
Are internally observable vehicle data good predictors of vehicle emissions? 

 

 

Fernandes P. a*, Macedo, E. a, Bahmankhah, B. a, Tomas, R. a, Bandeira, J.M. a, Coelho, M.C. a 

 

 

a Department of Mechanical Engineering / Centre for Mechanical Technology and Automation (TEMA), 

University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro – Portugal 

 

 

*Assistant Researcher, Mechanical Engineering, E-mail: paulo.fernandes@ua.pt 

 

 

 

 

ABSTRACT 

Scientific research has demonstrated that on-road exhaust emissions in diesel passenger vehicles (DPV) 

exceeds the official laboratory-test values. Increasing concern about the quantification of magnitude for 

these differences has meant an increasing use of Portable Emissions Monitoring System (PEMS), but the 

direct use of Internally Observable Variables (IOVs) can be useful to predict emissions. 

The motivation for this paper is to develop an empirical approach that integrates second-by-second vehicle 

activity and emission rates for DPV. The objectives of this research are two-fold: 1) to assess the effect of 

variation in acceleration-based parameters, vehicle specific power (VSP) and IOVs on carbon dioxide 
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(CO2) and nitrogen oxides (NOX) emission rates; and 2) to examine the correlation between IOV-based 

predictors of engine load and VSP. Field measurements were collected from four DPV (two small, one 

medium and one multi-purpose) in urban, rural and highway routes using PEMS, GPS receivers and OBD 

scan tool, to measure real-world exhaust emissions and engine activity data. 

Results suggest the relative positive acceleration (RPA) and mean positive acceleration (MPA) allowed a 

good differentiation with respect to route trips. IOVs models based on the product of manifold absolute 

pressure (MAP) and engine revolutions per minute (RPM), and VSP showed to be good predictors of 

emission rates. Although the CO2 correlation was found to be good (R2>0.8), the models for NOX showed 

mixed results since some vehicles showed a reasonable correlation (R2~0.7) while others resulted in worst 

model predictions (R2<0.6).  

IOVs models have potential to be integrated into vehicle engine units and connected vehicles, for instance, 

to provide real-time information on emissions rates, but other parameters regarding the thermal 

management on after treatment system must be included in NOX prediction. This would allow for a better 

understanding of true physics behind NOX emissions in DPV. 

 

Keywords: Portable Emissions Measurement System; On-road emissions; Diesel; Internally Observable 

Variables; Vehicle Specific Power. 

  



 

1. INTRODUCTION AND RESEARCH OBJETIVES 

Road traffic significantly contributes to urban air pollution as means of particulate matter (PM) and 

nitrogen oxides (NOX) emissions (EEA, 2018a). Between 1990 and 2015, transportation-related energy 

consumption increased by 25% in European Union (EU) (EEA, 2019b) in which road transportation and 

domestic aviation were the only transportation modes to report increases over this period, as their 

consumption rose by 23% and 4%, respectively (EU, 2017). Despite the deployment of clean powertrains, 

internal combustion engines are the most widely used technology in EU. Gasoline- and diesel-fueled 

represented around 56.7% and 35.9% of passenger cars sold in 2018, respectively (ACEA, 2019). On 

average, the carbon dioxide (CO2) of these cars were 120 g/km, which is clearly above the EU target of 

95 g/km for 2020 (EEA, 2019a). 

In view of persistent pollution in Europe, policy makers have been proposing stricter regulatory 

procedures either for emission standards or testing measurements (Commission Regulation (EC) No 

692/2008, 2008). Thus, the so-called New European Driving Cycle (NEDC) was developed by the 

European Commission as part of the type approval process for homologating light duty vehicles (LDV) 

in Europe (Luján et al., 2018). Studies have been confirming a large discrepancy between measured NOX 

and respective emission limit in diesel passenger vehicles (DPV), certified according to Euro 2 up to Euro 

6 standards (Degraeuwe and Weiss, 2017; Hooftman et al., 2018; Ntziachristos et al., 2016; Sileghem 

et al., 2014; Weiss et al., 2012). Similar results were found for CO2 emissions; 10 to 20% in the gap 

between type-approval and real-world values (Fontaras et al., 2017). 

To reduce such differences and to limit the adaptation of illegal strategies, the worldwide harmonized 

Light vehicles Test Procedure (WLTP) and complementary Real-Driving Emissions (RDE) were recently 

introduced in the EU legislation (EC, 2017). These procedures use Portable Emissions Measurement 



 

Systems (PEMS) which allows quantifying real-world vehicle activity and emissions during a wide range 

of normal operating conditions (Mahesh et al., 2018). 

As a result, a great deal of research has been conducted in Europe over the recent years to explore 

discrepancy between on-road and laboratory test emissions in diesel passenger vehicles (DPV) (Chelsea 

Baldino et al., 2017; Kwon et al., 2017; Luján et al., 2018; O'Driscoll et al., 2018; Weiss et al., 2012). 

On-road emissions studies also have been performed worldwide in both gasoline passenger vehicles 

(GPV) (Hu et al., 2016; O'Driscoll et al., 2018; Weiss et al., 2012; Yuan et al., 2019; Zhang et al., 

2019) and hybrid-electric vehicles (HEV) (Holmén and Sentoff, 2015; O'Driscoll et al., 2018; Yang et 

al., 2019). There is some research published concerning the impacts of driving behavior styles, such as 

the Relative Positive Acceleration (RPA), the Mean Positive Acceleration (MPA) and the product of 

acceleration and speed (Gallus et al., 2017), type and grade of roads (Gallus et al., 2017; Yazdani 

Boroujeni and Frey, 2014; Zhang et al., 2019) and ambient temperature conditions (Gallus et al., 2017) 

on gaseous exhaust emissions.  

The major findings of above-mentioned studies are presented in TABLE 1. It can be observed that few 

studies carried out in on-road emissions have explored the concordance between internally observable 

variables (IOVs) and externally observed variables (EOVs) for predicting models for vehicle emissions 

on the basis of IOVs (Hu et al., 2016). On-road CO2 and NOX emissions and fuel consumption are directly 

related to vehicle specific power – VSP (Frey et al., 2008), which takes into account kinetic energy, 

potential energy, rolling resistance and aerodynamic drag (Jiménez-Palacios, 1999). VSP is function of 

speed, acceleration and road grade. These variables can be categorized as EOVs (USEPA, 2002). A 

vehicle electronic control unit (ECU) via an On-board Diagnostic (OBD) interface measures, among 

others, real time revolutions per minute (RPM) and manifold absolute pressure (MAP), each of which can 

be categorized as IOVs. Previous studies suggested that, in some cases, models directly developed from 



 

OBD data can provide better emission rates than VSP-based models, especially in high-emitting vehicles 

(Hu et al., 2016; Sandhu and Frey, 2013b). For instance, a VSP-based model for fuel use rate had 

coefficient of determination (R2) values ranged from 0.53 to 0.75. An IOV-based model developed based 

on the product of MAP and RPM had higher R2 (0.95-0.99). However, IOV-based models for low-emitting 

vehicles were not as good since a significant proportion of the measured concentrations was lower than 

the detection limit (Hu et al., 2016). 

 

TABLE 1 Key studies on emission measurements of DPV, LPV and HEV. 

 

PEMS data collection for proof of concept and analysis can be costly. Besides, it is only applied to a few 

number of vehicles, making the upscaling of the results to an entire car fleet practically impossible. This 

has prompted the increased use of OBD scan tools in-vehicle data collecting. While there has been 

extensive work on the quantification of exhaust emissions for different DPV, research on developing 

predictive models for emissions based on IOVs is scarce (Asprion et al., 2013; d’Ambrosio et al., 2014). 

Since NOx is sensitive to the internal cylinder temperature estimation and accurate trapped mass 

assumptions (Desantes et al., 2012), any NOx modeling technique based on ECU data involves a trade-

off between physics fidelity, calibration effort and computational cost (Guardiola et al., 2014). 

For diesel engines, not only engine load and engine revolutions influence NOX emissions, but also the 

exhaust after-treatment system such as Lean NOX Trap (LNT) and Selective Catalytic Reduction (SCR) 

(Johnson, 2016). To achieve the next emissions standards, high NOX conversion efficiency in the after 

treatment system in the SCR system is required (Bai et al., 2017; Giechaskiel et al., 2014). NOX reduction 

by SCR catalysts is affected by a wide range of factors, such as variations in the NO2/NOX ratio, which 
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are caused by oxidation catalysts such as the diesel oxidation catalyst and diesel particulate filter installed 

in diesel engines (Cho et al., 2017), ammonia (NH3) to NOX ratio (Seneque et al., 2015) and catalytic 

temperature (Bai et al., 2018). NOX conversion of these systems is sensitive by the catalytic temperature 

rather than the other factors (Ahari et al., 2015). For instance, NOX emissions rates notably increases if 

the exhaust temperature is lower than 200ºC, and there is a sudden application of load (e.g., hill or 

acceleration). The exhaust temperature under low speeds and low load in urban conditions is mostly below 

300 °C. If the load is close to the maximum, then the exhaust temperatures can exceed 500ºC (Seneque 

et al., 2015). Indeed, control strategies to improve NOX emissions in lower temperature conditions for 

SCR are of high interest (Guardiola et al., 2017; Hu et al., 2017; Liu and Lee, 2018).  

This research develops a second-by-second methodology that integrates vehicle activity and on-road 

emission rates for DPV. The paper considered two hypotheses was follows: i) IOV-based model is a good 

predictor of CO2, regardless of the driving conditions and vehicle; ii) NOX model only based on load 

variables are worse predictive of NOX exhaust emissions in diesel engines. These predictions were tested 

in one mix urban and rural route and two highway routes, with variations in traffic volumes. Driving style 

was also characterized by metrics for both validating PEMS trips and examining their impacts on 

emissions rates. 

Therefore, the specific research objectives were: 1) to assess the effect of variation in RPA, MPA and the 

95th percentile of the product of speed and positive acceleration greater than 0.1 m.s-2 – vapos_[95], VSP 

and vehicle engine variables on CO2 and NOX emission rates; and 2) to explore the correlation between 

IOV-based predictors of engine load and VSP. This article contributes to the state-of-art advancement in 

the two main aspects: 

• To characterize real-world emission factors for both global and local pollutants for different 

DPV on different types of road configurations; 



 

• To develop predictive models based on IOVs and EOVs for different diesel vehicle categories 

in Europe. 

 

2. METHODOLOGY 

This paper focused on hot stabilized tailpipe exhaust emissions from DPV using an integrated PEMS, 

OBD and GPS receivers over test routes that fulfills the main requirements imposed by the RDE regulation 

(Kwon et al., 2017). In the next sections, methodology steps pertaining to experimental design (Section 

2.1), instruments and test conditions (Section 2.2), field measurements (Section 2.3) quality assurance 

(Section 2.4), and data analysis (Section 2.5) are explained in detail. 

 

2.1. Experimental design 

Field measurements of four DPVs – two small cars, one medium car and one multi-purpose car (EC, 

1999) – were conducted. These vehicles varied in emission standards, category, engine displacements and 

mileage, as listed in TABLE 2. The distribution of engine sizes (1.2 L – 1.8 L) in the test fleet was 

representative of the European market (ACAP, 2017). Testing vehicles V2-V4 were type approved to the 

Euro 6-b standard, thus they are not designed to meet on-road limits. V2 and V4 are equipped with passive 

SCR while V3 has an active SCR with urea dosing. 

 

TABLE 2 Technical specifications of the test vehicles. 

 



 

The on-road emissions tests were carried out in Aveiro region (Portugal), along the routes (R1, R2 and 

R3) in both directions of travelling (A→B→A), as depicted in FIGURE 1. The routes were designed to 

include a wide range of European on-road driving conditions such as speed range, acceleration-

deceleration profiles, traffic conditions and altitude profiles (EC, 2017). R1 (23.6 km) is a mix of rural 

(77%) and urban (23%) roads with one lane, and it has 12 roundabouts, 14 traffic lights and one stop-

controlled intersection (North-South direction) throughout its length. More than half of both R2 (30.2 km) 

and R3 (34.1 km) is on low-traffic-volume and high-traffic toll highway sections, respectively. Average 

daily traffic (ADT) on R2 and R3 highway study segments is about 11 700 and 39 950, respectively (IMT, 

2019). Although all routes are located in flat areas for which road grades are negligible, R2 and R3 contain 

some elevation differences in some stretches, as shown in FIGURE 2.  

 

FIGURE 1 Routes aerial view. Background Map Source [Open Street Maps]. 

 

FIGURE 2 Test routes: a) altitude profiles; and b) typical speed distributions. 

 

2.2. Instruments and Test Conditions 

The 3DATX ParSYNC integrated PEMS (iPEMS) (3DATX, 2018) was used to perform on-road 

emissions tests of a limited number of gaseous exhaust constituents. The 3DATX has developed 

parSYNC® integrated PEMS (iPEMS) with 3.7kg of weight (including batteries) which is capable of 

measuring CO2 (in volume fraction), NO, NO2, and the particulate number (PN) at a frequency of 1 Hz. 

The system uses a replaceable Sensor Cartridge to obtain real-time PM/PN and GasMOD™ Sensor 

Cartridge for NOx (with a range of 0 – 5 000 ppm) and CO2 (with a range of 0 – 20%) (3DATX, 2018).  



 

TABLE 3 summarizes the measurements principles and sample condition of the equipment.  

 

TABLE 3 Measurements Principles and Sample Condition of the selected PEMS. 

 

2.3. Field Measurements 

One complete PEMS trip duration was between 100 and 120 minutes since the internal battery can power 

the unit for over three hours. A temperature/pressure sensor monitored environment parameters (Ambient 

Temperature – T, Humidity – H), and a QSTARZ GPS Travel Recorder (absolute position accuracy: 3 m) 

continuously logged vehicle position and elevation. The OBD-II ELM327 measured main car engine data, 

such as speed, mass air flow (MAF), MAP, RPM and intake air temperature (IAT). For all vehicles, the 

fuel flow rate (FFR) was also reported by the OBD. TABLE 4 lists data used in these monitoring 

campaigns, including variability in measured data by vehicle type and observed ranges of above 

parameters.  

 

TABLE 4 Summary of ambient and activity real-world data for selected vehicles operated on R1, R2 and 

R3 routes (both directions of travelling). 

 

All measurements were carried out in September, October and November 2018 and within an overall 

ambient temperature range of 12 – 18 °C. All trips were performed with different drivers to capture 

different driving styles. Since the toll plaza in R3 has conventional and electronic pay tolls, measurements 

were conducted for both facilities. For each vehicle, more than 10 000 seconds of valid PEMS, OBD and 

GPS data were collected. It should be mentioned that the start-stop system was deactivated before starting 



 

route tests due to the fact the iPEMS needs continuously an energy source power during measurements. 

On average, idle situations lasting more than 5 seconds accounted for 2% of total route-specific travel 

time. 

 

2.4. Data processing and Quality Assurance 

Data processing and quality assurance focused on the following steps (Delavarrafiee and Frey, 2018; 

Sandhu and Frey, 2013a): 1) to collect OBD data on a second-by-second; 2) to synchronize data from 

PEMS, GPS and OBD into one database; and 3) to check data screening to correct or remove data errors. 

Characteristic errors include unusual MAF, RPM and MAP values that remained constant indicating that 

the data were no longer being updated and negative CO2, NO and NO2 values. Both the errors were 

corrected, and errant data values were screened out for data analysis.  

 

2.5. Data Analysis 

Each vehicle trip of R1, R2 and R3 routes was extracted and separated for comparison. This ensured 

consistency in the assessment of trip-specific characteristics (Yazdani Boroujeni and Frey, 2014),  such 

as RPA, MPA, vapos_[95], emissions, VSP and IOVs. 

 

2.5.1. Verification of the trip validity 

Driving parameters were calculated to characterize the driving profile of the PEMS route trips. For 

acceleration based parameters, the acceleration ai in the second of travel i in m.s-2 was calculated from 

OBD speed, as expressed by Equation 1 (EC, 2016): 



 

1 1  ,
2 3.6

+ −−
=



i i
i

v v
a                                                                                                                                          (1) 

where vi-1 and vi+1 are the vehicle instantaneous speed in the second of travel i-1 and i+1, respectively 

(km.h-1). 

 

The 95th percentile of the product of vehicle speed and positive acceleration, vapos_[95], is the metric for 

evaluating the maximum dynamic boundary conditions in the Commission Regulation (EU) 2017/1151 

of 1 June 2017 (EC, 2017); if the vapos_[95] is below a certain value, then a PEMS trip is valid in the RDE 

procedure. RPA is the metric for assessing the minimum dynamic boundary conditions in prior regulation; 

if a PEMS trip has RPA above a certain value, then it is valid in the RDE procedure. Therefore, only 

PEMS trips that fulfilled the above-mentioned criteria were selected for this emission analysis. More 

details about the validation of RDE procedure can be found in (EC, 2017). 

 

The above parameters RPA (in m.s-2), MPA (in m.s-2) and vapos_[95] (m2.s-3) were then, calculated 

according to Equations 2, 3 and 4, respectively (EC, 2017): 
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where ai
+ represents the positive values of the acceleration greater than 0.1 m.s-2 for the second of travel i 

(m.s-2), d is the total distance of the route (m) and P95 corresponds to the 95th percentile. 



 

 

2.5.2. Road grade calculation  

The methodology for road grade calculation followed a two-step procedure, consisting of (i) correction of 

instantaneous vehicle altitude data, and (ii) the calculation of the cumulative positive elevation gain. 

Although the GPS device was provided data without any observable signal loss, the second-by-second 

altitude data were acquired from the topographic map (ERSI, 2016). In addition, each instantaneous 

altitude data was corrected under the conditions given in Equation 5 (EC, 2017): 
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where ih is the corrected altitude, hi and hi-1 are the altitude in the second of travel i and i-1, respectively 

(m above sea level). 

 

These values were used for the calculation of the cumulated altitude gain in meters, as shown in Equation 

6 (Gallus et al., 2017): 

 for 0 ,=    i i

i

altgain h h                                                                                                                     (6) 

To quantify road grade with enough precision at every location along a route, a segment method proposed 

by Yazdani Boroujeni and Frey (2014) was used. First, the entire route trip was divided into multiple 

segments of a constant length, then the road grade was calculated using linear regression through all 

altitude data. This increases the statistically accuracy of the calculated road grade, since data from several 

trips over the same route are combined (Yazdani Boroujeni and Frey, 2014). 



 

Thus, a segment length of 100 m was chosen as the best trade-off between the number of GPS data points 

per segment (small number decreases the reliability of the calculated road grade) and extremely large 

segment length (too long means inappropriate smoothed out grade variations). The segment method was 

applied to PEMS trips conducted with all vehicles on routes R1, R2 and R3, thereby resulting in the 

following positive cumulative elevation gains: 59 meters/100 km (R1) 167 meters/100 km (R2) and 132 

meters/100 km (R3). 

 

2.5.3. Emission Rates 

Because the parSYNC does not measure exhaust flow, a general procedure was followed to compute 

pollutant mass at each second of operation using the method based on the Regulatory Information 40 CFR 

86.144 for exhaust emissions (EPA, 2018). The generic form of an equation was developed using the 

simple proof given by Equation 7 (Leland and Stanard, 2018): 

 

ex fuel. ,m MAF FFR = +                                                                                                                           (7) 

where exm  is the exhaust mass flow rate (g.s-1), MAF is the mass air flow rate (g.s-1), FFR is the fuel flow 

rate (L.s-1) and ρfuel is the fuel density (g.L-1). 

 

For the purpose of analyses, the sum of concentration signals for NO and NO2 corresponds to the NOx 

concentration. For CO2 and NOX mass emission rate calculations, the following equations were used 

(EPA, 2018):  

2 2 2CO ex CO CO  ,=m V X                                                                                                                                 (8) 
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where 
2COm is the mass flow rate of CO2 (g.s-1), 

exV  is the exhaust volumetric flow rate (corrected to 

standard conditions) (m3.s-1), 
2CO  is the density of CO2 at the standard conditions (g.m-3) and 

2COX  is the 

volume fraction of CO2 (%),
XNOm is the mass flow rate of NOX (g.s-1), 

XNO  is the density of NOX at the 

standard conditions (g.m-3), 
XNOX   is the volume fraction of NOX (ppm) and H is the humidity (%). 

 

2.5.4. Uncertainty Considerations 

As mentioned previously in Section 2.5.3, the exhaust flow rate was estimated based on engine MAF and 

FFR reported via the OBD interface. Thus, the uncertainty of exhaust emissions was based on imprecisions 

of MAF and FFR measurements, CO2, NO and NO2 analyzers and trip distance measurements. Routine 

calibrations of gas analyzers (controlling for zero and span drift once per trip) were performed prior each 

test using the UN 1956 gas mixture to mitigate measurements errors of iPEMS. For the estimation of the 

emissions uncertainty (in relative terms), the propagation rule for multiplication and division in the form 

of Equation 10 (Farrance and Frenkel, 2012) was used: 
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where 
,E j

 is the relative expanded uncertainty of specie  2 X,  CO ,NO =j J J (%); k is the coverage 

factor (= 2 for a confidence interval of 95%); MAF  is the relative uncertainty of the MAF sensor (%); FFR  



 

is the relative uncertainty of the FFR sensor (%);
  is the relative uncertainty of the gas analyzer (%); and 

 d
 is the relative uncertainty of the trip distance (%). 

 

To obtain the uncertainty of each component of the Equation 10, the technical specifications in the RDE 

regulation and experimental data were considered. The uncertainty of gas analyzers is determined by the 

accuracy (at a given concentration value), drift over time for zero and maximum concentrations (span), 

and linearity (standard error requirement) (Giechaskiel et al., 2018). In addition, the uncertainty is 

influenced by the time delay of signals, effect of environmental conditions (e.g., altitude and temperature), 

uncertainty of the regulated laboratory constant-volume sampling (CVS) and zero drift of the analyzer. 

Equation 11 provides the absolute uncertainty for an emission level (Giechaskiel et al., 2018): 

( ), , , ,     = + + − +F E j E j t B CVS j driftL                                                                                                                          (11) 

where 
, ,F E j

is the absolute uncertainty of specie j (g.km-1), 
,E j

is the relative uncertainty of specie j;  t  

is the time misdealing of signals (%),  B  is the effect of test conditions (%), CVS  is the uncertainty of the 

regulated CVS (%), 
jL  is the emission level of specie j (g.km-1), and drift

 is the uncertainty associated 

with the zero drift (g.km-1). 

 

The small sample size together to the lack of laboratory tests resulted in few data to perform a reliable 

uncertainty analysis of iPEMS setup. For this reason, the authors used values from the 2017 margins 

review study (Giechaskiel et al., 2018), as presented in TABLE 5. The assessment of uncertainly in this 

case considered conservative values taken under realistic conditions. For purpose of the analysis, the 



 

contribution of the zero drift was negligible because analyzer was brand new and calibrated. Using these 

values, the final uncertainty of CO2 and NOX is 33% and 35%, respectively. 

TABLE 5 Summary of uncertainty values used in this study (EC, 2016; Giechaskiel et al., 2018). 

 

 

2.5.5. Concordance between EOVs and IOVs 

To evaluate the concordance between IOVs and EOVs as indicators of engine power demand, the 

relationship between the product of MAP and RPM (PMAP×RPM), and VSP was explored. Emission rates 

can be stratified into bins by using VSP to represent any driving cycle. The use of bins enables 

quantification of linear or nonlinear trends without the need of fitting a parametric function to the data, 

which often introduces model bias (Sandhu and Frey, 2013a). VSP is a useful explanatory variable for 

emissions since it accounts for kinetic energy, aerodynamic drag, tire rolling resistance and road grade. 

Equation 12 applies VSP using parameter values to specific case of a typical DPV (USEPA, 2002): 

  31.1 9.81 0.132 0.000302. ,= + + +i i i iVSP v a r v                                                                                        (12) 

where VSPi is the Vehicle Specific Power in the second of travel i (kW.ton-1) and r is the road grade 

(slope). 

 

Each second-by-second estimate of VSP was stratified into 14 bins and the average CO2 and NOX emission 

rates for each bin were estimated. These modes are typically in DPV (USEPA, 2002). 

Although the engine air flow is influenced by IAT, engine displacement or engine volumetric efficiency, 

MAP and RPM tend to have much more relative variability for a given engine with fixed engine 



 

displacement and number of strokes per cycle (Charles Fayette, 1985). Typically the variability in 

emission rates are better explained by PMAP×RPM than MAP and RPM separately (Hu et al., 2016). 

Accordingly, relationships between emission rates (CO2 and NOX) and PMAP×RPM were examined. Studies 

have been showing a correlation of emissions and PMAP×RPM describing power-shaped curves (Charles 

Fayette, 1985; Hu et al., 2016). For this reason, a model in the form of Equation 13 was used: 

( ),w,pred MAP×RPM ,=
j

n
m c P                                                                                                                          (13) 

where 
,w,predj

m is the predicted mass flow rate of specie j and vehicle  ,  V1,V2,V3,V4 =w W W , c is the 

fitted scaling parameter and n is the power parameter. 

 

However, Equation 13 as it stands is not complete, as the transform of the error term has been omitted, 

i.e., bias is introduced in the transformation back from the logarithm unit to the original arithmetic unit. 

To overcome this issue, a log-transformation bias correction factor was used following the method 

demonstrated by Newman (1993), as follows: 

( ),w,pred,cor log MAP×RPM ,=
j

n
m cC P                                                                                                                   (14) 

where 
,w,pred,corj

m  is the corrected predicted mass flow rate of specie j  and vehicle w, and Clog represents a 

log-transformation bias correction factor. 

 

Since a log-transformation leads to an estimate of the median value, an additional bias correction is needed 

by using a linear regression between predicted emission rates by Equation 12 and measured emission rates, 

as indicated in Equation 15: 



 

,w,pred,cor ,w,measure´ ´ ,+= 
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where 
,w,measurejm  is the measured mass flow rate of specie j  and vehicle w, the a represents the fitted 

slope, and b´ is the model intercept. 

 

Considering the above-mentioned steps, the final form in predicting emission rates of CO2 and NOX on 

the basis of PMAP×RPM is rewritten as: 
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where 
,w,pred,cor

'

j
m is the corrected predicted mass flow rate of specie j and vehicle w. 

 

3. RESULTS 

In this section, the main results from driving behavior parameters are presented and discussed (Section 

3.1). The average emissions per kilometer by vehicle are compared among routes in Section 3.2 followed 

by the presentation and discussion of the fitted models for EOVs and IOVs in Section 3.3.  

 

3.1. Driving style 

In FIGURE 3 all second-by-second acceleration were plotted against vehicle speed (OBD) for all trips 

on a same route. As suspected, R1 covered a wide acceleration and deceleration values when compared 

to other routes. This can be explained by the fact that test vehicles faced multiple stops as they approach 

through traffic lights and roundabouts along R1, and as result they had sharper accelerations and 

decelerations rates. The scatter plots also indicated differences in acceleration-speed conditions between 



 

R2 and R3 for vehicle speeds below 25 km/h. These results occurred for two main reasons: 1) conventional 

pay tolls at R3 (vehicles must came a complete stop and undergone several stop-and-go episodes until the 

payment is completed, thus resulting in acceleration at low speeds); and 2) low traffic along R2 highway 

trip section (see Section 2.1) together with an electronic pay toll system where no stopping is required. 

By contrast, R2 and R3 trips at speeds around 25-125 km/h covered a wider band of acceleration and 

speed combinations. 

 

FIGURE 3 Acceleration as a function of vehicle speed: a) R1; b) R2; and c) R3. 

 

FIGURE 4 shows an overview of the acceleration-based parameters RPA and MPA by route. The bar 

height represents the mean of the respective parameter for different trips while the range bar represents 

the standard deviation. Both parameters indicated a good differentiation with respect to routes. The 

average RPA in R2 was 22% and 25% lower than the corresponding value for routes R3 and R1, 

respectively. R3 yielded the highest MPA (perhaps due to the higher capacity of R3 that allow for more 

overtaking maneuvers), but R1 has a larger standard deviation bandwidth (possibly due to the variations 

in acceleration rates faced by vehicles after stopping in traffic light, roundabout or crosswalk). The 

resulting coefficients of variability of average MPA ranged from 0.12 to 0.23 between R1 and R3. 

 

FIGURE 4 Driving dynamics of the PEMS trips: a) RPA by route; and b) MPA by route. 

 

FIGURE 5 exhibits the 95th percentile of the vapos_[95] and RPA as function of the average speed of each 

trip. The dashed diagonal line represents the threshold values for above metrics that were taken from the 



 

current RDE regulation draft (EC, 2017). Almost data points fell below this line showing trips in this 

study met the vapos_[95] RDE dynamic boundary conditions. There was an exception in one trip along R3 

that was further removed from emission analysis. The results also show all data points in this study fell 

above the corresponding dash diagonal line, thereby fulfilling RDE dynamic boundary conditions (EC, 

2017).  

 

FIGURE 5 Validation of PEMS trips: a) vapos_[95] by speed; and b) RPA by speed. 

 

3.2. Test route emissions 

This section presents the average CO2 and NOX emissions per kilometer for the different routes and 

separated for different vehicles. The following density values of CO2 and NOX were used (Leland and 

Stanard, 2018): ρCO2 = 1 830 g.m-3; ρNOX = 1 913 g.m-3. A diesel density value ρfuel of 835 g.L-1 was used 

(Engineering ToolBox, 2019).  

From FIGURE 6, it can be observed that the R2 and R3 produced the highest CO2 and NOX per trip 

distance. There was a greater difference between R2/R3 and R1 emissions per unit distance in CO2 

(between 9% and 23%, depending on the vehicle) than for NOX (between 11% and 178%, depending on 

the vehicle). The standard deviation bars also confirmed that the variability within each route type was 

substantial (up to 32% and 63% for CO2 and NOX, respectively). Owing to their engine power, high-sized 

V1 and V3 generated the highest amount of CO2 emissions, regardless of the type of route. Although V2 

and V4 (S-category, as presented in TABLE 2) vehicles achieved similar CO2 performance, V2 generated 

an average amount of NOX emissions per unit distance 38% higher than V4 did. This point can be 

explained by the high mileage (7 000 km) and lifetime of V2 as compared with V4, thus causing a 



 

deterioration in the SCR system (EEA, 2016, 2018b). A close analysis allows to confirm on-road CO2 

surpassed vehicle type-approval in 64% and 105% between V1 and V3. Also, Euro 6 vehicles were out of 

compliance with respective NOX emission limit [see conformity factors of Euro 6-b post 2015 vehicles in 

White et al. (2018)], with emissions ranging from 3 to 4 times higher on average. Nevertheless, testing 

vehicles are pre-RDE DPV, i.e., they are only tested in a laboratory over the NEDC driving cycle. 

 

FIGURE 6 Average emissions (with standard deviation values) by vehicle and route: a) CO2 per unit 

distance; and b) NOX per unit distance. 

 

Results confirm that due to the difference route types there is a difference in CO2 and NOX emissions for 

each car, even for those of the same engine standard and vehicle category. All vehicles had emissions far 

in exceedance of approval values which is in accordance with prior studies (e.g., (Chelsea Baldino et al., 

2017)). Because of limited number of PEMS runs, the different trips had high variability in emissions. 

Therefore, there is a need for a suitable methodology capable of predicting emission rates on the basis of 

VSP and IOVs. 

 

3.3. Summary of regression models 

For each of the 4 vehicles, the relationship between emission rates, EOVs and IOVs was explored. The 

models were calibrated based on 70% of the available data sets (training) (Liu et al., 2017), while 

remaining data (testing) were withheld for model validation. It must be emphasized that these are stratified 

samples. 

 



 

3.3.1. IOVs versus VSP 

Average PMAP×RPM values were plotted against VSP, ranging from -30 to 30 kW/ton in 1-kW/ton intervals, 

as displayed in FIGURE 7. This range represents almost 98% of vehicle’s activity data. Since no load at 

engine is observed at negative VSP, the PMAP×RPM values did not follow a power trend over vehicle specific 

power. At positive VSP, the product of MAP and engine RPM increased monotonically assuming a power 

relation; the adjusted R2 values for V1, V2, V3 and V4 were 0.89, 0.88, 0.80 and 0.82, respectively. The 

p-values for the power and scaling parameters were both less than 1×10-11, indicating statistical 

significance. The main conclusions derived from FIGURE 7 are that the product of MAP and engine 

RPM is a good proxy for engine power demand for the above diesel vehicles. 

 

FIGURE 7 Measured PMAP×RPM versus VSP, with 1-kW/ton intervals, by vehicle: a) V1 – VSP<0; b) V1 

– VSP>0; c) V2 – VSP<0; d) V2 – VSP>0; e) V3 – VSP<0; f) V3 – VSP>0; g) V4 – VSP<0; and h) V4 

– VSP>0. 

 

3.3.2. Emission rates versus VSP 

FIGURE 8 exhibits the potential of the VSP-based approach within each bin for predicting CO2 and NOX 

emission rates by vehicle. Results showed a very good fit (R2 > 0.92) between predicted and observed 

CO2 using linear regression analysis. The findings for NOX were generally not as good as those for CO2; 

the predicted R2 for V1, V2, V3 and V4 were 0.83, 0.75, 0.83 and 0.78, respectively. The scatter plots also 

confirmed predicted values far from observed data in high emission rates, i.e., high VSP bins, which may 

be explained to the small size of dataset. Notwithstanding these differences and variability in measured 



 

rates (size of the error bars), VSP-modal approach showed to be accurate in estimating the mean trend in 

both CO2 and NOX. 

 

FIGURE 8 Comparison between measured and predicted emission rates based on VSP-modal approach, 

by vehicle: a) V1 – CO2; b) V1 – NOX; c) V2 – CO2; d) V2– NOX; e) V3 – CO2; f) V3 – NOX; g) V4 – 

CO2; and h) V4 – NOX. 

 

3.3.3. Emission rates versus IOVs 

The relationship between CO2 emissions rates (using training set) and the product of MAP and RPM are 

shown in FIGURE 9. Scatter plots indicated that most of data points followed a power trend (adjusted R2 

values for CO2 as a power function of PMAP×RPM ranged from 0.46 to 0.74, depending on the vehicle) 

(FIGURE 9). These models had p-values lower than 0.05 in both power and scaling parameters indicating 

thus statistical significance. After bias correction (Equations 14 and 15), the predicted CO2 in terms of 

PMAP×RPM using Equation 16 is as follows: 

( )CO 2,V1,pred,cor

' 8 1.54 21.89 10  0.57  0.65,  0.01−

=   − = MAP RPMm P R Fsig                                                   (17) 

( )CO 2,V 2,pred,cor

' 7 1.38 21.42 10  0.81  0.46,  0.01−

=   − = MAP RPMm P R Fsig                                                   (18) 

( )CO 2,V 3,pred,cor

' 9 1.72 22.12 10  0.32  0.74,  0.01−

=   − = MAP RPMm P R Fsig                                                  (19) 

( )CO 2,V 4,pred,cor

' 6 1.41 22.18 10  0.69  0.72,   < 0.01−

=   − =MAP RPMm P R Fsig                                                 (20) 

 

FIGURE 9 CO2 emission rates versus IOVs, by vehicle: a) V1; b) V2; c) V3; and d) V4.   



 

 

Albeit reasonable, a model on the basis of PMAP×RPM worse explained the variability in NOx emission rates; 

the adjusted R2 values for V1, V2, V3 and V4 were 0.54, 0.34, 0.71 and 0.44, respectively. There was 

cluster of data in which measured emission rates were much higher than the values predicted by fitted 

model. The most possible reason for these differences might be the ECU that is switching from a close- 

to an open-loop operation to keep the engine from overheating. Nevertheless, it must always be borne in 

mind that these short-duration events represent different operating conditions than those obtained in 

majority of data set (Charles Fayette, 1985). Since a model based on the basis of PMAP×RPM was not able 

to predict this cluster of very high emissions (only 0.3% of travel time), data were stratified for NOX 

emission rates less than 0.3 g.s-1. For each vehicle, the IOV model based on PMAP×RPM was developed in 

the same way than the model for CO2. After bias correction (Equations 14 and 15), the predicted NOX in 

terms of PMAP×RPM in the form of Equation 16 can be given by: 

( )NOX,V1,pred,cor

' 11 1.76 21.57 10  0.01    0.54,   < 0.01−

=   − =MAP RPMm P R Fsig                                               (21) 

( )NOX,V 2,pred,cor

' 11 1.80 21.30 10  0.01   0.34,   < 0.01−

=   − =MAP RPMm P R Fsig                                                (22) 

( )NOX,V 3,pred,cor

' 17 2.72 23.47 10               0.71,   < 0.01−

=   =MAP RPMm P R Fsig                                                (23) 

( )NOX,V 4,pred,cor

' 8 1.35 24.50 10  0.01    0.45,   < 0.01−

=   − =MAP RPMm P R Fsig                                                (24) 

 

FIGURE 10 NOX emission rates versus IOVs, by vehicle: a) V1 b) V2; c) V3; and d) V4.   

 



 

To assess the goodness of fit, a comparison between IOVs based and measured emission rates was 

illustrated in FIGURE 11. The standard deviation of residuals was small compared with mean emission 

rates. They represented less than 40% and 60% of mean measured CO2 and NOX, respectively. When look 

at CO2, the predicted values of R2 for IOVs based models versus measured rates ranged from 0.87 to 0.92, 

which is similar to the values obtained with EOV-based models. The scatterplots clearly indicated high 

variation in the residual errors, which is mostly explained by small sample size in high emission rates. 

The relationship between emission rates predicted by Equations 21 to 24 and measured NOX emission 

rates in high-sized V1 and V3 showed a better fit (R2 > 0.70) than for small cars (R2 < 0.60). Although the 

graphs suggest weak fitted models in some vehicles, there are several data points clustered close to the 

fitted line. 

 

FIGURE 11 Comparison between measured and predicted emission rates based on IOV-based model, by 

vehicle: a) V1 – CO2; b) V1 – NOX; c) V2 – CO2; d) V2– NOX; e) V3 – CO2; f) V3 – NOX; g) V4 – CO2; 

and h) V4 – NOX.   

 

3.3.4. Discussion 

The findings from above sub-sections confirmed the first hypothesis of the paper regarding the 

relationship between IOVs and CO2 emission rates. The model based on the product of RPM and MAP 

showed to be accurate in predicting CO2 emission rates on a second-by-second basis. Since this gas is a 

good surrogate of fuel use rates, such approach can be applied to estimate vehicle-specific fuel use.  

The second hypothesis of the paper was also confirmed, i.e., the developed models based on load 

parameters had a fair performance in predicting NOX emission rates, especially in light vehicles. This is 



 

possible due to other IOVs that are not included in the developed models whose impact in NOX conversion 

rates in SCR system are relevant. Another reason may be the short gear shift of V2 and V4 compared with 

high-sized C, thus, generating clusters of high emissions during gear selection.  

It is worth noting an IOV model simply based on RPM and MAP cannot incorporate, per se, all factors 

with impacts on NOX emissions in diesel engines. Accordingly, there is a need to improve the accuracy 

of NOX predictions by testing and incorporating other parameters concerning the thermal management of 

SCR system. 

 

 

4. CONCLUSIONS 

An empirical-based methodology that integrated vehicle activity and on-road emissions for DPV to predict 

emissions was suggested. For this purpose, on-road emissions and engine activity data were collected from 

four diesel vehicles, considering different driving conditions. Then, the driving style was characterized by 

acceleration-based parameters to validate PEMS trips and to explore their impacts on emissions. Finally, 

the concordance and correlation between IOV-based predictors of engine load and VSP was explored. 

The analysis results show both the RPA and MPA allowed a good differentiation with respect to route 

trips. It was found that measured CO2 emissions were inflated up to 105% when compared to the regulated 

level while measured NOX emissions were 3-4 times higher on average than standard emission. IOV-

based predictors of engine load, in particular PMAP×RPM, were closely related with EOV-based predictors 

as VSP. While for negative VSP values they were relatively constant (but varied among testing vehicles), 

at positive values PMAP×RPM showed good fit (R2 between 0.80 and 0.89, depending on the vehicle) using 

power regression analysis. These IOVs were as good as EOV-based in predicting CO2 emission rates (R2 



 

ranged from 0.46 to 0.74, depending on the vehicle), but were worse in predicting NOX emission for small 

vehicle categories (R2<0.60). This happened because the operating conditions of SCR were not considered 

in NOX model. 

As far as high emission rates are of more concern on climate change and more relevant impacts on air 

quality than low emission rates, IOV-based predictors must be robust for high-emitting vehicles compared 

to low-emitting ones. 

The advantage of using IOV-based models lies in being less costing tool compare to PEMS system. The 

proposed methodology is of particular interest in cases where local financial resources are limited and 

cannot face traffic-related environmental impacts monitoring. Since IOV-based models developed here 

can be implemented within the ECU in order to provide real-time data on emission rates, there is the 

potential to share ECU-based predictions in connected vehicles. For instance, a model can be calibrated 

for a specific brand and model based on vehicle-specific data or be incorporated in a traffic simulation 

tools to assure reliable emission and air quality analysis. 

The main limitation of this paper is the small sample size of the fleet that only consisted of pre-RDE DPV. 

This means that the models developed are only valid for those vehicles. Also, the impacts of the after-

treatment system of these vehicles that results in excess NOX emissions were not considered in emission 

predictive models. 

Thus, future research should be extended to other diesel engines with different emission standards (from 

Euro 1 to Euro 5 vehicles, and from Euro 6-a to Euro 6-d vehicles), as well as gasoline passenger vehicles, 

hybrid electric vehicles and vans. Further improvement of IOV-based models of particulate matter 

emissions, and incorporation of other IOVs such as IAT, catalytic temperature, exhaust flow and exhaust 

temperature are required to capture faithfully NOX emissions in DPV.  
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FIGURE 1 Routes Aerial View. Background Map Source [Open Street Maps]. 
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FIGURE 2 Test routes: a) altitude profiles; and b) typical speed distribution. 
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FIGURE 3 Acceleration as a function of vehicle speed by vehicle route: a) R1; b) R2; 

and c) R3.  
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FIGURE 4 Driving dynamics of the PEMS trips: a) RPA by route; and b) MPA by 

route. 
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FIGURE 5 Validation of PEMS trips: a) vapos_[95] by speed; and b) RPA by speed. 
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Note: Dashed lines represent vehicle-specific CO2 approval and Euro 6b NOX limit. The conformity factor for NOX was 

5.35 (i.e., NOX = 0.428 g.km-1), as suggested by White et al. (2018).  

FIGURE 6 Average emissions (with standard deviation values) by vehicle and route: a) 

CO2 per unit distance; and b) NOX per unit distance. 
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Note: Error bars represent 95% confidence level 

FIGURE 7 Measured PMAP×RPM versus VSP, with 1-kW/ton intervals, by vehicle: a) V1 

– VSP<0; b) V1 – VSP>0; c) V2 – VSP<0; d) V2 – VSP>0; e) V3 – VSP<0; f) V3 – 

VSP>0; g) V4 – VSP<0; and h) V4 – VSP>0.  
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Note: Predicted CO2/NOX is the emission rates from the training set; Measured CO2/NOX is the emission 

rates from the testing set. 

FIGURE 8 Comparison between measured and predicted emission rates based on VSP-

modal approach, by vehicle: a) V1 – CO2; b) V1 – NOX; c) V2 – CO2; d) V2– NOX; e) 

V3 – CO2; f) V3 – NOX; g) V4 – CO2; and h) V4 – NOX.   
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FIGURE 9 CO2 emission rates versus IOVs, by vehicle: a) V1 b) V2; c) V3; and d) V4.   
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FIGURE 10 NOX emission rates versus IOVs, by vehicle: a) V1 b) V2; c) V3; and d) V4.   
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Note: Predicted CO2/NOX is the emission rates from the training set; Measured CO2/NOX is the emission 

rates from the testing set. 

FIGURE 11 Comparison between measured and predicted emission rates based on IOV-

based model, by vehicle: a) V1 – CO2; b) V1 – NOX; c) V2 – CO2; d) V2– NOX; e) V3 – 

CO2; f) V3 – NOX; g) V4 – CO2; and h) V4 – NOX.   

a) b) 

  

c) d)  

  

e) f) 

  

g) h) 

  

0

5

10

15

20

25

0 5 10 15 20 25

M
ea

su
re

d
 C

O
2

[g
/s

]

Predicted CO2 [g.s-1]

0.00

0.08

0.16

0.24

0.32

0.40

0.00 0.08 0.16 0.24 0.32 0.40

M
ea

su
re

d
 N

O
X

[g
/s

]

Predicted NOX [g.s-1]

0

3

6

9

12

15

0 3 6 9 12 15

M
ea

su
re

d
 C

O
2

[g
/s

]

Predicted CO2 [g.s-1]

0.00

0.08

0.16

0.24

0.32

0.40

0.00 0.08 0.16 0.24 0.32 0.40

M
ea

su
re

d
 N

O
X

[g
/s

]

Predicted NOX [g.s-1]

0

5

10

15

20

25

0 5 10 15 20 25

M
ea

su
re

d
 C

O
2

[g
/s

]

Predicted CO2 [g.s-1]

0.00

0.12

0.24

0.36

0.48

0.60

0.00 0.12 0.24 0.36 0.48 0.60

M
ea

su
re

d
 N

O
X

[g
/s

]

Predicted NOX [g.s-1]

0

4

8

12

16

20

0 4 8 12 16 20

M
ea

su
re

d
 C

O
2

[g
/s

]

Predicted CO2 [g.s-1]

0.00

0.06

0.12

0.18

0.24

0.30

0.00 0.06 0.12 0.18 0.24 0.30

M
ea

su
re

d
 N

O
X

[g
/s

]

Predicted NOX [g.s-1]

R² = 0.92 

R² = 0.71 

R² = 0.87 R² = 0.56 

R² = 0.90 

R² = 0.56 
R² = 0.89 

R² = 0.78 



TABLE 1 Key studies on emission measurements of DPV, LPV and HEV. 

Reference Test Fleet Variables Major findings Observations 

Weiss et al. 

(2012) 

One DPV (Euro 6) 
4 DPV (Euro 5) 

2 DPV (Euro 4) 

Total Hydrocarbons (THC), CO, 

NO/ NOX CO2 

On-road NOx exceeded their emissions standards standard by 260 ± 130%; On-road 

CO2 deviated by 8 ± 13% from the NEDC values 

No method to predict emissions 

rates based on EOVs or IOVs  

Boroujeni et 

al. (2014) 

3 SUVs, 
2 Pick-up trucks 

7 Sedans 

Fuel Use, NOx, HC, CO, Road 
Grade; Speed, RPM, MAP, Mass 

air flow (MAF) 

The net effect of grades along a route was found to be significant in NOX and CO 

emissions 

No method to predict emissions 

rates based on IOVs  

Holmén and 

Sentoff (2015) 

One HEV 

One GPV 

Fuel Use, CO2 

RPM, MAF, Speed, 

HEV CO2 emission benefit factors, frequency of electric-drive-only operation, ranged 

from 1.4 to 4.5 (depending on trip section) 

CO2 and fuel use predictions 

based on EOVs (VSP) 

Hu et al. 

(2016) 

6 GPVs 
4 Gasoline Passenger 

Trucks 

Fuel Use, NOx, HC, CO, GPS Data, 
Intake air Temperature (IAT), 

Speed, MAF, Mass fuel flow 

IOV-based models (product of MAP and RPM) were generally better predictors of 

emission rates than VSP-based model 

Goodness-of-fit varied among test 

vehicles;  

Chelsea et al. 

(2017) 

541 DPVs 

(Euro 5-6) 
CO2, NOX 

Higher real-world emissions compared to standard laboratory tests: NOX emissions’ 
conformity factors exceeded 1 to 11 times (depending on the vehicle); CO2 gap was 

approximately 30% 

No method to predict emissions 

rates based on EOVs or IOVs  

Galus et al. 

(2017) 

2 DPVs 

(Euro 5-6) 
CO2, NOx, Speed 

For a road grade change from 0% to 5%, CO2 and NOX emissions increased more than 
65%; CO2 and NOX emissions increased up to 40% and 255%, respectively, in trips with 

larger RPA, MPA and a × v 

No method to predict emissions 

rates based on EOVs or IOVs  

Kwon et al. 

(2017) 

6 DPVs 

(Euro 6) 

CO2, NOX 

Speed 

On-road NOx emissions highly effect on the driving route and meteorological 

conditions 

No method to predict emissions 

rates based on EOVs or IOVs  

Luján et al. 

(2018) 

One DPV 

(Euro 6) 

CO, CO2, NO/NOx, NO2, THC 

Exhaust flow rate 

Differences in analytical methods proposed by RDE on emissions conformity factor 

calculations (10% to 45% depending on the pollutant and the trip section considered) 

No method to predict emissions 

rates based on EOVs or IOVs  

O'Driscoll et 

al. (2018) 

149 Vehicles: GPVs, 

DPVs and 2 HEVs 

(Euro 5-6) 

CO2, NOx, Hydrocarbons (HC), 
GPS Data 

DPVs had lower CO2 emissions than GPVs (11% to 40%); DPVs NOX were 300% to 
450% higher than the emission standard 

No method to predict emissions 
rates based on EOVs or IOVs  

Yang et al. 

(2019) 

2 HEV 

(China 6) 

PN, Speed, RPM 

Intake Mass Flow Rates; Exhaust 
Temperature; Throttle Position 

Both cars failed the Euro-6 PN limit (34% and 99%); IOVs were plotted against PN 

concentrations in different trip sections 

No method to predict emissions 

rates based on EOVs or IOVs  

Yuan et al. 

(2019) 

3 Tier 3; 2 Tier 2  
(one flexible-fuel 

vehicle -FFV and 4 non-

FFVs)  

CO2, CO, HC, NOx and particulate 

matter (PM) 

Each car was measured with neat gasoline (E0), 10% ethanol by volume (E10) “regular” 
(E10R) and “premium” (E10P), and 27% ethanol by volume (E27). E27 had low CO 

emission rates compared to the other three fuels. No significant difference was found in 

NOx for E27 versus the other fuels. 

No method to predict emissions 

rates based on EOVs or IOVs 

Zhang et al. 

(2019) 

6 GPV 
 (China 3 to 5) 

CO, HC, CO2, NOX 

GPS Data; Speed 
Newer vehicles produced much lower CO (⁓67%) and NOX (⁓31%) emissions than 

older vehicles on hilling roads 
No method to predict emissions 

rates based on IOVs  



TABLE 2 Technical specifications of the test vehicles. 

Vehicle 

ID 

Emission 

Standard 

Vehicle 

Category1 

Model 

Year 

Engine 

Size (L) 

Odometer reading 

at test start (km) 

V1 Euro 4 M 
June 

2006 
1.8 ⁓180 000 

V2 Euro 6b B 
January 

2017 
1.2 ⁓32 000 

V3 Euro 6b C 
July20

17 
1.6 ⁓23 000 

V4 Euro 6b B 
March 

2018 
1.5 ⁓25 000 

1 Categorization of vehicles is based on EC (1999): B – Small Cars; C – Medium Cars; M – Multi-purpose cars 

  



TABLE 3 Measurements Principles and Sample Condition of the selected PEMS. 

Measurement 3DATX 

CO/HC Not Applicable 

NOX NO (ppm) and NO2 (ppm) separately – Electrochemical 

CO2 In volume fraction (XCO2) by non-dispersive infrared 

Exhaust Flow None 

Gaseous Sample Conditioning Chiller captures condensed water 

PM Measurement No mass estimation 

 

  



TABLE 4 Summary of ambient and activity real-world data for selected vehicle types 

operated on R1, R2 and R3 routes (both directions of travelling). 

Parameter Vehicle R1 R2 R3 

Driving Time 

(minutes) 

V1 117 72 75 

V2 98 45 53 

V3 101 42 32 

V4 107 32 36 

Average OBD Speed 

(km.h-1) 

V1 46 95 82 

V2 43 88 79 

V3 38 100 86 

V4 46 91 83 

Min to max MAF 

(g.s-1) 

V1 4 – 119 4 – 113 4 – 118 

V2 5 – 40 7 – 53 6 – 49 

V3 4 – 56 7 – 83 5 – 81 

V4 4 – 68 5 – 77 6 – 78 

Min to max MAP 

(kPA) 

V1 95 – 255 98 – 255 97 – 255 

V2 71 – 196 83 – 228 83 – 237 

V3 99 – 196 101 – 235 100 – 232 

V4 10 – 25 10 – 24 10 – 24 

Min to max RPM 

(rpm) 

V1 770 – 3 140 860 – 2 900 820 – 3 300 

V2 720 – 2 330 805 – 2 520 770 – 2 420 

V3 650 – 2 195 740 – 2 900 744 – 2 850 

V4 690 – 2 820 850 – 2 890 650 – 2 950 

Min to max IAT 

(°C) 

V1 13 – 21 14 – 18 13 – 17 

V2 16 – 31 15 – 19 14 – 18 

V3 15 – 38 16 – 31 18 – 30 

V4 20 – 28 19 – 27 20 – 29 

Min to max T 

(°C) 

V1 14 – 18 14 – 18 14 – 18 

V2 13 – 17 13 – 17 13 – 17 

V3 12 – 15 12 – 15 12 – 15 

V4 13 – 16 13 – 16 13 – 16 

Min to max H 

(%) 

V1 57 – 69 55  – 68 55  – 63 

V2 40 – 65 66  – 68 70  – 71 

V3 78 – 83 71  – 84 72  – 82 

V4 69 – 75 66 – 70 70 – 72 

Min to max XCO2 

(%) 

V1 1 – 15 1 – 14 2 – 16 

V2 1 – 19 1 – 18 1 –  18 

V3 1 – 15 1 – 17 2 – 17 

V4 1 – 15 2 – 18 1 – 17 

Min to max NO 

(ppm) 

V1 102 – 1 727 120 – 2 220 230 – 3 750 

V2 37 – 9 715 111 – 7 690 147 – 6 990 

V3 59 – 1 530 61 – 4 300 60 – 3 750 

V4 100 – 5 500 155 – 3 350 101 – 4 580 

Min to max NO2 

(ppm) 

V1 6 – 58 5 – 58 5 – 63 

V2 1 – 94 2 – 167 4 – 120 

V3 1 – 48 1 – 48 1 – 40 

V4 2 – 63 4 – 70 3 – 77 



TABLE 5 Summary of uncertainty values used in this study (EC, 2016; Giechaskiel et 

al., 2018). 

Parameter Requirement Symbol Value 

OBD 
MAF – Sensor Accuracy MAF  10% 

FFR – Sensor Accuracy FFR  10% 

NO Analyzer 

Analyzer Accuracy NO,acc  2% 

Linearity NO,lin  1% 

Span Drift NO,span  2% 

Gas Accuracy NO,gas  2% 

NO2 Analyzer 

Analyzer Accuracy NO2,acc  2% 

Linearity NO2,lin  1% 

Span Drift NO2,span  2% 

Gas Accuracy NO2,gas  2% 

CO2 Analyzer 

Analyzer Accuracy CO2,acc  2% 

Linearity CO2,lin  1% 

Span Drift CO2,span  2% 

Gas Accuracy CO2,gas  2% 

Other 

Distance  d  4% 

Time Delay  t  3% 

Environmental Conditions  B  0% 

 CSV CVS  3% 

Zero Drift Analyzer zero Drift drift  0% 

 


	Main.pdf
	Figures_R1.pdf
	Table_R1.pdf

