
Maria Manzano
Manuel Martins
Antonia Huertas

Completeness in Equational
Hybrid Propositional Type
Theory

Abstract. Equational Hybrid Propositional Type Theory (EHPTT) is a combination of

propositional type theory, equational logic and hybrid modal logic. The structures used to

interpret the language contain a hierarchy of propositional types, an algebra (a nonempty

set with functions) and a Kripke frame.

The main result in this paper is the proof of completeness of a calculus specifically

defined for this logic. The completeness proof is based on the three proofs Henkin published

last century: (i) Completeness in type theory (ii) The completeness of the first-order

functional calculus and (iii) Completeness in propositional type theory. More precisely,

from (i) and (ii) we take the idea of building the model described by the maximal consistent

set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally

algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use

the result that any element in the hierarchy has a name. The challenge was to deal with

all the heterogeneous components in an integrated system.

Keywords: Propositional Type Theory, Hybrid Logic, Equational Logic, Completeness

1. Introduction

In [15] and [16] Manzano and Moreno investigate the concepts of identity,
equality, nameability and completeness and their mutual relationships on
the following areas: first-order logic, second and higher order logic, type
theory, first-order modal logic, modal type theory, hybrid type theory and
propositional type theory. Concerning identity, we were interested in how
to define it using other logical concepts (identity as definiendum) as well as
in the opposite scheme (identity as definiens). The conclusion, as explained
in the section “The Kingdom of Identity” of [16], was that identity and
lambda are the main logical constants that can be used to define all the
other logical constants. As far as equality is concerned, considered as an
equivalence relation between terms, the modal environment is crucial to
reveal the difference between identity of objects and equality of terms that
can receive different denotations at different worlds. Adding to modal logic

Accepted authors’ manuscript published as Completeness in Equational Hybrid Propo-
sitional Type Theory, Mara Manzano, Manuel A. Martins, Antonia Huertas, Stu-
dia Logica, Vol. 107(6): 1159-1198, 2019. The final publication is available at
https://rd.springer.com/article/10.1007%2Fs11225-018-9833-5.

Studia Logica (2019) 107: 1–40 c©Springer 2019

2 Maria Manzano, Manuel Martins and Antonia Huertas

the hybrid perspective, you are able to express identity of worlds as well
as accessibility relation between worlds inside the formal language. Finally,
equational logic was chosen because there identity is crucial and there are
not interferences with other logical concepts.

Our point of departure is the following quote from Ramsey [18], according
to which Wittgenstein maintained that logic is nothing but identities: “The
preceding and other considerations let Wittgenstein to the view that mathe-
matics does not consist of tautologies, but of what he called ‘equations’, for
which I should prefer to substitute ‘identities’... (It) is interesting to see
whether a theory of mathematics could not be constructed with identities for
its foundations. I have spent a lot of time developing such a theory, and
found that it was faced with what seemed to me unsuperable difficulties.”

The relation of identity is usually understood as the binary relation which
holds between any object and itself and which fails to hold between any two
distinct objects. By equality we mean a binary relation between terms of
the formal language which is reflexive, symmetric and transitive.

What are the logics where equality/identity plays a relevant role? In
Henkin [10] we found a logic where equality (≡) and lambda (λ) are the only
primitive logical constants, the logic of Propositional Type Theory (PTT).
The main results of that paper are the definitions of the other logical con-
stants, as well as the introduction of a calculus based on equality and lambda.
The completeness proof is rather curious as it is not adapted from his well
known completeness proofs for type theory and first-order logic. In this case,
Henkin was able to give a name to each object in the propositional type hier-
archy and he obtained the completeness result as an easy corollary. Another
logic where identity is central is Equational Logic (EL) and, therefore, we
also incorporate its vision and tools into our paper.

Finally, we wanted to explore intensional contexts, where terms receive
different denotations in different worlds. Moreover, when Kripke semantics
is used and a domain of worlds appears, we wonder how to treat identity in
this domain. That is why we took Hybrid Logic (HL), where the identity
relation between worlds can be defined using nominals and the @ operator.

Our proposal is a logic that is able to incorporate all these capabilities.
Equational Hybrid Propositional Type Theory (EHPTT) is a combined logic
with equational significant ingredients. The language we will use includes
as logical symbols ≡ and λ from PTT, but also ♦ and @ from HL. In a pre-
vious paper [13] we prove that there is no need to include a special equality
symbol for equations as primitive, since it can be defined with lambda and
equality. Our language contains variables of all propositional types as well
as individual ones; as non-logical constants we have individual and function

Completeness in Equational Hybrid Propositional Type Theory 3

constants. Finally, the hybrid logic provides nominals to name worlds and
formulas of the form @i♦j to express that the world named by j is accessible
from i.

The structures used to interpret this language include the propositional
type hierarchy built upon the set of the two truth values, an algebra, a
Kripkean frame with a domain of worlds, an accesibility relation between
worlds and the denotation of nominals.

The main result in this paper is the presentation of a set of axioms and
the proof that such axiomatization is sound and complete with respect to the
intensional Kripke style semantics presented in [13]. Our completeness proof
for EHPTT owes much to the three proofs Henkin published last century:
(i) Completeness in the Theory of Types [7] (ii), The Completeness of the
First-order Functional Calculus [8] and (iii) Completeness of A Theory of
Propositional Types [10] (see also [14] for a detailed explanation of these and
other Henkin’s completeness proofs).

The proof of completeness for our logic EHPTT follows, as usual, from the
fact that any consistent set of meaningful sentences has a countable model.
To achieve completeness, we use Henkin’s method to build the model which
is perfectly described by a maximal consistent set of formulas –but not any
maximal consistent set will do. To deal with the complexity of our logic, the
maximal consistent set needs to be also named and ♦-saturated, as required
in hybrid logic. It is also compulsory for the maximal consistent set to
be extensionally algebraic-saturated, so that one can distinguish different
functions with rigidified constants witnessing such inequalities. The last
property is used by Andrews in his book [2] to prove completeness for a
full theory of types based on lambda and equality, and we have adapted the
property to our hybrid situation.

What strategy shall one use to build the heterogeneous structures needed
for EHPTT?

The Kripkean universe of worlds is just the set of equivalence classes of
nominals defined by the sentences of the form @ij in the maximal consistent
set; the accesibility relation includes all pairs of equivalent classes of nominals
our oracle declares are accesible from one another via sentences of the form
@i♦j.

How do we construct the rest of the structure? In this part we will follow
Henkin’s [8] recipe almost to the letter. We will do it, as we did in [3], via
a function Φ to be defined using equivalent classes of expressions obtained
from the information our oracle provides; namely, the maximal consistent
set just built.

To define the domain of individuals and the hierarchy of propositional

4 Maria Manzano, Manuel Martins and Antonia Huertas

types, as well as the interpretation of the non-logical constants, we not only
define the function Φ as acting on expressions of the form @iF but, simul-
taneously, we define the domains D∗α for each type, even for propositional
types. In this particular case, instead of taking the standard hierarchy as it
is usually defined, we do it through the names of the objects in the hierarchy.
In essence, we shall take equivalence classes as elements of the domains, but
for type 〈αβ〉 we need functions from D∗α to D∗β. So we define Φ as a map
which corresponds, in a proper sense, to the equivalence classes.

Why do we proceed that way in the propositional case? To better inte-
grate our heterogeneous logic ingredients, the propositional type hierarchy is
also built with the function Φ, aside from the final result being the standard
one, it also entails that each type in the hierarchy is the value of its own
name under Φ. In this case, the already mentioned result of PTT concerning
the nameability of each type is necessary.

What elements are there in the algebra? From Henkin’s first-order com-
pleteness proof [7] we take the idea of building the structure out of equivalent
classes of individuals using them as objects. Here we do a similar thing, but
in our case we need rigidified terms provided by the satisfaction operator
@. Nominals and expressions of the form @iτ play a central role in the
completeness result: nominals are the building blocks of the world universe,
while @iτ expressions supply the architectural blueprint in the algebraic
construction.

Outline of the paper. The ouline of the paper, organized in five more
sections, is the following.

Section 2 is an overview of the main results of Henkin’s propositional
type theory [10]. Also, its language and semantics are formulated in an up-
dated form that makes it easier to use. There, the classical connectives and
quantifiers are defined using only lambda and equality. Moreover, the com-
bination of lambda plus equality goes much further, as they provide a name
for each object in the propositional type hierarchy. The tool used to name
all the objects, the descriptor operator, is also presented and commented in
order to understand the beautiful and useful construction of Henkin. Names
for propositional types and denotations do match, as we can prove a Name-
ability Theorem saying that one can associate with each element χ of an
arbitrary type a closed formula χN of the corresponding type such that the
interpretation of this sentence turns out to be χ. Finally, Henkin’s calculus
and the main idea behind its interesting and novel completeness theorem is
described.

In section 3, the syntax and semantics of the EHPTT logic is presented.

Completeness in Equational Hybrid Propositional Type Theory 5

As it is the result of the combination of PTT, HL and EL, there are charac-
teristics elements of each of them. Furthermore, the integration of the three
logics into the new one, is illustrated by the fact that the logical symbols
of EHPTT are only four: the lambda operator λ, used for building func-
tions in the hierarchy of types and also the algebraic equations; the equality
symbol between expressions of several types ≡; and the modal-hybrid op-
erators of possibility ♦ and satisfaction @. All the remaining logical sym-
bols (propositional connectives, quantifiers, algebraic equations, intensional
modal expressions, etc.) can be derived from those. Moreover, the semantics
of EHPTT is intensional, since the interpretation of algebraic individual con-
stants and nominals are functions on the set of possible worlds. In addition,
it contains the standard hierarchy of types and focuses on equations and the
identity relation.

In section 4, the EHPTT calculus is defined. On the one hand, it extends
that of Henkin’s in [10]. On the other hand, it contains the most character-
istic axioms of the basic hybrid logic that capture the operator @. Likewise,
the functional aspect of algebraic logic and propositional type theory is also
an essential element.

In sections 5 and 6, the completeness proof for EHPTT is developed.
It is a Henkin-style completeness proof for Type Theory. Thus, in order
to build the model of a consistent set of formulas, a maximal consistent
set fulfilling the appropriate properties is used. We define a function Φ on
rigidified expressions of the form @iF , and simultaneously the domains of
the model that the maximal consistent set describes. Besides, the “names”
of the objects in the hierarchy of types play a relevant role, as in Henkin’s
original proof. This is the “type theoretical” part of the proof. On the other
hand, the hybrid element of EHPTT is represented by the central role of
the rigidified expressions, and by two important properties of the maximal
consistent set used in the proof: those of being named (containing at least
a world) and being ♦-saturated. Finally, the equational part of the logic
requires another key property of the maximal consistent set of the proof;
that of being extensionally algebraic-saturated.

2. Background: Henkin propositional types

In this section we will sketch briefly the main results of Henkin’s proposi-
tional type theory as presented in [10] and also discussed in [15, 16].

In the first place, we introduce the formalism and its semantics. We
have adapted his language in order to make an easier reading and recognize
his theory within ours. Using only lambda and equality, Henkin was able

6 Maria Manzano, Manuel Martins and Antonia Huertas

to introduce the classical connectives and quantifiers as defined operators.
And not only that, the language also provides a name for each object in
the hierarchy. The fundamental tool used to name all the objects is the
descriptor operator, which is also defined in the language using, in this case,
an election function for each type. Due to the fact that each type is finite,
we easily construct such a function without requiring the axiom of choice.

Finally, we recall Henkin’s calculus and describe the main idea behind
this interesting and novel completeness theorem. Henkin uses the names of
the objects of the hierarchy to get that completeness result.

2.1. Language and semantics

According to Henkin’s definition, the hierarchy of propositional types, PT,
is the least class of sets containing Dt as an element, which is closed under
passage from Dα and Dβ to D〈αβ〉. Here Dt is the two truth values set,
Dt = {T, F}, while D〈α,β〉 is the set of all functions mapping Dα to Dβ.1 Let
us call PT to the set of type symbols2:

PT ::= t | 〈αβ〉 for any α, β ∈ PT
To build the theory of propositional types, Henkin introduces a formal

language with variables for each type, the lambda abstractor, λ, and a collec-
tion of equality constants, ≡〈α,〈αt〉〉, one for each propositional type α ∈ PT.
To be more specific, expressions of this theory are either: (1) variables of
any type Xα, (2) the constants ≡〈α〈αt〉〉, (3) A〈βα〉Bβ or (4) λXβBα.

Interpretations of these expressions on the hierarchy PT are recursively
defined with the help of assignments, which give values in PT to variables of
all types. In particular, for a given assignment g, we recursively define the
interpretation V(Aα, g) for any Aα: (1) V(Xα, g) = g(Xα), (2) V(≡〈α〈αt〉〉, g)
is the identity relation on type α, (3) V(A〈βα〉Bβ, g) is the value of the
function V(A〈βα〉, g) for the argument V(Bβ, g) and (4) V(λXαBβ, g) is the
function of D〈αβ〉 whose value for any χ ∈ Dα is the element V(Bβ, g

χ
Xα

) of
Dβ

3.

Classical logical constants as defined operators. As we mentioned
already, using only the equality ≡〈α〈αt〉〉 and λ, the remaining connectives as
well as the quantifiers ∀Xα —for each propositional variable of any proposi-
tional type α— are presented as defined operators.

1Henkin uses the reverse notation; namely, D〈αβ〉 is the set of all functions from Dβ to
Dα but nowadays it is more common to use the one we have adopted.

2Even though PT and PT are different sets, it is common to refer to both as types.
3Here gχXα is the Xα− variant of g sending Xα to χ and leaving the rest of values as

in g.

Completeness in Equational Hybrid Propositional Type Theory 7

Definition 1 (Logical constants). We define the following expressions4

1. TN ::= ((λXtXt) ≡ (λXtXt))

2. FN ::=
(
(λXtXt) ≡

(
λXtT

N
))

3. ¬ ::=
(
λXt

(
FN ≡ Xt

))
4. ∧ ::= λXt

(
λYt (λftt (fttXt ≡ Yt)) ≡

(
λftt

(
fttT

N
)))

5. ∀XαAt ::=
(
(λXαAt) ≡

(
λXαT

N
))

Nameability Theorem. The power of the combination of lambda plus
equality goes much further, as these symbols provide a name for each object
in the propositional type hierarchy.

The strategy described in [10] to produce a name for each object in PT
rests upon the power of the description operator. In order to define the
description operator properly, one fixes one element for each propositional
type; this element would serve as the denotation of improper descriptions.
The definition is done by induction on types: for type t we just take at = F ;
for type 〈αβ〉 we take the constant function f〈αβ〉 with value bβ for every
element of Dα, where bβ is the element in Dβ already chosen. Thus, f〈αβ〉χ =

bβ for each χ ∈ Dα. Now, using these elements, an election function t(α) can
be defined for each type. For any arbitrary type α let t(α) be the function
of D〈〈αt〉α〉 such that, for any χ〈α,t〉 ∈ D〈αt〉, we have that (t(α)χ〈αt〉) is the
unique element χα ∈ Dα for which (χ〈αt〉χα) = T , in case there is such a

unique element χα, or else (t(α)χ〈αt〉) = aα if there is no such a particular
χα, or if there are more than one χα, such that (χ〈αt〉χα) = T . Having done
that Henkin continues: ‘We shall show inductively that for each α there is a
closed formula ι〈〈α,t〉,α〉 such that (ι〈〈αt〉,α〉)

d = t(α). Then, for any formula
At and variable Xα we shall set (XαAt) = (ι〈〈α,t〉,α〉(λXαAt)).’

5

Having introduced the description operator, we will produce a name χN
α

for each χα ∈ Dα and then prove the renowned “nameability theorem”.

Theorem 2 (Nameability Theorem). For each element χ ∈ Dα of any ar-
bitrary type α, there exists a sentence χN of type α such that V(χN, g) = χ
for any assignment g.

4These definitions are a rewording of the ones in [10], pages 326-327.
The definition of ∧ offered by Andrews in page 160 of [2] is

∧ ::= λXt
(
λYt (λfttt(ftttXtYt)) ≡

(
λfttt(ftttT

NTN
)
)
)

and his explanation reads: ‘ (λfttt(ftttXtYt) can be used to represent the ordered pair
〈Xt, Yt〉 and the conjunction Xt∧Yt is true iff Xt and Yt are both true, i.e., iff 〈Xt, Yt〉 ≡〈
TN, TN

〉
5Henkin [10], p. 328.

8 Maria Manzano, Manuel Martins and Antonia Huertas

Henkin proves this theorem by induction on the hierarchy’s construction.
Names for the basic object T and F of type t are given by the previous
definition 1. For type 〈αβ〉, assuming that the theorem is proven for types α
and β, we set a name for every function χ〈αβ〉 which maps every element (χα)i
of the finite type Dα, say Dα = {(χα)1, . . . , (χα)q}, to the corresponding
value in Dβ, that is, to (χ〈αβ〉(χα)i). To this effect, the names of the objects
in Dα and Dβ (whose existence is assumed by induction hypothesis) as well
as the descriptor operator are used. To introduce χN

〈αβ〉 we need to formalize

the following: when variable Xα is just the name of an object (χα)i of type α
—that is, Xα ≡ (χα)Ni — function χ〈αβ〉 matches it to the unique Zβ naming

(χ〈αβ〉(χα)i) —that is, Zβ ≡ (χ〈αβ〉(χα)i)
N. In particular,

χN
〈αβ〉 := λXα.Zβ.

[
(Xα ≡ (χα)N1) ∧ (Zβ ≡ (χ〈αβ〉(χα)1)N)

]
∨ ...

... ∨
[
(Xα ≡ (χα)Nq) ∧ (Zβ ≡ (χ〈αβ〉(χα)q)

N)
]

2.2. Calculus

For the theory of propositional types Henkin offers a calculus based on λ
and equality rules6. Let us quote Henkin’s seven axioms and Replacement
Rule (See Henkin [10], page 330).

5.1.1. Axiom Schema 1. Aα ≡ Aα
5.1.2. Axiom Schema 2. (At ≡ TN) ≡ At
5.1.3. Axiom Schema 3. (TN ∧ FN) ≡ FN

5.1.4. Axiom Schema 4. (g〈tt〉T
N ∧ g〈tt〉FN) ≡ (∀Xt(g〈tt〉Xt))

5.1.5. Axiom Schema 5. (Xα ≡ Yα) → ((Z〈αβ〉 ≡ V〈α,β〉) →
((Z〈αβ〉Xα) ≡ (V〈αβ〉Yα)))

5.1.6. Axiom Schema 6. (∀Xα((Z〈αβ〉Xα) ≡ (V〈αβ〉Xα))) →
(Z〈αβ〉 ≡ V〈αβ〉)

5.1.7. Axiom Schema 7. ((λXαBβ)Aα) ≡ Cβ, where Cβ is
obtained from Bβ by replacing each occurrence of Xα in Bβ by an
occurrence of Aα, provided no such occurrence of Xα is within a part
of Bβ which is a formula beginning ‘λYγ ’ where Yγ is a variable free
in Aα.

5.2. By the Rule of Replacement we refer to the ternary relation
on formulas of type t which holds for 〈A′t, Ct, Dt〉 if and only if A′t =
(Aα ≡ Bα) for some formulas Aα and Bα and Dt is obtained from Ct
by replacing one occurrence of Aα by an occurrence of Bα. When this

6This calculus was improved by Andrews [1]. In particular, Andrews eliminates Axioms
1, 2 and 3 and replaces Axiom 6 for (∀Xα((Z〈αβ〉Xα) ≡ (V〈αβ〉Xα))) ≡ (Z〈αβ〉 ≡ V〈αβ〉).

Completeness in Equational Hybrid Propositional Type Theory 9

situation holds for 〈Aα ≡ Bα, Ct, Dt〉 we shall say that Dt is obtained
by Rule R from Aα ≡ Bα and Ct.

2.2.1. Completeness

This calculus is complete. The method of proof is rather different from
Henkin’s previous completeness theorems for type theory [8] and first-order
logic [7]. The next lemma and proposition synthesize the whole idea of the
proof which rest upon the Nameability theorem 2 (cf. [10]). The important
result from where the completeness theorem easily follows has the amazing
form:

Lemma 3. For any formula Aαand assignment g

` Aα
(g(Xβ1))N...(g(Xβm))N

Xβ1 ...Xβm

≡ (V(Aα, g))N

where FreeVar(Aα) = {Xβ1 ...Xβm}.

As you see, the formulation resembles the substitution lemma, but in-
stead of being a semantics metatheorem it is a theorem of the calculus. The
lemma is proved in [10], pp. 341-343, by induction on the length of Aα.

The obvious question we ask is, how to prove that |= At implies ` At for
any formula of type t ? We will see that Lemma 3 implies completeness.

Theorem 4 (Completeness). |= At implies ` At, for any formula of type t.

Proof. If At is closed then |= At implies V(At, g) = T for any assignment g.
Thus the Lemma 3 gives ` At ≡ (V(At, g))N which turns to be ` At ≡ TN,
where TN is the name of the truth value true.

But using the calculus, in particular, Axiom Schema 2 and the Rule of
replacement R, we obtain the desired result, ` At.

In case At were a valid formula, |= At, but not a sentence, we pass from At
to the sentence ∀Xγ1 ...XγrAt, where FreeVar(At) = {Xγ1 , . . . , Xγr}. Clearly
we have that |= ∀Xγ1 ...XγrAt,. Now, using the previous argument, we get
` ∀Xγ1 ...XγrAt. Applying the rules of the calculus, we obtain ` At.

2.3. Other important results

Theorem 32 states that all theorems of Henkin’s propositional type theory
are also provable in our EHPTT calculus. That means that we can just give
the reference of Henkin’s demonstration, when necessary.

10 Maria Manzano, Manuel Martins and Antonia Huertas

Lemma 5 ([10], page 340). For each χ〈αβ〉 ∈ D〈αβ〉 and χα ∈ Dα we have

` χN
〈αβ〉χ

N
α ≡ (χ〈αβ〉χα)N

Lemma 6. For each type α and assignment g, we have

V((∃XαAt) ≡ (At
χN

1
Xα
∨ ... ∨At χ

N
m
Xα

), g) = T ,
where Dα = {χ1, . . . , χm} (as Dα is finite).

Proof. Let g be any assignment. By definition V ((∃XαAt ≡ At
χN

1
Xα
∨ ... ∨

At
χN
m
Xα

), g) = T iff V(∃XαAt, g) = V(At
χN

1
Xα
∨ ... ∨At χ

N
m
Xα
, g)

We will see that V(∃XαAt, g) = T iff V(At
χN

1
Xα
∨ ... ∨At χ

N
m
Xα
, g) = T .

(=⇒) Let V(∃XαAt, g) = T , then there is an χp ∈ Dα such that

V(At, g
χp
Xα

) = T . Using Lemma 3 above, ` At
(g
χp
Xα

(Xα))N

Xα
≡ (V(At, g

χp
Xα

))N

and then ` At
χN
p

Xα
≡ TN.

Using the calculus, in particular Axiom 2 and the rule of replacement

we get ` At
χN
p

Xα
. By soundness we obtain that V(At

χN
p

Xα
, g) = T .

Finally, V(At
χN

1
Xα
∨ ... ∨At χ

N
m
Xα
, g) = T .

(⇐=) Let V(At
χN

1
Xα
∨ ...∨At χ

N
m
Xα
, g) = T . Therefore, V(At

χN
q

Xα
, g) = T for at

least one of the disjuncts. By Substitution Lemma we get V(At, g
χq
Xα

) = T ,
and so V(∃XαAt, g) = T , as needed.

Theorem 7. For each type α, we have

` (∃XαAt) ≡ (At
χN

1
Xα
∨ · · · ∨At χ

N
n

Xα
),

where Dα = {χ1, . . . , χm}.

Proof. We have already proven its validity as Lemma 6. Then we can use
Henkin’s completeness Theorem 4 for Propositional Type Theory.

3. Equational Hybrid Propositional Type Theory (EHPTT)

We are facing the challenge posed by the identity relation and the equality
symbol by designing a language with four basic components: propositional
type theory, first-order equational logic, modal and hybrid logics.

3.1. Syntax

Definition 8 (Type Symbols). Let t and 0 be any fixed objects. The set
TYPES = AT ∪ PT of types of EHPTT is defined as follows:

Completeness in Equational Hybrid Propositional Type Theory 11

• Algebraic Type Symbols, AT ::= 0 | 〈0 . . . 0︸ ︷︷ ︸
n times

〉 (to simplify notation we

will write n for 〈0, . . . , 0︸ ︷︷ ︸
n times

〉).

• Propositional Type Symbols, PT ::= t | 〈αβ〉, αβ ∈ PT

In the sequel we will use a, b for indiscriminate types.

Definition 9 (Language). The set of meaningful expressions of EHPTT
is built on the EHPTT language containing:

- a family CON = 〈CONn : n ∈ AT〉 of at most denumerably infinite sets of
non-logical constants such that for each n, CONn is a set of functional
symbols of type n for n 6= 0 and CON0 is a set of individual constants.

- a denumerably infinite set VARa of variables Va, for each type a ∈
PT ∪ {0}; we will use Xα, Yα, Zα, . . . for variables of propositional type
α, and v1, v2, v3, . . . for individual variables.

- a denumerably infinite set NOM of nominals.

- the only primitive logical symbols are equality (≡), lambda (λ), satisfac-
tion operator (@) and the modality (�).

Definition 10. By recursion we define the set MEa of meaningful ex-
pressions of type a.
• Algebraic terms (MEn):

v ∈ ME0 | c ∈ MEn | λv1 · · · vnτ ∈ MEn | γ(τ1, . . . , τn) ∈ ME0 | @iγ ∈ MEn

for any v ∈ VAR0, c ∈ CONn (any n ∈ AT), v1, · · · , vn ∈ VAR0, vp 6= vm (for
p 6= m) and τ ∈ ME0, γ ∈ MEn and τ1, . . . , τn ∈ ME0. For lambda function
we also add the condition that Free(τ) ⊆ {v1, · · · , vn}.
• Propositional terms (MEα):

Xα ∈ MEa | λXδAβ ∈ ME〈δβ〉 | A〈βα〉Bβ ∈ MEα | @iAβ ∈ MEβ

for any Xα ∈ VARα, α ∈ PT − {t}, Aβ ∈ MEβ, δ, β ∈ PT−{t}. As in the
previous case, only lambda terms contain bounded variables.
• Formulas (MEt):

Xt ∈ MEt | i ∈ MEt | A〈αt〉Bα ∈ MEt | Fa ≡ Ga | �ϕ ∈ MEt | @iϕ ∈ MEn

for any Xt ∈ VARt, i ∈ NOM, Bα ∈ MEα, α ∈ PT, {Fa, Ga} ⊆ MEa,
a ∈ PT ∪ AT− {0}, ϕ ∈ MEt.

12 Maria Manzano, Manuel Martins and Antonia Huertas

The set Free(ε) of free variables in expression ε is defined in the usual
way, being lambda functions the only expressions where variables are bounded.

Remark 11.

• As you probably noticed, formulas like Fa ≡ Ga (with Fa, Ga ∈ MEa
and a ∈ PT ∪ AT − {0}) are rather heterogeneous as they can have both
algebraic and propositional components —as in Xt ≡ (λv1 · · · vnc ≡ δ) ∈
MEt (with Xt ∈ VARt, c ∈ ME0 and δ ∈ MEn for n 6= 0); they also can
be pure algebraic, —like γ ≡ λvv ∈ MEt (with γ ∈ ME1)— and pure
propositional —like (λYαYα) ≡ X〈αα〉 ∈ MEt (with Yα ∈ VARα, X〈αα〉 ∈
VAR〈αα〉, α ∈ PT).

• All pure algebraic formulas are closed.

• The next definition extends Definition 1 with other logical symbols in
terms of λ and ≡, like algebraic equations and propositional quantifiers
for all formulas of EHPTT. Having defined ¬ and ∧, we will use the
common definitions of ∨ and → using them. We will use as well the
operator ⊥ instead of FN. Moreover, ♦At is defined as ¬�¬At and
∃XαAt is defined as ¬∀Xα¬At.

We extend Definition 10 with the two items below:

Definition 12 (Logical operators).

• ∀XαAt ::=
(
(λXαAt) ≡

(
λXαT

N
))

, where At is a formula of EHPTT.

• τ ≈ σ ::= λv̄τ ≡ λv̄σ, where VarFree(τ) ∪ VarFree(σ) ⊆ {v1, . . . , vn}6= ∅
and v̄ = 〈v1, . . . , vn〉. It is a closed formula of type t. These formulas
are called “equations”7.

Once we define the semantics for our EHPTT in section 3.2, it is easy
to see that all the introduced connectives behave as expected. That is, with
equality, abstraction, nominals, � and @ we can define all basic standard
operators needed for equational hybrid propositional type theory.

It is important to identify the expressions coming from propositional
type theory as a basic ingredient of our combined logic, we will call these
expressions “strictly propositional”. These expressions are actually Henkin’s
as defined in [10]. They will play a decisive role in our approach to EHPTT.
Next we consider those formulas of our system which correspond to formulas
of the ordinary untyped propositional logic.

7Note: In case τ or σ are constants the corresponding λ-functions are constant func-
tions.

Completeness in Equational Hybrid Propositional Type Theory 13

Definition 13. We say that an expression Aβ ∈ MEβ is strictly proposi-
tional if it is a meaninful expression recursively built using only the following
rules:

1. VARα ⊆ MEα, α ∈ PT

2. λXαAβ ∈ ME〈αβ〉, if Xα ∈ VARα, Aβ ∈ MEβ, αβ ∈ PT

3. A〈αβ〉Bα ∈ MEβ, if A〈αβ〉 ∈ ME〈αβ〉, Bα ∈ MEα, α ∈ PT and β ∈ PT

4. Aα ≡ Bα ∈ MEt, if Aα, Bα ∈ MEα, α ∈ PT.

Definition 14. We define the class of P -formula to be the least class of
formulas containing TN and FN and each variable Xt of type t as members,
which is such that whenever At and Bt are in the class, then so are ¬At,
At ∧Bt, At ∨Bt, At → Bt and At ≡ Bt.

3.2. Semantics

In EHPTT the semantic is intensional (i.e., every meaningful expression
has an intensional interpretation) while the language has no symbols of in-
tensional types. In practice, a meaningful expression of type a receives as
interpretation a function from the set of worlds W to the universe Da, that
function is an object of intensional type.

Definition 15. A structure for EHPTT is a tuple M = 〈W,R,A,PT, I〉,
where:

1. W is the set of worlds, W 6= ∅, R ⊆ W × W is the accessibility
relation and A is a non empty set - the carrier set of the algebras (in
order to unify notation we will use D0 = A).

2. PT=〈Dα〉α∈PT, the hierarchy of standard propositional types, is
defined recursively by:

Dt = {T, F}, D〈αβ〉 = Dβ
Dα (αβ ∈ PT),

3. I is a function whose domain is the union of the set of nominals with
the set of all individual constants and the set of functional symbols such
that

• If i ∈ NOM, I(i) : W −→ Dt such that I(i)−1(T) is a singleton.
We denote by wi the unique element w of W such that I(i)(w) = T .

• If c ∈ CON0, I(c) : W −→ D0

• If f ∈ CONn, I(f) : W −→ D
(D0)n

0 , with I(f)(w) : (D0)n −→ D0

14 Maria Manzano, Manuel Martins and Antonia Huertas

Definition 16. An assignment g of values to variables is a function
having as domain the set VAR = VAR0 ∪ VARPT of all variables, and such
that for any variable Va ∈ VAR, the value is in the appropriate domain, that
is, g(Va) ∈ Da, for all a ∈ PT ∪ {0}.

Observe that the assignment is extensional since the value of any variable
of any type is an object of the same type. The interpretation of a variable
of type a is redefined below as a constant function of intensional type.

We also define, as usual, that an assignment g′ is a Va-variant of an
assignment g if it coincides with g in all values except perhaps in the value
assigned to Va. We will use gθVa to denote the Va-variant assignment of g

whose value for variable Va is θ ∈ Da. Namely, gθVa(u) = g(u) for any u 6= Va
while gθVa(Va) = θ.

Definition 17. An interpretation for EHPTT is a pair I = 〈M, g〉, where
M is a structure for EHPTT and g is an assignment of values to variables.
We denote the interpretation

〈
M, gθVa

〉
by IθVa.

Given a structure M and an assignment g we recursively define for any
expression Fa the interpretation of Fa with respect to I, denoted by
(Fa)

I.

1. Algebraic terms. Let w ∈W be arbitrary

• vI : W −→ D0, vI(w) = g(v), for any v ∈ VAR0

• cI : W −→ D0, cI(w) = (I(c)) (w) for any c ∈ CON0

• fI : W −→ Dn, fI(w) = (I(f)) (w) for any f ∈ CONn, n 6= 0

• (λv1 · · · vnτ)I : W −→ D
(D0)n

0 , (λv1 · · · vnτ)I (w) : (D0)n −→ D0,

mapping a to τI
a
v (w), where a = (a1, . . . , an), v = (v1, . . . , vn) and

Iav is the interpretation
〈
M, gav

〉
with gav the v-variant assignment(((

ga1
v1

)a2

v2

)
· · ·
)an
vn
.

• (γ(τ1, . . . , τn))I : W −→ D0,
(γ(τ1, . . . , τn))I (w) = γI(w)(τI1 (w), . . . , τIn(w)), γ ∈ MEn

• (@iγ)I : W −→ Dn, where (@iγ)I(w) = γI(wi) for any w ∈W .

2. Propositional terms. Let w ∈W be arbitrary

• (Xα)I : W −→ Dα, (Xα)I(w) = g(Xα), for any Xα ∈ VARα, α ∈
PT− {t}.
• (λXαAβ)I : W −→ D〈αβ〉, with (λXαAβ)I (w) : Dα −→ Dβ, mapping

χ to (Aβ)I
χ
Xα (w).

Completeness in Equational Hybrid Propositional Type Theory 15

•
(
A〈αβ〉Bα

)I
: W −→ Dβ,

(
A〈αβ〉Bα

)I
(w) =

(
(A〈αβ〉)

I(w)
) (
BI
α(w)

)
,

for β 6= t

• (@iAα)I : W −→ Dα, where (@iAα)I(w) = (Aα)I(wi) for any w ∈W
and α ∈ PT− {t}.

3. Formulas. Let w ∈W be arbitrary

• (Xt)
I : W −→ Dt, (Xt)

I(w) = g(Xt), for any Xt ∈ VARt.

• iI = I(i).

• (A〈αt〉Bα)I : W −→ Dt,
(
A〈αt〉Bα

)I
(w) =

(
(A〈αt〉)

I(w)
) (
BI
α(w)

)
• (Fa ≡ Ga)I : W −→ Dt mapping any w to T if and only if F I

a (w) =
GI
a(w), a ∈ AT ∪ PT− {0}.

• (�ϕ)I : W −→ Dt mapping w to T if for all w′ ∈ W such that
(w,w′) ∈ R then ϕI(w′) = T and to F otherwise.

• (@iϕ)I : W −→ Dt mapping w to T if ϕI(wi) = T and to F otherwise.

Definition 18 (Validity, consequence and tautology).

1. We say that a formula At is true at the world w under the interpretation
I, if (At)

I(w) = T .

2. A formula At is valid, if for each interpretation I and any w ∈ W , we
have that (At)

I(w) = T . As usual, we write, |= At.

3. A formula At is said to be a local consequence of a set of formulas Γ, in
symbols Γ |= At if for each interpretation I and any w ∈W , (At)

I(w) =
T whenever (Γ)I(w) = T (i.e., (Bt)

I(w) = T , for any Bt ∈ Γ).

4. A formula At is said to be a global consequence of a set of formulas
Γ, in symbols Γ |=Glob At if At is valid whenever (Γ)I(w) = T for each
interpretation I and any w ∈W .

5. A P-formula (definition 14) which is valid is called a tautology.

Lemma 19. Let Aα be any strictly propositional expression (Definition 13)
and I = 〈M, g〉 an interpretation, then

(Aα)I(w) = V(Aα, gPT)

where w is any element of W and gPT is the restriction of the assignment g
to variables of propositional types. V(Aα, gPT) is the classical evaluation as
defined 2.1, which corresponds to the definition offered in Henkin [10] page
326.

16 Maria Manzano, Manuel Martins and Antonia Huertas

Proof. The proof can be done by induction.

Lemma 20 (Coincidence Lemma for nominals). Let I = 〈M, g〉 and I∗ =
〈M∗, g〉 be two interpretations such that M = 〈W,R,A,PT, I〉 and M∗ =
〈W,R,A,PT, I∗〉 . I agress with I∗ for all arguments except, possibly, the
nominal i. Let Fa be a meaningful expression of type a s.t. i does not occur
in Fa. Then

(Fa)
I = (Fa)

I∗

for any a ∈ PT ∪ AT.

Proof. Straightforward.

Lemma 21 (Coincidence Lemma for variables). Let Fa be a meaningful ex-
pression of type a and Vb a variable such that Vb /∈ Free(Fa) and I an inter-
pretation. Then

(Fa)
I = (Fa)

IθVb

for any a ∈ PT ∪ AT, b ∈ PT ∪ {0} and θ ∈ Da.

Proof. Straightforward by induction on the construction of the meaninful
expressions.

3.3. Variables, substitution, and rigidity

Next we define one of the paper’s key concept, that of rigid expressions.
These expressions are introduced recursively and we will prove that they
have the same value at all worlds. Good examples are variables of all types
(after all, variable denotations are determined globally and directly by assign-
ment functions), and expressions prefixed by an @ operator (indeed, these
operators were designed with rigidification in mind). Rigid expressions play
a key role in our axiomatization.

Definition 22 (Rigid meaningful expressions). The set RIGIDS of rigid
meaningful expressions is defined inductively as follows:

RIGIDS ::=Va |@iFb |λvτ |λXαAβ |γ(σ1, . . . , σn) | B〈αβ〉Aβ |Gd ≡ Hd

where a ∈ PT∪{0}, b ∈ AT∪PT, α ∈ PT, β ∈ PT, d ∈ AT∪PT−{0} ; and
with Fb, τ, B〈αβ〉, Aβ, Gd, Hd, γ, σi being RIGIDS.

Remark 23. Previous definition introduces the set RIGIDS of rigids expres-
sions by recursion. Expressions of the form @iFa are called rigidified expres-
sions. Next lemma proves that all the elements in RIGIDS receives a rigid
interpretation, namely the interpretation is independent of the evaluation’s

Completeness in Equational Hybrid Propositional Type Theory 17

world. In particular, all strictly propositional expressions (Definition 13) are
rigids.

Lemma 24 (Rigids are rigid). Let I be a an interpretation. If A ∈ RIGIDS
then (A)I (w) = (A)I (w′) for all w,w′ ∈W .

Proof. By induction on the construction of rigid expressions.
We give the case for: λv1 · · · vnτ with τ ∈ RIGIDS. Let I = 〈M, g〉 and

w,w′ ∈W. .
(λv1 · · · vnτ)I (w) and (λv1 · · · vnτ)I (w′) are extensional functions.
By definition, for any (a1, . . . , an) ∈ (D0)n:

• (λv1 · · · vnτ)I (w) = τI
a1,...,an
v1,...,vn (w)

• (λv1 · · · vnτ)I (w′) = τI
a1,...,an
v1,...,vn (w′)

Using the induction hypothesis for τ , we get τI
a1,...,an
v1,...,vn (w) = τI

a1,...,an
v1,...,vn (w′),

and thus (λv1 · · · vnτ)I (w) = (λv1 · · · vnτ)I (w′)

Definition 25 (Variable substitution). For all Fa ∈ MEa, b ∈ PT∪ {0} the
substitution of Gb for a variable Vb in Fa, written Fa

Gb
Vb
, is defined by

induction in the usual way, the only binder operator is lambda abstractor.
For example:

(λXρFa)Gb
Vb

=

λXρFa , if Vb /∈ Free(λXρFa)

λXρ(Fa
Gb
Vb

) , if Vb ∈ Free(λXρ(Fa)) and Xρ /∈ Free(Gb)

(λYρ(Fa
Yρ
Xρ

))Gb
Vb

, if Vb ∈ Free(λ(XρFa)), Xρ ∈ Free(Gb) and Yρ new

Rigid expressions are well-behaved with respect to substitution, as stated
in the following lemma

Lemma 26 (Rigid substitution). Let I be an interpretation and w a world
on it: (

Fa
Gb
Vb

)I

(w) = (Fa)
I
(Gb)

I
(w)

Vb (w)

for all Fa basic expression of type a ∈ AT ∪ PT, Gb ∈ RIGIDSb and Vb any
variable of type b ∈ PT ∪ {0}.
Proof. Straightforward by induction on the construction of meaningful ex-
pressions, with the help of Coincidence Lemma 21.

Corollary 27. Let Bt be a formula.

If |= Bt then |= Bt
A1
α1
, . . . , Anαn

X1
α1
, . . . , Xn

αn

provided that the variables X1
α1
, . . . , Xn

αn are distinct from one another and
that Aiαi is rigid and free for Xi

αi in ϕ for all i = 1, . . . , n.

18 Maria Manzano, Manuel Martins and Antonia Huertas

3.4. Nameability in EHPTT

As a consequence of our Lemma 19 we obtain nameability for the strict
propositional fragment of our EHPTT logic. In the first place, our Definition
12 extends the Definition 1 of all common logical operators using lambda and
propositional equality to cover the needs of of our equational system. The
next theorem, proved in [13], states that all the introduced operators behave
as usual. That is, with equality, abstraction, nominals, � and @ we can de-
fine all basic standard operators needed for equational hybrid propositional
type theory.

Theorem 28. For every interpretation I the following holds:

1.
(
TN
)I

: W −→ Dt, with
(
TN
)I

(w) = T .

2.
(
FN
)I

: W −→ Dt, with
(
FN
)I

(w) = F .

3. (¬)I : W −→ DDt
t such that (¬)I (w) is the Boolean “negation”.

4. (∧)I : W −→ DDt
tt such that (∧)I (w) is the Boolean “conjunction”.

5. (∀XαAt)
I : W −→ Dt, mapping w to T only if (At)

IxXα (w) = T for all
x ∈ Dα.

6. (τ ≈ σ)I : W −→ Dt mapping w to T iff
{
a | τIav (w) = σI

a
v (w)

}
= An,

where Free(τ) ∪ Free(σ) ⊆ {v1, . . . , vn} 6= ∅ and v̄ = 〈v1, . . . , vn〉.

In the sequel we will use the usual quantifiers as well as the connectives
⊥,¬,∨,∧,→ and ↔ as abreviations. Recall that ↔ is a special case of ≡
for type t.

The Nameability Theorem also applies for EHPTT:

Theorem 29 (Nameability Theorem). We shall associate, with each ele-
ment χ of an arbitrary type Dα, a closed formula χN of type α such that
(χN)I(w) = χ for any interpretation I and world w.

Proof. The proof is obvious using Lemma 19 and Henkin’s Nameability
Theorem8.

4. Rules and Axioms (EHPTT)

Rules

8The proof is in [10], section §4, pages 326-3229.

Completeness in Equational Hybrid Propositional Type Theory 19

1. Modus Ponens: If ` ϕ and ` ϕ→ ψ, then ` ψ.

2. Generalizations:

(a) Gen�: If ` ϕ, then ` �ϕ.

(b) Gen@: If ` ϕ, then ` @iϕ.

(c) Pseudo-GenAlg: If ∆ ` γ(@k1c1, . . . ,@kncn) ≈ δ(@k1c1, . . .@kncn)
then ∆ ` γ ≡ δ, where γ, δ ∈ MEn and c1, . . . , cn ∈ CON0 do not
occur in ∆.

3. (a) Rigid Substitution/Replacement: If ` ϕ then ` ϕ′, where ϕ′

is obtained from ϕ by uniformly replacing nominals by nominals, or

ϕ′ := ϕ
A1
α1
,...,Anαn

X1
α1
,...,Xn

αn
provided that Aiαi is rigid and variables Xi

αi are

distinct from one another and free in ϕ for all i = 1, . . . , n .

(b) Henkin’s Rule: Let ϕ, Aα and Bα be strictly propositional. From
ϕ and (Aα ≡ Bα) to infer the result of replacing one occurrence of
Aα in ϕ by an occurrence of Bα, provided that the occurrence of Aα
in ϕ is not (an occurrence of a variable) immediately preceded by λ.

4. Name: If ` @iϕ and i does not occur in ϕ, then ` ϕ.

5. Bounded Generalization: If ` @i♦j → @jϕ and j 6= i and j does not
occur in ϕ, then ` @i�ϕ.

These are all standard rules drawn from the literature on modal and
hybrid logic. For a detailed discussion of the Name and Bounded General-
ization rules, see Blackburn and Ten Cate [6]. The restriction in the rigid
replacement rule that nominals must replace nominals is standard in hybrid
logic; it reflects the fact that nominals embody namelike information, and
replacement must respect this. The additional restriction we have imposed
(that variables can only be freely replaced by rigid terms and vice-versa)
reflects the fact that assignment functions interpret variables rigidly, and
replacement must respect this too.

Axioms
We will give the logical axioms as general schemas.

1. Tautologies: All EHPTT instances of tautologies 9.

2. Henkin PTT Axiom 4: ` (g〈t,t〉T
N ∧ g〈t,t〉FN) ≡ (∀Xt(g〈t,t〉Xt)))

3. Distributivity Axioms:

9An EHPTT instance of a tautology is any EHPTT formula which is obtained by a
substitution of propositional variables by formulas in a tautology.

20 Maria Manzano, Manuel Martins and Antonia Huertas

(a) �-distributivity: ` �(ϕ→ ψ)→ (�ϕ→ �ψ)

(b) @-distributivity: ` @i(ϕ→ ψ)→ (@iϕ→ @iψ)

4. Quantifier Axiom:

` (∃Xαϕ) ≡ (ϕ
χN

1
Xα
∨ ... ∨ ϕ χN

n
Xα

), where ϕ is rigid and Dα = {χ1, . . . , χn}
5. Equality Axioms:

(a) Reflexivity: ` Fa ≡ Fa, where a ∈ PT ∪ AT− {0}
(b) Symmetry: ` Fa ≡ Ga → Ga ≡ Fa, where a ∈ PT ∪ AT− {0}
(c) Transitivity: ` (Fa ≡ Ga∧Ga ≡ Ha)→ Fa ≡ Ha, a ∈ PT∪AT−{0}
(d) Substitution Prop: ` Aα ≡ Bα → Fβ

Aα
Xα
≡ Fβ

Bα
Xα

, wiht αβ ∈ PT
and Aα, Bα are rigids.

(e) Equality-at-i: ` @i(Fa ≡ Ga) ≡ (@iFa ≡ @iGa)

6. Functional Axioms:

(a) Extensionality:

i. Prop: ` (∀Xα(A〈αβ〉Xα ≡ B〈αβ〉Xα))→ A〈αβ〉 ≡ B〈αβ〉, Xα does
not occur free in A〈αβ〉 or B〈αβ〉.

ii. Alg: ` γ(v1, . . . , vn) ≈ δ(v1, . . . , vn)→ γ ≡ δ
(b) β-conversion:

i. Prop: For rigid Bβ, ` (λXβAα)Bβ ≡ Aα
Bβ
Xβ

ii. Alg: For rigids σ1, . . . , σn, ` (λv̄τ)(σ1, . . . , σn) ≈ τ σ1,...,σn
v1,...,vn

(c) λ-conversion:

i. Prop: ` (λXβA〈αβ〉Xβ) ≡ A〈αβ〉, where Xβ is not free in A〈αβ〉
ii. Alg: ` (λv̄τ)(v1, . . . , vn) ≈ τ , where vi are not free in τ ∈ ME0

(d) Algebraic functionality

i. ` (τ1 ≈ τ ′1 ∧ · · · ∧ τn ≈ τ ′n) → γ(τ1, . . . , τn) ≈ γ(τ ′1, . . . , τ
′
n), γ ∈

MEn and τi, τ
′
i ∈ ME0 for i = 1, . . . , n

In primitive symbols: ` (λx̄1τ1 ≡ λx̄1τ
′
1 ∧ · · · ∧ λx̄nτn ≡ λx̄nτ ′n)→

λx̄1 . . . x̄nγ(τ1, . . . , τn) ≡ λx̄1 . . . x̄nγ(τ ′1, . . . , τ
′
n)

ii. ` γ ≡ δ → γ(τ1, . . . , τn) ≈ δ(τ1, . . . , τn) γ, δ ∈ MEn and τi ∈ ME0

for i = 1, . . . , n
In primitive symbols: ` γ ≡ δ → λv̄γ(τ1, . . . , τn) ≡ λv̄δ(τ1, . . . , τn)

(e) Rigid function application:

i. ` @i(A〈αβ〉Bα) = (@iA〈αβ〉)(@iBα)

ii. ` @i(γ(τ1, . . . , τn)) ≈ (@iγ)(@iτ1, . . . ,@iτn), γ ∈ MEn and τi ∈
ME0 for i = 1, . . . , n

7. Axioms for @:

(a) Selfdual: ` @iϕ ≡ ¬@i¬ϕ

Completeness in Equational Hybrid Propositional Type Theory 21

(b) Intro: ` i→ (ϕ ≡ @iϕ)

(c) Back: ` ♦@iϕ→ @iϕ

(d) Ref: ` @ii

(e) Agree:

i. ` @i@jFa ≡ @jFa
ii. ` @i@jτ ≈ @jτ

(f) Rigids are rigid:

i. ` @iFa ≡ Fa, where Fa is rigid.

ii. ` @iτ ≈ τ , where τ is rigid.

8. Barcan Axioms:

(a) Prop: ` λXα@iAβ ≡ @iλXαAβ

(b) Alg: ` λv̄@iτ ≡ @iλv̄τ

Remark 30. This set of axioms exhibits that the combination of the three
logics (propositional type theory, equational logic and hybrid modal logic)
is not obtained just by putting together the axioms of each one. There are
axioms that come from a specific logic (e.g., Henkin PTT axiom 4, distribu-
tive axioms, algebraic functionality, etc), as well as axioms that integrate
attributes from more than one logic (λ-conversion axioms, equality axioms,
etc.). There are also others that are just reformulations for the combined
language (e.g., tautologies).
One interesting axiom is the quantifier axiom that substantiates the impor-
tance of the Henkin’s nameability and the finiteness of Dα in the hierarchy
of propositional types. The Barcan axioms are also well known in first or-
der modal logic, they are connected with the fact that in our semantics the
algebras at each world are over the same set A, that is, we are dealing with
constants domains.
Since our semantics is intensional, some axioms have to be restricted to rigid
(or rigidified) terms and/or formulas.

Definition 31. A deduction of ϕ is a finite sequence ξ1, . . . , ξn of expres-
sions in MEt such that ξn := ϕ and for every 1 ≤ i ≤ n, either:
– ξi is an axiom or
– ξi is obtained from previous expressions in the sequence using the rules.

We will write ` ϕ whenever we have such a sequence and we will say
that ϕ is an EHPTT-theorem of the calculus.

If Γ ∪ {ϕ} is a set of meaningful expressions of type t, a deduction of
ϕ from Γ — written Γ ` ϕ — is a deduction of γ1 ∧ · · · ∧ γn → ϕ where for
every 1 ≤ i ≤ n, γi ∈ Γ.

22 Maria Manzano, Manuel Martins and Antonia Huertas

4.1. EHPTT contains PTT

It is easy to see that the calculus of our EHPTT logic contains that of
Henkin’s PTT.

Theorem 32. If `PTT At then `EHPTT At for any At formula of PTT.

Proof. In our calculus for EHPTT we include as axioms the numbers 1,
4, 6 and 7 of Henkin’s calculus. They are our Axioms for Reflexivity
of equality (5a), Henkin PTT Axiom 4 (2), Extensionality (6a) and
β-conversion (6(b)i). Henkin’s rule of replacement is just a rule in our
calculus (Henkin’s Rule).

The proofs of Henkin’s Axioms 2, 3 and 5 in our EHPTT calculus are in
the appendix (Theorems 68, 70 and 69).

5. Maximal consistent sets

In this section we define and explore maximal consistent sets of EHPTT
sentences with various useful properties, prove the variant of Lindenbaum’s
Lemma we shall require and then introduce several equivalence relations
using a saturated maximal consistent set.

Definition 33. A set ∆ ⊆ MEt is inconsistent (or contradictory) iff for
every ϕ ∈ MEt, ∆ ` ϕ. ∆ is consistent iff it is not inconsistent. ∆ is a
maximally consistent set iff ∆ is consistent and whenever ϕ ∈ MEt and
ϕ /∈ ∆, then ∆ ∪ {ϕ} is inconsistent.

The following lemmas state some well known consequences of the defini-
tions and rules of the calculus.

Lemma 34. Let ∆,Γ ⊆ MEt and ϕ ∈ MEt. Then:

1. If ∆ is consistent and Γ ⊆ ∆, then Γ is consistent.

2. If ∆ is inconsistent and ∆ ⊆ Γ, then Γ is inconsistent.

3. ∆ ⊆ MEt is inconsistent iff for some ϕ ∈ MEt, ∆ ` ϕ and ∆ ` ¬ϕ.

4. ∆ ⊆ MEt is inconsistent iff ∆ ` ⊥.

5. If ∆ is consistent, then for all ϕ ∈ MEt such that ∆ ` ϕ we have ∆∪{ϕ}
is consistent.

6. ∆ is consistent iff every finite subset of ∆ is consistent.

Lemma 35. Let ∆ ⊆ MEt be a maximal consistent set and ϕ, ψ ∈ MEt.
Then:

Completeness in Equational Hybrid Propositional Type Theory 23

1. ∆ ` ϕ iff ϕ ∈ ∆.

2. If ` ϕ then ϕ ∈ ∆.

3. ¬ϕ ∈ ∆ iff ϕ /∈ ∆.

4. ϕ ∧ ψ ∈ ∆ iff ϕ ∈ ∆ and ψ ∈ ∆.

5. ϕ ∨ ψ ∈ ∆ iff ϕ ∈ ∆ or ψ ∈ ∆.

6. ϕ ≡ ψ ∈ ∆ iff (ϕ ∈ ∆ and ψ ∈ ∆) or (ϕ 6∈ ∆ and ψ 6∈ ∆)

7. If ∆ ∪ {ϕ} ` ψ and ∆ ∪ {ψ} ` ϕ then ϕ ∈ ∆ iff ψ ∈ ∆.

5.1. Maximal consistent, named, ♦−saturated and extensionally
algebraic-saturated sets

Definition 36. Let Γ be a set of sentences.

1. Γ is named iff one of its elements is a nominal.

2. Γ is ♦-saturated iff for all expressions @i♦ϕ ∈ Γ there is a nominal
j ∈ NOM such that @i♦j ∈ Γ and @jϕ ∈ Γ.

3. Γ is extensionally algebraic-saturated if for all expressions @iγ ≡ @jδ,
with γ, δ ∈ MEn, there are rigid terms @k1τ1, . . . ,@knτn ∈ ME0 such that

@iγ(@k1τ1, . . . ,@knτn) ≈ @jδ(@k1τ1, . . . ,@knτn)→ @iγ ≡ @jδ ∈ Γ

We must now prove that any consistent set of formulas can be extended
to a maximal consistent set with all three desirable properties. We need, in
short, the following version of Lindenbaum’s Lemma:

Lemma 37 (Extended Lindenbaum). Let Γ be a consistent set of sentences.
Then Γ can be extended to a maximal consistent set Γω which is named,
♦-saturated and extensionally algebraic-saturated.

Proof. Let {in}n∈ω be an enumeration of a countably infinite set of new
nominals, {cn}n∈ω an enumeration of a countably infinite set of new con-
stants of type 0, and {ϕn}n∈ω an enumeration of the sentences of the ex-
tended language. We will build {Γn}n∈ω, a family of subsets of MEt, by
induction:

• Γ0 = Γ ∪ {i0}.
• Assume that Γn has already been built. To define Γn+1 we distinguish

four cases:

1. Γn+1 = Γn, if Γn ∪ {ϕn} is inconsistent.

24 Maria Manzano, Manuel Martins and Antonia Huertas

2. Γn+1 = Γn ∪ {ϕn}, if Γn ∪ {ϕn} is consistent and ϕn is neither of the
form @i♦ψ nor ¬(@iγ ≡ @jδ).

3. Γn+1 = Γn ∪ {ϕn,@i♦im,@imψ}, if Γn ∪ {ϕn} is consistent, ϕn :=
@i♦ψ and im is the first nominal not in Γn or ϕn.

4. Γn+1 =
Γn ∪ {ϕn,¬(@iγ(@k1c1, . . . ,@kmcm) ≈ @jδ(@k1c1, . . . ,@kmcm))},
if Γn∪{ϕn} is consistent, ϕn := ¬(@iγ ≡ @jδ) and c1, . . . , cm are the
first constants of type 0 not in Γn or ϕn and k1, . . . , kn are the first
nominals not in Γn or ϕn.

First we show by induction that each Γn is consistent. For the base case,
suppose Γ0 is inconsistent. Hence Γ ∪ {i0} ` ⊥, then, by Theorem 54,
Γ ` i0 → ⊥ and by Name

′∗ (Theorem 59), Γ ` ⊥, which is impossible.

Now assume as inductive hypothesis that Γn is consistent. Γn+1 has only
four possible forms:

1. Γn+1 = Γn is consistent by the induction hypothesis.

2. Γn+1 = Γn ∪ {ϕn} is consistent by construction.

3. Suppose Γn+1 = Γn ∪ {ϕn,@i♦im,@imψ}, where ϕn := @i♦ψ and im is
the first new nominal that does not occur in Γn or ϕn. By construction,
Γn ∪ {ϕn} is consistent. Suppose that Γn ∪ {ϕn,@i♦im,@imψ} ` ⊥.
Then, Γn ∪ {ϕn} ` @i♦im ∧@imψ → ⊥, hence Γn ∪ {ϕn} ` @i♦ψ → ⊥,
by using Paste∗♦ (Theorem 59) and the fact that im 6= i and im does not
occur in ψ or ⊥ . Thus, Γn ∪ {ϕn} ` ⊥, which is impossible.

4. Suppose
Γn+1 = Γn∪{ϕn,¬(@iγ(@k1c1, . . . ,@kmcm) ≈ @jδ(@k1c1, . . . ,@kmcm))},
where ϕn := ¬(@iγ ≡ @jδ) and c1, . . . , cm are the first constants of type
0 not in Γn or ϕn and k1, . . . , km are the first nominals not in Γn or ϕn.
By construction, Γn ∪ {ϕn} is consistent. Suppose that

Γn ∪ {ϕn,¬(@iγ(@k1c1, . . . ,@kmcm) ≈ @jδ(@k1c1, . . . ,@kmcm))} ` ⊥
Then,

Γn∪{ϕn} ` (¬(@iγ(@k1c1, . . . ,@kmcm) ≈ @jδ(@k1c1, . . . ,@kmcm))→ ⊥.

Hence, Γn ∪ {ϕn} ` @iγ(@k1c1, . . . ,@kmcm) ≈ @jδ(@k1c1, . . . ,@kmcm).
Therefore, by the rule Pseudo-GenAlg, we have Γn ∪ {ϕn} ` @iγ ≡ @jδ
and, consequently, Γn ∪ {ϕn} ` ⊥, which is impossible.

Now, let Γω =
⋃
n∈ω Γn. Γω is maximal consistent. Moreover, it is

named, ♦-saturated and extensionally algebraic-saturated.

Completeness in Equational Hybrid Propositional Type Theory 25

5.2. Equivalence relations using a saturated maximal consistent
set

Let ∆ be a maximal consistent named, ♦-saturated and extensionally alge-
braic-saturated. We define an equivalence relation on the set NOM of nom-
inals.

Definition 38. Let ∆ be a maximal consistent named, ♦-saturated and
extensionally algebraic-saturated. Define for all i, j ∈ NOM the relation ∼:

i ∼ j iff @ij ∈ ∆

Proposition 39. The relation i ∼ j is an equivalence on the set NOM of
nominals.

Proof. It is trivial to prove that ∼ is an equivalence relation by using the
theorems of maximal consistency and applying reflexivity (Axiom 7d) and
theorems of symmetry (Theorem 63) and transitivity (Theorem 64).

And then, we define the equivalence class [i] = {j ∈ NOM : i ∼ j}.

Definition 40. Let ∆ be a maximal consistent which is named, ♦ saturated
and extensionally algebraic-saturated. The accessibility relation is a binary
relation on W defined by

R = {〈[i] , [j]〉 | @i♦j ∈ ∆} ,

where W = {[i] | i is a nominal}.

Proposition 41. R is well defined.

Proof. To prove that the definition is independent of the representatives,
we use Theorem 60 (Nom) and Theorem 66, the definition of the equivalence
relation and that ∆ is maximal consistent.

Next, we define another equivalence relation ∼ for expressions of alge-
braic types.

Definition 42. Let ∆ be a maximal consistent which named, ♦ saturated
and extensionally algebraic-saturated. We define a relation ∼ on rigidified
algebraic expressions of any type n:

• Equivalence relation on type 0: @iτ ∼ @jτ
′ iff @iτ ≈ @jτ

′ ∈ ∆, for all
rigid terms of the form @iτ or @jτ

′.

26 Maria Manzano, Manuel Martins and Antonia Huertas

• Equivalence relation on type n 6= 0: @iγ ∼ @jγ
′ iff @iγ ≡ @jγ

′ ∈ ∆, for
all rigid terms of the form @iγ or @jγ

′.

Proposition 43. The relation ∼ is an equivalence on the set of rigid alge-
braic expressions of any type n.

Proof. In both cases, it is trivial to prove that ∼ is indeed an equivalence
relation. For terms of type n 6= 0, it follows from Axioms 5a, 5b and 5c. For
type 0 we do not need to prove that the relation ∼

@iτ ∼ @jτ
′ iff @iτ ≈ @jτ

′ ∈ ∆

is an equivalence relation, as equations of this form @iτ ≈ @jτ
′ are defined

as λv̄@iτ ≡ λv̄@jτ
′. Using Barcan Axiom 8 we see that this very relation

could also be defined with @iλv̄τ ≡ @jλv̄τ
′ and we have already proved that

the relation @iλv̄τ ∼ @jλv̄τ
′ is an equivalence.

And then, we define the equivalence classes for all algebraic types. In
the next section we will build a model using the set of all classes of rigidified
terms of type 0 as the domain of individuals.

6. Completeness

In this section we will build a structure using the information in the set
∆ which is maximal consistent, named, ♦-saturated and extensionally alge-
braic-saturated. The domain W and the relation R are defined (Definition
40) in the usual way based on the equivalence relation ∼ on nominals (Def-
inition 38).

To define the domain of individuals and the hierarchy of propositional
types, as well as the interpretation of the non-logical constants, we define
a function Φ acting on expressions of the form @iF and, simultaneously,
we define the domains D∗a for each type, even for propositional types. In
this particular case, instead of taking the standard hierarchy as it, we build
it through the names of the objects in the hierarchy. These names play
a very relevant role, similar to the one played in Henkin’s original proof.
The decision was made in order to easy our final objective, namely, the
Completeness Theorem.

In essence, we shall take equivalence classes as elements of the domains,
but for type 〈αβ〉 we need functions from D∗α to D∗β. So we define Φ as a
map which corresponds, in a proper sense, to the equivalence classes.

Completeness in Equational Hybrid Propositional Type Theory 27

6.1. Definition of the function Φ and associated domains.

Function Φ for algebraic types. On the first place we define a function
Φ on rigidified algebraic expressions, as well as the domain of individuals of
the ∆-model to be defined afterwards.

Definition 44 (Function Φ for algebraic types). Let D∗0 = {[@iτ] : τ ∈
ME0, i ∈ NOM}. The equivalence relation used in this definition is the one
introduced at the end of the previous section, namely, Definition 42.

• Type 0. Φ(@iτ) = [@iτ]

• Type n 6= 0.

Φ(@iγ) : D∗0 × · · · × D∗0 −→ D∗0
〈[@i1τ1], . . . , [@inτn]〉 7→ Φ(@iγ(@i1τ1, . . . ,@inτn))

Lemma 45 (Algebraic types). Φ is well defined for all algebraic types.

Proof. Type 0. Obviously Φ(@iτ) = Φ(@jτ
′) iff @iτ ≈ @jτ

′ ∈ ∆.

Type n. In order to see that it is well defined we have to show that

1. Φ is independent of the representatives.

2. Φ respects the equivalence relation on type n, i.e.,

Φ(@iγ) = Φ(@jδ) iff @iγ ≡ @jδ ∈ ∆

We prove both items for n = 1, for the remaining algebraic types it is
similar.

• Proof of 1. Let @kτ ≈ @k′τ
′ ∈ ∆. Then @iγ(@kτ) ≈ @iγ(@k′τ

′) ∈ ∆,
from Axiom 6d and properties of maximal consistent sets.

• Proof of 2.

(⇒) Let Φ(@iγ) = Φ(@jδ) and @iγ ≡ @jδ 6∈ ∆. Being ∆ exten-
sionally algebraic-saturated, there is a rigidified term @kτ ∈ ME0 such
that @iγ(@kτ) ≈ @jδ(@kτ) → @iγ ≡ @jδ ∈ ∆. Then ¬@iγ(@kτ) ≈
@jδ(@kτ) ∈ ∆. However, Φ(@iγ) = Φ(@jδ) implies Φ(@iγ)([@kτ]) =
Φ(@iδ)([@kτ]). And, according with our definition

Φ(@iγ)([@kτ]) = Φ(@iγ(@kτ)) = [@iγ(@kτ)]

and

Φ(@jδ)([@kτ]) = Φ(@jδ(@kτ)) = [@jδ(@kτ)]

28 Maria Manzano, Manuel Martins and Antonia Huertas

Then

@iγ(@kτ) ≈ @jδ(@kτ) ∈ ∆

Impossible, as ∆ is maximal consistent.
(⇐) Let @iγ ≡ @jδ ∈ ∆. Then for all rigids @kτ ∈ ME0, @iγ(@kτ) ≈
@jδ(@kτ) ∈ ∆, by Axiom 6d and properties of maximal consistent sets.
Then Φ(@iγ) = Φ(@jδ).

Remark 46. Obviously, D∗0 = {[@iτ] : τ ∈ ME0, i ∈ NOM} = {Φ(@iτ) :
τ ∈ ME0, i ∈ NOM}. The function Φ on type 0 characterized the universe
of individuals. As we do not have variables of type n 6= 0, we are not
defining universes D∗n. On type n the function will be used to define the
interpretation of functional symbols as the value under Φ, guaranteeing that
such an interpretation is a n-ary function on the domain of individuals.

Definition of Φ for propositional types.

Lemma 47 (Propositional types). Given a maximal consistent set ∆, which
is named, ♦ saturated and extensionally algebraical-saturated, there exists a
family of domains 〈D∗α〉α∈PT and a function Φ satisfying:

1. Φ is well defined over the set CMEα ∩ RIGIDS and so we define:

D∗α = {Φ(Aα) : Aα ∈ CMEα ∩ RIGIDS}

2. Φ respects the equivalent relation based on ∆; namely, Φ(Aα) = Φ(Bα)
iff Aα ≡ Bα ∈ ∆ for all Aα, Bα ∈ CMEα ∩ RIGIDS.

3. χα = Φ(χN
α) for each type α ∈ PT and any χα ∈ Dα (where Dα are the

standard echelons of the hierarchy built on Dt = {T, F})

4. D∗α = {Φ(χN
α) : χα ∈ Dα} = Dα.

Proof. The proof is by induction on propositional types by simultaneously
defining the function Φ and the hierarchy 〈D∗α〉α∈PT

Type t. Let us define Φ(At) = T if At ∈ ∆, otherwise Φ(At) = F , for
all At ∈ CMEt ∩ RIGIDS. Note that, At 6∈ ∆ iff ¬At ∈ ∆.

Let us see that the 4 conditions above are satisfied.

1. Since ∆ is maximal consistent, exactly one of this conditions At ∈ ∆
or ¬At ∈ ∆ holds, for all At ∈ CMEt ∩ RIGIDS. That proves the first
requirement.

Completeness in Equational Hybrid Propositional Type Theory 29

2. (⇒) Let Φ(At) = Φ(Bt). There are two possibilities: either both are T
or both are F .

If Φ(At) = T = Φ(Bt) then At ∈ ∆ and Bt ∈ ∆.

Hence, At ≡ Bt ∈ ∆, by Lemma 35 on maximal consistent sets.

If Φ(At) = F = Φ(Bt) then At 6∈ ∆ and Bt 6∈ ∆.

Hence, At ≡ Bt ∈ ∆, by Lemma 35 on maximal consistent sets.

(⇐) Let At ≡ Bt ∈ ∆. Then either (At ∈ ∆ and Bt ∈ ∆) or (At 6∈ ∆
and Bt 6∈ ∆), by Lemma 35 on maximal consistent sets. Thus either
Φ(At) = T = Φ(Bt) or Φ(At) = F = Φ(Bt), by definition of Φ.

3. Dt = {T, F}, according to the standard definition. We need to prove
that Φ(TN) = T and Φ(FN) = F . As already defined, TN := ((λXtXt) ≡
(λXtXt)) and FN := ((λXtXt) ≡ (λXtT

n)). It is obvious that both are
in the set CMEt∩RIGIDS as both are strictly propositional (Definition 13)
sentences.TN ∈ ∆, since ` TN, using our Axiom 5a. Hence, Φ(TN) = T .

FN 6∈ ∆, since ` FN ≡ ¬TN (Theorem 67) and Lemma 35 on maximal
consistent sets. Therefore , Φ(FN) = F .

4. Clearly, D∗t = {Φ(χN
t) : χt ∈ {T, F}} = Dt.

Type 〈αβ〉, αβ ∈ PT. Assume the two domains D∗α and D∗β are defined
as well as the function Φ acting on CMEα ∩ RIGIDS and CMEβ ∩ RIGIDS.
Assume as well the induction hypothesis. In particular:

• Φ is well defined and D∗α = {Φ(Aα) : Aα ∈ CMEα ∩ RIGIDS} and
D∗β = {Φ(Aβ) : Aβ ∈ CMEβ ∩ RIGIDS}.

• Φ(Aα) = Φ(A′α) iff Aα ≡ A′α ∈ ∆ and Φ(Bβ) = Φ(B′β) iff Bβ ≡ B′β ∈ ∆
for all elements Aα, A

′
α ∈ CMEα ∩RIGIDS and Bβ, B

′
β ∈ CMEβ ∩RIGIDS.

• χα = Φ(χN
α) and χβ = Φ(χN

β) for any χα ∈ Dα and χβ ∈ Dβ.

• D∗α = {Φ(χN
α) : χα ∈ Dα} = Dα and D∗β = {Φ(χN

β) : χβ ∈ Dβ} = Dβ.

1. Let A〈αβ〉 ∈ CME〈αβ〉 ∩ RIGIDS. We define Φ(A〈αβ〉) as a function

Φ(A〈αβ〉) : D∗α −→ D∗β
Φ(χN

α) 7→ Φ(A〈αβ〉χ
N
α)

We define D∗〈αβ〉 = {Φ(A〈αβ〉) : A〈αβ〉 ∈ CME〈αβ〉 ∩ RIGIDS} and we need
to prove that Φ is independent of the particular representatives chosen.
Namely, if Φ(χN

α) = Φ(Cα) then Φ(A〈αβ〉)(Φ(χN
α)) = Φ(A〈αβ〉)(Φ(Cα))

for any Cα ∈ CMEα ∩ RIGIDS.

30 Maria Manzano, Manuel Martins and Antonia Huertas

To prove it, let Φ(χN
α) = Φ(Cα). Then χN

α ≡ Cα ∈ ∆ (induction hy-
pothesis for type α) and then A〈αβ〉χ

N
α ≡ A〈αβ〉Cα ∈ ∆ by Theorem 56,

modus ponens and properties of maximal consistent sets.

And so, Φ(A〈αβ〉χ
N
α) = Φ(A〈αβ〉Cα), by induction hypothesis. Using

the definition of Φ(A〈αβ〉) we finally obtain that Φ(A〈αβ〉)(Φ(χN
α)) =

Φ(A〈αβ〉)(Φ(Cα)), the desired result.

2. The second condition reads as follows: Φ(A〈αβ〉) = Φ(B〈αβ〉) iff A〈αβ〉 ≡
A〈αβ〉 ∈ ∆.

(⇒) Let Φ(A〈αβ〉) = Φ(B〈αβ〉) and A〈αβ〉 ≡ B〈αβ〉 6∈ ∆. By Propositional
Extensionality (6a)

` (∀Xα(A〈αβ〉Xα ≡ B〈αβ〉Xα))→ (A〈αβ〉 ≡ B〈αβ〉)

therefore, ¬∀Xα(A〈αβ〉Xα ≡ B〈αβ〉Xα) ∈ ∆ , using the properties of
maximal consistent sets.

Thus, ∃Xα¬(A〈αβ〉Xα ≡ B〈αβ〉Xα) ∈ ∆.

Since in propositional type theory all types are finite, Dα is finite. Let
Dα = {χ1,α, . . . , χn,α}. By Axiom 4 we have

` (∃Xα¬(A〈αβ〉Xα) ≡ B〈αβ〉Xα) ≡ (¬(A〈αβ〉χ
N
1,α
≡

B〈αβ〉χ
N
1,α) ∨ ... ∨ ¬(A〈αβ〉χ

N
n,α ≡ B〈αβ〉χN

n,α))

Thus for at least one χp,α ∈ Dα we have, ¬(A〈αβ〉χ
N
p,α ≡ B〈αβ〉χN

p,α) ∈ ∆,
using properties of maximal consistent sets (Lemma 35).

But Φ(A〈αβ〉) = Φ(B〈αβ〉) and so Φ(A〈αβ〉)(Φ(χN
p,α)) = Φ(B〈αβ〉)(Φ(χN

p,α))

and so Φ(A〈αβ〉χ
N
p,α) = Φ(B〈αβ〉χ

N
p,α), by definition of Φ.

In this case, A〈αβ〉χ
N
p,α ≡ B〈αβ〉χ

N
p,α ∈ ∆. (By induction hypothesis).

Being ∆ consistent, this is impossible.

(⇐) Let A〈αβ〉 ≡ B〈αβ〉 ∈ ∆. Then for all χN
α ∈ MEα, A〈αβ〉χ

N
α ≡

B〈αβ〉χ
N
α ∈ ∆, using Teorem 56 and properties of maximal consistent sets.

So, by induction hypothesis (item 2), Φ(A〈αβ〉χ
N
α) ≡ Φ(B〈αβ〉χ

N
α). And by

definition of Φ, Φ(A〈αβ〉)(Φ(χN
α)) = Φ(B〈αβ〉)(Φ(χN

α). Thus, Φ(A〈αβ〉) =

Φ(B〈αβ〉), because D∗α = {Φ(χN
α) : χα ∈ Dα} by induction hypothesis.

3. χ〈αβ〉 = Φ(χN
〈αβ〉) for all χ〈αβ〉 ∈ D〈αβ〉. In fact, for type t it was already

proved that Φ(TN) = T and Φ(FN) = F . For type 〈αβ〉 we have:

On one hand:

Φ(χN
〈αβ〉) : D∗α −→ D∗β

Φ(χN
α) 7→ Φ(χN

〈αβ〉χ
N
α)

Completeness in Equational Hybrid Propositional Type Theory 31

On the other hand:

χ〈αβ〉 : Dα −→ Dβ
χα 7→ χ〈αβ〉χα

By induction hypothesis, Φ(χN
α) = χα and χ〈αβ〉χα = Φ((χ〈αβ〉χα)N). By

Lemma 5, ` χN
〈αβ〉χ

N
α ≡ (χ〈αβ〉χα)N. Thus, χN

〈αβ〉χ
N
α ≡ (χ〈αβ〉χα)N ∈ ∆.

So, Φ((χ〈αβ〉χα)N) = Φ(χN
〈αβ〉χ

N
α) = χ〈αβ〉χα. Therefore, both functions,

χ〈αβ〉 and Φ(χN
〈αβ〉), are the same.

4. Now we have to prove: D∗〈αβ〉 = {Φ(χN
〈αβ〉) : χN

〈αβ〉 ∈ D〈αβ〉} = D〈αβ〉

Clearly, {Φ(χN
〈αβ〉) : χN

〈αβ〉 ∈ D〈αβ〉} ⊆ D∗〈αβ〉, since χN
〈αβ〉 ∈ CME〈αβ〉 and

all strictly propositional meaningful expressions are rigids.

To see that D∗〈αβ〉 ⊆ D〈αβ〉, let Φ(A〈αβ〉) ∈ D∗〈αβ〉, A〈αβ〉 ∈ CME〈αβ〉 ∩
RIGIDS. By definition, Φ(A〈αβ〉) : D∗α → D∗β. By induction hypothesis,

D∗α = Dα and D∗β = Dβ. Therefore, Φ(A〈αβ〉) ∈ DDα
β . Now we use item

3. above and prove that D〈αβ〉 ⊆ {Φ(χN
〈αβ〉) : χN

〈αβ〉 ∈ D〈αβ〉}.

6.2. Defining the ∆-structure

With the domains already defined it is straightforward to complete the def-
inition of the required structure by defining 〈W,R〉 and I. The domain W
and the relation R were introduced in Section 5.2.

Definition 48. Let ∆ be a maximal consistent set which is named, ♦- sat-
urated and extensionally algebraic-saturated. The EHPTT structure M∆ =
〈W,R,D∗0, (D∗α)α∈PT, I〉 over ∆ is made up of:

• W = {[i] : i ∈ NOM}
• R = {〈[i][j]〉 : @i♦j ∈ ∆}
• D∗0 = {[@iτ] : τ ∈ ME0, i ∈ NOM}
• D∗α = {Φ(Aα) : Aα ∈ CMEα ∩ RIGIDS}, for each α ∈ PT

• I(c)([i]) = Φ(@ic) = [@ic], for c ∈ CON0

• I(f)([i]) = Φ(@if), for f ∈ CONn

• I(j)([i]) = T iff j ∈ [i], for i ∈ NOM

Claim 49. M∆ = 〈W,R,D∗0, (D∗α)α∈PT, I〉 is a well defined EHPTT struc-
ture.

32 Maria Manzano, Manuel Martins and Antonia Huertas

Proof. Since NOM is nonempty (∆ is named), W 6= ∅. R is well defined,
as we saw in Section 5.2. Moreover, D∗0 6= ∅ since the set of rigidified terms
of type 0 is nonempty. Moreover, (D∗α)α∈PT = PT.

Lemma 50 (Extended substitution). Let ∆ be a maximal consistent set which
is also named, ♦-saturated and extensionally algebraic-saturated. Let M∆

be the structure built on ∆ and [i] ∈W . Then

F I
a ([i]) = Φ(@iFa

(g(X1
α1

))N...(g(Xn
αn))N

X1
α1
...Xn

αn

)

where Free(Fa) ⊆ {v1, . . . , vm, X
1
α1
, . . . , Xn

αn}, (propositional variables are all
different but their types not necessarily different), g is any assignment such
that g(vl) = Φ(@ivl), for any l ∈ {1, . . . ,m} and I = (M∆, g).

Proof. Algebraic terms.
Note that since in algebraic terms there are no occurrences of propositional

variables we can simple write Φ(@iγ) instead of Φ(@iγ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
).

• τ ∈ ME0

– Variables: vI([i]) = g(v) = Φ(@iv) = [@iv], by definition of D∗0.

– Individual constants: cI([i]) = I(c)([i]) = Φ(@ic), by M∆ definition.

– Constants of type n: fI([i]) = I(f)([i]) = Φ(@if), byM∆ definition.

– Complex terms (for simplicity, we prove just for binary terms, but
the argument is similar for the other cases):

∗ Assume that it holds for τ , σ and γ, i.e., γI([i]) = Φ(@iγ),
τI([i]) = Φ(@iτ) and σI([i]) = Φ(@iσ). Then, (γ(τ, σ))I([i]) =
= γI([i])(τI([i]), σI([i])) , by definition
= Φ(@iγ)(Φ(@iτ),Φ(@iσ)) , by ind. hypothesis
= Φ(@iγ)([@iτ], [@iσ]) , by definition of Φ for type 0
= Φ(@iγ(@iτ,@iσ)) , by definition of Φ for type 2
= [@iγ(@iτ,@iσ)] , by definition of Φ for type 0
= [@i(γ(τ, σ))] , by Axiom 6e (rigid fun. app.)
= Φ(@i(γ(τ, σ))) , by definition of Φ for type 0

∗ Assume that it holds for τ .
(λv1v2τ)I([i]) is an arbitrary function on D∗0 such that

(λv1v2τ)I([i])([@jτ1], [@kτ2]) = τI
[@jτ1][@kτ2]
v1v2 ([i]) =

= (τ
@jτ1@kτ2
v1v2

)I([i]) = Φ(@iτ
@jτ1@kτ2
v1v2

), using Lemma 26 and the
inductive hypothesis.

Completeness in Equational Hybrid Propositional Type Theory 33

On the other hand, Φ(@iλv1v2τ) is a binary function on D∗0 s.t.

Φ(@iλv1v2τ)([@jτ1], [@kτ2]) =

= Φ((@iλv1v2τ)(@jτ1,@kτ2)) , by definition of Φ for type 2
= [@iλv1v2τ(@jτ1,@kτ2)] , by definition of Φ for type 0
= [(λv1v2@iτ)(@jτ1,@kτ2)] , by equation Barcan Axiom 8

= [@iτ
@jτ1@kτ2
v1v2

] , by β − conversion 6b

Therefore, (λv1v2τ)I([i]) = Φ(@iλv1v2τ)

∗ Assume that the theorem holds for γ ∈ MEn(n ≥ 0). We have
that (@jγ)I =

= γI([j]) , by definition
= Φ(@jγ) , by ind. hypothesis
= Φ(@i@jγ)

The last equality holds for type 0 since @jγ ≈ @i@jγ ∈ ∆, and
for type n since @jγ ≡ @i@jγ ∈ ∆.

Propositional expressions.

• For variables of any propositional type in PT − {t}, say α. We want to

see that XI
α([i]) = Φ(@iXα

(g(Xα))N

Xα
). XI

α([i]) =

= g(Xα) , by def.
= Φ(g(Xα))N) , by def. of Φ
= Φ(@i(g(Xα))N) , by Axiom 7f, max. consist. and props. of Φ

= Φ(@iXα
(g(Xα))N

Xα
)

• For lambda expressions λXαAβ of propositional type 〈αβ〉 we want to
prove that

(λXαAβ)I([i]) = Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn))N

X1
α1
...Xn

αn

)

where Free(Aβ) ⊆ {Xα1 , . . . , Xαp}.
We will prove that both functions (λXαAβ)I([i]) and

Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) give the same value for each argument.

1. For any element Φ(χα
N) ∈ Dα the value under function (λXαAβ)I([i])

is

(λXαAβ)I([i])(Φ(χα
N)) = (Aβ)I

Φ(χα
N)

Xα ([i])

Since Φ(χαk
N) = Φ(@iχαk

N) (by Axiom 7f, the properties of ∆ as a
maximal consistent set and the properties of Φ respecting equivalent

34 Maria Manzano, Manuel Martins and Antonia Huertas

relation based on ∆), we can use the induction hypothesis to get
Φ(@iχα

N) = (χα
N)I([i]), therefore

(Aβ)I
Φ(χα

N)
Xα ([i]) = (Aβ)I

(χα
N)I([i])

Xα ([i])

2. For every element Φ(χN
α) ∈ Dα the value under function

Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)) is given by

Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)(Φ(χN

α)

= Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)(χN

α)) , by def of Φ

= Φ((λXα@iAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)(χN

α)) , by Barcan Axiom 8

= Φ(@iAβ
(g(X1

α1
))N...(g(Xn

αn
))N χN

α

X1
α1
...Xn

αn
Xα

) , β conversion (6b)

= (Aβ
(g(X1

α1
))N...(g(Xn

αn
))N χN

α

X1
α1
...Xn

αn
Xα

)I([i]) , by ind. hypothesis

= (Aβ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)I

(χα
N)I([i])

Xα ([i]) , by lemma 26

By using the induction hypothesis and the properties of Φ we get
((g(X1

α1
))N)I([i]) = Φ((@i(g(X1

α1
))N)) = g(X1

α1
)

Finally using n-times Lemma 26,

(Aβ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)I

(χα
N)I([i])

Xα ([i]) = (Aβ)I
(χα

N)I([i])
Xα ([i])

Therefore, both functions

(λXαAβ)I([i]) and Φ((@iλXαAβ)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) are the same.

• For any expression A〈αβ〉Bα, with Free(A〈αβ〉Bα) ⊆ {X1
α1
, . . . , Xn

αn}, of
propositional type β 6= t

(A〈αβ〉Bα)I([i])

= (A〈αβ〉)
I([i])((Bα)I([i])) (1)

= Φ((@iA〈αβ〉)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
)Φ((@iBα)

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
) (2)

= Φ((@iA〈αβ〉)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
(@iBα)

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
) (3)

= Φ((@iA〈αβ〉)Bα)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) (4)

Step (1) holds by definition, (2) by induction hypothesis and (3) is by
definition of Φ. Using Axiom 6e (Rigid function application) and the
properties of maximal consistent sets we get

Completeness in Equational Hybrid Propositional Type Theory 35

(@iA〈αβ〉)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
(@iBα)

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
≡

(@iA〈αβ〉)Bα)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
∈ ∆

that justifies the last step in our proof, as Φ respects the equivalence
based on ∆.

• For any expression @jAα of propositional type α 6= t we want to prove
that

(@jAα)I([i]) = Φ((@i@jA)
(g(X1

α1
))N...(g(Xn

αn))N

X1
α1
...Xn

αn

)

where Free(Aα ≡ Bα) ⊆ {X1
α1
. . . Xn

αn}.
(@jAα)I([i]) = (Aα)I([j]) , by def.

= Φ((@jA)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) , by ind. hyp.

= Φ((@i@jA)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) , using Axiom 7e

Formulas.

• For variables of type t we prove that XI
t ([i]) = Φ(@iXt

(g(Xt))N

Xt
) using

the same argument used in the previuos case for propositional variables
of type α 6= t.

• jI([i]) = T iff j ∈ [i] iff @ij ∈ ∆ iff Φ(@ij) = T .

• For expression A〈αβ〉Bα of propositional type β = t, the proof is similar
to the corresponding case above for type 〈αβ〉 with β 6= t.

• For any expression Fa ≡ Ga, with a 6= 0, where Free(Fa ≡ Ga) ⊆
{X1

α1
, . . . , Xn

αn} we have that (Fa ≡ Ga)I([i]) = T iff

iff F I
a ([i]) = GI

a([i]) (1)

iff Φ((@iFa)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) = Φ((@iGa)

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
) (2)

iff (@iFa
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) ≡ (@iGa

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
) ∈ ∆ (3)

iff @i(Fa
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
≡ Ga

(g(X1
α1

))N...(g(Xn
αn

))N

X1
α1
...Xn

αn
) ∈ ∆ (4)

iff @i(Fa ≡ Ga)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
∈ ∆ (5)

iff Φ((@iFa ≡ Ga)
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) = T (6)

Step (1) holds by definition, (2) by induction hypothesis, (3) and (6)
by definition of Φ, (4) by Ax. Equality-at-i and (5) by definition of
substitution.

36 Maria Manzano, Manuel Martins and Antonia Huertas

• For expressions ♦ϕ we have:

(♦ϕ)I ([i]) = T

iff there is j ∈W s.t. @i♦j ∈ ∆, ϕI ([j]) = T

iff there is j ∈W s.t. @i♦j ∈ ∆, Φ(@jϕ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
= T (1)

iff there is j ∈W s.t. @i♦j ∈ ∆, (@jϕ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
∈ ∆

iff (@i♦ϕ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
∈ ∆ (2)

iff Φ(@i♦ϕ
(g(X1

α1
))N...(g(Xn

αn
))N

X1
α1
...Xn

αn
) = T

Step (1) holds by Induction hypothesis. The equivalence (2) holds using
the Bridge Theorem (Theorem 65) in one direction, and the fact that ∆
is ♦-saturated in the other direction.

• (@jϕ)I ([i]) can be proved as we did for similar expressions above.

Theorem 51 (Henkin’s Theorem). Every consistent set of sentences has a
model.

Proof. Let Γ be a consistent set of sentences. By Extended Lindenbaum
37 there exists a maximal consistent extension ∆ of Γ which is named,
♦-saturated and and extensionally algebraic-saturated. We build the ∆-
structureM∆ according to Definition 48. As ∆ is named, there is a nominal
i ∈ ∆. By Extended Substitution Lemma (Lemma 50) for any formula ϕ we
have that

ϕI([i]) = Φ(@iϕ
(g(X1

α1
))N...(g(Xn

αn))N

X1
α1
...Xn

αn

),

where g is any assignment, [i] ∈W and I = (M∆, g). When ϕ is a sentence,
by using Coincidence and Substitution Lemmas (21 and 26), we get

ϕI([i]) = Φ(@iϕ),

and so ϕI([i]) = T iff @iϕ ∈ ∆.

Let now ϕ ∈ Γ. Clearly, @iϕ ∈ ∆ by Axiom Intro 7b and Modus Ponens
and the maximality of ∆. Therefore, ϕI([i]) = T .

Theorem 52 (Completeness). For all Γ and ϕ in CMEt the following holds:
Γ |= ϕ implies Γ ` ϕ.

Proof. Standard.

Completeness in Equational Hybrid Propositional Type Theory 37

Conclusions and future work

Identity and equality can be considered in different contexts with a diversity
of meanings; for example: (1) in an algebraic context, equational identity is
used to build equational theories and equational classes which are the basis
of Universal Algebra; (2) in the context of propositional type theory, identity
takes the form of the biconditional connective at the first level and it plays
an important role in order to define other connectives and quantifiers with
the help of lambda operator; (3) in Hybrid logic, identity between worlds
can be defined by the formula @ij, which is key in order to have Robinson
Diagrams.

The logic we discuss in this paper, EHPTT, combines these three different
logics, namely, propositional type theory, equational logic and hybrid modal
logic. These logics have the three identities we describe above, and more.
This combined nature is rather obvious in the syntax, as well as in the
list of axioms and rules we include in the proof system we propose. In
most sentences the three components are present and we have to create an
harmonious unity. In the new logic the equational terms and formulas receive
intensional interpretations, and that change is the origin of a completely
novel environment. In the new landscape, most of the axioms and rules
dealing with equality are restricted to rigid expressions. Intentionally, we
did not make any effort to get a smaller set of axioms; on the contrary, we
group the axioms in order to explicitly show the heterogeneous nature of our
logic and to help the reader identify the origin of each axiom (however, it
will be an interesting exercise to find an independent set of axioms for our
logic).

The formal achievement of this paper is the axiomatic calculus and the
proof that such axiomatization is sound and complete with respect to the
intensional Kripke style semantics presented in [13]. Our completeness proof
for EHPTT is inspired in the work of Henkin on completeness, namely in the
three proofs Henkin published last century (see [7], [8] and [10])

There are still open questions that we would like to address in the near
future. First, we would like to study the application of Henkin’s method
employed in the proof of completeness for Propositional Type Theory to a
Many-valued Propositional Type Theory. We think that one can build the
type hierarchy from the enlarged finite set of truth values as Henkin did from
{T, F}, and use a similar nameability theorem to achieve completeness. In
our logic EHPTT we assume that the universe of individuals is the same in
each world; however, there are circumstances where some elements do not
exist in some worlds. We think all this could be accommodated in a specific

38 Maria Manzano, Manuel Martins and Antonia Huertas

logic, by developing a propositional type theory allowing more truth values,
and so partial functions appearing in the algebraic part could receive an
adequate treatment.

Finally, the proliferation of logical systems used in mathematics, com-
puter science, philosophy and linguistics (to what we also have contributed
with our system EHPTT) makes their relationships between and their possi-
ble translations into one another a pressing issue. Translation between logics
has been scarcely formulated as an ambitious paradigm whose tools would
serve for handling the multiplicity of logics. From a strictly pragmatic per-
spective, the translation can allow, for example, borrowing proof systems or
completeness theorems from one to another. We would like to study trans-
lation from the logics we have been studying into well behaved and studied
logics, like many-sorted logic, general logics or labelled deduction systems.

Acknowledgments. This research has been possible thanks to two research projects
sustained by MINECO (Spain) with references FFI2013-47126-P and FFI2017-82554, re-
spectively. We also thanks the partial support by the Portuguese Foundation for Science
and Technology (FCT) through CIDMA within project UID/MAT/04106/2013 and Daĺı
project POCI-01-0145-FEDER-016692. Special thanks to the reviewers of this article for
their valuable comments and recommendations.

References

[1] Andrews, P., A reduction of the axioms for the theory of propositional types, Fundam.

Math. 52 (1963), pp. 345–350.

[2] Andrews, P., An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Academic press. 1986

[3] Areces, C. Blackburn, P. Huertas, A. Manzano, M. Completeness in Hybrid Type

Theory, DOI 10.1007/s10992-012-9260-4. J Philos Logic (Journal of Philosophical

Logic) 43 (2-3) (2014), pp 209-238. Springer

[4] Barbosa, L. S. Martins, Manuel A. Carreteiro, M. . A Hilbert-Style Axiomatisation

for Equational Hybrid Logic. Journal of Logic, Language and Information, 23 (1)

(2014), pp 31-52.

[5] Blackburn, P. van Benthem, J. Modal Logic: A Semantic Perspective. Handbook of

Modal Logic. Elsevier, 2007.

[6] Blackburn, P. ten Cate, B. . Pure Extensions, Proof Rules and Hybrid Axiomatics.

Studia Logica. vol. 84, (2006) pp. 277-322.

[7] Henkin, L. The completeness of the first order functional calculus. The Journal of

Symbolic Logic. vol. 14 (1949), pp. 159-166.

[8] Henkin, L. Completeness in the theory of types.The Journal of Symbolic Logic. vol.

15 (1950), pp. 81-91.

[9] Henkin, L. Some Notes on Nominalism. The Journal of Symbolic Logic. vol. 18 (1953),

pp. 19-29.

[10] Henkin, L. A theory of propositional types, Fundam. Math. 52 (1963), pp. 323–344.

Completeness in Equational Hybrid Propositional Type Theory 39

[11] Henkin, L. Identity as a logical primitive, Philosophia 5 (1975), pp. 31–45.

[12] Manzano, M. Extensions of first order logic. Cambridge Univ. Press., Cambridge,

1996.

[13] Manzano, M. Martins, M. A. Huertas, A. A Semantics for Equational Hybrid Propo-

sitional Type Theory, Bulletin of the Section of Logic, 43, (3-4) (2014), pp. 121–138.

[14] Henkin on Completeness. In The Life and Work of Leon Henkin. Essays on His Con-

tributions. Manzano, M. Sain, I. and Alonso, E. (eds). (2014), pp. 149-176. Springer

International Publishing.

[15] Manzano, M. and Moreno, M. C. Identity, Equality, nameability and completeness.

Bulletin of the Section of Logic, Volume 46:3/4 (2017), pp. 169–195.

[16] Manzano, M. and Moreno, M. C. Identity, Equality, nameability and completeness -

Part II. Bulletin of the Section of Logic. To appear.

[17] Quine, W. Logic based on inclusion and abstraction., J. Symb. Log. 2 (1937), pp. 145–

152.

[18] Ramsey, F. P. The foundations of mathematics, Proceedings L. M. S. (2) 25 (1926),

pp. 338–384.

[19] Tarski, A. Sur le terme primitif de la logistique, Fundamenta math. 4 (1923), pp. 196–

200.

Maŕıa Manzano
Dep. of Philosophy, University of Salamanca, Spain
mara@usal.es

Manuel A. Martins
CIDMA, Dep. Mathematics, Universidade de Aveiro, Portugal
martins@ua.pt

Antonia Huertas
Dep. of Comp. Science, Universitat Oberta de Catalunya, Spain
mhuertass@uoc.edu

40 Maria Manzano, Manuel Martins and Antonia Huertas

7. Appendix - Helpful results

Theorem 53. If α ∈ Γ then Γ ` α.

Theorem 54 (Deduction Theorem). If Γ ∪ {ϕ} ` ψ then Γ ` ϕ→ ψ where ϕ,ψ ∈ MEt.

Theorem 55 (Modus Ponens with hypothesis).

∆ ` ϕ→ ψ and ∆ ` ϕ then ∆ ` ψ.

Theorem 56. The two theorems below are easily obtained in our calculus:

1. ` χN
α ≡ Cα → A〈αβ〉χ

N
α ≡ A〈αβ〉Cα

2. ` A〈αβ〉 ≡ B〈αβ〉 → A〈αβ〉χ
N
α ≡ B〈αβ〉χN

α.

Theorem 57. K−1
@

` (@iϕ→ @iψ)→ @i(ϕ→ ψ)

Theorem 58. The following are derivable

Name′ If ` i→ ϕ then ` ϕ where i ∈ NOM does not occur in ϕ

Paste♦ If ` (@i♦j ∧@jϕ) → ψ and j 6= i and j does not occur in ϕ and ψ, then `
@i♦ϕ→ ψ

Corollary 59. The following is also provable

Name ′∗ If ∆ ` i→ ϕ then ∆ ` ϕ where i ∈ NOM does not occur in ∆ ∪ {ϕ}.
Paste∗♦ If ∆ ` (@i♦j ∧@jϕ) → ψ and j 6= i and j does not occur in ∆ ∪ {ψ,ϕ}, then

∆ ` @i♦ϕ→ ψ

Theorem 60 (Nom). ` @ij → (@jϕ ≡ @iϕ).

Theorem 61. ` @i(τ ≈ σ) ≡ (@iσ ≈ @iσ)

Theorem 62. ∆ ` At ≡ Bt and ∆ ` At then ∆ ` Bt.

Theorem 63. ` @ij → @ji

Theorem 64. ` @ij → (@jk → @ik).

Theorem 65 (Bridge). ` @i♦j ∧@jϕ→ @i♦ϕ.

Theorem 66. ` @i♦j ∧@jj
′ → @i♦j′.

Theorem 67. ` FN ≡ ¬TN

7.1. Axioms and rules of Henkin’s system are EHPTT-theorems

Theorem 68 (Axiom Schema 2). ` (At ≡ TN) ≡ At (where TN ::= ((λXtXt) ≡ (λXtXt))).

Theorem 69 (Axiom Schema 5). ` (Xα ≡ Yα) → ((Z〈αβ〉 ≡ V〈α,β〉) → ((Z〈αβ〉Xα) ≡
(V〈αβ〉Yα))).

Theorem 70 (Axiom Schema 3). ` (TN ∧ FN) ≡ FN

