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1. Introduction

Copositive Programming (CP) is a relatively new field of Conic Optimization, which is most

actively developing in recent years. Despite the fact that the first works on CP have appeared

in the last century [1–3], the term “Copositive Programming” was introduced in 2000 by

Bomze et al. in [4].

Linear Copositive Programming (LCP) problems have the form

LCP : sup
x∈Rn

cTx s.t.
n∑

i=1

Aixi +A0 ∈ C,

where Ai, i = 0, 1, . . . , n are symmetric matrices and C denotes the cone of matrices which

are positively semidefined on the non-negative orthant Rk
+:

C := {D ∈ S(k) : tTDt ≥ 0 ∀t ∈ Rk
+}. (1)

LCP can be considered as a generalization of Semidefinite Programming (SDP), since its

general problem consists in optimizing over the cone C of so-called copositive matrices. We

refer the interested readers to a recent article [5] for a survey on copositive matrices, to the

monograph [6] for their algebraic properties, and to the paper [7] for open problems in the

theory of completely positive and copositive matrices.

Copositive models arise in Quadratic Programming (QP) with linear and binary constraints

[8,9], fractional QP [3,10], Graph Theory and Combinatorics [2,11], among others. The diver-

sity of copositive formulations in different domains of optimization (continuous and discrete,

deterministic and stochastic, robust optimization with uncertain objective and others) is de-

scribed in [9,12], et al. According to M. Dür [9], CP is "a powerful modeling tool which

interlinks the quadratic and binary worlds". Being formally very similar to that of SDP, the

copositive programs are NP-hard since testing copositivity of matrices is co-NP-complete

[13]. Different algorithms for copositivity detection are described e.g. in [12,14–16]. A clus-

tered bibliography on copositive optimization can be found in [17].

Optimality conditions is an important issue in the study of any optimization problem since

they permit not only to test the optimality of a given feasible solution, but also to develop effi-

cient numerical methods. Usually, optimality conditions are formulated for individual classes

of optimization problems. This permits to exploit efficiently special properties of a problem,

its objective and constraint functions, and the structure of the feasible set. Often, optimality

conditions are based on the topological study of feasible sets and use certain assumptions, so-

called constraint qualifications (CQs), for references see [18–20]. Therefore, to verify such

optimality conditions, one should, first of all, check the corresponding CQs.

Testing CQs is not always an easy task, and moreover, in practice, the known CQs often

fail, see [21,22] and the references therein. According to [22], in the absence of CQs, the
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standard duality theory does not guarantee the vanishing of the duality gap (the difference

between the optimal values of the given problem and the corresponding dual one), and the

property of so-called strong duality (the existence of an optimal solution of the dual problem

in addition to zero duality gap) may not occur. The failure of CQs can lead to numerical

difficulties such as an increase of the expected number of iterations and even to incorrect

solutions.

All of the above makes it possible to conclude that an interesting and important challenge,

both theoretically and practically, is to develop new optimality conditions that either do not

use any CQ (CQ-free optimality conditions) or use assumptions that are weaker than the

known CQs.

As a rule, the optimality conditions for CP are formulated under the Slater condition con-

sisting in the strict feasibility. This CQ is also used to guarantee the strict duality in copositive

optimization. The optimality conditions for CP problems are usually drawn on the base of the

analogous conditions for equivalent problems of Semi-Infinite Programming (SIP) [cf. 27],

and therefore, the wider the range of application of the optimal conditions for SIP, the more

effective the conditions obtained forCP.

In our previous papers, see e.g. [19,23–26], we used a notion of immobile indices and

their immobility orders for problems of convex SIP, and formulated new optimality conditions

under assumptions that are weaker than the commonly used CQs. Our goal now is to apply our

approach proposed for SIP to the problems of LCP and to obtain for the latter new optimality

conditions and dual formulations that guarantee strong duality.

In this paper, given a problem in the form (LCP ), we formulate for it an equivalent semi-

infinite problem, and define immobile indices and their immobility orders. Based on the opti-

mality conditions for SIP, obtained in our paper [26], we prove new optimality conditions for

the problem (LCP ). These conditions use the assumption about the isolation of the immobile

indices which is equivalent to one about finiteness of the set of immobile indices. Both these

assumptions are weaker than the Slater condition. Further, we reformulate the constraints of

the LCP problem with the help of special cones and obtain a new pair of regularized primal

and dual problems. These problems use the information about the immobile indices, the cones

in their constraints are explicitly described, and we show that the duality gap for this dual pair

is zero. To illustrate our approach, we present two examples. In the first example, we consider

an LCP problem in which the new optimality conditions allow one to detect the optimality of

the given feasible solution while the optimality conditions from [27] are not able to do this.

The second example presents an LCP problem for which the standard strict duality fails, but

the duality gap obtained by using the regularized dual problem vanishes.

The paper is organized as follows. Section 1 hosts the Introduction. In Section 2, we for-

mulate an LCP problem, the equivalent SIP problem and define the immobile indices and

their immobility orders. Section 3 is devoted to new optimality conditions for LCP and con-
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tains an illustrative example. Some duality issues are discussed in Section 4 and a new pair

of regularized primal and dual problems in a conic form is formulated. The final Section 5

contains some conclusions and final remarks.

2. Equivalent formulations of the LCP problem. Immobile indices and their properties

Here and in what follows, we use the next notation: given an integer k, Rk
+ denotes the set

of all k-dimensional vectors with non-negative components and S(k) stays for the space of

symmetric k×k matrices. The space S(k) is considered here as a vector space equipped with

the trace inner product A •B := trace(AB), for A,B ∈ S(k). Given a set D, we denote by

conv(D) its convex hull.

Consider an LCP problem in the form

min
x∈Rn

cTx s.t. tTA(x)t ≥ 0 ∀t ∈ Rk
+, (2)

where x = (x1, ..., xn)
T is a n−vector of variables, t = (t1, . . . , tk)

T ∈ Rk
+ is a k− vector

of indices, the matrix function A(x) is given by

A(x) :=

n∑
i=1

Aixi +A0, (3)

and the data are the matrices Ai ∈ S(k), i = 0, 1, . . . , n, and the vector c ∈ Rn.

Problem (2) is a linear conic problem [18], since its constraints can be rewritten in the

form A(x) ∈ C, where the cone C is defined in (1). Evidently, this problem is equivalent to

the following SIP problem with a compact index set:

min
x∈Rn

cTx s.t. tTA(x)t ≥ 0 ∀t ∈ T := {l ∈ Rk
+ : eT l = 1}. (4)

Here and in what follows, e :=
k∑

i=1

ei = (1, 1, ..., 1)T ∈ Rk, where ei is the i-th vector of the

canonic basis of Rk. Notice that the unit simplex T in (4) can be replaced by any base of the

cone Rk
+.

It should be mentioned that problem (4) is a particular case of convex SIP problems with

k - dimensional index set T, which are considered in our paper [19].

Denote by X the set of feasible solutions of the equivalent problems (2) and (4):

X = {x ∈ Rn : tTA(x)t ≥ 0 ∀t ∈ T}.
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Given a feasible solution x ∈ X of the SIP problem (4), the lower level problem has the form

LLP (x) : min tTA(x)t s.t. t ∈ T.

The Slater condition is one of the most commonly used in convex optimization CQs. Let

us recall this condition for problems (2) and (4).

The Slater condition for the LCP problem (2) has the form [18,28]

∃ x̄ ∈ Rn such that tTA(x̄)t > 0 ∀t ∈ Rk
+ \ {0}, (5)

or, equivalently, ∃ x̄ ∈ Rn such that A(x̄) ∈ int C. Here 0 := (0, 0, . . . , 0)T ∈ Rk.

The constraints of the SIP problem (4) satisfy the Slater condition if

∃ x̄ ∈ Rn such that tTA(x̄)t > 0 ∀t ∈ T. (6)

Evidently, the Slater conditions (5) and (6) are equivalent.

Following [19], we will say that an index t ∈ T is immobile if the corresponding constraint

of the SIP problem (4) is active for all feasible x. Denote by T ∗ the set of all immobile indices

in this problem, i.e.

T ∗ := {t ∈ T : tTA(x)t = 0 ∀x ∈ X}. (7)

It is evident that the set of immobile indices T̃ ∗ for the LCP problem (2) is generated by

the set T ∗ as follows: T̃ ∗ := {τ ∈ Rk : τ = αt, α ∈ R+, t ∈ T ∗}. Hence, in what follows,

we will refer to the set T ∗ as to the set of immobile indices for problem (2) as well.

The next proposition is a corollary of Proposition 2 in [25] and of Corollary 5.1.1 in [29].

Proposition 2.1. Given the LCP problem (2), the Slater condition (5) is equivalent to the

emptiness of the set T ∗.

From the proposition above, it follows that the emptiness of the set of immobile indices

can be considered as a CQ. If the set T ∗ is empty, then, according to Proposition 2.1, the con-

straints of problem (2) satisfy the Slater condition, and in this case the optimality conditions

for this problem are known from the literature. To formulate the conditions from [27], we

need to define the dual cone to the cone of copositive matrices.

The dual cone of the cone C defined in (1) is a so-called cone of completely positive matri-

ces [9]:

C∗ := conv{ttT : t ∈ Rk
+}. (8)

Let us say that a feasible solution x0 of problem (2) satisfies the Karush-Kuhn-Tucker

5



(KKT) condition if there exists a matrix Ω ∈ C∗ such that

−ci +Ω •Ai = 0, i = 1, . . . , n, Ω • A(x0) = 0. (9)

Following [27], the optimality conditions for problem (2) can be formulated in the form of

the following theorem.

Theorem 2.2. If a feasible solution x0 ∈ X satisfies the KKT condition (9), then x0 is a

minimizer of problem (2). On the other hand, under the Slater condition (5) a minimizer x0

of problem (2) must satisfy the KKT condition.

If T ∗ ̸= ∅, then a minimizer x0 of problem (2) may not satisfy the KKT condition, and

hence Theorem 2.2 does not always allow to recognize the optimality of a minimizer.

In our study, we will prove new optimality conditions for LCP without special assumptions

about the (non-)emptiness of the set T ∗ and hence without the Slater CQ. For our consider-

ations, we will essentially use the equivalence of problems (2) and (4), and the results of

[26].

Set P := {1, 2, ..., k}. Given a vector t ∈ T ∗, define the following sets of its coordinates:

P0(t): = {p ∈ P : tp = 0}, P∗(t): = P \ P0(t),

and the polyhedral convex cone of feasible directions at t relative to T :

L(t): = {l ∈ Rk : eT l = 0, lp ≥ 0, p ∈ P0(t)}. (10)

The next proposition permits to understand better the structure of the set L(t).

Proposition 2.3. For t ∈ T ∗, the set L(t) defined in (10) admits the following representation:

L(t) = {l ∈ Rk : l =
∑

p∈P\{s(t)}

(ep − es(t))αp, αp ≥ 0, p ∈ P0(t)}, (11)

where s(t) is a fixed coordinate from the set P∗(t) ̸= ∅.

Notice that the vectors ep − es(t), p ∈ P0(t), are the extremal rays in L(t).

For problem (4), let us reformulate the definition of the immobility orders of the immobile

indices from [19,23].

Definition 2.4. Given a SIP problem in the form (4), let t ∈ T ∗ and l ∈ L(t), l ̸= 0. The

immobility order q(t, l) of the index t along the direction l is defined as follows:

• q(t, l) = 0 if ∃ x̄ = x(t, l) ∈ X such that lTA(x̄)t ̸= 0;

• q(t, l) = 1 if lTA(x)t = 0 ∀x ∈ X and ∃ x̄ = x(t, l) ∈ X such that lTA(x̄)l ̸= 0;

• q(t, l) = ∞ if lTA(x)t = 0, lTA(x)l = 0 ∀x ∈ X.
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Let us make an assumption about isolation of the immobile indices.

Isolation Assumption. Given the LCP problem (2), suppose that the set T ∗ defined in (7)

consists of isolated points.

This assumption permits us to establish the following property of the set T ∗.

Proposition 2.5. Given the LCP problem (2), the following conditions are equivalent:

(i) all elements in T ∗ are isolated;

(ii) the set T ∗ is finite: |T ∗| < ∞, and

(iii) the following inequalities take place:

q(t, l) ≤ 1 for all l ∈ L(t) \ {0} and all t ∈ T ∗. (12)

Proof. (i) ⇒ (ii). It follows from condition (i) and the analyticity of the constraint function

that the set T ∗ consists of a finite number of elements.

(ii) ⇒ (iii). Suppose the contrary: there exists t∗ ∈ T ∗ and l∗ ∈ L(t∗), l∗ ̸= 0, such that

q(t∗, l∗) ≥ 2. Then, according to the definition of the immobility orders, we conclude that

for all x ∈ X , the equalities l∗TA(x)t∗ = 0 and l∗TA(x)l∗ = 0, take place. These equalities

imply that there exists θ0 > 0 such that for all x ∈ X , it holds

(t∗ + θl∗)TA(x)(t∗ + θl∗) = 0, (t∗ + θl∗) ∈ T ∀θ ∈ [0, θ0]. (13)

By definition, the above means that (t∗ + θl∗) ∈ T ∗ for all θ ∈ [0, θ0]. But the last relations

contradict condition (ii).

(iii) ⇒ (i). Suppose the contrary: there exist t∗ ∈ T ∗ and l∗ ∈ L(t∗), l∗ ̸= 0, and θ0 > 0

such that (t∗ + θl∗) ∈ T ∗ ∀θ ∈ [0, θ0]. From the definition of the immobile indices we

conclude that relations (13) hold true. It follows from these relations that q(t∗, l∗) ≥ 2, but

this contradicts condition (iii). The proposition is proved.

From Proposition 2.5, it is easy to conclude that the Isolation Assumption is equivalent to

the following one.

Finiteness Assumption. Given the LCP problem in the form (2), suppose that |T ∗| < ∞.

Notice that the Isolation and the Finiteness Assumptions are, in turn, equivalent to the

following condition that can be easily checked in practice: given the LCP problem in the

form (2), there exists a feasible x̄ such that the corresponding active index set Ta(x̄) is finite:

|Ta(x̄)| < ∞, where Ta(x̄) := {t ∈ T : tTA(x̄)t = 0}.

In what follows, for the sake of simplicity, we will use the Isolation Assumption, or equiv-

alently, the Finiteness Assumption.
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3. New optimality conditions for LCP problems under the Finiteness Assumption

As far as we know, all optimality conditions for LCP problems [see e.g. 18,27], are formulated

under the Slater condition. In this Section, we will prove new optimality conditions that do

not use this condition or any other “regularity condition" [cf. 18]. The only assumption we do

here is that the set of immobile indices is finite.

According to the Finiteness Assumption, the set T ∗ can be written in the form

T ∗ = {t∗(j), j ∈ J}, |J | < ∞. (14)

Denote:

P0(j) := P0(t
∗(j)), P∗(j) := P∗(t

∗(j)), L(j) := L(t∗(j)), s(j) := s(t∗(j)), j ∈ J.

Given j ∈ J and s(j) ∈ P∗(j), define the sets

P00(j) := {p ∈ P0(j) : q(t∗j , ep − es(j)) = 0},

P0∗(j) :=P0(j) \ P00(j) = {p ∈ P0(j) : q(t∗j , ep − es(j)) > 0}.

Notice that under the Finiteness Assumption, the set of immobile indices (14) and the cor-

responding coordinate sets P∗(j), P0∗(j), P00(j), j ∈ J, can be constructed by the algorithm

described in [24].

It is evident that for any j ∈ J and any x ∈ X , the immobile index t∗(j) is an optimal

solution of the lower level problem LLP (x) and (t∗(j))TA(x)t∗(j) = 0. Hence, from the

optimality conditions for LLP (x), it follows that for any x ∈ X and any j ∈ J , there exist a

vector y(x, j) ∈ Rk
+ and a number λ(x, j) such that

A(x)t∗(j)− y(x, j) + λ(x, j)e = 0, (y(x, j))T t∗(j) = 0. (15)

Multiplying both sides of the first equality in (15) by (t∗(j))T and taking into account the

equalities (y(x, j))T t∗(j) = 0 and eT t∗(j) = 1, we get λ(x, j) = 0.

Hence, conditions (15) can be rewritten as

A(x)t∗(j)− y(x, j) = 0, yp(x, j) = 0, p ∈ P∗(j), yp(x, j) ≥ 0, p ∈ P0(j).

The last relations imply that for any x ∈ X and any j ∈ J , it holds

eTpA(x)t∗(j) = 0, p ∈ P∗(j), eTpA(x)t∗(j) ≥ 0, p ∈ P0(j). (16)

Notice that (ep − es(j)) ∈ L(j), p ∈ P , j ∈ J . Then, according to Definition 2.4 and the

definition of the sets P0∗(j), j ∈ J, the equalities (ep − es(j))
TA(x)t∗(j) = 0, p ∈ P0∗(j),
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j ∈ J, should take place for all x ∈ X. These equalities and that from (16) imply

eTpA(x)t∗(j) = 0, p ∈ P \ P00(j). (17)

It follows from (16) and (17) that problem (2) is equivalent to the following one:

min
x∈Rn

cTx

s.t. tTA(x)t ≥ 0 ∀t ∈ Rk
+,

eTpA(x)t∗(j) = 0, p ∈ P \ P00(j), eTpA(x)t∗(j) ≥ 0, p ∈ P00(j), j ∈ J.

(18)

Using Proposition 2.3, it is easy to show that for t∗(j), j ∈ J, the set of all feasible

directions l ∈ L(j), for which q(t∗(j), l) > 0, can be explicitly described as follows:

L∗(j) :={l ∈ Rk : eT l = 0, lp ≥ 0, p ∈ P0∗(j), lp = 0, p ∈ P00(j)}

={l =
∑

p∈P\(P00(j)∪{s(j)})

(ep − es(j))αp, αp ≥ 0, p ∈ P0∗(j)}. (19)

Taking into account the representation above and applying Theorem 4.2 from [26] to problem

(4), we can formulate the following lemma.

Lemma 3.1. Given the SIP problem (4), suppose that the Finiteness Assumption is fulfilled

and the set T ∗ has the form (14). A vector x0 ∈ X is an optimal solution of problem (4) if

and only if there exist numbers

λj , ν(j, p), p ∈ P \ {s(j)}, ν(j, p) ≥ 0, p ∈ P00(j), j ∈ J, (20)

and vectors

l(j, s) ∈L∗(j), s ∈ Sj , j ∈ J ; t(j) ∈ Rk
+, j ∈ J̄ ,

with sets Sj , j ∈ J, and J̄ satisfying
∑
j∈J

|Sj |+ |J̄ | ≤ n, (21)

such that the following relations take place:

−c+
∑
j∈J

λj
∂((t∗(j))TA(x0)t∗(j))

∂x
+

∑
p∈P\{s(j)}

ν(j, p)
∂((ep − es(j))

TA(x0)t∗(j))

∂x

+
∑
s∈Sj

∂((l(j, s))TA(x0)l(j, s))

∂x

+
∑
j∈J̄

∂((t(j))TA(x0)t(j))

∂x
= 0,

(22)
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ν(j, p)(ep − es(j))
TA(x0)t∗(j) = 0, p ∈ P00(j);

(l(j, s))TA(x0)l(j, s) = 0, s ∈ Sj , j ∈ J ; (t(j))TA(x0)t(j) = 0, j ∈ J̄ .
(23)

Applying Lemma 3.1 and taking into account the equivalence of problems (2) and (4), we

can prove the following optimality criterion for problem (2).

Theorem 3.2. Let the Finiteness Assumption be fulfilled for the LCP problem (2). A vector

x0 ∈ X is an optimal solution if and only if there exist vectors

l(j) ∈ L̃(j), j ∈ J ; τ(j) ∈ Rk
+, j ∈ I, |I| ≤ n, (24)

such that

−ci +Ω •Ai = 0, i = 1, 2, ..., n, Ω • A(x0) = 0, (25)

with Ω =
∑
j∈J

(l(j)(t∗(j))T + t∗(j)(l(j))T ) +
∑
j∈I

τ(j)(τ(j))T . (26)

Proof. Given j ∈ J, denote

L̃(j) := {l ∈ Rk : lp ≥ 0, p ∈ P00(j)}. (27)

Let us show that conditions (22) and (23) with the scalars and vectors defined in (20) and

(21), are equivalent to the following ones:

− c+
∑
j∈J

∂((l(j))TA(x0)t∗(j))

∂x
+
∑
j∈I

∂((τ(j))TA(x0)τ(j))

∂x
= 0,

(l(j))TA(x0)t∗(j) = 0, j ∈ J ; (τ(j))TA(x0)τ(j) = 0, j ∈ I,

(28)

with vectors (24).

First, let us show that conditions (22), (23) with numbers (20) and vectors (21) can be

presented in the form (28) with some vectors (24).

Consider some index t∗(j), j ∈ J . It is evident that

∑
p∈P\{s(j)}

ν(j, p)
∂((ep − es(j))

TA(x0)t∗(j))

∂x
=

∂((l̃(j))TA(x0)t∗(j))

∂x
, (29)

where l̃(j) = (l̃p(j), p ∈ P ) ∈ {l ∈ Rk : eT l = 0, lp ≥ 0, p ∈ P00(j)} ⊂ L̃(j),

l̃p(j) := ν(j, p), p ∈ P \ {s(j)}, l̃s(j)(j) := −
∑

p∈P\{s(j)}

ν(j, p).
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For any l̄ ∈ L∗(j) and any β(l̄) ≥ max
p∈P∗(j)

βp, where

βp(l̄) = ∞, if l̄p ≥ 0; βp(l̄) = −l̄p/t
∗
p(j), if l̄p < 0, p ∈ P∗(j),

the vector τ := l̄ + β(l̄)t∗(j) belongs to Rk
+ and τp = 0 for all p ∈ P00(j). Hence any vector

l(j, s) ∈ L∗(j) admits the following representation with β(j, s) := β(l(j, s)):

l(j, s) = t(j, s)− β(j, s)t∗(j), where t(j, s) ∈ Rk
+ and tp(j, s) = 0, p ∈ P00(j). (30)

Consequently,

∂((l(j, s))TA(x0)l(j, s))

∂x
=β2(j, s)

∂((t∗(j))TA(x0)t∗(j))

∂x

− 2β(j, s)
∂((t(j, s))TA(x0)t∗(j))

∂x
+

∂((t(j, s))TA(x0)t(j, s))

∂x
.

(31)

Notice that from the equalities t∗p(j) = 0, tp(j, s) = 0, p ∈ P00(j), it follows that

βt(j, s) ∈ L̃(j), αt∗(j) ∈ L̃(j) for any β ∈ R, α ∈ R.

Then

l(j) := l̃(j) +

∑
s∈Sj

β2(j, s) + λj

 t∗(j)− 2
∑
s∈Sj

β(j, s)t(j, s) ∈ L̃(j), (32)

and lp(j) = ν(j, p) ≥ 0, p ∈ P00(j).

Further, let us show that

(l(j))TA(x0)t∗(j) = 0. (33)

By construction, eTpA(x0)t∗(j) = 0, p ∈ P \P00(j) (see (16)). Then from (23), we conclude

that ν(j, p)eTpA(x0)t∗(j) = ν(j, p)eTs(j)A(x0)t∗(j) = 0, p ∈ P00(j). Hence

(l(j))TA(x0)t∗(j) =
∑
p∈P

lp(j)e
T
pA(x0)t∗(j) =

∑
p∈P00(j)

lp(j)e
T
pA(x0)t∗(j)

=
∑

p∈P00(j)

ν(j, p)eTpA(x0)t∗(j) = 0.

Now, let us show that

(l(j))TA(x0)t(j, s) = 0, s ∈ Sj , (34)
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where t(j, s) = l(j, s) + β(j, s)t∗(j), s ∈ Sj (see (30)), and vectors l(j, s), s ∈ Sj , are

defined in (21). Taking into account that by construction,

(t∗(j))TA(x0)t∗(j) = 0, lTA(x0)t∗(j) = 0 ∀l ∈ L∗(j),

and that according to (23), it holds (l(j, s))TA(x0)l(j, s) = 0, one has

(t(j, s))TA(x0)t(j, s) =β2(j, s)(t∗(j))TA(x0)t∗(j)

+ 2β(j, s)(l(j, s))TA(x0)t∗(j) + (l(j, s))TA(x0)l(j, s) = 0.

Hence, equalities (34) hold true.

It follows from (29)-(32) that equality (22) can be presented in the form

−c+
∑
j∈J

∂((l(j))TA(x0)t∗(j))

∂x
+
∑
j∈J

∑
s∈Sj

∂((t(j, s))TA(x0)t(j, s))

∂x

+
∑
j∈J̄

∂((t(j))TA(x0)t(j))

∂x
= 0.

(35)

Let {τ(j), j ∈ I} := {t(j, s), s ∈ Sj , j ∈ J ; t(j), j ∈ J̄}. Then, evidently, equalities

(33)- (35) can be rewritten as (28) with data (24).

Now we will show that relations (28) with vectors (24) can be presented as relations (22),

(23) with numbers (20) and vectors (21). Fix j ∈ J. Then any vector l ∈ L̃(j) admits rep-

resentation l = βt∗(j) + l̃, where l̃ ∈ {l ∈ Rk : eT l = 0, lp ≥ 0, p ∈ P00(j)}, β = eT l.

Hence any vector l(j) ∈ L̃(j) can be written in the form l(j) = β(j)t∗(j) + l̃(j) with

l̃(j) ∈ {l ∈ Rk : eT l = 0, lp ≥ 0, p ∈ P00(j)}, β(j) = eT l(j). Consequently,

∂((l(j))TA(x0)t∗(j))

∂x
= β(j)

∂((t∗(j))TA(x0)t∗(j))

∂x
+

∂((l̃(j))
TA(x0)t∗(j))

∂x
. (36)

Notice that since eT l̃(j) = 0, we have

∂((l̃(j))
TA(x0)t∗(j))

∂x
=
∑
p∈P

∂(l̃p(j)e
T
pA(x0)t∗(j))

∂x

=
∑

p∈P\{s(j)}

∂(l̃p(j)(ep − es(j))
TA(x0)t∗(j))

∂x
,

(37)

where s(j) is some coordinate from the set P∗(j). Let us prove that

l̃p(j)(ep − es(j))
TA(x0)t∗(j) = 0, p ∈ P00(j). (38)

It was shown above that (t∗(j))TA(x0)t∗(j) = 0 and, according to (28),
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(l(j))TA(x0)t∗(j) = 0. Hence (l̃(j))
TA(x0)t∗(j) = 0 and therefore

0 = (l̃(j))
TA(x0)t∗(j) =

∑
p∈P

l̃p(j)e
T
pA(x0)t∗(j) =

∑
p∈P00(j)

l̃p(j)e
T
pA(x0)t∗(j). (39)

By construction, l̃p(j) ≥ 0, eTpA(x0)t∗(j) ≥ 0, p ∈ P00(j). Then, it follows from (39)

that l̃p(j)eTpA(x0)t∗(j) = 0, p ∈ P00(j). Taking into account that s(j) ∈ P∗(j) and, hence

eTs(j)A(x0)t∗(j) = 0, we conclude that (38) holds true.

Finally, let us set

Sj := ∅, λj := β(j), ν(j, p) := l̃p(j), p ∈ P \ {s(j)}, j ∈ J ; J̄ := I, t(j) := τ(j), j ∈ I.

Then, it follows from (36)-(38) that relations (28) with vectors (24) can be represented in

the form of relations (22), (23) with numbers (20) and vectors (21).

It is evident that the statements of the theorem follow from the proven above equivalence

and the optimality criterion in the form of Lemma 3.1.

The optimality conditions proved in Theorem 3.2 are formulated for any set of immobile

indices (either empty or not). The only assumption that is done in the theorem is a not strong

assumption that the set of immobile indices is finite. In our future work, we intend to show

that this assumption can be omitted.

Notice that in the case T ∗ = ∅, i.e. J = ∅, Theorem 3.2 coincides with Theorem 2.2 and

provides the same (KKT) conditions since the first term in (26) vanishes and the matrix (26)

takes the form Ω =
∑
j∈I

τ(j)(τ(j))T ∈ C∗.

In the case T ∗ ̸= ∅, Theorem 3.2 gives more general optimality conditions than Theorem

2.2 since the fulfillment of conditions of Theorem 2.2 implies the fulfillment of conditions of

Theorem 3.2, but not vice versa. Let us illustrate this with an example.

Let us consider an LCP problem (2) with the following data:

n = 5, k = 5, c = (2.12, 1.24, −1.12, −3.48, 0.12)T ,

A0 =



1 −1 0 0 0

−1 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 0.5


, A1 =

1

2



2 −1 1 0 1

−1 0 0 1 0

1 0 0 1 1

0 1 1 0 0

1 0 1 0 0


, A2 =

1

2



0 1 0 1 0

1 −2 0 −1 1

0 0 0 1 0

1 −1 1 0 0

0 1 0 0 0


,

A3 =
1

2



2 −1 0 1 0

−1 0 0 0 0

0 0 2 0 0

1 0 0 0 0

0 0 0 0 0


, A4 =

1

2



0 1 0 1 1

1 −2 0 0 −2

0 0 0 0 1

1 0 0 −2 0

1 −2 1 0 2


, A5 =

1

2



2 −1 1 0 −1

−1 0 0 0 1

1 0 0 0 −2

0 0 0 0 1

−1 1 −2 1 0


.
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It is easy to check that for t∗ = (12 ,
1
2 , 0, 0, 0)

T , we have (t∗)TAjt
∗ = 0, j = 0, 1, ..., 5.

Hence (t∗)TA(x)t∗ = 0 for any x ∈ R5. This implies that the index t∗ is immobile in our

problem. On the other hand, one can check that vector x̄ = (2, 0, 0,−1,−1)T is a feasible

solution and tTA(x̄)t > 0 ∀t ∈ T \{t∗}. Hence, in this example, the set of immobile indices

consists of a unique index t∗ =: t∗(1). Since eTpA(x̄)t∗ > 0, p = 3, 4, 5, then P∗(1) = {1, 2},
P0∗(1) = ∅, P00(1) = {3, 4, 5}. Notice that T ∗ = {t∗(1)} ̸= ∅, and the constraints of our

problem do not satisfy the Slater condition.

It is possible to verify that vector x0 = (1, −1, 1, 0, −1)T is an optimal solution and the

corresponding active index set is as follows:

Ta(x
0) := {t ∈ T : tTA(x0)t = 0} = {t(α) := αt̄+ (1− α)t∗, α ∈ [0, 1]},

where t̄ = (0, 13 , 0, 0,
2
3)

T and eTpA(x0)t∗ = 0, p = 1, 2, 3, 5; eT4 A(x0)t∗ = 2 > 0.

First, notice that for x0, the optimality conditions formulated in Theorem 2.2 are not satis-

fied. In fact, from the condition

Ω • A(x0) = 0 with Ω ∈ conv{ttT : t ∈ Rk
+}, (40)

it follows that Ω ∈ conv{βttT : t ∈ Ta(x
0), β ≥ 0}. It is easy to check that

(t(α))TA1t(α) = −(t(α))TA3t(α) = α(1−α)/3, α ∈ [0, 1]. Hence, for all τ ∈ Ta(x
0), we

have τTA1τ = −τTA3τ. Consequently, for any Ω satisfying (40), it holds Ω•A1 = −Ω•A3.

But c1 = 2.12 ̸= −c3 = 1.12. Hence conditions (9) of Theorem 2.2 can not be satisfied, in

spite of the fact that the active index set Ta(x
0) consists of an infinite number of elements.

Now, let us show that the optimality conditions of Theorem 3.2 hold true. In fact, one can

check that conditions (25), (26) are satisfied with J = {1}, I = {1},

l(1) = (−2, 0, 2, 0, 4)T ∈ L̃(1) = {l ∈ R5 : lp ≥ 0, p ∈ P00(1)},

τ(1) =
√
3(0.2, 0.4, 0, 0, 0.4)T ∈ R5

+; t∗(1) = (1/2, 1/2, 0, 0, 0)T ,

and Ω = l(1)(t∗(1))T + t∗(1)(l(1))T + τ(1)(τ(1))T .

This example illustrates a situation where the new optimality conditions of Theorem 3.2

permit to reveal the optimality of some given solution of the LCP problem, but the conditions

of Theorem 2.2 do not allow to do this. Notice that since Theorem 3.2 is a criterion, it will

always (under the Finiteness Assumption) detect the optimality / non-optimality of a given

feasible solution.

4. Dual formulations: the standard Lagrangian dual and the regularized dual
problems

In this section, we will discuss some dual formulations of the LCP problem (2).
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The (standard) Lagrangian dual problem for (2) is as follows [27]:

max
W

(−W •A0), s.t. − ci +W •Ai = 0, i = 1, 2, ..., n; W ∈ C∗, (41)

where, as above, the cone C∗ = conv {llT : l ∈ Rk
+} is dual to C.

It is well known [see 27, Theorem 3.1.] that if the constraints of problem (2) satisfy the

Slater condition, then there is no gap between the optimal values of problems (2) and (41).

If the constraints of problem (2) do not satisfy the Slater condition, then the positive gap

is possible. Notice that it may happen even in the case when problem (2) has an optimal

solution.

Suppose that the Finiteness (or the Isolation) Assumption is satisfied and the set T ∗ has the

form (14). Given j ∈ J , consider the set L̃(j) defined in (27), and the following closed cone:

K(j) : = {D ∈ S(k) : eTpDt∗(j) = 0, p ∈ P∗(j) ∪ P0∗(j), e
T
pDt∗(j) ≥ 0, p ∈ P00(j)}

= {D ∈ S(k) : lTDt∗(j) ≥ 0 ∀l ∈ L̃(j)}.

Notice that all cones K(j), j ∈ J , as well as the cone of copositive matrices C defined in (1),

are convex and closed. It is easy to show that for any j ∈ J , the dual cone of K(j) has the

form K∗(j) = {l(t∗(j))T + t∗(j)lT : l ∈ L̃(j)}.
Denote:

K := (
∩
j∈J

K(j)) ∩ C.

It should be noted here that the cone K is a face of C and F ⊂ K, where

F := {A(x), x ∈ X}. (42)

It is known [see e.g. 4,28] that given a family of closed convex cones Ei, i = 1, ...,m, it holds(
m∩
i=1

Ei
)∗

= cl

(
m∑
i=1

E∗
i

)
, where cl(D) stays for the closure of a set D. Hence the dual cone

of K has the form K∗ = cl

(∑
j∈J

K∗(j) + C∗

)
.

Recall that, as it was shown in section 2, the primal LCP problem in the form (2) is equiv-

alent to problem (18). Taking into account the notation introduced above, problem (18) can

be rewritten as

min
x

cTx s.t. A(x) ∈ K. (43)

Let us designate problem (43) as a regularized primal problem. Its dual (regularized dual

15



problem) has the form

max
W

(−W •A0), s.t. − ci +W •Ai = 0, i = 1, 2, ..., n, W ∈ K∗. (44)

It can be shown that for any feasible solution x∗ of problem (43) and for any feasible

solution W ∗ of problem (44) the following inequality (weak duality) holds:

cTx∗ ≥ −W ∗ •A0.

It is easy to verify that under the Finiteness (Isolation) Assumption, for any optimal solu-

tion x0 of problem (43), there exists a feasible solution W 0 of the corresponding dual problem

(44) such that the strong duality property holds:

cTx0 = −W 0 •A0.

Indeed, here we can set matrix W 0 to be equal to matrix Ω defined in (26) for which, according

to Theorem 3.2, conditions (25) hold.

Thus, we have proved the following proposition.

Proposition 4.1. Suppose that the Finiteness (Isolation) Assumption is satisfied and the pri-

mal LCP problem (2) has an optimal solution. Then

• an optimal solution of the dual regularized problem (44) exists, and

• there is no gap between the optimal values of problem (2) ((43)), and its dual problem

(44).

Hence, the strong duality takes place for the primal problem (2) and its regularized dual

problem (44), while, as it was mention above, for the pair constituted by the primal problem

(2) and its (standard) Lagrangian dual problem (41), the strong duality may fail.

Let us illustrate these conclusions by an example which is a slight modification of the

Example 2.2 from [30].
Consider an LCP problem in the form (2) with the following data:

n = 2, k = 3, c = (0, −1)T ;

A0 =

 a 0 0

0 0 0

0 0 0

 , A1 =

 0 0 0

0 −1 0

0 0 0

 , A2 =

 −1 0 0

0 0 −1

0 −1 0

 ,
(45)

where a > 0.

For the A(x) constructed by formula (3) and for t∗ = (0, 0, 1)T , we have (t∗)TA(x)t∗ =

0, eT1 A(x)t∗ = 0 for all x ∈ R2.

It is easy to check that vector x̄ = (−1,−1)T is feasible in problem (2) with data (45),

tTA(x̄)t > 0 for all t ∈ R3
+ \ {t∗}, and eT2 A(x̄)t∗ > 0. Therefore, in this problem there is
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only one immobile index t∗(1) := t∗ and the corresponding coordinate sets defined in Section

3 are as follows: P∗(1) = {3}, P0∗ = {1}, P00 = {2}, L̃(1) = {l ∈ R3 : l2 ≥ 0}.
Vector x0 = (−1, 0)T is an optimal solution of this problem and the optimal value of the

cost function is equal to val(P ) = cTx0 = 0.

Let us consider the corresponding Lagrangian dual problem (41),

max
W

(−W •A0), s.t. W •A1 = 0, W •A2 = −1,

with W :=
∑
s∈S

t(s)(t(s))T , t(s) ∈ R3
+, s ∈ S,

for some finite index set S : |S| < ∞. For data (45) this problem takes the form

max(−a
∑
s∈S

t21(s)), (46)

s.t.
∑
s∈S

t22(s) = 0;
∑
s∈S

(−t21(s)− 2t2(s)t3(s)) = −1, ti(s) ≥ 0, s ∈ S; i = 1, 2, 3.

It follows from the constraints of the dual problem above that for any dual feasible solution

it holds t2(s) = 0, s ∈ S, and
∑
s∈S

t21(s) = 1. Hence, the optimal value of the cost function

in problem (46) is equal to val(D) = −a < 0. Consequently, the duality gap is positive:

val(P )− val(D) = a > 0.

Now, let us consider the regularized dual problem (44) with data (45). It is easy to check

that for the matrix in the form

W 0 = l(1)(t∗(1))T + t∗(1)(l(1))T + τ(1)(τ(1))T =

 0 0 0

0 0 1/2

0 1/2 1


with l(1) = (0, 1/2, 0)T ∈ L̃(1) and τ(1) = t∗(1) ∈ R3

+, we have

−W 0 •A0 = 0,W 0 •A1 = c1 = 0, and W 0 •A2 = c2 = −1.

Hence, W 0 is an optimal solution of the regularized dual problem and the optimal value of

the cost function in this problem is equal to 0. Consequently, there is no duality gap between

the primal LCP problem with data (45) and the corresponding regularized dual problem in the

form (44).

The main contribution of this section consists in the formulation of the new (regularized)

dual problem (44) for the LCP problem (2). This dual problem is constructed using the in-

formation about the immobile indices of the constraints of the primal problem. Under the

Finiteness (or equivalently, Isolation) Assumption, Proposition 4.1 guarantees zero duality

gap. These duality results may be used for constructing efficient numerical methods for LCP.

It is worth to be mentioned that the dual formulations obtained here correlate with those
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from [22,31], where CQ- free optimality conditions for a more general conic optimization

problem were obtained by using the so-called minimal representation of the cone. Being

applied to the LCP problem (2), these results consist of the following. The original (primal)

problem (2) is replaced by the equivalent regularized primal problem in the form

min
x∈Rn

cTx s.t. A(x) ∈ Cmin, (47)

where Cmin is the minimal face of the cone C generated by the set F defined in (42). Then the

regularized dual problem has the form

max
W

(−W •A0), s.t. − ci +W •Ai = 0, i = 1, 2, ..., n, W ∈ C∗
min, (48)

where C∗
min is the dual cone to Cmin. Under the assumption that the primal problem has a

finite optimal value, it was proved in [31] that for the dual pair (47) and (48), the strong

duality holds, i.e. there is no positive duality gap and the dual optimal value is attained.

Notice here that in order to be able to efficiently apply these results, one should know

explicit descriptions of the cones Cmin and C∗
min which are not provided in [22,31]. To the

best of our knowledge, explicit descriptions of the minimal cone Cmin and its dual one C∗
min

are known for SDP problems (see [21] and [25]), but not for LCP.

Therefore, given an LCP problem, the main difference between the previous formulations

and those obtained in this section, is as follows: in [22,31], the regularization of the dual prob-

lem is based on the minimal representation of the cone of constraints, but this representation

is defined implicitly, while the regularization based on the concepts of the immobile indices

allows to explicitly describe the cones K and K∗ and to obtain optimality conditions which

are applicable even when the classical ones fail.

Notice that in [27], some other duality relations for the pair of problems (2) and (41) are

considered under the assumption that either the Slater condition (5) or the following one:

c ∈ int M with M := cone{a(t), t ∈ T}, a(t) := (tTA1t, ..., t
TAnt)

T ∈ Rn, (49)

is satisfied. In Proposition 4.1 we do not require the fulfillment of any of these conditions. For

instance, in the above example, the Slater condition and condition (49) are not fulfilled since

T ∗ ̸= ∅ and c ̸∈ int M.

5. Conclusions

The main contribution of the work consists in the successful application of the new approach

to optimality conditions, first developed for convex SIP problems, to the problems of LCP.

This approach, based on the concept of the immobile indices, has permitted us to prove for

the LCP problem (2) the first order optimality criterion without the commonly used Slater
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CQ. The only assumption that we have done here is that the set of immobile indices (in the

original LCP problem) consists of isolated points and, hence, is finite.

The results of the paper permit us to conclude that the idea of using the immobile indices

for the derivation of new optimality conditions, effectively works not only in SIP, but also in

LCP. Moreover, this approach to optimality conditions may be productive for wider classes

of optimization problems.

The concept of immobile indices allowed us to formulate a new regularized dual problem

for the primal LCP problem (2). Under a condition that this problem has an optimal solution,

the duality gap between the optimal values of the cost functions in the primal problem and the

regularized dual problem (44) vanishes and the dual optimal value is attained. This permits

one to judge about the benefits of using the immobile indices in dual formulations.

In the future, we plan to generalize the results of the paper and obtain new optimality con-

ditions for LCP without the Finiteness Assumptions and/or the equivalent Isolation Assump-

tion as well as without other special conditions for the constraints of the problem. Namely,

we intend to prove the conjecture:

Let T ∗ be the set of immobile indices in the LCP problem (2) and t∗(j), j ∈ J, be the set

of vertices of the bounded polyhedron convT ∗. Then Theorem 3.2 is true without Finiteness

Assumption.

For LPC problems, we intend to develop the no- gap duality theory as it is done in [21].

We plan also to extend our approach to new classes of CP problems, as well as to other

optimization problems that admit copositive and conic reformulations.
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