
 

Universidade de Aveiro                Departamento de Biologia 

2018/2019 

 

 

 

 

 

 

 

Nuno Tiago Fidalgo Tavares 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Radium-223 in metastatic prostate 

cancer: effects on metastasis 

microenvironment 

 

Rádio-223 no cancro da próstata 

metastático: efeitos no microambiente 

metastático 



 

DECLARAÇÃO 

  

 

 

Declaro que este relatório é integralmente da minha autoria, estando 

devidamente referenciadas as fontes e obras consultadas, bem como 

identificadas de modo claro as citações dessas obras. Não contém, por isso, 

qualquer tipo de plágio quer de textos publicados, qualquer que seja o meio 

dessa publicação, incluindo meios eletrónicos, quer de trabalhos académicos. 

  



 

Universidade de Aveiro                Departamento de Biologia 

2018/2019 

 

 

 

 

 

Nuno Tiago Fidalgo Tavares              

  

 

 

 

 

 

 

 

 

  

Radium-223 in metastatic prostate 

cancer: effects on metastasis 

microenvironment 

 

Rádio-223 no cancro da próstata 

metastático: efeitos no 

microambiente metastático 

Dissertação apresentada à Universidade de 

Aveiro para cumprimento dos requisitos 

necessários à obtenção do grau de Mestre em 

Biologia Molecular e Celular, realizada sob a 

orientação científica da Professora Doutora 

Salomé Pires Lourenço, Professora Auxiliar da 

Faculdade de Medicina da Universidade de 

Coimbra e co-orientação da Professora Doutora 

Virgília Azevedo Silva, Professora Auxiliar do 

Departamento de Biologia da Universidade de 

Aveiro. 



 

 

  

"Progress is made by trial and failure; the failures are 

generally a hundred times more numerous than the 

successes ; yet they are usually left unchronicled." 

Sir William Ramsay 



 

O júri 

  

Presidente: Professor Doutor Mário Guilherme Garcês Pacheco, 

Professor Auxiliar c/Agregação, Universidade de Aveiro 

Vogal - Arguente Principal: Doutor Paulo Nuno Centeio Matafome, 

Professor Adjunto, Instituto Politécnico de Coimbra - Escola Superior 

de Tecnologia de Saúde de Coimbra 

Vogal - Orientador: Professora Doutora Ana Salomé dos Santos Pires 

Lourenço, Professora Assistente, Faculdade de Medicina da 

Universidade de Coimbra 



 

Agradecimentos 

À Professora Doutora Maria Filomena Botelho, Professora Catedrática da Faculdade 

de Medicina da Universidade de Coimbra e diretora do Serviço de Biofísica da mesma 

instituição, por me ter acolhido na sua equipa, pela disponibilidade, apoio, partilha de 

conhecimento científico e pelas críticas construtivas na revisão do manuscrito. 

À Professora Doutora Ana Salomé Pires, orientadora desta dissertação, por todo o 

apoio, disponibilidade, amizade, simpatia, entusiamo e pela motivação, até quando eu 

andava a “bater com a cabeça” com os resultados. Por todo o incentivo e pela contribuição 

essencial que deu neste trabalho, quer no dia a dia quer na revisão, ajuda preciosa na análise 

estatística e pela correção da dissertação, mesmo quando o tempo era escasso. 

À Professora Doutora Virgília Silva, orientadora interna desta dissertação, pela ajuda 

quando foi necessário e pelo apoio e disponibilidade.  

À Professora Doutora Margarida Abrantes, pela amizade, simpatia e por me ter 

aceitado no projeto, mesmo apesar das circunstâncias. O meu muito obrigado por todos os 

conselhos, partilha de conhecimentos e experiência científica, e pelas críticas construtivas 

na dissertação. 

À Professora Doutora Mafalda Laranjo, pela disponibilidade constante, por todos os 

ensinamentos, partilha de conhecimentos e pela ajuda preciosa nas experiências de 

microscopia. 

Ao Mestre Paulo Teixeira, por todos os conselhos e sugestões para o trabalho, por 

ser incansável, estar sempre disponível em qualquer altura e por toda a imensa ajuda na 

imunocitoquímica e na obtenção das imagens morfológicas. 

Ao Serviço de Medicina Nuclear do Centro Hospitalar e Universitário de Coimbra, 

dirigido pela Dra. Gracinda Costa, pela doação do radiofármaco 223Ra. 

Ao Mestre Ricardo Teixo, por toda a ajuda, pelos conselhos e ensinamentos no 

laboratório, que me foram bastante úteis. 

Ao Zé, por ser um companheiro de gabinete exemplar e tornar as horas no laboratório 

mais leves e animadas. 

À Mestre Catarina Guilherme, à Soraia, Ana Rita e Catarina Ferreira, por tornarem 

o dia a dia no laboratório e as horas de almoço mais alegres, e por toda a ajuda sempre que 

necessário.  

Ao grupo que me acompanha já desde a licenciatura, Zé, Tércia, David, Fábio e 

Magalhães, pela amizade e por todas as peripécias vividas na vida académica, o meu muito 

obrigado. 

Aos colegas do Mestrado em BMC, especialmente ao Oldair, à Bárbara e à Mariana, 

pela amizade, o meu obrigado por partilharem o primeiro ano comigo. 



 

Aos meus amigos que já vêm desde há mais tempo, o Luís Pedro e o Márcio, e a 

todos aqueles que vêm desde o secundário, por todos os momentos vividos e pela amizade 

que há-de perdurar. 

Aos meus avôs maternos, Fausto e Guida, que partiram demasiado cedo, por me 

ajudarem a tornar a pessoa que sou hoje, e que espero que estejam orgulhosos de mim. 

Palavras nunca serão suficientes para agradecer. Também aos meus avós paternos, Olímpio 

e Quitas, pelos ensinamentos e experiência de vida transmitida sempre. 

A toda a minha família, os que estão perto e os que por alguma razão estão mais 

longe, o meu bem-haja.  

À Vera, por todo o amor e por me ter aturado todos os dias, nos bons e nos maus 

momentos, por toda a motivação, carinho e apoio dados ao longo desta etapa. Sem dúvida 

que não tenho como agradecer todo o apoio incondicional que me deste juntamente com o 

Flash, e que este ano foste um dos meus pilares. 

À minha irmã Beatriz, por todos os bons momentos que já vivemos, pela boa 

disposição, alegria e tagarelice que demonstra sempre, e porque apesar de todas as birras e 

chatices é e será sempre uma das pessoas mais importantes da minha vida. 

Aos meus pais, Nuno e Teresa, as pessoas mais importantes da minha vida. Por todos 

os sacrifícios que fizeram e que fazem todos os dias, pois sem vocês nada disto seria possível. 

A educação e os valores que me transmitiram desde que nasci e todo o apoio que 

demonstraram desde o primeiro dia foram sem dúvida a maior motivação que podia ter tido. 

O meu muito obrigado por terem apostado em mim sempre e especialmente depois das 

dúvidas deste último ano, sem qualquer hesitação que tudo isto é por vocês.  



Radium-223 in metastatic prostate cancer: effects on metastasis microenvironment 

 

i Nuno Tavares 

 

Palavras-chave:  

 

 

 

Resumo: 

  

cancro da próstata, culturas celulares 3D, Rádio-223, 

microambiente tumoral 

O cancro da próstata é a segunda neoplasia mais frequente em homens e a 

quinta causa de morte relacionada com cancro em todo o mundo. A terapia de 

privação de andrógenos tem sido o gold standard para o tratamento do cancro da 

próstata avançado, mas apesar desta terapia ser associada com a remissão do tumor, 

é também associada com a recorrência do cancro na próstata, que pode levar a um 

estádio mais avançado da doença designado cancro da próstata resistente à 

castração. Apesar deste ser ainda um estádio mortal da doença, hoje em dia existem 

algumas opções terapêuticas para aumentar a sobrevida e providenciar maior 

qualidade de vida aos doentes. Uma destas opções é o Rádio-223, um radiofármaco 

emissor de partículas alfa que tem um efeito positivo na taxa de sobrevivência dos 

doentes, e também na diminuição de eventos sintomáticos relacionados com o 

esqueleto. Sendo assim, os principais objetivos deste trabalho experimental foram a 

otimização e caracterização de um modelo celular em três dimensões de duas linhas 

celulares de cancro da próstata, e a avaliação dos efeitos do Rádio-223 no modelo 

tridimensional utilizando diversas técnicas de biologia molecular e celular. 

Na primeira fase do trabalho, utilizou-se o método de levitação magnética 

para a formação de esferóides tridimensionais de PC3 e LnCap, utilizando-se 

posteriormente o ensaio MTT para verificar a influência do modelo no metabolismo 

celular, microscopia de fluorescência e colorações histoquímicas para estudar a 

estrutura e viabilidade dos esferóides, imunocitoquímica para a expressão proteica e 

citometria de fluxo para avaliar a viabilidade e as vias de morte celular. Os efeitos 

do Rádio-223 foram estudados posteriormente pelo ensaio SRB, para avaliar o 

conteúdo proteico total, por Alamar Blue, para estudar a proliferação celular, e pela 

coloração May-Grünwald-Giemsa, para avaliação da morfologia celular pós-

irradiação. 

As duas linhas celulares demonstraram formar diferentes tipos de estruturas 

tridimensionais em cultura, e por formarem estruturas mais compactas, decidiu-se 

estudar a linha celular PC3. As estruturas das células PC3 demonstraram ter uma 

conformação esférica e apresentaram extensas zonas necróticas e apoptóticas, visto 

que os esferóides possuíam dimensões na ordem dos mm2. Além disso, os esferóides 

exibiram diferenças na expressão de algumas proteínas chave quando comparadas 

com células controlo em monocamada, facto que deve também ser tido em conta no 

estudo de terapêuticas para o cancro com este tipo de modelos. 
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Após a irradiação dos esferóides com Rádio-223, todas as doses testadas 

apresentaram uma diminuição comparadas com o controlo, quer em conteúdo 

proteico total ou proliferação celular. Os resultados mostraram também que o 

tratamento com Rádio-223 exibiu menor eficácia nos esferóides quando 

comparados com células em monocamada, o que se pode dever ao facto das 

estruturas tridimensionais serem modelos mais próximos do cenário in vivo, e, 

portanto, a citotoxicidade do Rádio-223 poderá ser diminuída. Além disso, como 

as partículas alfa têm baixo alcance de penetração e o esferóide tem um tamanho 

consideravelmente grande, o radiofármaco pode não penetrar com eficácia na 

estrutura tridimensional. 

Assim, com este estudo foi possível concluir que, como expectável, o Rádio-223 

atua de forma diferente quando testado em monocamada e em culturas 

tridimensionais, e que é de grande importância avaliar este, e no futuro outros 

fármacos, com culturas em três dimensões, pois estas podem funcionar como uma 

“ponte” entre os estudos in vitro em monocamada e os estudos in vivo, melhor 

mimetizando o microambiente tumoral. 
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Prostate cancer is the second most frequent neoplasia in males and the 

fifth cancer-related cause of death worldwide. Androgen deprivation therapy has 

been the gold standard treatment for advanced prostate cancer. However, in spite 

of this therapy being associated with the tumour’s remission, it is also associated 

with prostate cancer recurrence, which leads to a lethal stage of the disease named 

castration resistant prostate cancer. Despite the high mortality of this stage, 

nowadays there are some therapy options to manage it, raising survival and 

providing more life quality to the patients. One of these options is the Radium-

223, an alpha particle emitter radiopharmaceutical that has a positive effect on the 

increasing of overall survival of patients, also lowering the risk of symptomatic 

skeletal events. 

The main objectives of this experimental work were to optimize and 

characterize a three-dimensional cell culture model in two prostate cancer cell 

lines and then assess the effects of the Radium-223 on the model through 

molecular and cellular techniques. 

In the first phase of the work, it was used the magnetic levitation method 

in order to form three-dimensional spheroids of PC3 and LnCap, using after the 

MTT assay to check the PC3 model’s influence on the cells metabolism, 

fluorescence microscopy and histochemical staining techniques to study spheroid 

structure and viability, immunocytochemistry for protein expression and flow 

cytometry to learn about the culture’s viability and cell death pathways. The 

effects of the Radium-223 were then studied by the SRB assay, to evaluate total 

protein content, by Alamar Blue, to study cell proliferation, and by May-

Grünwald-Giemsa staining, to check cellular morphology post-irradiation.  

The two different cell lines showed different types of three-dimensional 

structures in culture, and due to its more compact and spherical structure, it was 

decided to study the PC3 cell line in this experimental work. The PC3 structures 

displayed a spherical conformation and presented extensive necrotic and 

apoptotic zones, since the size of the spheroid was in the order of mm2. Besides, 

the spheroids also exhibited different expression in some key proteins when 

compared with control cells cultured in monolayer, an important fact when testing 

cancer therapeutics. 

 

prostate cancer, Radium-223, 3D cell culture, tumor 

microenvironment 
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  After the irradiation of the spheroids with Radium-223, all doses tested 

presented a decrease compared to the control whether it was in total protein content 

or cell proliferation. The results also showed that the Radium-223 treatment 

exhibited a lower efficacy in the spheroids when compared with monolayer cells, 

which can be due to the fact that the three-dimensional structures are closer to 

mimicking the in vivo scenario, and so the cytotoxicity of the Radium-223 is 

decreased. Also, as alpha particles have low penetration ranges and the spheroid 

has a large size, the radiopharmaceutical might not be properly entering the three-

dimensional structure. 

Thereby, with this work it was possible to conclude that, as expected, the 

Radium-223 acts differently when tested in monolayer and in three dimensional 

cultures, as shown by the primary results obtained. Thus, it is very important to 

evaluate this and, in the future, other drugs or radiopharmaceuticals, using in vitro 

three dimensional spheroids before passing to in vivo studies, as they can function 

as a bridge between the two and give more information than standard cell culture, 

better mimicking the tumor microenvironment. 
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1.1. Prostate Cancer 

Cancer is a complex and heterogeneous group of diseases with multiple molecular 

parts characterized by uncontrolled growth and propagation of cells disrespecting the 

boundaries of tissues, which has the possibility of locoregional spread and distant metastasis 

(American Cancer Society, 2016; Moses et al., 2018). 

The prostate is the largest accessory gland in the male reproductive system. 

Anatomically, it is essentially walnut sized, it surrounds the urethra at the pelvic cavity, and 

it can be found immediately inferior to the bladder, posterior to the pubic symphysis and 

anterior to the rectum (Figure 1). Secretions from the prostate, associated with secretions 

from the seminal vesicles, contribute for the formation of the semen during the ejaculation 

(Moore, 2013; Drake et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

This organ normally measures 3 x 3 x 5 cm, has a volume of 25 mL and is an 

aggregate of 30 to 50 tubuloalveolar glands arranged in three concentric layers, the inner 

mucosal layer, the intermediate submucosal layer and the peripheral layer (Pallwein et al., 

2008). The prostate is surrounded by a fibroelastic capsule that is rich in smooth muscle. 

There are two types of glands in the prostate, periurethral submucosal glands and main 

prostatic glands in the periphery. The glandular epithelium is pseudostratified columnar with 

numerous secretory granules, whose products include acid phosphatase, citric acid 

fibrinolysin and other proteins (Aaron et al., 2016). 

 Prostate 

Figure 1: Prostate anatomical location in the male reproductive system (Adapted from Prostate Cancer Centre, 

2016). 
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In 1988, McNeal proposed a model for the prostate's zonal anatomy (Figure 2), where 

it is divided into four regions, the anterior fibromuscular stroma, the central zone, the 

transitional zone and the peripheral zone (McNeal, 1981). About 70% of all prostate cancers 

are originated on the peripheral zone, while 20% from transitional zone and about 10% from 

the central zone (Pallwein et al., 2008). 

 

 

 

 

 

 

 

 

 

 

The malignant transformation of the prostate follows a process with multiple steps, 

as it can be seen in Figure 3. It initiates as a prostatic intraepithelial neoplasia that disturbs 

the normal prostate tissue, and if left untreated, progress to a localized prostate cancer, which 

progresses to a prostate adenocarcinoma with locoregional invasion, and that ends as a 

metastatic prostate cancer (Wang et al., 2018). 

 

1.1.1. Epidemiology 

It is estimated that there will be 1.3 million cases of prostate cancer in 2018 and 

approximately 359 000 deaths associated with the disease, making it the second most 

Figure 2: Zonal anatomy of the prostate (Adapted from Sathianathen et al, 2018). 

Figure 3: Initiation and progression of malignant prostate transformation (Adapted from Shen and Abate-

Shen, 2010). 
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frequent type of cancer and the fifth cancer associated cause of the death in males (Bray et 

al., 2018). 

Prostate cancer is the most frequently diagnosed cancer among men in more than half 

of the countries worldwide, being more common in the Americas, Northern and Western 

Europe, Oceania and most of the Sub-Saharan Africa. It is also the most common cancer 

cause of death in males at 46 countries, most of them in the Sub-Saharan Africa and the 

Caribbean (Bray et al., 2018). 

 Regarding Portugal (Figure 4), prostate cancer is the second most incident cancer 

considering both sexes, only behind breast cancer, and the first among men. In terms of 

mortality, it has been decreasing over the last years as it has been in most developed 

countries, due to improvement in care and advancements in diagnosis, staging and treatment 

(Bray et al., 2018). 

Statistics point to higher incidence of prostate cancer on African men in the United 

States of America (USA) and the Caribbean, which reflects an ethnic and genetic 

predisposition. However, the disease’s etiology is still not well described, as there are very 

few risk factors truly associated with advanced prostate cancer besides body fat, for which 

there is convincing association. Prostate cancer is also the commonest cancer affecting men 

of African descent (Eeles and Raghallaigh, 2018). 

Mortality for this type of cancer has been lowering in many countries, namely in 

North America, Oceania, Western Europe and in the more developed Asian countries. In 

Figure 4: Comparison between World and Portugal cancer incidence and mortality in 2018, for both sexes, 

all ages (Adapted from GLOBOCAN 2018). 
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contrast, there has been a raise in mortality in Central and South America, Asia and Eastern 

Europe, which is possibly linked to an increment of risk factors in combination with limited 

access to adequate treatment (Bray et al., 2018). 

 

1.1.2. Risk Factors 

There are several risk factors associated with prostate cancer such as age, ethnicity, 

genetics, and some environmental and lifestyle causes. In spite of this, the origin of the 

disease is still poorly understood due to its complexity and heterogeneity. The most 

preponderant factor related to prostate cancer is age, because it has extremely low incidence 

on men under 50 years of age, which make only approximately 0.1% of all patients, and 

about 85% of all cases are diagnosed on patients that are older than 65 (Patel and Klein, 

2009).  

There also seems to be a relationship between ethnicity and prostate cancer, as the 

incidence of the disease is about 60% higher and the mortality rate raises 2 to 3 times in 

African American men when compared to Caucasian men (Powell and Bollig-Fischer, 

2013). 

Prostate cancer can be divided into 3 types: sporadic, familial or hereditary. The 

disease has been shown to cluster in families and to exhibit patterns of Mendelian heritage. 

The familial cases refer to the ones in which a man has one or more direct family members 

affected by the disease, and the hereditary cases to a set of cases in a family that show a 

distribution pattern consistent with Mendelian heritage of a susceptibility gene (Patel and 

Klein, 2009). Sporadic cancers make 85% of all cases (Carter et al., 1992). 

Concerning genetics, high-risk prostate cancer predisposition genes exist, with 

carriers of a rare missense mutation (G84E) in the HOXB13 gene having a 33% risk of 

developing prostate cancer (Ewing et al., 2012). The protein coded by the HOXB13 gene 

plays an important role in urogenital development and has high expression levels in the 

normal prostate (Pilie et al., 2016). 

Germline deleterious mutations in breast cancer predisposition gene 2 (BRCA2) also 

increase the risk of developing prostate cancer by 20% in a lifetime, whereas mutations in 

breast cancer predisposition gene 1 (BRCA1) have also been reported and raise the risk of 

the disease in 9.5% by an age of 65 years. Both of these are tumour suppressor genes, are 
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linked to deoxyribonucleic acid (DNA) response and repair processes and their loss of 

function is associated with a deficiency on the repair of DNA double-strand (Castro and 

Eeles, 2012). Mutations in other genes involved in DNA repair processes such as ATM 

serine/threonine kinase (ATM), checkpoint kinase 2 (CHEK2), mismatch repair ATPases 1, 

2 and 6 genes (MSH1, MSH2 and MSH6) and mutL homolog 1 (MLH1) have been 

associated with risk of developing prostate cancer as well, although they are not as 

preponderant as BRCA1 and BRCA2 (Eeles and Raghallaigh, 2018). 

 

1.1.3. Diagnosis 

Digital rectal examination (DRE) is the primary test for the initial clinical assessment 

of the prostate, being routinely used along the prostate specific antigen (PSA) testing 

(Adhyam and Gupta, 2012). Rectal examination has the advantage of being able to detect 

non-secreting PSA tumors but, according to studies made about its accuracy, its predicting 

value is about 50%, failing to detect a substantial number of cancers. When compared with 

PSA test, it detects them in a pathologically more advanced stage (Borley and Feneley, 

2009). 

 The PSA, also called kallikrein-3, is a serine protease that was first described in 1979 

(Wang et al., 2017). It is produced by the prostatic epithelium and by the periurethral glands, 

being present in large quantities in the prostatic secretions, however it is released into the 

bloodstream as a consequence of disruption in normal prostate epithelium (Shen and Abate-

Shen, 2010). Its functions, being a protease, comprise liquefying semen, promoting sperm 

motility and dissolving cervical mucus. As a biomarker, the PSA is organ-specific but not 

cancer-specific, which means that besides cancer, it can also detect prostate benign epithelial 

masses, fact that lowers its specificity as a prostate cancer detection test (Ohori et al., 1995). 

Population studies have demonstrated that PSA normal levels tend to raise with age. In the 

USA, the mortality rate for prostate cancer has lowered for almost half since the beginning 

of PSA testing, more than 25 years ago. The PSA test is simple and safe, but it is not 

completely efficient because of its high false positive rate, because it can be raised by 

conditions like ejaculation, bacterial prostatitis or acute urinary retention (Adhyam and 

Gupta, 2012). 
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Transrectal ultrasound (TRUS) is nowadays the most common technique used to 

diagnose prostate cancer (Borley and Feneley, 2009). It is very useful because it allows to 

guide needle biopsies and to map specific regions of the prostate. This technique is also a 

well-tolerated procedure by patients with low incidence of significant complications. The 

pre-indications to proceeding with TRUS-guided biopsies include abnormal DRE, and an 

elevated or increasing PSA (Lopes et al., 2015). 

 

1.1.4. Grading and Staging 

The grade of a cancer shows how and how fast a cancer might grow, whereas the 

stage shows how far the cancer has spread. Normal tissues have a normal and ordered growth 

pattern but in cancer tissues, this growth pattern is not ordered, because cancer cells have 

unpredictable and unlimited growth. Based on this principle Donald Gleason, in 1966, 

developed a method to grade and score prostatic adenocarcinomas. This system is based on 

the histological appearance of the prostate cancer cells taken from biopsies, more specifically 

on the extent of gland differentiation and stromal growth pattern (Chen and Zhou, 2016). As 

it can be seen in Figure 5, Gleason 1 represents the most differentiated and is associated with 

better prognosis, and Gleason 5 denotes the less differentiated ones and is related with poor 

prognosis. 

The final result of the Gleason biopsy scoring system corresponds to the sum of two 

components, the degree of the predominant pattern and the degree of the secondary pattern, 

which means the scoring can go from a minimum of 2 to a maximum of 10. 
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The development of the Gleason score and subsequent modifications made by the 

International Society of Urological Pathology in 2005 and 2014 allowed the establishment 

of a more accurate prediction of prognosis in prostate cancer. 

 

 

 

 

 

 

 

 

The Tumor-Node-Metastasis (TNM) system is a globally accepted method to classify 

the extent of spread for cancer. It is based on three parameters: T, which defines the size of 

the primary tumor and its capacity to invade regional tissues, N, which describes near 

lymphatic ganglia that may be involved in the development of the disease, and M, which 

defines the possibility of metastasis, the propagation of tumor cells to other organs. 

Analysing the TNM staging system (represented on Figure 6) it is possible to divide 

the pathology into three distinct groups: localized disease, where the tumor is confined to 

the prostate (T1 and T2); advanced, in which the disease evolves and extends to places out 

of the prostate capsule (T3), and even to adjacent structures like the bladder (T4); and 

metastatic, when the tumor invades lymph nodes (N) and forms distant metastasis in the 

bones and other organs, such as brain or lungs (M). 

Figure 5: Gleason scoring system, from 1 (less aggressive) to 5 (most aggressive) (Adapted from Prostate 

Cancer Foundation of Australia). 



Radium-223 in metastatic prostate cancer: effects on metastasis microenvironment 

 

10 Nuno Tavares 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information taken from grading (Gleason scoring) and from staging (TNM 

system) help specialists in decision-making about the best treatment approach for each 

patient.  

Considering those parameters, in 1998 D’Amico and colleagues developed a staging 

system to stratify patients into three groups: low, intermediate or high-risk of recurrence 

after radical prostatectomy or radiotherapy. This system is based on the analysis of the 

clinical TNM staging system, the PSA level and the biopsy Gleason score (Boorjian et al., 

2008). 

In the D’Amico scoring, patients with T1c-T2a cancer, a PSA level of 10 ng/mL or 

less and a biopsy score of 6 or less are considered low-risk; those with T2b disease, PSA 

level of 10.1 to 20 ng/mL and Gleason score of 7 are of intermediate-risk; and patients with 

Figure 6: TNM system for prostate cancer staging (Adapted from American Joint Committee on Cancer). 
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clinical stage T2c, PSA level higher than 20 ng/mL and biopsy score from 8 to 10 are 

considered high-risk. 

 

1.1.5. Treatment 

Men diagnosed with localized disease usually have three primary treatment options: 

expectant management, surgery and radiation (Mottet et al., 2014).  

In the expectant management, prostate cancer is monitored without resorting to 

definitive therapy, and consists in watchful waiting, with monitoring of disease progression. 

This option is valid for low-risk and active surveillance subjects, including a series of tests, 

especially PSA measurement, physical examination, prostate biopsies, or a combination of 

these to monitor the progression of the disease (Sathianathen et al., 2018). 

For individuals with more significant disease, which possess a PSA level higher than 

10 ng/mL and/or present palpable nodules on DRE, surgery and/or radiation continue to be 

the most used treatment approach in the clinical practice (Mottet et al., 2014).  

The radical prostatectomy involves the removal of the prostate gland and the seminal 

vesicles. In what concerns to surgery, nowadays open radical prostatectomy has been largely 

replaced by laparoscopy and robotic radical prostatectomy, seeing as up to 40% of these are 

now robot-assisted (Shen and Abate-Shen, 2010). Clinical trials have supported the benefits 

of adjuvant local irradiation in avoiding local recurrences for those with more aggressive 

disease, and because of that, this course of treatment should be discussed with patients prior 

and after surgery. 

The radiation treatment includes external beam radiotherapy or brachytherapy. 

External beam radiation therapy involves irradiations 5 days a week for 4 to 6 consecutive 

weeks with fractions of 1.8 to 2.0 Gy per day to total doses higher than 70 Gy (Daly et al., 

2017). The main objective of the therapy with radiation is to deliver a curative dose of 

radiation to the prostate without damaging the proximal tissues, as it is the case of the bladder 

and the rectum. Brachytherapy involves the ultrasound guided placement of radioactive 

seeds or wires into the prostate tissue guided by ultrasound, which can be used alone or in 

combination with external beam radiotherapy (Gay and Michalski, 2018). There are two 

types of brachytherapy, low-dose rate and high-dose rate, being low-dose a permanent 
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implantation of radioactive seeds, whereas the high-dose is temporary and normally 

combined with external beam radiotherapy (Dunn and Kazer, 2011). 

Cryotherapy is another treatment option that can be valid to men with high-risk 

disease if the prostatectomy is counter indicated. This intervention involves the freezing of 

the prostate gland. It induces damage on the cells by direct and indirect mechanisms at the 

time of the treatment and over time, dying the cells both by necrosis and apoptosis 

(Rodríguez et al., 2014). During cryotherapy, a cryoprobe is inserted in the prostate with 

ultrasound and the gland is frozen at a temperature of -100 to -200ºC during approximately 

10 minutes (Dunn and Kazer, 2011). 

 

1.2. Advanced Prostate Cancer and Androgen Dependence 

Androgen dependence in prostate cancer was first discovered in 1941 by Charles 

Huggins, research that led him to win the 1966 Nobel Prize in Medicine and Physiology 

(Huggins and Hodges, 1941). 

Androgens are synthesized in the testicles and the adrenal glands. Testosterone is the 

most abundant androgen, synthesized by the Leydig cells in the testis and converted in 5α-

dihydrotestosterone (DHT) in the prostatic tissue by the activity of the 5α-reductase. DHT 

has higher affinity to the androgen receptors (AR) and connects to these, promoting prostatic 

cells differentiation processes. In addition, the adrenal glands produce some fewer common 

androgens, including androstenedione and dehydroepiandrosterone, which can be converted 

into testosterone (Tan et al., 2015). 

The androgen receptors are members of the nuclear receptor superfamily. Circulating 

androgens are essential for the normal development of the prostate. However, they can also 

be involved in the process of carcinogenesis, because of their interactions with androgen 

receptors. The AR gene is localized in the X chromosome (Xq11-12), and it is composed by 

8 exons that code the protein, which is about 11 kDa (Fujita and Nonomura, 2018a). In the 

prostate normal growth, the epithelial AR has a function of provide secretory proteins to the 

prostate, such as the PSA. However, in prostate cancer the AR has functions like PSA 

synthesis, regulation of lipid metabolism and promotion of cell growth (Shafi et al., 2013). 
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For men with advanced prostate cancer, the usual treatment courses are followed or 

replaced by androgen deprivation therapy (ADT), which consists in the removal of the 

testicular androgens by surgical (bilateral orchiectomy) or chemical castration. This therapy 

leads to prostate tumor regression (Harris et al., 2009). 

The surgical bilateral orchiectomy consists in the removal of the testicles, reducing 

considerably the levels of testosterone. It has the advantage of being an efficient technique 

in the reduction of testosterone levels, but has the inconvenient of being an irreversible 

androgen depletion (Mottet et al., 2014). 

At the time of prostate cancer’s androgen dependence discovery, surgical castration 

was considered the gold standard for patients with advanced disease, but it was after largely 

replaced by methods of pharmacological castration, which allow intermittent androgen 

deprivation (Sathianathen et al., 2018). Pharmacological androgen deprivation is usually 

achieved by oral treatment with nonsteroidal antiandrogens like flutamide, which are used 

in combination with gonadotropin-releasing hormone (GnRH) analogues such as leuprolide 

and goserelin (Harris et al., 2009; Tan et al., 2015). This therapy has however been associated 

with toxicity, presenting secondary effects such as lowered mineral bone density, metabolic 

changes, and sexual and cognitive dysfunction (Kumar et al., 2005). 

Although patients treated with ADT remain in long-term remission, this therapy is 

also associated with prostate cancer recurrence, taking the disease to a castration resistant 

status, which is currently still lethal (Harris et al., 2009).  

 

1.3. Castration-resistant Prostate Cancer 

For some years ADT has been accepted as standard treatment for advanced prostate 

cancer, however after a favourable initial response, malignant cells become resistant to the 

hormonal therapy after about 12 to 18 months of its beginning (Lassi and Dawson, 2009; 

Rodrigues et al., 2014). 

Castration-resistant prostate cancer (CRPC) is defined as a disease that does not 

respond to ADT. Patients with prostate cancer can have secondary metastasis on sites like 

lungs, liver and pleura, but usually also have a tendency to form bone metastasis, with 

osteoblastic characteristics. This type of metastasis occur in up to 90% of patients with 
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CRPC, and cause symptoms such as pathological fractures, spinal cord compression and 

bone marrow failure, along with paraneoplastic effects like anaemia, weight loss, 

hypercoagulability and increased susceptibility to infection (Saad and Hotte, 2010). 

 Although CRPC is still a lethal disease, nowadays there are some therapeutic options 

to manage it (Figure 7). Currently, when patients have CRPC without metastases, they are 

usually treated with secondary hormonal therapy and screened for metastasis. In the case of 

metastasis with minor or inexistent symptoms the course of treatment includes abiraterone, 

enzalutamide or docetaxel. When there are major symptoms in metastatic castration-resistant 

prostate cancer (mCRPC), patients are treated either with docetaxel and/or Radium-223 

(223Ra). Besides 223Ra, docetaxel may be combined with abiraterone, enzalutamide or 

cabazitaxel, with these being administered after docetaxel (Saad and Hotte, 2010; 

Sathianathen et al., 2018). 

 

Docetaxel is one of the chemotherapeutic options, since it was approved by the Food 

and Drug Administration (FDA) as first-line therapy for mCRPC in 2004. This drug leads 

cells to apoptosis through the inhibition of microtubule assembly and mitotic arrest (Ritch 

and Cookson, 2016). 

The cabazitaxel is a semi-synthetic third generation taxane developed to break the 

resistance of cancer cells to docetaxel. Pre-clinical trials showed that this chemotherapeutic 

agent has a cytotoxic activity equal or superior to docetaxel, including in docetaxel-resistant 

cells. This drug was approved in 2010 by the FDA due to its benefits in the survival of 

docetaxel-resistant patients (Tsao et al., 2014).  

Figure 7: The 2015 CUA-CUOG Guidelines for the management of castration-resistant prostate cancer (CRPC) 

(Adapted from Saad et al., 2015). 
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The abiraterone acetate is a selective inhibitor of the androgen biosynthesis that 

blocks P450 c17 cytochrome inhibiting the conversion of cholesterol into testosterone and 

DHT. To prevent adrenal insufficiency, abiraterone acetate must always be administered 

with prednisone (Rodrigues et al., 2014). 

The enzalutamide is an AR antagonist that is capable of blocking the connection of 

testosterone to the AR, preventing its migration in prostate cancer cells and inhibiting its 

connection to the DNA (Tran et al., 2009)  

Sipuleucel-T was the first cancer vaccine to be available commercially. It is an 

autologous dendritic cell vaccine prepared from the patient's own antigen-presenting cells 

that have been exposed to prostate acid phosphatase (PAP). These activated dendritic cells 

induce then T-cell-mediated immunity when reinfused back into the patient, developing an 

immune response (Dowd et al., 2017; Sekhon et al., 2017). However, the vaccine high 

economic cost and clinical complexity can limit its use on the clinical practice (Rodrigues et 

al., 2014). 

 

1.3.1. Radium-223 in the treatment of metastatic castration-resistant prostate 

cancer 

A large percentage of patients (from 65% to 75%) with prostate cancer develop bone 

metastasis, which can lead to symptoms such as pain, hypercalcemia, lack of mobility and 

depression, factors that negatively affect the quality of life of these patients (Lewington, 

2005). 

Most patients with mCRPC develop bone metastasis, and it is a significant cause of 

mortality and morbidity on these patients, being associated with a very low survival rate 

(Ottewell et al., 2014). Visceral metastasis are less common in these patients, but they are 

still observed in approximately 10% of patients’ diagnoses with mCRPC. The 5-year 

survival rate for men with mCRPC is 29% (Parker et al., 2018). 

The bone metastisation occurs as a result of a multifaceted pathophysiological 

process between cancer and bone cells, which leads to cell invasion, migration and 

osteoblastic and osteoclastic stimulation. This process is moderated by cytokines, hormones 

and tumor derived growth factors (Roato, 2013). 
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Some radiopharmaceuticals can be used for palliative treatment related to bone 

metastasis. One of the great challenges associated with these radiopharmaceuticals is the 

delivery of an adequate dose of radiation to the bone lesion, minimizing the dose to healthy 

bone sites and adjacent tissues, while keeping the looked-for therapeutic effect(Chakraborty 

et al., 2008; Liberal et al., 2017). 

There are essentially three types of radioactive particles that are of interest to tumor 

targeted radiotherapy, the beta minus particles (β-), the alpha particles (α) and the Auger 

electrons. The β- particles usually have an irradiating range of several millimetres in the 

tissue, fact that can lead to the irradiation of tumor adjacent healthy tissues. On the other 

side, α particles typically have a penetrating range of less than 100 µm, whereas Auger 

electrons are low-energy electrons with very low penetration ranges, in the order of 

nanometres to micrometres (Liberal et al., 2017).  

Xofigo® (Bayer, Germany) is a solution of 223Ra dichloride. It was approved in 2013 

by the EMA (European Medicines Agency) and the FDA (Marques et al. 2018; EMA 2014). 

It is an alpha particle emitter that has been showing great promise in the palliative treatment 

of bone metastases derived from prostate cancer, since it has the advantage of possessing a 

very low penetration range in the tissue, typical characteristic of α particles. When it is 

produced it has a specific activity of 1100 kBq/mL. In clinical trials, 223Ra has been showing 

an overall improvement in survival rate of patients, with minor secondary effects due to its 

localized penetration (it affects only from 2 to 10 cells in the tissue) (Harrison et al., 2013). 

Previous studies showed that 223Ra induces a major number of lesions in DNA, provoking a 

high number of double-strand breaks and a low probability of those breaks being fixed by 

the repair processes (Liberal et al., 2017). It mimics calcium, is absorbed in areas with high 

osteoblastic activity and rapid bone turnover and connects to the bone matrix through the 

bone hydroxyapatite (Figure 8) (Fizazi et al., 2009; Odo et al., 2017).  

The range of 223Ra α particles is <100 µm, which allows an elevated effect on tumor 

cells, while minimizing the risk of damage in the bone marrow and other healthy tissues. 

The most common side effects of 223Ra are diarrhoea, nauseas, vomit and thrombocytopenia 

(Parker et al., 2013). 



Radium-223 in metastatic prostate cancer: effects on metastasis microenvironment 

 

17 Nuno Tavares 

 

 

 

 

 

 

 

 

 

These properties are of great benefit when compared with beta particle emitters such 

as Samarium-153 and Strontium-89, because it presents a greater index of breaks in the DNA 

double chain, with lesser haematological toxicity for the patients (Jacene et al., 2018). The 

high linear energy transfer (LET) of the α particles and the limited ability of cells to repair 

the DNA damage caused by α radiation explain its cytotoxicity and relative biological 

effectiveness (Lassmann and Eberlein, 2018). 

The ionizing radiation can induce direct or indirect effects on cells. The α particles 

are usually associated with direct effects, due to the fact that they have high energy, enough 

to extract electrons from atoms or molecules. Since these particles are heavy and slow, they 

cause direct cellular damage in biomolecules such as DNA, resulting in cell death. In terms 

of indirect effects, these may occur mainly due to oxidative stress originating from radical 

species as a result of water radiolysis. The cell is composed of 80% of water, being its major 

component and, as a result, extremely reactive free radicals are produced, such as oxygen 

reactive species (ROS)  (Mendes et al., 2015; Marques, 2016). 

Figure 8: Mechanism of action of Ra-223 on a tissue and molecular scale (Adapted from Deshayes et al., 

2017). 
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The α particles have positive charge and they are constituted by two protons and two 

neutrons, whose mass and charge are equal to a helium nucleus. In terms of clinical 

application, this structure confers them a superficial penetrating range that is capable of 

getting to the cortical region of the bone, where usually are located the metastases of prostate 

cancer. The LET of these particles is in the range of 80-100 keV/µm, which means that it is 

a type of radiation with a high LET. Due to this fact, α particles deposit great quantities of 

energy in short distances, avoiding damage to adjacent normal tissues and potentiating the 

tumor cells’ death (Sgouros, 2008; Marques et al., 2018). 

223Ra has a half-life of 11.4 days and decays until the stable Lead-207 (207Pb), 

generating four α particles. During its decay, the release of α particles constitutes 95.3% of 

its total decay energy, whereas the β emission comprehends 3.6% and γ 1.1% (Marques et 

al., 2018). The decay chain of 223Ra is represented in Figure 9. 

 

The approved dose regimen of 223Ra is an activity of 55 kBq/kg administered in six 

intravenous injections at 4-weekly intervals, administered by slow intravenous injection 

(generally for one minute). It was the first targeted alpha therapy to be approved by the FDA 

that has proven effects on the raise of the overall survival rates on patients with mCRPC, 

Figure 9: Decay chain of Radium-223. (Taken from Marques et al., 2018). 
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and its clinical use has been raising ever since (Deshayes et al., 2017; Du et al., 2017; 

Marques et al., 2018).  

The half-life of 223Ra is optimal for clinical use, because it allows enough time for its 

preparation, distribution and administration. After injected in the patient it is rapidly 

eliminated from blood flow, and it is known that the primary excretion pathway of the 

radiopharmaceutical is through the small intestine and faeces (Buroni et al. 2016). 

The fact that alpha particles have a very small penetration range and are easily 

shielded makes the manipulation of this radiopharmaceutical relatively simple, as it can be 

administered by a normal syringe, without complex proceedings of shielding, monitorization 

or radiation protection. The elimination of the radioactive residues of the 223Ra is meant to 

be done 4 months after the administration on the patients, and they are discarded as normal 

radioactive clinical trash (Parker et al., 2018). 

223Ra is indicated for patients with mCRPC with symptomatic bone metastases and 

no known visceral metastases. Studies have shown that the treatment with 223Ra should be 

considered earlier in this type of patients to raise its efficacy and improve their quality of life 

(Saad and Hotte, 2010). 

This radiopharmaceutical was approved based on the results of the phase-3 

international clinical trial Alpharadin in Symptomatic Prostate Cancer (ALSYMPCA), 

performed on patients with symptomatic mCRPC and bearers of bone metastases. This trial 

showed that 223Ra combined with the best standard treatment allowed to raise the overall 

survival rate of these patients when compared with a placebo, and also led to a decrease of 

the risk of symptomatic skeletal events (Parker et al., 2013, 2018). 

More recently in 2019, a study funded by Bayer named ERA 223 studied the 

treatment of patients with mCRPC with 223Ra in conjugation with abiraterone plus 

prednisone, given that both these courses of treatment had improved overall patient survival 

separately. In spite of this, the use of the combination did not show improvements of 

symptomatic skeletal events in patients with mCRPC and bone metastases, and was even 

associated with an increased number of bone fractures (Smith et al., 2019). 

Besides being approved for the treatment of mCRPC, 223Ra has been studied as a 

therapy hypothesis for osteosarcoma, being present in a preliminary Phase I dose escalation 
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clinical trial with 18 patients, where it showed promise. However, the recommended dose 

proposed for Phase II trials on patients with osteosarcoma is 100 kBq/kg monthly, which is 

twice the dose approved for the treatment of prostate cancer (Kairemo et al., 2019; Subbiah 

et al., 2019). 

 

1.4. Cancer Microenvironment and 3D Cultures 

The evaluation and approval of cancer therapeutics involve a series of steps which 

include in vitro and in vivo studies before passing to clinical trial phases. However, to 

rightfully assess an optimal dose of therapeutics, two-dimensional (2D) cell cultures are not 

enough in terms of tumor microenvironment complexity mimicry (Jaganathan et al., 2014). 

With this in mind, in terms of complexity, three-dimensional (3D) cultures can be a major 

asset to close the gap between 2D cell culture studies and animal models (Cukierman et al., 

2001).   

Nowadays, the approval rates for new cancer drugs are less than 5%, although very 

significant efforts are being made in the cancer research and development of novel neoplastic 

drugs (Sant and Johnston, 2017). A strategy that could be very useful to significantly raise 

the success rate for the discovery and subsequent transition from in vitro studies to clinical 

trials of new cancer treatments could be the approximation of cellular models to animal 

models and patient tumors, in terms of complexity and environment (Carvajal et al. 2012). 

A solid tumor is not only composed by tumor cells, but also by stromal cells and 

extracellular matrix (ECM) components that cohabit in a tumoral three-dimensional 

microenvironment where cellular function and behaviour are mediated by cell-cell, cell-

ECM interactions and local gradients of nutrients, growth factors and oxygen (Friedrich et 

al., 2009; Sant and Johnston, 2017). The tumor microenvironment is a framework of 

connective tissue with stromal cells that interact both structurally and functionally with the 

cancer cells, and it includes fibroblasts, endothelial cells and various types of immune system 

cells (Eger and Mikulits, 2005). 
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Most of cancer-caused deaths are not triggered by the primary tumor, but by 

secondary tumors formed through the complex and still poorly-understood process of 

metastasis (Figure 10) (Sleeboom et al., 2018).   

 The “leakage” of cancer cells from the primary tumor is mostly associated with 

epithelial dedifferentiation with the loss of intracellular adhesion and a profile of raised 

invasive potential (Friedl and Wolf, 2003; Eger and Mikulits, 2005). 

 The process of the metastatic cascade is related with the infiltration of tumor cells in 

tissues adjacent to the primary tumor, transendothelial migration of cancer cells to the blood 

flow (process known as intravasation), the survival of the cells in the blood stream, 

extravasation into other tissues from the circulatory system and subsequent proliferation into 

other organs leading to their colonization (Eger and Mikulits, 2005; van Zijl et al., 2011; 

Sleeboom et al., 2018). 

One of the biggest challenges on treating any type of cancer is the complexity and 

heterogeneity of tumors on each individual, that can lead to resistance to therapy (Hoarau-

Véchot et al., 2018). 

Currently, most of the in vitro studies are still made in monolayer, but since the 90’s 

there has been a huge increase in the number of publications on 3D cell culture methods and 

experiments, leading to a maximum number of 1363 articles on the theme in 2018, according 

to PubMed, using as research words “three dimensional cell culture”. These 3D cell culture 

models have been establishing themselves as a halfway in complexity between monolayer 

and animal models (Figure 11), due to their closer approximation on tumor biology 

characteristics when compared to the traditional monolayer cultures (Caicedo-Carvajal et al. 

2012). 

Figure 10: The 5 steps of metastasis: invasion, intravasation, survival, extravasation and secondary tumor 

development (Adapted from Sleeboom et al., 2018). 
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Taking into account the high cancer incidence and mortality, the limitations present in 

diagnosis and treatment and the raised use of 3D cell culture models in cancer research, it is 

very important to study the options for modelling cancer cells in 3D, as well as the 

advantages, boundaries, and applications in research and clinical practice (Hoarau-Véchot 

et al., 2018; Kapałczyńska et al., 2018). Thus, it is clear that 3D cell culture models play an 

important role in the growing and promising field of personalized medicine. 

Solid cancers are heterogenic tumoral masses with different environments from the 

center to the surrounding tissue. At cellular level, different micro environmental conditions 

influence the acquisition of an invasive potential and uncontrolled division of cells. This 

process is also accompanied by the creation of a stroma, which includes an augmented 

vascularization. Overall, the 2D approach does not mime the in situ environment of tumours 

or normal tissues, is not representative of 3D cell morphology and can distort cellular 

interactions (Cukierman et al., 2001). One of the biggest inconvenient of in vitro 2D cultures 

is the failure in maintaining the phenotype and complexity of the primary tumor over time 

(Porter et al., 2014). 

3D cell culture models range from simple spheroids of a cancer cell line to models 

that comprehend multiple cell lines or primary cultures derived from patients. They are used 

to represent a closer replica of the tumoral microenvironment, and provide a compromise 

Figure 11: Scheme representing complexity versus technique (in vitro and in vivo) (Adapted from Caicedo-

Carvajal et al., 2012). 
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between the monolayer and the complex and extended process of growing human tumors in 

xenogeneic animal models (Nyga et al., 2011). 

Three-dimensional studies have been demonstrating different cell morphology when 

compared with 2D, showing the important role these techniques can have on cancer research. 

The models explored so far have showed promising results, including aggregation and 

clustering of cancer cells, migration and proliferation, releasing of angiogenic factors and 

formation of hypoxic centres inside tumor spheroids. They are also useful to test the efficacy 

and mechanisms of novel and existing drugs. 

Nowadays there are already some options on modelling tumors in three-dimensions, 

which can be classified into 3 major groups: the 3D scaffold-based cultures, the 3D non-

scaffold-based cultures and the inserts. They all can make viable examples of cancer 

spheroids and have advantages and disadvantages. 

Cancer spheroids can be composed exclusively by cancer cells, which are designed 

homotypic spheroids, or by cancer cells cultivated in co-culture with other types of normal 

cells, such as fibroblasts or epithelial cells, which are called heterotypic spheroids. 3D 

cultures, as all cells grow in close contact, are a better fit reproduction of the physical 

communications and the signalling pathways observed in solid tumors (Chandrasekaran et 

al., 2012; Costa et al., 2016). 

Like in solid tumors, the internal structure of spheroids is composed by different cell 

layers. In the literature, these are usually divided into 3 principal layers: the external layer, 

composed by cells presenting a high proliferation rate, the middle layer, which is usually 

essentially formed by senescent cells blocked in the cell cycle, and the core, which contains 

necrotic cells (Figure 12).  
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The higher proliferation rate of the cells in the periphery of the spheroid is explained 

by the easier access to oxygen, metabolites, signalling molecules and nutrients in the culture 

medium, whereas the cells in the more internal layers remain in a necrotic or senescent state 

due to the lower contact with nutrients and oxygen, which can provoke hypoxia in the cells 

(Costa et al., 2016; Kapałczyńska et al., 2018). 

 

  

Figure 12: Spheroid tumor model and principal characteristics (Adapted from Sant and Johnston, 2017). 
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CHAPTER 2 - OBJECTIVES 
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Taking into account the fact that prostate cancer is one of the highest incident and 

mortal cancers worldwide and that metastatic castration-resistant prostate cancer still has 

very poor prognosis for patients overall, there is a need for the study of new hypothesis of 

treatment. The 223Ra is a radiopharmaceutical approved by the FDA and the EMA that is 

suited for patients with mCRPC with bone metastasis, whose mechanism of action in the 

cancer and normal tissue cells is not yet fully disclosed. 

Thus, the objectives of this work passed by studying prostate cancer’s metastatic 

microenvironment using a cell line from a bone metastatic niche (PC3), implementing, 

optimizing and characterizing a 3D cell culture model with this cell line and then evaluate 

the model’s response to 223Ra therapy and its effects through cellular and molecular biology 

techniques.   
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CHAPTER 3 – MATHERIAL AND METHODS 
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3.1. Cell Culture 

In order to make the in vitro studies two prostate cancer cell lines were used, LnCap 

and PC3. Both the cell lines were acquired from the American Type Culture Collection 

(ATCC). 

PC3 (ATCC® CRL-1435™) is a prostate cancer cell line resulting from a bone 

metastasis derived of a 62 year old Caucasian male that was diagnosed with a Grade IV 

prostate adenocarcinoma in 1979. The LnCap (ATCC® CRL-1740™) cell line was obtained 

in 1977 from a 50 year old Caucasian male and it is derived from the left supraclavicular 

lymph node. Besides the origin of the cells, these two cell lines also differ on their 

dependence on hormones, growth rate and invasiveness, being that the PC3 cell line is not 

hormone dependent, its proliferation does not depend on the presence of androgens, and it 

has a high growth rate and metastatic potential, whereas the LnCap have a low growth rate, 

small metastatic potential, express hormone receptors, PSA, and its growth is inhibited by 

the lowering of androgens, fact that indicates a hormone dependency (Domińska et al., 

2016). 

After the reception of the two lines, they were defrosted and maintained in a Binder 

incubator (Binder, Germany), with a humid atmosphere at 37ºC, 95% air and 5% carbon 

dioxide (CO2), according to the ATCC guidelines.  

The culture medium Roswell Park Memorial Institute (RPMI) was used to cultivate 

both prostate cancer cell lines. This medium was supplemented with 10% fetal bovine serum 

(FBS) (Sigma F7524), 100µM of sodium pyruvate (Gibco 11360) and antibiotic (Sigma 

A5955) to make 1% concentration. 

Both cell lines grow in adherent monolayer, and to prepare the 3D structures we 

needed the cells in suspension, so it was needed to detach them from the flasks. With that 

purpose, it was removed the culture medium and the cells were washed with phosphate 

buffered saline (PBS), with a 7.4 pH. The PBS was then discarded, and it was added 2 mL 

of TrypleTM Express (Gibco, 12605-028). After 5 minutes in the incubator for the compound 

to act faster, the effect of the Tryple was inhibited using 5 mL of fresh medium. Later, after 

obtaining the cell suspension, it was determined the cell concentration with the trypan blue 

exclusion method. This method is essentially based on the fact that viable cells maintain 
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their cell membrane intact (brilliant on the microscope), whereas dead cells are permeable 

to the trypan blue, possessing then a blue cytoplasm.   

To perform this method, it were used 20 µL of cell suspension and 20 µL of trypan 

blue 0.02%, and the cell concentration was determined by counting the cells (both alive and 

dead) of the 4 quadrants in a Neubauer chamber, using an inverted optic microscope with a 

100x magnification. The formula used to calculate cell concentration was the following: 

[Cell] (cells/mL) = Alive cells (average of the 4 quadrants) ∗ 2 ∗ 10 000  Equation 1 

 

3.2. Establishment of Prostate Cancer 3D Cell Cultures 

One of the principal objectives of this work passed by obtaining 3D cell cultures of 

prostate cancer cells. To achieve that, it was used a protocol of an adaptation of the magnetic 

levitation method (MLM), which was developed by Glauco Souza and colleagues, and 

published in 2010 (Souza et al., 2010; Becker and Souza, 2013; Haisler et al., 2013). This 

protocol is based on the incorporation of a magnetic nanoparticle by the cells, which allows 

them to stay in suspension on the culture medium and aggregate through the action of an 

external magnetic field. 

To start the protocol, it is mandatory to detach the cells from the flasks using Tryple. 

The cells were then counted by the trypan blue exclusion method and were plated on small 

Petri dishes, using a concentration of 2 x 106 cells per millilitre, leaving them overnight so 

that they have time to attach to the dishes. The next day, to each Petri dish, it was added 60 

µL of NanoShuttleTM (Figure 13, biocompatible magnetic iron oxide-gold-nanoparticle, 

~50nm), which attaches electrostatically to the cell plasma membrane, and they were left in 

the incubator overnight so that the cells can incorporate the nanoparticle. 

 

 

 

 

 
Figure 13: Magnetic nanoparticle used in the magnetic levitation method. 
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After that incubation time, the cells were detached from the dishes, counted once 

more by the trypan blue exclusion method and plated in a concentration of 2 x 105 cells in 

250 µL of fresh medium per well in low-attachment 24-well plates, to avoid cell’s attachment 

to the bottom of the plates, as they are adherent cells and it is required that they stay in 

suspension to make 3D culture spheroids. In the end, it is placed a magnetic levitation plate 

called levitating drive (Figure 14A) over the multi-well, which is composed by magnets that 

stay over each well in a way that the cells which incorporated the nanoparticle are attracted 

by the magnet, stay in suspension and remain levitating in the medium, interacting with each 

other and aggregating, forming that way a 3D spheroid (Figure 14B). 

 

 

 

 

 

 

The 3D culture has an average duration of 7 days since the day it is established. After 

that period, it can be observed some disaggregation due to the fact that the cells start to 

disincorporate the magnetic nanoparticle (Haisler et al., 2013). 

In the case it is needed to change the spheroid culture medium, the low attachment 

plate is placed over the concentrating drive (Figure 15) so that the cells stay attached to the 

bottom of the plate. Posteriorly, the old medium is taken out and new medium is added. 

 

 

 

 

 

 

Figure 14: Levitating drive used to attract the cells with magnets after the inoculation with the magnetic 

nanoparticle (A) and spheroid formed after the application of the MLM (B). 

B A 

Figure 15: Concentrating drive, used to change the medium of the 3D cultures. 
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To perform some experiments, it was required that the spheroid would be taken out 

of the well intact. In order to achieve that, it was used a MagPen, a small plastic “pen” with 

a magnet inside. Once inside the well, the spheroid binds to the pen and it can then be 

transferred to other plate, or for example a microscope slide, just by taking out the magnet 

inside the pen. 

 

3.3. Irradiation of Prostate Cancer 3D spheroids with Radium-223 

After seeding 2 x 105 cells per well in low-attachment 24-well plates and applying 

the levitating drive, the spheroids were left to aggregate and grow for 48 hours, and then 

irradiated. 

To perform each assay, the spheroids were submitted to internal irradiation by 

exposure to Radium-223, with the addition of a constant activity A0. Previously doses and 

respective times were calculated (Table 1), through Equation 2: 

𝐷 =
𝐴0

ln 2𝑀
 ∑ 𝛼𝑖 𝑇𝑖 [1 − 𝑒

−
ln 2

𝑇𝑖
𝑡
] 𝐸̄𝑖𝑖   Equation 2 

where D corresponds to absorbed dose (Gy), A0 to the initial activity of the radioactive 

source (Bq), αi to the decay energy fraction, Ti to the period of semi disintegration of the i 

portion in the decay chain (s), t to the irradiation time (s), Ēi to the medium energy per 

disintegration of the i portion in the decay chain (eV) and M to the mass of the sample 

subjected to irradiation (kg). The values of αi, Ti and Ēi represent listed parameters that are 

specific to the type of radiation used.  

The irradiation procedure involved adding an activity of 0.3 µCi to the 3D prostate 

cancer spheroids, which are in suspension in a constant volume of medium (250 µL) for an 

irradiation period t, determined previously by Equation 1, to obtain a defined absorbed dose 

D. The values of dose and its respective irradiation time periods are presented on Table 1. 
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After the respective time of irradiation, the old medium was suctioned with the help 

of the concentrating drive to avoid losing the spheroids, replaced with fresh one and the 

spheroids were kept in the incubator for 48 hours, until they were taken out for the 

experiments. All the irradiation protocols were made accordingly to the norms of 

radioprotection. 

 

3.4. Analysis of Protein Content by the Sulforhodamine B (SRB) assay 

The SRB assay has been broadly used to evaluate cell proliferation and cytotoxicity 

of compounds. This method uses a fluorescent dye called sulforhodamine B, which binds to 

proteins under acidic conditions and can be posteriorly extracted under basic environment, 

so the amount of dye can be extrapolated to measure protein content and indirectly cell 

proliferation (Vichai and Kirtikara, 2006; Orellana and Kasinski, 2016). 

The protocol was started by destroying the spheroids with the help of a micropipette 

and centrifuging them in a plate centrifuge at 300 G for 5 minutes. After that, the medium 

was discarded, and cells were fixed by adding 100 µL of a 96% TCA solution, leaving it to 

act for 1 hour. Posteriorly, TCA solution was discarded, and it was added to the fixed cells 

200 µL per well of sulforhodamine B, and incubated for 2 hours away from the light. 

Afterwards, the SRB was taken out with the help of a micropipette, the plate was carefully 

washed in order to remove the excessive unbound dye and dried at room temperature for 10 

minutes. Once it was completely dry, it was added 200 µL of Tris-NAOH (pH=10) and the 

plate was left agitating for 15 minutes until the dye was totally dissolved. Next, the content 

Dose (mGy) A0 (µCi) Time (min) 

1 0.3 0.85 

4 0.3 4.50 

10 0.3 15.05 

15 0.3 25.00 

20 0.3 35.00 

30 0.3 55.00 

Table 1: Doses, initial activities and times used in the irradiation with Radium-223. 
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of the wells was transferred to 96-well plates and the absorbance read at 540 nm, with a 

reference filter of 690 nm, in an ELISA spectrophotometer (Biotek Synergy HT, USA). 

Results are expressed by the percentage of inhibition of irradiated cells’ proliferation in 

comparison to the controls, normalized to 100%. 

 

3.5. Cell Proliferation Analysis by Alamar Blue Assay 

Alamar blue (Sigma, USA) is an oxidation-reduction probe used to evaluate cell 

proliferation that monitors the reducing environment of the cell. This can be done mostly 

due to the fact that metabolically active and proliferating cells present a reduced 

environment, whereas the inhibition of cell growth leads to an oxidized cell environment. 

The active ingredient in the compound is the resazurin, which is stable in culture medium, 

non-toxic to cells and permeable through cell membranes. This probe presents two forms, a 

non-fluorescent blue form that is oxidized and becomes fluorescent and pink resorufin when 

it is reduced (Figure 16). This characteristic of the probe gives this assay the advantage of 

being able to be measured quantitatively in colorimetric and/or fluorometric readings 

(Rampersad, 2012; Eilenberger et al., 2018).  

 

 

 

 

To perform this experiment, the PC3 spheroids were plated as explained before (2 x 

105 cells in 250 µL of medium) and left to grow for 48 hours, then irradiated with the 

radiopharmaceutical Ra-223 as referred above. The analysis of the therapeutic effects of Ra-

223 was made 48 hours after the irradiation. To do so, it was added 25 µL of alamar blue 

(1mg/mL)  to each well, in a volume ratio of 1:10, incubating it for 1 hour and 15 minutes 

in the dark. The results of the assay were calculated using Equation 3, and are expressed 

according to the percentage of proliferation inhibition of irradiated cells in comparison to 

the control cells, which were normalized to 100%, after reading in an ELISA 

spectrophotometer at 570 and 600 nm (Biotek Synergy HT, USA). 

Figure 16: Alamar blue reaction in the cellular environment (Adapted from Bionity.com). 
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% proliferation =  
(εOX)λ2 A2λ1− (εOX)λ1 Aλ2   (irradiated cells)

(εOX)λ2 A0λ1− (εOX)λ1 A0λ2  (control cells)
  Equation 3 

where (𝜀𝑂𝑋) corresponds to the molar extinction coefficient of the oxidized form of the 

alamar blue (which is a tabled value), A to the absorbance of the irradiated wells, A0 to the 

absorbance of the control wells, and λ1 and λ2 to 570 nm and 600 nm respectively, the 

absorbances measured in the spectrophotometer. 

 

3.6. Cell Metabolism Evaluation by MTT Assay 

The MTT assay was used to analyse cell metabolism in 2D with 3 different 

conditions, control, control+NanoShuttle and control+magnet, to check if the nanoparticle 

and the magnetic field generated by the magnet have any nefarious effects on the metabolism 

of the cells. These studies were made at 5 time points, 1, 2, 4, 6 and 8 days after plating. 

To evaluate cell metabolism, the culture medium was discarded from the plates and 

the wells were washed with 500 µL of PBS (Sigma, USA) each. It was added 300 µL of a  

MTT solution (0.5 mg/mL) diluted in PBS at 7.4 pH and proceeded to an incubation in the 

dark, for 5 hours. After incubation, in order to dissolve the formazan crystals, it was added 

300 µL of a 0.04M of acid isopropanol and the plates were agitated for 20 minutes. After the 

solubilization of the crystals, 200 µL of the content of each well was transferred to a 96 

multi-well, measuring posteriorly the absorbance in an ELISA spectrophotometer (Biotek 

Synergy HT, USA), in a wavelength of 570 nm and a reference wavelength of 620 nm. 

 

3.7. Morphology Studies by the May-Grünwald-Giemsa Staining 

The May-Grünwald Giemsa stain is composed by a mix of two neutral stains, a May-

Grünwald stain (0.25 g/mL) composed by eosin and methylene blue, and a Giemsa stain 

(0.25 g/mL) composed by eosin and azure of methylene. It is widely used in medicine and 

biomedical investigation to characterize cell populations and distinguish certain aspects of 

cell morphology (Sabattini et al., 2018). 

To perform the staining, the spheroids were destroyed, their content was taken out 

the of the wells into 12 mL falcon tubes and these were centrifuged at 1300 xG for 5 minutes. 

After the centrifugation, the medium was discarded, as the pellet should contain both alive 
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and dead cells, and these cells were resuspended in a small quantity of FBS. After 

resuspending well with a micropipette, it was put a drop of cell suspension on a glass slide 

and it was performed a smear. The smears were left to dry at room temperature away from 

the light for 3 hours and after that fixed on 96% ethanol. After fixing, the slides were once 

again left away from the light until they dried, and the fixed smears were then stained in 

May-Grünwald diluted in an equal volume of distilled water for 5 minutes. Subsequently, 

the slides were put without washing into Giemsa stain diluted in a reason of 1:10 with 

distilled water, for 30 minutes. After staining, the slides were washed in tepid water and left 

to dry at room temperature. The slides were visualized and evaluated on an optical 

microscope Axioskop 2 (Zeiss, Munich, Germany) equipped with an Axiocam 1Cc3 camera 

(Zeiss, Munich, Germany), and then pictures were taken and analysed using AxioVision 

software (Zeiss, Munich, Germany) for Windows. The staining was performed on control 

and irradiated slides (10 mGy), both with cells from monolayer and 3D spheroids. 

 

3.8. Histological Staining 

Histological staining of spheroids or tissues fixed in paraformaldehyde (PFA) is a set 

of technical proceedings that allow for the analysis of a determined tissue at the optic 

microscope and subsequent visualization and evaluation of cellular structures (Bancroft and 

Gamble, 2008). 

 

 3.8.1. Haematoxylin and Eosin (H & E) 

The spheroids were transferred to a slide with the help of the MagPen, fixed in a 4% 

solution of PFA for 3 hours and then washed 3 times for 15 minutes with PBS. Posteriorly, 

they were hydrated with a 70% ethanol solution, submerged in a hematoxylin solution 

(Ventana Medical Systems, USA) for 3 minutes and washed with tap water. They were then 

also submerged in an eosin solution (Ventana Medical Systems, USA) for 3 minutes and 

washed again with tap water and distilled water. After that, they were left to dry and mounted 

with QuickD synthetic mounting medium (Klinipath, Netherlands) to posterior observation 

in the optic microscope Olympus U-D30 (Olympus, Japan).  
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3.8.2. Toluidine Blue 

For the toluidine blue coloration, the fixation process of the spheroids was the same 

as described before for the H & E staining. After fixating and washing with PBS, the 

spheroids were stained with a 0.4% toluidine blue solution (Ventana Medical Systems, USA) 

for 2 minutes. After staining, the slides were washed with distilled water to remove the 

excess dye and dried at room temperature. Subsequently, the slides were mounted with 

QuickD synthetic mounting medium (Klinipath, Netherlands) and observed in the optic 

microscope Olympus U-D30 (Olympus, Japan). 

 

3.9. Protein Markers Presence by Immunocytochemistry 

Immunocytochemistry was performed to compare and characterize protein 

expression between non-irradiated cells cultured in monolayer (2D) and in spheroids (3D). 

The antigenic detection was made with an indirect system of biotin-free multimers 

conjugated with peroxidase, in a proceeding with the temperature set to 36ºC. 

The inhibition of the endogenous peroxidase was made with a 3% H2O2 solution 

diluted in PBS called OptiView Peroxidase Inhibitor for 10 minutes, followed by the 

detection of the different primary antibodies with a cocktail of secondary goat antibodies 

IgG e IgM anti-mouse and goat IgM anti-rabbit (OptiView HQ Universal Linker, Ventana 

Medical Systems, USA), conjugated with a non-endogenous haptene, 3-hydroxy-2-

quinoxaline (HQ), for 12 minutes. After washing the slides with PBS, it was dispensed the 

indirect detection system of multimer OptiView DAB IHC Detection Kit (Ventana Medical 

Systems, USA), free of biotin and conjugated with peroxidase for 8 minutes. Subsequently, 

the slides were mounted and observed at the Olympus U-D30 (Olympus, Japan) optic 

microscope, equipped with a camera Olympus SC30 (Olympus, Japan). The antibodies used 

and their respective characteristics can be observed in Table 2. 
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3.10. Structure and Cell Viability Characterization by Fluorescence Microscopy 

Fluorescence microscopy is a type of optical microscopy that may be used to check 

3D spheroid structure and perform live/dead assays to check spheroid viability and layers 

distribution (Costa et al., 2016). 

In the preparation of samples for fluorescence microscopy for structure analysis with 

staining of the membrane and nucleus, PC3 spheroids were fixed with a 4% PFA solution 

for 1 hour. The spheroids were then submerged in 37ºC CellMask Deep Red Membrane stain 

(Thermo Fisher Scientific, USA) for 15 minutes and after washed 3 times with PBS. 

For the Annexin V/Propidium Iodide double staining they were submerged in a 

solution with 2.5 µL of Annexin V and 1 µL of propidium iodide (KIT Immunotech, 

Beckman Coulter, Czech Republic) and fixed after with a 4% PFA solution. 

They were then carefully transferred from the multi-wells to slides with the assistance 

of the MagPen, where they were mounted with ProLong® Gold antifade reagent with DAPI 

(P36931, Life TechnologiesTM) and left to dry away from the light. The slides were then 

sealed and then subsequently observed in a fluorescence microscope Leica DM 4000 B.  

 

3.11. Cell Death Populations and Viability Studies by Flow Cytometry 

Necrosis and apoptosis are two forms of cell death and can be differentiated based 

on the morphologic, biochemical molecular characteristics of each process. Necrosis is a 

Table 2: Antibodies used in the immunocytochemistry studies and respective characteristics (clone, incubation 

time, dilution and provider).  

Antibody Clone 
Incubation 

Time (min) 
Dilution Provider 

KI-67 SP6 20 1:1000 
Zytomed Systems, Berlin, 

Germany 

Caspase 3 pAb 28 1:100 Bio-rad, California, USA 

P16 E6H4 4 Ready to use 
Ventana Medical Systems, 

Arizona, EUA 

P53 DO-7 24 Ready to use 
Ventana Medical Systems, 

Arizona, EUA 

Vimentin V9 4 Ready to use 
Ventana Medical Systems, 

Arizona, EUA 
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disorganized process, which usually occurs in pathological conditions and that is 

characterized by the loss of integrity of the plasma membrane. On the other side, apoptosis 

is a programmed event, with the function of maintaining the homeostasis of the organism 

and that is characterized by maintaining the integrity of the membrane. 

The Annexin V (AnV) is an anticoagulant protein that binds with anionic 

phospholipids, such as the phosphatidylserine. During apoptosis, it occurs the translocation 

of phosphatidylserine to the external layer of the cell membrane, and so apoptotic cells may 

be identified through the staining with AnV. On the other side, propidium iodide (PI) is a 

dye with the capacity of binding to the cell's DNA. In spite of this, this dye cannot get through 

the lipid bilayer, being only capable of binding to the DNA when the membrane is destroyed, 

event that can be verified when cells are in late apoptosis or necrosis (Wlodkowic et al., 

2009). 

To compare conditions, 2D cultured cells with more than 90% confluency at 7 days 

and 3D spheroids with 7 days cultured as referred above were used. Monolayer cultured cells 

were detached with the help of Tryple and the 3D spheroids were also broken down to 

individual cells with the assistance of a few drops of Tryple. 

To perform this technique, it was used 1 million cells obtained after centrifugation at 

1300 xG for 5 minutes. The obtained pellet was resuspended, washed in PBS and centrifuged 

again. After that, the PBS was discarded, and the resulting pellet was resuspended in 100 µL 

of binding buffer and incubated with 2.5 µL of AnV-FITC and 5 µL of propidium iodide 

(KIT Immunotech, Beckman Coulter, Czech Republic). 

Subsequently, cells were excited at a wavelength of 494 nm for AnV-FITC and 351 

nm for PI, collecting 10,000 events. Data were obtained using Cell Quest Software (Becton 

Dickinson) and analysed using of Paint-a-Gate software (Becton Dickinson).  

 

3.12. Statistical Analysis 

Statistical analysis was performed using the IBM® SPSS® Statistics software, 

version 24.0 (IBM Corporation, Armonk, USA), using a significance level of 5%. First, 

normal distribution and variance of the quantitative variables was assessed using Shapiro-

Wilk and Levene tests, respectively.  
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By default, non-parametric tests were used when n<10. Differences with the control 

conditions were estimated by one-sample T test or Wilcoxon test, for parametric or non-

parametric analysis, respectively. For comparisons of two cell culture methods or conditions, 

Mann-Whitney test was used or T student test in case of parametric analysis. Differences 

between more than two therapeutic conditions were performed using the parametric one-

factor analysis of variance (ANOVA) or the non-parametric Kruskal-Wallis, followed by 

post-hoc analysis using Tukey correction (homogeneous variances).  
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4.1. Spheroids Characterization 

Before testing the treatment with 223Ra on 3D spheroids, it various assays were done to 

characterize the 3D structures, which is one of the main objectives of the experimental work. 

The magnetic levitation method was used to accomplish the 3D structures and two cell lines 

of metastatic prostate cancer, LnCap and PC3. 

4.1.1. Spheroid evolution over time 

The arrangement and growth of PC3 spheroids from plating over 6 days was 

accompanied with an inverted microscope and can be observed in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Representative images of PC3 3D spheroid arrangement and growing at 0 (a), 1 (b), 2 (c), 3 (d), 4 

(e), 5 (f) and 6 (g) days after seeding. Images were all taken at 40x magnification and the scale at a) is equal 

to 1 mm. 

e) 

g

f) 

b) 

d) 

a) 

c) 

g) 
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In the 3D system, PC3 cells started to cluster 24 hours after seeding. Somewhere 

between 24 and 48 hours (between b) and c) in Figure 17) the majority of the cells were 

arranged to a big compact spheroid with a diameter larger than 2 mm and a mean area of 4.2 

mm2. The spheroid growth was accompanied with an inverted microscope and showed no 

relevant changes at the naked eye from 48 hours on, but with the analysis and estimation of 

the spheroids area represented in Figure 18 it was observed that there is a significant raise in 

the area between 3 and 4 days (p<0.001) and a significant decrease between 4 and 6 days 

(p=0.026). 

 

 

 

 

 

 

 

Besides PC3 cells, the 3D magnetic levitation technique was also performed with 

LnCap cells, which were also accompanied by inverted microscope imaging, represented in 

Figure 19. These showed to start 3D cultures with different morphology when compared to 

the PC3, forming smaller cell clusters and more dispersed levitated cultures, proving that not 

all cell types form the same type of spheroids. After this point, all experiments were 

performed with the PC3 cell line. 
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Figure 18: Growth curve of PC3 spheroids according to their areas. The arrow represents the time when only 

one compact spheroid is formed instead of various cell clustering. Results are expressed as mean and standard 

error of the mean (SEM) from n=6 of at least 3 independent experiments. Wilcoxon and Tukey test (### p < 

0.001, in comparison to day 0 ; *** p < 0.001, * p < 0.05). 

b) c) a) 

Figure 19: Representative images of LnCap 3D cultures clustering and growing at 1 (a), 2 (b) and 5 (c) days 

after seeding. Images were all taken at a 40x magnification. 
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4.1.2. Influence of the Magnetic Levitation Method on Cell Metabolism 

To check if both the magnet and the NanoShuttle (NS) influence the cell’s behaviour and 

metabolism in any way, it was made an MTT assay with monolayer cultured PC3 cells 

incubated either with magnets or NS. The results of these assays can be observed in Figure 

20. 

 

 

 

 

 

 

 

 

 After 24h, the cells incubated with NS showed a significant decrease in the metabolic 

activity compared to the control (p=0.011), whereas the cells incubated with the magnet 

showed a significant increase in their metabolism (p=0.012). The same tendency was 

maintained at the 2-day mark, with cells showing an equal significant decrease with NS and 

increase with the magnets. On the other hand, at 4 and 6 days, cells presented a significant 

decrease in metabolic activity both when incubated with NS and the magnets, but always 

with the cells incubated with the magnets showing a significant increase when compared to 

the NS (p=0.012 and p<0.001). At 8 days, on the contrary, both the conditions had a 

significant increase in comparison to the control (p=0.012) but had no significant changes 

between them. So, it was concluded the NS had a significant lowering impact in the 

metabolic activity of the cells till the 6th day, and the magnets at 4 and 6 days, but on the 

contrary, at 8 days both the conditions showed to have an increase in the metabolic activity 

compared to the control. 
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Figure 20: Evaluation of the cell’s metabolic activity after the incubation with the magnets and NS. Data is 

normalized to the control and expressed as mean and SEM from n>6 of at least 3 independent experiments. 

Wilcoxon and Mann-Whitney U tests (*** p < 0.001, ** p < 0.01, * p < 0.05). 
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4.1.3. Spheroid Structure 

The spheroid structure was qualitatively evaluated by two different methods, histochemical 

staining with toluidine blue and haematoxylin and eosin (H & E), which are represented in 

Figures 21 and 22 respectively, and by fluorescence microscopy, whose results can be 

observed in Figure 23. 

 

4.1.3.1. Histochemical Staining 

The toluidine blue is a basic thiazine metachromatic dye that has high affinity for nucleic 

acids, staining the DNA with blue. Looking at Figure 21, it can be observed the sphere-like 

form of the 3D spheroid of PC3 cells. It can be clearly identified regions stained with dark 

blue that are related with cells in high proliferation, and with light blue, which can denotate 

necrotic cells, having less nucleic acid coloration. The blackish coloration observed inside 

the spheroid is connected with the nanoparticle used in the magnetic levitation method. 

 

 

 

 

 

 

 

 

The haematoxylin and eosin coloration is one of the most used colorations in histology. The 

haematoxylin has a deep purple staining and also has affinity with nucleic acids, whereas the 

eosin has a pink color and is highly affined with the cytoplasmic proteins. After performing 

a smear with the cells of a 3D spheroid (represented in Figure 22), it was able to perceive 

dark purple regions, constituted by cells with a high rate of proliferation, light pink regions, 

which are normally more a sign of late apoptotic or/and necrotic cells, and the nanoparticle 

traditional blackish regions. 

b) 

a) 

Figure 21: PC3 3D spheroid stained with toluidine blue with 40x (a) and 400x (b) magnifications. 



Radium-223 in metastatic prostate cancer: effects on metastasis microenvironment 

 

49 Nuno Tavares 

 

 

 

 

 

 

 

 

 

4.1.3.2. Fluorescence Microscopy  

Besides the histochemical staining, it was also performed fluorescence staining and 

microscopy to check the spheroid and cell structure, whose results also showed a spherical 

form in the 3D spheroids and are exposed in Figure 23. 

 

 

 

 

 

 

 

 

 

1.1. Protein Expression 

a

b

Figure 22: PC3 3D spheroid smear stained with haematoxylin and eosin with 40x (a) and 400x (b) 

magnifications. 

b) 

a) 

c) d) 

Figure 23: Representative images of spheroid structure in PC3 3D structures (a, b, d) when compared to cells 

cultured in monolayer (c). a) and b) were stained with DAPI, and c) and d) were stained with DAPI and 

CellMask for membrane. Images were taken in a fluorescence microscope with 40x (a), 100x (b) and 200x (c, 

d) magnifications. 
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4.1.4. Protein Markers Presence 

To evaluate and characterize qualitatively protein expression in the 3D spheroids 

[Figure 24 b), d), f), h) and j)], it was performed immunocytochemistry as described above, 

using monolayer cultured cells as a term of comparison [Figure 24 a), c), e), g) and i)]. It 

was assessed the expression of 5 proteins (KI-67, P16, caspase 3, vimentin and P53) and the 

results are presented in Figure 24. The proteins chosen are related with cell proliferation (KI-

67), cell death and DNA damage (caspase 3 and P53), senescence (P16) and cell structure 

(vimentin). 
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Figure 24: Immunohistochemical staining on 2D monolayer (a, c, e, g, i) and 3D spheroid (b, d, f, h, j) cell 

culture modes. The illustrated samples were stained for KI-67 (a, b), P16 (c, d), caspase 3 (e, f), vimentin (g, 

h) and P53 (i, j). Images were taken using an optic microscope with 100x and 200x magnification. 
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Comparing qualitatively monolayer smears with the 3D spheroids, it can be seen a 

decrease in the number of cells expressing the KI-67, whereas the P16 protein is not present 

in the 2D cultured cells but it is present in some cells cultured in three dimensions, mostly 

in the spheroid’s internal layers, although most of the antibody staining is not specific. In 

the case of caspase 3, it was detected in a few cells in monolayer but has a higher 

cytochemical signal in the spheroid’s cells. Regarding the vimentin, it is heavily expressed 

both in monolayer and in the spheroids, but the staining appears to be even stronger in the 

3D cultures. Finally, no expression of P53 was detected in the 2D cells, but in the spheroid 

some cells expressed this protein. Information relative to the semi-quantitative analysis for 

both conditions, which was based on comparing the number of cells that marked for each 

protein, can be observed in Table 3. 

 

Table 3: Resume of the immunocytochemical staining pattern: positive staining (++), mild staining (+) and 

minor to negative staining (-). 

Immunocytochemical Staining Monolayer Spheroid 

KI-67 ++ + 

P16 - + 

Caspase 3 - + 

Vimentin ++ ++ 

P53 - ++ 

 

 

4.1.5. Cell Viability and Death Populations  

Cell viability and cell death pathways, as described previously in the methods, were 

evaluated with double staining with Annexin V and Propidium Iodide (AnV/PI) qualitatively 

by fluorescence microscopy and quantitatively by flow cytometry. This staining allows to 

differentiate the existing cellular populations: viable cells, initial apoptosis, late 

apoptosis/necrosis and necrosis. These two assays allowed to characterize and evaluate the 

type of cell death induced in the cells when these are cultured in 3D spheroids. 
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 The qualitative evaluation of cell viability and cell death pathways was performed by 

fluorescence microscopy, staining the cell’s nucleus with DAPI and a double staining with 

AnV/PI. These results can be observed in Figures 25 and 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the fluorescence microscopy studies, the cells cultured in 2D (Figure 25) showed 

normal nucleus, with almost no staining either with the Annexin V and the PI, whereas the 

b) a) 

c) 

Figure 25: Representative images of DAPI (a), AnV (b) and PI (c) stained 2D monolayer cultured PC3 

cells. Images were taken in a fluorescence microscope with 100x magnification. 

 

a) b) 

c) 

d) 

Figure 26: Representative images of merged (a), DAPI (b), AnV (c) and PI (d) stained 3D spheroid PC3 

cells. Images were taken in a fluorescence microscope with 100x magnification. 
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spheroids (Figure 26) showed mild staining with the Annexin V and strong staining with the 

PI, showing a strong presence of late apoptotic or necrotic cells in the spheroid. 

 After qualitatively evaluating and comparing 2D and 3D PC3 structures by means of 

fluorescence microscopy, it was needed to have quantitative data so that conditions could be 

better compared and characterized. The evaluation of cell viability and death populations by 

flow cytometry for the characterization of the 3D model allowed the obtaining of the results 

presented in Figure 27. 

 

 

 

 

 

 

 

 As observed, the viable cells population showed a statistically significant decrease 

(p=0.0003) from 93±0.44% in the 2D model to only 32±4.09% in the 3D model of spheroids 

with 7 days of culture. Concerning the cell death pathways, the spheroids show a significant 

increase in the population of cells in initial apoptosis (2±0.26%) in relation to 2D 

(18±1.09%) (p=0.0003). This increase of dead cells was also observed in the population of 

cells in late apoptosis or necrosis (p=0.0002), from 2±0.17% to 12±3.13%, and also in the 

necrotic population, where the highest raise was observed, with spheroids presenting 

38±2.09% of necrotic cells when comparing to the 3±0.40% in the monolayer cultured cells 

(p=0.0002). These data supports the one taken from the fluorescence microscopy studies, 

where an increase in apoptosis and especially in necrosis was also observed in the 3D 

spheroids.  
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Figure 27: Viability and cell death pathways evaluation by flow cytometry. The results were obtained with 

PC3 7-day monolayer cultured cells (2D) and spheroids (3D). The results are expressed as percentage of viable 

cells, in apoptosis, late apoptosis/necrosis and necrosis, and represent mean and SEM from n>6 from at least 

3 independent experiments. Mann-Whitney Test (*** p < 0.001).  
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4.2. Treatment of Spheroids with Radium-223 

 In order to evaluate the effects of 223Ra in PC3 3D spheroids, it was performed the 

alamar blue assay, which evaluates the cell proliferation indirectly through metabolic 

reactions, the SRB assay, which evaluates the total protein content, and the May-Grünwald-

Giemsa staining, which was used to describe the morphologic changes in the cells before 

and after the irradiation. 

 

4.2.1. Cell Proliferation 

 Cell proliferation 48 hours after irradiation with 223Ra was evaluated with the alamar 

blue assay in doses of 1, 4, 10, 15 and 20 mGy. These results can be observed in Figure 28. 

 

 

 

 

 

 

 

 

 

 Concerning the cell proliferation 48 hours after irradiation with 223Ra, it showed a 

tendency to decrease with increasing the doses of 223Ra in 2D cultured cells. A slight 

tendency to cell proliferation increase is observed for 20 mGy irradiation, when compared 

to lower doses, however all without statistical significance. Regarding the 3D spheroids, 

these showed a statistically significant decrease in all 5 doses when compared to the control, 

presenting decreases to 83,6±2.71% (p=0.002), 83,8±2.33% (p=0.003), 82,1±1.94% 
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Figure 28: Evaluation of the cell proliferation by the alamar blue assay 48 hours after the irradiation with 223Ra 

with doses of 1, 4, 10, 15 and 20 mGy both in monolayer cells (2D) and spheroids (3D). Results are normalized 

to control and expressed as mean and SEM from n>9 from at least 3 independent experiments (2D is only n=3 

from 1 independent experiment). Wilcoxon test (** p < 0.01, * p < 0.05) 
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(p=0.005), 76,7±%4.22 (p=0.012), and 85,6%±3.78 (p=0.018). As observed for 2D culture, 

for the 20 mGy dose an unexpected increase in cell proliferation was also observed when 

compared to lower doses, but without statistical significance. Comparing the two different 

culture methods, there were no significant changes, however in general greater differences 

on cell proliferation after irradiation are seen in the 2D culture, when compared to the 3D 

spheroid, in all doses but 4 mGy. 

 

4.2.2. Protein Content 

The SRB assay is a technique used to evaluate the total protein content of the cells, 

which is proportional to the cell proliferation, and so we are able to evaluate the cytotoxicity 

degree of a certain therapeutic agent. The objective was to use this assay to evaluate the 

effects of 223Ra on PC3 3D spheroids, 48 hours after irradiation in a dose of 10 mGy, and 

then compare the results with previous ones in monolayered cultured cells. These results can 

be observed in Figure 29. 

 

 

 

 

 

 

 

 

 

 Regarding the protein content, it was observed a significant decrease (p=0.0004) in 

monolayer 2D cells 48 hours after irradiation with a dose of 10 mGy, since it dropped 
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Figure 29: Evaluation of the protein content by the SRB assay, 48 hours after the irradiation with 223Ra with 

a dose of 10 mGy in both monolayer cells (2D) and spheroids (3D). Results are normalized to control and 

expressed as mean and SEM from n>9 from at least 3 independent experiments. T student test and one sample 

T test (*** p < 0.001) 
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58.3±2.99% when compared to the control. In the 3D spheroids, there was also a significant 

decrease (p=0.0003) in the protein content compared to the control but only 29±3.17%. 

Comparing the irradiation with the same dose but with different culture methods, there is a 

significant decrease in protein content in the 2D cells when compared to the 3D cells of the 

spheroid (p<0.0001). 

 

4.2.3. Cell Morphology 

 Besides the alamar blue and SRB assays for proliferation and total protein content 

studies, respectively, it was performed the morphological characterization of the spheroid 

cells irradiated with 223Ra by May-Grünwald-Giemsa staining. In Figure 30, it can be 

observed the representative images of the obtained results. The control cells present a round 

morphology but it also can be observed some necrotic cells, which are characteristic of the 

3D model. In 1, 4 and 10 mGy doses, it can be noticed an increase in necrotic cells (green 

arrows) and some blebbing (red arrows) which can be an early sign of apoptosis, but it is 

difficult to assess if the damage was done by the 223Ra or by the 3D model, due to the cell 

death already presented in the control. 

 

 

 

 

 

 

 

 

 

  

Figure 30: Representative images (400x) of morphologic features in PC3 spheroid cells post irradiation with 
223Ra, after cells staining by May-Grünwald-Giemsa staining. Control (a), 1 mGy (b), 4 mGy (c) and 10 mGy 

(d). Red arrows correspond to blebbing and green arrows to necrotic cells. 

a) b) 
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CHAPTER 5 - DISCUSSION 
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In spite of all the advancements in diagnosis and therapy in these past years, prostate cancer 

is still the second most frequently diagnosed and the fifth most mortal cancer in men (Bray 

et al., 2018). Due to these facts, this neoplasia is still a major concern in the world health 

panorama (Borley and Feneley, 2009; Bray et al., 2018). 

 Since the discovery of the hormone dependency present in the disease, advanced 

prostate cancer has been treated with androgen deprivation therapy, treatment that causes 

resistance to the chemical castration after a certain period, usually of 3 years or less (Harris 

et al., 2009). This phase of the disease is designated as “castration resistant prostate cancer” 

and still remains uncurable (Fujita and Nonomura, 2018). 

 Bone metastasis are responsible for the presence of skeletal-related events such as 

intense pain and mobility loss, which lead to the patient's loss of life quality, and they still 

lack appropriate therapeutic solutions capable of retarding the appearance of these symptoms 

(Lassi and Dawson, 2009). 

 223Ra was the first alpha particle emitter radioisotope accepted for therapeutic, and it 

was approved for the treatment of patients with castration-resistant metastatic prostate cancer 

with the presence of known bone metastases and no sign of visceral metastasis (Jacene et 

al., 2018; Smith et al., 2019). The high LET associated to the alpha particles induces an 

elevated frequency of DNA double strand breaks, which results in an anti-tumor effect on 

bone metastasis (Liberal et al., 2017). These alpha particles have the advantage of having a 

short range, which limits the damage on adjacent normal tissues (Lewington, 2005). 

 In monolayer culture, the PC3 cells show to be radiosensitive to 223Ra at very low 

doses, around 4 mGy, according to a clonogenic assay previously performed, and due to that, 

the necessary dose to induce cell death on 50% of the cellular population presents a very low 

value (Marques, 2016). The clonogenic assay also showed that Radium-223 showed a linear 

model of cellular aggression (Marques, 2016). The linear model is based on the theory that 

in the cell there are especially important targets such as the DNA, that, when damaged, are 

enough to induce cell death and trigger an independent response (Lewington, 2005). These 

results go accordingly to the described in the literature, since alpha particles present high 

values of LET provoking higher incidence of cell death, with few opportunities for DNA 

damage repair (Liberal et al., 2017; Lassmann and Eberlein, 2018). 
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 Subsequently, with our study we wanted to contribute, in a first phase, to optimize a 

3D model of prostate cancer, and then to treat 3D spheroids with Radium-223. We also 

wanted to help to have a better knowledge about the molecular mechanisms and effects of 

this radiopharmaceutical in 3D structures of prostate carcinoma cells, in a way that it can 

enable a better application and potential of this treatment in the clinical approach. 

 Related to the 3D optimization technique using the magnetic levitation method, one 

of its disadvantages is that for culture cells a coloured magnetic particle is used. This 

magnetic nanoparticle, which is necessary for keeping the cells in levitation with the action 

of the magnetic field, can in histochemical and immunohistochemical assays hamper the 

analysis of the microscopy images, because it can be confounded with the DAB (3,3′-

Diaminobenzidine), due to the fact that they both have a brown coloration (Haisler et al., 

2013). To prevent this limitation, in the future it is recommended to use a colorimetric 

marker with another staining color, such as the 3-amino-9-ethylcarbazole, which turns the 

staining red when reacting with alkaline phosphatase, or to use fluorescence microscopy, 

because the nanoparticle does not tamper with this method (Haisler et al., 2013; Jaganathan 

et al., 2014). 

 In 2014, Tseng and colleagues used the magnetic levitation method to achieve a co-

culture model of the aortic valve. In this study, the authors reported that both cells lines used 

by them did not present significant metabolic differences when cultured in monolayer and 

incubated with NanoShuttle and the magnet (Tseng et al., 2014). Our results showed 

significant differences when the metabolism of control cells was compared with the cells 

incubated with the NanoShuttle™  and the magnet alone, especially the NanoShuttle™. 

However, on day 8, both conditions showed higher metabolic activity when compared to the 

control. So, although the cells appear to show some response to the nanoparticle in the first 

days, over time they seem to recover and at 8 days still present higher metabolic activity 

when compared to the control. The use of the magnet in 2D-cultured cells showed almost no 

effect on the cells metabolism, which goes accordingly to the literature, because in the 

magnetic levitation method it is used a magnet with a magnetic field of 30-500 Gauss (G), 

which has no effect on cell proliferation, metabolism and does not trigger any inflammatory 

response (Haisler et al., 2013). 
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 Comparing the cell structures formed by each cell line, PC3 and LnCap assembled 

very different types of 3D structures, in terms of morphology. PC3  cell line, which is from 

a bone metastasis of prostate cancer, formed a single spheroid after 24 to 48 hours of culture 

with the magnetic levitation method. In contrast, LnCap, a cell line derived from a lymph 

node metastasis of prostate cancer, was shown to form smaller and more dispersed 3D 

structures, more like small cell clusters, structures that are also common when these cells are 

cultured in monolayer (Haisler et al., 2013; Takir, Debelec-Butuner and Korkmaz, 2018). 

This difference may be due to their different origin, from different metastatic 

microenvironments. PC3 cells are from bone tissue, a dynamic but more rigid structure, 

which could be reflected in a more compact spheroid. LnCap cells are derived from the 

lymph node, with a clear tendency to form smaller dispersed cells clusters due to the fact 

that their tumor microenvironment is more liquid (Seim et al., 2017). This difference 

between the two cell lines in terms of 3D structures made us opt to move on with the PC3 

cell line, due to their more compact spheroid conformation. 

 Concerning the area of the PC3 spheroids, our results showed that after the formation 

of the compact structure between 24 and 48 hours after seeding, the area suffered an increase 

until the 4 days of culture, which could be a sign of some cell proliferation and more levitated 

cells joining the spheroid. However, the area of the spheroids decreased for longer periods, 

namely between 4 and 6 days, which might be due to cell death processes (afterwards 

verified in the flow cytometry studies), as well as, spheroid cellular contraction. 

 According to Jaganathan and colleagues, a breast cancer 3D structure took about 24 

hours to form with the magnetic levitation method, faster when compared with other 

methods to form 3D structures, such as Matrigel. The formation of the tumor structure using 

another type of methods usually only allow to form structures of the same magnitude 7 days 

after seeding (Haisler et al., 2013).  

 The formation of 3D cancer structures in the range of mm2 is very important for the 

study of hypoxic and necrotic areas in tumors. The magnetic levitation method is performed 

on 6 and 24-well plates and allows achieving structures of this scale, allowing the study of 

these tumor characteristics (Becker and Souza, 2013; Jaganathan et al., 2014). 

 The immunocytochemical studies showed a decrease in the KI-67 staining, a 

proliferation marker. In fact, this is expected, especially in spheroids of this magnitude.  In 
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large spheroids only the cells in the periphery are supposed to proliferate, while the others, 

located in the inner layers of the spheroid, are supposed to be either senescent or in necrosis, 

which justifies the KI-67 non-staining (Monazzam et al., 2007; Li et al., 2015). 

 The cell cycle is a crucial parameter to have in account in terms of cell proliferation. 

The P16 is a protein that plays a very important role in the cell cycle, more specifically by 

slowing the cycle progression from G1 to S phases (Liggett and Sidransky, 1998). The 

increase of this protein expression in the spheroids might be related to the existence of a 

layer of senescent cells in the PC3 spheroids produced in the study (Althubiti et al., 2014). 

 On the other side, P53 is a tumor suppressor protein and plays a major role in the 

cellular response to DNA damage, and is one of the most studied proteins in the context of 

cancer, also being known as the “guardian of the genome” (Toufektchan and Toledo, 2018). 

The increase in the expression of P53 in the 3D structures might have to do with the 

prevention of proliferation of cells that have damaged DNA, caused by the model itself. As 

observed in the flow cytometry studies, apoptotic and necrotic zones were clearly observed 

(He et al., 2016).  

 The apoptosis, also designated programmed cell death, is a mechanism where the cell 

is self-destructed when it is triggered by certain stimulate (Elmore, 2007). The caspase-3 is 

a key regulator protein in the process of apoptosis. Thus, the raise in the expression of this 

protein in the 3D spheroids when compared with the monolayer is most likely due to the 

increase of apoptotic cells in the 3D model (Mittler et al., 2017; Pu et al., 2017).  

 Finally, the last studied protein was vimentin, which is a major constituent of 

intermediate filaments and has a highly important role in cell structure integrity and 

resistance against stress (Satelli and Li, 2011). This protein showed very high expression in 

both 2D and 3D cultured PC3 cells, which goes accordingly to the literature, whose 

information states that vimentin is associated with cells of bone metastasis in prostate cancer. 

In contrast, the downregulation of this protein in PC3 cells lead to a decrease in their invasive 

capacity (Singh et al., 2003). 

 Besides serving protein expression characterization of the spheroid, these assays 

should also be performed with 223Ra treated spheroids, to check the changes in the expression 

of key proteins. 
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 According to Gebhard and colleagues, and Riffle and colleagues, spheroids start to 

show necrotic phenomena in their core region with diameters above 300 µm (Gebhard et al., 

2016; Riffle et al., 2017). The spheroids obtained by us with the magnetic levitation method 

were much larger, having diameters bigger than 2000 µm. Thus, a necrotic core should be 

expected in a spheroid of this magnitude, even changing its culture medium every day, due 

to the fact that its form and size don’t let the oxygen and nutrients to reach the spheroid’s 

inner layers, causing the cells to enter in a state of low oxygen partial pressure, a condition 

that can lead to senescence or necrosis (Costa et al., 2016; Sant and Johnston, 2017). 

Although this is effectively an approximation of what happens in an in vivo tumour, we can’t 

induce angiogenesis in a spheroid of this type and with a low cell viability in the spheroids 

(even the control 3D spheroids, as enlightened by the flow cytometry studies performed for 

cell viability and death pathways) it becomes difficult to measure and compare the 

effectiveness of a certain therapy, in this case the 223Ra. An active solution would be to grow 

smaller spheroids either in 48 or 96-well plates and test the therapy before they start to 

display necrotic cores, below 300 µm (Haisler et al., 2013; Gebhard et al., 2016). 

 From a certain diameter, a tumor can only grow if it has an effective vascularization 

network for the delivery of oxygen and nutrients to its cancer cells (Roato, 2013). In case 

this doesn't happen, the tumor cells go into hypoxia, upregulating HIF1-α and having 

clinically relevant consequences such as chemical and radioresistance and poorer prognosis 

for the patients (Riffle et al., 2017). Hypoxia can induce genomic and proteomic changes in 

cancer cells (Muz et al., 2015). These changes can stimulate the tumor growth, invasion and 

metastisation facilitating the survival of the malignant cells in a hostile and nutrient-deprived 

environment (Tameemi et al., 2019). 

 These data are still preliminary and needs further optimizing and research namely 

using other 223Ra doses and incubation times with perhaps smaller spheroids to raise their 

cell viability and diminish or eliminate their necrotic cores. However, it is important to 

highlight the fact that the SRB results obtained with 10 mGy at 48 hours after irradiation 

displayed a significantly decreased sensitivity of the PC3 spheroids to the 

radiopharmaceutical, which can mean that 3D cultured cells create more realistic scenario 

when compared to in vivo and have decreased toxicity to the treatment (Babel et al., 2017). 

This makes sense considering that alpha particles, such as the case of 223Ra, although 

possessing a high LET, present a very limited penetration range in the tissue, more or less 
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100 µm, and the spheroid's diameter was in the range of 2 mm, which is several times the 

predicted 223Ra penetration range, and so the treatment probably might not be reaching all 

the cells in the spheroid (Marques et al., 2018). 

 Cells cultured in 3D demonstrate a different behaviour pattern when compared with 

those cultured in monolayer, namely in what concerns to, matrix adhesion, cell polarity, 

protein expression, proliferation and migration (Nyga, Cheema and Loizidou, 2011; Carvajal 

et al, 2012). Concerning the exposure of cells to irradiation with 223Ra, the monolayer 

cultured cells are all equally exposed to the treatment, whereas in the 3D model, cells are 

differently exposed accordingly to their distances to the center of the spheroid, diminishing 

the treatment’s effectiveness (Costa et al., 2016). According to previous studies in which 

authors compared treatment effects in 2D and 3D cell structures, results show lesser drug 

effects in 3D tumor spheroids when compared with their effects on cells cultured in 

monolayer (He et al., 2016; Kapałczyńska et al., 2018). 

 Thus, the differences between 2D and 3D cultures must always be taken into 

consideration when talking about cytotoxicity, either for chemo or radiotherapy. Regarding 

the alamar blue results, like the SRB ones, these also show a tendency to lower efficacy of 

the 223Ra therapy in 3D cultures when they are compared with the 2D 48 hours after 

irradiation. Although in this case, 2D cells’ sensitivity to Ra-223 is less accentuated and 

there are not statistically significant differences, this fact is mostly due to the fact that the 

2D experiment was only performed once, and it needs a more robust number of independent 

experiments to give more satisfying results. Regarding the 3D-cultured cells, the values are 

statistically significant, and show a decrease in cell proliferation in all doses when compared 

to the control. Besides, results also show a tendency to higher proliferation values for higher 

doses (15 and 20 mGy), which could be a sign of an acquired radioresistance by the cells. A 

strategy to overcome this lower efficacy in the treatment of the 3D spheroids would be to 

give a number of daily doses of 223Ra to the spheroids over an establish period of time, like 

it is performed in the clinic, and check the treatment’s effectiveness and spheroid’s viability 

and proliferation (Parker et al., 2013; Deshayes et al., 2017).  

 Finally, May-Grünwald-Giemsa staining allowed to check cell morphology aspects 

both in control and irradiated 3D cells. The results showed an apparent increase in the 

number of necrotic and apoptotic cells in the highest irradiation dose (10 mGy) and didn’t 
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show noticeable differences in the lower doses. This is in agreement with the previous 

results, since the control cells already showed some cell death that was inherent to the 3D 

model, fact that made it hard to say with certainty which cells suffered damage due to the 

model and which damage was provoked by the effects of the irradiation. This raise in the 

number of necrotic cells after irradiation had already been verified in studies made with the 

same cell line after irradiation with 223Ra in monolayer cultured cells (Marques, 2016). 
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The execution of this experimental work had as principal objectives  the obtainment, 

optimization and characterization of a 3D cell culture model with two prostate carcinoma 

cell lines from different metastasis microenvironments, PC3 (bone) and LnCap (lymph 

node), and then the evaluation of the model's response to 223Ra in the PC3 spheroids, and its 

effects in cell survival, morphology and total protein content by various molecular and 

cellular biology techniques. 

The two cells lines showed to form different types of 3D structures, with PC3 

showing to form a compact spheroid and LnCap establishing various cell clusters, fact that 

could be normal since they are from different metastatic environments and present different 

cell morphology. 

Regarding the magnetic levitation method’s influences on the PC3 cell metabolism, 

the results showed some significant changes on the metabolism in the first days, especially 

cause by the nanoparticle, but after 8 days the cell’s metabolism even showed a significant 

increase either with the nanoparticle and the magnet, which could mean that both conditions 

do not have major biological influence on the model and its viability.  

In the process of the spheroid’s characterization, the protein expression analysis 

showed key protein expression changes between the 2D and 3D cultured cells, providing 

important information on the differences and the value amongst these two types of cultures, 

although to further analyse key proteins it is important to perform a Western blot assay which 

can give quantitative information on protein expression. Besides, there was a clear increase 

in the percentage of apoptotic and necrotic cells in the 3D spheroids when compared with 

the cells cultured in monolayer, which are most likely due to the model itself, with the 

creation of senescent and necrotic layers inside the spheroid due to its size and conformation. 

After the characterization of the spheroids, it was evaluated the effects of the 223Ra 

in the spheroids. Post irradiation, all doses tested showed significant decreases on total 

protein content and cell proliferation in the 3D cultures. Comparing these results to those of 

the irradiation with 223Ra of monolayer cultured cells, it was noticed a significant change in 

the treatment’s efficacy, which might be due to an approximation to the in vivo scenario of 
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the 3D model, decreasing the cytotoxicity of the radiopharmaceutical. In the future, these 

data should be replicated for more doses and incubation times after irradiation.  

Subsequently, as future perspectives of the work, it is needed to further optimize the 

3D spheroids, with lesser size to decrease necrotic zones and better evaluate the therapy. It 

is also considered that the creation of a cutting protocol of the spheroids would be a high-

value resource, to better evaluate protein expression and the different layers present in the 

3D structures with fluorescence or confocal microscopy, which are the best suited methods 

due to the color of the nanoparticle used in the magnetic levitation method. After these 

optimizations, it is needed to repeat the SRB assay for more doses and incubation times after 

irradiation to check if there are major changes, and in the future evaluate the direct damage 

of 223Ra on DNA damage, and the indirect effects, with the production of reactive species of 

oxygen. With these studies in 3D structures, it is pretended to approach the effects of 223Ra 

to their counterparts in vivo, get a better knowledge of the molecular processes involved and 

potentiate the use of this radiopharmaceutical in the clinical panorama. 

Also, after the optimizing the model for separate cell lines (PC3 and LnCap), it is 

intended to co-culture each line with a cell line from its metastatic microenvironment, in this 

case, PC3 with an osteoblast cell line (hBOF-1.19), and LnCap with immortalized 

lymphocytes, to check the effects of the radiopharmaceutical in a more realistic 

microenvironment with tumor stroma.  
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