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Abstract

Let G be a simple undirected connected graph. The signless Laplacian
Estrada, Laplacian Estrada and Estrada indices of a graph G is the sum
of the exponentials of the signless Laplacian eigenvalues, Laplacian eigenval-
ues and eigenvalues of G, respectively. The present work derives an upper
bound for the Estrada index of a graph as a function of its chromatic number,
in the family of graphs whose color classes have order not less than a fixed
positive integer. The graphs for which the upper bound is tight is obtained.
Additionally, an upper bound for the Estrada Index of the complement of
a graph in the previous family of graphs with two color classes is given. A
Nordhaus-Gaddum type inequality for the Laplacian Estrada index when G
is a bipartite graph with color classes of order not less than 2, is presented.
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Moreover, a sharp upper bound for the Estrada index of the line graph and for
the signless Laplacian index of a graph in terms of connectivity is obtained.

Keywords: Estrada index; signless Laplacian Estrada index; Laplacian
Estrada index; chromatic number; vertex connectivity; edge connectivity;
line graph.
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1. Introduction

This work deals with undirected simple graphs herein called graphs. Given
a graph G, we write V (G) and E (G) for the vertex and edge set of G, respec-
tively. Sometimes, after a labeling of the vertices of G, a vertex vi is simply
identified by its label i and an edge vivj can be simply written as ij. The
degree of a vertex vi is d (vi) or simply di. The complement of a graph G
is represented by G. We will denote the adjacency and diagonal matrix of
vertex degrees of a graph G by A(G) and D(G), respectively. The Laplacian
and signless Laplacian matrices of G are given by L (G) = D(G)−A(G) and
Q (G) = D(G) + A(G), respectively.
Since A(G), Q(G) and L(G) are Hermitian matrices, it follows that they have
real spectra. As two distinct labeling of the vertices of G produce permuta-
tionally similar matrices to these matrices, their spectra are independent of
the labeling. The eigenvalues of A (G) are the eigenvalues of the graph G.
Through this paper, the adjacency, signless Laplacian and Laplacian eigen-
values of a graph G, will be considered by, λ1 ≥ . . . ≥ λn, q1 ≥ . . . ≥ qn and
µ1 ≥ . . . ≥ µn, respectively. The line graph of a graph G will be denoted
by L(G). Given two vertex disjoint graphs G1 and G2, the join of G1 and G2
is the graph denoted by G = G1 ∨ G2 and the complete s-partite graph on
n vertices will be denoted by Kn1,...,ns , where n = n1 + . . . + ns. During the
paper the following definitions are considered, the vertex connectivity, or just
connectivity of a graph G, is the minimum number of vertices whose deletion
disconnects G. An independent set in G is a set of vertices, no two of which
are adjacent. A coloring of a graph G is an assignment of colors to its vertices
so that any pair of connected vertices have distinct colors. The chromatic
number χ(G) of the graph G is the minimum number of colors among all
the possibility of coloring of G. A color class is the set of all vertices of a
single color. Clearly, any color class is an independent set. In this paper, the
complete graph, the path, the star and the cycle of orders n are denoted by
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Kn, Pn, Sn and Cn, respectively. The complete bipartite graph, is denoted
by Kp,q, where p and q are the cardinalities of its independent sets.
The spectrum of a square matrix M (the multiset of the eigenvalues of M)
will be denoted here by Sp(M). Here |U | is the cardinality of the finite set
U .

2. The Estrada Indices and some of its applications

Based on research on geometric properties of biomolecules [? ? ], given a
molecular graph G with eigenvalues λ1, . . . , λn, Ernesto Estrada conceived
the following expression

EE(G) =
n∑
i=1

exp(λi). (1)

The mathematical significance of the quantity in (??) was recognized short
time later [? ] and soon it became known under the name of “Estrada index”
[? ] (originally it was called “the sum of the subgraph centralities”).
This spectra graph invariant is used in many research and knowledge areas.
Concerning weighted graphs, the Estrada index can be used in the research
of molecular structures, see [? ? ? ]. Ernesto Estrada was motivated
when noted that the folding degree of chains is central to the elucidation of
structure-function relationships in proteins. This new index characterize the
folding degree of a (protein) chain and it is based on the spectral moments
of a matrix representing the dihedral angles of the protein main chain, see
[? ]. For graphs without weights the reader should refer to [? ? ] where the
authors presented a measure of centrality and bipartivity of certain networks
such as the metabolism, social communities, individual proteins and trophic
interactions in food networks. A relation between the Estrada Index and an
atomic branching can be seen in [? ]. Here the authors gave a graph theoretic
measure of extended atomic branching that explains the effect of all atoms
in a molecule, giving higher weight to the nearest neighbors. They proved a
result that allows the exact calculation of this measure based on the eigen-
values and eigenvectors of the adjacency matrix of the graph representing a
molecule.

Eventually, a plethora of investigations of the Estrada index followed,
whose details can be found in the surveys [? ? ] and, for instance in the
papers [? ? ? ? ? ]. Applications of the Estrada index in Shannon entropy,
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network theory and thermodynamics can be found in [? ], [? ] and [? ? ] ,
respectively.

Invariants of the form (1) can be conceived for any Hermitian matrix M
with spectrum Sp(M)

EE(M) =
∑

αi∈Sp(M)

exp(αi).

The Laplacian Estrada index [? ? ], was defined as

LEE(G) =
n∑
i=1

exp(µi).

For more information on this graph invariant see some of the most cited
paper [? ? ? ] and some of the recent papers [? ? ? ] and the references
therein. In [? ], Zhou and Gutman established lower and upper bounds for
LEE(G) in terms of number of vertices, edges and the first Zagreb index.
The authors also introduce a nice relation between LEE of bipartite graphs
with n vertices and m edges and the EE of its line graph, that is

LEE(G) = n−m+ e2EE(L(G)),

with e = exp(1). In consequence, in [? ] the authors proved that the path
and the star have minimal and maximal LEE among all trees on n ver-
tices, respectively, which showed the use of the Laplacian Estrada index as
a measure of branching in alkanes.

The signless Laplacian Estrada index [? ], defined in a similar way,

SLEE(G) =
n∑
i=1

exp(qi),

has attracted particular attention. For some details on this graph invariant
see [? ? ]. Note that SLEE and LEE coincide in the case of bipartite
graphs. This is an immediate consequence of the fact [? ] that the Laplacian
and signless Laplacian spectra of bipartite graphs coincide. Since the vast
majority of molecular graphs are bipartite, for this type of graphs SLEE
doesn’t add anything new to the previous study of LEE. Therefore, its
interest comes for non bipartite graphs. In Chemistry, cases where SLEE
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and LEE differ are the fullerenes, fluoranthenes and other non-alternant
conjugated species, see [? ? ? ? ].

Related with Estrada indices, for instance, Zhu [? ] determined the
extremal graphs that maximize the LEE for graphs with given connectivity
k or given matching number. Here, we study a similar problem considering
the chromatic number and the (vertex and edge) connectivity for the different
Estrada indices. After the presentation of the notation and the Estrada
indices, this paper is organized as follows. In Section 3, in order to extend
a result in [? ], a sharp upper bound for the Laplacian Estrada index of
graphs in terms of the chromatic number χ, in a family of simple undirected
connected graphs whose color classes have order not less than a positive
integer r, is established. At Section 4 an upper bound for the Estrada Index
of the complement of a graph in the previous family of graphs when χ =
2, is given. A Nordhaus-Gaddum type inequality for LEE(G) when G is
bipartite with color classes of order not less than 2 is presented. A sharp
upper bound for the Estrada index of the line graph of a graph and for the
signless Laplacian index of a graph in terms of connectivity is obtained in
Section 4 and Section 5, respectively. At Section 6 it is presented a result
about graphs with maximal signless Laplacian Estrada index and, at Section
7 some computational experiments are given in order to compare our new
upper bounds with real values of the Estrada indices for certain connected
graphs. Finally, at Section 8 we present some conclusions summarizing the
study done and give some insight for future work.

3. Laplacian Estrada Index and Chromatic Number

In this section a result from X. Chen & Y. Hou, presented in [? ], is
extended to a family of a simple undirected connected graphs on n vertices
whose color classes have order not less than a fixed positive integer r. Let Fn
be the family of the simple undirected connected graphs on n vertices. Let

Aχn = {G ∈ Fn : χ(G) = χ}.

Let Brn,χ be the family of graphs that belong to the set Aχn whose color classes
have order not less than r. Then, the next result from Chen and Y. Hou, [?
], can be rewritten in the light of this definition.

Proposition 1. [? ] Let G ∈ B1
n,χ where 2 ≤ χ ≤ n and n = sχ + t with

0 ≤ t < χ.
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1. If n = χ + t with 0 ≤ t < χ, or n = 2χ + t with 0 ≤ t ≤ 3, or n = 3χ
with 2 ≤ χ ≤ 3, then

LEE(G) ≤ 1+(χ−1) exp(n)+(χ−t)(s−1) exp(n−s)+st exp(n−s−1),
(2)

where equality holds in (??) if and only if G ∼= Ks, . . . , s︸ ︷︷ ︸
χ−t

,s+ 1, . . . , s+ 1︸ ︷︷ ︸
t

.

2. If n = 2χ+ t with 4 ≤ t < χ, or n = 3χ with χ ≥ 4, or n > 3χ, then

LEE(G) ≤ 1+(χ−1)(exp(n)+exp(n−2))+(n−2χ+1) exp(2χ−2), (3)

where equality holds in (??) if and only if G ∼= K2, . . . , 2︸ ︷︷ ︸
χ−1

,n− 2χ+ 2︸ ︷︷ ︸
1

.

The following corollary is an immediate consequence.

Corollary 2. Let G ∈ B2
n,χ where 2 ≤ χ ≤ n and n = sχ+ t with 0 ≤ t < χ.

1. If n = 2χ+ t with 0 ≤ t < 3, or n = 3χ with 2 ≤ χ ≤ 3, then

LEE(G) ≤


1 + (χ− 1) exp(n) + (χ− t) exp(n− 2) + 2t exp(n− 3), if n = 2χ+ t,

1 + (χ− 1) exp(n) + 2(χ− t) exp(n− 3) + 3t exp(n− 4), if n = 3χ.
(4)

If n = 2χ+t, the equality holds in (??) if and only if G ∼= K2, . . . , 2︸ ︷︷ ︸
χ−t

,3, . . . , 3︸ ︷︷ ︸
t

.

If n = 3χ, the equality holds in (??) if and only if K3, . . . , 3︸ ︷︷ ︸
χ

.

2. If n = 2χ+ t with 4 ≤ t < χ, or n = 3χ with χ ≥ 4, or n > 3χ, then

LEE(G) ≤ 1+(χ−1)(exp(n)+exp(n−2))+(n−2χ+1) exp(2χ−2), (5)

where equality holds in (??) if and only if G ∼= K2, . . . , 2︸ ︷︷ ︸
χ−1

,n− 2χ+ 2︸ ︷︷ ︸
1

.

One of the main goals of this paper is to extend the above results for the set
Brn,χ with r ≥ 3. Below we present some preliminary results for the proof of
the main theorem of this section.

Lemma 3. Let X ≥ 1 and Y ≥ 0. Then

X + Y ≤ X exp(Y ),

with equality if and only if Y = 0.
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Proof. Let Y ≥ 0 and X = 1 + a for some a ≥ 0. It is known that
Y + 1 ≤ exp(Y ) and a ≤ a exp(Y ) with equality if and only if Y = 0. Then
(1 + a) + Y ≤ (1 + a) exp(Y ) with equality if and only if Y = 0. That is,
X + Y ≤ X exp(Y ) with equality if and only if Y = 0.

Lemma 4. Let ni ≥ 4, for i = 1, . . . , χ and consider the sum

χ∑
i=1

(ni − 1) exp(n− ni). (6)

If any pair (ni, nj) with i 6= j is replaced in (??) by (ni− 1, nj + 1), then the
sum increases.

Proof. Let m ≥ 8 and 3 ≤ x ≤ m
2

. By Lemma ??, we have

(m− x− 2) = (m− 2x) + (x− 2)

≤ (x− 2) exp(m− 2x),

with equality if and only if x = m
2

. Then (2−x)+(m−x−2) exp(2x−m) ≤ 0
with equality if and only if x = m

2
. Let f(x) = (x− 1) exp(n−x) + (m−x−

1) exp(n−m+ x) and m ≥ 8 and 3 ≤ x ≤ m
2

. Then

f ′(x) = exp(n− x)
(

(2− x) + (n−m− 2) exp(2x−m)
)
≤ 0,

with equality if and only if x = m
2

. Let m = ni + nj then

f(ni) < f(ni − 1).

This implies that

(ni−1) exp(n−ni)+(nj−1) exp(n−nj) < (ni−2) exp(n−ni+1)+nj exp(n−nj−1).

Hence, replacing any pair (ni, nj) by (ni − 1, nj + 1) in (??), the sum in-
creases.
The next result relates the LEE of a connected graph G, when an edge is
added, G + e, and the LEE of the original graph.

Lemma 5. [? ] Let G be a connected graph on n vertices non isomorphic to
the complete graph. Then

LEE(G) < LEE(G + e).
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Now we prove the main result of this section.

Theorem 6. Let r ≥ 3. Let G ∈ Brn,χ. Then

LEE(G) ≤ b(n, χ, r) (7)

where

b(n, χ, r) = 1+(χ−1) exp(n)+(r−1)(χ−1) exp(n−r)+(n−rχ+r−1) exp(rχ−r),

with equality in (??) if and only if G ∼= Kr, ..., r︸ ︷︷ ︸
χ−1

,n− rχ+ r︸ ︷︷ ︸
1

.

Proof. Let G ∈ Brn,χ then 2 ≤ χ ≤ n
r
. Let G ∈ Brn,χ be the graph

that has the largest Estrada index among all the graphs H ∈ Brn,χ. Then
χ(G) = χ. Thus, let us consider the partition of V (G) into χ color classes,
say V1, V2, . . . , Vχ. From Lemma ??, each vertex in Vi is adjacent to all
vertices in Vj for any 1 ≤ i < j ≤ χ. Then, G ∼= Kn1,n2,...,nχ , where ni = |Vi|
for 1 ≤ i ≤ χ. Without loss of generality, we can assume that r ≤ n1 ≤ n2 ≤
· · · ≤ nχ. It is clear that

Sp(G) = Sp
(
Kn1 ∪ Kn2 ∪ · · · ∪ Knχ

)
= (nχ, ..., nχ︸ ︷︷ ︸

nχ−1

, ..., n1, ..., n1︸ ︷︷ ︸
n1−1

, 0, ..., 0︸ ︷︷ ︸
χ

).

Therefore,

Sp(G) = (n, ..., n︸ ︷︷ ︸
χ−1

, n− n1, ..., n− n1︸ ︷︷ ︸
n1−1

, ..., n− nχ, ..., n− nχ︸ ︷︷ ︸
nχ−1

, 0).

Thus, we obtain

LEE(G) = (χ− 1) exp(n) + 1 +

χ∑
i=1

(ni − 1) exp(n− ni)

with n =
∑χ

i=1 ni.
Suppose nχ−1 ≥ r + 1. Either for χ = 2 or χ ≥ 3, a new graph H such that
H ∼= Kn1−1,n2+1 in the former and H ∼= Kn1,...,nχ−1−1,nχ+1 in the latter, can be
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constructed. In both cases H ∈ Brn,χ. By Lemma ??, LEE(G) < LEE(H)
which is a contradiction to the maximality of G in Brn,χ. Therefore,

LEE(G) ≤ 1+(χ−1) exp(n)+(r−1)(χ−1) exp(n−r)+(n−rχ+r−1) exp(rχ−r),

with equality if and only if G ∼= Kr, ..., r︸ ︷︷ ︸
χ−1

,n− rχ+ r︸ ︷︷ ︸
1

.

Using Theorem ?? and the fact that G is a bipartite graph if and only if
χ(G) = 2, see [? ], the following corollary is an immediate consequence.

Corollary 7. Let G be a bipartite graph on n vertices with color classes of
order greater than or equal to r ≥ 3. Then

LEE(G) ≤ 1+ exp(n) + (r − 1) exp(n− r) + (n− r − 1) exp(r), (8)

where equality holds in (??) if and only if G ∼= Kr,n−r.

4. An upper bound for the Estrada Index of the complement of a
graph in Brn,χ
In this section, we present an upper bound for the Estrada index of the

complement of a graph in the family of graphs Brn,χ. At this point, we recall
that if µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 are the Laplacian eigenvalues of G,
then, 0 ≤ n−µ1 ≤ · · · ≤ n−µn−1 are the Laplacian eigenvalues of G. Taking
into account that the exponential function is a real increasing function, we
can say that for a graph H, LEE(H) increases while the Laplacian eigenval-
ues of H increase and, in consequence while the Laplacian eigenvalues of H
diminish.

If G ∈ Brn,χ and if it is such that G has its eigenvalues as the largest
possible, then G has its eigenvalues as the smallest possible.
For instance, if G has the possible maximum quantity of Laplacian eigenval-
ues equals to zero, then G has the possible maximum quantity of Laplacian
eigenvalues equals to n. But, this occurs when G has the possible maximum
number of connected components. The next result gives an upper bound for
the Estrada index of the complement of a graph in the family Brn,2.
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Theorem 8. Let G ∈ Brn,2 then

LEE
(
G
)
≤ (r1 − 1) (exp (n− 2) + exp (n)) + exp (n− 1− s) +

(s− 1) exp (n− 1) + 1

= (r1 − 1) (exp (n− 2) + exp (n)) + exp (2r1 − 2) +

(n− 2r1) exp (n− 1) + 1,

where n = 2r1 + s− 1, with r1 ≥ r and s ≥ r − r1 + 1.

Proof. Suppose that the number of elements of the color classes in G are
r1 and r2. Without loss of generality suppose that r ≤ r1 ≤ r2. Suppose
that r2 = r1 − 1 + s. By increasing the number of edges in G the Estrada
index increases, then G = Kr1 ∨ Kr2 − [M ∪ K1,s], where M is a matching
with r1 − 1 edges. In this case, G = (r1 − 1)K2 ∪ K1,s. In consequence
Sp(G) = (n− 2, n, n− 1− s, n− 1, 0). Thus, the inequality in Theorem ??
holds .

Remark 9. Taking into account that the right hand side of the inequality in
Theorem ?? is an increasing function of r1 which is at most n

2
(as r ≤ r1 ≤

n
2
≤ r2, otherwise we obtain a contradiction), from the same inequality we

have:

LEE
(
G
)
≤ 1 +

(n
2
− 1
)

exp (n) +
n

2
exp (n− 2).

Now, taking into account [? , Corollary 13], the following Nordhaus-Gaddum
type inequality, when G is bipartite can be obtained.

Corollary 10. Let G be a bipartite graph on n vertices with color classes of
order greater than or equal to r ≥ 3. Then, for n 6= 6

LEE(G) + LEE(G) ≤ 2 +
n

2
exp(n) +

(
1 +

n

2

)
exp(n− 2) + (n− 3) exp(2).

5. Estrada Index and Connectivity (vertex and edge)

In this section, it is given an upper bound for the Estrada index of the
line graph of undirected simple connected graphs whose vertex (and edge)
connectivity is less than or equal to a certain positive k. The equality cases
are discussed. Recall that the vertex connectivity (or just connectivity) of
a graph G, denoted by κ(G), is the smallest number of vertices of G whose

10



removals results in a disconnect graph. It is conventional to define κ(Kn) =
n− 1. Moreover, the edge connectivity ε(G), is the smallest number of edges
whose removals results in a disconnected graph. Always κ(G) ≤ ε(G) ≤ δ((G),
see [? , Theorem 5.1].
For n and k fixed positive integers with k ≤ n − 1, the signless Laplacian
eigenvalues of the family of join graphs Kk∨(Ki∪Kn−k−i) with 1 ≤ i ≤ bn−k

2
c

are identified in the following result.

Lemma 11. [? ] The signless Laplacian eigenvalues of Kk ∨ (Ki ∪ Kn−k−i)
are

n+
k

2
− 2 +

1

2

√
(2n− k)2 + 16i(k − n+ i),

n+
k

2
− 2− 1

2

√
(2n− k)2 + 16i(k − n+ i),

with multiplicity 1 and,

n− 2, k + i− 2, n− i− 2,

with multiplicity k, i− 1 and n− k − i− 1, respectively.

The following result relates the signless Laplacian eigenvalues of a graph G
to the eigenvalues of its line graph.

Lemma 12. [? ? ] Let G be a graph of order n with m ≥ 1 edges. Let qi
be the i-th greatest signless Laplacian eigenvalue of G and λi(L(G)) the i-th
greatest eigenvalue of the line graph L(G) of G. Then

qi = λi(L(G)) + 2,

for i = 1, 2, . . . , k, where k = min{n,m}. In addition, if m > n, then
λi(L(G)) = −2 for i ≥ n+ 1 and if n > m, then qi = 0 for i ≥ m+ 1.

A direct consequence of Lemma ?? and Lemma ?? is the following.

Lemma 13. [? ] The eigenvalues of the line graph of Kk ∨ (Ki ∪ Kn−k−i)
are given by

n+
k

2
− 4 +

1

2

√
(2n− k)2 + 16i(k − n+ i),

n+
k

2
− 4− 1

2

√
(2n− k)2 + 16i(k − n+ i),
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with multiplicity 1 and,

n− 4, k + i− 4, n− i− 4,−2,

with multiplicity k, i− 1, n− k − i− 1 and m− n, respectively.

As a direct consequence of the dominating non-negative matrix property, see
[? ], it is obtained below.

Lemma 14. [? ] Let G be a connected graph then

λ1(L(G)) < λ1(L(G + e)).

A direct consequence from the Lemma ?? and Cauchy Interlacing Theorem,
[? , Theorem 1] is the following result.

Theorem 15. Let G be a connected graph on n vertices non-isomorphic to
the complete graph. Then

EE(L(G)) < EE(L(G + e)). (9)

Proof. By taking into account that the adjacency matrix of the line graph
L(G) is a submatrix of the line graph L(G+e). Since the exponential function
is strictly increasing, the inequality below follows from the Cauchy Interlacing
Theorem,

EE(L(G)) ≤ EE(L(G + e)).

The strict inequality in (??) results from Lemma ??.
An immediate consequence of the above result is as follows.

Corollary 16. Among all the graphs on n vertices, the complete graph Kn
has the largest Estrada index of its line graph.

In the next lemma the number of edges of the graph Kk ∨ (Ki
⋃
Kn−k−i),

1 ≤ i ≤ bn−k
2
c is given.

Lemma 17. [? ] The number of edges of the graph Kk ∨ (Ki ∪ Kn−k−i),
1 ≤ i ≤ bn−k

2
c is given by

2i2 − 2i(n− k) + n2 − n
2

.
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Using the derivative of a function the next result is obtained.

Lemma 18. Let f be a continuous function in the interval [a, b]. Suppose f
has negative derivative in the interval (a, b). Suppose f(b) > 0. Then

h(x) = exp(f(x)) + exp(−f(x))

is a strictly decreasing function in [a, b].

Proof. Let f be a continuous function in [a, b] with negative derivative in
(a, b), then f is strictly decreasing in [a, b]. Since f(b) > 0 then f(x) > 0 for
all x ∈ [a, b].
Since h(x) = exp(f(x))+exp(−f(x)) then h is a continuous function in [a, b]
and differentiable in (a, b). Moreover

h′(x) = f ′(x)
[exp(2f(x))− 1

exp(f(x))

]
.

Since f ′(x) < 0 for all x ∈ (a, b) then h(x) < 0 for all x ∈ (a, b). Hence, h is
strictly decreasing in [a, b].
The eigenvalues of the line graph of a regular graph can be found in [? ].

Lemma 19. [? ] Let λ1, λ2, . . . , λn be the eigenvalues of a regular graph G of
order n and degree r, then the eigenvalues of L(G) are λi+r−2, i = 1, 2, . . . , n

and −2, with multiplicity
n(r − 2)

2
.

Consider now Fn the family of the simple undirected connected graphs on n
vertices. Let

Vkn = {G ∈ Fn : κ(G) ≤ k}.
The next theorem gives an upper bound for the Estrada index of the line
graph of a graph. The equality case is discussed.

Theorem 20. Let G ∈ Vkn. Then
EE(L(G)) ≤ b(n, k), (10)

where

b(n, k) = k exp(n− 4) + (n− k − 2) exp(n− 5) +
n2 − 5n+ 2k + 2

2
exp(−2)

+ exp
(
n− k

2
− 4 +

1

2

√
(2n− k)2 − 16(k − n+ 1)

)
+ exp

(
n− k

2
− 4− 1

2

√
(2n− k)2 − 16(k − n+ 1)

)
,

with equality in (??) if and only if G ∼= Kk ∨ (K1 ∪ Kn−k−1).
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Proof. Let G ∈ Vkn. We first consider k = n − 1. From Corollary ??,
EE(L(G)) ≤ EE(L(Kn)) with equality if and only if G ∼= Kn. It is well
known that

Sp(Kn) = {n− 1, (−1)[n−1]}.

From Lemma ??, we have

Sp(L(Kn)) = {2n− 4, (n− 4)[n−1], (−2)
n(n−3)

2 }.

Thus,

EE(L(Kn)) = exp(2n− 4) + (n− 1) exp(n− 4) +
n(n− 3)

2
exp(−2).

Then the result is true for k = n − 1. Consider 1 ≤ k ≤ n − 2. Let G ∈ Vkn
such that L(G) has the largest Estrada index among all the graphs L(H)
with H ∈ Vkn. Let U ⊂ V (G) such that G − U is a disconnected graph.
Let Y1,Y2, . . . ,Yr, be the connected components of G − U . We claim that
r = 2. If r > 2 then we can construct a graph H = G + e, where e is an edge
connecting a vertex in Y1 to a vertex in Y2. Clearly, H ∈ Vkn. By Theorem
??, EE(L(G)) < EE(L(H)), which is a contradiction to the maximality of
G in Vkn. Therefore r = 2, and G − U = Y1 ∪ Y2. We have |U | ≤ k. Now,
we claim that |U | = k. Suppose |U | < k. We construct a graph H = G + e
where e is an edge joining a vertex u ∈ Y1 with a vertex v ∈ Y2. We see
that H−U is a connected graph and the deletion of the vertex u disconnects
H−U . This tell us that H ∈ Vkn. By Theorem ??, EE(L(G)) < EE(L(H)),
which is a contradiction. Then, |U | = k. Therefore, G − U = Y1 ∪ Y2 and
|U | = k. Let |Y1| = i then |Y2| = n− k − i.
We claim

G ∼= Kk ∨ (Ki ∪ Kn−k−i)

for some 1 ≤ i ≤ bn−k
2
c. On the contrary, suppose that Y3 is the induced

subgraph of G obtained from the vertices in U, then there exists an edge in
the set

[E(Y1 ∨ Y3) ∪ E(Y2 ∨ Y3)]-E(G).

Therefore, it is possible to construct a new graphH = G+e. Clearly, H ∈ Vkn.
By Theorem ??, EE(L(G)) < EE(L(H)) which is a contradiction.
Until this point, we have proved that

EE(L(G)) ≤ EE(L(Kk ∨ (Ki ∪ Kn−k−i)))

14



for all G ∈ Vkn. Now we search the value of i for which EE(L(Kk ∨ (Ki ∪
Kn−k−i))) is maximum. From Lemma ?? and Lemma ??,

EE(L(Kk ∨ (Ki ∪ Kn−k−i))) = (i− 1) exp(k + i− 4) + (n− k − i− 1) exp(n− i− 4)

+ k exp(n− 4) +
2i2 − 2(n− k)i+ n2 − 3n

2
exp(−2)

+ exp
(
n+

k

2
− 4 +

1

2

√
(2n− k)2 + 16i(k − n+ i)

)
+ exp

(
n+

k

2
− 4− 1

2

√
(2n− k)2 + 16i(k − n+ i)

)
.

Define

f(x) = g(x) + h(x),

where,

g(x) = (x− 1) exp(k + x− 4)

+ (n− k − x− 1) exp(n− x− 4)

+
2x2 − 2(n− k)x+ n2 − 3n

2
exp(−2)

and

h(x) = exp
(
n+

k

2
− 4 + p(x)

)
+ exp

(
n+

k

2
− 4− p(x)

)
,

where

p(x) =
1

2

√
(2n− k)2 + 16x(k − n+ x).

Thus,

g′(x) = x exp(k+x−4)− (n−k−x) exp(n−x−4)+(2x− (n−k)) exp(−2).

Since x exp(k+x−4) ≤ (n−k−x) exp(n−x−4) for x ∈ [1, n−k
2

] with equality
only for x = n−k

2
, then g′(x) ≤ 0 with equality for x = n−k

2
. Thus, g(x) is

strictly decreasing in [1, n−k
2

]. Since p(x) in (??) is continuous in [1, n−k
2

] with

negative derivative in (1, n−k
2

) and p(n−k
2

) =
√
4nk−3k2

2
> 0, by Lemma ??,

h(x) is strictly decreasing in [1, n−k
2

]. Hence, f(x) is strictly decreasing in
this interval.
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Therefore
EE(L(G)) ≤ EE(L(Kk ∨ (K1 ∪ Kn−k−1)))

for all G ∈ Vkn with equality if and only if G ∼= Kk ∨ (K1 ∪ Kn−k−1).

In graphs of communication or transportation networks, the edge connectiv-
ity is an important measure of reliability. The minimum degree of a graph
G, will be denoted by δ(G).
Let

Ωk
n = {G ∈ Fn : ε(G) ≤ k},

and
∆k
n = {G ∈ Fn : δ(G) ≤ k}.

Recall that κ(G) ≤ ε(G) ≤ δ(G), [? ? ], then Ωk
n ⊆ Vkn and ∆k

n ⊆ Vkn. Thus
for G ∈ Ωk

n or G ∈ ∆k
n we have G ∈ Vkn. Since Kk ∨ (K1 ∪ Kn−k−1) ∈ Ωk

n has
minimum degree k then, as a consequence of the Theorems ?? and ??, the
following result holds.

Corollary 21. Let G ∈ Ωk
n ∪∆k

n. Then

EE(L(G)) ≤ b(n, k) (11)

where

b(n, k) = k exp(n− 4) + (n− k − 2) exp(n− 5) +
n2 − 5n+ 2k + 2

2
exp(−2)

+ exp
(
n− k

2
− 4 +

1

2

√
(2n− k)2 − 16(k − n+ 1)

)
+ exp

(
n− k

2
− 4− 1

2

√
(2n− k)2 − 16(k − n+ 1)

)
,

with equality in (??) if and only if G ∼= Kk ∨ (K1 ∪ Kn−k−1).

6. Signless Laplacian Estrada Index and Connectivity

The aim of this section is to establish a result about graphs with maximal
signless Laplacian Estrada index.

Lemma 22. [? ] Let G a connected graph on n vertices nonisomorphic to
the complete graph. Then

SLEE(G) < SLEE(G + e).
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The following is an immediate consequence.

Corollary 23. Among all graphs on n vertices, the complete graph Kn has
the largest signless Laplacian Estrada index.

The next theorem gives an upper bound for the signless Laplacian Estrada
index of a graph. The equality case is discussed.

Theorem 24. Let G ∈ Vkn. Then

SLEE(G) ≤ c(n, k) (12)

where

c(n, k) = k exp(n− 2) + (n− k − 2) exp(n− 3)

+ exp
(
n− k

2
− 2 +

1

2

√
(2n− k)2 − 16(k − n+ 1)

)
+ exp

(
n− k

2
− 2− 1

2

√
(2n− k)2 − 16(k − n+ 1)

)
,

with equality in (??) if and only if G ∼= Kk ∨
(
K1 ∪ Kn−k−1).

Proof. Let G ∈ Vkn. We first consider k = n − 1. From Corollary ??,
SLEE(G) ≤ SLEE(Kn) with equality if and only if G ∼= Kn. Moreover,

SLEE(Kn) = exp (2n− 2) + (n− 1) exp (n− 2).

Then the result is true for k = n− 1. Let now 1 ≤ k ≤ n− 2. Using Lemma
?? and the same techniques from Theorem ??, we can conclude that

SLEE(G) ≤ SLEE(Kk ∨ (Ki ∪ Kn−k−i))

for all G ∈ Vkn. We now search for a value of i for which SLEE(Kk ∨
(
Ki ∪

Kn−k−i)) is maximum. From Lemma ??, we obtain

SLEE(Kk ∨ (Ki ∪ Kn−k−i)) = k exp(n− 2)

+ (i− 1) exp(k + i− 2) + (n− k − i− 1) exp(n− i− 2)

+ exp
(
n+

k

2
− 2 +

1

2

√
(2n− k)2 + 16i(k − n+ i)

)
+ exp

(
n+

k

2
− 2− 1

2

√
(2n− k)2 + 16i(k − n+ i)

)
.

17



Define the function

f(x) = g(x) + h(x)

where

g(x) = (x− 1) exp(k + x− 2) + (n− k − x− 1) exp(n− x− 2)

and

h(x) = exp
(
n+

k

2
− 2 + p(x)

)
+ exp

(
n+

k

2
− 2− p(x)

)
,

where p(x) is defined in (??).
Thus

g′(x) = x exp(k + x− 2)− (n− k − x) exp(n− x− 2).

Since x exp(k+x−2) ≤ (n−k−x) exp(n−x−2) for x ∈ [1, n−k
2

] with equality
only for x = n−k

2
, then, g′(x) ≤ 0 with equality only for x = n−k

2
. Thus,

g(x) is strictly decreasing in [1, n−k
2

]. Using a strategy similar to the proof
of Theorem ?? using the function p(x), we conclude that, h(x) is strictly
decreasing in [1, n−k

2
]. Hence, f(x) is strictly decreasing in this interval.

Consequently

SLEE(G) ≤ SLEE(Kk ∨ (K1 ∪ Kn−k−1))

for all G ∈ Vkn with equality if and only if G ∼= Kk ∨ (K1 ∪ Kn−k−1).

Corollary 25. Let G ∈ Ωk
n ∪∆k

n. Then

SLEE(G) ≤ c(n, k) (13)

where

c(n, k) = k exp(n− 2) + (n− k − 2) exp(n− 3)

+ exp
(
n− k

2
− 2 +

1

2

√
(2n− k)2 − 16(k − n+ 1)

)
+ exp

(
n− k

2
− 2− 1

2

√
(2n− k)2 − 16(k − n+ 1)

)
,

with equality in (??) if and only if G ∼= Kk ∨ (K1 ∪ Kn−k−1).
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7. Comparisons and final remarks

In this section, we present some computational experiments to compare
our new upper bounds with real values of the Estrada indices for certain
connected graphs. We compare the estimates values obtained by Theorems
??, ??, ??, and Remark ?? with the approximate Estrada indices of each
graph in the table. From the results obtained in Theorems ?? and ??, we have
EE (L (G)) ≤ 1.888.017, 0 and SLEE (G) ≤ 13.898.082, 6, for each G ∈ V3

10,
respectively. From the results obtained in Theorem ?? and Remark ??, we
have LEE (G) ≤ 24.341, 2 and LEE

(
G
)
≤ 103.011, 6, for each G ∈ B3

10,2,
respectively. Before presenting the comparative table we give the definitions
of some graphs mentioned in it. Let D be a set of positive, proper divisors
of the integer n > 1. Define the graph ICGn(D) to have vertex set Zn =
{0, 1, ..., n− 1} and edge set

E(ICGn(D)) = {ij : i, j ∈ Zn, gcd(i− j, n) ∈ D},

see [? ]. Additionally, we define some non usual class of graphs which appear
here in a number of conjectures. Namely, a lollipop Loln,g is a graph obtained
from a cycle on g vertices by attaching a pendant path on n− g vertices to
one of its vertices. A turnip Tun,g is a graph obtained from a cycle on g
vertices by attaching n− g pendant edges to one of its vertices. A kite Kin,w
is a graph obtained from a clique on w vertices by attaching a pendant path
on n−w vertices to one of its vertices. A bag Bagp,q is a graph obtained from
a complete graph Kp by replacing an edge uv by a path Pq. A bug Bugp,q1,q2
is a graph obtained from a complete graph Kp by deleting an edge uv and
attaching paths Pq1 and Pq2 at u and v, respectively. A complete split graph
SKn,α is a graph obtained from an empty graph on α vertices and a clique
on n− α vertices by adding all edges between them.
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Figure 1: The graphs L1 and L2, respectively

Graph(G) EE(L(G)) SLEE(G) Graph(G) LEE(G) LEE(G)

P10 19,0 141,7 P10 141,7 56.773,3
S10 2.983,9 22.049,2 C10 168,6 46.000,3
Petersen 1.471,1 10.859,8 K4,6 23.510,7 2.182,9
Bug8,2,2 132.407,1 978.344,3 K3,7 24.341,2 6.622,0
Bag9,3 1.005.892,9 7.432.575,5 Lol10,4 200,5 48.814,2
Ki10,8 189.579,1 1.400.790,7 Lol10,6 194,0 47.833,2
SK10,7 65.686,3 485.345,6 Tu10,4 8.484,3 55.599,9
Ki10,9 1.371.006,2 10.130.414,6 Tu10,6 1.264,8 52.031,3
K7,3 3.295,7 24.341,2 ICG10(1) 3.655,9 4.988,6
K2∨ (K2 ∪ K6) 343.771,0 2.540.146,2 ICG10(1, 5) 23.214,8 1.189,3
K3∨ (K1 ∪ K6) 1.888.017,0 13.898.082,6 L1 12.680,4 2.574,0
Bug9,2,1 910.146,3 6.725.095,4 L2 7.571,3 5.310,9

• In all our test cases, the upper bounds in Theorems ??, ??, and ?? were
reached by the corresponding extreme graphs in each one of them, respec-
tively.
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8. Conclusions

In summary, in this paper, it is studied a meaningful graph invariant (the
Estrada index) on an important subclass of connected graphs. More concretely,
we characterized the graph having the largest signless Laplacian Estrada index and
Estrada index of its line graph among all graphs on n vertices with connectivity
less than or equal to a fixed number. Moreover, we determined the graph having
the largest Laplacian Estrada index among all graphs on n vertices and fixed
chromatic number where each independent set has order no less than 3. These
extremal graphs obtained are quite concordant with the extremal ones for some
other graph invariants, such as the spread [? ], Laplacian energy like [? ], energy
[? ] and signless Laplacian energy [? ], and some others. For future research, it
would be interesting to continue studying the Estrada index of graphs with some
specific structures. Also, this class of graphs is very significant which deserves
further investigation.
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[21] I. Gutman, J. Durdević, Fluorranthene and its congeners- A graph theoretical
study, MATCH Commun. Math. Comput. Chem. 60 (2008) 659-670.
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