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Abstract. It was already in the fifties of the last century that the re-
lationship between information theory, statistics, and maximum entropy
was established, following the works of Kullback, Leibler, Lindley and
Jaynes. However, the applications were restricted to very specific do-
mains and it was not until recently that the convergence between infor-
mation processing, data analysis and inference demanded the foundation
of a new scientific area, commonly referred to as Info-Metrics [1, 2]. As
huge amount of information and large-scale data have become available,
the term ”big data” has been used to refer to the many kinds of chal-
lenges presented in its analysis: many observations, many variables (or
both), limited computational resources, different time regimes or multiple
sources. In this work, we consider one particular aspect of big data analy-
sis which is the presence of inhomogeneities, compromising the use of the
classical framework in regression modelling. A new approach is proposed,
based on the introduction of the concepts of info-metrics to the analysis of
inhomogeneous large-scale data. The framework of information-theoretic
estimation methods is presented, along with some information measures.
In particular, the normalized entropy is tested in aggregation procedures
and some simulation results are presented.

Keywords: Big Data, Info-Metrics, Maximum Entropy, Normalized En-
tropy

1 Introduction

Inference and processing of limited information is still one of the most fascinating
universal problems. As stated by Amos Golan in [2], a very recent publication,
“[...] the available information is most often insufficient to provide a unique
answer or solution for most interesting decisions or inferences we wish to make.
In fact, insufficient information - including limited, incomplete, complex, noisy
and uncertain information - is the norm for most problems across all disciplines.”

? Final version of this work is published in the book Theory and Applications of
Time Series Analysis (https://doi.org/10.1007/978-3-030-26036-1_2), from the
Contributions to Statistics book series.
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Also, regardless of the system or question studied, any researcher observes only
a certain amount of information or evidence and optimal inference must take
into account the relationship between the observable and the unobservable, [3].

Info-Metrics is a constrained optimization framework for information pro-
cessing, modelling and inference with finite, noisy or incomplete information. It
is at the intersection of information theory, statistical methods of inference, ap-
plied mathematics, computer science, econometrics, complexity theory, decision
analysis, modelling and the philosophy of science, [2].

As Info-Metrics generalizes the Maximum Entropy (ME) principle by Jaynes,
[4, 5], which in turn relies on the maximization of Shannon’s entropy, the notions
of information, uncertainty and entropy are fundamental to the understanding
of the methodologies involved. Each scientist and discipline have their own inter-
pretation and definition of information within the context of their research and
understanding but, in the context of Info-Metrics, it refers to the meaningful
content of data, it’s context and interpretation and how to transfer data from
one entity to another. As for uncertainty, it arises from a proposition or a set of
possible outcomes where none of the choices or outcomes is known with certainty
(a proposition is uncertain if it is consistent with knowledge but not implied by
knowledge). Therefore, these outcomes are represented by a certain probability
distribution. The more uniform the distribution, the higher the uncertainty that
is associated with this set of propositions or outcomes. Finally, the concept of
entropy reflects what, on average, we expect to learn from observations and it
depends on how we measure information. Technically, entropy is a measure of
uncertainty of a single random variable. As such, entropy can be viewed as a
measure of uniformity.

For a brief discussion of entropy, let us consider the set A = {a1, a2, · · · , aK}
to be a finite set and p a proper probability mass function on A. The amount of
information needed to fully characterize all of the elements of this set consisting
of K discrete elements is defined by the Hartley’s formula, I(AK) = log2K.
Shannon’s information content of an outcome ak is h(ak) = h(pk) ≡ log2

1
pk

.
Shannon’s entropy reflects the expected information content of an outcome and
is defined as

H(p) ≡
K∑

k=1

pk log2

1

pk
= −

K∑
k=1

pk log2 pk = E

[
log2

(
1

p(X)

)]
, (1)

for the random variable X. This information criterion, expressed in bits, mea-
sures the uncertainty of X that is implied by p. The entropy measure H(p)
reaches a maximum when p1 = p2 = · · · = pK = 1

K and a minimum with a point
mass function. The entropy H(p) is a function of the probability distribution p
and not a function of the actual values taken by the random variable.

The remainder of the paper is laid out as follows: in Section 2, maximum en-
tropy and generalized maximum entropy estimation are briefly discussed. Section
3 illustrates some traditional aggregation procedures and a new proposal based
on normalized entropy. Section 4 presents simulation results. Some conclusions
and topics for future research are given in Section 5.
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2 Generalized Maximum Entropy Estimator

The ME principle was discussed by Golan, Judge and Miller, [6], in order to
develop analytical and empirical methods for recovering the unobservable pa-
rameters of a pure linear inverse problem. Considering then

y = Xp, (2)

where y is the vector (N × 1) of observations, X is a non-invertible matrix
(N ×K) with N < K, and p is the vector (K× 1) of unknown probabilities, the
ME principle consists in choosing p that maximizes Shannon’s entropy

H(p) = −
K∑

k=1

pk ln pk = −p′ lnp, (3)

subject to the data consistency restriction, y = Xp, and the additivity restric-
tion, p′1 = 1. Formally, the ME estimator is given by

argmax
p

{−p′ lnp} , (4)

subject to the model consistency and additivity constraints,{
y = Xp
1′p = 1

. (5)

There is no closed-form analytical solution, but a numerical approximation can
be obtained using the Lagrange multipliers. It can be said that the Jaynes max-
imum entropy formalism has enabled us to solve the pure inverse problem with
this optimization (maximization) procedure, regarding it as an inference prob-
lem. The ME principle is the basis for transforming the information in the data
into a probabilistic distribution that reflects our uncertainty about individual
outcomes.

To extend the ME estimator to the linear regression model represented by

y = Xβ + e, (6)

where, as usually, y denotes a (N×1) vector of noisy observations, β is a (K×1)
vector of unknown parameters, X is a known (N × K) matrix of explanatory
variables, and e is the (N × 1) vector of random disturbances (errors), Golan,
Judge and Miller, [6], considered each βk as a discrete random variable with
a compact support and M ≥ 2 possible outcomes and each en as a finite and
discrete random variable with J ≥ 2 possible outcomes. The error vector is
considered here as another vector of unknown parameters to be estimated si-
multaneously with the vector β. In this context, the linear regression model is
represented as

y = XZp+ V w, (7)
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where

β = Zp =


z′1 0 . . . 0
0 z′2 . . . 0
...

...
. . .

...
0 0 . . . z′K



p1
p2
...
pK

 , (8)

and

e = V w =


v′1 0 . . . 0
0 v′2 . . . 0
...

...
. . .

...
0 0 . . . v′N



w1

w2

...
wN

 . (9)

MatricesZ (K×KM) and V (N×NJ) are the matrices of support values and
vectors p (KM×1) andw (NJ×1) are the vectors of unknown probabilities to be
estimated. Note that each βk, k = 1, 2, . . . ,K, and each en, n = 1, 2, . . . , N , are
viewed as expected values of discrete random variables zk and vn, respectively,
with M ≥ 2 and J ≥ 2 possible outcomes, within the lower and upper bounds
of the corresponding support spaces. Thus, the generalized maximum entropy
(GME) estimator is given by

argmax
p,w

{−p′ lnp−w′ lnw} , (10)

subject to the consistency (with the model) and additivity (for p and w) con-
straints, y = XZp+ V w,

1K = (IK ⊗ 1′
M )p,

1N = (IN ⊗ 1′
J)w,

(11)

where ⊗ represents the Kronecker product. The optimal probability vectors,
p̂ and ŵ, are used to obtain point estimates of the unknown parameters and
the unknown errors with β̂ = Zp̂ and ê = V ŵ. Some properties of the GME
estimator, such as consistency and asymptotic normality, are discussed in detail,
for example, in Mittelhammer, Cardell and Marsh, [7].

3 Large-Scale Data and Aggregation

Large-scale data or big data usually refers to datasets that are large in different
ways: many observations, many variables (or both); observations are recorded in
different time regimes or are taken from multiple sources. Some difficult issues
arise in dealing with this kind of data like, for instance, retaining optimal (or,
at least, reasonably good) statistical properties with a computationally efficient
analysis; or dealing with inhomogeneous data that does not fit in the classical
framework: data is neither i.i.d. (exhibiting outliers or not belonging to same
distribution) nor stationary (time-varying effects my be present).

Standard statistical models (linear or generalized linear models for regression
or classification) fail to capture inhomogeneity structure in data, compromising
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estimation and interpretation of model parameters, and, of course, prediction.
On the other hand, statistical approaches for dealing with inhomogeneous data
(such as varying-coefficient models, mixed effects models, mixture models or
clusterwise regression models) are typically very computationally cumbersome.

Ignoring heterogeneity in data, computational burden can be addressed with
the following procedure, [8]: firstly, construct g groups from the large-scale data
(groups may be overlapping and may not cover all observations in the sample);

then, for each group compute an estimator, β̂g, through standard techniques
(e.g., OLS, ridge or LASSO); finally, considering the ensemble of estimators,

aggregate them into a single estimator, β̂.

3.1 Traditional Aggregation Procedures

Several aggregation procedures have been already proposed in literature. Three
of them are presented next.

1. Bagging: this procedure results in less computational complexity and even
allows for parallel computing. It simply averages the ensemble estimators
with equal weight to obtain the aggregated estimator, [8, 9]:

β̂ :=

G∑
g=1

wgβ̂g, (12)

where wg = 1
G for all g = 1, 2, . . . , G. The estimates β̂g are obtained from

bootstrap samples, where the groups are sampled with replacement from the
whole data. It is a simple procedure and the weights do not depend on the
response y, but it is not suitable for inhomogeneous data.

2. Stacking: instead of assigning a uniform weight to each estimator, [10] and
[11] proposed the aggregated estimator

β̂ :=

G∑
g=1

wgβ̂g, (13)

where

w := argmin
w∈W

∥∥∥∥∥y −
G∑

g=1

wgŷg

∥∥∥∥∥
2

, (14)

and, using a ridge constraint, W = {w : ‖w‖ ≤ s}, for some s > 0, or using
a sign constraint, W = {w : min

g
wg ≥ 0}, or using a convex constraint,

W = {w : min
g

wg ≥ 0 and
∑G

g=1 wg = 1}. The idea is to find the optimal

linear or convex combination of all ensemble estimators, but it is also not
suitable for inhomogeneous data.
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3. Magging: corresponds to maximizing the minimally “explained variance”
among all data groups, [8], such that

β̂ :=

G∑
g=1

wgβ̂g, (15)

where

w := argmin
w∈W

∥∥∥∥∥
G∑

g=1

wgŷg

∥∥∥∥∥
2

, (16)

and W = {w : min
g

wg ≥ 0 and
∑G

g=1 wg = 1}. The idea is to choose the

weights as a convex combination to minimize the ‖·‖2 of the fitted values, ŷ.
If the solution is not unique, it is considered the solution with lowest ‖ ·‖2 of
the weight vector among all solutions. This procedure was the first that we
are aware of that was proposed for heterogeneous data. The main idea is that
if an effect is common across all groups, then it cannot be “averaged away”
by searching for a specific combination of the weights. The common effects
will be present in all groups and will be retained even after the minimization
of the aggregation scheme.

We believe the question as to weather the effects are really common across all
groups may not be answered straightforwardly. If the groups carry information
about the whole dataset and there are inhomogeneities, why should we consider
that, with random sub-sampling, all groups are equally informative?

These considerations led us to the idea of choosing the groups according to
their “information content”.

3.2 Proposed Aggregation Procedure

To measure the information content in a system and to measure the importance
of the contribution of each piece of data or constraint in reducing uncertainty,
Golan, Judge and Miller, [6], stated that, in the ME formulation, the maximum
level of entropy-uncertainty results when the information-moment constraints are
not enforced and the distribution of probabilities over the K states is uniform.
As each piece of effective data is added, there is a departure from the uniform
distribution, which implies a reduction of uncertainty. The proportion of the
remaining total uncertainty is measured by the normalized entropy (NE),

S(p̂) = −
∑

k p̂k ln p̂k
ln(K)

, (17)

where S(p̂) ∈ [0, 1] and ln(K) represents maximum uncertainty (the entropy
level of the uniform distribution with K outcomes). A value S(p̂) = 0 implies
no uncertainty and a value S(p̂) = 1 implies perfect uncertainty. Related to
the normalized entropy, the information index (II) is defined as 1 − S(p̂) and
measures the reduction in uncertainty.
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In this work, we propose a new aggregation scheme that is based on iden-
tifying the information content of a given group through the calculation of the
normalized entropy. The proposed NE aggregated estimator is then

β̂ :=

G∑
g=1

wgβ̂g, (18)

where wg is defined by normalized entropy using GME,

S(p̂)g =
−p̂′ ln p̂

K lnM
, (19)

for the signal, Xβ, such that
∑G

g=1 wg = 1. This aggregation procedure is a
weighted average of the collection of regression coefficient estimates as in Bag-
ging, Stacking and Magging. The idea is almost as simple as Bagging and it is
expected to provide similar results if the data is homogeneous. However, since
the weights in (18) will depend on the information content of each group accord-
ing to (19), or some function of it, the weights will be, in general, non-uniform
(as in Stacking and Magging) if the data is inhomogeneous.

Following section reports some simulated situations for which the NE aggre-
gated estimator was calculated and compared to the aggregated estimator based
on Bagging.

4 Simulation Study

A linear regression model was considered, where X is the simulated matrix of
explanatory variables, drawn randomly from normal distributions; β is a vector
of parameters, e is the vector of random disturbances, drawn randomly from
normal distributions and y is the constructed vector of noisy observations. For
this simulation, β was considered as

β = [1.8, 1.2, −1.4, 1.6, −1.8, 2.0, −2.0, 0.2, −0.4, 0.6, 0.8]. (20)

Necessary reparameterizations were done considering M = 5 and J = 3 and
different matrices Z containing the supports for the parameters. The support
matrix V containing the supports for the errors, was set considering symmetric
and zero-centred supports using the three-sigma rule with the empirical standard
deviation of the noisy observations.
Simulations were done considering X a (20000×11) matrix; β a (11×1) vector;
e a (20000 × 1) vector and y a (20000 × 1) vector. The error distribution was
considered to be normal, with mean value zero and standard deviation five.
Several matrices X of explanatory variables were simulated, corresponding to
different condition numbers (c.n.)1. Random sub-sampling with replacement was
done considering different number of groups and 50 observations per group. The

1 Ratio of the largest singular value of X, with the smallest singular value.
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Euclidean norm of the difference between the aggregated estimator β̂ and the
true parameter β, ‖β̂−β‖2, is calculated for each simulated case and the results
are given in Tables 1 – 5. For each case, three different solutions are presented,
namely,

1. NE1: the chosen β̂ corresponds to the GME estimate for the group with
lower normalized entropy, (NE). This solution does not correspond, in fact,
to an aggregated estimator; it corresponds to a chosen estimate amongst all
groups;

2. NE2: the chosen β̂ corresponds to the weighted average of the GME estimates
of all groups, weighted by the information index, II, where II = 1−NE;

3. Bgg: the β̂ chosen corresponds to Bagging (average of the OLS estimates of
all groups).2

Table 1. Euclidean norm of the difference β̂ − β, with zk = [−10, 10]

n.g. Solution c.n.=1337

NE1 4.26
5 NE2 4.18

Bgg 181.23

Table 2. Euclidean norm of the difference β̂ − β, with zk = [−10, 10]

n.g. Solution c.n.=43030

NE1 4.22
5 NE2 4.25

Bgg 1432.59

The present results are intended to highlight the overall tendencies we en-
countered in the simulation study. Many other situations were simulated, with
many different matrices of explanatory variables, X, corresponding to a wide
range of variation regarding the matrix condition number, which, as is well
known, is related to the presence of collinearity3 in the explanatory variables.
In this paper, only two extreme cases were chosen to be presented, the first one
corresponding to a relatively small condition number (c.n. around 1300) and
the second one corresponding to a much higher condition number (c.n. around

2 It is not considered here the case of a single learning set, as in [9], and the need to
take repeated bootstrap samples from it.

3 The concept is not used here in a literal sense. A discussion about similar notions of
this concept is available in Belsley, Kuh and Welsch, [12, pp. 85–98].
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Table 3. Euclidean norm of the difference β̂ − β, with zk = [−10, 10]

n.g. Solution c.n.=1337

NE1 4.26
5 NE2 4.18

Bgg 181.23

NE1 4.47
10 NE2 4.31

Bgg 171.22

NE1 4.45
50 NE2 4.30

Bgg 49.36

NE1 5.48
100 NE2 4.34

Bgg 38.74

Table 4. Euclidean norm of the difference β̂ − β, with zk = [−100, 100]

n.g. Solution c.n.=1337

NE1 32.31
5 NE2 10.17

Bgg 214.56

Table 5. Euclidean norm of the difference β̂ − β, with zk = [−100, 100]

n.g. Solution c.n.=1337 c.n.=43030

NE1 32.31 35.54
5 NE2 10.17 15.59

Bgg 214.56 5440.47

43000).

It can be concluded that, for both cases, ‖β̂ − β‖2 is much lower for any of the
normalized entropy methodologies, when compared to Bagging, as can be seen
from any of the Tables 1 – 5.
Comparing Table 1 and Table 2, same number of groups (n.g.=5) and same
support vectors for the parameters (zk = [−10, 10]) were considered. The higher

condition number in Table 2 results in a much higher ‖β̂ − β‖2 for the Bagging
procedure, whereas the normalized entropy methodologies behave in the same
way as with the much lower condition number, revealing that the presence of
collinearity does not seem to compromise the results provided by the normalized
entropy aggregation procedures. Since the GME estimator is appropriate in the
estimation of ill-posed models, including models with ill-conditioned design ma-
trices, these results are not surprising.
Considering Table 3, the analysis was done changing the number of groups in



10 Costa and Macedo

the aggregation. The Bagging procedure tends to provide better results in terms
of lower ‖β̂−β‖2, as the number of groups rises. This observation does not come
as a surprise due to sampling and inferential statistics theory. The normalized
entropy methodologies do not seem to follow this behaviour, as the ‖β̂ − β‖2
remains approximately constant as the number of groups gets higher. This may
be considered an advantage of this aggregation procedure, since there is no need
for bigger data sets (and consequent higher computational burden) in order to
have comparable results in terms of precision.
Finally, Tables 4 and 5 refer to the effect of changing the amplitude of the sup-
port vectors, zk. It can be seen that as the support vector zk changes from
[−10, 10], in Table 1, to [−100, 100], in Table 4, all aggregation procedures pro-

vide worse results in terms of ‖β̂−β‖2. Widening the amplitude of the support
vectors results in a less informative probability distribution for the parameters,
which should lead to a smaller departure from total uncertainty as compared
to the situation where the support vectors are less wide. It is expected, then,
that the normalized entropy methodologies provide better results when the am-
plitude of the support vectors are smaller. The results of the simulation study
are in agreement with this interpretation. Nevertheless, when the same analysis
is done considering a matrix of explanatory variables X, with higher condition
number, as presented in Table 5, even though the normalized entropy methodolo-
gies provide worse results, as already discussed, the Bagging procedure provides
even worse results: while ‖β̂−β‖2 changes from 4.25 to 15.59 for the information
index weighted average of the GME estimates (solution NE2), the corresponding
change for the Bagging procedure is from 1432.59 (which is already a very poor
value concerning the precision of the estimates) to 5440.47.

5 Concluding Remarks

The idea of an aggregation procedure based on normalized entropy is promis-
ing as it is clear from the simulation study that this approach provides very
satisfactory solutions. The normalized entropy methodologies, in particular, the
aggregation procedure based on the weighting of the groups by the information
index, always results in a ‖β̂−β‖2 much lower than the one obtained with Bag-
ging. This discrepancy tends to aggravate in the presence of high collinearity, as
that is the case when the explanatory variables matrices, X, have high condition
numbers. On the other hand, the use of more groups in the aggregation scheme
does not seem to improve the overall quality of the estimates obtained through
the normalized entropy methodologies, what turns out to be an advantage to-
wards this procedure. These observations suggest that a further and thorough
simulation analysis with different error structures or severe inhomogeneities may
reveal substantial differences between normalized entropy aggregation schemes
and Bagging, eventually penalizing the second. These analysis will be conducted
in future work, along with investigation of other scenarios, such as the detection
of zero coefficients, non-normal regressors and other violations of the classical
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framework. Also, the comparison with Magging is a very important analysis that
remains to be explored.
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