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Abstract. This paper considers two finite integral transforms of Fourier-type, in view to pro-
pose a set of eight new convolutions, and to analyze the solvability of a class of the integral

equations of Wiener-Hopf plus Hankel type, defined on finite intervals, which is involved in en-

gineering problems. The solvability and solution of the considered equations are investigated by
means of Fourier-type series, and a Shannon-type sampling formula is obtained. Some conclud-

ing remarks with respect to theoretical issues and engineering applications are emphasized in the

last section, along with the analysis of some illustrative cases, which exemplify that the present
method solves cases which are not under the conditions of previously known techniques.

1. Introduction

Convolutions and integral equations of convolution-type occupy a central position both in math-
ematical theoretical studies and in applications to other sciences. Indeed, on the one hand con-
volutions are effectively applied in many practical problems (even outside mathematics), on the
other hand each convolution is itself a new integral transform and so subjected to a mathematical
theoretical analysis (cf., e.g., [2, 4, 6, 7, 10, 11, 8, 9]). For instance, the Hilbert and Cauchy inte-
gral transforms can be interpreted as convolutions in some sense. This is why despite decades of
research, convolutions and their associated equations continue to be vigorously developed by many
authors, and time-to-time become powerful tools in engineering applications (see [3, 13, 18] and
references therein). For the convenience of presenting our motivation in more detail, we start by
recalling the Fredholm integral equation

λϕ(x) +

∫ 2π

0

K(x, u)ϕ(u) du = f(x), (1.1)

where ϕ is unknown, λ ∈ C, K(x, y) := p(x− u) + q(x+ u), with p, q and f being given elements.
The above equation is called of Wiener-Hopf plus Hankel type due to the structure of its kernel,
as we may recognize in the second left-hand side term of the equation. There exists a long list of
works concerning particular cases in which the kernel has just the Wiener-Hopf component or only
the Hankel one (i.e., q).
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One of the main reasons for the existence of such studies is that the solutions of those equations
have many useful applications in diverse fields such as: scattering theory, fluid dynamics, filter-
ing theory, circular punch penetration in finitely thick elastic layers, and rarefied gas dynamics.
Equation (1.1) also arises in linear filtering of stationary random processes, and in the field of fast
signal processing. Such equation arises often from one of two possible ways: the first is from the
modeling situations in terms of differential operators/equations, and the second one is from the
so-called convolution integral problems (see [1, 5, 15, 19] and references therein). There are also
studies of (1.1) when K(x, y) is generated by a single function, i.e., K(x, u) = p(x− u) + p(x+ u).
However, the complexity is much greater when studying the above equation for kernels K(x, y)
generated by two distinct functions p and q which are defined on a finite interval. In particular,
the approach to equation (1.1) and its solvability can be totally different, being dependent mainly
on the attributes of the given data p, q, f , and on the type of used extensions for p, q, f outside the
domain (odd, even, periodic extensions, etc.).

Motivated by the periodicity and oscillation nature of certain integrals, our approach to analyze
equation (1.1) comes from Fourier series and integral transforms on finite intervals, which is differ-
ent e.g. from the approach via the resolvent kernel of K(x, y) given by Tsitsiklis in [19]. Namely,
this work is devoted to two finite integral transforms of Fourier-type, series of Fourier-type, a set of
eight new convolutions appropriately constructed, and the L2-solution of the equation (1.1) which
can be seen as a resulting goal of the previously constructed issues. Regarding the convolutions,
in some other studies, there is the application of other methods with weighted Lebesgue spaces in
which is possible to obtain norm inequalities among some Lp-spaces. This is the case of the works
[17, 12, 14], in which, at least in one of them, are also used methods of reproducing kernel Hilbert
spaces. The present work proposes a different approach although containing some of the goals
of those other works. Note that knowledge about the solvability of the above integral equation
may have some applications in particular problems of linear time-invariant systems. This paper is
divided into six sections and organized as follows.

Section 2 presents a general framework on the finite integral transforms here considered and on
series of Fourier-type. In Section 3, we provide a set of eight convolutions associated with those
transform and series. These are absolutely new convolutions which cannot be derived from any
previously known convolutions. In Section 4, a special attention is devoted to the use of the con-
structed convolutions and transforms for the solvability of integral equations of Wiener-Hopf plus
Hankel type. In Section 5 we exemplify the solvability and exhibit the solution of some particular
equations which cannot be worked out by using previously published works. Section 6 is just a
sort of a theoretical concluding remark by stating a proposition which involves potential practical
applications and a theorem about theoretical consequences on a class of Fredholm operators in the
L2-Hilbert space framework.

2. Finite integral transforms and series of Fourier-type

The Fourier series and its variations play a central role in harmonic analysis. There exist many
different ways of defining Fourier series, all of which are consistent with one another, but each of
which emphasizes some particular aspects of the series (see [20]). This section presents two finite
integral transforms of Fourier-type and their associated series. We begin with the basic definition
of the Fourier series.

Definition 1 (see [13, 18]). Let f be a Lebesgue integrable function on a finite interval [0, 2π].
The infinite sum

(Ff )(x) :=
f̂c(0)

2
+

∞∑
n=1

[
f̂c(n) cos(nx) + f̂s(n) sin(nx)

]
(2.1)
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is called the Fourier series of f on [0, 2π], where f̂c(n), f̂s(n) are the Fourier coefficients of f defined
by

f̂c(n) =
1

π

∫ 2π

0

cos(nx)f(x)dx, n ∈ N, (2.2)

f̂s(n) =
1

π

∫ 2π

0

sin(nx)f(x)dx, n ∈ N. (2.3)

At this point, we say nothing about the convergence of the series (2.1). Namely, it is well-known
that there are functions f ∈ L1([0, 2π]) such that their associated series (2.1) diverge at every point
x ∈ [0, 2π]. However, if 1 < p < +∞ and if f ∈ Lp([0, 2π]), then its series (2.1) converges in mean
(Lp-norm) to a function in Lp([0, 2π]). In the framework of this paper, the convergence is in mean
of the Lebesgue space Lp([0, 2π]), with p > 1 (see [13, 16, 18]). Let us write

E (x) :=
2 cos(x) + i sin(x)√

5π
.

The series (2.1) may be rewritten as follows

(Ff )(x) =
f̂c(0)

2
+

∞∑
n=1

{√
5π

2

(
1

2
f̂c − if̂s

)
(n)E (nx)

+

√
5π

2

(
1

2
f̂c + if̂s

)
(n)E (−nx)

}
=
f̂c(0)

2
+

+∞∑
0 6=n=−∞

anE (nx), (2.4)

where

an =


√
5π
2

(
1
2 f̂c(n) + if̂s

)
(n) if n < 0

√
5π
4 f̂c(n) if n = 0
√
5π
2

(
1
2 f̂c(n)− if̂s

)
(n) if n > 0.

(2.5)

We will be using the usual inner product in L2([0, 2π]). Namely, for any f and g in L2([0, 2π])
their inner product is given by

〈f, g〉2 =

∫ 2π

0

f(x)ḡ(x) dx. (2.6)

The expression (2.4) leads us to the following proposition which is a direct consequence of the
complete orthonormal basis

{
einx

}
n∈Z of the Hilbert space L2([0, 2π]).

Proposition 2.1. The set of functions{
1√
2π
,E (nx), n ∈ Z\{0}

}
(2.7)

is a complete orthonormal basis of L2([0, 2π]).

Proof. By (2.1) and (2.4), it suffices to prove the orthogonality of the system {E (nx)}n∈Z. In view
of this, having in mind the usual inner product in L2([0, 2π]), we compute

〈E (nx),E (mx)〉2 =
1

5π

∫ 2π

0

(2 cos(nx) + i sin(nx))(2 cos(mx)− i sin(mx)) dx

=

{
0, n 6= m

1, n = m,

for n,m 6= 0.
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For n = 0, we have

〈 1√
2π
,

1√
2π
〉2 =

1

2π

∫ 2π

0

1 dx = 1.

The proposition is proved. �

In what follows, the notation (Ff )(x) concerning the Fourier series will be replaced by Ef (x)
given by (2.4).

Many other Fourier-related integral transforms have been defined, extending the initial idea to
more suitable forms for concrete applications (e.g. in engineering problems). In particular, the
associated Fourier series have a great number of applications in practical problems [13, 18]. The
representation in the form (2.4) naturally suggests us to define a finite Fourier-type transform as
follows.

Definition 2 (Finite Fourier-type transforms). (a) Let f be a Lebesgue integrable function on
[0, 2π]. The finite Fourier-type transform of f corresponding to E (nx) is defined by

(T1f)(n) :=
1

2

√
5

π

∫ 2π

0

(
1

2
cos(nx)− i sin(nx)

)
f(x)dx, n ∈ Z. (2.8)

(b) The infinite sum

(Ef )(x) :=
∑
n∈Z

(T1f)(n)E (nx) (2.9)

is called finite Fourier-type series of f on [0, 2π] corresponding to E (nx).

Let us write

`2 :=
{
{sn}n : sn ∈ C with

∑
n∈Z
|sn|2 <∞

}
,

which stands for the Hilbert space of all convergent-square complex series.
Let us recall the known Riesz-Fischer theorem, which states that a measurable function on

[−π, π] is square integrable if and only if the corresponding Fourier series converges (in the space
L2). In other words, for any f ∈ L2(−π, π) and its n-th Fourier coefficient given by

Fn =
1

2π

∫ π

−π
f(x) e−inx dx (n ∈ Z), (2.10)

we have
f(x) =

∑
n∈Z

Fne
inx for almost every x ∈ (−π, π); (2.11)

conversely, for any {an}n=+∞
n=−∞ ∈ `2, there exists a function f ∈ L2(−π, π) such that the values an

are the Fourier coefficients of f . In view of this, the integral transform (2.10) defines an invertible
bounded linear operator between two Hilbert spaces L2(π, π) and `2 in which the inversion formula
is given by (2.11). Loosely speaking, the kernel e−inx appears in (2.10) according to the Fourier
basis einx in the inversion formula (2.11).

Remark 1. The above consideration of T1 is natural for the extension (2.9), as 1
2 cos(nx)−i sin(nx)

is the inversion kernel of the basis 2 cos(nx) + i sin(nx) =
√

5πE (nx) (see [6]).

Put

T1 : L2([0, 2π]) −→ `2

f 7−→ {T1f}n∈Z.

By (2.4), (2.8), and (2.9) we can state the following theorem.
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Theorem 2.2. The integral transform (2.8) defines a bounded linear map from L2(−π, π) to `2
whose inversion map is given by (2.9).

The following propositions are immediate consequences of the finite Fourier integral transform
case.

Proposition 2.3 (Uniqueness theorem). If f ∈ L1([0, 2π]), with (T1f)(n) = 0, for all n ∈ Z, then
f ≡ 0 (in L1-norm).

Proposition 2.4 (Riemann-Lebesgue lemma). If f ∈ L1([0, 2π]), then

lim
n→∞

(T1f)(n) = 0.

For a certain purpose (as we will see in the next section), we also define

(T2f)(n) :=
1

2

√
5

π

∫ 2π

0

(
1

2
cos(nx) + i sin(nx)

)
f(x)dx, n ∈ Z.

Since T2(n) = T1(−n), for every n ∈ Z, the above propositions also obviously work for the transform
T2.

3. Convolutions associated with T1 and T2

In the present section we construct a set of eight new generalized convolutions associated with
T1 and T2, and prove some norm inequalities which we realize to be fundamental in view of their
analysis within Lebesgue spaces.

Definition 3. For any two functions f, g that are Lebesgue integrable on [0, 2π], being f a function
defined on R and 2π-periodic, we define four finite Fourier-type convolutions as follows:

(f ∗
T1

g)(x) :=
1

16

√
5

π

∫ 2π

0

[7f(x− v)− 3f(x+ v)− 3f(−x+ v)

+3f(−x− v)] g(v) dv; (3.1)

(f ∗
T1,T1,T2

g)(x) :=
1

16

√
5

π

∫ 2π

0

[−3f(x− v) + 7f(x+ v) + 3f(−x+ v)

−3f(−x− v)] g(v) dv; (3.2)

(f ∗
T1,T2,T1

g)(x) :=
1

16

√
5

π

∫ 2π

0

[−3f(x− v) + 3f(x+ v) + 7f(−x+ v)

−3f(−x− v)] g(v) dv; (3.3)

(f ∗
T1,T2,T2

g)(x) :=
1

16

√
5

π

∫ 2π

0

[3f(x− v)− 3f(x+ v)− 3f(−x+ v)

+7f(−x− v)] g(v) dv. (3.4)

The next theorem clarifies the relation of those convolutions with the previously considered
operators.

Theorem 3.1 (Convolution theorem). If f, g are Lebesgue integrable on [0, 2π] and f is a function
defined on R and 2π-periodic, then each one of the multiplications introduced in Definition 3 has
its factorization identity associated with the integral operators T1, T2 and the corresponding norm
inequality:

(T1(f ∗
T1

g))(n) = (T1f)(n)(T1g)(n) for n ∈ Z,
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‖f ∗
T1

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.5)

(T1(f ∗
T1,T1,T2

g))(n) = (T1f)(x)(T2g)(n) for n ∈ Z,

‖f ∗
T1,T1,T2

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.6)

(T1(f ∗
T1,T2,T1

g))(n) = (T2f)(x)(T1g)(n) for n ∈ Z,

‖f ∗
T1,T2,T1

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.7)

(T1(f ∗
T1,T2,T2

g))(n) = (T2f)(x)(T2g)(n) for n ∈ Z,

‖f ∗
T1,T2,T2

g‖1 ≤
√

5

π
‖f‖1‖g‖1. (3.8)

Proof. We first prove the theorem for the convolution (3.1). It is easily proven that[1
2

cos(nu)− i sin(nu)
][1

2
cos(nv)− i sin(nv)

]
=

1

8

{
7
[1

2
cos(n(u+ v))− i sin(n(u+ v))

]
− 3
[1

2
cos(n(u− v))− i sin(n(u− v))

]
− 3
[1

2
cos(n(−u+ v))− i sin(n(−u+ v))

]
+ 3
[1

2
cos(n(−u− v))− i sin(n(−u− v))

]}
. (3.9)

Using this identity, changing the variable and noting the 2π-periodicity of f , we have

(T1f)(n)(T1g)(n) =
5

4π

∫ 2π

0

∫ 2π

0

[1

2
cos(nu)− i sin(nu)

]
×[1

2
cos(nv)− i sin(nv)

]
f(u)g(v)dudv

=
5

8(4π)

∫ 2π

0

∫ 2π

0

{
7
[1

2
cos(n(u+ v))− i sin(n(u+ v))

]
− 3
[1

2
cos(n(u− v))− i sin(n(u− v))

]
− 3
[1

2
cos(n(−u+ v))− i sin(n(−u+ v))

]
+ 3
[1

2
cos(n(−u− v))− i sin(n(−u− v))

]}
f(u)g(v)dudv

=
5

8(4π)

∫ 2π

0

g(v)

{∫ 2π+v

v

7
[1

2
cos(nx)− i sin(nx)

]
f(x− v)dx

−
∫ 2π−v

−v
3
[1

2
cos(nx)− i sin(nx)

]
f(x+ v)dx

+

∫ −2π+v
v

3
[1

2
cos(nx)− i sin(nx)

]
f(−x+ v)dx
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− 3

∫ −2π−v
−v

7
[1

2
cos(nx)− i sin(nx)

]
f(−x− v)dx

}
dv

=
5

8(4π)

∫ 2π

0

g(v)

{∫ 2π+v

v

7
[1

2
cos(nx)− i sin(nx)

]
f(x− v)dx

−
∫ 2π−v

−v
3
[1

2
cos(nx)− i sin(nx)

]
f(x+ v)dx

−
∫ v

−2π+v
3
[1

2
cos(nx)− i sin(nx)

]
f(−x+ v)dx

+ 3

∫ −v
−2π−v

7
[1

2
cos(nx)− i sin(nx)

]
f(−x− v)dx

}
dv.

=
1

2

√
5

π

∫ 2π

0

[1

2
cos(nx)− i sin(nx)

]{ 1

16

√
5

π

∫ 2π

0

[
7f(x− v)

− 3f(x+ v)− 3f(−x+ v) + 3f(−x− v)
]
g(v)dv

}
dx

=T1(f ∗
T1

g)(n).

Now, let us prove the norm inequality∫ 2π

0

∣∣(f ∗
T1

g)(x)
∣∣ dx ≤ 1

16

√
5

π

∫ 2π

0

∫ 2π

0

[
7|f(x− v)|+ 3|f(x+ v)|

+ 3|f(−x+ v)|+ 3|f(−x− v)|
]
|g(v)| dv dx

=
16

16

√
5

π

∫ 2π

0

∫ 2π

0

|f(y)||g(u)| dv dy =

√
5

π
‖f‖1‖g‖1.

We ignore the proofs of the other convolutions as they can be completed in the same way as above,
by using corresponding identities. The proof is completed. �

As a second step in our method, we define four new convolutions associated with the operator
T2.

Definition 4. For any two functions f, g that are Lebesgue integrable on [0, 2π], being f a function
defined on R and 2π-periodic, we define four finite Fourier-type convolutions as follows:

(f ∗
T2

g)(x) :=
1

16

√
5

π

∫ 2π

0

[7f(x− v)− 3f(x+ v)− 3f(−x+ v)

+3f(−x− v)] g(v) dv; (3.10)

(f ∗
T2,T2,T1

g)(x) :=
1

16

√
5

π

∫ 2π

0

[−3f(x− v) + 7f(x+ v) + 3f(−x+ v)

−3f(−x− v)] g(v) dv; (3.11)

(f ∗
T2,T1,T2

g)(x) :=
1

16

√
5

π

∫ 2π

0

[−3f(x− v) + 3f(x+ v) + 7f(−x+ v)

−3f(−x− v)] g(v) dv; (3.12)

(f ∗
T2,T1,T1

g)(x) :=
1

16

√
5

π

∫ 2π

0

[3f(x− v)− 3f(x+ v)− 3f(−x+ v)

+7f(−x− v)] g(v) dv. (3.13)
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The next theorem introduces the relation of those convolutions with the previously considered
operators.

Theorem 3.2 (Convolution theorem). If f, g are Lebesgue integrable on [0, 2π] and f is a function
defined on R and 2π-periodic, then each one of the multiplications introduced in Definition 4 has
its factorization identity associated with the integral operators T1, T2 and the corresponding norm
inequality:

(T2(f ∗
T2

g))(n) = (T2f)(n)(T2g)(n) for n ∈ Z,

‖f ∗
T2

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.14)

(T2(f ∗
T2,T1,T1

g))(n) = (T1f)(x)(T1g)(n) for n ∈ Z,

‖f ∗
T2,T1,T1

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.15)

(T2(f ∗
T2,T1,T2

g))(n) = (T1f)(x)(T2g)(n) for n ∈ Z,

‖f ∗
T2,T1,T2

g‖1 ≤
√

5

π
‖f‖1‖g‖1; (3.16)

(T2(f ∗
T2,T2,T1

g))(n) = (T2f)(x)(T1g)(n) for n ∈ Z,

‖f ∗
T2,T2,T1

g‖1 ≤
√

5

π
‖f‖1‖g‖1. (3.17)

We will omit the proof of Theorem 3.2 because it is very similar to the proof of Theorem 3.1.
Due to the fact of L2([0, 2π]) ⊂ L1([0, 2π]), we can state the following theorem.

Theorem 3.3. Suppose that f, g are Lebesgue integrable on [0, 2π] and f is a function defined on
R and 2π-periodic. If f, g ∈ L2([0, 2π]), then the following norm inequality holds:

‖f ∗
T
g‖2 ≤

√
190

4
‖f‖2‖g‖2,

where ∗
T

represents anyone of the convolutions (3.1)–(3.2) and (3.10)–(3.11).

Proof. We will just prove the theorem for the convolution (3.1). For the other ones, we proceed in
a similar way.

By the Cauchy-Schwarz inequality, we have (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2) and so,∣∣∣∣(f ∗T1

g)(x)

∣∣∣∣2 =

(
1

16

√
5

π

)2 ∣∣∣∣∫ 2π

0

[7f(x− v)− 3f(x+ v)− 3f(−x+ v) + 3f(−x− v)] g(v)dv

∣∣∣∣2
≤ 5

256π

∫ 2π

0

|g(v)|2dv
∫ 2π

0

|7f(x− v)− 3f(x+ v)− 3f(−x+ v) + 3f(−x− v)|2 dv

≤ 5

256π

∫ 2π

0

|g(v)|2dv
∫ 2π

0

4
[
49|f(x− v)|2 + 9|f(x+ v)|2

+9|f(−x+ v)|2 + 9|f(−x− v)|2
]
dv =

95

16π
‖f‖22‖g‖22.

This implies that

‖f ∗
T1

g‖2 =

(∫ 2π

0

∣∣∣∣(f ∗T1

g)(x)

∣∣∣∣2 dx
) 1

2

≤
√

190

4
‖f‖2‖g‖2,
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which proves the proposition. �

4. On the solution of the integral equation

This section is devoted to the solvability of equation (1.1), where p and q are given 2π-periodic
one-variable functions. In particular, the kernel K(x, u) contains two terms: a convolution p(x−u)
and a cross-correlation q(x+u), which has many applications on pattern recognition, single particle
analysis, electron tomography, averaging, etc..

The key tool for investigating (1.1) are the convolutions constructed in Section 3. We will see
the fact that such set of eight convolutions is very useful for our purposes. From our point of view,
some subgroup of such convolution set may be used for other particular purposes.

Let us write:

A(n) := λ+
1

4

√
π

5
[13(T1p)(n) + 3(T2p)(n) + 3(T1q)(n)− 3(T2q)(n)] ; (4.1)

B(n) :=
1

4

√
π

5
[3(T1p)(n)− 3(T2p)(n) + 13(T1q)(n) + 3(T2q)(n)] ; (4.2)

D(n) := A(n)A(−n)−B(n)B(−n); (4.3)

D1(n) := A(−n)(T1f)(n)−B(n)(T2f)(n); (4.4)

D2(n) := A(n)(T2f)(n)−B(−n)(T1f)(n). (4.5)

Theorem 4.1. Assume that the functions p, q are 2π-periodic and piecewise continuous on the
interval [0, 2π], and f ∈ L2([0, 2π]).

(i) If λ 6= 0, then there exists an integer K∗ such that D(n) 6= 0, for every n ≥ K∗.

(ii) If D(n) 6= 0, for every n ∈ N0, then equation (1.1) has a unique solution for every f ∈
L2([0, 2π]), which is given by

ϕ(x) =
∑
n∈Z

D1(n)

D(n)
E (nx). (4.6)

Proof. (i) By the Riemann-Lebesgue lemma for T1 and T2, we deduce that

lim
n→∞

D(n) = λ2 6= 0.

Hence, there exists an integer K∗ ∈ N such that D(n) 6= 0, for all n ≥ K∗. Item (i) is proved.
(ii) The four numbers 7,−3,−3, 3 appearing in the right-hand sides of the convolution identities
(3.1)-(3.4) constitute a symmetric matrix in the form

M :=


7 −3 −3 3
−3 7 3 −3
−3 3 7 −3
3 −3 −3 7

 ,

from which it follows det(M) = 1024 6= 0. The matrix M is defined as follows: each line of the
matrix is built by using the coefficients of the kernel of each convolution (accordingly with the
exhibited order), this is, the first line consists of the kernel coefficients of the first convolution in
the order that appears in its definition, the second line consists of the kernel coefficients of the
second convolution in the same order, and so on.
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This method can be generalized for all the coefficients of the operator such that det(M) 6= 0.
Therefore, replacing g with ϕ and f with p in (3.1)-(3.4) and converting those expressions, we
obtain∫ 2π

0

p(x− u)ϕ(u)du =
1

4

√
π

5

[
13(p ∗

T1

ϕ)(x) + 3(p ∗
T1,T1,T2

ϕ)(x)

+ 3(p ∗
T1,T2,T1

ϕ)(x)− 3(p ∗
T1,T2,T2

ϕ)(x)
]
.

Again, replacing g with ϕ and f with q and converting those expressions as above, we get∫ 2π

0

q(x+ u)ϕ(u)du =
1

4

√
π

5

[
3(q ∗

T1

ϕ)(x) + 13(q ∗
T1,T1,T2

ϕ)(x)

− 3(q ∗
T1,T2,T1

ϕ)(x) + 3(q ∗
T1,T2,T2

ϕ)(x)
]
.

Applying T1 to both sides of these identities and using the factorization identities of the convolu-
tions appeared on the right-hand side, we obtain

T1

(∫ 2π

0

p(x− u)ϕ(u)du
)

(n) =
1

4

√
π

5

[
13(T1p)(n)(T1ϕ)(n)

+ 3(T1p)(n)(T2ϕ)(n) + 3(T2p)(n)(T1ϕ)(n)− 3(T2p)(n)(T2ϕ)(n)
]

(4.7)

T1

(∫ 2π

0

q(x+ u)ϕ(u)du
)

(n) =
1

4

√
π

5

[
3(T1q)(n)(T1ϕ)(n)

+ 13(T1q)(n)(T2ϕ)(n)− 3(T2q)(n)(T1ϕ)(n) + 3(T2q)(n)(T2ϕ)(n)
]
. (4.8)

Analogously, we convert the convolution (3.10)–(3.13) to have

T2

(∫ 2π

0

p(x− u)ϕ(u)du
)

(n) =
1

4

√
π

5

[
13(T2p)(n)(T2ϕ)(n)

+ 3(T2p)(n)(T1ϕ)(n) + 3(T1p)(n)(T2ϕ)(n)− 3(T1p)(n)(T1ϕ)(n)
]
; (4.9)

T2

(∫ 2π

0

q(x+ u)ϕ(u)du
)

(n) =
1

4

√
π

5

[
3(T2q)(n)(T2ϕ)(n)

+ 13(T2q)(n)(T1ϕ)(n)− 3(T1q)(n)(T2ϕ)(n) + 3(T1q)(n)(T1ϕ)(n)
]
. (4.10)

To prove the uniqueness of the solution of equation (1.1), we invoke the Fredholm alternative
theorem. Suppose that the homogeneous equation corresponding to equation (1.1) has a solution
ϕ∗ ∈ L2([0, 2π]), this is,

λϕ∗(x) +

∫ 2π

0

[p(x− u) + q(x+ u)]ϕ∗(u)du = 0.

Applying T1 and T2 to both sides of this equation and using identities (4.7)–(4.10), we obtain the
following system of two linear equations{

A(n)(T1ϕ∗)(n) +B(n)(T2ϕ∗)(n) = 0

B(−n)(T1ϕ∗)(n) +A(−n)(T2ϕ∗)(n) = 0.

Since D(n) 6= 0, for every n ∈ N0, we obtain (T1ϕ∗)(n) = (T2ϕ∗)(n) = 0, for n ≥ 0. Due to the
uniqueness theorem of the operators T1 and T2, we obtain that ϕ∗ = 0. Thus, the homogeneous
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equation associated with the equation (1.1) has only the trivial solution and so, by the Fredholm
alternative theorem, equation (1.1) has a unique non-trivial solution, provided 0 6= f ∈ L2([0, 2π]).

Now, we will perform the solution formula (4.6). Suppose that ϕ ∈ L2([0, 2π]) is fulfilling (1.1).
Proceeding in a similar way as used for the homogeneous equation, we obtain the following system{

A(n)(T1ϕ)(n) +B(n)(T2ϕ)(n) = (T1f)(n)

B(−n)(T1ϕ)(n) +A(−n)(T2ϕ)(n) = (T2f)(n).

Since D(n) 6= 0 for every n ≥ 0, this system has a unique solution given by

(T1ϕ)(n) =
D1(n)

D(n)
, (T2ϕ)(n) =

D2(n)

D(n)
=
D1(−n)

D(n)
= (T1ϕ)(−n), (4.11)

for n = 0, 1, . . .. Taking the inverse transform of T1, we obtain

ϕ(x) =
∑
n∈Z

D1(n)

D(n)
E (nx),

which belongs to L2([0, 2π]) and fulfills (1.1) for almost every x ∈ [0, 2π], where

‖ϕ‖22 =
π

2
|f̂c(0)|2 +

∑
06=n∈Z

∣∣∣D1(n)

D(n)

∣∣∣2 <∞.
The theorem is proved. �

The solution (4.6) can be called a Shannon-type sampling formula concerning the function E . In

other words, we can cover all signals from the knowledge of the information at the samples D1(n)
D(n) .

5. Examples and comparison

In this section, we present some examples of integral equations that we can solve by using the
above integral transforms and convolutions and that are not possible to solve by using previously
published work. From our point of view, the non symmetry of the coefficients in the transforms
T1 and T2 have a significant effect in this situation.

Example 1. Let us consider the equation

2ϕ(x) +

∫ 2π

0

[cas(x− u) +H(x+ u)]ϕ(u) du = 2,

that is under the conditions of Theorem 4.1, where p(x) = cas(x) := cos(x) + sin(x) and q(x) =
H(x) stands for the Heaviside function. If we use the Hartley transform as in the paper [2], then
D(n) = 0 for n = 0 (for the corresponding D defined in the sense of the present work). In view
of this, it follows that the reasoning in the just mentioned paper does not work for this equation.
However, using the operators T1 and T2, we obtain by our method

D(n) =


4 + 2π + 2π2, n = 1

4(1− π2), n = 0

4, n 6= 0 ∧ n 6= 1.

This implies D(n) 6= 0 for all n ∈ Z. As a result, we can apply Theorem 4.1 for obtaining the
unique solution given by (4.6).

Example 2. Let us consider the following equation

ϕ(x) +

∫ 2π

0

[sin(m1(x− u)) + cos(m2(x+ u))]ϕ(u) du = cos(x),
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with m1 6= m2, that is under the conditions of Theorem 4.1, where p(x) = sin(m1x) and q(x) =
cos(m2x). If we use the Hartley transform as applied in [2], then D(n) = 0 for n = m2 (with the
D(n) of that paper). So, the approach to this equation via the Hartley transform, as exposed in
[2], does not work for analyzing the solvability and obtaining the eventual unique solution of the
present equation.

Nevertheless, using the operators T1 and T2, our method works in this case since

D(n) =


1 + 25

16π
2, n = m1

1− π2, n = m2

1, n 6= m1 ∧ n 6= m2.

In particular, some simple computations give

D1(n) = D2(n) =

{
(1− π)

√
5π
4 , n = m2

0, n 6= m2.

and the solution ϕ(x) = cos(m2x)
1+π .

Example 3. Consider the equation

3

4
ϕ(x) +

∫ 2π

0

[cos(x− u) + (x+ u) sin(x+ u)]ϕ(u) du = 1, (5.1)

that is under the conditions of Theorem 4.1, where p(x) = cos(x) and q(x) = x sin(x). The use of
the Hartley transform in [2] also does not work in this case since their D(n) = 0 for n = 3; i.e.,
with the method of that paper we cannot analyze the solvability of this equation and also cannot
obtain its unique solution.

However, by using the operators T1 and T2, we obtain

D(n) =

{
9
16 + 3π − π4, n = 1
9
16 −

4π2n2

(n2−1)2 , n 6= 1.

Therefore, we can apply Theorem 4.1 for obtaining the unique solution of the equation.

Example 4. Consider the following equation

ϕ(x) +

∫ 2π

0

[sin(3(x− u)) + cos(x+ u)]ϕ(u) du = cos(x), (5.2)

that is under the conditions of Theorem 4.1. Using the operators T1 and T2, we obtain

(T1q)(n) = (T2q)(n) =

{
0, n 6= 1
√
5π
4 , n = 1;

(T1p)(n) =

{
0, n 6= 3

− i
√
5π
2 , n = 3;

(T2p)(n) =

{
0, n 6= 3
i
√
5π
2 , n = 3.

Performing some straightforward computations, we derive:

A(n) =

{
1− 5π

4 i, n = 3

1, n 6= 3;

A(−n) =

{
1 + 5π

4 i, n = 3

1, n 6= 3;
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and

B(n) =


π, n = 1

− 3πi
4 , n = 3

0, n 6= 1 ∧ n 6= 3;

B(−n) =


π, n = 1
3πi
4 , n = 3

0, n 6= 1 ∧ n 6= 3.

The above identities provide

D(n) =


1− π2, n = 1

1 + π2, n = 3

1, n 6= 1 ∧ n 6= 3,

which implies D(n) 6= 0 for all n ∈ N0. We deduce that Theorem 4.1 allow us to characterize the
solvability and obtain the unique solution of this integral equation. Namely, we have

(T1f)(n) = (T2f)(n) =

{√
5π
4 , n = 1

0, n 6= 1,

D1(n) = D2(n) =

{
(1− π)

√
5π
4 , n = 1

0, n 6= 1.

which provides the solution ϕ(x) = cos(x)
1+π .

However, the paper [2] also does not work for this equation. Indeed, obeying the procedures in
that paper, we have

(H1p)(n) =

{
0, n 6= 3
1
2 , n = 3;

(H2p)(n) =

{
0, n 6= 3

− 1
2 , n = 3.

(H1q)(n) = (H2q)(n) =

{
0, n 6= 1
1
2 , n = 1.

Using some additional computations, we have A(n) = A(−n) = 1, and

B(n) =

{
1, n = 1, 3

0, n 6= 1 ∧ n 6= 3
B(−n) =


1, n = 1

−1, n = 3

0, n 6= 1 ∧ n 6= 3.

We find

D(n) =


0, n = 1

2, n = 3

1, n 6= 1 ∧ n 6= 3.

From this it follows D(1) = 0, which confirms the above conclusion.
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6. Concluding remarks

For convenience of formulation, we write

S1 : =
{
− π

[
p̂c(n)∓ q̂c(n)

]
: n ∈ Z

}
;

S2 : =
{
− π

[
p̂c(n)∓ q̂s(n)

]
: n ∈ Z

}
;

S3 : =
{
± π

√
q̂2c (n)− p̂2s(n) : n ∈ Z

}
;

S4 : =
{
± π

√
q̂2s(n)− p̂2s(n) : n ∈ Z

}
.

We note that the square roots in S3 as well as in S4 are understood in complex sense, i.e. each one
of S3 and S4 is just a single-valued branch of the root. In a more general perspective, we are able
to state the following proposition.

Proposition 6.1. Suppose that the functions p and q in the equation (1.1) are Lebesgue integrable.

(i) If p, q are even functions, then D(n) 6= 0 for all n ∈ N0 if and only if λ /∈ S1.

(ii) If p is an even function and q is an odd function, then D(n) 6= 0 for all n ∈ N0 if and only
if λ /∈ S2.

(iii) If p is an odd function and q is an even function, then D(n) 6= 0 for all n ∈ N0 if and only
if λ /∈ S3.

(iv) If p, q are odd functions, then D(n) 6= 0 for all n ∈ N0 if and only if λ /∈ S4.

Proof. We shall present the proof for Item (i), and leave the proofs for the other cases, since they
can be completed in a similar way. For Item (i), we have:

(T1p)(n) = (T2p)(n) =
1

4

√
5

π
πp̂c(n);

(T1q)(n) = (T2q)(n) =
1

4

√
5

π
πp̂c(n);

A(n) = A(−n) = λ+ πp̂c(n);

B(n) = B(−n) = πq̂c(n).

Thus, D(n) = (λ+πp̂c(n))2−(πq̂c(n))2.We derive thatD(n) 6= 0 if and only if λ 6= π (−p̂c(n)± q̂c(n)) ,
which proves Item (i). The proposition is proved. �

Corresponding to each one of cases of the given kernel functions p, q in Items (i), (ii), (iii) and
(iv), the left-hand side of the integral equation (1.1) defines a Fredholm integral operator acting
in the Hilbert space L2([0, 2π]); say Tpq := I +Kpq.

We state the following theorem which is in some sense a reformulation of Proposition 6.1.

Theorem 6.2. The point spectrum of the Fredholm integral operator Tpq is the set S1,S2,S3 and
S4 where the kernel functions p, q are given by that in Item (i), (ii), (iii), and (iv) of Proposition
6.1, respectively.

So, there exists an enough large class of Lebesgue integrable 2π-periodic functions for the
Wiener-Hopf and Hankel kernels p, q to which the finite integral transforms and series of Fourier-
type provide an effective tool for investigating the solvability and explicit solution of the equation.
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The L2-series solution (4.6), in one side, provides helpful procedures in approximation and numer-
ical computations, in another side, that can be viewed as a Shannon’s sampling formula with the
given data being of the Wiener-Hopf and Hankel form. This may be of interest in digital processing
by admitting the linear time-invariant system in sense of those kernels. Theoretically, Theorem
6.2 shows a particular class of Fredholm integral operators defined on the Hilbert space L2([0, 2π])
together with their explicit point spectrums.
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