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Abstract. We continue the study of the variable exponent Morreyfied Triebel-

Lizorkin spaces introduced in a previous paper. Here we give characterizations
by means of atoms and molecules. We also show that in some cases the number

of zero moments needed for molecules, in order that an infinite linear combi-

nation of them (with coefficients in a natural sequence space) converges in the
space of tempered distributions, is much smaller than what is usually required.

We also establish a Sobolev type theorem for related sequence spaces, which

might have independent interest.

1. Introduction

This paper is a continuation of [5], where we have introduced and presented

some properties of the Triebel-Lizorkin-Morrey spaces Es(·),u(·)p(·),q(·) (Rn), which mix two

recent trends in the literature, in this case starting from the Triebel-Lizorkin spaces
F sp,q(Rn):

(I) on one hand, one Morreyfies them in some way, that is, replace the Lp(Rn)
spaces in their construction by Morrey spaces Mu

p (Rn);
(II) on the other hand, one makes the parameters s, p, q and u variable.

In [5] we have traced a little bit of the history of these trends, which we will not
repeat here. We just add that somewhat close to our intentions is the work [17]
and, more recently, [16], where so-called Triebel-Lizorkin-type spaces with variable
exponents are studied. In the constant exponents setting — to which we refer
the interested reader to the surveys [12] and [13], and also to [18] and [10] —
these scales include the Triebel-Lizorkin-Morrey spaces. However, in the variable
exponents setting that is true only under severe restrictions on the parameters (in
particular, (1) below), as we have pointed out in [5].

In [5] we have introduced the Triebel-Lizorkin-Morrey spaces Es(·),u(·)p(·),q(·) (Rn) and

proved there an important convolution inequality, which, in particular, allowed us to
show that they satisfy a Peetre maximal function characterization, and afterwards
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concluded the independence of the introduced spaces from the admissible system
used.

As we have stressed in [5], one important feature of our approach is that we
do not need to make as many restrictions to the parameters as we have seen in
approaches by other authors. In particular, there is no need in our approach for
the commonly seen restriction

(1) sup
x∈Rn

( 1

p(x)
− 1

u(x)

)
<

1

sup p
.

Moreover, we actually considered 2-microlocal versions Ew,u(·)p(·),q(·)(R
n) of the spaces,

where the variable smoothness parameter 2js(x) is replaced by the more general
admissible weights wj(x).

Continuing from the study made in [5], in the present paper we prove the atomic
and molecular characterizations of those spaces given together by Theorems 5.5
and 5.21. The latter is proved after providing several crucial results, in particular
Theorem 5.6, to which we would also like to draw the attention here. The reason is
that it gives a result which is new even if one reduces it to the constant exponent
case. It gives sufficient conditions for an infinite linear combination of so-called
[K,L,M ]-molecules to converge in S ′(Rn). In connection with constant exponent
Triebel-Lizorkin-Morrey spaces Es,up,q (Rn), the usual condition imposed on L (which
controls the number of zero moments of the molecules) is

(2) L > σp − s

(see, e.g., [11, Lemma 2.32]), where σp := n(1/min{1, p} − 1). However, reading
our Theorem 5.6 for such spaces, a different condition is imposed:

(3) L >
n

u
− s.

We recover condition (2) in our Theorem 5.14 under the extra assumption 1−p/u <
p, which is really only an extra restriction when p ≤ 1. So, it is natural to ask which
one is weaker: (2) or (3)? As it is easily seen that 1−p/u ≤ p if and only if σp ≤ n/u,
we conclude that our new sufficient condition (3) is weaker if and only if 1−p/u > p.
This holds if and only if the distance between 1/p and 1/u is greater than 1, since
we are also assuming p ≤ u here.

On the other hand, we would also like to draw the reader’s attention to the
fact that the proof of the counterpart of Theorem 5.6 for the variable version of
condition (2), established in Theorem 5.14, partly relies on a result which might
have independent interest, namely a Sobolev type embedding theorem given in
Lemma 5.9 for corresponding sequence spaces.

2. Preliminaries

2.1. General notation. Here we introduce some of the general notation we use
throughout the paper. N, N0, Z, R and C have the usual meaning as sets of numbers,
as well as their n-th powers for n ∈ N. The Euclidean norm in Rn is denoted by | · |,
though this notation is also used for the norm of a multi-index, and for Lebesgue
measure when it is being applied to (measurable) subsets of Rn. By b·c and d·e we
mean the usual floor and ceiling functions respectively.
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The symbol S(Rn) stands for the usual Schwartz space of infinitely differentiable
rapidly decreasing complex-valued functions on Rn. We take for the (semi)norms
generating its locally convex topology the functionals pN , for N ∈ N, defined by

pN (φ) := sup
x∈Rn

(1 + |x|)N
∑
|β|≤N

|Dβφ(x)|, φ ∈ S(Rn).

By φ̂ we denote the Fourier transform of φ ∈ S(Rn) in the version

φ̂(x) :=
1

(2π)n/2

∫
Rn
e−ix·ξφ(ξ) dξ, x ∈ Rn,

and by φ∨ we denote the inverse Fourier transform of φ. These transforms are
topological isomorphisms in S(Rn) which extend in the usual way to the space
S ′(Rn) of tempered distributions, the dual space of S(Rn), which we endow with
the weak topology.

For two complex or extended real-valued measurable functions f, g on Rn the
convolution f ∗ g is given, in the usual way, by

(f ∗ g)(x) :=

∫
Rn
f(x− y)g(y)dy, x ∈ Rn,

whenever it makes sense (a.e.).
By c, c1, cφ, ... > 0 we denote constants which may change their value from one

line to another. Further, f . g means that there exists a constant c > 0 such that
f ≤ cg holds for a set of variables on which f and g may depend on and which shall
be clear from the context. If we write f ≈ g then there exists constants c1, c2 > 0
with c1f ≤ g ≤ c2f . And we shall then say that the expressions f and g are
equivalent (across the considered set of variables).

By Qν,m ⊂ Rn, with ν ∈ Z and m ∈ Zn, we denote the dyadic closed cube in
Rn which is centered at 2−νm and has sides parallel to the axes and of length 2−ν .
Given d > 0, dQν,m stands for the cube concentric with Qν,m and with side length
d2−ν . Furthermore, we denote by Br(x) ⊂ Rn the open ball in Rn with center
x ∈ Rn and radius r > 0, and by Qr(x) ⊂ Rn the open cube in Rn with center
x ∈ Rn and sides parallel to the axes and of length 2r > 0.
The characteristic function χν.m of a cube Qν,m is, as usual, given by

χν,m(x) :=

{
1, for x ∈ Qν,m
0, for x /∈ Qν,m

.

The characteristic function χA of any other subset A of Rn is defined in an
analogous way.

Given topological vector spaces A and B, the notation A ↪→ B will be used to
mean that the space A is continuously embedded into the space B.

Finally, the following standard shortcuts are used for r, s ∈ (0,∞]:

σr := n

(
1

min{1, r}
− 1

)
and σr,s := n

(
1

min{1, r, s}
− 1

)
.

2.2. Variable exponent Lebesgue spaces. The set of variable exponents P(Rn)
is the collection of all measurable functions p : Rn → (0,∞] with p− := ess-infx∈Rn p(x) >
0. Further, we set p+ := ess-supx∈Rn p(x). For exponents with p(x) ≥ 1 and
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complex or extended real-valued measurable functions f on Rn a semi-modular is
defined by

%p(·)(f) :=

∫
Rn
φp(x)(|f(x)|) dx,

where

φp(x)(t) :=


tp(x) if p(x) ∈ (0,∞),

0 if p(x) =∞ and t ∈ [0, 1],

∞ if p(x) =∞ and t ∈ (1,∞],

and the variable exponent Lebesgue space Lp(·)(Rn) is given by

Lp(·)(Rn) := {f : there exists a λ > 0 with %p(·) (f/λ) <∞},

with their elements being taken in the usual sense of equivalence classes of a.e.
coincident functions. This space is complete and normed, hence a Banach space,
with the norm ∥∥f |Lp(·)(Rn)

∥∥ := inf{λ > 0 : %p(·)(f/λ) ≤ 1}.

These spaces share many properties with the usual Lebesgue spaces, see for a wide
overview [9], [7], [6], but there are also some differences, e.g. they are not translation
invariant. By the property

(4)
∥∥f |Lp(·)(Rn)

∥∥ =
∥∥∥ |f |t∣∣L p(·)

t
(Rn)

∥∥∥1/t for any t > 0

it is also possible to extend the definition of the spaces Lp(·)(Rn) to all exponents

p ∈ P(Rn). In such more general setting the functional
∥∥ · |Lp(·)(Rn)

∥∥ need not be
a norm, although it is always a quasi-norm.
Many theorems for variable Lebesgue spaces Lp(·)(Rn) are only valid for exponents
p(·) within a subclass of P(Rn) where they satisfy certain regularity conditions. An
appropriate subclass in this sense is the set P log(Rn) defined below.

Definition 2.1. Let g : Rn → R.

(i) We say that g is locally log Hölder continuous, g ∈ C log
loc (Rn), if there exists

a constant clog(g) > 0 with

|g(x)− g(y)| ≤ clog(g)

log(e+ 1
|x−y| )

for all x, y ∈ Rn.

(ii) We say that g is globally log Hölder continuous, g ∈ C log, if it is locally log
Hölder continuous and there exist a g∞ ∈ R and a constant c∞(g) > 0 with

|g(x)− g∞| ≤
c∞(g)

log(e+ |x|)
for all x ∈ Rn.(5)

(iii) We write g ∈ P log(Rn) if 0 < g− ≤ g(x) ≤ g+ ≤ ∞ with 1/g ∈ C log(Rn).

Since a control of the quasi-norms of characteristic functions of balls in variable
exponent spaces will be crucial for our estimates, we present below a result in
that direction and which is an adapted version of [7, Corollary 4.5.9] to the case
0 < p− ≤ p+ ≤ ∞. To obtain it one just has to explore property (4) above.
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Lemma 2.2. Let p ∈ P log(Rn). Then for all x0 ∈ Rn and all r > 0 we have that∥∥χBr(x0)

∣∣Lp(·)(Rn)
∥∥ ≈ ∥∥χQr(x0)

∣∣Lp(·)(Rn)
∥∥

≈

{
r

n
p(x) , if r ≤ 1 and x ∈ Br(x0)

r
n
p∞ , if r ≥ 1

.

Here we denote 1
p∞

:=
(

1
p

)
∞

which is given by (5).

3. Variable exponent Morrey spaces

Now, we can define the Morrey spaces which we are interested in, and which
were introduced in [4] (see also the beginning of Section 2.3 in [3] for a small survey
of literature on variable exponent Morrey spaces).

Definition 3.1. Let p, u ∈ P(Rn) with p ≤ u. Then the Morrey space M
u(·)
p(·) (Rn)

is the collection of all (complex or extended real-valued) measurable functions f on
Rn with (quasi-norm given by)∥∥∥f |Mu(·)

p(·) (Rn)
∥∥∥ := sup

x∈Rn,r>0
rn( 1

u(x)
− 1
p(x) )

∥∥f |Lp(·)(Br(x))
∥∥ <∞.

For future reference we state and prove the following result giving easy examples
of functions belonging to the above Morrey spaces, as long as p satisfies a convenient
regularity property.

Lemma 3.2. Let u ∈ P(Rn), p ∈ P log(Rn), p ≤ u and A be a measurable and

bounded subset of Rn. Then χA ∈Mu(·)
p(·) (Rn).

Proof. Let x ∈ Rn and r > 0, as in the supremum of the quasi-norm in Definition
3.1. If 0 < r ≤ 1 we estimate, using Lemma 2.2,

rn( 1
u(x)
− 1
p(x) )

∥∥χA|Lp(·)(Br(x))
∥∥ = rn( 1

u(x)
− 1
p(x) )

∥∥χA · χBr(x)∣∣Lp(·)(Rn))
∥∥

≤ rn( 1
u(x)
− 1
p(x) )

∥∥χBr(x)∣∣Lp(·)(Rn))
∥∥

. r
n
u(x) r−

n
p(x) r

n
p(x) ≤ r

n
u(x) ≤ 1.

In the case of r > 1 we use rn/u(x)−n/p(x) ≤ 1 and Lemma 2.2 again to obtain

rn( 1
u(x)
− 1
p(x) )

∥∥χA|Lp(·)(Br(x))
∥∥ ≤ ∥∥χA · χBr(x)∣∣Lp(·)(Rn))

∥∥
≤
∥∥χA|Lp(·)(Rn))

∥∥ . R n
p∞ <∞,

whereR > 1 was chosen such thatA ⊂ BR(x). Altogether we get
∥∥∥χA|Mu(·)

p(·) (Rn)
∥∥∥ <

∞, as required. �

Remark 3.3. As a clear consequence of the above result, M
u(·)
p(·) (Rn) contains also

all L∞(Rn)-functions which are a.e. equal to zero outside a bounded subset of Rn.

Next we state the convolution inequality proved in [5, Thm. 3.3], whereM
u(·)
p(·) (`q(·))

stands for the set of all sequences (fν)ν∈N0
of (complex or extended real-valued)

measurable functions on Rn such that
∥∥∥(∑∞ν=0 |fν(·)|q(·)

)1/q(·)∣∣∣Mu(·)
p(·) (Rn)

∥∥∥ is finite.
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Such a result will be one of the main tools in further results to be presented in this
paper. The functions ην,m considered are given for ν ∈ N0 and m > 0 by

ην,m(x) := 2νn(1 + 2ν |x|)−m.

Theorem 3.4 ([5, Thm. 3.3]). Let p, q ∈ P log(Rn) and u ∈ P(Rn) with 1 < p− ≤
p(x) ≤ u(x) ≤ supu <∞ and q−, q+ ∈ (1,∞). For every

m > n+ nmax

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− 1

p∞

)
there exists a c > 0 such that for all (fν)ν ⊂Mu(·)

p(·) (`q(·))∥∥∥∥∥∥
( ∞∑
ν=0

|ην,m ∗ fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ ≤ c
∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ .
To make our results more accessible we introduce the following abbreviation,

which we shall use in the rest of the paper:

c∞(1/p, 1/u) := max

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− 1

p∞

)
.(6)

It is easily seen that c∞(1/p, 1/u) = 0 if p(·) = u(·) or when p(·) = p constant.
We shall also need the following lemmas, which we have also already considered

in [5]. For the meaning of
∥∥∥ · |Mu(·)

p(·) (`q(·))
∥∥∥, see Definition 4.3 below.

Lemma 3.5. Let f and g be two measurable functions with 0 ≤ f(x) ≤ g(x) for
a.e. x ∈ Rn. Then it holds∥∥∥f |Mu(·)

p(·) (Rn)
∥∥∥ ≤ ∥∥∥g|Mu(·)

p(·) (Rn)
∥∥∥ .

Lemma 3.6. Let p, q, u ∈ P(Rn) with p ≤ u and 0 < t < ∞. Then for any
sequence (fν)ν∈N0

of measurable functions it holds∥∥∥∥ (|fν |t)ν
∣∣M u(·)

t
p(·)
t

(` q(·)
t

)

∥∥∥∥ =

∥∥∥∥∥∥
( ∞∑
ν=0

|fν |q(·)
)t/q(·)∣∣∣∣∣∣M

u(·)
t

p(·)
t

(Rn)

∥∥∥∥∥∥
=
∥∥∥ (fν)ν |Mu(·)

p(·) (`q(·))
∥∥∥t ,

with the usual modification every time q(x) =∞.

Lemma 3.7. Let p, q, u ∈ P(Rn) with p ≤ u. For any sequence (gj)j∈N0
of non

negative measurable functions we denote, for δ > 0,

Gk(x) =

∞∑
j=0

2−|k−j|δgj(x), x ∈ Rn, k ∈ N0.

Then it holds ∥∥∥ (Gk)k|Mu(·)
p(·) (`q(·))

∥∥∥ ≤ c(δ, q)∥∥∥ (gj)j |Mu(·)
p(·) (`q(·))

∥∥∥ ,
where

c(δ, q) = max

∑
j∈Z

2−|j|δ,

∑
j∈Z

2−|j|δq
−

1/q−
 .
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Finally, we state and prove some results regarding the quasi-norm in the variable
exponent Morrey spaces which will prove useful later on.

Lemma 3.8. Let p, u ∈ P(Rn) with p ≤ u and inf p > 0. Then M
u(·)
p(·) (Rn) can

be equivalently defined as the collection of all (complex or extended real-valued)
measurable functions f (on Rn) with

‖f‖D,p,u := sup
j,x,k

2−jn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qj,k)‖ <∞,

where the supremum runs over all j ∈ Z, x ∈ Rn and k ∈ Zn with |x − 2−jk|∞ ≤
3
22−j. Moreover,

∥∥∥ · |Mu(·)
p(·) (Rn)

∥∥∥ and ‖ · ‖D,p,u are indeed equivalent expressions in

M
u(·)
p(·) (Rn).

Proof. First step: Here we show that M
u(·)
p(·) (Rn) can be equivalently defined by the

finiteness of

‖f‖Q,p,u := sup
x∈Rn,r>0

rn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qr(x))‖.

Since |y|∞ ≤ |y|, then Br(x) ⊂ Qr(x) and ‖f |Mu(·)
p(·) (Rn)‖ ≤ ‖f‖Q,p,u. On the other

hand, since |y| ≤
√
n|y|∞, then Qr(x) ⊂ B√nr(x) and, for any x ∈ Rn and r > 0,

rn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qr(x))‖ ≤

√
n
n( 1

p(x)
− 1
u(x) )(

√
nr)n( 1

u(x)
− 1
p(x) )‖f |Lp(·)(B√nr(x)‖

≤
√
n

n
inf p ‖f |Mu(·)

p(·) (Rn)‖.

Second step: Here we show that ‖f‖D,p,u ≈ ‖f‖Q,p,u, which finishes the proof
together with the first step.

Given j ∈ Z, x ∈ Rn and k ∈ Zn with |x − 2−jk|∞ ≤ 3
22−j , define the positive

number r := 2−j . Notice that
◦
Qj,k ⊂ Q2r(x), therefore

2−jn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qj,k)‖

≤ rn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Q2r(x))‖ ≤ 2

n
inf p ‖f‖Q,p,u,

hence ‖f‖D,p,u . ‖f‖Q,p,u.
Now, we prove the opposite estimate. Given x ∈ Rn and r > 0, let j ∈ Z be

chosen such that 2−j−2 < r ≤ 2−j−1 and pick kr,x ∈ Zn such that |2jx−kr,x|∞ ≤ 1
2 .

Clearly,

Qr(x) ⊂ Q2−j−1(x) ⊂
⋃
k

Qj,k,

where the union runs over all k ∈ Zn with |k− kr,x|∞ ≤ 1. Notice that the number
of cubes in the union above depends only on n. We denote by N such a number
and have that

‖fχQr(x)|Lp(·)(R
n)‖ ≤ ‖fχ⋃

k

◦
Qj,k
|Lp(·)(Rn)‖

= ‖f
∑
k

χ ◦
Qj,k
|Lp(·)(Rn)‖

≤ cp−,n
∑
k

‖fχQj,k |Lp(·)(Rn)‖,
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where cp−,n > 0 depends only on p− and n and the sum runs also over all k ∈ Zn
with |k − kr,x|∞ ≤ 1. Hence

rn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qr(x))‖

≤ cp−,n
∑
k

rn( 1
u(x)
− 1
p(x) )‖f |Lp(·)(Qj,k)‖

≤ cp−,n
∑
k

22n( 1
p(x))

− 1
u(x) )2−jn( 1

u(x)
− 1
p(x) )‖f |Lp(·)(Qj,k)‖

≤ cp−,n2
2n

inf pN‖f‖D,p,u,

using also the fact that, for each considered k,

|x− 2−jk|∞ ≤ |x− 2−jkr,x|∞ + |2−jkr,x − 2−jk|∞ ≤
3

2
2−j .

�

Remark 3.9. If 1
p is also locally log-Hölder continuous, then for the terms with

j ≥ 0 we can equivalently use 2
jn

p(2−jk) instead of 2
jn
p(x) in ‖f‖D,p,u. This follows by

standard arguments from the log Hölder continuity, see [7].

Lemma 3.10. Let u ∈ P(Rn) and p ∈ P log(Rn) with p ≤ u. Let f be of the form

f =
∑
m∈Zn

hν,mχν,m,

for ν ∈ N0 and hν,m ∈ C. Up to equivalence constants independent of ν, we have
that in the calculation of ‖f‖D,p,u we only need to consider j ∈ Z such that j ≤ ν.

Proof. Clearly, the new expression, restricting j ∈ Z so that j ≤ ν, is bounded
from above by ‖f‖D,p,u. On the other hand, we are going to show that for f of
the form given, all the terms with j > ν of the supremum defining ‖f‖D,p,u are
bounded from above by a suitable constant times a corresponding term for j = ν,
which shall conclude the proof.

Given j ∈ Z with j > ν, x ∈ Rn and k ∈ Zn with |x − 2−jk|∞ ≤ 3
22−j , the

corresponding term in the sup defining ‖f‖D,p,u is

(7) 2−jn( 1
u(x)
− 1
p(x) )

∥∥∥ ∑
m∈Zn

hν,mχν,mχj,k|Lp(·)(Rn)
∥∥∥.

Since necessarily here j > 0, we can use the preceding remark and instead of 2
jn
p(x)

we use 2
jn

p(2−jk) in the above expression.

Notice that, by the dyadic structure, either Qj,k ⊂ Qν,m or
◦
Qj,k ∩ Qν,m = ∅.

The first situation occurs just for one m ∈ Zn, which we shall denote by mj,k. So,
(7) turns out to be equivalent to

2−
jn
u(x) 2

jn

p(2−jk)
∥∥hν,mj,kχj,k∣∣Lp(·)(Rn)

∥∥
. 2−

jn
u(x) |hν,mj,k |

. 2−
νn
u(x) 2

νn

p(2−νmj,k) |hν,mj,k |2
n

p−
∥∥χν,mj,k ∣∣Lp(·)(Rn)

∥∥ .(8)
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We have used Lemma 2.2 to establish the two preceding inequalities. Observe now
that |2−νmj,k − 2−jk|∞ ≤ 2−ν−1 − 2−j−1, hence

|x− 2−νmj,k|∞ ≤ |x− 2−jk|∞ + |2−jk − 2−νmj,k|∞ <
3

2
2−ν ,

and using Remark 3.9 we get that (8) can be estimated by

≈ 2−νn( 1
u(x)
− 1
p(x) )

∥∥hν,mj,kχν,mj,kχν,mj,k ∣∣Lp(·)(Rn)
∥∥

≤ 2−νn( 1
u(x)
− 1
p(x) )

∥∥∥∥∥ ∑
m∈Zn

hν,mχν,m

∣∣∣∣∣Lp(·)(Qν,mj,k)

∥∥∥∥∥ .
�

4. 2-microlocal Triebel-Lizorkin-Morrey spaces and their Peetre
maximal function characterization

We need admissible weight sequences and so called admissible pairs in order to
define the spaces under consideration.

Definition 4.1. A pair (ϕ̌, Φ̌) of functions in S(Rn) is called admissible if

suppϕ ⊂ {x ∈ Rn :
1

2
≤ |x| ≤ 2} and supp Φ ⊂ {x ∈ Rn : |x| ≤ 2}

with

|ϕ(x)| ≥ c > 0 on {x ∈ Rn :
3

5
≤ |x| ≤ 5

3
},

|Φ(x)| ≥ c > 0 on {x ∈ Rn : |x| ≤ 5

3
}.

Further, we set ϕj(x) := ϕ(2−jx) for j ≥ 1 and ϕ0 := Φ. Then (ϕj)j∈N0
⊂ S(Rn)

and

suppϕj ⊂ {x ∈ Rn : 2j−1 ≤ |x| ≤ 2j+1}.

Definition 4.2. Let α1 ≤ α2 and α ≥ 0 be real numbers. The class of admissible
weight sequences Wα

α1,α2
(Rn) is the collection of all sequences w = (wj)j∈N0 of

measurable functions wj on Rn such that

(i) There exists a constant C > 0 such that

0 < wj(x) ≤ Cwj(y)(1 + 2j |x− y|)α for x, y ∈ Rn and j ∈ N0;

(ii) For all x ∈ Rn and j ∈ N0

2α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x).

Now, we can give the definition of 2-microlocal Triebel-Lizorkin-Morrey spaces.

Definition 4.3. Let (ϕj)j∈N0
be constructed as in Definition 4.1 and w ∈ Wα

α1,α2
(Rn)

be admissible weights. Let p, q ∈ P log(Rn) and u ∈ P(Rn) with 0 < p− ≤ p(x) ≤
u(x) ≤ supu <∞ and q−, q+ ∈ (0,∞). Then

Ew,u(·)p(·),q(·)(R
n) :=

{
f ∈ S ′(Rn) :

∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ <∞}
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where ∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ :=

∥∥∥ (wj(ϕj f̂)∨)j

∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥
:=

∥∥∥∥∥∥∥
 ∞∑
j=0

|wj(ϕj f̂)∨|q(·)
1/q(·)

∣∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥∥ .
Remark 4.4. (i) First observations about Ew,u(·)p(·),q(·)(R

n), e.g. the fact that it is

a quasi-normed space, can be seen in [5], to which we refer the reader.

(ii) On the other hand, to show that

S(Rn) ↪→ Ew,u(·)p(·),q(·)(R
n) ↪→ S ′(Rn)(9)

we refer to Corollaries 5.22 and 5.7 below. The proofs come as by-products
of the arguments leading to the atomic/molecular characterization of the

spaces Ew,u(·)p(·),q(·)(R
n). So, it can be considered an interesting application of

the tools developed in this paper and constitutes an approach different from
the one classically used (e.g. the proof of [14, (2.3.3/1)]).

(iii) As regards the completeness of Ew,u(·)p(·),q(·)(R
n), it follows by standard argu-

ments once the second embedding in (9) is clear: see Corollary 5.8.

In [5] we have also proved the Peetre maximal function characterization of these
spaces. Since we shall need to use it below, we recall its statement here.

We need the following notion first.

Given a system {ψj}j∈N0
⊂ S(Rn) we set Ψj = ψ̂j ∈ S(Rn) and define the Peetre

maximal function of f ∈ S ′(Rn) for every j ∈ N0 and a > 0 as

(Ψ∗jf)a(x) := sup
y∈Rn

|(Ψj ∗ f)(y)|
1 + |2j(y − x)|a

, x ∈ Rn.

We start with two given functions ψ0, ψ1 ∈ S(Rn) and define ψj(x) := ψ1(2−j+1x),
for x ∈ Rn and j ∈ N \ {1}. Furthermore, for all j ∈ N0 we write, as mentioned,

Ψj = ψ̂j .
Now, we state the announced Peetre maximal function characterization.

Theorem 4.5 ([5, Thm. 4.5]). Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn). Assume p, q ∈
P log(Rn) and u ∈ P(Rn) with 0 < p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈
(0,∞). Let R ∈ N0 with R > α2 and let further ψ0, ψ1 belong to S(Rn) with

Dβψ1(0) = 0, for 0 ≤ |β| < R,

and

|ψ0(x)| > 0 on {x ∈ Rn : |x| ≤ kε},
|ψ1(x)| > 0 on {x ∈ Rn : ε ≤ |x| ≤ 2kε}

for some ε > 0 and k ∈ (1, 2].

For a > n
(

1
min(p−,q−) + c∞(1/p, 1/u)

)
+ α we have that∥∥∥f | Ew,u(·)p(·),q(·)(R

n)
∥∥∥ ≈ ∥∥∥ ((Ψj ∗ f)wj)j |Mu(·)

p(·) (`q(·))
∥∥∥ ≈ ∥∥∥ ((Ψ∗jf)awj)j

∣∣Mu(·)
p(·) (`q(·))

∥∥∥
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holds for all f ∈ S ′(Rn).

Notice that this theorem contains the conclusion that the 2-microlocal Morrey-
fied spaces of variable exponents given in Definition 4.3 are independent of the
admissible pair considered.

5. Atomic and molecular characterizations

In this section we show a characterization of the spaces Ew,u(·)p(·),q(·)(R
n) by atoms

and molecules. First of all we need to introduce the corresponding sequence spaces.

Definition 5.1. Let p, q, u ∈ P(Rn) with p ≤ u and w = (wk)k∈N0
∈ Wα

α1,α2
(Rn).

Then for all complex valued sequences

λ = {λν,m : ν ∈ N0,m ∈ Zn} we define e
w,u(·)
p(·),q(·) :=

{
λ :
∥∥∥λ| ew,u(·)

p(·),q(·)

∥∥∥ <∞}
where ∥∥∥λ| ew,u(·)

p(·),q(·)

∥∥∥ :=

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|wν(2−νm)λν,mχν,m(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥
(with the usual modification every time q(x) equals ∞).
We also define

n
w,u(·)
p(·),∞ :=

{
λ :
∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥ <∞}
where ∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥ := sup
ν∈N0

∥∥∥∥∥ ∑
m∈Zn

wν(2−νm)λν,mχν,m(·)

∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥ .
Remark 5.2. (i) It is easily seen that the above sequence spaces are quasi-

normed and that the quasi-norm is a norm when min(p−, q−) ≥ 1.
(ii) The following embeddings hold trivially:

e
w,u(·)
p(·),q(·) ↪→ e

w,u(·)
p(·),∞ ↪→ n

w,u(·)
p(·),∞.

Now it is time to define atoms, which are one of the building blocks we consider
here.

Definition 5.3. Let K,L ∈ N0 and d > 1. For each ν ∈ N0 and m ∈ Zn a
CK-function aν,m is called a [K,L, d]-atom (supported near Qν,m) if

supp aν,m ⊂ dQν,m,

sup
x∈Rn

|Dγaν,m(x)| ≤ 2|γ|ν for 0 ≤ |γ| ≤ K

and ∫
Rn
xγaν,m(x)dx = 0 for ν ≥ 1 and 0 ≤ |γ| < L.

We also give the definition of molecules, where in contrast to atoms the compact
support condition is replaced by a decay condition.
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Definition 5.4. Let K,L ∈ N0 and M > 0. For each ν ∈ N0 and m ∈ Zn a CK-
function µν,m ∈ CK(Rn) is called a [K,L,M ]-molecule (concentrated near Qν,m)
if

|Dβµν,m(x)| ≤ 2|β|ν(1 + 2ν |x− 2−νm|)−M for 0 ≤ |β| ≤ K

and ∫
Rn
xβµν,m(x)dx = 0 for ν ≥ 1 and 0 ≤ |β| < L.(10)

For the first direction of the atomic characterization we show that any function
in our function spaces can be written as a linear combination of atoms.

Theorem 5.5. Let w ∈ Wα
α1,α2

(Rn), p, q ∈ P log(Rn) and u ∈ P(Rn) with 0 <

p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈ (0,∞). Further, let K,L ∈ N0 and

d > 1. For each f ∈ Ew,u(·)p(·),q(·)(R
n) there exist [K,L, d]-atoms aν,m ∈ S(Rn) and

λ(f) ∈ e
w,u(·)
p(·),q(·) such that

f =

∞∑
ν=0

∑
m∈Zn

λν,m(f) aν,m, convergence in S ′(Rn),

and there exists a constant c > 0 independent of f such that∥∥∥λ(f)| ew,u(·)
p(·),q(·)

∥∥∥ ≤ c∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ .(11)

Proof. Since f ∈ S ′(Rn), we have by [2, Theorem 4.12(a)] that there exist [K,L, d]-
atoms aν,m ∈ S(Rn) and λ(f) := (λν,m)ν,m ⊂ C such that

f =

∞∑
ν=0

∑
m∈Zn

λν,m(f) aν,m(12)

with the inner sum taken pointwisely and the outer sum converging in S ′(Rn).
Afterwards, looking at the proof of [2, Theorem 4.12] we see in [2, 7.3, Step 2] that
the following pointwise estimate holds for a.e. x ∈ Rn:

(13)

∣∣∣∣∣ ∑
m∈Zn

wν(x)λν,m(f)χν,m(x)

∣∣∣∣∣ ≤ cawν(x)(θ∗νf)a(x),

with a > 0 at our disposal and ca > 0 independent of x ∈ Rn, ν ∈ N0 and
f ∈ S ′(Rn). Here θν = 2νnθ(2ν ·), ν ∈ N, where θ0, θ fit, for some k ∈ (1, 2] and
ε > 0, in the requirements of Theorem 3.1 of [1] for the ψ0, ψ in that theorem and

Dβ θ̂1(0) = 0 for any β ∈ Nn0 .

Defining now ψ0 := θ̂0(−·) and ψ1 := θ̂(− ·2 ), it is easy to see that these ψ0, ψ1

satisfy the conditions of our Theorem 4.5 for the same k and ε as above. We can

then apply that theorem with R > α2 and a > n
(

1
min(p−,q−) + c∞(1/p, 1/u)

)
+ α

and get ∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ≈ ∥∥∥ ((θ∗νf)awν)ν |Mu(·)

p(·) (`q(·))
∥∥∥ .

Combining this with (13) we get using Lemma 3.5∥∥∥λ(f)| ew,u(·)
p(·),q(·)

∥∥∥ ≈ ∥∥∥∥∥ ∑
m∈Zn

wν(·)λν,m(f)χν,m(·)

∣∣∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥∥∥ . ∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ .
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Using now the hypothesis f ∈ Ew,u(·)p(·),q(·)(R
n) we conclude that λ(f) ∈ e

w,u(·)
p(·),q(·) to-

gether with the estimate (11). On the other hand, having now λ(f) ∈ e
w,u(·)
p(·),q(·), the

proof that the inner sum in (12) also converges in S ′(Rn) for the regular distri-
bution given by the pointwise sum can be done by adapting the argument in the
second step of the proof of Theorem 5.6 below to our situation here, where we have
atoms aν,m instead of molecules µν,m: on one hand the mentioned argument does
not use the assumption on L in that theorem; on the other hand, in the present
situation we can choose M fitting the hypotheses of that theorem, since, given any

M > 0, (1 + d
√
n/2)

−M
aν,m are [K,L,M ]-molecules concentrated near Qν,m (cf.

[2, Remark 4.3]). �

Before coming to the other direction in the characterizations of Ew,u(·)p(·),q(·)(R
n) with

atoms and molecules, we clarify the convergence of the sums. Since every [K,L, d]-
atom supported near Qν,m is — up to a constant factor — a [K,L,M ]-molecule
concentrated near Qν,m, it is enough to show the convergence with molecules. Our
first theorem in this direction is proved by mixing some ideas from the proofs of [8,
Lemma 3.11] and [2, Proposition 4.6].

Theorem 5.6. Let w ∈ Wα
α1,α2

(Rn), p ∈ P log(Rn) and q, u ∈ P(Rn) with p ≤ u.

Let λ ∈ n
w,u(·)
p(·),∞ and (µν,m)ν,m be [K,L,M ]-molecules with

L > −α1 +
n

inf u
and M > L+ 2n+ 2α.

Then

∞∑
ν=0

∑
m∈Zn

λν,mµν,m converges in S ′(Rn)(14)

and the convergence in S ′(Rn) of the inner sum gives the regular distribution ob-
tained by taking the corresponding pointwise convergence. Moreover, the sum∑

(ν,m)∈N0×Zn
λν,mµν,m converges also in S ′(Rn)

to the same distribution as the iterated sum in (14).

Proof. First step: We start by proving an important inequality, which we need in
the sequel. We have, for any ν ∈ N0 and m ∈ Zn and with the help of Lemma 2.2,∥∥∥λν,mwν(2−νm)χν,m

∣∣Mu(·)
p(·) (Rn)

∥∥∥ = |λν,m|wν(2−νm)
∥∥∥χν,m|Mu(·)

p(·) (Rn)
∥∥∥

= |λν,m|wν(2−νm) sup
x∈Rn,r>0

rn( 1
u(x)
− 1
p(x) )

∥∥χν,m|Lp(·)(Br(x))
∥∥

≥ |λν,m|wν(2−νm)2
(−ν−1)n

(
1

u(2−νm)
− 1

p(2−νm)

) ∥∥∥χB2−ν−1 (2−νm)

∣∣∣Lp(·)(Rn)
∥∥∥

≈ |λν,m|wν(2−νm)2
(−ν−1)n

(
1

u(2−νm)
− 1

p(2−νm)

)
2
(−ν−1) n

p(2−νm)

& |λν,m|wν(2−νm)2−ν
n

inf u ,
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therefore

|λν,m|wν(2−νm) . 2ν
n

inf u

∥∥∥λν,mwν(2−νm)χν,m
∣∣Mu(·)

p(·) (Rn)
∥∥∥

≤ 2ν
n

inf u

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ .(15)

Second step: We show the convergence of the inner sum in (14) both pointwisely
a.e. and in S ′(Rn) (to the same distribution). Essentially, we only have to repeat
the arguments of [2, 7.1, Step 1] with ν instead of j and using estimate (15) instead
of [2, (7.1) and (2.2)]. So instead of [2, (7.2)] one gets here for any integer κ > α+n
using M > α+ n

(16)

∫
Rn

∑
m∈Zn

|λν,mµν,m(x)φ(x)| dx ≤ c 2−ν(α1− n
inf u )

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pκ(φ),

where c > 0 is independent of ν ∈ N0, λ ∈ n
w,u(·)
p(·),∞ and φ ∈ S(Rn). In particular,

we used the following easy consequence of the properties of the weight sequence

1 . 2−να1wν(2−νm)(1 + |x|)α(1 + 2ν |x− 2−νm|)α,(17)

with the involved constant independent of x ∈ Rn, ν ∈ N0 and m ∈ Zn.
As in [2, 7.1, Step 1], this shows that the inner sum in (14) is (absolutely)

convergent a.e.. The rest follows as in [2, 7.1, Step 1].

Third step: Here we show the convergence in S ′(Rn) of the outer sum in (14).
This follows if we show that there exists N ∈ N and c > 0 such that

(18)

∞∑
ν=0

∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,mµν,m(x)φ(x) dx

∣∣∣∣∣ ≤ c pN (φ)

for all φ ∈ S(Rn).
Consider ν ∈ N. By the convergence of the inner sum in S ′(Rn) and by the

moment conditions (10) of µν,m,∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,mµν,m(x)φ(x)dx

∣∣∣∣∣
≤
∑
m∈Zn

|λν,m|

∣∣∣∣∣∣
∫
Rn
µν,m(x)

(
φ(x)−

∑
|β|<L

Dβφ(2−νm)

β!
(x− 2−νm)β

)
dx

∣∣∣∣∣∣
≤
∑
m∈Zn

|λν,m|
∫
Rn

(1 + 2ν |x− 2−νm|)−M
∑
|β|=L

|Dβφ(ξ)|
β!

|x− 2−νm|Ldx,

where in the last line we have used the controlled decay of µν,m (cf. Definition 5.4)
and Taylor’s formula, where ξ lays on the line segment joining x and 2−νm. Now
we proceed by using (17), the easy estimate

(19) (1 + |ξ|)κ(1 + 2ν |x− 2−νm|)κ ≥ (1 + |x|)κ
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for some κ > 0 at our disposal and (15):∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,mµν,m(x)φ(x)dx

∣∣∣∣∣
.
∑
m∈Zn

|λν,m|
∫
Rn

(1 + 2ν |x− 2−νm|)−M2−νL(1 + 2ν |x− 2−νm|)Lpmax{dκe,L}(φ)

× (1 + |ξ|)−κ2−να1wν(2−νm)(1 + |x|)α(1 + 2ν |x− 2−νm|)α dx

. 2−ν(L+α1− n
inf u )

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pmax{dκe,L}(φ)

×
∫
Rn

∑
m∈Zn

(1 + 2ν |x− 2−νm|)−M+L+κ+α(1 + |x|)α−κ dx

. 2−ν(L+α1− n
inf u )

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pmax{dκe,L}(φ),(20)

where in the last line we have chosen κ such that κ > α+n and M > L+κ+α+n
and have used the estimate∑

m∈Zn
(1 + 2ν |x− 2−νm|)−M+L+κ+α =

∑
m∈Zn

(1 + |2νx−m|)−M+L+κ+α

.
∑
m′∈Zn

(1 + |m′|)−M+L+κ+α <∞.(21)

From (20) in the case ν ∈ N and (16) in the case ν = 0 the conclusion (18)
follows easily, due to our hypothesis on L.

Forth step: The proof of the last statement of the theorem follows similarly as
in [2, 7.1, Step 3]. �

An easy consequence of the considerations above is the following embedding.

Corollary 5.7. Let w ∈ Wα
α1,α2

(Rn), p, q ∈ P log(Rn) and u ∈ P(Rn) with 0 <

p− ≤ p(x) ≤ u(x) ≤ supu <∞ and q−, q+ ∈ (0,∞). Then it holds

Ew,u(·)p(·),q(·)(R
n) ↪→ S ′(Rn).

Proof. Given any φ ∈ S(Rn) we want to prove that there exists a cφ > 0 such that

|〈f, φ〉| ≤ cφ
∥∥∥f | Ew,u(·)p(·),q(·)(R

n)
∥∥∥ for any f ∈ Ew,u(·)p(·),q(·)(R

n).

Let K,L,M be as in Theorem 5.6 and consider arbitrary φ ∈ S(Rn) and f ∈
Ew,u(·)p(·),q(·)(R

n). Use such K,L (and some d) in Theorem 5.5 and write, as there and

for appropriate coefficients and atoms,

f =

∞∑
ν=0

∑
m∈Zn

λν,m(f) aν,m, convergence in S ′(Rn)(22)

with ∥∥∥λ(f)| ew,u(·)
p(·),q(·)

∥∥∥ ≤ c1 ∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ,(23)

where c1 > 0 is independent of f . Set µν,m := (1 + d
√
n/2)−Maν,m, thus obtaining

[K,L,M ]-molecules concentrated near Qν,m. Using these molecules and the above
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coefficients λ(f) in Theorem 5.6, we get from the arguments in the third step of its
proof and from Remark 5.2(ii) that

∞∑
ν=0

∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,m(f)µν,m(x)φ(x)dx

∣∣∣∣∣ ≤ c2 ∥∥∥λ(f)|nw,u(·)
p(·),∞

∥∥∥ pN (φ)

≤ c3
∥∥∥λ(f)| ew,u(·)

p(·),q(·)

∥∥∥ pN (φ),(24)

where c3 > 0 and N ∈ N are independent of λ(f) and φ. Now, we use the conver-
gence of (22) in S ′(Rn) and also the fact that the inner sum converges in S ′(Rn)
to the corresponding pointwise sum and obtain from (24) and (23) that

|〈f, φ〉| ≤
∞∑
ν=0

∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,m(f)aν,m(x)φ(x)dx

∣∣∣∣∣
= (1 + d

√
n/2)M

∞∑
ν=0

∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,m(f)µν,m(x)φ(x)dx

∣∣∣∣∣
≤ c3(1 + d

√
n/2)M

∥∥∥λ(f)| ew,u(·)
p(·),q(·)

∥∥∥ pN (φ)

≤ c1c3(1 + d
√
n/2)MpN (φ)

∥∥∥λ(f)| Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ,

which gives the desired estimate with cφ = c1c3(1 + d
√
n/2)MpN (φ). �

Now we can prove the completeness of Ew,u(·)p(·),q(·)(R
n) by using standard arguments.

Corollary 5.8. The spaces Ew,u(·)p(·),q(·)(R
n) according to Definition 4.3 are complete.

Proof. Let (fm)m∈N be a Cauchy sequence in Ew,u(·)p(·),q(·)(R
n). By the previous corol-

lary and the completeness of S ′(Rn), there exists f ∈ S ′(Rn) such that limm→∞ fm =
f in S ′(Rn).

Given any ε > 0, let m0 ∈ N be such that, for l,m ≥ m0,
(25)

sup
x∈Rn,r>0

rn( 1
u(x)
− 1
p(x) )

∥∥∥∥∥∥∥
 ∞∑
j=0

|wj(ϕj ̂fl − fm)∨|q(·)
1/q(·)

χBr(x)

∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ < ε.

Clearly, given m ≥ m0, x ∈ Rn, r > 0 and J ∈ N, we have, pointwisely, J∑
j=0

|wj(ϕj ̂fl − fm)∨|q(·)
1/q(·)

χBr(x) −→
l→∞

 J∑
j=0

|wj(ϕj f̂ − fm)∨|q(·)
1/q(·)

χBr(x).

On the other hand, from (25) and the lattice property of Lp(·)(Rn), for l ≥ m0 the

Lp(·)(Rn)-quasi-norm of the left-hand side above is bounded above by rn( 1
p(x)
− 1
u(x) )ε.

Since Lp(·)(Rn) satisfies Fatou’s lemma (see [7, after Lemma 3.2.10] for the case

p− ≥ 1 and play with the property (4) to extend it to all values of p), then also∥∥∥∥∥∥∥
 J∑
j=0

|wj(ϕj f̂ − fm)∨|q(·)
1/q(·)

χBr(x)

∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ ≤ rn( 1
p(x)
− 1
u(x) )ε.
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Applying again the just mentioned Fatou’s lemma, but now considering J → ∞,
we get the above inequality with J replaced by ∞, and finally, multiplying both

members by rn( 1
u(x)
− 1
p(x) ) and applying the supremum for all x ∈ Rn and r > 0, we

get
∥∥∥f − fm| Ew,u(·)p(·),q(·)(R

n)
∥∥∥ ≤ ε.

So f = (f − fm) + fm ∈ Ew,u(·)p(·),q(·)(R
n) and limm→∞ fm = f in Ew,u(·)p(·),q(·)(R

n).

�

In some cases it is possible to weaken the hypothesis on L in Theorem 5.6, at the
expense of strengthening the hypothesis on M . As a preparatory result, we first
prove some kind of Sobolev embedding for the sequence spaces.

Lemma 5.9. Let w0 ∈ Wα
α1,α2

(Rn), p0, p1 ∈ P log(Rn) with p0 ≤ p1 and q, u0, u1 ∈
P(Rn) with p0 ≤ u0 and

(26)
1

u0(x)
− 1

p0(x)
=

1

u1(x)
− 1

p1(x)
, x ∈ Rn.

Let w1 be defined by

(27) w1
ν(x) = w0

ν(x)2
−νn

(
1

p0(x)
− 1
p1(x)

)
, x ∈ Rn, ν ∈ N0.

Then

(28) n
w0,u0(·)
p0(·),∞ ↪→ n

w1,u1(·)
p1(·),∞ .

Proof. By (26) and the hypothesis p0 ≤ u0, it is clear that also p1 ≤ u1. On
the other hand, from the fact that w0 is an admissible weight sequence and the
definition (27) it is not difficult to see that w1 is also an admissible weight sequence
(possibly for different parameters). So, both spaces in (28) are well defined.

Observe that, by Lemmas 3.8 and 3.10 and hypothesis (26), we have that
(29)∥∥∥λ|nw1,u1(·)

p1(·),∞

∥∥∥ ≈ sup
ν∈N0

sup
j(≤ν),x,k

2
−jn

(
1

u0(x)
− 1
p0(x)

) ∥∥∥∥∥ ∑
m∈Zn

w1
ν(2−νm)λν,mχν,mχQj,k

∣∣∣∣∣Lp1(·)(Rn)

∥∥∥∥∥ ,
where the inner supremum runs over all j ∈ Z with j ≤ ν, x ∈ Rn and k ∈ Zn with
|x − 2−jk|∞ ≤ 3

22−j . Given ν ∈ N0 and such j, x and k, by the dyadic structure

we have either Qν,m ⊂ Qj,k or Qν,m ∩
◦
Qj,k = ∅. Define

γj,kµ,m :=

{
λµ,m if Qµ,m ⊂ Qj,k
0 otherwise ,

, µ ∈ N0, m ∈ Zn,

and notice that

γj,kµ,mχµ,m = λµ,mχµ,mχ ◦
Qj,k

for µ ≥ j.
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We have then, also with the help of [8, Prop. 3.9], that∥∥∥∥∥ ∑
m∈Zn

w1
ν(2−νm)λν,mχν,mχQj,k

∣∣∣∣∣Lp1(·)(Rn)

∥∥∥∥∥
≤ sup

µ∈N0

∥∥∥∥∥ ∑
m∈Zn

w1
µ(2−µm)γj,kµ,mχµ,m

∣∣∣∣∣Lp1(·)(Rn)

∥∥∥∥∥ =
∥∥∥γj,k∣∣ bw1

p1(·),∞

∥∥∥
.

∥∥∥γj,k∣∣ bw0

p0(·),∞

∥∥∥ = sup
µ≥j

∥∥∥∥∥ ∑
m∈Zn

w0
µ(2−µm)γj,kµ,mχµ,m

∣∣∣∣∣Lp0(·)(Rn)

∥∥∥∥∥
≤ sup

µ∈N0

∥∥∥∥∥ ∑
m∈Zn

w0
µ(2−µm)λµ,mχµ,m

∣∣∣∣∣Lp0(·)(Qj,k)

∥∥∥∥∥ .
Resuming from (29) and taking the above and Lemma 3.8 into consideration we
finally get, with supj,x,k meaning supremum running over all j ∈ Z, x ∈ Rn and

k ∈ Zn with |x− 2−jk|∞ ≤ 3
22−j ,∥∥∥λ|nw1,u1(·)

p1(·),∞

∥∥∥ . sup
j,x,k

2
−jn

(
1

u0(x)
− 1
p0(x)

)
sup
µ∈N0

∥∥∥∥∥ ∑
m∈Zn

w0
µ(2−µm)λµ,mχµ,m

∣∣∣∣∣Lp0(·)(Qj,k)

∥∥∥∥∥
= sup

µ∈N0

sup
j,x,k

2
−jn

(
1

u0(x)
− 1
p0(x)

) ∥∥∥∥∥ ∑
m∈Zn

w0
µ(2−µm)λµ,mχµ,m

∣∣∣∣∣Lp0(·)(Qj,k)

∥∥∥∥∥
≈

∥∥∥λ|nw0,u0(·)
p0(·),∞

∥∥∥ .
The interchange of the suprema above is possible, since they are taken with respect
to distinct sets of parameters. �

Remark 5.10. Given p0, p1, u0 as in the lemma above, it is not always possible to
find u1 ∈ P(Rn) with (26). That is, there are times when the lemma cannot be
used. We can always define an extended real-valued measurable function u1 in Rn
by means of the following equation equivalent to (26):

(30)
1

u1(x)
=

1

u0(x)
− 1

p0(x)
+

1

p1(x)
, x ∈ Rn.

Actually, if there is an u1 satisfying the lemma it should be defined in this way.
However, such an u1 satisfies the lemma if and only if the right-hand side of (30)
is non-negative for every x ∈ Rn.

Remark 5.11. Since later on we would like to apply the above lemma when p−0 ≤
1 and p1(x) = p0(x)

t , for some choice of t ∈ (0, p−0 ), let us explore a little bit
the implications of the necessary and sufficient condition for the existence of u1
according to the lemma, following the considerations from Remark 5.10. In this
particular case we have

1

u0(x)
− 1

p0(x)
+

t

p0(x)
≥ 0, x ∈ Rn,

and it is not difficult to see that a choice of t ∈ (0, p−0 ) is possible if and only if

(31) sup
x∈Rn

(
1− p0(x)

u0(x)

)
< p−0 .
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Here we interpreted ∞∞ to be 1. Then tmust necessarily be in

[
sup
x∈Rn

(
1− p0(x)

u0(x)

)
, p−0

)
and any t in the interior of such an interval will do.

Remark 5.12. We would also like to remark that under the mere conditions p0 ∈
P log(Rn), u0 ∈ P(Rn) and p+0 < ∞ one has that (31) implies that 1

p−0
− 1 < 1

inf u0

when p−0 ≤ 1. Note that then necessarily u0 cannot assume the value ∞. Further,
when p−0 > 1 then condition (31) is trivially verified, as well as the condition

0 ≤ 1
inf u0

. Summing up and using the standard notation σr := n
(

1
min{1,r} − 1

)
we

have that

(32) sup
x∈Rn

(
1− p0(x)

u0(x)

)
< p−0 ⇒ σp−0

≤ n

inf u0
,

under the conditions p0 ∈ P log(Rn), u0 ∈ P(Rn) and p+0 < ∞. When we further
assume that u0 is not identically equal to ∞, then (32) can be written with both
inequalities strict.

For the next lemma see [2, Lemma 7.1] and references therein.

Lemma 5.13. Let j, ν ∈ N0, x ∈ Rn, 0 < t ≤ 1 and R > n/t. Then for all
(hν,m)m ⊂ C∑

m∈Zn
|hν,m|(1 + 2min(ν,j)|x− 2−νm|)−R

. max(1, 2(ν−j)R)

ην,Rt ∗
∣∣∣∣∣ ∑
m∈Zn

hν,mχν,m

∣∣∣∣∣
t
1/t

(x),

where the involved constant is independent of ν, j, x and (hν,m)m.

We can now state and prove an alternative version of Theorem 5.6 where the
hypothesis imposed on L is weaker. In order to make things more readable we
introduce the abbreviation

c∞(1/p, 1/u, t) := max

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− t

p∞

)
.

So, in particular we have c∞(1/p, 1/u, 1) = c∞(1/p, 1/u) from (6).

Theorem 5.14. Let w ∈ Wα
α1,α2

(Rn), p ∈ P log(Rn) and q, u ∈ P(Rn) with 0 <

p− ≤ p(x) ≤ u(x) ≤ supu <∞ and supx∈Rn
(

1− p(x)
u(x)

)
< p−. Let λ ∈ n

w,u(·)
p(·),∞ and

(µν,m)ν,m be [K,L,M ]-molecules with

L > −α1 + σp−

and

M > L+ 2n+ 2α+ 2p−clog(1/p)σp− + nc∞(1/p, 1/u,min{1, p−}).

Then
∞∑
ν=0

∑
m∈Zn

λν,mµν,m converges in S ′(Rn)(33)
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and the convergence in S ′(Rn) of the inner sum gives the regular distribution ob-
tained by taking the corresponding pointwise convergence. Moreover, the sum∑

(ν,m)∈N0×Zn
λν,mµν,m converges also in S ′(Rn)

to the same distribution as the iterated sum in (33).

Proof. First step: Clearly, the first and second steps of the proof of Theorem 5.6 also
work here, so we have as well that the inner sum in (33) converges both pointwisely
a.e. and in S ′(Rn). In particular, (16) holds under the conditions stated there.

Second step: Here we assume that p− > 1 and show the convergence in S ′(Rn)
of the outer sum in (33). As in the third step of the proof of Theorem 5.6, the
mentioned convergence follows if we show that there exists N ∈ N and c > 0 such
that (18) holds for all φ ∈ S(Rn).

Consider ν ∈ N. We proceed similarly as in the third step of the proof of Theorem
5.6 up to the point where (17) and (19) are used, therefore getting∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,mµν,m(x)φ(x)dx

∣∣∣∣∣
. 2−ν(L+α1)pmax{dκe,L}(φ)

×
∫
Rn

∑
m∈Zn

|λν,m|wν(2−νm)(1 + 2ν |x− 2−νm|)−M+L+κ+α(1 + |x|)α−κ dx.(34)

Now we choose j0 ∈ N0 in such a way that
√
n2−j0−1 ≤ 1 and choose κ ∈ (n +

α,M − L− n(1 + c∞(1/p, 1/u))− α) and estimate the integral above by∑
k∈Zn

∫
Qj0,k

(1 + |x|)α−κ
∑
m∈Zn

|λν,m|wν(2−νm)(1 + 2ν |x− 2−νm|)−M+L+κ+αdx

.
∑
k∈Zn

(1 + |k|)α−κ
∫
Qj0,k

(
ην,R ∗

∑
m∈Zn

|λν,m|wν(2−νm)χν,m

)
(x) dx,

where here we have used Lemma 5.13 with j = ν, t = 1 and R = M − L − κ − α.
Notice that the choice of κ guarantees that M − L − κ − α > n. We proceed
by applying Hölder’s inequality in the integral, Lemma 2.2 and afterwards the
scalar case of Theorem 3.4 and using the fact that our choice of κ guarantees that
R > n(1 + c∞(1/p, 1/u)). So, we estimate further

.
∑
k∈Zn

(1 + |k|)α−κ
∥∥∥∥∥
(
ην,R ∗

∑
m∈Zn

|λν,m|wν(2−νm)χν,m

)
χB1(2−j0k)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
×
∥∥χB1(2−j0k)

∣∣Lp′(·)(Rn)
∥∥

.

(∑
k∈Zn

(1 + |k|)α−κ
)∥∥∥∥∥ην,R ∗ ∑

m∈Zn
|λν,m|wν(2−νm)χν,m

∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥
.

∥∥∥∥∥ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥
≤
∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥ .
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Inserting this estimate in (34) we get∣∣∣∣∣
∫
Rn

∑
m∈Zn

λν,mµν,m(x)φ(x)dx

∣∣∣∣∣ . 2−ν(L+α1)
∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥ pmax{dκe,L}(φ).

From this in the case ν ∈ N and (16) in the case ν = 0 the conclusion (18) follows
easily due to our hypothesis on L.

Third step: Now we assume that p− ∈ (0, 1] and show the convergence in S ′(Rn)
of the outer sum in (33). As in the previous step, the mentioned convergence follows
if we show that there exist N ∈ N and c > 0 such that (18) holds for all φ ∈ S(Rn).

Let p0 := p, u0 := u, w0 := w and consider t ∈
(

supx∈Rn
(

1− p0(x)
u0(x)

)
, p−0

)
,

p1(·) := p0(·)
t and w1

ν(·) := w0
ν(·)2−νn

(
1

p0(·)−
1

p1(·)

)
= wν(·)2−νn

1−t
p(·) , ν ∈ N0. Such a

choice of t is possible due to our hypothesis supx∈Rn
(

1− p(x)
u(x)

)
< p−. Since p0 ∈

P log(Rn), also p1 ∈ P log(Rn). On the other hand, from w0 ∈ Wα
α1,α2

(Rn) it follows,

with the help of [1, Example 2.5], that w1 ∈ Wβ
β1,β2

with β = α+n(1− t)clog(1/p),

β1 = α1− n(1− t)/p− and β2 = α2− n(1− t)/p+. Consider also u1 ∈ P(Rn) given
by 1

u1(·) = 1
u0(·) −

1
p0(·) + 1

p1(·) . Our hypotheses and the discussion in Remark 5.11

guarantee that this is possible. We have, moreover, that p0(x) ≤ p1(x) ≤ u1(x) ≤
supu1 < ∞, so that applying Lemma 5.9 to λ ∈ n

w,u(·)
p(·),∞ = n

w0,u0(·)
p0(·),∞ we get that

also λ ∈ n
w1,u1(·)
p1(·),∞ . Since also p−1 > 1, we can thus apply the second step above to

such a λ and for the parameters w1, p1 and u1 as long as

L > −α1 + n(1− t)/p−

and

M > L+ 2n+ 2α+ 2n(1− t)clog(1/p) + nc∞(1/p, 1/u, t).

Due to our hypotheses on L and M in the statement of the theorem it is indeed
possible to choose the t above so that also the two last inequalities are fulfilled.
Therefore our desired conclusion (18) also holds for the case considered in this
step.

Forth step: The proof of the last statement of the theorem follows similarly as
in [2, 7.1, Step 3]. �

Remark 5.15. Comparing Theorems 5.6 and 5.14, we see that they provide the same
conclusions under different hypotheses. In Theorem 5.14 supu < ∞ is further
assumed and the requirement for M is in general stronger. On the other hand,
according to the discussion in Remark 5.12, the requirement for L is weaker, though

in the case p− < 1 it only applies under the extra condition supx∈Rn
(

1− p(x)
u(x)

)
<

p−. We would also like to remark that when supx∈Rn
(

1− p(x)
u(x)

)
≥ p− then it

follows by straightforward calculations that σp− ≥ n
supu . Though this does not

guarantee that then the requirement for L in Theorem 5.14 is stronger than in
Theorem 5.6, in the case when u happens to be constant it definitely shows that it
is not weaker.

Remark 5.16. It is possible to improve slightly the conditions on p and u in the
above theorem, by not imposing its boundedness from above. The boundedness
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was used in the proof only to apply the scalar case of Theorem 3.4 and the scalar
case holds without such restriction, as can be seen in [3].

Before coming to the theorem giving conditions for a linear combination of
molecules to be in our functions spaces and showing the opposite direction of Theo-
rem 5.5, we still need some preparatory results. The next one estimates convolutions
of molecules with functions constructed from admissible pairs. See [2, Lemma 7.2]
and references therein for its proof.

Lemma 5.17. Let (ϕj)j∈N0 be a system constructed from any given admissible pair
according to Definition 4.1 and (µν,m) be [K,L,M ]-molecules. Then, for M > L+n
and N ∈ [0,M − L− n],

|(ϕ∨j ∗ µν,m)(x)| . 2−(ν−j)(L+n)(1 + 2j |x− 2−νm|)−N for j ≤ ν

and

|(ϕ∨j ∗ µν,m)(x)| . 2−(j−ν)K(1 + 2ν |x− 2−νm|)−M for j ≥ ν,
with the implicit constants independent of x ∈ Rn, m ∈ Zn, j, ν ∈ N0 and, as long
as K,L,M are kept fixed, of the particular system of molecules taken.

Theorem 5.18. Under the hypotheses of Theorem 5.6, we have also that

(35)

∞∑
ν=0

∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)

converges both in S ′(Rn) and pointwisely a.e. to the same distribution, where
(ϕj)j∈N0

is a system constructed from any given admissible pair according to Defi-
nition 4.1.

Proof. The convergence in S ′(Rn) is clear from what we have already obtained in
Theorem 5.6.

That the inner sum converges pointwisely a.e. to the corresponding limit in
S ′(Rn) can be proved similarly as in the second step of the proof of Theorem 5.6,
now using the estimates in Lemma 5.17 instead of properties of molecules. However,
in the case when ν > j, instead of (17) one should use the estimate

1 . 2−να1wν(2−νm)(1 + |x|)α(1 + 2j |x− 2−νm|)α,(36)

which is also an easy consequence of the properties of a weight sequence, and
afterwards the estimate∑

m∈Zn
(1 + 2j |x− 2−νm|)α−N ≤ c 2(ν−j)n, choosing N > α+ n,

with c > 0 independent of ν, j ∈ N0 (with ν ≥ j) and x ∈ Rn, which is a direct
consequence of [8, Lemma 3.7].

So, in the case ν > j one gets, in this way, and for any integer κ > n+ α,
(37)∫

Rn

∑
m∈Zn

|λν,m(ϕ∨j ∗ µν,m)(x)φ(x)| dx ≤ c 2−ν(L+α1− n
inf u )2jL

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pκ(φ),

where c > 0 is independent of ν, j ∈ N0 (with ν ≥ j), λ ∈ n
w,u(·)
p(·),∞ and φ ∈ S(Rn).

In order to prove that then the outer sum in (35) converges also pointwisely
a.e. to the corresponding limit in S ′(Rn) it suffices clearly to deal with the sum for
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ν > j, as the remaining sum is finite. The idea is again to start as in the second step
of the proof of Theorem 5.6. We obtain with the help of (37) and the hypothesis
on L ∫

Rn

∞∑
ν=j+1

∣∣∣∣∣ ∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)(x)φ(x)

∣∣∣∣∣ dx(38)

. 2jL
∞∑

ν=j+1

2−ν(L+α1− n
inf u )

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pκ(φ)

. 2−j(α1− n
inf u )

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pκ(φ),

with the implicit constant independent of j ∈ N0, λ ∈ n
w,u(·)
p(·),∞ and φ ∈ S(Rn). �

Theorem 5.19. Under the hypotheses of Theorem 5.14, except that for L we impose
the stronger condition

L > −α1 + σp− + nc∞(1/p, 1/u,min{1, p−}),

we have that

(39)

∞∑
ν=0

∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)

converges both in S ′(Rn) and pointwisely a.e. to the same distribution, where
(ϕj)j∈N0

is a system constructed from any given admissible pair according to Defi-
nition 4.1.

Proof. The convergence in S ′(Rn) is clear from what we have already obtained in
Theorem 5.14.

The proof that the inner sum converges pointwisely a.e. to the corresponding
limit in S ′(Rn) can be done exactly as in Theorem 5.18.

To prove that the outer sum in (39) converges also pointwisely a.e. to the
corresponding limit in S ′(Rn), again it suffices to deal with the sum for ν > j, as
the remaining sum is finite. And, as in the proof of Theorem 5.18, to that effect it
is enough to get a result like (38), namely the existence of J ∈ N and c > 0 such
that ∫

Rn

∞∑
ν=j+1

∣∣∣∣∣ ∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)(x)φ(x)

∣∣∣∣∣ dx ≤ c pJ(φ)

for all φ ∈ S(Rn).
We consider first the case p− > 1. Since∫

Rn

∞∑
ν=j+1

∣∣∣∣∣ ∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)(x)φ(x)

∣∣∣∣∣ dx
≤

∞∑
ν=j+1

∫
Rn

∑
m∈Zn

∣∣λν,m(ϕ∨j ∗ µν,m)(x)φ(x)
∣∣ dx,(40)

we start by estimating the latter integral. Here the situation is somewhat similar
to when we estimated (34) in the second step of the proof of Theorem 5.14, though
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now we are using Lemma 5.17 and the estimate (36), so that we get, with N ∈
[0,M − L− n] and κ > 0 at our disposal,∫
Rn

∑
m∈Zn

∣∣λν,m(ϕ∨j ∗ µν,m)(x)φ(x)
∣∣ dx

. 2−jα12−(ν−j)(L+n+α1)pdα+κe(φ)

×
∫
Rn

∑
m∈Zn

|λν,m|wν(2−νm)(1 + 2j |x− 2−νm|)α−N (1 + |x|)−κ dx.(41)

Now we deal with the latter integral arguing as after (34) in the second step of
the proof of Theorem 5.14. With R = N − α and choosing κ > n as well as
N ∈ (α+ n(1 + c∞(1/p, 1/u)),min{M − L− n,L+ α1 + n+ α}) we obtain∫

Rn

∑
m∈Zn

|λν,m|wν(2−νm)(1 + 2j |x− 2−νm|)α−N (1 + |x|)−κ dx

. 2(ν−j)(N−α)
∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥ .
Inserting this estimate in (41) and the latter in (40), we finally get∫

Rn

∞∑
ν=j+1

∣∣∣∣∣ ∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)(x)φ(x)

∣∣∣∣∣ dx
.

∞∑
ν=j+1

2−jα12−(ν−j)(L+n+α1)pdα+κe(φ)2(ν−j)(N−α)
∥∥∥λ|nw,u(·)

p(·),∞

∥∥∥
. 2−jα1

∥∥∥λ|nw,u(·)
p(·),∞

∥∥∥ pdα+κe(φ).

As to the case p− ∈ (0, 1], it can be proved by reduction to the preceding case
with the same choices of p0, u0, w0, t, p1, u1 and w1 as in the third step of the
proof of Theorem 5.14, this being possible by the hypothesis on M and the (new)
hypothesis on L. �

Remark 5.20. By similar reasons as in Remark 5.16, it is possible to prove that the
above theorem holds without imposing supu <∞.

Finally, we come to the result in the direction opposite of Theorem 5.5.

Theorem 5.21. Let w ∈ Wα
α1,α2

(Rn), p, q ∈ P log(Rn) and u ∈ P(Rn) with 0 <

p− ≤ p(x) ≤ u(x) ≤ supu <∞ and q−, q+ ∈ (0,∞). Let K,L ∈ N0 and M > 0 be
such that K > α2 and either

(42) L > −α1 + max
{ n

inf u
, σp−,q− + nc∞(1/p, 1/u)

}
and

(43) M > L+ 2n+ 2α+ σp−,q− + nc∞(1/p, 1/u)

or, when supx∈Rn
(

1− p(x)
u(x)

)
< p− (which necessarily holds when p− ≥ 1),

(44) L > −α1 + σp−,q− + nc∞(1/p, 1/u,min{1, p−})
and

(45) M > L+ 2n+ 2α+ max {1, 2clog(1/p)}σp−,q− + nc∞(1/p, 1/u,min{1, p−}).
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Let λ ∈ e
w,u(·)
p(·),q(·) and (µν,m)ν,m be [K,L,M ]-molecules. Then

f :=

∞∑
ν=0

∑
m∈Zn

λν,mµν,m, convergence in S ′(Rn),(46)

belongs to Ew,u(·)p(·),q(·)(R
n) and there exists a constant c > 0 independent of λ and

(µν,m)ν,m such that ∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ≤ c∥∥∥λ| ew,u(·)

p(·),q(·)

∥∥∥ .(47)

Proof. First step: We start by observing that, in addition to the common hypothe-
ses, and together with Remark 5.2(ii), the set of conditions (42)-(43) guarantees the
application of Theorems 5.6 and 5.18 while the set of conditions (44)-(45) (together

with the extra hypothesis supx∈Rn
(

1− p(x)
u(x)

)
< p−) guarantees the application

of Theorems 5.14 and 5.19. In particular, in both cases we have the convergence
in S ′(Rn) of the iterated sum in (46). We still have to prove that f belongs to

Ew,u(·)p(·),q(·)(R
n) and that the estimate (47) holds.

Note that, given a system (ϕj)j∈N0 constructed from any given admissible pair
according to Definition 4.1, we have, for each j ∈ N0 and for a.e. x ∈ Rn, that

wj(x)(ϕ∨j ∗ f)(x) = wj(x)

( ∞∑
ν=0

∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)

)
(x)

= wj(x)

∞∑
ν=0

∑
m∈Zn

λν,m(ϕ∨j ∗ µν,m)(x),

where the convergence of the sums in the first line is in the sense of S ′(Rn) and in the
last line is pointwise. The identification between the two being justified by Theorem
5.18 or by Theorem 5.19, depending on which set of special hypotheses (42)-(43)

or (44)-(45) (together with supx∈Rn
(

1− p(x)
u(x)

)
< p−) is considered. Whatever the

case, we can thus write for each j ∈ N0 and for a.e. x ∈ Rn that

|wj(x)(ϕ∨j ∗ f)(x)| ≤
j∑

ν=0

∑
m∈Zn

|λν,m(ϕ∨j ∗ µν,m)(x)|wj(x)

+

∞∑
ν=j+1

∑
m∈Zn

|λν,m(ϕ∨j ∗ µν,m)(x)|wj(x).(48)

Note also, whatever the special hypotheses chosen we always have

L > −α1 + σp−,q− + nc∞(1/p, 1/u)

and

M > L+ 2n+ α+ σp−,q− + nc∞(1/p, 1/u).

So, it is possible to choose t ∈ (0,min{p−, q−, 1}) such that

α+
n

t
+ nc∞(1/p, 1/u) < min{M − L− n,L+ n+ α1 + α}

and N strictly in between these two numbers. In what follows we assume that t
and N have been chosen in such a way.
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Second step: Here we estimate the two terms which appeared after the splitting
of |wj(x)(ϕ∨j ∗f)(x)| in (48) above. For the first term, we obtain using Lemma 5.17
and the properties of the weight the estimates

j∑
ν=0

∑
m∈Zn

|λν,m(ϕ∨j ∗ µν,m)(x)|wj(x)

.
j∑

ν=0

∑
m∈Zn

2−(j−ν)(K−α2)|λν,m|wν(2−νm)(1 + 2ν |x− 2−νm|)α−M

.
j∑

ν=0

2−(j−ν)(K−α2)

ην,(M−α)t ∗
∣∣∣∣∣ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t
1/t

(x),(49)

where we have also used Lemma 5.13 with R = M − α. The same reasoning gives
for the second term

∞∑
ν=j+1

∑
m∈Zn

|λν,m(ϕ∨j ∗ µν,m)(x)|wj(x)

.
∞∑

ν=j+1

∑
m∈Zn

2−(ν−j)(L+n+α1)|λν,m|wν(2−νm)(1 + 2j |x− 2−νm|)α−N

.
∞∑

ν=j+1

2−(ν−j)(L+n+α1−(N−α))

ην,(N−α)t ∗
∣∣∣∣∣ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t
1/t

(x),

(50)

where we have applied again Lemma 5.13, now with R = N − α. Using the fact
that N − α ≤ M − α and defining δ := min{L + n + α1 − (N − α),K − α2}, we
have out of (49), (50) and (48) that, for each j ∈ N0 and for a.e. x ∈ Rn,

|wj(x)(ϕ∨j ∗ f)(x)| .
∞∑
ν=0

2−|ν−j|δ

ην,(N−α)t ∗
∣∣∣∣∣ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t
1/t

(x).

Third step: Using the last estimate, Lemma 3.5, the fact that our hypotheses
and choices guarantee that δ > 0 and (N − α)t > n+ ntc∞(1/p, 1/u), Lemma 3.7,
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Lemma 3.6 and Theorem 3.4 with m = (N − α)t, we finally get∥∥∥f | Ew,u(·)p(·),q(·)(R
n)
∥∥∥ =

∥∥∥(|wj(ϕ∨j ∗ f)|
)
j

∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥
.

∥∥∥∥∥∥∥

ην,(N−α)t ∗

∣∣∣∣∣ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t
1/t


ν

∣∣∣∣∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
ην,(N−α)t ∗

∣∣∣∣∣ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t

ν

∣∣∣∣∣∣Mu(·)/t
p(·)/t (`q(·)/t)

∥∥∥∥∥∥
1/t

.

∥∥∥∥∥∥
∣∣∣∣∣ ∑

m∈Zn
|λν,m|wν(2−νm)χν,m

∣∣∣∣∣
t

ν

∣∣∣∣∣∣Mu(·)/t
p(·)/t (`q(·)/t)

∥∥∥∥∥∥
1/t

=

∥∥∥∥∥
( ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

)
ν

∣∣∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥∥∥
=

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|λν,mwν(2−νm)χν,m(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ =
∥∥∥λ| ew,u(·)

p(·),q(·)

∥∥∥ .
�

Using Theorem 5.21 on the molecular decomposition we also obtain a general
embedding on this scale of variable exponent function spaces.

Corollary 5.22. Let w ∈ Wα
α1,α2

(Rn) be admissible weights and p, q ∈ P log(Rn),

u ∈ P(Rn) with 0 < p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈ (0,∞). Then it
holds

S(Rn) ↪→ Ew,u(·)p(·),q(·)(R
n).

Proof. We have to show that there exist c > 0 and N ∈ N such that∥∥∥φ| Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ≤ c pN (φ) for all φ ∈ S(Rn).

Since for φ = 0 there is nothing to prove, consider 0 6= φ ∈ S(Rn). First, observe
that given any K,L ∈ N0 and M > 0 we have that φ/pmax(K,dMe)(φ) is a [K,L,M ]-
molecule concentrated near Q0,0. On one hand moment conditions are not required,
since ν = 0, on the other hand we have for any 0 ≤ |β| ≤ K∣∣∣∣Dβ φ(x)

pmax(K,dMe)(φ)

∣∣∣∣ =
(1 + |x|)M |Dβφ(x)|
pmax(K,dMe)(φ)

(1 + |x|)−M

≤ 2|β|0(1 + 20|x− 2−00|)−M .

Observe also that for λ(φ) with λ0,0(φ) := pmax(K,dMe)(φ) and λν,m(φ) := 0 for
ν 6= 0 or m 6= 0 we have that∥∥∥λ(φ)| ew,u(·)

p(·),q(·)

∥∥∥ =
∥∥∥w0(0)pmax(K,dMe)(φ)χ0,0

∣∣Mu(·)
p(·) (Rn)

∥∥∥
= w0(0)pmax(K,dMe)(φ)

∥∥∥χ0,0|Mu(·)
p(·) (Rn)

∥∥∥ <∞(51)
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by using Lemma 3.2. Now fix K,L,M according to Theorem 5.21 for example with
the restrictions (42) and (43). Applying this theorem to λ(φ), which has only one
non-zero entry, and the molecules above we get

φ = λ0,0(φ)
φ

pmax(K,dMe)(φ)
∈ Ew,u(·)p(·),q(·)(R

n)

and ∥∥∥φ| Ew,u(·)p(·),q(·)(R
n)
∥∥∥ ≤ c1 ∥∥∥λ(φ)| ew,u(·)

p(·),q(·)

∥∥∥ ,
which together with (51) gives∥∥∥φ| Ew,u(·)p(·),q(·)(R

n)
∥∥∥ ≤ c pN (φ),

where c := c1w0(0)
∥∥∥χ0,0|Mu(·)

p(·) (Rn)
∥∥∥ and N := max(K, dMe) are independent of

φ. �
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