that deals with
finding control laws for dynamical systems over a period of time such that an objective functional is
optimized [3,4]. It has numerous applications in both biology and medicine [5–8].

To find the best possible control for taking a dynamical system from one state to another, one uses,
in optimal control theory, the celebrated Pontryagin’s maximum principle (PMP), formulated in 1956
by the Russian mathematician Lev Pontryagin and his collaborators [3]. Roughly speaking, PMP
states that it is necessary for any optimal control along with the optimal state trajectory to satisfy
the so-called Hamiltonian system, which is a two-point boundary value problem, plus a maximality
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condition on the Hamiltonian. Although a classical result, PMP is usually not taught to biologists
and mathematicians working on mathematical biology. Here, we show how such scientists can easily
implement the necessary optimality conditions given by the PMP, numerically, and can benefit from
the power of optimal control theory. For that, we consider a mathematical model for HIV.

HIV modeling and optimal control is a subject under strong current research: see, e.g., Reference [9]
and the references therein. Here, we consider the SICA epidemic model for HIV transmission proposed
in References [10,11], formulate an optimal control problem with the goal to find the optimal HIV
prevention strategy that maximizes the fraction of uninfected HIV individuals with least HIV new
infections and cost associated with the control measures, and give complete algorithms in GNU
Octave to solve the considered problems. We trust that our work, by providing the algorithms in an
open programming language, contributes to reducing the so-called “replication crisis” (an ongoing
methodological crisis in which it has been found that many scientific studies are difficult or impossible
to replicate or reproduce [12]) in the area of optimal biomedical research. We trust our current work
will be very useful to a practitioner from the disease control area and will become a reference in the
field of epidemiology for those interested to include an optimal control component in their work.

2. A Normalized SICA HIV/AIDS Model

We consider the SICA epidemic model for HIV transmission proposed in References [10,11],
which is given by the following system of ordinary differential equations:

S′(t) = bN(t)− λ(t)S(t)− µS(t)

I′(t) = λ(t)S(t)− (ρ + φ + µ)I(t) + αA(t) + ωC(t)

C′(t) = φI(t)− (ω + µ)C(t)

A′(t) = ρ I(t)− (α + µ + d)A(t) .

(1)

The model in Equation (1) subdivides human population into four mutually exclusive compartments:
susceptible individuals (S); HIV-infected individuals with no clinical symptoms of AIDS (the virus
is living or developing in the individuals but without producing symptoms or only mild ones) but
able to transmit HIV to other individuals (I); HIV-infected individuals under ART treatment (the
so-called chronic stage) with a viral load remaining low (C); and HIV-infected individuals with
AIDS clinical symptoms (A). The total population at time t, denoted by N(t), is given by N(t) =

S(t) + I(t) + C(t) + A(t). Effective contact with people infected with HIV is at a rate λ(t), given by

λ(t) =
β

N(t)
(I(t) + ηC C(t) + ηA A(t)) ,

where β is the effective contact rate for HIV transmission. The modification parameter ηA ≥ 1 accounts
for the relative infectiousness of individuals with AIDS symptoms in comparison to those infected with
HIV with no AIDS symptoms (individuals with AIDS symptoms are more infectious than HIV-infected
individuals—pre-AIDS). On the other hand, ηC ≤ 1 translates the partial restoration of immune
function of individuals with HIV infection that use ART correctly [10]. All individuals suffer from
natural death at a constant rate µ. Both HIV-infected individuals with and without AIDS symptoms
have access to ART treatment: HIV-infected individuals with no AIDS symptoms I progress to the class
of individuals with HIV infection under ART treatment C at a rate φ, and HIV-infected individuals
with AIDS symptoms are treated for HIV at rate α. An HIV-infected individual with AIDS symptoms
A that starts treatment moves to the class of HIV-infected individuals I and after, if the treatment is
maintained, will be transferred to the chronic class C. Individuals in the class C leave to the class I at
a rate ω due to a default treatment. HIV-infected individuals with no AIDS symptoms I that do not
take ART treatment progress to the AIDS class A at rate ρ. Finally, HIV-infected individuals with AIDS
symptoms A suffer from an AIDS-induced death at a rate d.
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In the situation where the total population size N(t) is not constant, it is often convenient to
consider the proportions of each compartment of individuals in the population, namely

s = S/N, i = I/N, c = C/N, r = R/N .

The state variables s, i, c, and a satisfy the following system of differential equations:

s′(t) = b(1− s(t))− β(i(t) + ηCc(t) + ηAa(t))s(t) + d a(t) s(t)

i′(t) = β (i(t) + ηC c(t) + ηAa(t)) s(t)− (ρ + φ + b)i(t) + αa(t) + ωc(t) + d a(t) i(t)

c′(t) = φi(t)− (ω + b)c(t) + d a(t) c(t)

a′(t) = ρ i(t)− (α + b + d)a(t) + d a2(t)

(2)

with s(t) + i(t) + c(t) + a(t) = 1 for all t ∈ [0, T].

3. Numerical Solution of the SICA HIV/AIDS Model

In this section, we consider Equation (2) subject to the initial conditions given by

s(0) = 0.6 , i(0) = 0.2 , c(0) = 0.1 , a(0) = 0.1 , (3)

by the fixed parameter values from Table 1, and by the final time value of T = 20 (years).

Table 1. Parameter values of the HIV/AIDS model in Equation (2) taken from Reference [11] and
references cited therein.

Symbol Description Value

µ Natural death rate 1/69.54
b Recruitment rate 2.1µ
β HIV transmission rate 1.6
ηC Modification parameter 0.015
ηA Modification parameter 1.3
φ HIV treatment rate for I individuals 1
ρ Default treatment rate for I individuals 0.1
α AIDS treatment rate 0.33
ω Default treatment rate for C individuals 0.09
d AIDS induced death rate 1

All our algorithms, developed to solve numerically the initial value problems in Equations (2)
and (3), are developed under the free GNU Octave software (version 5.1.0), a high-level programming
language primarily intended for numerical computations and is the major free and mostly compatible
alternative to MATLAB [13]. We implement three standard basic numerical techniques: Euler,
second-order Runge–Kutta, and fourth-order Runge–Kutta. We compare the obtained solutions
with the one obtained using the ode45 GNU Octave function.

3.1. Default ode45 routine of GNU Octave

Using the provided ode45 function of GNU Octave, which solves a set of non-stiff ordinary
differential equations with the well known explicit Dormand–Prince method of order 4, one can solve
the initial value problems in Equations (2) and (3) as follows:

function dy = odeHIVsystem(t,y)
% Parameters of the model
mi = 1.0 / 69.54; b = 2.1 * mi; beta = 1.6;
etaC = 0.015; etaA = 1.3; fi = 1.0; ro = 0.1;
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alfa = 0.33; omega = 0.09; d = 1.0;

% Differential equations of the model
dy = zeros(4,1);
aux1 = beta * (y(2) + etaC * y(3) + etaA * y(4)) * y(1);
aux2 = d * y(4);
dy(1) = b * (1 - y(1)) - aux1 + aux2 * y(1);
dy(2) = aux1 - (ro + fi + b - aux2) * y(2) + alfa * y(4) + omega * y(3);
dy(3) = fi * y(2) - (omega + b - aux2) * y(3);
dy(4) = ro * y(2) - (alfa + b + d - aux2) * y(4);

On the GNU Octave interface, one should then type the following instructions:

>> T = 20; N = 100;
>> [vT,vY] = ode45(@odeHIVsystem,[0:T/N:T],[0.6 0.2 0.1 0.1]);

Next, we show how such approach compares with standard numerical techniques.

3.2. Euler’s Method

Given a well-posed initial-value problem

dy
dt

= f (t, y) with y (a) = α and a ≤ t ≤ b,

Euler’s method constructs a sequence of approximation points (t, w) ≈ (t, y (t)) to the exact solution
of the ordinary differential equation by ti+1 = ti + h and wi+1 = wi + h f (ti, wi), i = 0, 1, . . . , N − 1,
where t0 = a, w0 = α, and h = (b− a) /N. Let us apply Euler’s method to approximate each one of
the four state variables of the system of ordinary differential equations (Equation (2)). Our odeEuler
GNU Octave implementation is as follows:

function dy = odeEuler(T)
% Parameters of the model
mi = 1.0 / 69.54; b = 2.1 * mi; beta = 1.6;
etaC = 0.015; etaA = 1.3; fi = 1.0; ro = 0.1;
alfa = 0.33; omega = 0.09; d = 1.0;

% Parameters of the Euler method
test = -1; deltaError = 0.001; M = 100;
t = linspace(0,T,M+1); h = T / M;
S = zeros(1,M+1); I = zeros(1,M+1);
C = zeros(1,M+1); A = zeros(1,M+1);

% Initial conditions of the model
S(1) = 0.6; I(1) = 0.2; C(1) = 0.1; A(1) = 0.1;

% Iterations of the method
while(test < 0)

oldS = S; oldI = I; oldC = C; oldA = A;
for i = 1:M

% Differential equations of the model
aux1 = beta * (I(i) + etaC * C(i) + etaA * A(i)) * S(i);
aux2 = d * A(i);

auxS = b * (1 - S(i)) - aux1 + aux2 * S(i);
auxI = aux1 - (ro + fi + b - aux2) * I(i) + alfa * A(i) + omega * C(i);
auxC = fi * I(i) - (omega + b - aux2) * C(i);
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auxA = ro * I(i) - (alfa + b + d - aux2) * A(i);

% Euler new approximation
S(i+1) = S(i) + h * auxS;
I(i+1) = I(i) + h * auxI;
C(i+1) = C(i) + h * auxC;
A(i+1) = A(i) + h * auxA;

end

% Absolute error for convergence
temp1 = deltaError * sum(abs(S)) - sum(abs(oldS - S));
temp2 = deltaError * sum(abs(I)) - sum(abs(oldI - I));
temp3 = deltaError * sum(abs(C)) - sum(abs(oldC - C));
temp4 = deltaError * sum(abs(A)) - sum(abs(oldA - A));
test = min(temp1,min(temp2,min(temp3,temp4)));

end
dy(1,:) = t; dy(2,:) = S; dy(3,:) = I;
dy(4,:) = C; dy(5,:) = A;

Figure 1 shows the solution of the system of ordinary differential equations (Equation (2)) with the
initial conditions (Equation (3)), computed by the ode45 GNU Octave function (dashed line) versus the
implemented Euler’s method (solid line). As depicted, Euler’s method, although being the simplest
method, gives a very good approximation to the behaviour of each of the four system variables. Both
implementations use the same discretization knots in the interval [0, T] with a step size given by
h = T/100.

Figure 1. HIV/AIDS system (Equation (2)) behaviour: GNU Octave versus Euler’s method.
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Euler’s method has a global error (total accumulated error) of O (h), and therefore, the error
bound depends linearly on the step size h, which implies that the error is expected to grow in no worse
than a linear manner. Consequently, diminishing the step size should give correspondingly greater
accuracy to the approximations. Table 2 lists the norm of the difference vector, where each component
of this vector is the absolute difference between the results obtained by the ode45 GNU Octave function
and our implementation of Euler’s method, calculated by the vector norms 1, 2, and ∞.

Table 2. Norms 1, 2, and ∞ of the difference vector between ode45 GNU Octave and Euler’s results.

System Variables S (t) I (t) C (t) A (t)

‖Octave− Euler‖1 0.4495660 0.1646710 0.5255950 0.0443340

‖Octave− Euler‖2 0.0659270 0.0301720 0.0783920 0.0101360

‖Octave− Euler‖∞ 0.0161175 0.0113068 0.0190621 0.0041673

3.3. Runge–Kutta of Order Two

Given a well-posed initial-value problem, the Runge–Kutta method of order two constructs a
sequence of approximation points (t, w) ≈ (t, y (t)) to the exact solution of the ordinary differential

equation by ti+1 = ti + h, K1 = f (ti, wi), K2 = f (ti+1, wi + hK1), and wi+1 = wi + h
K1 + K2

2
, for each

i = 0, 1, . . . , N − 1, where t0 = a, w0 = α, and h = (b− a) /N. Our GNU Octave implementation of
the Runge–Kutta method of order two applies the above formulation to approximate each of the four
variables of the system in Equation (2). We implement the odeRungeKutta_order2 function through
the following GNU Octave instructions:

function dy = odeRungeKutta_order2(T)
% Parameters of the model
mi = 1.0 / 69.54; b = 2.1 * mi; beta = 1.6;
etaC = 0.015; etaA = 1.3; fi = 1.0; ro = 0.1;
alfa = 0.33; omega = 0.09; d = 1.0;

% Parameters of the Runge-Kutta (2nd order) method
test = -1; deltaError = 0.001; M = 100;
t = linspace(0,T,M+1); h = T / M; h2 = h / 2;
S = zeros(1,M+1); I = zeros(1,M+1);
C = zeros(1,M+1); A = zeros(1,M+1);

% Initial conditions of the model
S(1) = 0.6; I(1) = 0.2; C(1) = 0.1; A(1) = 0.1;

% Iterations of the method
while(test < 0)

oldS = S; oldI = I; oldC = C; oldA = A;
for i = 1:M

% Differential equations of the model
% First Runge-Kutta parameter
aux1 = beta * (I(i) + etaC * C(i) + etaA * A(i)) * S(i);
aux2 = d * A(i);
auxS1 = b * (1 - S(i)) - aux1 + aux2 * S(i);
auxI1 = aux1 - (ro + fi + b - aux2) * I(i) + alfa * A(i) + omega * C(i);
auxC1 = fi * I(i) - (omega + b - aux2) * C(i);
auxA1 = ro * I(i) - (alfa + b + d - aux2) * A(i);
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% Second Runge-Kutta parameter
auxS = S(i) + h * auxS1; auxI = I(i) + h * auxI1;
auxC = C(i) + h * auxC1; auxA = A(i) + h * auxA1;
aux1 = beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;
auxS2 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI2 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC2 = fi * auxI - (omega + b - aux2) * auxC;
auxA2 = ro * auxI - (alfa + b + d - aux2) * auxA;
% Runge-Kutta new approximation
S(i+1) = S(i) + h2 * (auxS1 + auxS2);
I(i+1) = I(i) + h2 * (auxI1 + auxI2);
C(i+1) = C(i) + h2 * (auxC1 + auxC2);
A(i+1) = A(i) + h2 * (auxA1 + auxA2);

end
% Absolute error for convergence
temp1 = deltaError * sum(abs(S)) - sum(abs(oldS - S));
temp2 = deltaError * sum(abs(I)) - sum(abs(oldI - I));
temp3 = deltaError * sum(abs(C)) - sum(abs(oldC - C));
temp4 = deltaError * sum(abs(A)) - sum(abs(oldA - A));
test = min(temp1,min(temp2,min(temp3,temp4)));

end
dy(1,:) = t; dy(2,:) = S; dy(3,:) = I; dy(4,:) = C; dy(5,:) = A;

Figure 2 shows the solution of the system of Equation (2) with the initial value conditions in
Equation (3) computed by the ode45 GNU Octave function (dashed line) versus our implementation
of the Runge–Kutta method of order two (solid line). As we can see, Runge–Kutta’s method
produces a better approximation than Euler’s method, since both curves in each plot of Figure 2
are indistinguishable.

Figure 2. HIV/AIDS system (Equation (2)): GNU Octave versus Runge–Kutta’s method of order two.
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Runge–Kutta’s method of order two (RK2) has a global truncation error of order O
(
h2), and as it

is known, this truncation error at a specified step measures the amount by which the exact solution to
the differential equation fails to satisfy the difference equation being used for the approximation at
that step. This might seems like an unlikely way to compare the error of various methods, since we
really want to know how well the approximations generated by the methods satisfy the differential
equation, not the other way around. However, we do not know the exact solution, so we cannot
generally determine this, and the truncation error will serve quite well to determine not only the error
of a method but also the actual approximation error. Table 3 lists the norm of the difference vector
between the results from ode45 routine and Runge–Kutta’s method of order two results.

Table 3. Norms 1, 2, and ∞ of the difference vector between ode45 GNU Octave and RK2 results.

System Variables S (t) I (t) C (t) A (t)

‖Octave− RungeKutta2‖1 0.0106530 0.0105505 0.0151705 0.0044304

‖Octave− RungeKutta2‖2 0.0014868 0.0025288 0.0022508 0.0011695

‖Octave− RungeKutta2‖∞ 0.0003341 0.0009613 0.0006695 0.0004678

3.4. Runge–Kutta of Order Four

The Runge–Kutta method of order four (RK4) constructs a sequence of approximation points
(t, w) ≈ (t, y (t)) to the exact solution of an ordinary differential equation by ti+1 = ti + h,
K1 = f (ti, wi), K2 = f

(
ti +

h
2 , wi +

h
2 K1

)
, K3 = f

(
ti +

h
2 , wi +

h
2 K2

)
, K4 = f (ti+1, wi + hK3), and

wi+1 = wi +
h
6
(K1 + 2K2 + 2K3 + K4), for each i = 0, 1, . . . , N − 1, where t0 = a, w0 = α, and

h = (b− a) /N. Our GNU Octave implementation of the Runge–Kutta method of order four applies
the above formulation to approximate the solution of the system in Equation (2) with the initial
conditions of Equation (3) through the following instructions:

function dy = odeRungeKutta_order4(T)
% Parameters of the model
mi = 1.0 / 69.54; b = 2.1 * mi; beta = 1.6;
etaC = 0.015; etaA = 1.3; fi = 1.0; ro = 0.1;
alfa = 0.33; omega = 0.09; d = 1.0;

% Parameters of the Runge-Kutta (4th order) method
test = -1; deltaError = 0.001; M = 100;
t = linspace(0,T,M+1);
h = T / M; h2 = h / 2; h6 = h / 6;
S = zeros(1,M+1); I = zeros(1,M+1);
C = zeros(1,M+1); A = zeros(1,M+1);

% Initial conditions of the model
S(1) = 0.6; I(1) = 0.2; C(1) = 0.1; A(1) = 0.1;
% Iterations of the method
while(test < 0)

oldS = S; oldI = I; oldC = C; oldA = A;
for i = 1:M

% Differential equations of the model
% First Runge-Kutta parameter
aux1 = beta * (I(i) + etaC * C(i) + etaA * A(i)) * S(i);
aux2 = d * A(i);
auxS1 = b * (1 - S(i)) - aux1 + aux2 * S(i);
auxI1 = aux1 - (ro + fi + b - aux2) * I(i) + alfa * A(i) + omega * C(i);
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auxC1 = fi * I(i) - (omega + b - aux2) * C(i);
auxA1 = ro * I(i) - (alfa + b + d - aux2) * A(i);

% Second Runge-Kutta parameter
auxS = S(i) + h2 * auxS1; auxI = I(i) + h2 * auxI1;
auxC = C(i) + h2 * auxC1; auxA = A(i) + h2 * auxA1;
aux1 = beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;

auxS2 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI2 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC2 = fi * auxI - (omega + b - aux2) * auxC;
auxA2 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Fird Runge-Kutta parameter
auxS = S(i) + h2 * auxS2; auxI = I(i) + h2 * auxI2;
auxC = C(i) + h2 * auxC2; auxA = A(i) + h2 * auxA2;
aux1 = beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;

auxS3 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI3 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC3 = fi * auxI - (omega + b - aux2) * auxC;
auxA3 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Fourth Runge-Kutta parameter
auxS = S(i) + h * auxS3; auxI = I(i) + h * auxI3;
auxC = C(i) + h * auxC3; auxA = A(i) + h * auxA3;
aux1 = beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;

auxS4 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI4 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC4 = fi * auxI - (omega + b - aux2) * auxC;
auxA4 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Runge-Kutta new approximation
S(i+1) = S(i) + h6 * (auxS1 + 2 * (auxS2 + auxS3) + auxS4);
I(i+1) = I(i) + h6 * (auxI1 + 2 * (auxI2 + auxI3) + auxI4);
C(i+1) = C(i) + h6 * (auxC1 + 2 * (auxC2 + auxC3) + auxC4);
A(i+1) = A(i) + h6 * (auxA1 + 2 * (auxA2 + auxA3) + auxA4);

end

% Absolute error for convergence
temp1 = deltaError * sum(abs(S)) - sum(abs(oldS - S));
temp2 = deltaError * sum(abs(I)) - sum(abs(oldI - I));
temp3 = deltaError * sum(abs(C)) - sum(abs(oldC - C));
temp4 = deltaError * sum(abs(A)) - sum(abs(oldA - A));
test = min(temp1,min(temp2,min(temp3,temp4)));

end
dy(1,:) = t; dy(2,:) = S; dy(3,:) = I;
dy(4,:) = C; dy(5,:) = A;

Figure 3 shows the solution of the initial value problem in Equations (2) and (3) computed by
the ode45 GNU Octave function (dashed line) versus our implementation of the Runge–Kutta method
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of order four (solid line). The results of the Runge–Kutta method of order four are extremely good.
Moreover, this method requires four evaluations per step and its global truncation error is O

(
h4).

Figure 3. HIV/AIDS system (Equation (2)): GNU Octave versus Runge–Kutta’s method of order four.

Table 4 lists the norm of the difference vector between results obtained by the Octave routine
ode45 and the 4th order Runge–Kutta method.

Table 4. Norms 1, 2, and ∞ of the difference vector between ode45 GNU Octave and RK4 results.

System Variables S (t) I (t) C (t) A (t)

‖Octave− RungeKutta4‖1 0.0003193 0.0002733 0.0004841 0.0000579

‖Octave− RungeKutta4‖2 0.0000409 0.0000395 0.0000674 0.0000098

‖Octave− RungeKutta4‖∞ 0.0000107 0.0000140 0.0000186 0.0000042

4. Optimal Control of HIV Transmission

In this section, we propose an optimal control problem that will be solved numerically in
Octave/MATLAB in Section 4.2. We introduce a control function u(·) in the model of Equation
(2), which represents the effort on HIV prevention measures, such as condom use (used consistently
and correctly during every sex act) or oral pre-exposure prophylasis (PrEP). The control system is
given by
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s′(t) = b(1− s(t))− (1− u(t))β(i(t) + ηCc(t) + ηAa(t))s(t) + d a(t) s(t)

i′(t) = (1− u(t))β (i(t) + ηC c(t) + ηAa(t)) s(t)− (ρ + φ + b)i(t) + αa(t) + ωc(t) + d a(t) i(t)

c′(t) = φi(t)− (ω + b)c(t) + d a(t) c(t)

a′(t) = ρ i(t)− (α + b + d)a(t) + d a2(t),

(4)

where the control u(·) is bounded between 0 and umax, with umax < 1. When the control vanishes,
no extra preventive measure for HIV transmission is being used by susceptible individuals. We assume
that umax is never equal to 1, since it makes the model more realistic from a medical point of view.

The goal is to find the optimal value u∗ of the control u along time, such that the associated state
trajectories s∗, i∗, c∗, and a∗ are solutions of the system in Equation (4) in the time interval [0, T] with
the following initial given conditions:

s(0) ≥ 0 , i(0) ≥ 0 , c(0) ≥ 0 , a(0) ≥ 0 , (5)

and u∗(·) maximizes the objective functional given by

J(u(·)) =
∫ T

0

(
s(t)− i(t)− u2(t)

)
dt, (6)

which considers the fraction of susceptible individuals (s) and HIV-infected individuals without AIDS
symptoms (i) and the cost associated with the support of HIV transmission measures (u).

The control system in Equation (4) of ordinary differential equations in R4 is considered with the
set of admissible control functions given by

Ω = {u(·) ∈ L∞(0, T) | 0 ≤ u(t) ≤ umax , ∀t ∈ [0, T]} . (7)

We consider the optimal control problem of determining (s∗(·), i∗(·), c∗(·), a∗(·)) associated to an
admissible control u∗(·) ∈ Ω on the time interval [0, T], satisfying Equation (4) and the initial conditions
of Equation (5) and maximizing the cost functional of Equation (6):

J(u∗(·)) = max
Ω

J(u(·)) . (8)

Note that we are considering a L2-cost function: the integrand of the cost functional J is concave with
respect to the control u. Moreover, the control system of Equation (4) is Lipschitz with respect to
the state variables (s, i, c, a). These properties ensure the existence of an optimal control u∗(·) of the
optimal control problem in Equations (4)–(8) (see, e.g., Reference [14]).

To solve optimal control problems, two approaches are possible: direct and indirect. Direct
methods consist in the discretization of the optimal control problem, reducing it to a nonlinear
programming problem [15,16]. For such an approach, one only needs to use the Octave/MATLAB
fmincon routine. Indirect methods are more sound because they are based on Pontryagin’s Maximum
Principle but less widespread since they are not immediately available in Octave/MATLAB. Here,
we show how one can use Octave/MATLAB to solve optimal control problems through Pontryagin’s
Maximum Principle, reducing the optimal control problem to the solution of a boundary value problem.
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4.1. Pontryagin’s Maximum Principle

According to celebrated Pontryagin’s Maximum Principle (see, e.g., Reference [3]), if u∗(·) is
optimal for Equations (4)–(8) with fixed final time T, then there exists a nontrivial absolutely continuous
mapping Λ : [0, T]→ R4, Λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)), called the adjoint vector, such that

s′ =
∂H
∂λ1

, i′ =
∂H
∂λ2

, c′ =
∂H
∂λ3

, a′ =
∂H
∂λ4

, λ′1 = −∂H
∂s

, λ′2 = −∂H
∂i

, λ′3 = −∂H
∂c

, λ′4 = −∂H
∂a

,

where

H = H (s(t), i(t), c(t), a(t), Λ(t), u(t)) = s(t)− i(t)− u2(t)

+ λ1(t)
(

b(1− s(t))− (1− u(t))β(i(t) + ηCc(t) + ηAa(t))s(t) + d a(t) s(t)
)

+ λ2(t)
(
(1− u(t))β (i(t) + ηC c(t) + ηAa(t)) s(t)− (ρ + φ + b)i(t) + αa(t) + ωc(t) + d a(t) i(t)

)
+ λ3(t)

(
φi(t)− (ω + b)c(t) + d a(t) c(t)

)
+ λ4(t)

(
ρ i(t)− (α + b + d)a(t) + d a2(t)

)
is called the Hamiltonian and the maximality condition

H(s∗(t), i∗(t), c∗(t), a∗(t), Λ(t), u∗(t)) = max
0≤u≤umax

H(s∗(t), i∗(t), c∗(t), a∗(t), Λ(t), u)

holds almost everywhere on [0, T]. Moreover, the transversality conditions

λi(T) = 0 , i = 1, . . . , 4,

hold. Applying the Pontryagin maximum principle to the optimal control problem in Equations (4)–(8),
the following theorem follows.

Theorem 1. The optimal control problem of Equations (4)–(8) with fixed final time T admits a unique optimal
solution (s∗(·), i∗(·), c∗(·), a∗(·)) associated to the optimal control u∗(·) on [0, T] described by

u∗(t) = min
{

max
{

0,
β (i∗(t) + ηCc∗(t) + ηAa∗(t)) s∗(t) (λ1(t)− λ2(t))

2

}
, umax

}
, (9)

where the adjoint functions satisfy

λ′1(t) = −1 + λ1(t) (b + (1− u∗(t)) β (i∗(t) + ηCc∗(t) + ηAa∗(t))− da∗(t)) ,

−λ2(t) (1− u∗(t)) β (i∗(t) + ηCc∗(t) + ηAa∗(t))

λ′2(t) = 1 + λ∗1(t) (1− u∗(t)) βs∗(t)− λ2(t) ((1− u∗(t)) βs∗(t)− (ρ + φ + s∗(t)) + da∗(t))

−λ3(t)φ− λ4(t)ρ,

λ′3(t) = λ1(t) (1− u∗(t)) βηCs∗(t)− λ2(t) ((1− u∗(t)) βηCs∗(t) + ω) + λ3(t) (ω + b− da∗(t)) ,

λ′4(t) = λ1(t) ((1− u∗(t)) βηAs∗(t) + ds∗(t))− λ2(t) ((1− u∗(t)) βηAs∗(t) + α + di∗(t))

−λ3(t)dc∗(t) + λ4(t) (α + b + d− 2da∗(t)) ,

(10)

subject to the transversality conditions λi(T) = 0, i = 1, . . . , 4.

Remark 1. The uniqueness of the optimal control u∗ is due to the boundedness of the state and adjoint functions
and the Lipschitz property of the systems in Equations (4) and (10) (see References [17,18] and references
cited therein).
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We implement Theorem 1 numerically in Octave/MATLAB in Section 4.2, and the optimal solution
(s∗(·), i∗(·), c∗(·), a∗(·)) associated to the optimal control u∗(·) is computed for given parameter values
and initial conditions.

4.2. Numerical Solution of the HIV Optimal Control Problem

The extremal given by Theorem 1 is now computed numerically by implementing a forward-
backward fourth-order Runge–Kutta method (see, e.g., Reference [19]). This iterative method consists
in solving the system in Equation (4) with a guess for the controls over the time interval [0, T] using a
forward fourth-order Runge–Kutta scheme and the transversality conditions λi(T) = 0, i = 1, . . . , 4.
Then, the adjoint system in Equation (10) is solved by a backward fourth-order Runge–Kutta scheme
using the current iteration solution of Equation (4). The controls are updated by using a convex
combination of the previous controls and the values from Equation (9). The iteration is stopped if
the values of unknowns at the previous iteration are very close to the ones at the present iteration.
Our odeRungeKutta_order4_WithControl function is implemented by the following GNU Octave
instructions:

function dy = odeRungeKutta_order4_WithControl(T)
% Parameters of the model
mi = 1.0 / 69.54; b = 2.1 * mi; beta = 1.6;
etaC = 0.015; etaA = 1.3; fi = 1.0; ro = 0.1;
alfa = 0.33; omega = 0.09; d = 1.0;

% Parameters of the Runge-Kutta (4th order) method
test = -1; deltaError = 0.001; M = 1000;
t = linspace(0,T,M+1);
h = T / M; h2 = h / 2; h6 = h / 6;
S = zeros(1,M+1); I = zeros(1,M+1);
C = zeros(1,M+1); A = zeros(1,M+1);

% Initial conditions of the model
S(1) = 0.6; I(1) = 0.2; C(1) = 0.1; A(1) = 0.1;

%Vectors for system restrictions and control
Lambda1 = zeros(1,M+1); Lambda2 = zeros(1,M+1);
Lambda3 = zeros(1,M+1); Lambda4 = zeros(1,M+1);
U = zeros(1,M+1);
% Iterations of the method
while(test < 0)

oldS = S; oldI = I; oldC = C; oldA = A;
oldLambda1 = Lambda1; oldLambda2 = Lambda2;
oldLambda3 = Lambda3; oldLambda4 = Lambda4;
oldU = U;

%Forward Runge-Kutta iterations
for i = 1:M

% Differential equations of the model
% First Runge-Kutta parameter
aux1 = (1 - U(i)) * beta * (I(i) + etaC * C(i) + etaA * A(i)) * S(i);
aux2 = d * A(i);

auxS1 = b * (1 - S(i)) - aux1 + aux2 * S(i);
auxI1 = aux1 - (ro + fi + b - aux2) * I(i) + alfa * A(i) + omega * C(i);
auxC1 = fi * I(i) - (omega + b - aux2) * C(i);
auxA1 = ro * I(i) - (alfa + b + d - aux2) * A(i);
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% Second Runge-Kutta parameter
auxU = 0.5 * (U(i) + U(i+1));
auxS = S(i) + h2 * auxS1; auxI = I(i) + h2 * auxI1;
auxC = C(i) + h2 * auxC1; auxA = A(i) + h2 * auxA1;
aux1 = (1 - auxU) * beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;
auxS2 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI2 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC2 = fi * auxI - (omega + b - aux2) * auxC;
auxA2 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Third Runge-Kutta parameter
auxS = S(i) + h2 * auxS2; auxI = I(i) + h2 * auxI2;
auxC = C(i) + h2 * auxC2; auxA = A(i) + h2 * auxA2;
aux1 = (1 - auxU) * beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;

auxS3 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI3 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC3 = fi * auxI - (omega + b - aux2) * auxC;
auxA3 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Fourth Runge-Kutta parameter
auxS = S(i) + h * auxS3; auxI = I(i) + h * auxI3;
auxC = C(i) + h * auxC3; auxA = A(i) + h * auxA3;
aux1 = (1 - U(i+1)) * beta * (auxI + etaC * auxC + etaA * auxA) * auxS;
aux2 = d * auxA;

auxS4 = b * (1 - auxS) - aux1 + aux2 * auxS;
auxI4 = aux1 - (ro + fi + b - aux2) * auxI + alfa * auxA + omega * auxC;
auxC4 = fi * auxI - (omega + b - aux2) * auxC;
auxA4 = ro * auxI - (alfa + b + d - aux2) * auxA;

% Runge-Kutta new approximation
S(i+1) = S(i) + h6 * (auxS1 + 2 * (auxS2 + auxS3) + auxS4);
I(i+1) = I(i) + h6 * (auxI1 + 2 * (auxI2 + auxI3) + auxI4);
C(i+1) = C(i) + h6 * (auxC1 + 2 * (auxC2 + auxC3) + auxC4);
A(i+1) = A(i) + h6 * (auxA1 + 2 * (auxA2 + auxA3) + auxA4);

end

%Backward Runge-Kutta iterations
for i = 1:M

j = M + 2 - i;

% Differential equations of the model
% First Runge-Kutta parameter
auxU = 1 - U(j);
aux1 = auxU * beta * (I(j) + etaC * C(j) + etaA * A(j));
aux2 = d * A(j);

auxLambda11 = -1 + Lambda1(j) * (b + aux1 - aux2) - Lambda2(j) * aux1;
aux1 = auxU * beta * S(j);
auxLambda21 = 1 + Lambda1(j) * aux1 - Lambda2(j) * (aux1 - (ro + fi + b) + ...

+ aux2) - Lambda3(j) * fi - Lambda4(j) * ro;
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aux1 = auxU * beta * etaC * S(j);
auxLambda31 = Lambda1(j) * aux1 - Lambda2(j) * (aux1 + ...

+ omega) + Lambda3(j) * (omega + b - aux2);
aux1 = auxU * beta * etaA * S(j);
auxLambda41 = Lambda1(j) * (aux1 + d * S(j)) ...

- Lambda2(j) * (aux1 + alfa + ...
+ d * I(j)) - Lambda3(j) * d * C(j) + ...
+ Lambda4(j) * (alfa + b + d - 2 * aux2);

% Second Runge-Kutta parameter
auxU = 1 - 0.5 * (U(j) + U(j-1));
auxS = 0.5 * (S(j) + S(j-1));
auxI = 0.5 * (I(j) + I(j-1));
auxC = 0.5 * (C(j) + C(j-1));
auxA = 0.5 * (A(j) + A(j-1));

aux1 = auxU * beta * (auxI + etaC * auxC + etaA * auxA);
aux2 = d * auxA;
auxLambda1 = Lambda1(j) - h2 * auxLambda11;
auxLambda2 = Lambda2(j) - h2 * auxLambda21;
auxLambda3 = Lambda3(j) - h2 * auxLambda31;
auxLambda4 = Lambda4(j) - h2 * auxLambda41;

auxLambda12 = -1 + auxLambda1 * (b + aux1 - aux2) - auxLambda2 * aux1;
aux1 = auxU * beta * auxS;
auxLambda22 = 1 + auxLambda1 * aux1 - auxLambda2 * (aux1 - (ro + fi + b) + ...

+ aux2) - auxLambda3 * fi - auxLambda4 * ro;
aux1 = auxU * beta * etaC * auxS;
auxLambda32 = auxLambda1 * aux1 - auxLambda2 * (aux1 + ...

+ omega) + auxLambda3 * (omega + b - aux2);
aux1 = auxU * beta * etaA * auxS;
auxLambda42 = auxLambda1 * (aux1 + d * auxS) ...

- auxLambda2 * (aux1 + alfa + ...
+ d * auxI) - auxLambda3 * d * auxC + ...
+ auxLambda4 * (alfa + b + d - 2 * aux2);

% Third Runge-Kutta parameter
aux1 = auxU * beta * (auxI + etaC * auxC + etaA * auxA);
auxLambda1 = Lambda1(j) - h2 * auxLambda12;
auxLambda2 = Lambda2(j) - h2 * auxLambda22;
auxLambda3 = Lambda3(j) - h2 * auxLambda32;
auxLambda4 = Lambda4(j) - h2 * auxLambda42;

auxLambda13 = -1 + auxLambda1 * (b + aux1 - aux2) - auxLambda2 * aux1;
aux1 = auxU * beta * auxS;
auxLambda23 = 1 + auxLambda1 * aux1 ...

- auxLambda2 * (aux1 - (ro + fi + b) + ...
+ aux2) - auxLambda3 * fi - auxLambda4 * ro;

aux1 = auxU * beta * etaC * auxS;
auxLambda33 = auxLambda1 * aux1 - auxLambda2 * (aux1 + ...

+ omega) + auxLambda3 * (omega + b - aux2);
aux1 = auxU * beta * etaA * auxS;
auxLambda43 = auxLambda1 * (aux1 + d * auxS) ...

- auxLambda2 * (aux1 + alfa + d * auxI) - auxLambda3 * d * auxC + ...
+ auxLambda4 * (alfa + b + d - 2 * aux2);
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% Fourth Runge-Kutta parameter
auxU = 1 - U(j-1); auxS = S(j-1);
auxI = I(j-1); auxC = C(j-1); auxA = A(j-1);

aux1 = auxU * beta * (auxI + etaC * auxC + etaA * auxA);
aux2 = d * auxA;
auxLambda1 = Lambda1(j) - h * auxLambda13;
auxLambda2 = Lambda2(j) - h * auxLambda23;
auxLambda3 = Lambda3(j) - h * auxLambda33;
auxLambda4 = Lambda4(j) - h * auxLambda43;

auxLambda14 = -1 + auxLambda1 * (b + aux1 - aux2) ...
- auxLambda2 * aux1;

aux1 = auxU * beta * auxS;
auxLambda24 = 1 + auxLambda1 * aux1 ...

- auxLambda2 * (aux1 - (ro + fi + b) + ...
+ aux2) - auxLambda3 * fi - auxLambda4 * ro;

aux1 = auxU * beta * etaC * auxS;
auxLambda34 = auxLambda1 * aux1 - auxLambda2 * (aux1 + ...

+ omega) + auxLambda3 * (omega + b - aux2);
aux1 = auxU * beta * etaA * auxS;
auxLambda44 = auxLambda1 * (aux1 + d * auxS) ...

- auxLambda2 * (aux1 + alfa + ...
+ d * auxI) - auxLambda3 * d * auxC + ...
+ auxLambda4 * (alfa + b + d - 2 * aux2);

% Runge-Kutta new approximation
Lambda1(j-1) = Lambda1(j) - h6 * (auxLambda11 + ...

+ 2 * (auxLambda12 + auxLambda13) + auxLambda14);
Lambda2(j-1) = Lambda2(j) - h6 * (auxLambda21 + ...

+ 2 * (auxLambda22 + auxLambda23) + auxLambda24);
Lambda3(j-1) = Lambda3(j) - h6 * (auxLambda31 + ...

+ 2 * (auxLambda32 + auxLambda33) + auxLambda34);
Lambda4(j-1) = Lambda4(j) - h6 * (auxLambda41 + ...

+ 2 * (auxLambda42 + auxLambda43) + auxLambda44);
end

% New vector control
for i = 1:M+1

vAux(i) = 0.5 * beta * (I(i) + etaC * C(i) + ...
+ etaA * A(i)) * S(i) * (Lambda1(i) - Lambda2(i));

auxU = min([max([0.0 vAux(i)]) 0.5]);
U(i) = 0.5 * (auxU + oldU(i));

end

% Absolute error for convergence
temp1 = deltaError * sum(abs(S)) - sum(abs(oldS - S));
temp2 = deltaError * sum(abs(I)) - sum(abs(oldI - I));
temp3 = deltaError * sum(abs(C)) - sum(abs(oldC - C));
temp4 = deltaError * sum(abs(A)) - sum(abs(oldA - A));
temp5 = deltaError * sum(abs(U)) - sum(abs(oldU - U));
temp6 = deltaError * sum(abs(Lambda1)) - sum(abs(oldLambda1 - Lambda1));
temp7 = deltaError * sum(abs(Lambda2)) - sum(abs(oldLambda2 - Lambda2));
temp8 = deltaError * sum(abs(Lambda3)) - sum(abs(oldLambda3 - Lambda3));



Math. Comput. Appl. 2020, 25, 1 17 of 20

temp9 = deltaError * sum(abs(Lambda4)) - sum(abs(oldLambda4 - Lambda4));
test = min(temp1,min(temp2,min(temp3,min(temp4, ...

min(temp5,min(temp6,min(temp7,min(temp8,temp9))))))));
end
dy(1,:) = t; dy(2,:) = S; dy(3,:) = I;
dy(4,:) = C; dy(5,:) = A; dy(6,:) = U;

disp("Value of LAMBDA at FINAL TIME");
disp([Lambda1(M+1) Lambda2(M+1) Lambda3(M+1) Lambda4(M+1)]);

For the numerical simulations, we consider umax = 0.5, representing a lack of resources or misuse
of the preventive HIV measures u(·), that is, the set of admissible controls is given by

Ω = {u(·) ∈ L∞(0, T) | 0 ≤ u(t) ≤ 0.5 , ∀t ∈ [0, T]} (11)

with T = 20 (years). Figures 4 and 5 show the numerical solution to the optimal control problem
of Equations (4)–(8) with the initial conditions of Equation (3) and the admissible control set in
Equation (11) computed by our odeRungeKutta_order4_WithControl function. Figure 6 depicts the
extremal control behaviour of u∗.

Figure 4. Optimal state variables for the control problem in Equations (4)–(8) subject to the initial
conditions in Equation (3) and the admissible control set in Equation (11) versus trajectories without
control measures.
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Figure 5. Comparison: solutions to the initial value problem in Equations (2)–(3) versus solutions to
the optimal control problem in Equations (4)–(8) subject to initial conditions in Equation (3) and the
admissible control set in Equation (11).

Figure 6. Optimal control u∗ for the HIV optimal control problem in Equations (4)–(8) subject to the
initial conditions in Equation (3) and the admissible control set in Equation (11).

5. Conclusion

The paper provides a study on numerical methods to deal with modelling and optimal control of
epidemic problems. Simple but effective Octave/MATLAB code is fully provided for a recent model
proposed in Reference [10]. The given numerical procedures are robust with respect to the parameters:
we have used the same values as the ones in Reference [10], but the code is valid for other values of the
parameters and easily modified to other models. The results show the effectiveness of optimal control
theory in medicine and the usefulness of a scientific computing system such as GNU Octave: using the
control measure as predicted by Pontryagin’s maximum principle and numerically computed by our
Octave code, one sees that the number of HIV/AIDS-infected and -chronic individuals diminish and,
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as a consequence, the number of susceptible (not ill) individuals increase. We trust our paper will be
very useful to a practitioner from the disease control area. Indeed, this work has been motivated by
many emails we received and continue to receive, asking us to provide the software code associated to
our research papers on applications of optimal control theory in epidemiology, e.g., References [20,21].
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